WorldWideScience

Sample records for 7li solid-state mas

  1. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  2. Structural biology applications of solid state MAS DNP NMR

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  3. 31P Solid-state MAS NMR spectra

    The structures of the silicoaluminiophosphates MCM-1 and MCM9 were characterized by 27Al and 31P MAS NMR. The structural identity of MCM-1 and its silicon-free homologue AlPO4-H3 is demonstrated. The presence of a structural mixture in MCM-9 is confirmed. 31P MAS NMR spectra of MCM-9 could be interpreted as a superposition of spectra of VPI-5, AlPO4-H3 and SAPO-11 phases. (author). 12 refs.; 3 figs.; 1 tab

  4. A software framework for analysing solid-state MAS NMR data

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  5. A software framework for analysing solid-state MAS NMR data.

    Stevens, Tim J; Fogh, Rasmus H; Boucher, Wayne; Higman, Victoria A; Eisenmenger, Frank; Bardiaux, Benjamin; van Rossum, Barth-Jan; Oschkinat, Hartmut; Laue, Ernest D

    2011-12-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data. PMID:21953355

  6. A software framework for analysing solid-state MAS NMR data

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Higman, Victoria A. [University of Oxford, Department of Biochemistry (United Kingdom); Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie, Department of Structural Biology (Germany); Laue, Ernest D., E-mail: e.d.laue@bioc.cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2011-12-15

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  7. Investigations of Li-containing SiCN(O) ceramics via 7Li MAS NMR.

    Gumann, Sina; Nestle, Nikolaus; Liebau-Kunzmann, Verena; Riedel, Ralf

    2007-04-01

    Lithium-containing silicon (oxy)carbonitride ceramics (SiCN(O):Li) were synthesized via precursor-to-ceramic-transformation of Li-containing (poly)silazanes. The precursors were obtained by lithiation of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane with n-butyllithium and by reaction of a commercial poly(organosilazane) VL20 with metallic lithium. The annealing treatment was carried out at temperatures between 200 and 1400 degrees C in argon (DeltaT=200 degrees C) and yielded Li-containing silicon (oxy)carbonitride. X-ray powder diffraction revealed that the resulting SiCN(O):Li ceramics were basically amorphous up to temperatures of 1000 degrees C and formed LiSi(2)N(3), graphite and silicon carbide as crystalline phases at higher temperatures. (7)Li MAS NMR spectroscopy was carried out to investigate the structure of the Li-containing phases and to study the reaction path of metallic Li with polysilazane. Based on the NMR spectra, there is almost no difference found in the chemical shift of the SiCN(O):Li ceramics obtained at different temperatures. Accordingly, Li is assigned to be mainly coordinated to N and O present as contaminant element. Relaxation time measurements showed that the most mobile Li(+) species seems to be present in the product obtained in the pyrolysis temperature range between 600 and 1000 degrees C. PMID:17418540

  8. Cp-MAS solid state NMR of secondary metabolites from northeastern Brazil plants

    Aiming to learn more about the 13 C NMR of secondary metabolites in the solid state, as well as to make use of the Cp-MAS probe available in the CENAUREMN (Northeastern Center for Application and Use od NMR) laboratory, an analysis has been performed on the the following six classes of secondary metabolites: diterpenes, coumarins, alkaloids, flavonoids and purines

  9. Spontaneous Lithium Transportation via LiMn2O4/Electrolyte Interface Studied by 6/7Li Solid-State Nuclear Magnetic Resonance

    Highlights: • Spontaneous Li+ exchange between LiMn2O4 and LiPF6-based electrolyte was studied. • 6/7Li solid-state NMR techniques were developed to examine the exchange. • The exchange occurs for stoichiometric LiMn2O4 but not in Li-excess LiMn2O4. • The exchange was approximated by the 1st-order reaction with the rate of 0.024 min-1. • The suppression in Li-excess LiMn2O4 was ascribed to excess amount of Mn4+. - Abstract: Lithium transportation across the interface of LiMn2O4/LiPF6-based electrolyte was studied by 6/7Li solid-state NMR with 6Li-enriched LiPF6. For almost stoichiometric LiMn2O4, we show that exchange of lithium ions occurs across an electrolyte/electrode interface just by immersing LiMn2O4 powder into LiPF6-based electrolyte, while such transportation is suppressed in Li-excess LiMn2O4. The exchange was approximated by the 1st-order reaction, and the rate was estimated from the 6Li/7Li intensities to be 0.024 min−1 at room temperature. The lithium ions penetrated into the surface of a LiMn2O4 particle reach to the core with a time scale of a few hours at room temperature. The suppression of the exchange in Li-excess LiMn2O4 was ascribed to the presence of excess amount of Mn4+

  10. A solid state MAS NMR study of the thermal reactions in alkali-leached aluminosilicates

    The thermal transformations of aluminosilicate minerals such as kaolinite (Al2Si2O5(OH)4) are of importance for the production of both clay-based ceramics and high-technology ceramics such as sialons. Solid-state MAS NMR can provide information about the intermediate stages in the formation of mullite (Al6Si2O13). These intermediates, which are only poorly crystalline and less amenable to XRD study, may include poorly crystalline mullite, a cubic spinel similar to γ-Al2O3 but which has been suggested to contain Si, and other amorphous aluminosilicate phases of variable composition. Since the 29Si and 27Al MAS NMR spectra of all these phases are expected to contain resonances broadly in the same spectral area, unambiguous differentiation of these phases has not so far proved possible by this technique. The work reported here was suggested by the possibility of selective alkali extraction of some of the more silica-rich phases using techniques developed by Chakravorty and Ghosh, which was hoped to reveal the MAS NMR features of the less-leachable phases. NMR study of the leached products after subsequent thermal treatment also provided useful information about the leaching reactions themselves. Copyright (1999) Australasian Ceramic Society

  11. Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins

    Linser, Rasmus; Chevelkov, Veniamin; Diehl, Anne; Reif, Bernd

    2007-12-01

    Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D 2O:H 2O = 9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken α-spectrin as a model system. The labeling scheme allows to record proton detected 1H, 15N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the 1H T1 for the bulk H N magnetization is reduced from 4.4 s to 0.3 s if the Cu-edta concentration is increased from 0 mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.

  12. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd [Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)], E-mail: reif@fmp-berlin.de

    2009-09-15

    We present a comprehensive analysis of protein dynamics for a micro-crystallin protein in the solid-state. Experimental data include {sup 15}N T{sub 1} relaxation times measured at two different magnetic fields as well as {sup 1}H-{sup 15}N dipole, {sup 15}N CSA cross correlated relaxation rates which are sensitive to the spectral density function J(0) and are thus a measure of T{sub 2} in the solid-state. In addition, global order parameters are included from a {sup 1}H,{sup 15}N dipolar recoupling experiment. The data are analyzed within the framework of the extended model-free Clore-Lipari-Szabo theory. We find slow motional correlation times in the range of 5 and 150 ns. Assuming a wobbling in a cone motion, the amplitude of motion of the respective amide moiety is on the order of 10 deg. for the half-opening angle of the cone in most of the cases. The experiments are demonstrated using a perdeuterated sample of the chicken {alpha}-spectrin SH3 domain.

  13. Structural nature of 7Li and 11B sites in the nonlinear optical material LiB3O5 using static NMR and MAS NMR

    The structural nature of the nonlinear optical properties of LiB3O5 is analyzed using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The 3-coordinated trigonal [B(1) and B(2)] and 4-coordinated tetragonal [B(3)] sites are distinguished using the spectrum and the spin-lattice relaxation time in rotating frame T1ρ, which was obtained from the 11B MAS NMR. Moreover, the T1 and T1ρ values for 7Li and 11B are compared, and the activation energies were obtained. The T1ρ values of the boron nuclei in LiB3O5 show no significant changes. These results may be closely related to the largest second-order nonlinear optical coefficient. - Highlights: • The structural nature of the nonlinear optical properties of LiB3O5. • Single-crystal NMR and MAS NMR. • The 3-coordnated trigonal and 4-coordinated tetragonal. • The spin-lattice relaxation time in rotating frame T1ρ

  14. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  15. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  16. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  17. Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy

    Agarwal, Vipin; Reif, Bernd

    2008-09-01

    NMR studies involving perdeuterated proteins focus in general on exchangeable amide protons. However, non-exchangeable sites contain as well a small amount of protons as the employed precursors for protein biosynthesis are not completely proton depleted. The degree of methyl group protonation is in the order of 9% for CD 2H using >97% deuterium enriched glucose. We show in this manuscript that this small amount of residual protonation is sufficient to perform 2D and 3D MAS solid-state NMR experiments. In particular, we suggest a HCCH-TOBSY type experiment which we successfully employ to assign the methyl resonances in aliphatic side chains in a perdeuterated sample of the SH3 domain of chicken α-spectrin.

  18. Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins

    Linser, Rasmus; Fink, Uwe; Reif, Bernd

    2008-07-01

    Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the 15N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken α-spectrin, which was re-crystallized in H 2O/D 2O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated Cu II to enable rapid data acquisition.

  19. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A 2H-2 and 7Li solid-state MAS NMR study

    Nielsen, Ulla Gro; Grey, Clare P.; Paik, Jonkim

    2008-01-01

    2H and 7LiMAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepiclocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, e...

  20. Structure determination of uniformly 13C, 15N labeled protein using qualitative distance restraints from MAS solid-state 13C-NMR observed paramagnetic relaxation enhancement

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn2+ mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library

  1. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  2. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR

  3. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S., E-mail: lebrown@uoguelph.ca [University of Guelph, Departments of Physics, and Biophysics Interdepartmental Group (Canada)

    2013-02-15

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ({sup 13}C/{sup 15}N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  4. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly (13C/15N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  5. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2013-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into l...

  6. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  7. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  8. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy.

    Larsen, Flemming H; Byg, Inge; Damager, Iben; Diaz, Jerome; Engelsen, Søren B; Ulvskov, Peter

    2011-05-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed. PMID:21462966

  9. Insights into a lipid regulator by solid-state MAS NMR : kinetic and structure-functional studies on diacylglycerol kinase

    Ullrich, Sandra Johanna

    2013-01-01

    In this thesis the integral membrane protein diacylglycerol kinase (DAGK) from E.coli is investigated with solid-state NMR. The aim is to gain an insight into the enzyme’s mechanism through integration of kinetic, structural and dynamic data. The biological function of DAGK is the transfer of the γ-phosphate group from Mg*ATP to diacylglycerol (DAG) building phosphatidic acid (PA)[6] as port of the membrane-derived oligosaccharide cycle[31,34]. Surprisingly, DAGK does not share structural or ...

  10. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J.

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state 33S (spin I = 3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH 4) 2WS 4 and (NH 4) 2MoS 4. These materials all exhibit 33S quadrupole coupling constants ( CQ) in the range 0.1-1.0 MHz, with precise CQ values being determined from analysis of the PT enhanced 33S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I = 3/2 nuclei with similar CQ values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance 33S MAS NMR, a time saving which is extremely welcome for this important low-γ nucleus.

  11. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO2 adsorption performance. Highlights: ► Location of extraframework Sr2+ or Ba2+ cations was estimated by means of 1H and 23Na MAS NMR. ► Level of Sr2+ or Ba2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr2+ and Ba2+ ion exchanged SAPOs are outstanding CO2 adsorbents.

  12. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  13. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy

    Akbey, Umit; Lange, Sascha; Trent Franks, W.; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; Rossum, Barth-Jan van; Reif, Bernd; Oschkinat, Hartmut, E-mail: oschkinat@fmp-berlin.d [Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)

    2010-01-15

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D{sub 2}O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both {sup 1}H and {sup 15}N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for {sup 1}H-{sup 15}N correlations in dipolar coupling based experiments for H{sub 2}O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based {sup 1}H-{sup 15}N correlation experiments yield a nearly constant SNR for samples prepared with {<=}30% H{sub 2}O. Samples in which more H{sub 2}O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in {sup 1}H T{sub 1} in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H{sub 2}O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H{sub 2}O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible {sup 1}H,{sup 1}H interactions increases. At low levels of deuteration ({>=}60% H{sub 2}O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken {alpha}-spectrin SH3 domain.

  14. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m-3. Solid state CP/MAS 13C n.m.r. (cross polarization/magic angle spinning 13C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  15. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins

    In recent years, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been growing into an important technique to study the structure of membrane proteins, amyloid fibrils and other protein preparations which do not form crystals or are insoluble. Currently, a key bottleneck is the assignment process due to the absence of the resolving power of proton chemical shifts. Particularly for large proteins (approximately >150 residues) it is difficult to obtain a full set of resonance assignments. In order to address this problem, we present an assignment method based upon samples prepared using [1,3-13C]- and [2-13C]-glycerol as the sole carbon source in the bacterial growth medium (so-called selectively and extensively labelled protein). Such samples give rise to higher quality spectra than uniformly [13C]-labelled protein samples, and have previously been used to obtain long-range restraints for use in structure calculations. Our method exploits the characteristic cross-peak patterns observed for the different amino acid types in 13C-13C correlation and 3D NCACX and NCOCX spectra. An in-depth analysis of the patterns and how they can be used to aid assignment is presented, using spectra of the chicken α-spectrin SH3 domain (62 residues), αB-crystallin (175 residues) and outer membrane protein G (OmpG, 281 residues) as examples. Using this procedure, over 90% of the Cα, Cβ, C' and N resonances in the core domain of αB-crystallin and around 73% in the flanking domains could be assigned (excluding 24 residues at the extreme termini of the protein)

  16. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively {sup 13}C-labelled proteins

    Higman, Victoria A. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Flinders, Jeremy [Genentech, Inc., Structural Biology Department (United States); Hiller, Matthias; Jehle, Stefan; Markovic, Stefan; Fiedler, Sebastian; Rossum, Barth-Jan van; Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany)], E-mail: oschkinat@fmp-berlin.de

    2009-08-15

    In recent years, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been growing into an important technique to study the structure of membrane proteins, amyloid fibrils and other protein preparations which do not form crystals or are insoluble. Currently, a key bottleneck is the assignment process due to the absence of the resolving power of proton chemical shifts. Particularly for large proteins (approximately >150 residues) it is difficult to obtain a full set of resonance assignments. In order to address this problem, we present an assignment method based upon samples prepared using [1,3-{sup 13}C]- and [2-{sup 13}C]-glycerol as the sole carbon source in the bacterial growth medium (so-called selectively and extensively labelled protein). Such samples give rise to higher quality spectra than uniformly [{sup 13}C]-labelled protein samples, and have previously been used to obtain long-range restraints for use in structure calculations. Our method exploits the characteristic cross-peak patterns observed for the different amino acid types in {sup 13}C-{sup 13}C correlation and 3D NCACX and NCOCX spectra. An in-depth analysis of the patterns and how they can be used to aid assignment is presented, using spectra of the chicken {alpha}-spectrin SH3 domain (62 residues), {alpha}B-crystallin (175 residues) and outer membrane protein G (OmpG, 281 residues) as examples. Using this procedure, over 90% of the C{alpha}, C{beta}, C' and N resonances in the core domain of {alpha}B-crystallin and around 73% in the flanking domains could be assigned (excluding 24 residues at the extreme termini of the protein)

  17. Structure determination of uniformly {sup 13}C, {sup 15}N labeled protein using qualitative distance restraints from MAS solid-state {sup 13}C-NMR observed paramagnetic relaxation enhancement

    Tamaki, Hajime [Hokkaido University, Graduate School of Life Science (Japan); Egawa, Ayako [Osaka University, Institute for Protein Research (Japan); Kido, Kouki [Hokkaido University, Graduate School of Life Science (Japan); Kameda, Tomoshi [National Institute of Advanced Industrial Science and Technology, Biotechnology Research Institute for Drug Discovery (Japan); Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu [Hokkaido University, Faculty of Advanced Life Science (Japan); Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan); Demura, Makoto, E-mail: demura@sci.hokudai.ac.jp [Hokkaido University, Faculty of Advanced Life Science (Japan)

    2016-01-15

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn{sup 2+} mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library.

  18. Efficient and facile Ar-Si bond cleavage by montmorillonite KSF: synthetic and mechanistic aspects of solvent-free protodesilylation studied by solution and solid-state MAS NMR.

    Zafrani, Yossi; Gershonov, Eytan; Columbus, Ishay

    2007-08-31

    A facile and efficient method for the cleavage of the Ar-Si bond of various aryl trimethyl silanes is described. When adsorbed on montmorillonite KSF (mont KSF), these arylsilanes readily undergo a solvent-free protodesilylation to the corresponding arenes at room temperature in excellent yields. This approach seems to be superior to the traditional mild methods (i.e., desilylation by TFA, TBAF, CsF), in terms of reaction yield, rate, and environmentally benign conditions. Some mechanistic studies using both solution and solid-state magic-angle spinning (SS MAS) (1)H NMR are also presented. PMID:17676903

  19. Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of {alpha}-spectrin by MAS solid-state NMR

    Chevelkov, Veniamin [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Faelber, Katja [Max-Delbrueck-Centrum fuer Molekulare Medizin (Germany); Diehl, Anne [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Heinemann, Udo [Max-Delbrueck-Centrum fuer Molekulare Medizin (Germany); Oschkinat, Hartmut; Reif, Bernd [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)], E-mail: reif@fmp-berlin.de

    2005-04-15

    Water molecules are a major determinant of protein stability and are important for understanding protein-protein interactions. We present two experiments which allow to measure first the effective T{sub 2} decay rate of individual amide proton, and second the magnetization build-up rates for a selective transfer from H{sub 2}O to H{sup N} using spin diffusion as a mixing element. The experiments are demonstrated for a uniformly {sup 2}H, {sup 15}N labeled sample of a microcrystalline SH3 domain in which exchangeable deuterons were back-substituted with protons. In order to evaluate the NMR experimental data, as X-ray structure of the protein was determined using the same crystallization protocol as for the solid-state NMR sample. The NMR experimental data are correlated with the dipolar couplings calculated from H{sub 2}O-H{sup N} distances which were extracted from the X-ray structure of the protein. We find that the H{sup N}T{sub 2} decay rates and H{sub 2}O-H{sup N} build-up rates are sensitive to distance and dynamics of the detected water molecules with respect to the protein. We show that qualitative information about localization and dynamics of internal water molecules can be obtained in the solid-state by interpretation of the spin dynamics of a reporter amide proton.

  20. Investigation of Pozzolanic Reaction in Nanosilica-Cement Blended Pastes Based on Solid-State Kinetic Models and 29Si MAS NMR

    Jiho Moon

    2016-02-01

    Full Text Available The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. In this study, Ordinary Portland Cement (OPC was mixed with 1% and 3% nanosilica by weight to produce cement pastes with water to binder ratio (w/b of 0.45. The specimens were cured for 7 days. 29Si nuclear magnetic resonance (NMR experiments are conducted and conversion fraction of nanosilica is extracted. The results are compared with a solid-state kinetic model. It seems that pozzolanic reaction of nanosilica depends on the concentration of calcium hydroxide.

  1. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  2. Inter- and intramolecular distance measurements by solid-state MAS NMR: Determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers

    Fu Riqiang; Cotten, Myriam; Cross, Timothy A. [Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory (United States)

    2000-03-15

    Distance constraints are an important complement to orientational constraints. While a high-resolution monomer structure of the ion channel forming polypeptide, gramicidin A, has been solved with 120 orientational constraints, the precise geometry of the dimer interface has not been characterized. Here, using both {sup 13}C and {sup 15}N labeled gramicidin A samples in hydrated phospholipid bilayers, both inter- and intramolecular distances have been measured with a recently developed simultaneous frequency and amplitude modulation (SFAM) solid-state NMR scheme. Using this approach {sup 15}N-{sup 13}C{sub 1} residual dipolar couplings across a hydrogen bond as small as 20 {+-} 2 Hz have been characterized. While such distances are on the order of 4.2 {+-} 0.2 A, the spectroscopy is complicated by rapid global motion of the molecular structure about the bilayer normal and channel axis. Consequently, the nominal 40 Hz dipolar coupling is averaged depending on the orientation of the internuclear vector with respect to the motional axis. The intermolecular distance confirmed the previously described monomeric structure, while the intramolecular distance across the monomer-monomer interface defined this junction and confirmed the previous model of this interface.

  3. Solid state P-31 MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    Risskov Sørensen, Daniel; Nielsen, U. G.; Skou, E. M.

    2014-01-01

    .1 and 74.2 M% were produced and characterized with powder X-ray diffraction, P-31 MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H3PO4 takes place above 200 degrees C, and increases with temperature. At 500 degrees C the NbOPO4 and H3PO4 has...... reacted to form niobium pyrophosphate (Nb2P4O15). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5.10(-3) S/cm for a sample containing 74.2 M% of...

  4. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  5. Host-guest interactions in fluorinated polymer electrolytes: A 7Li-13C NMR study

    Mustarelli, P.; Quartarone, E.; Capiglia, C.; Tomasi, C.; Ferloni, P.; Magistris, A.

    1999-08-01

    Gel-type electrolytes based on fluorinated polymers are of interest for electrochemical devices. We present a 7Li-13C solid-state NMR and modulated differential scanning calorimetry (MDSC) study of gel electrolytes based on a copolymer poly(vinylidene fluoride) (PVdF)-hexafluoropropylene (HFP) activated with a nonaqueous solution ethylene carbonate (EC)-propylene carbonate (PC)-LiN(CF3SO2)2. We show that the narrowing of the Li lineshape is decoupled from the glass transition. The behavior of the longitudinal relaxation times, T1, confirms that the host polymer matrix simply behaves like a quasiinert cage for the solution. These results are confirmed by 13C NMR at the magic angle (MAS) data, which show that the presence of the polymer does not significantly affect the chemical shift changes induced in the EC/PC carbons by the imide salt.

  6. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined. PMID:25961154

  7. Examination of the structure in solid state of amino analogs of 4,4‧-[1,5-pentanediylbis(oxy)]bisbenzonitrile by means of X-ray diffraction, 13C CP/MAS NMR, and theoretical calculations

    Maciejewska, Dorota; Wolska, Irena; Żabiński, Jerzy

    2008-05-01

    A single crystal of X-ray diffraction structures is presented for 4,4'-[1,5-(3-oxapentanediylbis(amino))]bisbenzonitrile 2 and 4,4'-[1,5-( N-methyl-3-azapentane-diylbis(oxy))]bisbenzonitrile 3. The molecular structures of these derivatives differ especially in conformations of the central linker: in 2 this linker adopts a trans/ gauche conformation, whereas in 3 - a fully extended conformation. The N atoms in various positions of the aliphatic linker change dramatically the molecular packing mode of both bisnitriles. But in both cases the nitrile groups take part in intermolecular hydrogen bonds: a type of N sbnd H···N in 2 and of C sbnd H···N in 3. Various conformations of both molecules were reflected in 13C CP/MAS NMR spectra in solid state as single and double resonance patterns for 2 and 3, respectively. A preliminary anticancer assay against 60 cell lines of 3 reveals strong growth inhibition of leukemia, melanoma, and renal cancer cells.

  8. Electric dipolarizability of 7Li

    Sudhir R Jain; Arun K Jain; S Kailas

    2008-12-01

    We calculate the electric dipolarizability of 7Li nucleus within the cluster model and estimate a value of about 0.0188 fm3. We also discuss the possibility of observing this in the scattering of 7Li from a 208Pb target at energies about 30 MeV.

  9. (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopic investigations of ternary silicides TPtSi, germanides TPtGe (T = Ti, Zr, Hf) and stannide TiPtSn.

    Benndorf, Christopher; Eckert, Hellmut; Pöttgen, Rainer

    2016-05-10

    Eight ternary tetrelides TPtX (T = Ti, Zr, Hf; X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing. TiPtSi, ZrPtSi, ZrPtGe, HfPtSi and HfPtGe crystallize with the orthorhombic TiNiSi type structure, in the space group Pnma. The structures of HfPtSi (a = 654.44(9), b = 387.97(6), c = 750.0(1) pm, wR2 = 0.0592, 411 F(2) values, 20 variables) and HfPtGe (a = 660.36(7), b = 395.18(4), c = 763.05(8) pm, wR2 = 0.0495, 430 F(2) values, 20 variables) were refined from single crystal X-ray diffractometer data. TiPtSn adopts the cubic MgAgAs type. TiPtGe is dimorphic with a TiNiSi type high-temperature modification which transforms to cubic LT-TiPtGe (MgAgAs type). All phases were investigated by high resolution (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopy. In the cubic compounds, the (47/49)Ti NMR signals are easily detected owing to the absence of quadrupolar broadening effects. The (195)Pt resonances of the orthorhombic compounds are characterized by strongly negative isotropic Knight shifts and large Knight shift anisotropies, whereas positive isotropic Knight shifts and no anisotropies are observed for the cubic compounds. These results indicate that the phase transition in TiPtGe is associated with dramatic changes in the electronic properties. Within each group of isotypic compounds the isotropic (29)Si, (47/49)Ti and (195)Pt Knight shifts show systematic dependences on the transition metal or tetrel atomic number, suggesting that the numerical values are influenced by the electronegativities of the metallic (or metalloid) neighbours. PMID:27097719

  10. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  11. Solid state video cameras

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  12. Solid state physics

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  13. Theoretical solid state physics

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  14. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  15. Solid State Division

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  16. Solid State Division

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  17. Phosphole complexes of Gold(I) halides: Comparison of solution and solid-state structures by a combination of solution and CP/MAS 31P NMR spectroscopy and x-ray crystallography

    A series of complexes of 1-phenyldibenzophosphole (DBP), 1-phenyl-3,4,-dimethylphosphole (DMPP), and triphenylphosphine of the type LnAuX (n = 1, L = DBP, DMPP, Ph3P, X = Cl, Br, I; n = 3, L = DBP, X = Cl, Br, I; n = 3, L = Ph3P, X = Cl; n = 4, L = DBP, DMPP, X = PF6) have been prepared and characterized. The structures of (DBP)AuCl (1), (DBP)3AuCl (2), and (DMPP)AuCl (3) have been determined from three-dimensional x-ray data collected by counter methods. Crystal structure of the complexes is reported. The CP/MAS 31P(1H) NMR spectrum of complex 1 shows two resonances in a 1:1 intensity ratio, and the CP/MAS 31P(1H) NMR spectrum of complex 3 shows three resonances in a 1:1:1 intensity ratio for reasons that are not yet understood. Though the three phospholes are crystallographically inequivalent (d(AuP) = 2.359 (1), 2.382 (1), and 2.374 (2) angstrom) the molecule has effective Cs symmetry as evidenced by the observation of two 31P resonances in a 2:1 intensity ratio in its CP/MAS 31P(1H) NMR spectrum. Variable-temperature 31P(1H) NMR spectra obtained on solutions of LAuCl + L in various ratios were analyzed to determine the nature of the species present in solution and to gain information regarding their relative stabilities as a function of the nature of the phosphine. 79 refs., 8 figs., 9 tabs

  18. The solid state maser

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  19. Theoretical solid state physics

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  20. Welding in solid state

    Iordachescu, Mihaela; Scutelnicu, Elena; Iordachescu, Danut; Ocaña Moreno, Jose Luis

    2008-01-01

    The importance of the Solid State Processes (SSP) has increased in the last decade due to the industry demands of improved properties of joined/surfaced materials, combined with cost reduction and energy saving. New and/or micro-scale solid state processed materials are used by aerospace, automotive and electrotechnics industry. Nowadays, classic SSP are mainly applied to light materials, but progresses were also reported in steels. In this field, the tools design, the technology and practica...

  1. Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid-state MAS NMR; I. Celsian, BaAl{sub 2}Si{sub 2}O{sub 8}

    MacKenzie, K.J.D.; Kemmitt, T. [New Zealand Institute for Industrial Research and Development, P.O. Box 31-310, Lower Hutt (New Zealand)

    1999-01-04

    Hybrid gels of celsian composition were prepared from Al alkoxide, tetrathylorthosilicate (TEOS) and Ba acetate and their structure evolution was studied up to 1300C by thermal analysis and X-ray diffraction. Information on their pre-crystallization behaviour was also provided by {sup 27}Al, {sup 29}Si and {sup 137}Ba MAS NMR spectroscopy. Apart from some excess Ba acetate which decomposed to traces of BaCO{sub 3} and BaO by ca. 500C, the gels are X-ray amorphous and relatively homogeneous, and begin to crystallize to hexagonal celsian at 900C. From {approx}500C onwards, an Al-substituted tetrahedral SiO{sub 4} framework begins to be established, evidenced by a progressive increase in the tetrahedral {sup 27}Al sites and the Q{sup 4}(4Al) {sup 29}Si resonance. Migration of Ba into the polyhedral celsian sites occurs much more slowly. A small amount of mullite and Ba{sub 2}SiO{sub 4} which crystallize from Al-rich and Ba-rich regions, respectively, also form crystalline celsian in secondary reactions at ca. 1100C. The observation of a {sup 27}Al shoulder at ca. 36 ppm at 500-900C may arise from Ba-poor mullite-like regions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid-state MAS NMR; I. Celsian, BaAl2Si2O8

    Hybrid gels of celsian composition were prepared from Al alkoxide, tetrathylorthosilicate (TEOS) and Ba acetate and their structure evolution was studied up to 1300C by thermal analysis and X-ray diffraction. Information on their pre-crystallization behaviour was also provided by 27Al, 29Si and 137Ba MAS NMR spectroscopy. Apart from some excess Ba acetate which decomposed to traces of BaCO3 and BaO by ca. 500C, the gels are X-ray amorphous and relatively homogeneous, and begin to crystallize to hexagonal celsian at 900C. From ∼500C onwards, an Al-substituted tetrahedral SiO4 framework begins to be established, evidenced by a progressive increase in the tetrahedral 27Al sites and the Q4(4Al) 29Si resonance. Migration of Ba into the polyhedral celsian sites occurs much more slowly. A small amount of mullite and Ba2SiO4 which crystallize from Al-rich and Ba-rich regions, respectively, also form crystalline celsian in secondary reactions at ca. 1100C. The observation of a 27Al shoulder at ca. 36 ppm at 500-900C may arise from Ba-poor mullite-like regions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Solid-state circuits

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  4. Solid state theory

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  5. Solid state physics

    Brewster, Hilary D

    2009-01-01

    Solid state physics is an exhaustive introductory text for the students of physics. Keeping in mind, this book has been prepared to present the subject-matter in an easily understandable way without sacrificing the essential details and principles an yet avoiding redundant matter and unnecessary complications. This book is expected to meet adequately the need of the students for whom it is meant.

  6. A Solid state accelerator

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  7. Solid state detector design

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  8. A new mass value for 7Li

    Nagy, Sz; Suhonen, M; Schuch, R; Blaum, K; Björkhage, M; Bergström, I; 10.1103/PhysRevLett.96.163004

    2012-01-01

    A high-accuracy mass measurement of 7Li was performed with the Smiletrap Penning trap mass spectrometer via a cyclotron frequency comparison of Li3+ and H2+. A new atomic mass value of 7Li has been determined to be 7.016,003,425,6,(45)u with a relative uncertainty of 0.63 ppb. It has uncovered a discrepancy as large as 14 sigma (1.1 micro u) deviation relative to the literature value given in the Atomic-Mass Evaluation AME 2003. The importance of the improved and revised 7Li mass value, for calibration purposes in nuclear-charge radii and atomic mass measurements of the neutron halos 9Li and 11Li, is discussed.

  9. Solid state physics

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  10. Solid state physics

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  11. Solid state phenomena

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  12. Solid state magnetism

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  13. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  14. Solid state plasmas

    Manfredi, Giovanni

    2014-01-01

    Magnetic fusion devices operate at regimes characterized by extremely high temperatures and low densities, for which the charged particles motion is well described by classical mechanics. This is not true, however, for solid-state metallic objects: their density approaches $10^{28} \\rm m^{-3}$, so that the average interparticle distance is shorter than the de Broglie wavelength, which characterizes the spread of the electron wave function. Under these conditions, the conduction electrons behave as a true quantum plasma even at room temperature. Here, we shall illustrate the impact of quantum phenomena on the electron dynamics in metallic objects of nanometric size, particularly thin metallic films excited by short laser pulses. Further, we will discuss more recent results on regimes that involve spin and relativistic effects.

  15. Reaction mechanism study of 7Li(7Li, 6He) reaction at above Coulomb barrier energies

    V V Parkar; V Jha; S Santra; B J Roy; K Ramachandran; A Shrivastava; K Mahata; A Chatterjee; S Kailas

    2009-02-01

    The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.

  16. Solid state NMR study of cumbaru flour

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T1Hρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13C decays, which give us more information about sample heterogeneity. The T1HρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  17. Solid state chemistry an introduction

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  18. Luminescence and the solid state

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  19. A Solid State Pyranometer

    Dumitrescu, Anca Laura; Paulescu, Marius; Ercuta, Aurel

    2015-12-01

    The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black), is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03), indicates a good linearity.

  20. Solid state magnetic refrigerator

    Highlights: ► One proposes a magnetic refrigerator not requiring the use of fluids. ► Materials whose thermal conductivities depend on an applied magnetic field are used. ► Numerical simulations show that the coefficient of performance attained reaches 1.5. ► The device can be triggered from cooler to heat source by varying the frequency. - Abstract: The viability and operation of a fully solid state magnetic refrigeration system with envisaged applications on chip, sensor and device cooling is here tested using numerical simulations. The proposed system relies on the combined use of materials displaying the magnetocaloric effect and of materials whose thermal conductivities are controlled by an external magnetic field. This allows the switching of the heat flow direction in sync with the temperature variation of the magnetocaloric material, removing the necessity to use fluids which has for long hindered the implementation of magnetic refrigeration. We have found the optimum operating conditions of the proposed refrigerator, for which a cooling power density of ∼2.75 W cm−2 was obtained for an operating temperature of ∼296 K, using Gadolinium as the magnetocaloric material and an applied magnetic field of 1 T. The coefficient of performance (COP) achieved by this refrigerator was found to be COP ∼1.5, making it a viable alternative to thermoelectric refrigeration.

  1. Radio Frequency Solid State Amplifiers

    Jacob, J

    2015-01-01

    Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.

  2. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Hwang, Son-Jong; Bowman, Robert C., Jr.; Kim, Chul; Zan, Jason A.; Reiter, Joseph W.

    2011-01-01

    Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of ^(11)B MAS NMR in studies of metal borohydrides (BH_4) is mainly focused, revisiting the issue of dodecaborane formation and observation of ^(11)B{^1H} Nuclear Overhauser Effect.

  3. Solid-state laser engineering

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  4. Solid-state laser engineering

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  5. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  6. Solid-state laser engineering

    Koechner, Walter

    1988-01-01

    Solid-State Laser Engineering is written from an industrial perspective and discusses in detail the characteristics, design, construction and practical problems of solid-state lasers. Emphasis is placed on engineering and practical considerations, with a phenomenological treatment using modelsbeing preferred to abstract mathematical derivations. This new edition has been updated and revised to include important developments, concepts and technologies that have emerged since the publication of the first edition.

  7. Solid State Photovoltaic Research Branch

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  8. $^{7}$Li abundances in halo stars testing stellar evolution models and the primordial $^{7}$Li abundance

    Chaboyer, B; Brian Chaboyer

    1994-01-01

    A large number of stellar evolution models with [Fe/H] = -2.3 and -3.3 have been calculated in order to determine the primordial .sup(7)Li abundance and to test current stellar evolution models by a comparison to the extensive database of Li abundances in extremely metal poor halo stars observed by Thorburn (1994). Standard models do a good job of fitting the observed Li abundances in stars hotter than 5600 K. They predict a primordial ^7Li abundance of log N(Li) = 2.24\\pm 0.03. Models which include microscopic diffusion predict a downward curvature in the .sup(7)Li destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of .sup(7)Li from the surface of the star. The [Fe/H] = -2.3 stellar models which include both diffusion and rotational mixing provide an excellent match to the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rot...

  9. Angular correlations and decay branching ratio for excited state of 7Li*(7,45 MeV) in reactions 7Li(alpha, alpha)7Li*

    Measurements of differential cross-sections of alpha-particle inelastic scattering by 7Li nuclei and 7Li(alpha, alpha 6Li)n, 7Li(alpha, alpha alpha)t reactions have been performed at the energy Ea = 27,2 MeV. Probability of 7Li*(7,45 MeV) decay into 6Li + n channel has been determined from the ratio of cross-sections measured in kinematically complete and incomplete experiments. The large discrepancy of this value (P 0,49 ± 0,06) and of those obtained at the study of 7Li*(7,45 MeV) decay in binary reactions can be explained by the influence of Coulomb field of accompanied alpha-particle on the decay of near-threshold resonances in three-particle reactions

  10. Line shapes of prompt γ-ray from 7*Li produced in 10B(n,α)7*Li reaction

    Prompt γ-ray spectra of recoil 7*Li produced in the 10B(n,α)7*Li reaction were measured using neutron beam. The observed Doppler broadening energy spectra were satisfactorily reproduced by a simulation where the velocity degradation of 7*Li within its lifetime of 1.05x10-13 s was estimated using the LSS theory. Our successful line-shape analysis was applied to non-destructive state analysis of trace amounts of boron. (author)

  11. Modern solid state laser materials

    This document contains visual aids used in an invited talk entitled Modern Solid State Laser Materials, presented at the Conference on Lasers and Electro-Optics (CLEO) held in Anaheim, California, on June 20, 1984. Interest at LLNL in solid state lasers focuses on evaluating the potential of solid state laser media for high average power applications, including inertial fusion power production. This talk identifies the relevant bulk material parameters characterizing average power capacity and uses chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large-scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermo-mechanical properties of Nd:Cr:GSGG are given

  12. Solid-state lithium battery

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  13. Introduction to solid state electronics

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  14. Solid state physics for metallurgists

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  15. Solid state physics an introduction

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  16. Energy levels in (7Li) nucleus

    The energies of the normal-parity states and positive parity states in (7Li) nucleus are calculated, using many-particle nuclear shell-model, and the harmonic oscillator-wave-functions, over the residual interaction of the Gaussian from the Serber force. Spin-orbit interactions are neglected. The kinetic energy is introduced as a variant quantity, through the variation of the harmonic oscillator parameter (r0) (r02=h/mw). Finally, we separate the ''spurious'' states (one quantum excitations of the center of mass of the nucleus) by the effect of the operator (R-i), for the coordinate of the center of mass on the different wave-functions of the ground state-configurations. The calculations show that the energy of the positive-parity states, separated into two groups; the first in the energy region (10-20 Mev) and described by the symmetries (43), (421); and the second group in the energy region (26-46 Mev) and described by the symmetries (31), (3211). 9 tabs.; 3 figs.; 64 refs

  17. Reactions 7Li(e,6He) pe' and 7Li(e,6Li) ne' at intermediate excitation energies

    The reactions 7Li(e,6He) pe' and 7Li(e,6Li) ne' have been studied at intermediate excitation energies. Angular distributions as well as energy distributions are presented. The experimental cross sections are compared to the results obtained from a simple model

  18. Solid-state laser engineering

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  19. Solid state physics at ISOLDE

    Deicher, M; Wichert, T

    2003-01-01

    Radioactive atoms have been used in solid state physics and in materials science for decades. Besides their classical applications as tracers for diffusion studies, nuclear techniques such as Mossbauer spectroscopy, perturbed gamma gamma angular correlation, beta -NMR, and emission channeling make use of nuclear properties (via hyperfine interactions or emitted alpha or beta particles) to gain microscopic information on structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as clean ion beams at ISOL facilities like ISOLDE/CERN has triggered a new era involving methods sensitive to the optical and electronic properties of solids, especially in the field of semiconductor physics. This overview will browse through ongoing solid state physics experiments with radioactive ion beams at ISOLDE. A wide variety of problems is under study, involving bulk properties, surfaces and interfaces in many different systems like semiconductors, superconduc...

  20. Advances in Solid State Physics

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  1. Solid-state membrane module

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  2. Division of solid state physics

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  3. Modeling solid-state precipitation

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation model

  4. Solid-State Nuclear Power

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  5. Introduction to solid state physics

    A compact introduction to solid-state physics for students of physics, material,and engineering sciences - ideal for a one- to two-semestral course. In easily understable form the author introduces to phenomena and concepts. Thereby he avoids expensive mathematical derivations and refers to outgoing literature. The successful didactical preparation makes an easy access to the theme possible. Numerous illustrations clarify the connections and make the explained well understandable. With about 170 questions and exercise problems.

  6. Two dimensional solid state NMR

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  7. Advances in Solid State Physics

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  8. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the 7Li(p,n) reaction

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-7Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, 238U and 232Th fission counters, 7LiF and natLiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10-4 eV and the energy of peak neutrons generated by the 7Li(p,n) reaction. (author)

  9. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  10. Fusion around the barrier for 7Li + 12C

    A Mukherjee; M Dasgupta; D J Hinde; C R Morton; A C Berriman; R D Butt; J O Newton; H Timmers

    2001-07-01

    Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the -particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.

  11. Structural characterisation of amorphous materials by solid state NMR

    Mollison, N B

    2002-01-01

    Solid state nuclear magnetic resonance (NMR) is a structural elucidation technique that is ideal as a probe in the investigation of atomic structure of highly complex amorphous materials. In this study, NMR is employed in the structural characterisation of a series of sodium-lithium disilicate glasses. These so-called 'mixed-alkali' glasses are of great scientific interest, since they exhibit non-linear ionic transport related properties; the theory of which is not understood, but is thought to be related to the cation distribution in the disilicate network. This project attempts to utilise solid state NMR to its fullest potential, by combining several techniques, including the novel MQMAS experiment and a series of double resonance measurements. The double resonance techniques TRAPDOR and SEDOR have been attempted to measure sup 2 sup 9 Si-left brace sup 2 sup 3 Na right brace and sup 6 sup , sup 7 Li-left brace sup 7 sup , sup 6 Li right brace interactions respectively. Since these experiments rely on the d...

  12. Static and dynamic moments of the 7Li nucleus

    The data of Weller et al. (1985) on the tensor analysing powers for elastic and inelastic Coulomb scattering of aligned 7Li ions have been reanalyzed in order to obtain information on the values of the four 7Li moments Q, B(E2)↑, τ11 and τ12. It is shown that a single set of values, chosen primarily to be consistent with the value of Q measured by molecular techniques and the values of B(E2)↑ and τ12. required to fit unpolarized 7Li data, and also with the theoretical constraint τ11≅-[τ12], gives a good fit to the aligned 7Li data. 19 refs., 6 figs

  13. Solid state amorphization kinetic of alpha lactose upon mechanical milling.

    Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc

    2011-11-29

    It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. PMID:21983262

  14. New materials for solid state electrochemistry

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  15. Solid State Theory An Introduction

    Rössler, Ulrich

    2009-01-01

    Solid-State Theory - An Introduction is a textbook for graduate students of physics and material sciences. It stands in the tradition of older textbooks on this subject but takes up new developments in theoretical concepts and materials which are connected with such path breaking discoveries as the Quantum-Hall Effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of electrons and ions of which the solid consists, including their interactions and the interaction with light, the book casts a bridge to the experimental facts and opens the view into current research fields.

  16. The Oxford solid state basics

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  17. Solar pumped solid state lasers

    Results are presented for direct solar pumping of a Nd:YAG rod laser. Stable CW output of more than 60 watts was obtained with slope efficiencies exceeding 2%. Results are consistent with predictions based on a simple solar laser model the authors have developed. Using this model, performance projections and design concepts for higher power and higher efficiency solar-pumped solid state lasers are presented. It is shown that existing laser materials with broadband absorption characteristics (e.g., alexandrite and Nd:Cr:GSGG) can have better than 10% overall conversion efficiencies when solar pumped. The utility of solar lasers for various laser applications in space is briefly discussed

  18. Solid-State Personal Dosimetry

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  19. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    Ding, Shangwu; McDowell, Charles A.; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number o...

  20. IGBT: A solid state switch

    A Copper Vapor Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), 1,200 volts, 400 Amps, each, in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapor Laser Power Supply. The storage capacitor voltage is 820 Volts, the peak current of the solid state switch is 17,000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30,000 Volt peak voltage, 2,000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapor Laser

  1. Contamination and solid state welds.

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  2. Solid-state array cameras.

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  3. IGBT: a solid state switch

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  4. Advances in Solid State Physics

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  5. Solid state chemistry and its applications

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  6. Solid State Lighting Program (Falcon)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  7. Solid-State Random Lasers

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  8. Study of solid state photomultiplier

    Hays, K. M.; Laviolette, R. A.

    1987-01-01

    Available solid state photomultiplier (SSPM) detectors were tested under low-background, low temperature conditions to determine the conditions producing optimal sensitivity in a space-based astronomy system such as a liquid cooled helium telescope in orbit. Detector temperatures varied between 6 and 9 K, with background flux ranging from 10 to the 13th power to less than 10 to the 6th power photons/square cm-s. Measured parameters included quantum efficiency, noise, dark current, and spectral response. Experimental data were reduced, analyzed, and combined with existing data to build the SSPM data base included herein. The results were compared to analytical models of SSPM performance where appropriate models existed. Analytical models presented here were developed to be as consistent with the data base as practicable. Significant differences between the theory and data are described. Some models were developed or updated as a result of this study.

  9. Inside Solid State Drives (SSDs)

    Micheloni, Rino; Eshghi, Kam

    2013-01-01

    Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well ...

  10. Solid-state track detector

    The invention has been aimed at a solid-state track detector on the basis of cellulose nitrate with an improved signal-to-noise ratio for the ionizing corpuscular radiation detection in a neutron field. The detector can be applied in particular to the local radiation field imaging, to induced autoradiography, e.g. on geological samples, semiconducting materials or metals, to nuclear physics and nuclear engineering, to radiometry and dosimetry. The new detector consists of cellulose nitrate in which the nitrogen with a natural isotopic composition has been replaced by the isotope 15N either completely or partly. It is suitable for a neutron dosimeter by combining foils of varying 15N content

  11. 7Li NMR studies of lithium transport in human erythrocytes

    Lithium transport in human erythrocytes was investigated by 7Li NMR spectroscopy. The intra- and extracellular pools of Li+ were distinguished by the addition to the red cell suspension of a cell-impermeable shift reagent, dysprosium(III) triphosphate. It was found that, for therapeutic levels of lithium used in the US (where the typical plasma (Li+) concentration range is 0.5-1.2 mM), a shift reagent concentration of 3 mM is sufficient to achieve clear chemical shift separation between the two 7Li+ NMR resonances. Despite competition between Li+ and other mono- and divalent cations for the shift reagent, the intra and extracellular 7Li+ NMR signals are clearly separated (approximately 3 ppM) even in the presence of physiologically relevant concentrations of Na+, K+, Mg2+, and Ca2+. Addition of an ionophore, monesin, to a K+-only RBC (red blood cell) suspension induces passive Li+ transport, which can be monitored by following the relative intensities of the two 7Li+ resonances. It is concluded that the 7Li NMR method is suitable for the noninvasive study of Li+ transport in human erythrocytes and that it shows great promise as a tool for the investigation of the bioinorganic chemistry of lithium. 24 references, 3 figures, 1 table

  12. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  13. Nitride phosphors and solid-state lighting

    Xie, Rong-Jun; Hirosaki, Naoto

    2011-01-01

    Introduction to Solid-State LightingBasics of Solid-State LightingBasics of White Light-Emitting Diodes (LEDs)Applications of Solid-State LightingIntroduction to LuminescenceClassification of Optical ProcessesFundamentals of LuminescenceLuminescent CentersMeasurement of LuminescenceTraditional Phosphors in White LEDsRequirements for Phosphors in White LEDsClassification of PhosphorsPhotoluminescent Properties of Traditional PhosphorsNitride Phosphors i

  14. Solid-state rechargeable magnesium battery

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  15. The 7Li(γ,N) and 7Li(e,N) reactions at intermediate photon energies

    Cross sections for single-photonucleon emissions from 7Li have been measured for photon energies in the range 60-120 MeV by detecting the recoiling residual nuclei following excitation with bremsstrahlung radiation of end-point energies 140 and 155 MeV. Measurements of the 7Li(e,6Li)e'p and 7Li(e,6He)e'n cross sections were also made at the same electron energies. A significant difference between the ratio of electron- and bremsstrahlung-induced yields for proton and neutron emission is observed. The results are compared to a modified quasi-deuteron model and a simple direct-knockout model in which recoil terms are included. (orig.)

  16. Solid-state polymeric dye lasers

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  17. Nylon 6 polymerization in the solid state

    Gaymans, Reinoud J.; Amirtharaj, John; Kamp, Henk

    1982-01-01

    The postcondensation of nylon 6 in the solid state was studied. The reactions were carried out on fine powder in a fluidized bed reactor in a stream of dry nitrogen in the temperature range 110-205°C and during 1-24 h. The solid-state polymerization (SSP) did not follow melt kinetics, but was found

  18. Quantum Computing in Solid State Systems

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  19. Solid State Reactor Final Report

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  20. Laser diode pumped solid state laser driver

    Technical and economical feasibility of a diode pumped solid state laser driver for the fusion reactor is presented. Nd-doped solid state laser materials of lasing wavelengths at 1 μm are selected. We discuss the total efficiency of the laser driver in detail and then show that a total efficiency of 12 % can be achieved in the diode pumped solid state laser driver. We design the diode pumped solid state laser drivers with five typical solid state materials using a conceptual design technique. Designing conditions are the output energy of 4MJ per pulse at the wavelength of 0.35 μm, total efficiency of 12 % and repetition rate of 12 Hz. From the results of design, it is concluded the some diode pumped solid state laser drivers have large potentiality from both technical and economical points of view. Based on the conclusion, the items to be investigated for the quicker realization of the diode pumped solid state laser driver are also presented. (author)

  1. Solid-state devices and applications

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  2. Silicon solid state devices and radiation detection

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  3. Solid-state diffusion in amorphous zirconolite

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  4. Green's functions for solid state physicists

    This book is aimed at graduate students of solid-state physics. The application of Green's function methods to various problems including electrical resistance, interacting electron gases, magnetic systems, Kondo problems and superconductivity is dealt with

  5. Solid State Lighting Reliability Components to Systems

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  6. Nanorod Array Solid State Neutron Detectors Project

    National Aeronautics and Space Administration — In this Phase I SBIR project, Synkera proposes to develop and commercialize solid-state neutron detectors of a unique architecture that will enable sensor modules...

  7. Nanographite Films for Solid State Electronic Applications

    Lebedev, Sergey G.

    2013-01-01

    The structure and properties of nanographite films useful for applications in solid state devices are described. The possibility to use low conducting state of nanographite film for detecting radiation in the segmented solid state detectors is considered. Other interesting phenomena include the field effect conductivity switching which can be used in contactless current limiters and circuit breakers, the rf-to-dc conversion which can be utilized in microwave and photo detectors, and light emi...

  8. An overview of welding in solid state

    Iordachescu, Mihaela; Scutelnicu, Elena

    2008-01-01

    The importance of the Solid State Processes (SSP) has increased in the last decade due to the industry demands of improved properties of joined/surfaced materials, combined with cost reduction and energy saving. New and/or micro-scale solid state processed materials are used by aerospace, automotive and electrotechnics industry. Nowadays, classic SSP are mainly applied to light materials, but progresses were also reported in steels. In this field, the tools design, the technology and practica...

  9. Carbon-13 solid state NMR studies in the aromatization of residual coals from hydropyrolised cellulose

    Pure cellulose was pyrolyzed is a fixed-bed reactor under hydrogen pressure (hydropyrolysis). Residual chars were collected and analysed by solid state nmr 13 C (CP-MAS) and elemental. Hydrophyrolysis parameters such as final temperature in the range of 300 to 520 deg C and hydrogen pressure from 5 to 100 atm gave different char samples. CP-MAS spectra were obtained in a BRUKER MSL-100 spectrometer. The results showed that the aromatic and aliphatic fractions had strong dependence with temperature and no influence with pressure. Elemental analysis indicated the carbon content increased more with temperature than the pressure increasing. (author)

  10. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    Ding, S; Ye, C; Zhan, M S; Zhu, X; Gao, K; Sun, X; Mao, X A; Liu, M; Ding, Shangwu; Dowell, Charles A. Mc; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given.

  11. Pharmaceutical polymorphism. An investigation using solid-state nuclear magnetic resonance spectroscopy

    Campbell, S C

    1998-01-01

    evaluated through the course of this Ph.D. and solid-state NMR spectral editing techniques have been developed and applied to identify these phenomena. Recrystallisation studies have produced two samples that appear to exist in an intermediate state between the rigid and mobile structural limits. Temperature variation causes interesting changes in the relaxation characteristics and natural abundance sup 1 sup 5 N and sup 1 sup 3 C CP/MAS spectra. Residual dipolar coupling effects vary in their manifestation within the sup 1 sup 3 C CP/MAS spectra of the polymorphic systems studied and comparison with the literature yields important information regarding molecular conformation. Nitrogen-15 enrichment and operation at higher magnetic field have been applied to reduce these second order effects. Finally, some distance has been travelled along the path towards decoupling sup 1 sup 4 N. Future development of this technique holds potential for resolution enhancement in the solid state spectra of most naturally occu...

  12. Solid-state /sup 13/C NMR and X-ray diffraction of dermatan sulfate

    Winter, W.T.; Taylor, M.G.; Stevens, E.S.; Morris, E.R.; Rees, D.A.

    1986-05-29

    Dermatan sulfate in the solid state has been studied by /sup 13/C CP/MAS nmr and X-ray diffraction in order to establish the ring conformation of the L-iduronate moiety. The solid state nmr spectrum is similar to the solution spectrum obtained previously, indicating that a ring conformation at least approximating to /sup 1/C/sub 4/ predominates in the solid state. X-ray powder diffraction data from the same sample indicate the presence of the 8-fold helix form previously observed by fiber diffraction, and interpreted in terms of a /sup 4/C/sub 1/ ring form. A likely explanation of the results is that a distorted /sup 1/C/sub 4/ L-iduronate ring conformation, not considered in the initial X-ray analysis, may emerge to provide a satisfactory interpretation of all available physical-chemical data.

  13. Solid-state 13C NMR and X-ray diffraction of dermatan sulfate

    Dermatan sulfate in the solid state has been studied by 13C CP/MAS nmr and X-ray diffraction in order to establish the ring conformation of the L-iduronate moiety. The solid state nmr spectrum is similar to the solution spectrum obtained previously, indicating that a ring conformation at least approximating to 1C4 predominates in the solid state. X-ray powder diffraction data from the same sample indicate the presence of the 8-fold helix form previously observed by fiber diffraction, and interpreted in terms of a 4C1 ring form. A likely explanation of the results is that a distorted 1C4 L-iduronate ring conformation, not considered in the initial X-ray analysis, may emerge to provide a satisfactory interpretation of all available physical-chemical data

  14. An explanation for the high stability of polycarboxythiophenes in photovoltaic devices—A solid-state NMR dipolar recoupling study

    Bierring, M.; Nielsen, J.S.; Siu, Ana;

    2008-01-01

    acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite of...

  15. Physics of Nanostructured Solid State Devices

    Bandyopadhyay, Supriyo

    2012-01-01

    Physics of Nanostructured Solid State Devices introduces readers to theories and concepts such as semi-classical and quantum mechanical descriptions of electron transport, methods for calculations of band structures in solids with applications in calculation of optical constants, and other advanced concepts.  The information presented here will equip readers with the necessary tools to carry out cutting edge research in modern solid state nanodevices. This book also: Covers sophisticated models of charge transport including the drift-diffusion model, Boltzmann transport model and various quantum transport models Discusses the essential elements of quantum mechanics necessary for an understanding of nanostructured solid state devices Presents band structure calculation methods based on time-independent perturbation theory Discusses theory of optical transitions and optical devices employing quantum-confined structures such as quantum wells,wires and dots Elucidates quantum mechanics of electrons in a magneti...

  16. Solid State Laser Rangefinders: A Review

    N. Mansharamani

    1995-10-01

    Full Text Available Describes the development of solid-state laser rangefinders, during the last thirty years. The laser rangefinders using solid-state laser materials operating in visible, near and mid-infrared spectrum of light are in use. Considering the cost, efficiency, atmospheric transmission and detection capability, neodymium laser rangefinders operating in near-infrared region are still the state-of-the-art and are more in use as compared to rangefinders using other solid-state materials. The neodymium laser rangefinders in different configurations and use, developed in this Establishment are also described. The neodymium and diode lasers with improved detection capability in multiple pulse operation with pulse correlation techniques are under development to make these rangefinders eyesafe.

  17. The beginnings of solid state physics

    The impact of solid state electronics on our society has been enormous. This is a record of the reminiscences of some scientists who were concerned with the early days of solid state physics. Twenty six memoranda cover the years 1900 -1926, the first applications of quantum mechanics in the 1930's and the observations of the motion of dislocations in the mid-1950's. The successes and failures are remembered and the interaction between the scientists involved recounted. The electron theory of metals, quantum theory of ferromagnetism, superconductivity, the heat capacity of crystals and the vibrational spectrum, lattice dynamics and X-ray diffraction, radiation damage, dislocations in metals and other problems in solid state physics are all discussed in the context of time, place and personalities. (UK)

  18. Driver circuit for solid state light sources

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  19. Handbook of Applied Solid State Spectroscopy

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  20. Physical Acoustics in the Solid State

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  1. Physical Acoustics in the Solid State

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  2. An introduction to solid state diffusion

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  3. Ultrasonic methods in solid state physics

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  4. Characteristics of Solid State Cathodoluminescence of PPV

    曲崇; 徐征; 滕枫; 徐叙瑢

    2003-01-01

    Based on our previous discovery [Chem. Phys. Lett. 325 (2000) 420] of the solid-state cathodoluminescence from organic luminescent materials in inorganic/organic heterojunction, we study characteristics of this new kind of electric-field-induced luminescence by means of examining its oscillogram. We prepared three devices with different structures in which PPV was used as luminescent layer, and SiO2 was used as accelerating layer. The experimental results might be understood only by means of the existence of solid-state cathodoluminescence.This new kind of luminescence makes it possible to produce new type of flat panel display.

  5. Recent Results of Solid-State Spectroscopy

    Jäger, Cornelia; Mutschke, Harald; Zeidler, Simon; Tamanai, Akemi; de Vries, Bernard L; 10.1017/S1743921311025166

    2012-01-01

    Solid state spectroscopy continues to be an important source of information on the mineralogical composition and physical properties of dust grains both in space and on planetary surfaces. With only a few exceptions, artificially produced or natural terrestrial analog materials, rather than 'real' cosmic dust grains, are the subject of solid state astrophysics. The Jena laboratory has provided a large number of data sets characterizing the UV, optical and infrared properties of such cosmic dust analogs. The present paper highlights recent developments and results achieved in this context, focussing on 'non-standard conditions' such as very low temperatures, very high temperatures and very long wavelengths.

  6. Specialized nets of solid-state sensors

    Kostenko V. L.

    2008-04-01

    Full Text Available The research of the specialized networks based on solid-state sensors with automatic tuning of parameters was carried out. The construction peculiarities of such nets and sensors design used in them were examined. The ways of costs reduction for nets firmware were offered.

  7. Solid state, S-band, power amplifier

    Digrindakis, M.

    1973-01-01

    The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.

  8. Solid State Electrochemical DeNOx

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  9. Solid state fermentation for foods and beverages

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional foo

  10. Nanoscale solid-state cooling: a review

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal–semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto–Peltier and Nernst–Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  11. Thermal management of solid state lighting module

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  12. Energy balance in solid state fermentation processes

    Rodriguez, L.J.A.; Torres, A.; Echevarria, J.; Saura, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba))

    1991-01-01

    It was applied a macroscopic energy balance to a solid state fermentation process and an electron balance in order to estimate the temperature and the heat evolved in the process. There were employed several equations that describe the development of the system and offer the possibility to design or control such fermentations. (orig.).

  13. Solid state lasers - The next 10 years

    Byer, Robert L.

    1988-10-01

    Major advances in solid state laser technology historically have been preceded by advances in pumping technology. The helical lamp used to pump the early ruby lasers was superseded by the linear flashlamp now used to pump Nd:YAG lasers. The next advance in pumping technology is the diode laser array. The improvements in power and efficiency of the diode laser coupled with the fortuitous spectral overlap of the diode laser emission wavelength with the Nd ion absorption bands near 805 nm have led to a revolution in solid state laser capability. Progress has been rapid with new ions and wavelengths reported in the near infrared from 946 nm to 2010 nm. Frequency extension via nonlinear interactions has led to green and blue sources of coherent radiation. Linewidths of less than 10 kHz have been demonstrated. Overall electrical efficiencies of greater than 10% have been achieved. As diode laser sources decrease in cost, high average power diode laser pumped solid state laser sources will become available. Power levels exceeding 1 kW appear possible. Potential applications of these compact all solid state laser sources to spectroscopy, quantum noise limited sensors, astronomy, and materials processing will be discussed.

  14. Entanglement in Solid-State Nanostructures

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  15. Solid-state NMR of polymers

    Mirau, P

    2001-07-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. The popularity of NMR is due to the fact that many molecular level features can be measured from the NMR spectra, including the polymer chain conformation, the morphology and the dynamics. The spectral features and relaxation times are affected by local interactions, so they provide information about the structure of polymers on a length scale (2-200 A) that is difficult to measure by other methods. In favourable cases, the NMR experiments provide a molecular-level explanation for the transitions observed by differential scanning calorimetry (DSC) and other methods, and the NMR properties can often be related to the bulk properties. Solid-state NMR has long been of interest in polymer science, and the first solid-state NMR studies of polymers were reported approximately a year after the discovery of nuclear resonance in bulk matter. It was reported in this initial study that the proton line width for natural rubber at room temperature is more like that of a mobile liquid than of a solid, but that the resonance broadens near the glass transition temperature (T{sub g}). This was recognised as being related to a change in chain dynamics above and below the T{sub g}. NMR methods developed rapidly after these initial observations, first for polymers in solution and, more recently, for polymers in the solid-state. Solid-state NMR studies of polymers were developed more slowly than their solution-state counterparts because solid-state NMR requires more specialised equipment. Solid-state NMR is now such an important tool that most modern spectrometers are capable of performing these studies. The interest in the NMR of solid polymers is due in part to the fact that most polymers are used in the solid state, and in many cases the NMR properties can be directly related to the macroscopic properties. Polymers have restricted mobility

  16. Solid-state NMR of polymers

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. The popularity of NMR is due to the fact that many molecular level features can be measured from the NMR spectra, including the polymer chain conformation, the morphology and the dynamics. The spectral features and relaxation times are affected by local interactions, so they provide information about the structure of polymers on a length scale (2-200 A) that is difficult to measure by other methods. In favourable cases, the NMR experiments provide a molecular-level explanation for the transitions observed by differential scanning calorimetry (DSC) and other methods, and the NMR properties can often be related to the bulk properties. Solid-state NMR has long been of interest in polymer science, and the first solid-state NMR studies of polymers were reported approximately a year after the discovery of nuclear resonance in bulk matter. It was reported in this initial study that the proton line width for natural rubber at room temperature is more like that of a mobile liquid than of a solid, but that the resonance broadens near the glass transition temperature (Tg). This was recognised as being related to a change in chain dynamics above and below the Tg. NMR methods developed rapidly after these initial observations, first for polymers in solution and, more recently, for polymers in the solid-state. Solid-state NMR studies of polymers were developed more slowly than their solution-state counterparts because solid-state NMR requires more specialised equipment. Solid-state NMR is now such an important tool that most modern spectrometers are capable of performing these studies. The interest in the NMR of solid polymers is due in part to the fact that most polymers are used in the solid state, and in many cases the NMR properties can be directly related to the macroscopic properties. Polymers have restricted mobility in solids

  17. Exploring contributions from incomplete fusion in $^{6,7}$Li+$^{209}$Bi and $^{6,7}$Li+$^{198}$Pt reactions

    Parkar, V V; Kailas, S

    2016-01-01

    We use the breakup absorption model to simultaneously describe the measured cross-sections of the Complete fusion (CF), Incomplete fusion (ICF), and Total fusion (TF) in nuclear reactions induced by weakly bound nuclei $^{6,7}$Li on $^{209}$Bi and $^{198}$Pt targets. The absorption cross-sections are calculated using the Continuum Discretized Coupled Channels (CDCC) method with different choices of short range imaginary potentials to get the ICF, CF and TF cross-sections. It is observed that the cross-sections for deuteron-ICF/deuteron-capture are of similar magnitude as the $\\alpha$-ICF/$\\alpha$-capture, in case of $^{6}$Li projectile, while the cross-sections for triton-ICF/triton-capture is more dominant than $\\alpha$-ICF/$\\alpha$-capture in case of $^{7}$Li projectile. Both these observations are also corroborated by the experimental data. The ratio of ICF to TF cross-sections, which defines the value of fusion suppression factor is found to be in agreement with the data available from the literature. The...

  18. Study of the reinforcement of rubber styrene-butadiene with mesoporous silices by solid-state nuclear magnetic resonance

    The knowledge about the interaction rubber/filler for the rubber reinforced with carbon black of silica is important to understand the physical properties, which determine the reinforcement. This paper presents a comparative study of the interactions between styrene butadiene rubber (SBR) and silica for a silica Ultrasil type and mesoporous silica MCM-41 type prepared by different procedures, based on solid state nuclear magnetic resonance: 1H MAS NMR; 13C MAS NMR, 13C CP/MAS, 29Si MAS and 29Si CP/MAS NMR. Mesoporous silica synthesized under certain specific conditions showed better interaction with the rubber than the ultrasil VN3 silica, commonly used as a reinforcement load. Mechanical tests for the SBR vulcanised with this silica indicate an important increase for values of elongation and tearing resistance, but an increase in the vulcanization time in it is compared with the SBR vulcanise with Ultrasil

  19. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  20. Detection of the inverse pion electroproduction on 7Li nuclei

    The inverse pion electroproduction process on 7Li nucleus, π++7Li→e++e-+X, at the pion kinetic energy of 380 MeV has been detected. The missing mass distribution of the process events is described well assuming that approximately one half of the detected events belongs to the reaction channel producing 7Be nucleus either in the ground state (7Be) or in the excited state (7Be*): π++7Li→e++e-+7Be(7Be*). For this reaction the differential cross section for the electron and positron energies above 70 MeV, for the particles emitted under an angle of about 65 deg in l. s., is d2σ/dΩ2=(1.3+-0.3)x10-32 cm2/sr2

  1. A High Power Linear Solid State Pulser

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  2. Development of Solid State Laser Technology

    Cha, Byung Heon; Kwon, Seong Ok; Kim, Yong Ki (and others)

    2007-04-15

    Recently, diode-pumped solid state lasers(DPSSL) have been developed to have a diffraction limited beam quality and high average output powers beyond kW. The lifetime extends to have several thousand hours. Due to such merits, the DPSSLs are now replacing previous application fields of CO{sub 2} laser, lamp-pumped solid-state lasers, Excimer laser, etc. The DPSSLs have broad application fields, such as laser spectroscopy and analysis, laser micromachining, precision measurement, laser range findings, laser pump sources, medical lasers, etc. In this project, various DPSSLs are developed for use in laser isotope production. Many new laser modules are designed and used to develop high power pulsed IR lasers and green lasers. In addition, a quasi CW driven compact DPSSL is developed to have high pulse energy DPSSL technologies.

  3. Research on IGBT solid state switch

    Gan Kong Yin; Wang Xiao Feng; Wang Lang Ping; Wang Song Yan; Chu, P K; Wu Hong Chen

    2002-01-01

    The experiments on the IGBT solid state switch for induction accelerator was carried out with two series 1.2 kV, 75 A IGBT (GA75TS120U). The static and dynamic balancing modules were carried out with metal oxide varistors, capacities and diodes in order to suppress the over-voltage during IGBT on and off. Experimental results show that IGBT solid state switch works very stable under the different conditions. It can output peak voltage 1.8 kV, rise time 300 ns, fall time 1.64 mu s waveforms on the loads. The simulation data using OrCAD are in accord with experimental results except the rise time

  4. Phosphate Phosphors for Solid-State Lighting

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  5. Development of Solid State Laser Technology

    Recently, diode-pumped solid state lasers(DPSSL) have been developed to have a diffraction limited beam quality and high average output powers beyond kW. The lifetime extends to have several thousand hours. Due to such merits, the DPSSLs are now replacing previous application fields of CO2 laser, lamp-pumped solid-state lasers, Excimer laser, etc. The DPSSLs have broad application fields, such as laser spectroscopy and analysis, laser micromachining, precision measurement, laser range findings, laser pump sources, medical lasers, etc. In this project, various DPSSLs are developed for use in laser isotope production. Many new laser modules are designed and used to develop high power pulsed IR lasers and green lasers. In addition, a quasi CW driven compact DPSSL is developed to have high pulse energy DPSSL technologies

  6. Pulsed solid state lasers for medicine

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  7. Electrochemical processes and solid state properties

    The most characteristic trends in recent fundamental electrochemical research are described, including: the application and development of spectroscopic techniques for the study of the solid - electrolyte interface and the application of solid state concepts for the description and analysis of processes occurring at this interface. Examples based on experiments about: double layer structure at metals and semiconductors, adsorbed monolayers on metals, and kinetic processes on single crystal surfaces of metals and semiconductors are discussed. (C.L.B.)

  8. Phosphate phosphors for solid-state lighting

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  9. Solid state NMR of biopolymers and synthetic polymers

    Solid state NMR has been invaluable in evaluating the structure, phase separation, and dynamics of polymers. Because polymers are generally used in the solid state, solid state NMR is especially powerful because it provides information about the materials in their native state. This review gives a general overview of solid state NMR, concentrating on solid state 13 C and 2 H NMR. It then focuses on two examples: the biopolymer spider silka and the engineering material polyurethane. It illustrates how solid state NMR can provide new information about synthetic and bio-polymers. (author)

  10. Fission fragment mass and angular distribution in 6,7Li+235,238U reactions

    Fission fragment (FF) angular distributions for 6,7Li+235,238U reactions and mass distributions for 6,7Li+ 238U reactions have been measured at energies near and above the Coulomb barrier. The angle integrated fission cross sections for 6Li induced reactions at sub-barrier energies are found to be higher than 7Li induced reactions possibly due to larger contribution of breakup induced fission in case of the former compared to the latter. The FF anisotropy for 6,7Li+235U was found to be smaller than 6,7Li+238U, manifesting the effect of target ground state spin. The statistical saddle point (SSP) model predictions were found to be consistent with the measured FF anisotropy for 6,7Li+235U, however they were under-estimated for 6,7Li+238U particularly at lower energies. Observation of larger FWHM of FF folding angle distribution and sharp increase in peak to valley ratio for FF mass distribution with the decrease in bombarding energy in 6,7Li+238U reactions confirms the presence of breakup induced fission. (authors)

  11. Fission fragment mass and angular distribution in 6,7Li+235,238U reactions

    Santra S.

    2013-12-01

    Full Text Available Fission fragment (FF angular distributions for 6,7Li+235,238U reactions and mass distributions for 6,7Li+238U reactions have been measured at energies near and above the Coulomb barrier. The angle integrated fission cross sections for 6Li induced reactions at sub-barrier energies are found to be higher than 7Li induced reactions possibly due to larger contribution of breakup induced fission in case of the former compared to the latter. The FF anisotropy for 6,7Li+235U was found to be smaller than 6,7Li+238U, manifesting the effect of target ground state spin. The statistical saddle point (SSP model predictions were found to be consistent with the measured FF anisotropy for 6,7Li+235U, however they were under-estimated for 6,7Li+238U particularly at lower energies. Observation of larger FWHM of FF folding angle distribution and sharp increase in peak to valley ratio for FF mass distribution with the decrease in bombarding energy in 6,7Li+238U reactions confirms the presence of breakup induced fission.

  12. Use of 7Li(p,n) reaction as a neutron source in a PGNAA setup.

    Naqvi, A A; Nagadi, M M

    2005-03-01

    The performance of a 7Li(p,n) reaction-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup has been determined for analysis of Portland cement samples using Monte Carlo study. The calculations were carried out for a 7Li(p,n) reaction-based PGNAA setup with an external moderator similar to the one used in a previous 2.8 MeV neutrons-based PGNAA setup. The optimum values of geometry parameters of the 7Li(p,n) reaction-based setup are different from those of the 2.8 MeV neutrons-based setup resulting in better performance of the 7Li(p,n) reaction-based setup. The prompt gamma-ray yield from the 7Li(p,n) reaction-based setup is 60-70% higher than that from the 2.8 MeV neutrons-based setup. Although the performances of the 7Li(p,n) reaction-based setup is comparable with that of a previously studied 3H(p,n) reaction-based setup, yet performance of the 7Li(p,n) reaction-based setup is superior to that of the 3H(p,n) reaction-based setup because it has less radiation hazard due to utilization of non-radioactive neutron producing target. This study has provided a theoretical base for experimental test of a 7Li(p,n) reaction-based PGNAA setup. PMID:15607917

  13. Use of 7Li(p,n) reaction as a neutron source in a PGNAA setup

    The performance of a 7Li(p,n) reaction-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup has been determined for analysis of Portland cement samples using Monte Carlo study. The calculations were carried out for a 7Li(p,n) reaction-based PGNAA setup with an external moderator similar to the one used in a previous 2.8 MeV neutrons-based PGNAA setup. The optimum values of geometry parameters of the 7Li(p,n) reaction-based setup are different from those of the 2.8 MeV neutrons-based setup resulting in better performance of the 7Li(p,n) reaction-based setup. The prompt γ-ray yield from the 7Li(p,n) reaction-based setup is 60-70% higher than that from the 2.8 MeV neutrons-based setup. Although the performances of the 7Li(p,n) reaction-based setup is comparable with that of a previously studied 3H(p,n) reaction-based setup, yet performance of the 7Li(p,n) reaction-based setup is superior to that of the 3H(p,n) reaction-based setup because it has less radiation hazard due to utilization of non-radioactive neutron producing target. This study has provided a theoretical base for experimental test of a 7Li(p,n) reaction-based PGNAA setup

  14. Prospects of lithium enrichment on 7Li isotope by method of controlled ions electro-migration

    Martoyan, G. A.; Kalugin, M. M.; Gabrielyan, A. V.; Martoyan, A. G.

    2016-01-01

    This paper deals with a new electro-membrane method of enrichment of 7Li isotope. The data are presented on the importance and application fields regarding the use of 7Li isotopes. Existing methods and criteria of separation of lithium isotopes are discussed. The principle of new technology, regimes of enrichment experiments, and analysis details of obtained products are briefly described.

  15. Study of fusion barrier distribution from quasielastic scattering for 6,7Li + 197Au systems

    Earlier we have reported breakup and fusion excitation function measurements in 6,7Li + 197Au systems. In this paper we present the fusion barrier distribution from QEL at backward angles for the same systems, namely, 6,7Li + 197Au

  16. Solid-state NMR study of fluorinated steroids.

    Yang, Kai-Jay; Lin, Su-Ching; Huang, Shing-Jong; Ching, Wei-Min; Hung, Chen-Hsiung; Tzou, Der-Lii M

    2014-02-01

    Solid-state {(1)H}(13)C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy was performed to analyze two fluorinated steroids, i.e., betamethasone (BMS) and fludrocortisone acetate (FCA), that have fluorine attached to C9, as well as two non-fluorinated analogs, i.e., prednisolone (PRD) and hydrocortisone 21-acetate (HCA). The (13)C signals of BMS revealed multiplet patterns with splittings of 16-215Hz, indicating multiple ring conformations, whereas the (13)C signals of FCA, HCA, and PRD exhibited only singlet patterns, implying a unique conformation. In addition, BMS and FCA exhibited substantial deviation (>3.5ppm) in approximately half of the (13)C signals and significant deviation (>45ppm) in the (13)C9 signal compared to PRD and HCA, respectively. In this study, we demonstrate that fluorinated steroids, such as BMS and FCA, have steroidal ring conformation(s) that are distinct from non-fluorinated analogs, such as PRD and HCA. PMID:24316163

  17. Characterization of the polymer Durolon as a solid state nuclear track detector

    The polymer Durolon has been characterized as a solid state nuclear track detector. In these detectors a track, resulting from the damages in its molecular structure, induced by a heavy charged particle, is the testimony of the passage of the particle through the polymer. In order to characterize the Durolon the track diameter, track production rate, light transmission through the polymer and the critical angle of incidence of the particle have been studied. The main objective of such studies was to provide the necessary subsidies to understand the information registered. The damages have been induced by alpha particles from the nuclear reaction 10B(n,α)7Li, by irradiating a boron screen in a thermal neutron field from an experimental facility installed in the beam-hole 08 of the IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The study of the parameters have been performed by using a digital system developed in the present work. Its use has provided a higher quality and quickness regarding data acquisition and data analysis as well as the opportunity to quantify several other parameters regarding the imaging formation theory in solid state nuclear track detectors. The characteristics of the Durolon have been compared with the ones of two other detectors Makrofol-E and Makrofol-DE and have demonstrated its potentiality to use. (author)

  18. Solid state NMR investigation of a novel Li ion ceramic electrolyte. Li doped BPO sub 4

    Dodd, A J

    2002-01-01

    Over the last decade lithium ion conducting batteries have emerged as the leading technology in battery materials. Their performance, however, is limited to applications below around 50 deg C by the liquid nature of the electrolytes used. In the quest for a solid state electrolyte for use in high temperature applications the nano-crystalline ceramic lithium doped boron phosphate material was developed. Solid state nuclear magnetic resonance (NMR) has been employed to investigate some of the fundamental properties of this material including ionic mobility, defect structure, sample purity and ionic distribution. The findings of this work show that when synthesised at a reaction temperature above 600 deg C the loss of boron from the structure results in the incorporation of vacancy sites about which the Li ions gather in small clusters. Multiple-pulse multiple-quantum spin counting techniques are employed in an effort to count the number of quadrupolar sup 7 Li nuclei interacting in a cluster though it is ultima...

  19. Ultra-low temperature MAS-DNP

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  20. Determination of nuclear reduced transition probabilities by 7Li ion induced Coulomb excitation

    Recently the authors observed that the first excited state of 7Li nucleus was excited in 7Li ion-Cu collision in the energy range 4.9 to 11.9 MeV, and the excitation process was via Coulomb excitation. By using the well known B (E2; g.s. 3-/2 - 478 keV, 1-/2) value of 7Li nucleus and the 7Li induced Coulomb excitation yields of both 7Li projectile and targets, the authors determined the reduced transition probabilities for low-lying states of some medium weight nuclei. The reduced transition probabilities determined this way are free from uncertainties due to target thickness and incident particle collection

  1. Excitation and decay of 7Li*(4.63) → α + t in the 7Li(αα1)7Li(4.63) and 9Be(dα1)7Li(4.63) reactions in close kinematic conditions

    Angular correlation function (ACF) of alpha particles and tritons from 7Li* (4.63) decay in the d+9Be → α1+7Li*(4.63) → α1+t+α reaction at deuteron energy Ed=13.6 MeV for escape angles Θαlab=45 and 67 deg has been measured. Results of investigation into the α+7Li → α1+7Li*(4.63) → α1+t+d reaction at Eα=27.2 MeV, Θα1lab=30 deg have been used as well. Kinematic conditions for outlet channels of both reactions are identical. An analytical expression for ACF has been derived. The analysis shows that different mechanisms of the first stage of the d+9Be and α+7Li reactions result in differential phase shifts and limits of summing in the formula for ACF and, therefore, in different ACF form

  2. BOOK REVIEW: Solid State Physics: An Introduction

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  3. The 60 GHz solid state power amplifier

    Mcclymonds, J.

    1991-01-01

    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  4. Space groups for solid state scientists

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  5. Solid state transport-based thermoelectric converter

    Hu, Zhiyu

    2010-04-13

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  6. Programmable solid state atom sources for nanofabrication

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  7. High Speed Solid State Circuit Breaker

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  8. Solid State Marx Modulators for Emerging Applications

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  9. Theoretical solid state physics, v.2

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 2 deals with the electron-lattice interaction and the effect of lattice imperfections. Conductivity, semiconductors, and luminescence are discussed, with emphasis on the basic physical problems and the various phenomena derived from them. The theoretical basis of interaction between electrons and lattices is considered, along with basic concepts of conduction theory, scattering of electrons by imperfections, and radiationless transitions. This volume is comprised of 19 chapters and begins with an overview of the coupling of electrons and the crystal latt

  10. Tunable Solid State and Flexible Graphene Electronics

    Kumar, Arunandan; Tyagi, Priyanka; Srivastava, Ritu

    2014-01-01

    We demonstrate tunable solid state and flexible graphene field effect devices (FEDs) fabricated using a poly(methylmethacrylate) (PMMA) and lithium fluoride (LiF) composite dielectric. Increasing the concentration of LiF in the composite dielectric reduces the operating gate voltages significantly from 10 V to 1 V required leading to a decrease in resistance. Electron and hole mobility of 350 and 310 cm2/Vs at VD = -5 V are obtained for graphene FEDs with 10 % LiF concentration in the composi...

  11. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  12. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first...... have been investigated in detail by 29Si and 27Al MAS NMR where the combination of the results for these spin-nuclei provides important information on the degree of Al-incorporation in the C-S-H structure and of the average chain lengths of tetrahedral SiO4 and AlO4 units. This presentation will...

  13. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials.

    Werner, Mayke; Heil, Andreas; Rothermel, Niels; Breitzke, Hergen; Groszewicz, Pedro Braga; Thankamony, Aany Sofia; Gutmann, Torsten; Buntkowsky, Gerd

    2015-11-01

    The successful synthesis and solid state NMR characterization of silica-based organic-inorganic hybrid materials is presented. For this, collagen-like peptides are immobilized on carboxylate functionalized mesoporous silica (COOH/SiOx) materials. A pre-activation of the silica material with TSTU (O-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate) is performed to enable a covalent binding of the peptides to the linker. The success of the covalent immobilization is indicated by the decrease of the (13)C CP-MAS NMR signal of the TSTU moiety. A qualitative distinction between covalently bound and adsorbed peptide is feasible by (15)N CP-MAS Dynamic Nuclear Polarization (DNP). The low-field shift of the (15)N signal of the peptide's N-terminus clearly identifies it as the binding site. The DNP enhancement allows the probing of natural abundance (15)N nuclei, rendering expensive labeling of peptides unnecessary. PMID:26411982

  14. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology

    Gelis, Ioannis; Vitzthum, Veronika; Dhimole, Neha; Caporini, Marc A.; Schedlbauer, Andreas; Carnevale, Diego; Connell, Sean R.; Fucini, Paola; Bodenhausen, Geoffrey

    2013-01-01

    The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensi...

  15. Solid-state electronic devices an introduction

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  16. Nuclear-driven solid-state lasers

    A total system efficiency of 3% is calculated for very high average power active mirror solid-state laser amplifiers of co-doped material, such as Nd:Cr: GSGG, pumped by visible nuclear-driven alkali metal excimer fluorescence. The fluorescence is transported around a radiation shield, separating the fluorescer and the laser, by a large diameter-to-length ratio hollow lightpipe. Parameters for a system with peak power of 6 MW for 1 ms pulses at 1 Hz for an average power output of 6 kW are presented. This type of system would require the development of a small 200 kW thermal nuclear reactor (similar in size to small university research reactors). A much larger system can be developed as well

  17. High-efficiency solid state power amplifier

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  18. A solid state pulsed NMR spectrometer

    A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of approximately 2 kW with a 75Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is approximately 7μsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are approximately 2 mV and approximately 0.1% respectively. (auth.)

  19. Hyperbranched polymers from polymerization in solid state

    The macroscopic properties of polymers are directly related to the chemical characteristics of the monomeric units and also with the geometric arrangement of polymer chains. Thus, polymers were synthesized from two well-known chelators EDTA and EDA. We evaluated the conditions for the polymerization of the precursors in the solid state. The polymerization was carried out varying the proportions of reagents, aiming the polymers with different degrees of chain branching and the materials were characterized by FTIR. The materials obtained from the best condition for synthesis were purified by size-exclusion chromatography of and were subjected to characterization by FTIR and NMR of 1H and 13C. The content of end groups in these samples was determined by back titration. (author)

  20. Supramolecular interactions in the solid state

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  1. Solid-state curved focal plane arrays

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  2. Ionic conduction in the solid state

    P Padma Kumar; S Yashonath

    2006-01-01

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of these investigations with focus on what is known and elaborate on issues that still remain unresolved. Conductivity depends on a number of factors such as presence of interstitial sites, ion size, temperature, crystal structure etc. We discuss the recent results from atomistic computer simulations on the dependence of conductivity in NASICONs as a function of composition, temperature, phase change and cation among others. A new potential for modelling of NASICON structure that has been proposed is also discussed.

  3. Efficient scalable solid-state neutron detector

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a 6Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m2, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security

  4. Efficient scalable solid-state neutron detector

    Moses, Daniel, E-mail: moses@cpos.ucsb.edu [Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106-5090 (United States)

    2015-06-15

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a {sup 6}Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m{sup 2}, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  5. Solid-State Spectral Light Source System

    Maffione, Robert; Dana, David

    2011-01-01

    A solid-state light source combines an array of light-emitting diodes (LEDs) with advanced electronic control and stabilization over both the spectrum and overall level of the light output. The use of LEDs provides efficient operation over a wide range of wavelengths and power levels, while electronic control permits extremely stable output and dynamic control over the output. In this innovation, LEDs are used instead of incandescent bulbs. Optical feedback and digital control are used to monitor and regulate the output of each LED. Because individual LEDs generate light within narrower ranges of wavelengths than incandescent bulbs, multiple LEDs are combined to provide a broad, continuous spectrum, or to produce light within discrete wavebands that are suitable for specific radiometric sensors.

  6. Bright Solid State Source of Photon Triplets

    Khoshnegar, Milad; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2015-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. While remarkable progress has been made on single photons and photon pairs, multipartite correlated photon states are usually produced in purely optical systems by post-selection or cascading, with extremely low efficiency and exponentially poor scaling. Multipartite states enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It would be favorable to directly generate these states using solid state systems, for better scaling, simpler handling, and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The wavefunctions of photogenerated excitons localized in these ground states are correlated via molecular hybridization and Coulomb interactions. The formation of a triexciton leads...

  7. Solid-State Spectroscopy An Introduction

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  8. Solid-state rechargeable magnesium batteries

    Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D. [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Riech, I. [Ortal Magnesium Diecasting Ltd, Kibbutz Neve Ur 10875 (Israel)

    2003-04-17

    The development of all solid-state rechargeable magnesium battery systems is reported, with components that are environmentally friendly and relatively simple in their structure and preparation. As anodes, magnesium alloys containing Zn and Al are used, and the cathode is the chevrel phase, Mo{sub 6}S{sub 8}, which can insert two magnesium atoms per unit (Mg{sub 2}Mo{sub 6}S{sub 8}, 122 mA h g{sup -1}). The solid electrolyte is a gel comprising polyvinylidene difluoride, Mg(AlCl{sub 2}EtBt){sub 2} complex salt, and tetraglyme as a plasticizer. These batteries are found to function well in a temperature range of 0-80 C with a voltage range of 1.3-0.8V. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. Solid-state lighting technology perspective.

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  10. Efficient solid state memories for quantum cryptography

    Long distance quantum cryptography requires quantum repeaters which use quantum memories. The latter are designed to store and retrieve photon quantum states on demand. Although quantum memories have been demonstrated in atomic vapors and ultra cold gases, a solid state alternative may better fulfill quantum memories requirements. Rare earth based crystals, which exhibit long coherence lifetimes, are actively studied for this purpose. Memory efficiency, i.e. the probability to retrieve a photon after storage, should be close to unity for practical applications. This can be achieved in highly doped crystals. Although Pr-Pr interactions could be detrimental in this case, we show that in a 3% Pr3+ doped La2(WO4)3 crystal ground state hyperfine coherence lifetime is still close to that measured at low Pr concentration. Since the latter determines the memory storage time, this result suggests that highly doped crystals may be useful for efficient quantum memories.

  11. Nanoengineering for solid-state lighting.

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  12. Bonding, structure and solid-state chemistry

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  13. Solid-state ring laser gyroscope

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  14. Solid-state NMR studies of supercapacitors.

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  15. Solid state NMR study calcium phosphate ceramics

    High-resolution 31P and 1H NMR spectra at 40 and 121 MHz 31P and 300 MHz 1H of synthetic and biological samples of calcium phosphates have been obtained by magic angle spinning (MAS) at spinning speeds up to 6.5 kHz, and high power proton decoupling. The samples include crystalline hydroxyapatite, a deficient hydroxyapatite characterized by a Ca/P atomic ratio of 1.5, a poorly crystallized hydroxyapatite, monetite, brushite, octacalcium phosphate, β-tricalcium phosphate and rabbit femoral bone. The interactions between nuclei in unlike structures and the mobility of acid protons are discussed. (author). 11 refs.; 2 figs.; 1 tab

  16. Importance of the tensor interaction in the (/sup 7/Li, /sup 7/Be) reaction

    Dodd, A.C.; Clarke, N.M.; Coopersmith, J.; Griffiths, R.J.; Pearce, K.I.; Stanley, B.; Cook, J.

    1985-09-01

    Data for the /sup 28/Si(/sup 7/Li, /sup 7/Be)/sup 28/Al reaction at 72 MeV and for the /sup 26/Mg(/sup 7/Li, /sup 7/Be)/sup 26/Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions.

  17. The importance of the tensor interaction in the (7Li, 7Be) reaction

    Data for the 28Si(7Li, 7Be)28Al reaction at 72 MeV and for the 26Mg(7Li, 7Be)26Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions. (author)

  18. Investigation of 7Li(n, γ)8Li reaction by law energy

    The wave functions and main spectroscopic characteristics of the 8Li nucleus as well as the interaction potential in the 7Li+n channel are calculated within the frames of the three-body αtn-potential cluster model. The complete cross sections and reaction velocities of the 7Li(n, γ)8Li are determined along with the above values in the area of the energy up to 1 MeV

  19. Elastic scattering of vector polarized 7LiON58Ni

    The elastic scattering of vector polarized 7Li on 58Ni at 20.3 MeV exhibits vector analyzing powers of approximate the same size but of opposite sign as the ones observed for elastic 6Li-58Ni scattering. Present versions of the folding model predict that vector analyzing powers for 7Li should have the same much smaller magnitude than for 6Li scattering. The physical reasons of this observed effect are presently not known. (orig.)

  20. Lines in the spectrum of 7LiH (4728--5298 A)

    The emission spectra of the A1Σ+--X1Σ+ bands of 7LiH were photographed in the 4728A - 5298 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm-1. High purity 7LiH crystals were obtained from Oak Ridge National Laboratory. The atomic percent of 7Li in 7LiH and 7LiD was 99.93 percent. The discharge source was a demountable stainless steel hollow cathode lamp. The lithium hydride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of H2. The discharge was run at about 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of 7LiH are given in this repot 9COO-2326-19). Similar spectra for 6LiH and 6LiD are given in companion reports (COO-2326-17) and (COO-2326-18), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum

  1. Solid-state Raman image amplification

    Calmes, Lonnie Kirkland

    Amplification of low-light-level optical images is important for extending the range of lidar systems that image and detect objects in the atmosphere and underwater. The use of range-gating to produce images of particular range bins is also important in minimizing the image degradation due to light that is scattered backward from aerosols, smoke, or water along the imaging path. For practical lidar systems that must be operated within sight of unprotected observers, eye safety is of the utmost importance. This dissertation describes a new type of eye-safe, range-gated lidar sensing element based on Solid-state Raman Image Amplification (SSRIA) in a solid- state optical crystal. SSRIA can amplify low-level images in the eye-safe infrared at 1.556 μm with gains up to 106 with the addition of only quantum- limited noise. The high gains from SSRIA can compensate for low quantum efficiency detectors and can reduce the need for detector cooling. The range-gate of SSRIA is controlled by the pulsewidth of the pump laser and can be as short as 30-100 cm, using pump pulses of 2-6.7 nsec FWHM. A rate equation theoretical model is derived to help in the design of short pulsed Raman lasers. A theoretical model for the quantum noise properties of SSRIA is presented. SSRIA results in higher SNR images throughout a broad range of incident light levels, in contrast to the increasing noise factor with reduced gain in image intensified CCD's. A theoretical framework for the optical resolution of SSRIA is presented and it is shown that SSRIA can produce higher resolution than ICCD's. SSRIA is also superior in rejecting unwanted sunlight background, further increasing image SNR. Lastly, SSRIA can be combined with optical pre-filtering to perform optical image processing functions such as high-pass filtering and automatic target detection/recognition. The application of this technology to underwater imaging, called Marine Raman Image Amplification (MARIA) is also discussed. MARIA

  2. Solid state NMR studies of gels derived from low molecular mass gelators.

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  3. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities.

    Kaur, Hundeep; Lakatos, Andrea; Spadaccini, Roberta; Vogel, Ramona; Hoffmann, Christian; Becker-Baldus, Johanna; Ouari, Olivier; Tordo, Paul; Mchaourab, Hassane; Glaubitz, Clemens

    2015-09-01

    ATP binding cassette (ABC) transporters form a superfamily of integral membrane proteins involved in translocation of substrates across the membrane driven by ATP hydrolysis. Despite available crystal structures and extensive biochemical data, many open questions regarding their transport mechanisms remain. Therefore, there is a need to explore spectroscopic techniques such as solid state NMR in order to bridge the gap between structural and mechanistic data. In this study, we investigate the feasibility of using Escherichia coli MsbA as a model ABC transporter for solid state NMR studies. We show that optimised solubilisation and reconstitution procedures enable preparing stable and homogenous protein samples. Depending on the duration of solubilisation, MsbA can be obtained in either an apo- or in a native lipid A bound form. Building onto these optimisations, the first promising MAS-NMR spectra with narrow lines have been recorded. However, further sensitivity improvements are required so that complex NMR experiments can be recorded within a reasonable amount of time. We therefore demonstrate the usability of paramagnetic doping for rapid data acquisition and explore dynamic nuclear polarisation as a method for general signal enhancement. Our results demonstrate that solid state NMR provides an opportunity to address important biological questions related to complex mechanisms of ABC transporters. PMID:25849794

  4. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La3Pd4Ge4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO1-xFx. This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe1-xMnxAsO1-yFy were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  5. Membrane structure and dynamics as viewed by solid-state NMR spectroscopy.

    Auger, M

    1997-10-01

    The purpose of the present study is the investigation of the structure and dynamics of biological membranes using solid-state nuclear magnetic resonance (NMR) spectroscopy. Two approaches are used in our laboratory. The first involves the measurement of high-resolution 13C and 1H spectra obtained by the magic angle spinning (MAS) technique while the second approach involves the measurement of 31P and 2H powder spectra in static samples. This paper will present some recent results obtained by high-resolution solid-state 1H NMR on the conformation of gramicidin A incorporated in a phosphatidylcholine bilayers. More specifically, we were able to observe changes in the gramicidin spectra as a function of the cosolubilization solvent initially used to prepare the samples. The interaction between lipid bilayers and an anticancer drug derived from chloroethylurea was also investigated using proton NMR spectroscopy. Finally, we have studied the interaction between cardiotoxin, a toxic protein extracted from snake venom, and negatively charged lipid bilayers using 31P solid-state NMR spectroscopy. PMID:9468622

  6. Potential of solid state fermentation for production of ergot alkaloids

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B. K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  7. Applied solid state science advances in materials and device research

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  8. NASA developments in solid state power amplifiers

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  9. Radiation-Hardened Solid-State Drive

    Sheldon, Douglas J.

    2010-01-01

    A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.

  10. Solid state photomultiplier for astronomy, phase 2

    Besser, P. J.; Hays, K. M.; Laviolette, R. A.

    1989-01-01

    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations.

  11. Solid state crystallisation of oligosaccharide ester derivatives

    Wright, E A

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(beta-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 sub 1 2 sub 1 2 sub 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20...

  12. High-average-power solid state lasers

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  13. A New Solid State Tritium Surface Monitor

    Traditionally the amount of tritium on a surface is determined by swiping the surface with a material such as filter paper and counting the removed tritium by scintillation. While effective, this method can be time consuming, can alter the surface, only measures removable tritium and produces radioactive waste. For a given application each of these considerations may or may not be a disadvantage. A solid state monitor, on the other hand, has the potential to provide rapid analysis, not alter the surface, measure all tritium on a surface and produce little or not radioactive waste. This allure has promoted open wall ion chamber and PIN diode-based tritium surface monitor development, and these techniques have enjoyed certain success. Recently the first tests were performed with an avalanche photodiode (APD) for surface tritium measurement. While quite similar in concept to PIN diode based measurements, side-by-side testing showed that the APD provided substantially better counting efficiency. Considerations included count rate, background, sensitivity, stability and effect of ambient light. Of particular importance in the US, the APD was able to measure concentrations down to the 'free release' limit, i.e., the concentration below which items can be removed from radiological control areas

  14. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries. PMID:26905816

  15. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors

    Hisao, Grant S.; Harland, Michael A.; Brown, Robert A.; Berthold, Deborah A.; Wilson, Thomas E.; Rienstra, Chad M.

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  16. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes

    A comprehensive matrix of composite poly(ethyleneoxide) (PEO)-based solid-state electrolytes was developed in order to systematically study a number of variables and their impact upon the electrochemical properties of the resulting materials. The different parameters studied in the fabrication of these materials include: (i) the lithium electrolyte salt type, (ii) the ether oxygen to lithium ratio, (iii) the molecular weight of PEO, (iv) the type of ceramic additive used, either aluminum oxide (Al2O3), silicon oxide (SiO2), or titanium oxide (TiO2), (v) the particle size of the additives used, and (vi) the concentration of additive (wt.%). The standard lithium salt used for the preparation of these electrolytes was lithium trifluoromethanesulfonate (lithium triflate or LiSO3CF3), which served as the baseline electrolyte salt. Other lithium salts investigated include: lithium perchlorate (LiClO4) and lithium bis-trifluoromethanesulfonimide (LiN(SO2CF3)2). Conductivity measurements were performed for each electrolyte membrane over a wide temperature range (23-100 deg. C). In addition, cyclic voltammetry measurements were performed on selected PEO membranes as a function of temperature to determine the impact of various parameters upon the electrochemical stability. It was observed that the parameter that displayed the most significant effect upon the PEO-base polymer conductivity was the lithium salt type employed. The lithium triflate salt-containing PEO polymers demonstrated the best mechanical properties before and after heat treatment. Ceramic fillers also appear to enhance the mechanical properties of PEO polymer electrolytes at temperatures above the melting point of PEO (60-70 deg. C). In addition to investigating the electrochemical characteristics of the composite membrane, solid state 7Li NMR characterization was performed to study ionic mobility by measuring spectral line widths and lithium self-diffusion coefficients. It was determined that ceramic

  17. SOLID-STATE CERAMIC LIGHTING PROJECT

    Wayne D. Brown

    2003-06-01

    Meadow River Enterprises, Inc. (MRE) and the New York State College of Ceramics at Alfred University (NYSCC) received a DOE cooperative agreement award in September 1999 to develop an energy-efficient Solid-State Ceramic Lamp (SSCL). The program spanned a nominal two(2) year period ending in February of 2002. The federal contribution to the program totaled $1.6 million supporting approximately 78% of the program costs. The SSCL is a rugged electroluminescent lamp designed for outdoor applications. MRE has filed a provisional patent for this ''second generation'' technology and currently produces and markets blue-green phosphor SSCL devices. White phosphor SSCL devices are also available in prototype quantities. In addition to reducing energy consumption, the ceramic EL lamp offers several economic and societal advantages including lower lifecycle costs and reduced ''light pollution''. Significant further performance improvements are possible but will require a dramatic change in device physical construction related to the use of micro-powder materials and processes. The subject ''second-generation'' program spans a 27 month period and combines the materials and processing expertise of NYSCC, the manufacturing expertise of Meadow River Enterprises, and the phosphor development expertise of OSRAM Sylvania to develop an improved SSCL system. The development plan also includes important contributions by Marshall University (a part of the West Virginia University system). All primary development objectives have been achieved with the exception of improved phosphor powders. The performance characteristics of the first generation SSCL devices were carefully analyzed in year 1 and a second generation lamp was defined and optimized in year 2. The provisional patent was ''perfected'' through a comprehensive patent application filed in November 2002. Lamp efficiency was improved more than 2:1.

  18. Electron correlations in solid state physics

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t'-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t'-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a ''magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the ''magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of ''hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies

  19. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  20. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses

    Murphy, Kelly A. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Washton, Nancy M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Science Lab.; Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States). Dept. of Materials Science and Engineering; Mueller, Karl T. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Science Lab.

    2013-06-01

    Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 °C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime.

  1. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses

    Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 °C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime

  2. Harwell's atomic, molecular and solid state computer programs

    This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)

  3. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26687421

  4. Solid state high power RF system for superconducting cavities

    Solid State High Power RF System is proposed for XFEL and ILC. It includes individual RF power supply for each SC cavity and common control system. Each RF power supply includes Solid State Generator, circulator and Q-tuner. Triggering, synchronization, output power and phase of each Solid State Generator are controlled from the common control system through fiber-optic lines. Main parameters of Solid State Generator are: frequency 1.3 GHz, peak power 128 kW, pulse length 1.4 msec, repetition rate 10 Hz, average power 1.8 kW, CW power 2.5 kW. Advantages of Solid State High Power RF System are: simple triggering, synchronization, output power and phase adjustment for all cavities separately, operation both in pulse and in CW modes, unlimited lifetime, no high voltage, no oil-tank, compactness.

  5. IFE Power Plant design principles. Drivers. Solid state laser drivers

    The present status of solid state laser drivers for an inertial confinement thermonuclear fusion power plant is discussed. In particular, the feasibility of laser diode pumped solid state laser drivers from both the technical and economic points of view is briefly reviewed. Conceptual design studies showed that they can, in principle, satisfy the design requirements. However, development of new solid state materials with long fluorescence lifetimes and good thermal characteristics is a key issue for laser diode pumped solid state lasers. With the advent of laser diode pumping many materials which were abandoned in the past can presently be reconsidered as viable candidates. It is also concluded that it is important to examine the technical requirements for solid state lasers in relation to target performance criteria. The progress of laser diode pumped lasers in industrial applications should also be closely watched to provide additional information on the economic feasibility of this type of driver. 15 refs, 9 figs, 2 tabs

  6. Preliminary field evaluation of solid state cameras for security applications

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  7. Reactions (d,7Li) and (d,7Be) in 19F nuclei

    Differential cross sections have been measured for the reactions 19F(d,7Li)14N, 19F(d,7Li(/sub 0.478/)14N, 19F(d,7Be)14C, and 19F(d,7Be(/sub 0.429/)14C in a cyclotron beam of deuterons with energy 13.6 MeV. The experimental data were analyzed by the distorted-wave method with inclusion of the finite interaction range and recoil. It is shown that the reactiuns 19F(d,7Li)14N and 19F(d,7Li(/sub 0.478/)14N occur mainly by direct transfer of a 5He cluster from the 4P/sub 1/2/ state of the 19F nucleus to the 1D/sub 3/2/ state of the 7Li nucleus. The differential cross sections for the reactions 19F(d,7Be)14C and 19F(d,7Be(/sub 0.429/)14C could not be explained in terms of the theory of direct transfer of a 5Li cluster

  8. Solid State Joining of Dissimilar Titanium Alloys

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  9. Solid state crystallisation of oligosaccharide ester derivatives

    Wright, Elaine Ann

    2002-07-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-({beta}-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and {beta} = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores

  10. Solid state crystallisation of oligosaccharide ester derivatives

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(β-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P212121 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and β = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores which allows diffusion of the

  11. Global optical model potentials for symmetrical lithium systems: 6Li+6Li, 7Li+7Li at Elab = 5-40 MeV

    Angular distributions of 6Li+6Li elastic scattering were measured for Elab=5-40 MeV. An optical model analysis of these data together with older data of 7Li+7Li elastic scattering taken at Elab = 8-17 MeV was performed with the aim to search for a ''global'' OM potential which describes elastic scattering in both Li-Li systems in a broad energy range. Both surface and volume absorbing potentials can be found which fulfill this requirement if a linear energy dependence is assumed of the depths of the real as well as the imaginary potential. These depths, if fitted to individual angular distributions, are found to vary in a correlated manner with the beam energy. This is taken as indication of strong coupling between elastic, inelastic, and reaction channels. This is corroborated by the existence of resonances in reaction channels at these energies where the potential depths are most pronouncedly changing. (orig.)

  12. Space distributions and decay probability for excited state of 7Li*(7,45 MeV) in reaction 7Li(alpha, alpha6Li)n

    Differential cross-sections of excitation and decay of 7Li*(7,45 MeV) resonance into 6Li + n channel in three particle reaction 7Li(alpha, alpha6Li)n at alpha-particle energy of 27,2 MeV have been determined in kinematically complete and incomplete experiments. Usage of position sensitive detector made it possible to obtain the data on space distributions of decay events for full range of possible angles and to determine the total probability of this process, which value essentially differs from the data for binary reactions. This result is agreed with previously obtained [1] and confirms the theoretical calculations [2] of decay branching ratio for short lived near-threshold resonances in three particle reactions

  13. Study on the differential cross sections of the (d, 7Li)-reactions on 13C nuclei

    Differential cross sections of 13C(d, 7Li)8Be and 13C(d, sup(7)Li*sub(0.478))sup(8)Be on 13.6 MeV deuteron cyclotron beam using the ΔExE technique to identify reaction products, in which silicon ΔE detectors, of approximately 5 mk thickness were applied, have been measured. Experimental data have been analyzed according to the Hauser- Feshbach statistical theory and in the approximation of distorted waves with account for finitude of interaction and recoil radius. It is shown that angular distributions of 7Li and sup(7)Li*sub(0.478) ions are described most satisfactorily in the approximation of direct transfer of 5He quasicluster from 2Dsub(1/2) state of 13C nucleus into 2Ssub(3/2) state of 7Li, sup(7)Li*sub(0.478) nuclei

  14. Global optical-model potentials for the elastic scattering of sup(6,7)Li projectiles

    Simultaneous fits have been made to 44 6Li data sets covering the mass range 24-208 and the energy range 13-156 MeV in order to determine an average ('global') optical-model potential for 6Li scattering. A similar study has been made for 25 7Li data sets over the same mass range and an energy range of 28-88 MeV to find an average 7Li potential. With Saxon-Woods factors, constant values may be used for all parameters except for the depth of the imaginary potential which decreases in magnitude with increasing mass. The necessity of energy dependence, Coulomb correction and (for 7Li) a symmetry term is investigated. The variation of the integral properties of the potentials is discussed, and also a comparison is made for the two projectiles. Application of the global potentials is made to inelastic scattering and single-nucleon transfer reactions. (orig.)

  15. 7Li(3He,p)9Be reaction and primordial nucleosynthesis

    The differential cross section for the 7Li(3He, p)9Be reaction has been measured in 50 keV intervals at 8 angles (15deg-160deg) in the energy range from Ec.m.=0.5 to 2.0 MeV, and total cross sections were determined from these data. Since this reaction has been noted as being of possible importance in primordial nucleosynthesis, its astrophysical S-factor was calculated from the data. In addition, the S-factor for the 7Li(3H, n)9Be reaction, also of importance in primordial nucleosynthesis, was estimated from the 7Li(3He, p)9Be data and its thermonuclear reaction rate was calculated. (orig.)

  16. Study of fusion in 6,7Li+197Au near barrier energies

    Excitation functions are measured for complete fusion and transfer reactions of 6Li and 7Li with 197Au at energies around the Coulomb barrier. Coupled channel calculations including the couplings to both target and projectile excited states have been performed and are found to explain the data at energies below the barrier. At above barrier energies the complete fusion cross sections are found to be suppressed compared to the coupled channel calculations for both the systems. A systematic comparison of fusion cross-section for halo nuclei 6,8He and weakly bound stable nuclei 6,7Li on 197Au target is also presented. Large neutron transfer cross-sections are observed for 6,7Li as compared to tightly bound projectiles 12C,16O. (authors)

  17. Breakup mechanisms for 7Li + 197Au, 204Pb systems at sub-barrier energies

    Luong D.H.

    2013-12-01

    Full Text Available Coincidence measurements of breakup fragments were carried out for the 7Li + 197Au and 204Pb systems at sub-barrier energies. The mechanisms triggering breakup, and time-scales of each process, were identified through the reaction Q-values and the relative energy of the breakup fragments. Binary breakup of 7Li were found to be predominantly triggered by nucleon transfer, with p-pickup leading to 8Be → α + α decay being the preferred breakup mode. From the time-scales of each process, the coincidence yields were separated into prompt and delayed components, allowing the identification of breakup process important in the suppression of complete fusion of 7Li at above-barrier energies.

  18. New Applications of Solid State Ionics

    WEN Zhao-Yin, LI Jing-Ze

    2013-11-01

    Full Text Available During the past four decades, Solid State Ionics (SSI field has attracted numerous researchers and engineers to cultivate new technologies which plays important roles in the development of sustainable energy utilization and clean transportation tools. The commercialization of lithium ion battery, sodium sulfur battery, sodium chloride battery, solid oxygen sensors have illustrated the success of SSI's theories and technologies. The discovery and successful applications of ionic or mixed conductive materials, such as LiCoO2 and LiFePO4 as active materials of lithium ion battery cathode, Na-β/β'-Al2O3 ceramics as solid electrolytes and separators for sodium based batteries, ZrO2 as electrolytes for SOFC and oxygen sensors, and the newly developed Li10GeP2S12[1] and Li7La3Zr2O12[2] as lithium ion conductor, laid a solid foundation for the development of SSI technologies. Recently, rechargeable lithium metal anode based batteries have become hot research topics in the field of SSI due to their extremely high specific capacity suitable for future generation of power sources in portable electronic devices, electric vehicles and energy storage systems. Among all the Li anode based batteries, Li-S and Li-air battery systems are the two most attractive candidates because of the low cost and abundance of sulfur and air as cathode active materials, especially the characteristics of easy access of active O2 from the surrounding air for Li-air batteries. Breakthroughs have been made recently with these batteries. SION Power's Li-S cells reached the highest practical specific energy as high as 350 Wh/kg, with a pack of 576 cells engineering the QinetiQ Zephyr Unmanned Aerial Vehicle (UAV more than 336 h (14 d of continuous flight, significantly surpassing the previous official record[3]. Their energy densities are higher than 500 Wh/kg for more than 500 cycles[3] and commercialization in the near future[4] are expected. Many Chinese institutions

  19. The Galileo Solid-State Imaging experiment

    Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W., III; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.

    1992-01-01

    The Solid State Imaging (SSI) experiment on the Galileo Orbiter spacecraft utilizes a high-resolution (1500 mm focal length) television camera with an 800 ?? 800 pixel virtual-phase, charge-coupled detector. It is designed to return images of Jupiter and its satellites that are characterized by a combination of sensitivity levels, spatial resolution, geometric fiedelity, and spectral range unmatched by imaging data obtained previously. The spectral range extends from approximately 375 to 1100 nm and only in the near ultra-violet region (??? 350 nm) is the spectral coverage reduced from previous missions. The camera is approximately 100 times more sensitive than those used in the Voyager mission, and, because of the nature of the satellite encounters, will produce images with approximately 100 times the ground resolution (i.e., ??? 50 m lp-1) on the Galilean satellites. We describe aspects of the detector including its sensitivity to energetic particle radiation and how the requirements for a large full-well capacity and long-term stability in operating voltages led to the choice of the virtual phase chip. The F/8.5 camera system can reach point sources of V(mag) ??? 11 with S/N ??? 10 and extended sources with surface brightness as low as 20 kR in its highest gain state and longest exposure mode. We describe the performance of the system as determined by ground calibration and the improvements that have been made to the telescope (same basic catadioptric design that was used in Mariner 10 and the Voyager high-resolution cameras) to reduce the scattered light reaching the detector. The images are linearly digitized 8-bits deep and, after flat-fielding, are cosmetically clean. Information 'preserving' and 'non-preserving' on-board data compression capabilities are outlined. A special "summation" mode, designed for use deep in the Jovian radiation belts, near Io, is also described. The detector is 'preflashed' before each exposure to ensure the photometric linearity

  20. High Extraction Phosphors for Solid State Lighting

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  1. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    Hu, Jian Zhi [Pacific Northwest National Laboratory

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  2. Search for higher excited states of $^{8}$Be* to study the cosmological $^{7}$Li problem

    We would like to study the unresolved $^{7}$Li abundance anomaly by carrying out experiments that destroy the rare isotope $^{7}$Be, the main source of $^{7}$Li. Utilizing a 35 MeV $^{7}$Be beam from HIE-ISOLDE, we would like to measure the (d,p) and (d,d) reactions with T-REX. The higher beam energy, for the first time, would allow us to measure higher excitation energies in $^{8}$Be up to about 20 MeV. With a wider angular coverage, we can make improved average cross-section measurement without assuming isotropy done in earlier works.

  3. Search for a resonant enhancement of the 7Be + d reaction and primordial 7Li abundances

    Big Bang nucleosynthesis calculations, constrained by the Wilkinson Microwave Anisotropy Probe results, produce 7Li abundances almost a factor of four larger than those extrapolated from observations. Since primordial 7Li is believed to be mostly produced by the beta decay of 7Be, one proposed solution to this discrepancy is a resonant enhancement of the 7Be(d,p)2α reaction rate through the 5/2+ 16.7-MeV state in 9B. The 2H(7Be,d)7Be reaction was used to search for such a resonance; none was observed. An upper limit on the width of the proposed resonance was deduced.

  4. Determination of degradation constants of energetic 7*Li ion in liquid media using a thin boron film on silicon wafer

    A novel method to determine degradation constants has been developed for energetic 7*Li ions produced from the 10B (n, α) 7*Li reaction, moving in liquid media. The energetic 7*Li generated in a thin boron film on silicon wafer plunged into a liquid sample in which the wafer was immersed. The degradation constants were determined by analyzing the Doppler-broadened lineshapes of prompt γ-ray at 478 keV emitted from 7*Li. For comparison, degradation constants were also measured for solutions of boron compounds. Values obtained by the two methods gave fair agreement. (author)

  5. Solid-state optical refrigeration to sub-100 Kelvin regime

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2016-02-01

    Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature.

  6. Solid state nuclear track detection principles, methods and applications

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  7. Progress and prospective of solid-state lithium batteries

    The development of lithium-ion batteries has energized studies of solid-state batteries, because the non-flammability of their solid electrolytes offers a fundamental solution to safety concerns. Since poor ionic conduction in solid electrolytes is a major drawback in solid-state batteries, such studies have been focused on the enhancement of ionic conductivity. The studies have identified some high performance solid electrolytes; however, some disadvantages have remained hidden until their use in batteries. This paper reviews the development of solid electrolytes and their application to solid-state lithium batteries

  8. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids.

  9. High-powered, solid-state RF systems

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at UHF and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency range from 3000 to 10000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10000 MHz. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture are discussed. Solid-state rf amplifier susceptibility to radiation damage has been examined

  10. Solid state conformational classification of eight-membered rings

    Pérez, J.; García, L.; Kessler, M.;

    2005-01-01

    A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...

  11. Solid state division progress report, period ending February 29, 1980

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  12. Solid-State Synthesis of a Thermochromic Compound

    Changyun, Chen; Zhihua, Zhou; Yiming, Zhou; Jiangyan, Du

    2000-09-01

    Bis(diethylammonium) tetrachloronickelate(II) was prepared by solid-state reaction at mild temperature. Classroom demonstration of the synthesis and discussions of thermochromic mechanism of the compound prepared were described.

  13. A Solid State Tissue Equivalent Detector for Microdosimetry Project

    National Aeronautics and Space Administration — QEL proposes to construct a tissue equivalent microdosimeter using a solid state tissue equivalent detector (SSTED). The Phase I study will produce the working...

  14. Solid state division progress report, period ending February 29, 1980

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  15. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  16. Electronic aperture control devised for solid state imaging system

    Anders, R. A.; Callahan, D. E.; Mc Cann, D. H.

    1968-01-01

    Electronic means of performing the equivalent of automatic aperture control has been devised for the new class of television cameras that incorporates a solid state imaging device in the form of phototransistor mosaic sensors.

  17. ASAS = NASA's Advanced Solid-state Array Spectroradiometer: 1988 -2000

    U.S. Geological Survey, Department of the Interior — The Advanced Solid-State Array Spectroradiometer (ASAS) data collection contains data collected by the ASAS sensor flown aboard NASA aircraft. A fundamental use of...

  18. E/Z MAS demonstration

    Los Alamos National Laboratory has developed E/Z MAS, a new generation nuclear material accountability application based on the latest technology and designed for facilities required to track nuclear materials with a simple-to-use interface. E/Z MAS is based on years of experience spent developing nuclear material accounting systems. E/Z MAS uses a modern relational database with a web server and enables users on a classified local area network to interact with the database with web browsers. The E/Z MAS Demonstration poster session demonstrates the E/Z MAS functions required by an operational nuclear facility to track material as it enters and leaves a facility and to account for the material as it moves through a process. The generation of internal facility reports and external reports for the Russian Federal system will be demonstrated. Bar-code readers will be used to demonstrate the ability of EZ MAS to automate certain functions, such as physical inventories at facilities

  19. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  20. Solid state 13C NMR characterisation study on fourth generation Ziegler-Natta catalysts.

    Heikkinen, Harri; Liitiä, Tiina; Virkkunen, Ville; Leinonen, Timo; Helaja, Tuulamari; Denifl, Peter

    2012-01-01

    In this study, solid state (13)C NMR spectroscopy was utilised to characterize and identify the metal-ester coordination in active fourth generation (phthalate) Ziegler-Natta catalysts. It is known that different donors affect the active species in ZN catalysts. However, there is still limited data available of detailed molecular information how the donors and the active species are interplaying. One of the main goals of this work was to get better insight into the interactions of donor and active species. Based on the anisotropy tensor values (δ(11), δ(22), δ(33)) from low magic-angle spinning (MAS) (13)C NMR spectra in combination with chemical shift anisotropy (CSA) calculations (δ(aniso) and η), both the coordinative metal (Mg/Ti) and the symmetry of this interaction between metal and the internal donor in the active catalyst (MgCl(2)/TiCl(4)/electron donor) system could be identified. PMID:22425229

  1. High average power solid state laser power conditioning system

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  2. Solid state proton conductors properties and applications in fuel cells

    Knauth, Philippe

    2012-01-01

    Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Soli

  3. Porous Organic Nanolayers for Coating of Solid-state Devices

    Asghar Waseem; Vidyala Sri D; Iqbal Samir M

    2011-01-01

    Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surf...

  4. Friction Regimes in the Lubricants Solid-State Regime

    Schipper, D.J.; Maathuis, O.; Dowson, D; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughness on this transition. The friction measurements showed that in the lubricants solid-state region three lubrication modes can be distinguished: A) full-film lubrication; separation is maintained b...

  5. Applied solid state science advances in materials and device research

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  6. Perspectives on a Solid State NMR Quantum Computer

    Feldman, E B; Fel'dman, Edward B.; Lacelle, Serge

    2001-01-01

    A quantum information processing device, based on bulk solid state NMR of the quasi-one dimensional material hydroxyapatite, is proposed following the magnetic resonance force microscopy work of Yamamoto et al (quant-ph/0009122). In a macroscopic sample of hydroxyapatite, our solid state NMR model yields a limit of 10^8 qubits imposed by physics, while development of current technological considerations should allow an upper bound in the range of hundreds to thousands of qubits.

  7. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-01-01

    angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time....... The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative...... concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples....

  8. Solid-State Physics Introduction to the Theory

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  9. Preliminary field evaluation of solid state cameras for security applications

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  10. Constraints on Ωb from nucleosynthesis of 7Li in the standard big bang model

    We update standard big bang nucleosynthesis (SBBN) calculations on the basis of recent nuclear physics compilations (NACRE in particular), experimental and theoretical works. By a Monte Carlo technique, we calculate the uncertainties on the light element yields (4He, D, 3He and 7Li) related to nuclear reactions. The results are compared to observations that are thought to be representative of the corresponding primordial abundances. It is found that 7Li could lead to more stringent constraints on the baryonic density of the universe (Ωbh2) than deuterium, because of much higher observation statistics and an easier extrapolation to primordial values. The confrontation of SBBN results with 7Li observations is of special interest since other independent approaches have also recently provided Ωbh2 values: (i) the anisotropies of the cosmic microwave background by the BOOMERANG, CBI, DASI and MAXIMA experiments and (ii) the Lyman-α forest at high redshift. A comparison between these results obtained by different methods provides a test of their consistency and could provide a better determination of the baryonic density in the universe. However, the agreement between Ωbh2 values deduced from SBBN calculation and 7Li observation on the one hand and CMB observations on the other hand is only marginal

  11. THE NEW DETECTIONS OF 7Li/6Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    We have determined the isotopic abundance ratio of 7Li/6Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed ζ Oph for comparison with previous data. The observed abundance ratios were 7Li/6Li = 8.1+3.6-1.8 and 6.3+3.0-1.7 for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within ±2σ error bars and are also consistent with our measurement of 7Li/6Li = 7.1+2.9-1.6 for a cloud along the line of sight to ζ Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of 7Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  12. Design of a 7Li rotating target for neutron production using a Van de Graaff accelerator

    We present a rotating target used for the production of monokinetic neutron fluxes. The neutrons are produced from the 7Li(p,n)7Be reaction for fast neutron elastic and inelastic scattering experiments. This target has been operated with a proton beam current of 8 to 10 μA during six consecutive weeks and has given entire satisfaction

  13. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    Frankovsky, Rainer

    2013-06-03

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La{sub 3}Pd{sub 4}Ge{sub 4} the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO{sub 1-x}F{sub x}. This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe{sub 1-x}Mn{sub x}AsO{sub 1-y}F{sub y} were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  14. Application of solid state NMR for the study of surface bound species and fossil fuels

    Althaus, Stacey

    Recent advances in solid state NMR have been utilized to study a variety of systems. These advancements have allowed for the acquisition of sequences previously only available for solution state detection. The protocol for the measurement of coals and other carbonaceous materials was updated to incorporate the recent advancements in fast magic angle spinning (MAS) and high magnetic fields. Argonne Premium Coals were used to test the sensitivity and resolution of the experiments preformed at high field and fast MAS. The higher field spectra were shown to be slightly less sensitive than the traditional lower field spectra, however, the new high field fast MAS spectra had better resolution. This increased resolution allowed for the separation of a variety of different functional groups, thereby allowing the composition of the coal to be determined. The use of 1 H detection allowed for 2D spectra of coals for the first time. These spectra could be filtered to examine either through-space or through-bond correlations. Indirect detection via 1 H was also pivotal in the detection of natural abundance 15 N spectra. Through-space and through-bond 2D spectra of natural abundance bulk species are shown with a sensitivity increase of 15 fold over traditional detection. This sensitivity enhancement allowed for the detection of natural abundance 15 N surface bound species in 2D, something that could not be acquired via traditional methods. The increased efficiency of the through-space magnetization transfer, Cross polarization, at fast MAS compared to the slower MAS rates is shown. The through-bond magnetization transfer via INEPT was examined and the effect of J-coupling is confirmed. Solid State NMR can be utilized to help improve catalytic interactions. Solid state NMR was used to examine the aldol condensation between p-nitrobenzaldehyde and acetone. The formation of a stable intermediate with p-nitrobenzaldehyde was found on the primary functionalized amine mesoporous

  15. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR

    Martin, R A; Twyman, H.L.; Rees, G.J.; Smith, J M; Barney, E. R.; Smith, M E; Hanna, J. V.; Newport, Robert J.

    2012-01-01

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a simila...

  16. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    Wang, Songlin

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  17. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. PMID:27232539

  18. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  19. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    Larsen, Flemming H.; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard;

    2013-01-01

    . Comparative analysis of wheat and waxy maize starches demonstrated that starches were similar upon gelatinization independent of botanical origin and that the torsion angles of the glycosidic linkages were averages of the crystalline A and B type structures. In starch suspension phosphorous in immobile...... regions was only observed in NA starch. Moreover phosphorous was observed in a minor pH-insensitive form and as major phosphate in hydrated GEL and BE starches....

  20. Sample preparation of membrane proteins suitable for solid-state MAS NMR and development of assignment strategies

    Hiller, Matthias

    2009-01-01

    Although the basic structure of biological membranes is provided by the lipid bilayer, most of the specific functions are carried out by membrane proteins (MPs) such as channels, ion-pumps and receptors. Additionally, it is known, that mutations in MPs are directly or indirectly involved in many diseases. Thus, structure determination of MPs is of major interest not only in structural biology but also in pharmacology, especially for drug development. Advances in structural biology of membrane...

  1. Solid-state dosimeters: A new approach for mammography measurements

    Brateman, Libby F., E-mail: bratel@radiology.ufl.edu [Department of Radiology, University of Florida College of Medicine Box 100374, Gainesville, Florida 32610-0374 (United States); Heintz, Philip H. [Department of Radiology, University of New Mexico, MSC10 5530, Albuquerque, New Mexico 87131 (United States)

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within −1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by −6.5% to +3.5% depending on the SStD and

  2. Solid-state dosimeters: A new approach for mammography measurements

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within −1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by −6.5% to +3.5% depending on the SStD and

  3. Is solid-state NMR enhanced by dynamic nuclear polarization?

    Lee, Daniel; Hediger, Sabine; De Paëpe, Gaël

    2015-01-01

    The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP. PMID:25779337

  4. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  5. High-powered, solid-state rf systems

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  6. Tunable solid-state fluorescent materials for supramolecular encryption

    Hou, Xisen; Ke, Chenfeng; Bruns, Carson J.; McGonigal, Paul R.; Pettman, Roger B.; Stoddart, J. Fraser

    2015-01-01

    Tunable solid-state fluorescent materials are ideal for applications in security printing technologies. A document possesses a high level of security if its encrypted information can be authenticated without being decoded, while also being resistant to counterfeiting. Herein, we describe a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation. The dynamic nature of this fluorescent material is based on a complex set of equilibria, whose fluorescence output depends non-linearly on the chemical inputs and the composition of the paper. By applying this system in fluorescent security inks, the information encoded in polychromic images can be protected in such a way that it is close to impossible to reverse engineer, as well as being easy to verify. This system constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable solid-state fluorescent materials. PMID:25901677

  7. Perspectives of Solid State Fermentation for Production of Food Enzymes

    Cristobal Noe Aguilar

    2008-01-01

    Full Text Available Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the production and application studies of those enzymes produced by solid state fermentations are scarce in comparison with submerged fermentation. This review involves production aspects of the seven enzymes: tannases, pectinases, caffeinases, mannanases, phytases, xylanases and proteases, which can be produced by solid state fermentation showing attractive advantages. Additionally, process characteristics of solid state fermentation are considered.

  8. Quantum technologies for solid state physics using cold trapped ions

    The quantum states of ions are perfectly controlled, and may be used for fundamental research in quantum physics, as highlighted by the Nobel Prize given to Dave Wineland in 2012. Two directions of quantum technologies, followed by the Mainz group, have high impact on solid state physics: I) The delivery of single cold ions on demand for the deterministic doping of solid state materials with nm spatial precision to generate design-structures optimized for quantum processors. II) The simulation of solid state relevant Hamiltonians with AMO systems of one or two dimensional arrays of trapped ions. I will talk about the recent progress in both fields. http://www.quantenbit.de/#Number Sign#/publications/(author)

  9. Future Solid State Lighting using LEDs and Diode Lasers

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...... of diode laser based lighting, high luminous flux levels and high efficiency can be available at the same time. Laser diodes operate in a fundamentally different regime using stimulated emission for light generation as opposed to spontaneous emission in LEDs The recent progress in solid state......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...

  10. Solid-State 2MW Klystron Power Control System

    Kempkes, Michael; Gaudreau, Marcel; Hawkey, Timothy; Roth, Ian

    2005-01-01

    Under an SBIR effort for the DOE, Diversified Technologies, Inc. designed, built, and installed a solid state power control system for the Advanced Light Source klystrons at Argonne National Laboratory (ANL). This system consists of two major elements - a 100 kV, 20 A CW solid state series switch, and a solid state voltage regulator for the mod-anode of the klystron. The series switch replaces the existing mercury ignitron crowbar, eliminating these environmentally hazardous components while providing enhanced arc protection and faster return to transmit. The mod-anode voltage regulator uses series IGBTs, operating in the linear regime, to provide highly rapid and accurate control of the mod-anode voltage, and therefore the output power from the klystron. Results from the installation and testing of this system at ANL will be presented.

  11. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization

    Johnson, Robert L.; Schmidt-Rohr, Klaus

    2014-02-01

    A simple new method is presented that yields quantitative solid-state magic-angle spinning (MAS) 13C NMR spectra of organic materials with good signal-to-noise ratios. It achieves long (>10 ms) cross polarization (CP) from 1H without significant magnetization losses due to relaxation and with a moderate duty cycle of the radio-frequency irradiation, by multiple 1-ms CP periods alternating with 1H spin-lattice relaxation periods that repolarize the protons. The new method incorporates previous techniques that yield less distorted CP/MAS spectra, such as a linear variation (“ramp”) of the radio-frequency field strength, and it overcomes their main limitation, which is T1ρ relaxation of the spin-locked 1H magnetization. The ramp of the radio-frequency field strength and the asymptotic limit of cross polarization makes the spectral intensity quite insensitive to the exact field strengths used. The new multiCP pulse sequence is a “drop-in” replacement for previous CP methods and produces no additional data-processing burden. Compared to the only reliable quantitative 13C NMR method for unlabeled solids previously available, namely direct-polarization NMR, the measuring time is reduced by more than a factor of 50, enabling higher-throughput quantitative NMR studies. The new multiCP technique is validated with 14-kHz MAS on amino-acid derivatives, plant matter, a highly aromatic humic acid, and carbon materials made by low-temperature pyrolysis.

  12. Solid-state lighting-a benevolent technology

    Solid-state light sources are in the process of profoundly changing the way humans generate light for general lighting applications. Solid-state light sources possess two highly desirable features, which set them apart from most other light sources: (i) they have the potential to create light with essentially unit power efficiency and (ii) the properties of light, such as spectral composition and temporal modulation, can be controlled to a degree that is not possible with conventional light sources such as incandescent and fluorescent lamps. The implications are enormous and, as a consequence, many positive developments are to be expected including a reduction in global energy consumption, reduction of global-warming-gas and pollutant emissions and a multitude of new functionalities benefiting numerous applications. This review will assess the impact of solid-state lighting technology on energy consumption, the environment and on emerging application fields that make use of the controllability afforded by solid-state sources. The review will also discuss technical areas that fuel continued progress in solid-state lighting. Specifically, we will review the use of novel phosphor distributions in white light-emitting diodes (LEDs) and show the strong influence of phosphor distribution on efficiency. We will also review the use of reflectors in LEDs with emphasis on 'perfect' reflectors, i.e. reflectors with highly reflective omni-directional characteristics. Finally, we will discuss a new class of thin-film materials with an unprecedented low refractive index. Such low-n materials may strongly contribute to the continuous progress in solid-state lighting

  13. Probing transfer to unbound states of the ejectile with weakly bound 7Li on 93Nb

    Pandit, S K; Mahata, K; Keeley, N; Parkar, V V; Rout, P C; Martel, I; Palshetkar, C S; Kumar, A; Ramachandran, K; Patale, P; Chatterjee, A; Kailas, S

    2016-01-01

    The two-step process of transfer followed by breakup is explored by measuring a rather complete set of exclusive data for reaction channels populating states in the ejectile continua of the $^7$Li+$^{93}$Nb system at energies close to the Coulomb barrier. The cross sections for $\\alpha+\\alpha$ events from one proton pickup were found to be smaller than those for $\\alpha+d$ events from one neutron stripping and $\\alpha+t$ events from direct breakup of $^7$Li. Coupled channels Born approximation and continuum discretized coupled channels calculations describe the data well and support the conclusion that the $\\alpha+d$ and $\\alpha+\\alpha$ events are produced by direct transfer to unbound states of the ejectile.

  14. A 7Li and 27Al NMR study of interaction of lithium hydride with aluminium

    Lithium hydride interaction with metal aluminium is studied using 7Li and 27Al NMR method within 100-700 deg C temperature interval. It is detected, that at temperatures exceeding 420 deg C a number of α', α'', β, γ, δ and δ' phases based on intermetallic LiAl9, LiAl3, LiAl, Li3Al2 and Li9Al4 compounds (IC) are produced in LiH-Al system, their concentrations and rates of production being dependent on the molar ratio of initial components r =[LiH]:[Al]. Production of a stable αphase of [Al] and two methastable α' and α''-phases based on LiAl3 and LiAl9, which are decayed at 530 deg C, is detected under minor molar lithium content. Values of 7Li and 27Al NMR shifts in IC are determined. (author)

  15. Revisiting the 7Li(p,n)7Be reaction near threshold

    In this work we review all the available experimental neutron data for the 7Li(p,n) reaction near threshold which is necessary to obtain an accurate source model for Monte Carlo simulations in Boron Neutron Capture Therapy. Scattered published experimental results such as cross sections, differential neutron yields and total yields were collected and analyzed, exploring the sensitivity of the fitting parameters to the different possible variables and deriving a consistent working set of parameters to evaluate the neutron source near threshold. - Highlights: • We review neutron experimental data for the 7Li(p,n) reaction near threshold. • A new computational method was used to study all the available published data. • A consistent description of the neutron source was derived fitting the available data. • We found that the neutron yield at 0° studied by Kononov is the most sensitive curve. • A consistent set of parameters to parametrize the Breit–Wigner formula is presented

  16. Role of the cluster structure of 7Li in the dynamics of fragment capture

    Exclusive measurements of prompt γ-rays from the heavy-residues with various light charged particles in the 7Li + 198Pt system, at an energy near the Coulomb barrier (E/Vb∼1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, α- and t-capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two-step process, breakup followed by fusion, in case of the capture of t and α clusters; whereas for 6He+p and 5He+d configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of 7Li in understanding the reaction dynamics at energies around the Coulomb barrier.

  17. High power RF solid state power amplifier system

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  18. Solid-State Modulators for RF and Fast Kickers

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  19. Concept of a solid-state drift chamber

    The operation of a solid state drift chamber is described, and its use in a high rate, high multiplicity environment is discussed. The Solid State Drift Chamber (SSDCH) is a thin wafer of a high purity n-type silicon (few cm2 x a few hundreds μm thick) with a single small-area, small-capacitance anode readout. The drift voltage is supplied to an array of drift electrodes on both sides of the wafer to produce a uniform drift field parallel to the surface of the wafer and to ensure the complete depletion of the wafer

  20. Diode-pumped solid state laser for inertial fusion energy

    We evaluate the prospect for development of a diode-pumped solid-state-laser in an inertial fusion energy power plant. Using a computer code, we predict that our 1 GWe design will offer electricity at 8.6 cents/kW.hr with the laser operating at 8.6 % efficiency and the recycled power level at 32%. The results of our initial sub-scale experimental test-bed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness. (Authors). 11 refs., 14 figs

  1. Lessons in solid-state kinetics from nuclear energy research

    The field of research on solid-state kinetics grew enormously, along with the rest of materials research, in the decades following World War II. The author discusses how research on kinetics in the U.S., the United Kingdom, France and the U.S.S.R. is linked to the reactor development program. This is due to material problems in reactors caused by solid-state reactions or diffusion, the availability of reactor-produced radiotracers, and the early realization of the close connections among radiation behavior, point defects and diffusion

  2. Tritium contaminated surface monitoring with a solid-state device

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counter and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (author)

  3. What would Edison do with solid state lighting?

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  4. Solid State Welding Development at Marshall Space Flight Center

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  5. Excitation of continuum states in sup 7 Li and their decay by quantum tunneling

    Utsunomiya, H; Yamagata, T; Ohta, M; Aoki, Y; Hirota, K; Ieki, K; Iwata, Y; Katori, K; Hamada, S; Lui, Y W; Schmitt, R P; Typel, S; Baur, G

    1999-01-01

    Strong forward-backward asymmetries were found in the recent alpha-t coincidence measurement of Coulomb breakup of 42 MeV- sup 7 Li via continuum states. The competition between E1 and E2 multipolarities and higher order effects in Coulomb excitation were investigated by solving the time-dependent Schroedinger equation. It is shown that higher order effects are an essential ingredient to the observed large asymmetries. The relevant reaction mechanism is discussed.

  6. Exploring Light Neutron Rich Nuclei via the (7Li,7Be) Reaction

    A systematic study of the nuclei that can be described as an integer number of α particles plus three neutrons via the (7Li,7Be) reaction at about 8 MeV/u has shown the presence of Bound States Embedded in the Continuum in the energy spectra. These are experimental signatures of the dynamical correlations of an easily polarizable core with a single-particle state of the valence neutron.

  7. New measurement of the 10B(n,α)7 Li through the Trojan Horse Method

    Spartá, Roberta

    2016-04-01

    B(n,α) Li reaction cross section has been measured using the Trojan Horse method, with the specific aim to separate the α1 contribution (coming from the first Li excited level) by the αo (related to the Li ground state), using a very thin target. Preliminary results are shown of the three-body B(d,α7 Li)H cross section.

  8. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Heusch M.; Ghetta V.; Chabod S.; Brissot R.; Billebaud A.; Méplan O.; Kessedjian G.; Liatard E.

    2010-01-01

    A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2). This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo cal...

  9. An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens

    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by big bang nucleosynthesis (BBN) theory and the Wilkinson Microwave Anisotropy Probe (WMAP) baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2–3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data; in particular, the uncertainty on the reaction rate for3He(α,γ)7Be has reduced to 7.4%, nearly a factor of 2 tighter than previous determinations. (2) The WMAP five-year data set now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects. With these, we now find that the BBN+WMAP predicts7Li/H = (5.24−0.67+0.71) × 10−10. The central value represents an increase by 23%, most of which is due to the upward shift in the3He(α,γ)7Be rate. More significant is the reduction in the7Li/H uncertainty by almost a factor of 2, tracking the reduction in the3He(α,γ)7Be error bar. These changes exacerbate the Li problem; the discrepancy is now a factor 2.4 or 4.2σ (from globular cluster stars) to 4.3 or 5.3σ (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key experimental and astronomical measurements highlighted

  10. The 3H(α,γ)7Li reaction at low energies

    The 3H(α,γ) reaction, and its mirror 3He(α,γ) are responsible for 7Li production in the big bang. Discrepancies between experimental data sets, as well as differences between the experimental and theoretical energy dependences, cause the 3H(α,γ)7Li cross section to be uncertain by as much as a factor of two at the relevant astrophysical energies (Ec.m. ∼ 100 keV). The authors report new measurements for 50 c.m. 3H targets and an 85% high-purity germanium detector. Angular distributions were measured at nine energies between 115 and 1200 kev. The astrophysical S-factor is observed to increase moderately with decreasing energy to S(0) ∼ 0.10 keV-b. The branching ratio for captures to the first excited state and ground state of 7Li is found to be ∼0.44, independent of energy. The results are compared to previous experiments and theoretical calculations

  11. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  12. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.

    Stanke, Monika; Kedziera, Dariusz; Bubin, Sergiy; Adamowicz, Ludwik

    2007-10-01

    Explicitly correlated Gaussian functions have been used to perform very accurate variational calculations for the ground states of (7)Li and (7)Li(-). The nuclear motion has been explicitly included in the calculations (i.e., they have been done without assuming the Born-Oppenheimer (BO) approximation). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. This led to a noticeable improvement of the previously determined variational upper bound to the nonrelativistic energy of Li(-). The Li energy obtained in the calculations matches those of the most accurate results obtained with Hylleraas functions. The finite-mass (non-BO) wave functions were used to calculate the alpha(2) relativistic corrections (alpha=1c). With those corrections and the alpha(3) and alpha(4) corrections taken from Pachucki and Komasa [J. Chem. Phys. 125, 204304 (2006)], the electron affinity (EA) of (7)Li was determined. It agrees very well with the most recent experimental EA. PMID:17919011

  13. Systematic model-dependent behaviour of fusion involving weakly bound projectiles 6,7Li

    Many measurements on complete fusion (CF) cross section at above barrier energies involving weakly bound stable projectiles (e.g., 6Li, 7Li and 9Be) show suppression by various degrees compared to theoretical estimates as well as experimental CF cross sections of reactions involving strongly bound projectiles. However, there is no concrete picture at sub-barrier energies. The conclusions based on coupled-channels (CC) calculations using different codes (e.g., FRESCO or CCFULL) may differ as the theoretical models used to calculate fusion are not same. In a recent paper on complete fusion in 7Li+152Sm system, the fusion cross sections calculated by CCFULL and FRESCO have been shown to be different despite using same bare potential. It was observed that with the inclusion of only inelastic couplings, the results of FRESCO were much closer to the experimental data in the above barrier region, while the CCFULL results overpredict the data over the entire range. To explore the above observation in different systems involving 6,7Li as projectile, in the present work, a systematic and detailed study has been carried out by means of CC calculations using both FRESCO and CCFULL. The aim is to analyze the differences between the two models of calculations

  14. Solid State C-13 and H-2 NMR Investigations of Paramagnetic Ni(II)(acac)(2)L-2 Complexes

    Lennartson, A.; Christensen, Lene Ulrikke; McKenzie, C. J.;

    2014-01-01

    = hexafluoroacetylonato, have been characterized by solid state C-13 MAS NMR spectroscopy. H-2 MAS NMR was used to probe the local hydrogen bonding network in [Ni(acac)(2)(D2O)(2)]D2O and cis-[Ni(F-6-acac)(2)(D2O)(2)]. The complexes serve to benchmark the paramagnetic shift, which can be associated with the resonances of......[Ni(acac)(2)(PMe2Ph)(2)], trans-[Ni(acac)(2)(PMePh2)(2)], and the noncrystallographically characterized trans-[Ni(acac)(2)(dppe)], were assigned using these correlations. The complexes with L = H2O, D2O, NH3, and MeOH can be prepared by a series of solid state desorption and sorption reactions. Crystal...... atoms of the coordinated ligands. The methine (CH) and methyl (CH3) have characteristic combinations of the isotropic shift (delta) and anisotropy parameters (d, eta). The size of the anisotropy (d), which is the sum of the chemical shift anisotropy (CSA) and the paramagnetic electron-nuclei dipolar...

  15. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes

  16. Probing the fusion of 7Li with 64Ni at near-barrier energies

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Nanal, V.; Pal, S.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-04-01

    Background: The stable isotopes of Li, 6Li6 and 7Li, have two-body cluster structures of α +d and α +t with α -separation energies or breakup thresholds at 1.47 and 2.47 MeV, respectively. The weak binding of these projectiles introduces several new reaction channels not usually observed in the case of strongly bound projectiles. The impact of these breakup or breakup-like reaction channels on fusion, the dominant reaction process at near-barrier energies, with different target masses is of current interest. Purpose: Our purpose is to explore the fusion, at above and below the Coulmb barrier, of 7Li with 64Ni target in order to understand the effect of breakup or breakup-like processes with medium-mass target in comparison with 6Li, which has a lower breakup threshold. Measurement: The total fusion (TF) excitation of the weakly bound projectile 7Li with the medium-mass target 64Ni has been measured at the near-barrier energies (0.8 to 2 VB). The measurement was performed using the online characteristic γ -ray detection method. The complete fusion (CF) excitation function for the system was obtained using the x n -evaporation channels with the help of statistical model predictions. Results: At the above barrier energies CF cross sections exhibit an average suppression of about 6.5% compared to the one-dimensional barrier penetration model (1DBPM) predictions, while the model describes the measured TF cross section well. But below the barrier, both TF and CF show enhancements compared to 1DBPM predictions. Unlike 6Li, enhancement of CF for 7Li could not be explained by inelastic coupling alone. Conclusion: Whereas the σTF cross sections are almost the same for both the systems in the above barrier region, the suppression of σCF at above the barrier is less for the 7Li+64Ni system than for the 6+64Ni system. Also direct cluster transfer has been identified as the probable source for producing large enhancement in TF cross sections.

  17. Solid state phase detector replaces bulky transformer circuit

    Moberly, C. L.

    1967-01-01

    Miniature solid state phase detector using MOSFETs is used in a phase lock loop with a sun-bit detector in an integrated data-link circuit. This replaces bulky transformer circuits. It uses an inverter amplifier, a modulator switch, and a buffer amplifier.

  18. Solid state NMR and DFT study of polymer electrolytes

    Spěváček, Jiří; Brus, Jiří; Dybal, Jiří; Kang, Y. S.

    Linz : Institut für Organische Chemie, Johannes Kepler Universität, 2004 - (Müller, N.). s. 28 [Central European NMR Symposium /6./. 27.09.2004, Linz] R&D Projects: GA AV ČR IAA4050209 Keywords : solid polymer electrolytes * solid state NMR * quantum-chemical DFT calculation Subject RIV: CD - Macromolecular Chemistry

  19. TL and TSC Solid State Detectors in Proton Therapy

    Cirrone, G.A.P.; Sabini, M.G.; Bruzzi, M.; Bucciolini, M.; Cuttone, G.; Guasti, A.; Lo Nigro, S.; Mazzocchi, S.; Pirollo, S.; Raffaele, L.; Sciortino, S.

    2000-12-31

    The necessity to develop methods and techniques for a better determination of absorbed dose in the radiotherapy field stimulates new clinical applications of solid state detectors. In this work we have studied the possibility to use of TLD-100 and synthetic CVD diamond detectors as dosimeters for high-energy proton beams.

  20. Solid-state interactions between trimethoprim and parabens

    Pedersen, S.; Kristensen, H. G.; Cornett, Claus

    1994-01-01

    Solid-state interactions between trimethoprim and the esters of 4-hydroxybenzoic acid (parahydroxybenzoates or parabens) used for anti-microbial preservation are investigated. The formation of a crystalline 1/1 molecular compound between trimethoprim and methyl parahydroxybenzoate is demonstrated...

  1. Lithium-ion transport in inorganic solid state electrolyte

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  2. Two-particle model of anaerobic solid state fermentation

    Kalyuzhnyi, S.; Veeken, A.; Hamelers, H.V.M.

    2000-01-01

    A structured mathematical model of anaerobic solid state fermentation (ASSF) has been developed. Since a stable ASSF requires addition of significant quantities of methanogenic seed sludge and mass-transfer limitation becomes important, the model postulates the existence of two different types of pa

  3. TL and TSC solid state detectors in proton therapy

    The necessity to develop methods and techniques for a better determination of absorbed dose in the radiotherapy field stimulates new clinical applications of solid state detectors. In this work we have studied the possibility to use of TLD-100 and synthetic CVD diamond detectors as dosimeters for high-energy proton beams

  4. TL and TSC Solid State Detectors in Proton Therapy

    The necessity to develop methods and techniques for a better determination of absorbed dose in the radiotherapy field stimulates new clinical applications of solid state detectors. In this work we have studied the possibility to use of TLD-100 and synthetic CVD diamond detectors as dosimeters for high-energy proton beams

  5. Chinese vinegar and its solid-state fermentation process

    Liu Dengru,; Yang Zhu, Yang; Beeftink, H.H.; Ooijkaas, L.P.; Rinzema, A.; Jian Chen,; Tramper, J.

    2004-01-01

    China uses solid-state fermentation (SSF) processes on a large scale for products such as vinegar, Chinese distilled spirit, soy sauce, Furu, and other national foods that are consumed around the world. In this article, the typical SSF process is discussed, with a focus on Chinese vinegars, especial

  6. Solid-State and Solution Characterization of Myricetin.

    Franklin, Stephen J; Myrdal, Paul B

    2015-12-01

    Myricetin (MYR) is a natural compound that has been investigated as a chemopreventative agent. MYR has been shown to suppresses ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) protein expression and reduce the incidence of UVB-induced skin tumors in mice. Despite MYR's promise as a therapeutic agent, minimal information is available to guide the progression of formulations designed for future drug development. Here, data is presented describing the solid-state and solution characterization of MYR. Investigation into the solid-state properties of MYR identified four different crystal forms, two hydrates (MYR I and MYR II) and two metastable forms (MYR IA and MYR IIA). From solubility studies, it was evident that all forms are very insoluble (antioxidants to the solution. MYR was found to have good stability following exposure to ultraviolet radiation (UVR), which is a consideration for topical applications. Finally, a partitioning study indicated that MYR possess a log P of 2.94 which, along with its solid-state properties, contributes to its poor aqueous solubility. Both the solid-state properties and solution stability of MYR are important to consider when developing future formulations. PMID:25986594

  7. Development of diode-pumped medical solid-state lasers

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  8. Friction Regimes in the Lubricants Solid-State Regime

    Schipper, D.J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughn

  9. Solid state physics advances in research and applications

    Ehrenreich, Henry

    1994-01-01

    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  10. Ultrafast laser spectroscopy in complex solid state materials

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  11. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  12. International survey on solid state nuclear track detection

    The results of the 1990 international survey on solid state nuclear track detection are presented. The survey was performed in collaboration with the International Nuclear Track Society (INTS). These results include the data on principal investigator(s), collaborator(s), institution, field of application(s), material(s), and method(s) of track observation from 28 countries. (author)

  13. Development of diode-pumped medical solid-state lasers

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  14. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  15. Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration

    Abdelaziz, Omar [ORNL

    2016-01-01

    Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heat transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.

  16. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10−8 S cm−1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10−8 S cm−1 at 26 °C (299 K). (paper)

  17. Use of {sup 7}Li(p,n) reaction as a neutron source in a PGNAA setup

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Box No. 1815, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Box No. 1815, Dhahran 31261 (Saudi Arabia)

    2005-03-01

    The performance of a {sup 7}Li(p,n) reaction-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup has been determined for analysis of Portland cement samples using Monte Carlo study. The calculations were carried out for a {sup 7}Li(p,n) reaction-based PGNAA setup with an external moderator similar to the one used in a previous 2.8 MeV neutrons-based PGNAA setup. The optimum values of geometry parameters of the {sup 7}Li(p,n) reaction-based setup are different from those of the 2.8 MeV neutrons-based setup resulting in better performance of the {sup 7}Li(p,n) reaction-based setup. The prompt {gamma}-ray yield from the {sup 7}Li(p,n) reaction-based setup is 60-70% higher than that from the 2.8 MeV neutrons-based setup. Although the performances of the {sup 7}Li(p,n) reaction-based setup is comparable with that of a previously studied {sup 3}H(p,n) reaction-based setup, yet performance of the {sup 7}Li(p,n) reaction-based setup is superior to that of the {sup 3}H(p,n) reaction-based setup because it has less radiation hazard due to utilization of non-radioactive neutron producing target. This study has provided a theoretical base for experimental test of a {sup 7}Li(p,n) reaction-based PGNAA setup.

  18. Sequence variations of in vitro pUC18 plasmid DNA induced by high energy 7Li ion beams implantation

    High energy heavy ion beams is a new mutagen for crop mutation breeding, but limited data are available on the molecular level induced by this mutagen. The in vitro pUC18 plasmid DNA was implanted by 7Li ion beams by doses of 0, 20, 40, 60, 80 and 100Gy, respectively, with the energy of 42.3Mev. The results showed that the damage effects induced by 7Li ion beams implantation was different from low LET rays, even low doses of 7Li ion beam could induce high damage on hydrogen bonds. Percentage of damages on hydrogen bonds of in vitro DNA induced by 7Li ion beams implantation increased with dosage increase up to 40Gy, then reduced with dosage increase, and higher than those of gamma rays in the same dosage. The relationship of dosage and damage percentage was different from that of gamma rays which was positive-linear correlation. Mutation frequency of 7Li ion beam implantation was 1.6 to 4.3 times to that of spontaneous mutation. The relationship of mutation frequency and dosage was similar with that of damage effects on hydrogen bonds, and showed a peak at 40Gy. The above results were identical with biological effects of wheat implanted by 7Li ion beams. Ten mutants were used for sequence analysis, which indicated that the types of base changes included base transversion, transition and deletion. Among all base changes detected, the frequency of bases transition (60%) was higher than that of bases transversion (30%) and bases deletion (10%). It seemed that thymine was more sensitive to the implantation than any other bases and base changes were mainly T→C and C→T. Bases between T and C were seemed to be easily induced by 7Li ion beams. The high percentage of DNA sequence variations could explain primarily the biological effects caused by 7Li ion beams in the M1 generation of crops. (author)

  19. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz. PMID:27472380

  20. Implanted $^{7}$Be Targets For The Study of Neutron Interactions With $^{7}$Be : (The "Primordial $^{7}$Li Problem")

    The disagreement of the predicted abundance of primordial $^{7}$Li with the observed abundance is a longstanding problem in Big Bang Nucleosynthesis (BBN) theory (“Primordial $^{7}$Li problem”). While BBN theory correctly predicts the relative abundances of $^{2}$H/$^{1}$H, $^{3}$He/$^{1}$H and $^{4}$He/$^{1}$H (that vary over four orders of magnitudes), but it over-predicts the relative abundance of primordial $^{7}$Li/$^{1}$H by a factor of approximately 3-4 larger than observed (approximately 4-5$\\sigma$ discrepancy). Primordial $^{7}$Li is destroyed during the first 15 minutes primarily via the $^{7}$Li(p,$\\alpha$) reaction. Hence most of the primordial $^7$Li is predicted as the result of the (later when atoms are formed) electron capture $\\beta$-decay of the primordial $^{7}$Be that is produced primarily in the $^{3}$He($\\alpha$,$\\gamma$) )$^{7}$Be reaction. We propose to investigate the direct destruction of $^{7}$Be during (the first 15 minutes of) BBN via the $^{7}$Be(n,$\\alpha$) reaction to ch...

  1. Solid state laser media driven by remote nuclear powered fluorescence

    This patent describes an apparatus for driving solid state laser media by a remote nuclear-powered source. It comprises a nuclear reaction chamber producing diffuse fluorescence in the visible to infrared range, the reaction chamber including an aperture containing a lens capable of collecting the diffuse fluorescence from the reaction chamber, and further wherein the reaction chamber has an interior surface coated with material which is reflective and transmissive to visible to near infrared light such that the diffuse fluorescence collected in the reaction chamber by the lens is in the absorption bands of the remote solid state laser; channeling means for channeling the fluorescence from the reaction chamber to the remote laser; the channeling means including a waveguide adjacent to the lens for channeling the collected fluorescence from the lens to the remotely located laser and, coupling means for coupling the fluorescence to the laser such that the fluorescence is absorbed into the laser and pumps the laser

  2. Cooling of solid-state amplifiers with supercritical hydrogen

    This study addresses the thermal management of microwave solid-state amplifiers which are potential candidates for power systems at 425 and 850 MHz. Researchers at Los Alamos National Laboratory have investigated the cooling of extremely high density packaging of RF amplifier modules with a heat removal requirement of about 200 W/cm2. The technique uses water as a coolant which flows into the microchannels directly imbedded in the chips. The microchannel concept was first proposed by Tuckerman and Pease in 1981 and is capable of removing up to 1 kW/cm2 from silicon integrated circuits using water as the coolant. Previous studies, have demonstrated that on-board supercritical hydrogen can be used to cool solid-state amplifiers. Even though the heat transfer coefficient is lower for hydrogen compared to water, this deficiency is recouped by having a colder heat sink which is hydrogen at cryogenic temperatures

  3. Solid-State Nanopore-Based DNA Sequencing Technology

    Zewen Liu

    2016-01-01

    Full Text Available The solid-state nanopore-based DNA sequencing technology is becoming more and more attractive for its brand new future in gene detection field. The challenges that need to be addressed are diverse: the effective methods to detect base-specific signatures, the control of the nanopore’s size and surface properties, and the modulation of translocation velocity and behavior of the DNA molecules. Among these challenges, the realization of the high-quality nanopores with the help of modern micro/nanofabrication technologies is a crucial one. In this paper, typical technologies applied in the field of solid-state nanopore-based DNA sequencing have been reviewed.

  4. Optical Bistability And Hysteresis In A Solid State Ring Laser

    Kornienko, L. S.; Kravtsov, N. S.; Shelaev, A. N.

    1985-01-01

    The phenomena of optical bistability, hysteresis and memory under the interaction of oppositely directed (OD) light waves in a CW YAG:Nd3+ solid state ring laser (SRL) have been experimentally discovered. The possibilities of spontaneous or forced (with modulated SRL parameters) commutation of the radiation direction without transients at the relaxation frequency (typical for solid state lasers) have been established both in the single-mode and in the mode-locking regimes with various feedback circuits. The mode-locking band was found to be substantially broadened by more than an order of magnitude when OD light waves primarily diffracted on a standing ultrasonic wave were returned into the acousto-optical modulator. With such acousto-optical feedback the mode-locking regime has been obtained using a modulator on a running ultrasonic wave.

  5. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    Yang, Chiming; Plackett, David; Needham, David;

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the mean...... diameter, encapsulation efficiency and FA released from the microspheres were determined. The solid-state and phase separation properties of the microspheres were characterized using DSC, XRPD, Raman spectroscopy, SEM, laser confocal and real time recording of single microspheres formation. Above a loading...... of 1% (w/w) FA phase separated from PLGA polymer and formed distinct spherical FA-rich amorphous microdomains throughout the PLGA microsphere. For FA-loaded PLGA microspheres, encapsulation efficiency and cumulative release increased with initial drug loading. Similarly, cumulative release from FA-loaded...

  6. A New All Solid State Approach to Gaseous Pollutant Detection

    Brown, V.; Tamstorf, K.

    1971-01-01

    Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.

  7. Solid-State Ultracapacitor for Improved Energy Storage

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  8. Performance of a 229Thorium solid-state nuclear clock

    The 7.8 eV nuclear isomer transition in 229thorium has been suggested as a clock transition in a new type of optical frequency standard. Here we discuss the construction of a ‘solid-state nuclear clock’ from thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of calcium fluoride. At liquid nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the thorium nuclei to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose clock stabilization based on a fluorescence spectroscopy method and present optimized operation parameters. Taking advantage of the large number of quantum oscillators under continuous interrogation, a fractional instability level of 10−19 might be reached within the solid-state approach. (paper)

  9. Enhanced amylase production by fusarium solani in solid state fermentation

    The present study illustrates the investigation carried out on the production of amylase by Fusarium species under solid state fermentation. All the tested Fusarium species were capable of producing amylase. A selected F. solani isolate SY7, showed the highest amylase production in solid state fermentation. Different substrates were screened for enzyme production. Among the several agronomic wastes, wheat bran supported the highest yield of amylase (141.18 U/g of dry substrate) after 3 days of incubation. Optimisation of the physical parameters revealed the optimum pH, temperature and moisture level for amylase production by the isolate as 8.0, 25 C and 70%, respectively. The above results indicate that the production of amylase by F. solani isolate SY7 could be improved by a further optimisation of the medium and culture conditions. (author)

  10. Introduction to solid state physics and crystalline nanostructures

    Iadonisi, Giuseppe; Chiofalo, Maria Luisa

    2014-01-01

    This textbook provides conceptual, procedural, and factual knowledge on solid state and nanostructure physics. It is designed to acquaint readers with key concepts and their connections, to stimulate intuition and curiosity, and to enable the acquisition of competences in general strategies and specific procedures for problem solving and their use in specific applications. To these ends, a multidisciplinary approach is adopted, integrating physics, chemistry, and engineering and reflecting how these disciplines are converging towards common tools and languages in the field. Each chapter discusses essential ideas before the introduction of formalisms and the stepwise addition of complications. Questions on everyday manifestations of the concepts are included, with reasoned linking of ideas from different chapters and sections and further detail in the appendices. The final section of each chapter describes experimental methods and strategies that can be used to probe the phenomena under discussion. Solid state...

  11. 2006 Fundamental Research Underlying Solid-State Lighting: Contractors Meeting

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kini, Arvind [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kelley, Dick [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-02-01

    This volume highlights the scientific content of the 2006 Fundamental Research Underlying Solid-State Lighting Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) in the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). This meeting is the second in a series of research theme-based Contractors Meetings and will focus on BES/DMS&E-funded research that underpins solid-state lighting technology. The meeting will feature research that cuts across several DMS&E core research program areas. The major programmatic emphasis is on developing a fundamental scientific base, in terms of new concepts and new materials that could be used or mimicked in designing novel materials, processes or devices.

  12. Proceedings of the solid state physics symposium. Vol. 34C

    This volume contains the proceedings of the Solid State Physics Symposium held at Varanasi during December 21 to 24, 1991. The topics discussed in the symposium were : (a) Phonon physics, (b) Electron states and electronic properties, (c) Magnetism and magnetic properties, (d) Semiconductor physics, (e) Physics of defects and disordered materials, (f) Transport properties, (g) Superconductivity and superfluidity, (h) Liquid crystals and plastic crystals, (i) Phase transitions and critical phenomena, (j) Surface and interface physics, (k) Non-linear dynamics, instabilities and chaos, (l) Resonance studies and relaxation phenomena, (m) Solid state devices, techniques and instrumentation. Three seminars on topics : (i) High Tc superconductors, (ii) Soft matter, and (iii) Physics and technology of interfaces were also held during the symposium. (M.K.V.N.)

  13. Solid state dosimeters used in medical physics 'A review'

    Many solid-state detectors have been successfully used to perform the quality control and in vivo dosimetry in medical physics, both in diagnostic radiology and radiotherapy, as they have high sensitivity in a small volume; most of them do not require electrical connection and have dosimetric characteristics of interest such as: good accuracy and reproducibility, as well as a response independent of the energy of radiation, some of them. For this reason, the selection of an appropriate detector for use in medical physics must take into account the energy mass absorption coefficient relative to water for photon sources and the mass stopping power relative to water for beta emitters and electron beams in the energy range of interest in medical physics, as well as the effective atomic number of materials that constitute them. This paper presents a review of the dosimetric characteristics of the solid state dosimeters most suitable for use in medical physics.

  14. Theory of solid-state decomposition reactions: A historical essay

    The history of the formation and development of the theory of solid-state decomposition reactions, based on the mechanism of congruent dissociative vaporization of a solid with simultaneous condensation of the supersaturated vapor of the low-volatility product, is described here in the form of recollections. The review covers a 30-year period (1981-2010), beginning with basic experimental studies in the decomposition process by electrothermal atomic absorption spectrometry (ETAAS) and quadrupole mass spectrometry (QMS) and ending with measurements of the decomposition kinetics by thermogravimetric analysis. Some remarks and recommendations based on the author's participation in two long-term projects, the development of the ETAAS method and that of the theory of solid-state reactions, are formulated in the conclusion.

  15. Peakr: simulating solid-state NMR spectra of proteins

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  16. Conductors, semiconductors, superconductors an introduction to solid state physics

    Huebener, Rudolf P

    2016-01-01

    This undergraduate textbook provides an introduction to the fundamentals of solid state physics, including a description of the key people in the field and the historic context. The book concentrates on the electric and magnetic properties of materials. It is written for students up to the bachelor level in the fields of physics, materials science, and electric engineering. Because of its vivid explanations and its didactic approach, it can also serve as a motivating pre-stage and supporting companion in the study of the established and more detailed textbooks of solid state physics. The textbook is suitable for a quick repetition prior to examinations. This second edition is extended considerably by detailed mathematical treatments in many chapters, as well as extensive coverage of magnetic impurities.

  17. Angular Distribution of the 12C(6He, 7Li)11B Reaction

    LI Er-Tao; LI Zhi-Hong; LI Yun-Ju; YAN Sheng-Quan; BAI Xi-Xiang; GUO Bing; SU Jun; WANG You-Bao; WANG Bao-Xiang; LIAN Gang; ZENG Sheng; FANG Xiao; ZHAO Wei-Juan; LIU Wei-Ping

    2009-01-01

    Angular distribution of the 12C(6He, 7Li)11B transfer reaction is measured with a secondary 6He beam of 36.4 Me V for the first time. The experimental angular distribution is well reproduced by the distorted-wave Born approxima-tion (DWBA) calculation. The success of the present experiment shows that it is feasible to measure one-nucleon transfer reaction on a light nucleus target with the secondary beam facility of the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), Beifing.

  18. Phenomenological and microscopic optical potentials for 88 MeV 7Li scattering

    The elastic scattering cross sections for 88 MeV 7Li ions have been measured for targets of 2426Mg and 4048Ca. Analyses using both phenomenological and microscopic optical potentials provide information on the energy dependence of optical parameters, and the extent to which the potentials are determined for these light ions. The use of a double-folding microscopic model demonstrates the need for normalisation of the real potential by a factor of 0.5 in contrast to measurements at lower energies. The contribution of exchange effects, density dependence and break-up are discussed. (author)

  19. Annual report 1983/1984. Division of Solid State Physics

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, as well as optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  20. Solid-state radiation detectors technology and applications

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  1. The solid state lighting initiative: An industry/DOE collaborativeeffort

    Johnson, Steve

    2000-10-01

    A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected

  2. Radiation protection of hyaluronic acid in the solid state

    The effects of γ irradiation on hyaluronic acid (HA) and its molecular complex with cetyl pyridinium cations have been examined in the solid state. On the basis of the nature of the electron spin resonance (ESR) spectra, radical yields, and physical chemical data, there is good evidence that protectin of hyaluronic acid occurs when irradiated in a complex with cetyl pyridinium cations. The radiation protection conferred on the polyanion by the cetyl pyridinium cations is discussed in terms of energy transfer processes

  3. Solid-state Terahertz Sources for Space Applications

    Maiwald, Frank; Pearson, John C.; Ward, John S.; Schlecht, Erich; Chattopadhyay, Goutam; Gill, John J.; Ferber, R.; Tsang, Raymond; Lin, Robert H.; Peralta, Alejandro; Finamore, B.; Chun, William W.; Baker, John J.; Dengler, Robert J.; Javadi, Hamid H.; Siegel, Peter H.; Mehdi, Imran

    2004-01-01

    This paper discusses the construction of solid-state frequency multiplier chains utilized far teraherz receiver applications such as the Herschel Space Observatory . Emphasis will he placed on the specific requirements to be met and challenges that were encountered. The availability of high power amplifiers at 100 GHz makes it possible to cascade frequency doublers and triplers with sufficient RF power to pump heterodyne receivers at THz frequencies. The environmental and mechanical constraints will be addressed as well as reliability issues.

  4. Gas cooled disk amplifier approach to solid state average power

    Disk amplifiers have been used on almost all solid state laser systems of high energy, and, in principle, one simply has to cool the device to operate it at average power. To achieve the desired waste heat removal, gas is flowed across the disk surface. The authors show the basic gas flow geometry. They computationally and experimentally characterize the flow and its optical implications over regimes which far exceed the envisioned operating requirements of a working amplifier

  5. Oxygen production using solid-state zirconia electrolyte technology

    Suitor, Jerry W.; Clark, Douglas J.

    1991-01-01

    High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.

  6. Performance of Several Solid State Photomultipliers with CLYC Scintillator

    Mesick, Katherine E; Morrell, Jonathan T; Coupland, Daniel D S

    2015-01-01

    $Cs_2LiYCl_6:Ce^{3+}$ (CLYC) is an inorganic scintillator that has recently garnered attention for its ability to detect and discriminate between gammas and thermal neutrons. We investigate several important performance parameters of three different solid state photomultipliers (SSPMs) when reading out CLYC crystals: linearity, energy resolution, and pulse shape and discrimination ability. These performance parameters are assessed at a variety of temperatures between -20$^{\\circ}$C and +50$^{\\circ}$C.

  7. Solid-state NMR studies of nucleic acid components

    Dračínský, Martin; Hodgkinson, P.

    2015-01-01

    Roč. 5, č. 16 (2015), s. 12300-12310. ISSN 2046-2069 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acids * solid-state NMR Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.840, year: 2014 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra14404j

  8. Albert Einstein as the father of solid state physics

    Cardona, Manuel

    2005-01-01

    Einstein is usually revered as the father of special and general relativity. In this article I demonstrate that he is also the father of Solid State Physics, or even his broader version known as Condensed Matter Physics (including liquids). His 1907 article on the specific heat of solids introduces, for the first time, the effect of lattice vibrations on the thermodynamic properties of crystals, in particular the specific heat. His 1905 article on the photoelectric effect and photoluminescenc...

  9. Solid-state NMR studies of polysaccharide systems

    Spěváček, Jiří; Brus, Jiří

    2008-01-01

    Roč. 265, č. 1 (2008), s. 69-76. ISSN 1022-1360. [European Symposium on Polymer Spectroscopy /17./. Seggauberg Leibnitz, 09.9.2007-12.09.2007] R&D Projects: GA ČR GA525/05/0273 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable polymers * chitin/glucan complex * polysaccharides * solid-state NMR Subject RIV: CD - Macromolecular Chemistry

  10. Solid-state NMR studies of polysaccharide systems

    Spěváček, Jiří; Brus, Jiří

    Tarragona : Institute de Ciencia de Materiales de Aragón, 2007. s. 140. [Euromar Magnetic Resonance Conference. 01.06.2007-05.06.2007, Tarragona] R&D Projects: GA ČR GA525/05/0273 Institutional research plan: CEZ:AV0Z40500505 Keywords : polysaccharide * chain/glucan complex * starch /polycaprolactone blend * solid-state NMR Subject RIV: CD - Macromolecular Chemistry

  11. Entanglement in a Valence-Bond-Solid State

    Fan, Heng; Korepin, Vladimir; Roychowdhury, Vwani

    2004-01-01

    We study entanglement in Valence-Bond-Solid state. It describes the ground state of Affleck, Kennedy, Lieb and Tasaki quantum spin chain. The AKLT model has a gap and open boundary conditions. We calculate an entropy of a subsystem (continuous block of spins). It quantifies the entanglement of this block with the rest of the ground state. We prove that the entanglement approaches a constant value exponentially fast as the size of the subsystem increases. Actually we proved that the density ma...

  12. Innovative Materials and Systems for Solid State Hydrogen Storage

    Capurso, Giovanni

    2013-01-01

    The research presented in this doctoral thesis concerns with the development of novel materials and systems for solid state hydrogen storage. The first group of works presented is on alkaline and alkaline-earth borohydrides. The possibility to enhance their properties with the help of nanosupports has been widely explored. An attempt to improve the dehydrogenation kinetics of lithium borohydride has been made dispersing this material on the surface of modified nanotubes and gra...

  13. Abstracts of the 7. workshop solid state chemistry and ceramics

    79 contributions have been presented as titles with abstracts. They deal with preparation, investigation, and properties of ceramic powders, sintered materials, metal oxides, oxide minerals, nitrides, solid electrolytes, glass ceramics, composite materials, and ceramic superconductors of the type Y-Ba-Cu-O. Phase studies of mixed oxide systems and different chemical processes of the solid state are included. 11 of them are in INIS scope and are processed individually

  14. 13C NMR spectra in the liquid and solid states

    Hrabal, R.; Brus, Jiří; Madronová, L.; Novák, František

    New York : Nova Science Publisher, 2011 - (Madronová, L.), s. 35-46 ISBN 978-1-61668-965-0. - ( Chemistry Research and Applications ) Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z60660521 Keywords : solid-state NMR * humic acids * soil Subject RIV: CD - Macromolecular Chemistry https://www.novapublishers.com/catalog/product_info.php?products_id=14700

  15. The solid-state synthesis of tritium labelled heterocyclic bases

    Sidorov, G.V.; Myasoedov, N.F. (AN SSSR, Moscow (Russian Federation). Inst. Molekulyarnoj Genetiki)

    1994-04-01

    The results of a study of the solid-state catalytic hydrogenation and the synthesis of tritium labelled native heterocyclic bases are presented. The effect of different palladium catalysts and reaction conditions on yield and molar radioactivity of final compounds was investigated. For some compounds, data on the intramolecular distribution of tritium were obtained by using the isotope exchange reaction and tritium NMR. Tritium labelled purine and pyrimidine bases (25-180 Ci/mmol.) were synthesized. (Author).

  16. Preparation of Solid State Detectors by High-Temperature Diffusion

    With a view to the preparation of solid state detectors that could be used for the dosimetry of electrons of a wide energy region, the diffusion of phosphorus in single crystals of p-type silicon was studied for various diffusion times, thus modifying the curve representing the concentration of impurities in the detector. From these curves operational characteristics can be inferred that may be valuable in the above-mentioned manufacturing process. (author)

  17. Detection of DNA hybridizations using solid-state nanopores

    Balagurusamy, Venkat S K; Weinger, Paul; Ling, Xinsheng Sean

    2010-01-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detectio...

  18. Colour-rendition properties of solid-state lamps

    Žukauskas, A.; Vaicekauskas, R; Shur, M. S.

    2010-01-01

    Abstract The applicability of colour quality metrics to solid-state light sources is validated and the results of the assessment of colour rendition characteristics of various lamps are presented. The standard colour rendering index metric (CRI) or a refined colour quality scale metric (CQS) fail to distinguish between two principle colour rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially...

  19. Solid state capacitor discharge pulsed power supply for railguns

    Black, Jesse H.

    2007-01-01

    This thesis presents a solid state thyristor switched power supply capable of providing 50 kJ from a high voltage capacitor to a railgun. The efficiency with which energy is transferred from a power supply to a projectile depends strongly on power supply characteristics. This design will provide a better impedance match to the railgun than power supplies utilizing spark gap switches. This supply will cost less and take up less volume than a similar supply using spark gap switches; it wil...

  20. All solid state pulsed power system for water discharge

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  1. Solid-State NMR Characterization of Gas Vesicle Structure

    Sivertsen, Astrid C.; Bayro, Marvin J.; Belenky, Marina; Griffin, Robert G.; Herzfeld, Judith

    2010-01-01

    Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-α-β-β-α-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a pi...

  2. Structures and fabrication techniques for solid state electrochemical devices

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  3. Solid-state oxidation of aniline hydrochloride with various oxidants

    Šeděnková, Ivana; Konyushenko, Elena; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.

    2011-01-01

    Roč. 161, 13/14 (2011), s. 1353-1360. ISSN 0379-6779 R&D Projects: GA AV ČR IAA100500902; GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * solid-state polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.829, year: 2011

  4. Molecular Structure of Humin and Melanoidin via Solid State NMR

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-01-01

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simpl...

  5. Correlated quantum measurement of a solid-state qubit

    Korotkov, Alexander N.

    2000-01-01

    We propose a solid-state experiment to study the process of continuous quantum measurement of a qubit state. The experiment would verify that an individual qubit stays coherent during the process of measurement (in contrast to the gradual decoherence of the ensemble-averaged density matrix) thus confirming the possibility of the qubit purification by continuous measurement. The experiment can be realized using quantum dots, single-electron transistors, or SQUIDs.

  6. Solid-state characterization of the HIV protease inhibitor

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  7. New methodological approaches in solid-state NMR

    Full text: Spectacular advances in solid-state NMR methodology, instrumentation and sample preparation have made possible studies of structure and dynamics on increasingly complex molecular systems, such as proteins that cannot be investigated by X-ray, or solution-state NMR (amyloid fibrils, membrane proteins embedded in native environments, protein aggregates), other large biomolecular systems (DNA, RNA, carbohydrates), functionalized polymeric materials, selfassembled and inclusion molecular complexes, molecular nano-devices, etc. Many of these applications rely on the development of solid-state NMR techniques tailored to specifically address characteristic structural and dynamical features of larger and larger molecules, where often the dynamics of abundant spins, for instance, 1H, or 13C(15N) in uniformly labeled samples, represents a major challenge. To account for a broad range of multi-spin processes in such systems that may influence the efficiency of the proposed experimental scheme, or the reliability of the extracted parameters from the measured data, adequate theoretical tools are also highly desirable. In this context, here, we present some of our recent developments that address exactly these issues, namely: (i) elaboration of viable approaches for symbolic algebra computation of dynamics in extended spin networks, within a framework called SD-CAS (Spin Dynamics by Computer Algebra System), and (ii) development of new solid-state NMR methods for structural investigation of complex molecular systems. (author)

  8. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  9. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  10. GFT projection NMR spectroscopy for proteins in the solid state

    Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated 'sampling problem' and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins.

  11. Solid State Fermentation of Mexican Oregano (Lippia Berlandieri Schauer Waste

    Paola Melendez-Renteria

    2012-01-01

    Full Text Available Problem statement: Mexican oregano is recognized for their aromatic characteristics and flavor quality. Principal products obtained from the plant and marketing are the leaves and essential oil; however the extraction of the essential oil generates large amounts of agro industrial wastes; that can be used as support-substrates in Solid-State Fermentations (SSF. Approach: In this study a fungal bioprocess, as solid state fermentation using Mexican oregano wastes as support, for the use of these residues to obtain adds value products and/or molecules were developed. The fungal strain was selects by its adaptability to the support. The aqueous and non polar extracts were obtained kinetically until 120 h and then it was partially characterized (hydrolysable tannins, total sugar and proteins contents, antioxidant activity, tymol and carvacrol concentration. Results: Solid state fermentation of oregano wastes, with Aspergillus niger PSH, allowed the accumulation of a phenolic compound with catechin similar characteristics and could be responsible of the biotransformation of small amounts of carvacrol to thymol. Conclusion: These results could give an add value to Mexican oregano wastes and with more investigation the obtained products can be used in several industries.

  12. Interface Limited Lithium Transport in Solid-State Batteries.

    Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas; Wang, Ziying; Wang, Feng; Camino, Fernando; Graetz, Jason; Dudney, Nancy; Meng, Ying Shirley

    2014-01-16

    Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging and correlated elemental concentration changes by electron energy loss spectroscopy mapping are presented. We provide first evidence of lithium accumulation at the anode/current collector (Si/Cu) and cathode/electrolyte (LixCoO2/LiPON) interfaces, which can be accounted for the irreversible capacity losses. Interdiffusion of elements at the Si/LiPON interface was also witnessed with a distinct contrast layer. These results highlight that the interfaces may limit the lithium transport significantly in solid-state batteries. Fabrication of electrochemically active nanobatteries also enables in situ electron microscopy observation of electrochemical phenomena in a variety of solid-state battery chemistries. PMID:26270703

  13. Conductors, semiconductors, superconductors an introduction to solid state physics

    Huebener, Rudolf P

    2015-01-01

    In the second half of the last century solid state physics and materials science experienced a great advance and established itself as an important and independent new field. This book provides an introduction to the fundamentals of solid state physics, including a description of the key people in the field and the historic context. The book concentrates on the electric and magnetic properties of materials. It is written for students up to the bachelor in the fields of physics, materials science, and electric engineering. Because of its vivid explanations and its didactic approach, it can also serve as a motivating pre-stage and supporting companion in the study of the established and more detailed textbooks of solid state physics. The book is suitable for a quick repetition prior to examinations. For his scientific accomplishments, in 1992 the author received the Max-Planck Research Price and in 2001 the Cryogenics Price. He studied physics and mathematics at the University of Marburg, as well at the Technic...

  14. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    Gann, Sheryl Lee

    1995-11-30

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0{sup o} (parallel) with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCI?), is presented, along with experimental work on adamantane and polycarbonate.

  15. 2D 23Na-23Na DQ/MAS NMR spectroscopy: interface induced clustering and immobilization of sodium ions in nanostructured aluminosilicates

    Kobera, Libor; Urbanová, Martina; Brus, Jiří

    International Society of Magnetic Resonance, 2015. P 112. [Alpine Conference on Solid-State NMR /9./. 13.09.2015-17.09.2015, Chamonix Mont-Blanc] R&D Projects: GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 Keywords : MAS NMR * geopolymers * zeolites Subject RIV: JN - Civil Engineering

  16. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  17. Total kinetic energy distribution of fission fragments in 6,7Li + 238U reactions

    The shape and width of fission-fragment (FF) mass and kinetic energy distribution provides a lot of information on the fission reaction mechanism and the structure of the compound nucleus (CN), the fragments as well as the interacting nuclei. The shape of the mass distribution of the fission fragments for the actinides induced by the proton or neutron is known to change with the incident energy. At low energies, it shows a double humped distribution which changes slowly to a single humped distribution as energy increases. However, for a reaction involving a weakly bound projectile (i.e., 6Li + 232Th), a sharp change in the shape of the mass distribution with energy was observed. The sharp increase in the peak to valley ratio (P:V) in the fission-fragment mass distribution in 6Li + 232Th reaction by Itkis et al. and in 6,7Li + 238U reactions by Santra et al. was concluded to be due to the reduced energy transfer to the composite system caused by incomplete fusion (ICF) of alpha or deuteron/triton followed by fissions. Total Kinetic Energy (TKE) distribution of fission fragments is another important observable on which the effect of projectile breakup is not explored yet. In this contribution, the study of breakup/transfer effect on average TKE distribution for 6,7Li + 238U reactions is presented

  18. Monte Carlo modelling of a TLD device containing 7LiF:Mg,Cu,P detectors

    The Monte Carlo code MCNP-4C2 is used to design a new personal thermoluminescence dosemeter that assesses both Hp(10) and Hp(0.07) in mixed photon/electron fields. The new dosemeter utilizes two 7LiF:Mg,Cu,P elements contained within a Harshaw TLD-700H card, itself inside a polypropylene holder with walls 2 mm thick. Several potential designs of holder are considered; the best incorporates a polytetrafluoroethylene cylinder of diameter 18 mm and thickness 4.3 mm that acts as a filter to provide the correct electron cut-off and an acceptably flat Hp(10) relative response to photons, with an open hole in front of the Hp(0.07) element. Response characteristics for both detectors in this final design are presented for irradiation from a variety of angles of interest, with source energies between 16 and 6174 keV used. Comparison is made between modelled and measured data at normal incidence; the relative responses generally agree well. A new estimate for the relative light conversion efficiency relevant to the 7LiF:Mg,Cu,P is also derived and presented

  19. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb–15.7Li

    In the HCLL blanket design, ferritic–martensitic steels are in direct contact with the flowing liquid breeder Pb–15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb–15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA

  20. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb–15.7Li

    Krauss, Wolfgang, E-mail: wolfgang.krauss@kit.edu; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-15

    In the HCLL blanket design, ferritic–martensitic steels are in direct contact with the flowing liquid breeder Pb–15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb–15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  1. Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy

    Lithium self-diffusion in the low-temperature modification of polycrystalline lithium ortho-silicate Li4SiO4 is investigated by 7Li two-time stimulated echo NMR spectroscopy. Extremely slow Li exchange processes were directly monitored between 300 and 433 K by recording spin-alignment echoes as a function of mixing time varying over six decades from 10-5 to 10 s. In the investigated temperature range the hopping correlation functions show biexponential behaviour. Whereas the first decay step reflects directly Li jumps between electrically different sites, the second one is simply induced by the decay of alignment order due to quadrupolar relaxation. The echo decay rates τ-1 (101 s-1≤τ-1≤104 s-1), which can be identified with Li jump rates, show Arrhenius behaviour with an activation energy of 0.53(1) eV. The directly measured jump rates are in good agreement with those obtained recently by one- and two-dimensional 6Li exchange MAS NMR reported in the literature

  2. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  3. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-01

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material. PMID:26602457

  4. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  5. Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR

    Linden, Arne H.; Franks, W. Trent; Akbey, Uemit; Lange, Sascha; Rossum, Barth-Jan van; Oschkinat, Hartmut, E-mail: oschkinat@fmp-berlin.de [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)

    2011-11-15

    X-ray crystallography using synchrotron radiation and the technique of dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) require samples to be kept at temperatures below 100 K. Protein dynamics are poorly understood below the freezing point of water and down to liquid nitrogen temperatures. Therefore, we investigate the {alpha}-spectrin SH3 domain by magic angle spinning (MAS) solid state NMR (ssNMR) at various temperatures while cooling slowly. Cooling down to 95 K, the NMR-signals of SH3 first broaden and at lower temperatures they separate into several peaks. The coalescence temperature differs depending on the individual residue. The broadening is shown to be inhomogeneous by hole-burning experiments. The coalescence behavior of 26 resolved signals (of 62) was compared to water proximity and crystal structure Debye-Waller factors (B-factors). Close proximity to the solvent and large B-factors (i.e. mobility) lead, generally, to a higher coalescence temperature. We interpret a high coalescence temperature as indicative of a large number of magnetically inequivalent populations at cryogenic temperature.

  6. Post-mortem changes in porcine M. longissimus studied by solid-state 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.

    Bertram, Hanne Christine; Jakobsen, Hans Jørgen; Andersen, Henrik Jørgen; Karlsson, Anders Hans; Engelsen, Søren Balling

    2003-03-26

    Solid-state (13)C cross-polarization (CP) magic-angle spinning (MAS) nuclear magnetic resonance (NMR) experiments are carried out for the first time on rapidly frozen muscle biopsies taken in M. longissimus in vivo and at 1 min, 45 min, and 24 h post-mortem from three pigs. Two of the pigs were CO(2)-stunned (control animals), and one was pre-slaughter-stressed (treadmill exercise) followed by electrical stunning to induce difference in metabolism post-mortem. (13)C resonance signals from saturated and unsaturated carbons in fatty acids, carboxylic carbons, and carbons in lactate and glycogen are identified in the solid-state NMR spectra. The (13)C CP MAS spectra obtained for post-mortem samples of the stressed, electrically stunned pig differ significantly from the post-mortem control samples, as the intensity of a resonance line appearing at 30 ppm, assigned to carbons of the methylene chains, is reduced for the stressed pig. This spectral difference is probably due to changes in lipid mobility and indicates altered membrane properties in the muscle of the stressed/electrically stunned animal when compared with the control animals already 1 min post-mortem. In addition, the post-mortem period changes in glycogen carbons can be estimated from the (13)C CP MAS spectra, yielding a correlation of r = 0.74 to subsequent biochemical determination of the glycogen content. PMID:12643674

  7. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Urbanová, Martina; Brus, Jiří; Šeděnková, Ivana; Policianová, Olivia; Kobera, Libor

    2013-01-01

    Roč. 100, 1 January (2013), s. 59-66. ISSN 1386-1425 R&D Projects: GA ČR GPP106/11/P426; GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : solid-state NMR * factor analysis * 19F MAS NMR Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.129, year: 2013

  8. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27Al and 31P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11B MAS, 29Si MAS and in situ 29Si{11B} REAPDOR NMR spectroscopy. (authors)

  9. Porous Organic Nanolayers for Coating of Solid-state Devices

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  10. Solar Pumped High Power Solid State Laser for Space Applications

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  11. Solid-state laser driver for IFE power plants

    The authors present a concept of a diode-pumped solid-state laser driver in the context of a power plant for Inertial Fusion Energy (IFE) based on the cost and efficiency analyses published for Sombrero. Although existing flashlamp-pumped lasers such as Nova have low efficiency and performance, a viable architecture of a diode-pumped solid-state-laser IFE driver is now possible as a consequence of five important technology advances: (a) the advent of efficient laser-diode pump sources that have been recognized to scale to low costs at power-plant-level volumes; (b) the development of the gas-cooled slab geometry, which allows for appropriate thermal management to avoid significant optical distortion of the laser output beam; (c) the recognition of a conceptual approach to the so-called final-optic problem, where the optic that must encounter neutron irradiation is maintained at > 300 C to rapidly anneal out any light-absorbing color center; (d) the discovery of a new solid-state laser medium that possesses a sufficiently long storage time; and (e) the realization of a large-area Pockels cell, which permits a compact regenerative amplifier configuration. They describe a systems-analysis computer code that they wrote and used to optimize the design parameters in selecting the best driver configuration. The development of this configuration poses significantly lower risks than that for other driver options, for three reasons. First, up-front costs and final technical performance risk can be significantly reduced because the system is modular and can be tested at dramatically reduced scale. Second, as a consequence of the experience gleaned from Nova and other large fusion lasers, much of the fundamental physics is already well understood. Third, many of the novel laser technologies envisioned for the IFE driver are inherently of interest to various scientific and industrial communities

  12. Solid state batteries (SSBs) prepared with powder metallurgy route

    Hu J.; Zhao J; Ren J.J.

    2013-01-01

    The solid state batteries (SSBs) were prepared by powder metallurgy route. For making SSBs, a special die was designed. LiNiO2 and face centre cubic (fcc) TiB powders [1] were used to make cathodes for SSBs while such metals as Zn or Mg were used to make anodes. The SSBs made with LiNiO2 powder generated relatively low currents (1 to 2 μA) and voltage (0.4~0.9 V) at room temperature. The SSBs made with fcc-TiB cathode generated more power than do the SSBs made with LiNiO2 powder.

  13. FTIR spectrometer with solid-state drive system

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  14. Application of solid state nuclear track detectors in nuclear program

    A brief summary of current and projected techniques based on utilization of Solid State Nuclear Track Detectors at the J. Stefan Institute is presented. Possibilities of the application of these techniques in numerous fields of nuclear program such as prospecting for uranium and thorium ore deposits, analytical chemistry in nuclear fuel cycle, characterization and quality control of nuclear fuels, surveillance of nuclear reactor pressure vessel embrittlement and fuel element integrity, neutron and alpha dosimetry, nuclear reactor physics problems and nuclear safeguards are discussed and illustrated by some selected experimental and theoretical results. (author)

  15. New polymers for solid state nuclear track detection

    Two novel polymers have been prepared from a monomer N-allyloxycarbonyl diethanolamine-bis(allyl carbonate) i.e., NADAC by cast polymerization and were successfully used as solid state nuclear track detectors for α particles and fission fragments. The homopolymer PNADAC was prepared by IPP catalyzed polymerization of NADAC. A copolymer of NADAC with allyl diglycol carbonate (ADC) called poly-[(NADAC)-co-(ADC)] was also prepared similarly. A preliminary study on the etching conditions and track detection characteristics of the newly developed materials was carried out. It was found that the copolymer is more sensitive to α particles as compared to commercially available PM-250(TM) track detector

  16. THERMOTROPIC LIQUID CRYSTALLINE COPOLYESTERS-SOLID STATE POLYMORPHISM

    XIE ping; LU Daohui; BAO Jingsheng

    1988-01-01

    This paper offers some new evidence on the polymorphism of solid state of liquid crystalline aromatic copolyesters which were prepared in our laboratory. The effects of different treatment conditions(quenching and annealing) on solid structure have been examined mainly by DSC and X-ray diffraction. The discussion focuses on the supercooled mesophase and low temperature solid-solid transition, the shifting of double melting peaks of annealed samples and the changing of their △H data depending on the treatment temperature, time and thermal scanning rate.

  17. Solid-state detectors trends, developments, and operational experiences

    Bortoletto, Daniela

    2004-01-01

    Silicon detectors are at the heart of many high-energy physics experiments. Intense research and development is taking place to improve the radiation hardness of solid-state detectors for future upgrades of the Large Hadron Collider. New integrated technologies which promise to achieve the excellent resolution needed for precision measurements of the Higgs couplings at the Linear Collider are under development. Prospects for these future projects and the experience gained in the operation and the construction of large silicon detectors will be presented.

  18. Radon detection in soils by solid state nuclear track detectors

    The solid state nuclear track detector technique was developed to be used in radon detection, by alpha particles tracks, and has been applied in uranium prospecting on the ground. The sensitive films to alpha particles used were the cellulose nitrate films LR 115 and CA 8015. Several simulation experiments and field measurements were carried out to varify the possibilities of the method. Maps of some anomalies in Caetite City (Bahia, Brazil) were made with the densities of tracks obtained. The results were compared with scintillation counter measurements. (Author)

  19. TESTING AND SIMULATION OF SOLID STATE HEATING AND COOLING

    CHAKIB ALAOUI

    2011-02-01

    Full Text Available The latest model of solid state Peltier thermoelectric pumps was reviewed and improved. A heating-cooling chamber was designed and fabricated by using the Peltier modules, and its equivalent circuit was extracted and simulated. This chamber was tested under various values of input power in both cooling and heating modes of operations. The experimental results were compared with the proposed model. This model is proven to be accurate and can be extend to any Peltier based thermoelectric system for simulation, and can be used to simulated thermoelectric systems based on these modules.

  20. Ion production from solid state laser ion sources

    Gottwald, T; Wendt, K; Raeder, S; Mattolat, C; Rothe, S; Liu, Y; Lassen, J

    2010-01-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  1. Development of the Los Alamos solid-state optical refrigerator

    Laser-induced cooling of a solid by net anti-Stokes fluorescence, first experimentally demonstrated in 1995, can be the basis of a new type of cryocooler, an optical refrigerator. This article describes the physics and design issues of a practical optical refrigerator for operation at 77 K. In particular, the Los Alamos Solid-State Optical Refrigerator (LASSOR) which we are developing would have an operating efficiency comparable to commercial small cryocoolers, be completely vibration-free and operate for years without maintenance

  2. Barocaloric effect and the pressure induced solid state refrigerator

    The current refrigerators are based on the heating and cooling of fluids under external pressure variation. The great inconvenience of this refrigeration technology is the damage caused to the environment by the refrigerant fluids. In this paper, we discuss the magnetic barocaloric effect, i.e., the heating or cooling of magnetic materials under pressure variation and its application in the construction of refrigerators using solid magnetic compounds as refrigerant materials and pressure as the external agent. The discussion presented in this paper points out that such a pressure induced solid state refrigerator can be very interesting because it is not harmful to the environment and can exhibit a good performance.

  3. Solid-State Recorders Enhance Scientific Data Collection

    2010-01-01

    Under Small Business Innovation Research (SBIR) contracts with Goddard Space Flight Center, SEAKR Engineering Inc., of Centennial, Colorado, crafted a solid-state recorder (SSR) to replace the tape recorder onboard a Spartan satellite carrying NASA's Inflatable Antenna Experiment. Work for that mission and others has helped SEAKR become the world leader in SSR technology for spacecraft. The company has delivered more than 100 systems, more than 85 of which have launched onboard NASA, military, and commercial spacecraft including imaging satellites that provide much of the high-resolution imagery for online mapping services like Google Earth.

  4. Solid-state Synthesis of Carbon-nanostructures

    R.Wilhelm; A.Winkel; D.Jain

    2007-01-01

    1 Results In addition to single wall and multiwall carbon nanotubes[1], several structures,which are more or less related to fullerenes,including carbon nanohorns[2a], carbon nanospheres[2b] and onion like carbon structures[2c] have been reported.A new simple straight forward method to access some of these structures is the solid-state pyrolysis of different organometallic complexes in a sealed vessel,which led so far to carbon nanotubes[3a,b], carbon nanocables[3c] and onions[3d].

  5. Quantum theory of the solid state part B

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  6. Reaction diffusion and solid state chemical kinetics handbook

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  7. Solid state nuclear track detection : theory and applications

    Solid state nuclear track detection (SSNTD) technique is simple and inexpensive in nature. The two main steps involved in SSNTD are the formation of latent tracks and their subsequent development (visualisation) by chemical or other means. These are discussed in detail. Applications of SSNTD in the fields of nuclear physics, dosimetry, biology and for determination of contents of an element and its spatial distribution are described. The monograph is intended to serve both beginners and specialists. It also gives a list of simple experiments that can be conveniently introduced at the undergraduate/postgraduate level. (M.G.B.). 20 refs., 8 figs., 3 tabs

  8. Molecular electronics with single molecules in solid-state devices.

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong. PMID:19734925

  9. The 1989 progress report: Solid-state Mechanics

    The 1989 progress report of the laboratory of Solid-state Mechanics of the Polytechnic School (France) is presented. The investigations are focused on the study of strain and failure of solids and structures. The results reported concern the fields of: stability and bifurcation of elastic or inelastic systems, damage and fatigue (resistance improvement, failure risks on pipe systems, crack propagation), the development of a computer code for soil strengthening by using linear inclusions, mechanical behavior of several rocks for the safety of underground works, expert systems. The published papers, the conferences and the Laboratory staff are listed

  10. SOLID STATE PHYSICS OF IMPACT CRATER FORMATION: FURTHER CONSIDERATIONS

    V. Celebonovic

    2013-01-01

    Full Text Available Impact craters exist on solid surface planets, their satellites and many asteroids. The aim of this paper is to propose a theoretical expression for the product ρr3 v2 1 , where the three symbols denote the mass density, radius and speed of the impactor. The expression is derived using well known results of solid state physics, and it can be used in estimating parameters of impactors which have led to formation of craters on various solid bodies in the Solar System.

  11. Solid-State Excitation Laser for Laser-Ultrasonics

    Schnars, U.; Platz, W.; Mahnke, P.; A. Fix; Frede, M; Neumann, J.; Peuser, P.

    2010-01-01

    The inspection speed of laser-ultrasonics compared with conventional ultrasonic testing is limited by the pulse repetition rate of the excitation laser. The maximum pulse repetition rate reported up to now for CO2-lasers, which are presently used for nearly all systems, is in the range of 400 Hz. In this paper a new approach based on a diode-pumped solid-state laser is discussed, which is currently being developed. This new excitation laser is designed for a repetition rate of 1 kHz and will ...

  12. Physico-chemical studies on samarium soaps in solid state

    The physico-chemical characteristics of samarium soaps (caproate and caprate) in solid state were investigated by IR, X-ray diffraction and TGA measurements. The IR results revealed that the fatty acids exist in dimeric state through hydrogen bonding and samarium soaps possess partial ionic character. The X-ray diffraction measurements were used to calculate the long spacings and the results confirmed the double layer structure of samarium soaps. The decomposition reaction was found kinetically of zero order and the values of energy of activation for the decomposition process for caproate and caprate were found to be 8,0 and 7,8 kcal mol-1, respectively. (Authors)

  13. Stable solid state reference electrodes for high temperature water chemistry

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  14. Optimization of dopants in CSR solid state nuclear track detector

    CR-39 plastic nuclear track detectors have been cast with methyl methacrylate, diallyl phthalate, dibutyl phthalate and di-(2-ethylhexyl) phthalate but without additive. After irradiated with 5.15 MeV α particles, the responses of the detectors were found to be significantly different for each kind of additive. The performance was reported of a new CSR (China Shanghai Resin) solid state nuclear track detector, the CR-39 (DPA). The sheets with 1% addition of DPA of CR-39 monomer were more sensitive than those of pure CR-39

  15. A solid state Marx generator for TEL2

    Kamerdzhiev, V.; Pfeffer, H.; Saewert, G.; Shiltsev, V.; /Fermilab

    2007-06-01

    The solid-state Marx generator modulates the anode of the electron gun to produce the electron beam pulses in the second Tevatron Electron Lens (TEL2). It is capable of driving the 60 pF terminal with 600 ns pulses of up to 6 kV with a p.r.r. of 50 kHz. The rise and fall times are 150 ns. Stangenes Industries developed the unit and is working on a second version which will go to higher voltage and have the ability to vary its output in 396 ns intervals over a 5 {micro}s pulse.

  16. Birefringence compensation in single solid-state rods

    Various methods for compensating birefringence depolarization in solid-state rods are theoretically and experimentally analyzed and compared. Gaussian and flat top beam profiles are investigated. The efficiency in depolarization loss reduction using different techniques is discussed in terms of beam profile, rod fill factor, and thermal heat load. In Nd:yttrium-aluminum-garnet, the depolarization loss can be efficiently reduced below 5% with a compensating quarter-waveplate, up to 20 W heat load for a flat top beam and up to 70 W for a gaussian beam. (c) 2000 American Institute of Physics

  17. Molecular electronics with single molecules in solid-state devices

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule......, and how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong....

  18. Rare earth doped solid state laser gain medium

    Among the rare earths, Nd has been one of the most popular laser active ions, however in recent times there is lot of interest on other ions like Yb as it has low quantum defect. This talk shall focus mainly on the growth of rare earth doped YVO4 single crystals by optical floating zone technique. Single crystals of YVO4 doped with rare earth is widely used for compact diode pumped solid state lasers as it offers several advantages like high slope efficiency, low laser threshold, wide pumping bandwidth and linearly polarized emission

  19. Interface investigations on all solid state thin film batteries

    Jacke, S.; Song, J.; Cherkashinin, G.; Jaegermann, W. [Technische Univ. Darmstadt (Germany). Fachbereich Materialwissenschaft

    2010-07-01

    An All-Solid-State battery consisting of LiCoO{sub 2} as cathode, Lithium phosphorous oxynitride (LiPON) as solid electrolyte and LiAl as anode was fabricated. The thickness of the battery was 1.3{mu}m. An investigation of the structural composition of the materials relevant for the conductivity was carried out on the LiPON material by XPS core level analysis under UHV transfer. These analyses were then compared to the properties of the cathode-electrolyte interface using the same experimental methods. (orig.)

  20. Solid state and aqueous behavior of uranyl peroxide cage clusters

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl

  1. Study of the reactions 9Be (d, a0) 7Li, 9Be (d, a1) 7Li*, 9Be (dt)8Be and 9Be (dp0) 10Be from 300 to 1000 keV

    We present the excitation curves, the angular distributions and the total cross-sections for the reactions: 9Be (d α0)7Li, 9Be (d α1)7Li, 9Be (d, t)8Be, 9Be (dp0)10Be, in the energy range from 300 keV to 1 MeV. Our results are in good agreement with the few studies already carried out. In order that the results be presented in absolute values, we have normalized them with those of BIGGERSTAFF. (author)

  2. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology.

    Gelis, Ioannis; Vitzthum, Veronika; Dhimole, Neha; Caporini, Marc A; Schedlbauer, Andreas; Carnevale, Diego; Connell, Sean R; Fucini, Paola; Bodenhausen, Geoffrey

    2013-06-01

    The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear (13)C and (15)N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes. PMID:23689811

  3. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology

    The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear 13C and 15N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ∼25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.

  4. Solid-state proton NMR of paramagnetic metal complexes: DANTE spin echoes for selective excitation in inhomogeneously broadened lines

    Carnevale, Diego; Perez Linde, A. J.; Bauer, Gerald; Bodenhausen, Geoffrey

    2013-08-01

    The paramagnetic complex bis(oxazolinylphenyl)amine-Fe(III)Cl2 is investigated by means of solid-state proton NMR at 18.8 T (800 MHz) using magic-angle spinning at 65 kHz. Spin echoes that are excited and refocused by combs of rotor-synchronized pulses in the manner of 'Delays Alternating with Nutation for Tailored Excitation' (DANTE) allow one to characterize different chemical environments that severely overlap in conventional MAS spectra. Such sequences combine two apparently contradictory features: an overall bandwidth exceeding several MHz, and very selective irradiation of a few kHz within inhomogeneously broadened sidebands. The experimental hyperfine interactions correlate well with DFT calculations.

  5. Solid state tautomerism in 2-((phenylimino)methyl)naphthalene-1-ol

    Nedeltcheva, Daniela; Kamounah, Fadhil S.; Mirolo, Laurent;

    2009-01-01

    The solid state tautomerism of 2-((phenylimino)methyl)naphthalene-1-ol was studied using X-ray measurements and absorption spectroscopy. In the solid state, the keto tautomer predominates. The observed shift in the equilibrium from the enol (dilute solution) to the keto (solid state) forms is exp...... explained by the formation of dye aggregates using ab initio quantum chemical calculations...

  6. UAV Robust Strategy Control Based on MAS

    Jian Han; Changhong Wang; Guoxing Yi

    2014-01-01

    A novel multiagent system (MAS) has been proposed to integrate individual UAV (unmanned aerial vehicle) to form a UAV team which can accomplish complex missions with better efficiency and effect. The MAS based UAV team control is more able to conquer dynamic situations and enhance the performance of any single UAV. In this paper, the MAS proposed and established combines the reacting and thinking abilities to be an initiative and autonomous hybrid system which can solve missions involving coo...

  7. Study of the {sup 7}Li (p,{alpha}){sup 4}He Reaction at Astrophysical Energies Through the Trojan Horse Method

    Pellegriti, M.G.; Aliotta, M.; Cherubini, S.; Lattuada, M.; Miljanic, D.; Pizzone, R.G.; Romano, S.; Soic, N.; Spitaleri, C.; Zadro, M.; Zappala, R.A.

    2000-12-31

    The Trojan Horse Method has been applied to obtain information about {sup 7}Li(p,{alpha}),{sup 4}He reaction at astrophysical energies. The {sup 7}Li(d,{alpha} n){sup 4}He reaction has been used and the two body reaction cross section for the {sup 7}Li(p,{alpha}){sup 4}He has been extracted together with its astrophysical factor S(E).

  8. Experiment and theory for the reaction 7Li(γ,t)4He for E/sub γ/<50 MeV

    Differential and total cross sections for the 7Li(γ,t)4He reaction were measured. Both real and virtual photons were used in the experiment and gave self-consistent results. The data show a broad resonance indicating the presence of positive parity states near 8 MeV excitation in 7Li. A calculation using an α-3H cluster model of 7Li was also performed. Poor agreement is found between the calculation and experimental results

  9. Covariance analysis of n + 7Li data for ENDF/B-VI

    A new covariance analysis of n/plus/7Li experimental data has been completed for Version VI of ENDFB. The analysis basically updates our 1981 work for ENDFB-V.2 to include new data that has become available since that time and to incorporate cross correlations between different experiments. The bulk of the new measured data consists of some 10 new (or newly revised) tritium-production measurements involving about 70 new data points. The new analysis results in only small changes in the previous evaluation of the tritium-production cross section but significantly reduces the magnitudes of uncertainties due to the more extensive and accurate data base that was used

  10. New method to evaluate the 7Li(p, n)7Be reaction near threshold

    In this work a complete description of the 7Li(p, n)7Be reaction near threshold is given using center-of-mass and relative coordinates. It is shown that this standard approach, not used before in this context, leads to a simple mathematical representation which gives easy access to all relevant quantities in the reaction and allows a precise numerical implementation. It also allows in a simple way to include proton beam-energy spread affects. The method, implemented as a C++ code, was validated both with numerical and experimental data finding a good agreement. This tool is also used here to analyze scattered published measurements such as (p, n) cross sections, differential and total neutron yields for thick targets. Using these data we derive a consistent set of parameters to evaluate neutron production near threshold. Sensitivity of the results to data uncertainty and the possibility of incorporating new measurements are also discussed

  11. Photoassociation and ionization spectroscopy of ultracold $^{7}$Li$^{85}$Rb molecules

    Altaf, Adeel; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P; Elliott, D S

    2014-01-01

    We report spectroscopic studies of ultracold $^{7}$Li$^{85}$Rb molecules using multiphoton ionization detection. With our dual-species Li and Rb MOT apparatus, we create ultracold LiRb molecules via photoassociation (PA), and explore new PA resonances, with binding energies up to ~62 cm^{-1}. Furthermore, we measure the resonantly enhanced multiphoton ionization (REMPI) spectra as a probe of ground and excited state vibrational levels. We identify vibrational levels of the $a^{3}\\Sigma^{+} (v" = 7 - 13)$, $3^{3} \\Pi (v'_{\\Pi} = 0 - 10)$ and $4^{3} \\Sigma^{+} (v'_{\\Sigma} = 0 - 5)$ electronic states. Our line assignments agree well with ab initio calculations. These spectroscopic studies are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  12. Charge and mass distribution in 7Li induced fission of 232Th

    Formation cross sections of about forty fission products have been determined using recoil catcher technique followed by off line gamma-ray spectrometry in 7Li induced fission of 232Th at Elab=41.9, 36.6 and 31.4 MeV. The measured data have been used to deduce charge and mass distributions. Mass distribution is found to be asymmetric at all the three energies. Cross sections of evaporation residues formed in both transfer reactions (232,233,234Pa) as well as in complete fusion (234Np), have also been measured. The measured evaporation residue cross sections and the decay probabilities of target like nuclei (233,234,235Pa) formed in the various transfer reactions, as calculated by PACE2, have been used to estimate the transfer induced fission cross sections. The data indicated that the magnitude of transfer induced fission is very small

  13. Beam shaping assembly optimization for 7Li(p,n)7Be accelerator based BNCT

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30 mA at about 2.5 MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the 7Li(p,n)7Be neutron production reaction to obtain neutron beams to treat deep seated tumors. - Highlights: • A Beam Shaping Assembly for accelerator based BNCT has been designed. • A conical port for easy patient positioning and the cooling system are included. • Several configurations can deliver tumor doses greater than 55 RBEGy. • Good tumor doses can be obtained in less than 60 min of irradiation time

  14. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism. (authors)

  15. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Shrivastava A.

    2013-12-01

    Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.

  16. Diode-pumped all-solid-state lasers and applications

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  17. Solid-state high voltage, DC power distribution and control

    Gaudreau, M P J; Hawkey, T J; Kempkes, M A; Mulvaney, J M; Ver Planck, P

    1999-01-01

    Future high voltage, high power systems in the early stages of planning include U.S. large accelerator programs such as the Next Linear Collider (NLC), Spallation Neutron Source (SNS), and international systems at DESY, CERN and KEK. There are also many nuclear fusion and multi-megawatt systems proposed for construction or upgrade. Each of these programs faces the challenge of distributing and controlling the high power required by tens to hundreds of RF amplifier tubes (e.g., klystrons) cost effectively. In this paper, we present a new approach for distributing and modulating power based upon recent technological developments in high voltage, high power, solid state switching. DTI's development of fast, high voltage, opening and closing solid state switches enable, for the first time at high voltage, a nearly lossless "DC transformer". With this DC transformer (i.e., down converter or buck regulator), it is now possible to distribute unregulated high voltage DC power in a large facility, and regulate and con...

  18. Design and development of 1 KW solid state RF amplifier

    Since low power tube based RF amplifiers are complicated, occupy a large space and are bulky, the efforts are on to develop indigenously 1 KW solid state technology based RF Power amplifier. A power level of 1KW is chosen for the initial design because RF power Mosfets upto 250 watt are easily available and by clubbing 3-4 stages the power level of 1 KW can be made. Presently design and testing of 100-watt stage is in progress. The first 2 stages are designed to give 5 Watt RF power using bipolar transistors and are operated in CE, Class A to provide low noise level at the output of the system. The 3rd stage will be MOSFET based MRF 174, which is ideally suited for class A operation and is designed for 100 Watt RF power. The last stage will be MOSFET based ARF446 power MOSFET in TO-247 plastic package. This amplifier will be used in the classical push- pull configuration. This paper describes the design aspects as well as the test results of 100 watt amplifier on 50 Ohm dummy load along with the specifications, design criteria, circuit used, operating parameters of 1 KW Solid State RF power amplifier to be used as driver for 91.2 MHz, 1.5 MW stage for ICRH experiments on SST-1 tokamak .

  19. Status of solid-state power amplifiers development in BARC

    Various solid-state power amplifiers have been developed to meet the requirements of accelerator needs for BARC and its collaboration projects. These are mainly 352 and 325 MHz RF power amplifiers. The 352 MHz, RF power amplifier have been developed to feed the buncher cavity of the Low Energy High Intensity Proton Accelerator (LEHIPA). Whereas 325 MHz 3 kW and 7 kW solid- state power amplifiers have been designed under the IIFC-Fermilab collaboration. The same technologies will also be used for 200 MeV superconducting accelerator of ADS program. The paper present the technology details of the power amplifier modules, power combiners, dividers and sensors etc. The developed SSPAs are of 3 kW, 325 MHz and 10 kW 352 MHz. Both the power amplifiers have been tested on a 50 ohm load. The 3 kW SSPA has the drain efficiency of 65.3%. The four modules have the power output of 850 W each. This SSPA has the figure of merit of SSPAs (number of modules per kW) is 1.2. The 10 kW SSPA is mainly required to feed the buncher cavity of the LEHIPA. It is combination of 16 power modules of 800 W each at 352 MHz. (author)

  20. Aberrations and focusability in large solid-state-laser systems

    Simmons, W.W.

    1981-01-01

    Solid state lasers for fusion experiments must reliably deliver maximum power to small (approximately .5 mm) targets from stand-off focal distances of 1 m or more. This requirement places stringent limits upon the optical quality of the several major components - amplifiers, Faraday isolators, spatial filters - in each amplifier train. Residual static aberrations in optical components are transferred to the beam as it traverses the optical amplifier chain. Although individual components are typically less than lambda/20 for components less than 10 cm clear aperture; and less than lambda/10 for components less than 20 cm clear aperture; the large number of such components in optical series results in a wavefront error that may exceed one wave for modern solid state lasers. For pulse operation, the focal spot is additionally broadened by intensity dependent nonlinearities. Specific examples of the performance of large aperture components will be presented within the context of the Argus and Shiva laser systems, which are presently operational at Lawrence Livermore National Laboratory. Design requirements upon the larger aperture Nova laser components, up to 74 cm in clear aperture, will also be discussed; these pose a significant challenge to the optical industry.