WorldWideScience

Sample records for 7li nmr spectroscopic

  1. 7Li NMR studies of lithium transport in human erythrocytes

    Lithium transport in human erythrocytes was investigated by 7Li NMR spectroscopy. The intra- and extracellular pools of Li+ were distinguished by the addition to the red cell suspension of a cell-impermeable shift reagent, dysprosium(III) triphosphate. It was found that, for therapeutic levels of lithium used in the US (where the typical plasma (Li+) concentration range is 0.5-1.2 mM), a shift reagent concentration of 3 mM is sufficient to achieve clear chemical shift separation between the two 7Li+ NMR resonances. Despite competition between Li+ and other mono- and divalent cations for the shift reagent, the intra and extracellular 7Li+ NMR signals are clearly separated (approximately 3 ppM) even in the presence of physiologically relevant concentrations of Na+, K+, Mg2+, and Ca2+. Addition of an ionophore, monesin, to a K+-only RBC (red blood cell) suspension induces passive Li+ transport, which can be monitored by following the relative intensities of the two 7Li+ resonances. It is concluded that the 7Li NMR method is suitable for the noninvasive study of Li+ transport in human erythrocytes and that it shows great promise as a tool for the investigation of the bioinorganic chemistry of lithium. 24 references, 3 figures, 1 table

  2. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    Hu, Jian Zhi [Pacific Northwest National Laboratory

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  3. A 7Li and 27Al NMR study of interaction of lithium hydride with aluminium

    Lithium hydride interaction with metal aluminium is studied using 7Li and 27Al NMR method within 100-700 deg C temperature interval. It is detected, that at temperatures exceeding 420 deg C a number of α', α'', β, γ, δ and δ' phases based on intermetallic LiAl9, LiAl3, LiAl, Li3Al2 and Li9Al4 compounds (IC) are produced in LiH-Al system, their concentrations and rates of production being dependent on the molar ratio of initial components r =[LiH]:[Al]. Production of a stable αphase of [Al] and two methastable α' and α''-phases based on LiAl3 and LiAl9, which are decayed at 530 deg C, is detected under minor molar lithium content. Values of 7Li and 27Al NMR shifts in IC are determined. (author)

  4. Host-guest interactions in fluorinated polymer electrolytes: A 7Li-13C NMR study

    Mustarelli, P.; Quartarone, E.; Capiglia, C.; Tomasi, C.; Ferloni, P.; Magistris, A.

    1999-08-01

    Gel-type electrolytes based on fluorinated polymers are of interest for electrochemical devices. We present a 7Li-13C solid-state NMR and modulated differential scanning calorimetry (MDSC) study of gel electrolytes based on a copolymer poly(vinylidene fluoride) (PVdF)-hexafluoropropylene (HFP) activated with a nonaqueous solution ethylene carbonate (EC)-propylene carbonate (PC)-LiN(CF3SO2)2. We show that the narrowing of the Li lineshape is decoupled from the glass transition. The behavior of the longitudinal relaxation times, T1, confirms that the host polymer matrix simply behaves like a quasiinert cage for the solution. These results are confirmed by 13C NMR at the magic angle (MAS) data, which show that the presence of the polymer does not significantly affect the chemical shift changes induced in the EC/PC carbons by the imide salt.

  5. Investigations of Li-containing SiCN(O) ceramics via 7Li MAS NMR.

    Gumann, Sina; Nestle, Nikolaus; Liebau-Kunzmann, Verena; Riedel, Ralf

    2007-04-01

    Lithium-containing silicon (oxy)carbonitride ceramics (SiCN(O):Li) were synthesized via precursor-to-ceramic-transformation of Li-containing (poly)silazanes. The precursors were obtained by lithiation of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane with n-butyllithium and by reaction of a commercial poly(organosilazane) VL20 with metallic lithium. The annealing treatment was carried out at temperatures between 200 and 1400 degrees C in argon (DeltaT=200 degrees C) and yielded Li-containing silicon (oxy)carbonitride. X-ray powder diffraction revealed that the resulting SiCN(O):Li ceramics were basically amorphous up to temperatures of 1000 degrees C and formed LiSi(2)N(3), graphite and silicon carbide as crystalline phases at higher temperatures. (7)Li MAS NMR spectroscopy was carried out to investigate the structure of the Li-containing phases and to study the reaction path of metallic Li with polysilazane. Based on the NMR spectra, there is almost no difference found in the chemical shift of the SiCN(O):Li ceramics obtained at different temperatures. Accordingly, Li is assigned to be mainly coordinated to N and O present as contaminant element. Relaxation time measurements showed that the most mobile Li(+) species seems to be present in the product obtained in the pyrolysis temperature range between 600 and 1000 degrees C. PMID:17418540

  6. Localization of vacancies and mobility of lithium ions in Li{sub 2}ZrO{sub 3} as obtained by {sup 6,7}Li NMR

    Baklanova, Ya. V., E-mail: baklanovay@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation); Arapova, I. Yu.; Buzlukov, A.L.; Gerashenko, A.P.; Verkhovskii, S.V.; Mikhalev, K.N. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 Kovalevskaya str., 620990 Ekaterinburg (Russian Federation); Denisova, T.A.; Shein, I.R.; Maksimova, L.G. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation)

    2013-12-15

    The {sup 6,7}Li NMR spectra and the {sup 7}Li spin–lattice relaxation rate were measured on polycrystalline samples of Li{sub 2}ZrO{sub 3}, synthesized at 1050 K and 1300 K. The {sup 7}Li NMR lines were attributed to corresponding structural positions of lithium Li1 and Li2 by comparing the EFG components with those obtained in the first-principles calculations of the charge density in Li{sub 2}ZrO{sub 3}. For both samples the line width of the central {sup 7}Li transition and the spin–lattice relaxation time decrease abruptly at the temperature increasing above ∼500 K, whereas the EFG parameters are averaged (〈ν{sub Q}〉=42 (5) kHz) owing to thermally activated diffusion of lithium ions. - Graphical abstract: Path of lithium ion hopping in lithium zirconate Li{sub 2}ZrO{sub 3}. - Highlights: • Polycrystalline samples Li{sub 2}ZrO{sub 3} with monoclinic crystal structure synthesized at different temperatures were investigated by {sup 6,7}Li NMR spectroscopy. • Two {sup 6,7}Li NMR lines were attributed to the specific structural positions Li1 and Li2. • The distribution of vacancies was clarified for both lithium sites. • The activation energy and pathways of lithium diffusion in Li{sub 2}ZrO{sub 3} were defined.

  7. Structural nature of 7Li and 11B sites in the nonlinear optical material LiB3O5 using static NMR and MAS NMR

    The structural nature of the nonlinear optical properties of LiB3O5 is analyzed using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The 3-coordinated trigonal [B(1) and B(2)] and 4-coordinated tetragonal [B(3)] sites are distinguished using the spectrum and the spin-lattice relaxation time in rotating frame T1ρ, which was obtained from the 11B MAS NMR. Moreover, the T1 and T1ρ values for 7Li and 11B are compared, and the activation energies were obtained. The T1ρ values of the boron nuclei in LiB3O5 show no significant changes. These results may be closely related to the largest second-order nonlinear optical coefficient. - Highlights: • The structural nature of the nonlinear optical properties of LiB3O5. • Single-crystal NMR and MAS NMR. • The 3-coordnated trigonal and 4-coordinated tetragonal. • The spin-lattice relaxation time in rotating frame T1ρ

  8. 1H and 7Li NMR in li2-xhxmo3 (m = Ti, Zr)

    Baklanova, Ya

    2008-01-01

    Nuclear magnetic resonance (NMR), Raman spectroscopy and thermogravimetric methods were used to study the peculiarities of lithium ion replacement by protons in lithium metallates Li2MO3 (M=Ti, Zr). In this article we show that almost all protons in the final substitution products H2MO3 enter into the crystal structure. All protons in zirconium hydroxide belong to hydrogen-bonded OH-groups. Contrary, titanium hydroxide contains both hydrogen-bonded and isolated OH-groups. Protons in H2ZrO3 fo...

  9. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  10. Solid 7Li-NMR and in situ XRD studies of the insertion reaction of lithium with tin oxide and tin-based amorphous composite oxide

    The lithium insertion reactions with tin (II) oxide (SnO) and tin-based composite oxide (abbreviated as TBCO) are studied by solid 7Li-NMR Knight shift, T1 and T1ρ relaxation rate, TEM and in situ XRD methods. By the insertion reaction for SnO, the lithium oxide and β-tin are produced first at Li/Sn = 2; at Li/Sn = 3 to 6 the products are not simple and a mixture of LiSn2, LiSn, Li5Sn2 and Li7Sn2 alloys is detected during the insertion. For the TBCO, which is revealed as amorphous, mainly constituted by randomly distributed very short-range (order of 10-9 m) regions by TEM observation, it is found that electrochemically inserted lithium forms Li2O and produces metallic tin (Sn) in the first step (Li/Sn 7Sn2 (and Li7Si2), are produced in the second step (Li/Sn >2). During the second step, the Li/Sn ratio of formed lithium-tin alloy is kept at almost 4. By the analyses of 7Li NMR Knight shifts, line shape and in situ XRD, the lithium-inserted TBCOs are characterized as almost amorphous and mixtures of highly ionic components. (author)

  11. Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy.

    Arbi, K; París, M A; Sanz, J

    2011-10-21

    Lithium mobility in LiM(2)(PO(4))(3) compounds, M = Ge and Sn, has been investigated by (7)Li Nuclear Magnetic Resonance (NMR) spectroscopy, and deduced information compared with that reported previously in Ti, Zr and Hf members of the series in the temperature range 100-500 K. From the analysis of (7)Li NMR quadrupole interactions (C(Q) and η parameters), spin-spin T(2)(-1) and spin-lattice T(1)(-1) relaxation rates, structural sites occupancy and mobility of lithium have been deduced. Below 250 K, Li ions are preferentially located at M(1) sites in rhombohedral phases, but occupy intermediate M(12) sites between M(1) and M(2) sites in triclinic ones. In high-temperature rhombohedral phases, a superionic state is achieved when residence times at M(1) and M(12) sites become similar and correlation effects on Li motion decrease. This state can be obtained by large order-disorder transformations in rhombohedral phases or by sharp first order transitions in triclinic ones. The presence of two relaxation mechanisms in T(1)(-1) plots of rhombohedral phases has been associated with departures of conductivity from the Arrhenius behavior. Long term mobility of lithium is discussed in terms of the cation vacancy distribution along conduction paths. PMID:21897945

  12. [sup 7]Li-NMR determination of stability constants as a function of temperature for lithium-crown ether complexes in a molten salt mixtures

    Gerhard, A. (Univ. of Utah, Salt Lake City, UT (United States) Univ. of Witten/Herdecke (Germany)); Cobranchi, D.P.; Garland, B.A.; Highley, A.M.; Huang, Y.H.; Konya, G.; Eyring, E.M. (Univ. of Utah, Salt Lake City, UT (United States)); Zahl, A.; Eldik, R. van (Univ. of Witten/Herdecke (Germany)); Petrucci, S. (Polytechnic Univ., Farmingdale, NY (United States))

    1994-08-11

    The stability constants of several crown ethers with lithium ion were determined by [sup 7]Li-NMR measurements. A room temperature, basic molten salt of the composition of 55/45 mol % 1-methyl-3-ethyl-imidazolium chloride to aluminum (III) chloride was used as solvent. On the basis of a 1:1 complex formation the following order was found for the stability constants of the investigated crown ethers: 18-crown-6 < 12-crown-4 < benzo-15-crown-5 < 15-crown-5. A temperature dependence study for 12-crown-4, benzo-15-crown-5, and 15-crown-5 was undertaken for the range 5-84[degree]C. Values of [Delta]H and [Delta]S were calculated. At 5.5[degree]C the splitting of the single, fast exchange peak into two separate signals was observed for benzo-15-crown-5, providing further evidence for the formation of the 1:1 complex. 34 refs., 4 figs., 5 tabs.

  13. Ab initio calculations on the spectroscopic constants,vibrational levels and classical turning points for the 21Πu state of dimer 7Li2

    Liu Yu-Fang; Sun Jin-Feng; Ma Heng; Zhu Zun-Lue

    2007-01-01

    The accurate dissociation energy and harmonic frequency for the highly excited 21 Πu state of dimer 7Li2 have been calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space.The calculated results are in excellent agreement with experimental measurements.The potential energy curves at numerous basis sets for this state are obtained over a wide internuclear separation range from about 2.4ao to 37.0ao.And the conclusion is gained that the basis set 6-311++G(d,p) is a most suitable one.The calculated spectroscopic constants De,Re,ωe,ωeχe,αe and Be at 6-311++G(d,p) are 0.9670 eV,0.3125 nm,238.6 cm-1,1.3705cm-1,0.0039 cm-1 and 0.4921 cm-1.respectively.The vibrational levels are calculated by solving the radial Schr(o)dinger equation of nuclear motion.A total of 53 vibrational levels are found and reported for the first time.The classical turning points have been computed.Comparing with the measurements,in which only the first nine vibrational levels have been obtained so far,the present calculations are very encouraging.A careful comparison of the present results of the parameters De and ωe with those obtained from previous theories clearly shows that the present calculations are much closer to the measurements than previous theoretical results,thus representing an improvement on the accuracy of the ab initio calculations of the potentials for this state.

  14. 通过在线7Li-NMR谱对负离子聚合见解的进一步验证%FURTHER CONFIRMATION OF THE ANIONIC POLYMERIZATION INSIGHT THROUGH in situ 7Li-NMR SPECTRUM

    胡迪航; 吴尚翰; 李天一; 郑安呐; 管涌

    2013-01-01

    通过对正丁基锂(n-BuLi)/四氢呋喃(THF)引发α-甲基苯乙烯(mSt)负离子本体聚合,验证了n-BuLi缔合体可以引发聚合,形成超分子团聚体,然后在进一步聚合过程中超分子解离.证实了先前提出的负离子聚合的引发机理.通过7 Li-NMR对聚合过程的在线检测,进一步证实了mSt在氘代苯为溶剂,THF为调节剂下的负离子聚合以及异戊二烯在非极性条件下的溶液聚合都存在引发剂多元缔合体向二元缔合体转变.研究还发现,少量THF可能使n-BuLi的六元缔合结构2~3个进一步串联起来,但先于六元缔合结构解离.此外,THF与n-BuLi作用,随着n-BuLi/THF的摩尔比从1∶1到1∶5的变化,可以使n-BuLi的巨大缔合体解离并向六元缔合体转变.

  15. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    Tae Ho Yeom

    2016-04-01

    Full Text Available In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  16. Heterocyclic Analogs of Thioflavones: Synthesis and NMR Spectroscopic Investigations

    Wolfgang Holzer

    2009-09-01

    Full Text Available The synthesis of several hitherto unknown heterocyclic ring systems derived from thioflavone is described. Coupling of various o-haloheteroarenecarbonyl chlorides with phenylacetylene gives 1-(o-haloheteroaryl-3-phenylprop-2-yn-1-ones, which were treated with NaSH in refluxing ethanol to yield the corresponding bi- and tricyclic annelated 2-phenylthiopyran-4-ones. Detailed NMR spectroscopic investigations of the ring systems and their precursors are presented.

  17. Electric dipolarizability of 7Li

    Sudhir R Jain; Arun K Jain; S Kailas

    2008-12-01

    We calculate the electric dipolarizability of 7Li nucleus within the cluster model and estimate a value of about 0.0188 fm3. We also discuss the possibility of observing this in the scattering of 7Li from a 208Pb target at energies about 30 MeV.

  18. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  19. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  20. NMR Spectroscopic Investigations of Catalyzed Reactions. Mechanisms, Kinetics & Unexpected Intermediates

    Leutzsch, Markus

    2015-01-01

    This thesis describes mechanistic studies by NMR spectroscopy in different areas of homogenous catalysis. Over the last years a wide range of organocatalysts were developed enabling highly diverse transformations with high enantioselectivities and excellent yields. In contrast to the high amount of publications on this field, a mechanistic understanding based on experimental evidences is often underinvestigated. Therefore the first two chapters of this thesis are focused on various (NMR-)...

  1. NMR spectroscopic study of the Murex trunculus dyeing process.

    Hoffman, Rina C; Zilber, Reut C; Hoffman, Roy E

    2010-11-01

    It is widely accepted that indigo dyes derived from Murex trunculus were used to produce the biblical dyes tekhelet and argaman. We describe a method of following the debromination of natural leucoindigos and their binding to wool using NMR spectroscopy. Debromination is observed prior to reaction with the wool and prior to oxidation. Binding to the wool is shown to occur prior to oxidation. NMR allows the dyeing process to be followed. This, in principle, could be used to correct problems during dyeing that would increase the reliability of the process. PMID:20882520

  2. 1H NMR spectroscopic identification of a glue sniffing biomarker.

    Kwon, Bobae; Kim, Siwon; Kim, Sosun; Lee, Dong-Kye; Park, Yu-Jin; Kim, Myung-Duck; Lee, Jae-Shin; Kim, Suhkmann

    2011-06-15

    Organic solvent abuse typically involves sniffing organic solvents to experience the mind-altering conditions they induce. In Republic of Korea, organic solvent abuse is a serious social problem, especially among teenagers. Several studies have addressed the effects of organic solvent abuse on mind and body, but there are no simple methods by which such abuse can be positively identified. In this report, we describe a method for analyzing toluene metabolites (toluene is the main ingredient of glue) in glue-sniffers' urine using (1)H NMR spectroscopy. Toluene is a commonly used solvent in the rubber, paint, plastics, leather, printing, and chemical industries. Inhaled toluene is metabolized to hippuric acid in the liver and excreted in the urine. Hippuric acid is known as a good biomarker for biological monitoring of toluene exposure. We have scanned hippuric acid and other toluene metabolites by NMR spectroscopy and performed statistical multivariate analysis of the data. Based on this analysis, we sought to determine parameters by which glue-sniffing (toluene inhalation) behavior may be verified. We also demonstrate the use of a pattern recognition method for accurate and efficient analysis of NMR data. In comparison to conventional methods, such as mass spectroscopy coupled with liquid chromatography or gas chromatography, nuclear magnetic resonance spectroscopy has several advantages, including simple sample preparation, non-destructive sampling, accuracy, short acquisition time, and reproducibility in the determination of urinary hippuric acid. PMID:21316881

  3. Investigation of 7Li(n, γ)8Li reaction by law energy

    The wave functions and main spectroscopic characteristics of the 8Li nucleus as well as the interaction potential in the 7Li+n channel are calculated within the frames of the three-body αtn-potential cluster model. The complete cross sections and reaction velocities of the 7Li(n, γ)8Li are determined along with the above values in the area of the energy up to 1 MeV

  4. 1H NMR spectroscopic determination of deterioration marker compounds in fats and oils

    Skiera, Christina

    2013-01-01

    In food and pharmaceutical analysis, the classical indices peroxide value (PV), acid value (AV) and p-anisidine value (ANV) still play an important role as quality and authenticity control parameters of fats and oils. These indices are sum parameters for certain deterioration products (PV for hydroperoxides, AV for free fatty acids, ANV for aldehydes) and are obtained using volumetric or UV/VIS spectroscopic analytical approaches. 1H NMR spectroscopy provides a fast and simple alternative to ...

  5. Complexation of enalapril maleate with β-cyclodextrin: NMR spectroscopic study in solution

    A detailed NMR (1H , COSY, ROESY) spectroscopic study of complexation of enalapril maleate with β-cyclodextrin was carried out. The 1H NMR spectrum of enalapril maleate confirmed the existence of cis-trans equilibrium in solution, possibly due to hindered rotation along the amide bond. The cis-trans ratio remained almost the same in the presence of β-cyclodextrin but in one case it was found significantly different which suggests a catalytic role of β-cyclodextrin in the isomerization. 1H NMR titration studies confirmed the formation of an enalapril-β-cyclodextrin inclusion complex as evidenced by chemical shift variations in the proton resonances of both the host and the guest. The stoichiometry of the complex was determined to be 2:1 (guest: host). The mode of penetration of the guest into the β-cyclodextrin cavity as well as the structure of the complex were established using ROESY spectroscopy. (author)

  6. In vivo 31P NMR spectroscopic studies on brain metabolic deterioration

    A custom-built 31P NMR spectrometer with 5.6 Tesla, horizontal magnet was used to determine the changes of in vivo phosphorus metabolism of the rat brain in various pathological conditions. 31P NMR spectroscopy readily demonstrated cerebral metabolic deterioration and/or recovery in vivo, in terms of the changes in relative concentrations of phosphate metabolites such as adenosine triphosphate (ATP), phosphocreatine (PCr) and inorganic phosphate (Pi), and the alterations of intracellular pH (pHi) calculated from the chemical shift of the Pi peak relative to the PCr peak, following different kinds of brain insults. 25-minute hypoxia caused the decrease in PCr and the increase in Pi with ATP's unchanged. After 15-minute global ischemia, PCr and ATP peaks completely disappeared, which recovered after the restoration of cerebral blood flow. 31P NMR spectroscopy clearly showed metabolic deterioration associated with focal cerebral infarction in the rat with middle cerebral artery occluded 24 hours previously. Severe impact trauma provoked progressive deterioration of cerebral phosphorus metabolism. This alteration was notified even at the first five-minute spectrum. The author has demonstrated that in vivo 31P NMR spectroscopic measurement would be useful and fascinating to evaluate in vivo phosphorus metabolism at various pathological states repeatedly and noninvasively. (author)

  7. 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    Highlights: •1H and 13C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by 1H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe 1H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target

  8. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-01

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures. PMID:21547960

  9. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    Wilson, Jennifer C., E-mail: jennifer.wilson@griffith.edu.au [Institute for Glycomics, Griffith University Gold Coast Campus, QLD 4222 (Australia); Laloo, Andrew Elohim [School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 (Australia); Singh, Sanjesh [Institute for Glycomics, Griffith University Gold Coast Campus, QLD 4222 (Australia); Ferro, Vito, E-mail: v.ferro@uq.edu.au [School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  10. Perturbed Angular Correlation (PAC)/NMR spectroscopic properties and dynamics of compounds containing metal ions

    Arcisauskaité, Vaida

    -Parrinello molecular dynamics approach(CPMD) and showed that the 1st coordination sphere of Zn(II) comprises six water molecules in agreement with the experimental results. Secondly, we performed Direct CPMD metadynamics simulations on the equilibrated structure by introducing an additional bias potential acting...... cases more than in others. These results suggest that the calculations on the Hg binding sites in proteins should include the immediate chemical environment. In addition, for the first time in Paper 2 we conducted the projection analysis of molecular orbital contributions to Vzz in some small Hg......199mHg PAC and 199Hg NMR spectroscopic properties, nuclear quadrupole coupling constants, Q, asymmetry parameters, , and chemical shifts, , respectively, are the fingerprint of the local molecular and electronic structure, at the probed Hg nuclei. For this reason, these spectroscopic techniques...

  11. A new mass value for 7Li

    Nagy, Sz; Suhonen, M; Schuch, R; Blaum, K; Björkhage, M; Bergström, I; 10.1103/PhysRevLett.96.163004

    2012-01-01

    A high-accuracy mass measurement of 7Li was performed with the Smiletrap Penning trap mass spectrometer via a cyclotron frequency comparison of Li3+ and H2+. A new atomic mass value of 7Li has been determined to be 7.016,003,425,6,(45)u with a relative uncertainty of 0.63 ppb. It has uncovered a discrepancy as large as 14 sigma (1.1 micro u) deviation relative to the literature value given in the Atomic-Mass Evaluation AME 2003. The importance of the improved and revised 7Li mass value, for calibration purposes in nuclear-charge radii and atomic mass measurements of the neutron halos 9Li and 11Li, is discussed.

  12. Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate

    Sudharsana, N.; Sharma, A.; Kuş, N.; Fausto, R.; Luísa Ramos, M.; Krishnakumar, V.; Pal, R.; Guru Row, T. N.; Nagalakshmi, R.

    2016-01-01

    A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex [e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H⋯OC type between the hydroxyethylammonium cation and the picrate. 13C and 1H NMR spectroscopic analysis are also presented for the DMSO-d6 solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound.

  13. 13C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand 13C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO2+ correlated positively with uronic acid-type hydrophilic organic structures, determined from the 13C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  14. {sup 13}C NMR and EPR spectroscopic evaluation of oil shale mined soil recuperation

    Santos, J.V. dos, E-mail: mangrich@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Mangrich, A.S. [Instituto Nacional de Ciencia e Tecnologia: Energia e Ambiente, Salvador, BA (Brazil); Pereira, B.F. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil); Pillon, C.N. [EMBRAPA Clima Temperado, Pelotas, RS (Brazil). Estacao Experimental Cascata; Novotny, E.H. [EMBRAPA Solos, Rio de Janeiro, RJ (Brazil); Bonagamba, T.J. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Abbt-Braun, G.; Frimmel, F.H. [Engler-Bunte-Institut, Universitaet Karlsruhe, TH (Germany)

    2013-02-15

    In this work, native forest soil (NFS) organic matter (SOM) sample and SOM samples from a neighboring forest soil area of an oil shale mine which is being rehabilitated for thirty years (RFS) were analyzed. X-band electron paramagnetic resonance (EPR) and solid-state {sup 13}C nuclear magnetic resonance (NMR) spectroscopies were used to evaluate the soil reclamation of the Brazilian oil shale mining process. Two-dimensional heterospectral correlation studies of the results obtained from EPRand {sup 13}C NMR were used to obtain information about SOM structures and their interactions with residual paramagnetic metal ion. The signal of the residual metallic oxycation, VO{sup 2+} correlated positively with uronic acid-type hydrophilic organic structures, determined from the {sup 13}C NMR spectra, and correlated negatively with the organic free radical (OFR) signal associated with oxygen atoms (g = 2.0042). The hydrophobic aromatic structures correlate positively with the EPR OFR signal associated with carbon atoms (g = 2.0022). The data from the two spectroscopic magnetic techniques show that the used recuperation process is effective. (author)

  15. Reaction mechanism study of 7Li(7Li, 6He) reaction at above Coulomb barrier energies

    V V Parkar; V Jha; S Santra; B J Roy; K Ramachandran; A Shrivastava; K Mahata; A Chatterjee; S Kailas

    2009-02-01

    The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.

  16. Raman and 31P MAS NMR spectroscopic studies of lead phosphate glasses containing thorium oxide

    (PbO)0.5(P2O5)0.5 glasses in which part of the PbO/ P2O5 was replaced by ThO2 up to 10 mol% have been prepared by conventional melt quench method and characterized by Raman and 31P MAS NMR spectroscopic studies. Raman studies of these samples clearly revealed the existence of PO4 structural units having two non bridging oxygen atoms attached to phosphorus (PO22-). The 31P MAS NMR studies indicated the presence of two types of phosphorus structural units in both PbO -P2O5 and PbO-P2O5-ThO2 glasses, namely Q2 and Q1 (PO4 structural units with 2 and 1 bridging oxygen atoms respectively). Increase in the concentration of ThO2 at the expense of both PbO/P2O5 has been found to result in the increased amount of Q1 structural units of phosphorus, indicating that ThO2 acts as only a network modifier. ThO2 has been found to form the glassy phase with PbO-P2O5 system only up to 10 mol%. (author)

  17. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    Choe Senyon

    2007-11-01

    Full Text Available Abstract Background Structural studies of integral membrane proteins (IMPs are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs. The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.

  18. $^{7}$Li abundances in halo stars testing stellar evolution models and the primordial $^{7}$Li abundance

    Chaboyer, B; Brian Chaboyer

    1994-01-01

    A large number of stellar evolution models with [Fe/H] = -2.3 and -3.3 have been calculated in order to determine the primordial .sup(7)Li abundance and to test current stellar evolution models by a comparison to the extensive database of Li abundances in extremely metal poor halo stars observed by Thorburn (1994). Standard models do a good job of fitting the observed Li abundances in stars hotter than 5600 K. They predict a primordial ^7Li abundance of log N(Li) = 2.24\\pm 0.03. Models which include microscopic diffusion predict a downward curvature in the .sup(7)Li destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of .sup(7)Li from the surface of the star. The [Fe/H] = -2.3 stellar models which include both diffusion and rotational mixing provide an excellent match to the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rot...

  19. Angular correlations and decay branching ratio for excited state of 7Li*(7,45 MeV) in reactions 7Li(alpha, alpha)7Li*

    Measurements of differential cross-sections of alpha-particle inelastic scattering by 7Li nuclei and 7Li(alpha, alpha 6Li)n, 7Li(alpha, alpha alpha)t reactions have been performed at the energy Ea = 27,2 MeV. Probability of 7Li*(7,45 MeV) decay into 6Li + n channel has been determined from the ratio of cross-sections measured in kinematically complete and incomplete experiments. The large discrepancy of this value (P 0,49 ± 0,06) and of those obtained at the study of 7Li*(7,45 MeV) decay in binary reactions can be explained by the influence of Coulomb field of accompanied alpha-particle on the decay of near-threshold resonances in three-particle reactions

  20. GC-FID and NMR Spectroscopic Studies on Gamma Irradiated Walnut Lipids

    Vassilia J. Sinanoglou

    2015-01-01

    Full Text Available Walnuts have an excellent fatty acid profile, beneficial for coronary heart diseases. A diet rich in walnuts has shown to decrease the total and LDL cholesterol levels as well as lipoprotein levels. In this study, the effects of different doses of γ-irradiation and different packaging conditions on proximate composition and fatty acid profile of walnuts (Juglans regia L. were investigated merging data from different spectroscopic techniques. Walnuts moisture, ash, fat, and protein content as well as fatty acid profile were evaluated immediately after irradiation. GC-FID results showed that SFA increased and MUFA and PUFA decreased with the increase of irradiation dose. Moreover, MUFA/SFA and PUFA/SFA ratios decreased P<0.05 compared to control samples. Furthermore, NMR spectroscopy was implemented to examine possible discrimination patterns based on irradiation dose and packaging. This approach revealed the role of PUFA decrease with the parallel increase of irradiation dose while indicating the protective role of vacuum and MAP compared to air packaging. In conclusion, at irradiation doses of up to 5 kGy, the walnuts retained the nutritional benefits of its fatty acids, in particular MUFA and PUFA. Concerning the different types of packaging, greater stability in the nuts was observed using MAP packaging.

  1. Line shapes of prompt γ-ray from 7*Li produced in 10B(n,α)7*Li reaction

    Prompt γ-ray spectra of recoil 7*Li produced in the 10B(n,α)7*Li reaction were measured using neutron beam. The observed Doppler broadening energy spectra were satisfactorily reproduced by a simulation where the velocity degradation of 7*Li within its lifetime of 1.05x10-13 s was estimated using the LSS theory. Our successful line-shape analysis was applied to non-destructive state analysis of trace amounts of boron. (author)

  2. Energy levels in (7Li) nucleus

    The energies of the normal-parity states and positive parity states in (7Li) nucleus are calculated, using many-particle nuclear shell-model, and the harmonic oscillator-wave-functions, over the residual interaction of the Gaussian from the Serber force. Spin-orbit interactions are neglected. The kinetic energy is introduced as a variant quantity, through the variation of the harmonic oscillator parameter (r0) (r02=h/mw). Finally, we separate the ''spurious'' states (one quantum excitations of the center of mass of the nucleus) by the effect of the operator (R-i), for the coordinate of the center of mass on the different wave-functions of the ground state-configurations. The calculations show that the energy of the positive-parity states, separated into two groups; the first in the energy region (10-20 Mev) and described by the symmetries (43), (421); and the second group in the energy region (26-46 Mev) and described by the symmetries (31), (3211). 9 tabs.; 3 figs.; 64 refs

  3. Reactions 7Li(e,6He) pe' and 7Li(e,6Li) ne' at intermediate excitation energies

    The reactions 7Li(e,6He) pe' and 7Li(e,6Li) ne' have been studied at intermediate excitation energies. Angular distributions as well as energy distributions are presented. The experimental cross sections are compared to the results obtained from a simple model

  4. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses

    In vitro [UV absorption, fluorescence, phosphorescence, and nuclear magnetic resonance (NMR)] spectroscopic studies on the normal human lens demonstrate age-related changes which can be correlated with biochemical and photobiologic mechanisms occurring during our lifetime. Chronic cumulative UV exposure results in an age-related increase of photochemically induced chromophores and in color of the lens nucleus. This enables the lens to filter the incident UV radiation, thereby protecting the underlying aging retina from UV photodamage. We have measured the age-related increase in lens fluorescence in vivo on more than 300 normal subjects (1st to 9th decade) by UV slitlamp densitography. These data show a good correlation with the in vitro lens fluorescence studies reported previously and demonstrate that molecular photodamage can be monitored in the lens. In vitro NMR (human and animal lenses) and in vivo experiments currently in progress are rapidly elucidating the physicochemical basis for transparency and the development of light scattering areas. Surface scanning NMR can monitor organophosphate metabolism in the ocular lens in vivo as well as in vitro. These studies demonstrate the feasibility of using biophysical methods (optical spectroscopy and NMR analyses) to delineate age-related parameters in the lens, in vivo as well as in vitro. 46 references

  5. Fusion around the barrier for 7Li + 12C

    A Mukherjee; M Dasgupta; D J Hinde; C R Morton; A C Berriman; R D Butt; J O Newton; H Timmers

    2001-07-01

    Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the -particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.

  6. Static and dynamic moments of the 7Li nucleus

    The data of Weller et al. (1985) on the tensor analysing powers for elastic and inelastic Coulomb scattering of aligned 7Li ions have been reanalyzed in order to obtain information on the values of the four 7Li moments Q, B(E2)↑, τ11 and τ12. It is shown that a single set of values, chosen primarily to be consistent with the value of Q measured by molecular techniques and the values of B(E2)↑ and τ12. required to fit unpolarized 7Li data, and also with the theoretical constraint τ11≅-[τ12], gives a good fit to the aligned 7Li data. 19 refs., 6 figs

  7. Purification and H-1 NMR spectroscopic characterization of phase II metabolites of tolfenamic acid

    Sidelmann, U. G.; Christiansen, E.; Krogh, L.;

    1997-01-01

    acid; the study shows the applicability of H-1 NMR for the identification of drug metabolites in biological fluids. In addition to NMR analysis, two metabolites were also identified by mass spectrometry (MS), The glucuronides of the following parent compounds, N-(2-methyl-3-chlorophenyl...... endogenous polar compounds that are present in the urine. The individual metabolites were purified by preparative high performance liquid chromatography (HPLC) and then identified using H-1 NMR, Both one- and two-dimensional NMR experiments were performed to identify the phase II metabolites of tolfenamic......), and N-(2-methyl-4-hydroxyphenyl)-anthranilic acid (11) were identified. The phase II metabolites (5-11) had not previously been identified in urine from humans administered tolfenamic acid. The phase I metabolites of the glucuronides 7, 8, 10, and 11 were identified here for the first time. An HPLC...

  8. A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data

    Kaski Kimmo

    2007-05-01

    Full Text Available Abstract Background A key challenge in metabonomics is to uncover quantitative associations between multidimensional spectroscopic data and biochemical measures used for disease risk assessment and diagnostics. Here we focus on clinically relevant estimation of lipoprotein lipids by 1H NMR spectroscopy of serum. Results A Bayesian methodology, with a biochemical motivation, is presented for a real 1H NMR metabonomics data set of 75 serum samples. Lipoprotein lipid concentrations were independently obtained for these samples via ultracentrifugation and specific biochemical assays. The Bayesian models were constructed by Markov chain Monte Carlo (MCMC and they showed remarkably good quantitative performance, the predictive R-values being 0.985 for the very low density lipoprotein triglycerides (VLDL-TG, 0.787 for the intermediate, 0.943 for the low, and 0.933 for the high density lipoprotein cholesterol (IDL-C, LDL-C and HDL-C, respectively. The modelling produced a kernel-based reformulation of the data, the parameters of which coincided with the well-known biochemical characteristics of the 1H NMR spectra; particularly for VLDL-TG and HDL-C the Bayesian methodology was able to clearly identify the most characteristic resonances within the heavily overlapping information in the spectra. For IDL-C and LDL-C the resulting model kernels were more complex than those for VLDL-TG and HDL-C, probably reflecting the severe overlap of the IDL and LDL resonances in the 1H NMR spectra. Conclusion The systematic use of Bayesian MCMC analysis is computationally demanding. Nevertheless, the combination of high-quality quantification and the biochemical rationale of the resulting models is expected to be useful in the field of metabonomics.

  9. Electronic structure and solvatochromism of merocyanines NMR spectroscopic point of view.

    Kulinich, Andrii V; Ishchenko, Alexander A; Groth, Ulrich M

    2007-09-01

    (1)H and (13)C NMR spectra of two series of malononitrile-based merocyanines, which possess positive and negative solvatochromism have been in detail investigated in low polar chloroform and polar dimethyl sulfoxide (DMSO). Careful attribution of signals in spectra has been made with the help of two-dimensional NMR experiments (COSY, NOESY, HMBC, and HMQC). Hence, the dependence of merocyanines electronic structure on their chemical structure and solvent nature has been studied by this powerful method. It has been shown that there exists a good correlation between the calculated charges on carbon atoms of a polymethine chain and their chemical shifts in (13)C NMR spectra. The influence of solvent polarity on bond orders for dyes with positive and negative solvatochromism is also observed. The comparison of (13)C NMR spectra of merocyanines and corresponding parent ionic dyes allows to determine their sign of solvatochromism irrespectively of electronic spectra, and also to find the key atoms of chromophore whose signals in (13)C NMR spectra are most informative. PMID:17188560

  10. NMR spectroscopic studies on metallo-base-pair in DNA duplex

    Tanaka, Y.; Okamoto, I.; Furuita, K.; Šebera, Jakub; Kondo, J.; Torigoe, H.; Urata, H.; Dairaku, T.; Ono, A.; Kojima, C.; Sychrovský, Vladimír

    2014-01-01

    Roč. 19, Suppl 2 (2014), S732-S733. ISSN 0949-8257. [European Biological Inorganic Chemistry Conference /12./. 24.08.2014-28.08.2014, Zurich] Institutional support: RVO:61388963 Keywords : NMR * DNA * mercury * thymine Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Ionic conductivity of chemically lithiated YBa2Cu3O7: NMR and impedance spectroscopic studies

    High-Tc superconducting YBa2Cu3O7 ceramic samples are lithiated by the reaction with n-butyllithium. For lithium nominal contents less than unity per formula the presence of '123' and '124' phases are deduced from X-ray diffraction and high-resolution electron microscopy experiments. NMR and impedance spectroscopy techniques have been conducted in a sample with a nominal Li content of 0.9 per formula. Spin-lattice relaxation times and electrical conductivity relaxation (ECR) are measured as a function of temperature. NMR and ECR data are interpreted in terms of a stretched exponential decay function in the time domain. Microscopic activation energies for lithium motion of 0.49 eV (NMR measurements) and of 0.41 eV (ECR) are deduced for short range motion. Activation energies for long range motion of 0.98 eV (NMR) and 1.03 eV (ECR) are also deduced. (author)

  12. A newly synthesized thiazole derivative as a fluoride ion chemosensor: Naked-eye, spectroscopic, electrochemical and NMR studies

    Sarıgüney, Ahmet Burak; Saf, Ahmet Özgür; Coşkun, Ahmet

    2014-07-01

    2,3-Indoledione 3-thiosemicarbazone (TSCI) and a novel compound 3-(2-(4-(4-phenoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one (FTHI) were synthesized with high yield and characterized by spectroscopic techniques. The complexation behaviors of TSCI and FTHI for various anionic species (F-, Cl-, Br-, I-, NO2-, NO3-, BzO-, HSO4-, ClO4-) in CH3CN were investigated and compared by UV-vis spectroscopy, cyclic voltammetry and 1H NMR titration techniques. FTHI showed high degree of selectivity for fluoride over other anions. This selectivity could be easily observed by the naked eye, indicating that FTHI is potential colorimetric sensor for fluoride anion.

  13. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  14. Photoassociation and ionization spectroscopy of ultracold $^{7}$Li$^{85}$Rb molecules

    Altaf, Adeel; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P; Elliott, D S

    2014-01-01

    We report spectroscopic studies of ultracold $^{7}$Li$^{85}$Rb molecules using multiphoton ionization detection. With our dual-species Li and Rb MOT apparatus, we create ultracold LiRb molecules via photoassociation (PA), and explore new PA resonances, with binding energies up to ~62 cm^{-1}. Furthermore, we measure the resonantly enhanced multiphoton ionization (REMPI) spectra as a probe of ground and excited state vibrational levels. We identify vibrational levels of the $a^{3}\\Sigma^{+} (v" = 7 - 13)$, $3^{3} \\Pi (v'_{\\Pi} = 0 - 10)$ and $4^{3} \\Sigma^{+} (v'_{\\Sigma} = 0 - 5)$ electronic states. Our line assignments agree well with ab initio calculations. These spectroscopic studies are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  15. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions.

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-01-01

    Proton transfer (PT) processes in solid-liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid-liquid phases. PMID:27311326

  16. High resolution 1H NMR spectroscopic studies of the metabolism and excretion of ampicillin in rats and amoxycillin in rats and man.

    Connor, S C; Everett, J R; Jennings, K R; Nicholson, J K; Woodnutt, G

    1994-02-01

    High resolution proton nuclear magnetic resonance (1H NMR) spectroscopy has been used to investigate the metabolism and urinary excretion of the aminopenicillins, ampicillin and amoxycillin, in rats and of amoxycillin in man. 1H NMR resonances of the aminopenicillins, together with those for their 5R, 6R and 5S, 6R penicilloic acids and diketopiperazine metabolites were detected, assigned and quantified in urine samples with the aid of spin-echo NMR techniques. The dimer of amoxycillin was detected in rat urine for the first time together with novel drug-related resonances assigned to amoxycillin carbamate. Quantitative 1H NMR spectroscopic results were consistent with HPLC and microbiological data considering that only single measurements were recorded. Due to the short analysis time and simple sample preparation, NMR was particularly useful for studying the metabolism of the aminopenicillins for which sample degradation poses analytical problems. The non-invasive character of 1H NMR spectroscopic analysis of urine also provided unique information on a reversible reaction between amoxycillin and bicarbonate, an endogenous urinary metabolite. PMID:8021801

  17. The 7Li(γ,N) and 7Li(e,N) reactions at intermediate photon energies

    Cross sections for single-photonucleon emissions from 7Li have been measured for photon energies in the range 60-120 MeV by detecting the recoiling residual nuclei following excitation with bremsstrahlung radiation of end-point energies 140 and 155 MeV. Measurements of the 7Li(e,6Li)e'p and 7Li(e,6He)e'n cross sections were also made at the same electron energies. A significant difference between the ratio of electron- and bremsstrahlung-induced yields for proton and neutron emission is observed. The results are compared to a modified quasi-deuteron model and a simple direct-knockout model in which recoil terms are included. (orig.)

  18. Computational and Experimental Evidence of Through-Space NMR Spectroscopic J Coupling of Hydrogen Atoms

    Dračínský, Martin; Jansa, Petr; Bouř, Petr

    2012-01-01

    Roč. 18, č. 3 (2012), s. 981-986. ISSN 0947-6539 R&D Projects: GA AV ČR KJB400550903; GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant ostatní: AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : conformations * density functional calculations * NMR spectroscopy * through-space coupling * weak interactions Subject RIV: CC - Organic Chemistry Impact factor: 5.831, year: 2012

  19. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion.

    Godinho, Mariana S; Blanco, Marcos R; Gambarra Neto, Francisco F; Lião, Luciano M; Sena, Marcelo M; Tauler, Romà; de Oliveira, Anselmo E

    2014-11-01

    Power transformers are essential components in electrical energy distribution. One of their most important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial tension and color are major parameters used for assessing oil quality and the system׳s degradation. This work proposes the use of near infrared (NIR), molecular fluorescence, and (1)H nuclear magnetic resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods (Partial Least Squares - PLS) to predict interfacial tension and color in insulating mineral oil samples. Interfacial tension and color were also determined using tensiometry and colorimetry as standard reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was calculated using the selected group of variables according to their importance on PLS projections (VIP). The root mean square errors of prediction (RMSEP) values of 2.9 mN m(-1) and 0.3 were estimated for interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial tension and 6% for color were registered, meeting quality control requirements set by electrical energy companies. The methods proposed in this work are rapid and simple, showing great advantages over traditional approaches, which are slow and environmentally unfriendly due to chemical waste generation. PMID:25127577

  20. NMR spectroscopic characterization of β-cyclodextrin inclusion complex with vanillin

    The inclusion of vanillin by β-cyclodextrin was investigated by 1H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with β-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, Δδobs δfree - δobs of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  1. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  2. NMR spectroscopic characterization of β-cyclodextrin inclusion complex with vanillin

    Pîrnau, Adrian; Bogdan, Mircea; Floare, Calin G.

    2009-08-01

    The inclusion of vanillin by β-cyclodextrin was investigated by 1H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with β-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, Δδobs = δfree - δobs of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  3. NMR spectroscopic characterization of {beta}-cyclodextrin inclusion complex with vanillin

    Pirnau, Adrian; Bogdan, Mircea; Floare, Calin G, E-mail: adrian.pirnau@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The inclusion of vanillin by {beta}-cyclodextrin was investigated by {sup 1}H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with {beta}-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, {Delta}{delta}{sub obs} {delta}{sub free} - {delta}{sub obs} of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  4. The structural environments of cations adsorbed onto clays: A 133CsMAS NMR spectroscopic study

    Chapter One investigates the local structural environment of adsorbed cations on the mineral hectorite using 133Ca Variable-Temperature Magic-Angle-Spinning Nuclear Magnetic Resonance (VT-MAS NMR) spectroscopy. The results show that Cs on hectorite occurs in several distinctly different chemical environments, and that motional averaging of Ca between some of these sites occurs above ∼-40 degree C if water is present in the interlayer. Above ∼-10 degree C, spectra for slurries of hectorite in CsCl solutions yield two peaks, one due to Cs in solution, and the other due to Cs motionally-averaged on the clay. Below ∼-60 degree C, motional averaging of the adsorbed Cs slows sufficiently to allow resolution of two peaks representing different Cs-environments on the clay. The Stern-Gouy model is employed to explain these peaks and assign one to Cs in the Stern layer (relatively tightly bound to the basal oxygens), and the other to Cs in the Gouy diffuse layer. Between ∼-60 and ∼-10 degree C peaks for these two sites and a motionally-averaged peak are present. Cs-exchanged hectorite dehydrated at 500 degree C yields peaks for two different sites on the clay, interpreted to be highly coordinated site (probably 12), and a less coordinated site (possibly 9), both in the interlayer. Chapter II discusses 133Cs MAS NMR results for a number of other Cs-exchanged clays and the relationship of chemical and structural parameters to the 133Cs chemical shift. Increased rotational distortions of the basal oxygen sheet, total layer charge and tetrahedral Al3+ for Si4+ substitution correlate with increased deshielding of the 133Cs chemical shifts for both hydrated slurry and anhydrous samples. Correlations for the slurries are poorer because of the distances between the clay silicate and the CO in solution

  5. Synthesis of Radiation Curable Palm Oil–Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations

    Ashraf M. Salih

    2015-08-01

    Full Text Available Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA from an epoxidized palm oil product (EPOP as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  6. a Combined Molecular Dynamics and NMR Spectroscopic Protocol for the Conformational Analysis of Oligosaccharides.

    Varma, Vikram

    A combined experimental and theoretical protocol for the conformational analysis of oligosaccharides is presented. Three disaccharides, methyl alpha - scD-mannopyranosyl-(1 to 3)-alpha- scD-mannopyranoside, methyl beta- scD-galactopyranosyl-(1 to 4)-beta- scD-glucopyranoside, and propyl beta- scD-2-acetamido -2-deoxy glucopyranosyl-(1 to 3)- alpha- scL-rhamnopyranoside, are used to evaluate a protocol for conformational analysis that makes use of molecular dynamics calculations with the CHARMM force field. Dynamics trajectories computed in vacuo and in water are used to calculate time-averaged NMR parameters such as spin-lattice relaxation times (T_1 ), Nuclear Overhauser Enhancements (NOE), and heteronuclear spin-spin coupling constants (^3J _{rm CH}). The calculated NMR parameters are then compared to experimental values and used to evaluate the computational procedure. The energetically accessible conformations are effectively sampled by the simulations. The method has been extended to the conformational analysis of higher-order oligosaccharides corresponding to the cell-wall polysaccharide of the Streptococcus Group A, and the Shigella flexneri Y O-antigen. The Streptococcus Group A cell-wall polysaccharide is comprised of a backbone of rhamnopyranosyl units connected by alternating alpha- scL-(1 to 3) and alpha- scL -(1 to 2) linkages, to which are attached N-acetyl-beta- scD-glucosamine ( beta- scD-GlcpNAc) residues at the 3 positions of the rhamnose backbone.rm A&rm B^'qquad A^'& rm Bqquad Acr[{-alpha}{-}L{-}Rha {it p}{-}(1to2){-alpha }{-}L{-}Rha{it p} {-}(1to3){-alpha}{ -}L{-}Rha{it p}-(1to2) -alpha-L-Rha{it p}{-}(1 to3){-alpha}{-}L{- }Rha{it p}{-}cr&uparrow(1 to3)&uparrow(1to3)crbeta {-}D{-}&rm Glc{it p }NAcqquadbeta{-}D{-}& rm Glc{it p}NAccr&rm C ^'&rm C] A branched trisaccharide (A^' -(C)B), a tetrasaccharide (A^' -(C)B-A), a pentasaccharide (C^' -B^'-A ^'-(C)B), and two hexasaccharides (C^'-B^ '-A^' -(C)B-A) and (A-(C^')B ^'-A^' -(C)B), have been chosen

  7. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR Spectroscopic-Based Metabonomic Approach

    2006-01-01

    High resolution magic angle spinning (MAS)-1 H nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(NO3)3. Male Wistar rats were liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce(NO3)3 were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce(NO3)3 on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS 1H NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.

  8. Synergistic effect of the simultaneous chemometric analysis of 1H NMR spectroscopic and stable isotope (SNIF-NMR, 18O, 13C) data: Application to wine analysis

    Highlights: • 1H NMR profilings of 718 wines were fused with stable isotope analysis data (SNIF-NMR, 18O, 13C). • The best improvement was obtained for prediction of the geographical origin of wine. • Certain enhancement was also obtained for the year of vintage (from 88 to 97% for 1H NMR to 99% for the fused data). • Independent component analysis was used as an alternative chemometric tool for classification. - Abstract: It is known that 1H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when 1H NMR profiles are fused with stable isotope (SNIF-NMR, 18O, 13C) data. Variable selection based on clustering of latent variables was performed on 1H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with 1H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60–70% correct prediction and 1H NMR data alone in 82–89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for 1H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of 1H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well

  9. Spectroscopic effects in {sup 1}H and {sup 13}C NMR spectra of 4,4`-di-substituted 3,3`-diquinolines sulfides; Efekty spektroskopowe w widmach {sup 1}H i {sup 13}C NMR 4,4`-dwupodstawionych sulfidow 3,3` dichinolinylowych

    Pluta, K. [Katedra i Zaklad Chemii Organicznej, Slaska Akademia Medyczna, Sosnowiec (Poland)

    1994-12-31

    The {sup 1}H and {sup 13}C NMR spectra of 4,4`-disubstituted sulfides of 3,3`-quinolines have been studied in CDCl{sub 3} solutions. The observed spectroscopic effects have been interpreted in terms of molecule structure and configuration. The factors being responsible for the value of spectroscopic effects have been discussed. 11 refs, 3 tabs.

  10. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  11. A comparative study of selected disperse azo dye derivatives based on spectroscopic (FT-IR, NMR and UV-Vis) and nonlinear optical behaviors

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2014-03-01

    In the present work, a combined experimental and quantum chemical study on ground state equilibrium structure, spectroscopic and nonlinear optical properties of selected disperse azo dye molecules are reported. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state, simulated IR spectra and total energy distribution (TED) of vibrational modes. The chemical shifts were determined from the results of observed 1H and 13C NMR spectra in chloroform and dimethylsulfoxide solution. The DFT/gauge-invariant atomic orbital (GIAO) methodology was applied to predict the magnetic properties. Electronic properties were carried out by UV-Vis spectroscopy and TD-DFT/CIS approach. The nonlinear optical (NLO) features were addressed theoretically. A detailed description of spectroscopic and NLO behaviors of studied disperse azo dyes was reported with the help of comparison of experimental measurements and theoretical calculations.

  12. Exploring contributions from incomplete fusion in $^{6,7}$Li+$^{209}$Bi and $^{6,7}$Li+$^{198}$Pt reactions

    Parkar, V V; Kailas, S

    2016-01-01

    We use the breakup absorption model to simultaneously describe the measured cross-sections of the Complete fusion (CF), Incomplete fusion (ICF), and Total fusion (TF) in nuclear reactions induced by weakly bound nuclei $^{6,7}$Li on $^{209}$Bi and $^{198}$Pt targets. The absorption cross-sections are calculated using the Continuum Discretized Coupled Channels (CDCC) method with different choices of short range imaginary potentials to get the ICF, CF and TF cross-sections. It is observed that the cross-sections for deuteron-ICF/deuteron-capture are of similar magnitude as the $\\alpha$-ICF/$\\alpha$-capture, in case of $^{6}$Li projectile, while the cross-sections for triton-ICF/triton-capture is more dominant than $\\alpha$-ICF/$\\alpha$-capture in case of $^{7}$Li projectile. Both these observations are also corroborated by the experimental data. The ratio of ICF to TF cross-sections, which defines the value of fusion suppression factor is found to be in agreement with the data available from the literature. The...

  13. Detection of the inverse pion electroproduction on 7Li nuclei

    The inverse pion electroproduction process on 7Li nucleus, π++7Li→e++e-+X, at the pion kinetic energy of 380 MeV has been detected. The missing mass distribution of the process events is described well assuming that approximately one half of the detected events belongs to the reaction channel producing 7Be nucleus either in the ground state (7Be) or in the excited state (7Be*): π++7Li→e++e-+7Be(7Be*). For this reaction the differential cross section for the electron and positron energies above 70 MeV, for the particles emitted under an angle of about 65 deg in l. s., is d2σ/dΩ2=(1.3+-0.3)x10-32 cm2/sr2

  14. Prospects of lithium enrichment on 7Li isotope by method of controlled ions electro-migration

    Martoyan, G. A.; Kalugin, M. M.; Gabrielyan, A. V.; Martoyan, A. G.

    2016-01-01

    This paper deals with a new electro-membrane method of enrichment of 7Li isotope. The data are presented on the importance and application fields regarding the use of 7Li isotopes. Existing methods and criteria of separation of lithium isotopes are discussed. The principle of new technology, regimes of enrichment experiments, and analysis details of obtained products are briefly described.

  15. Fission fragment mass and angular distribution in 6,7Li+235,238U reactions

    Fission fragment (FF) angular distributions for 6,7Li+235,238U reactions and mass distributions for 6,7Li+ 238U reactions have been measured at energies near and above the Coulomb barrier. The angle integrated fission cross sections for 6Li induced reactions at sub-barrier energies are found to be higher than 7Li induced reactions possibly due to larger contribution of breakup induced fission in case of the former compared to the latter. The FF anisotropy for 6,7Li+235U was found to be smaller than 6,7Li+238U, manifesting the effect of target ground state spin. The statistical saddle point (SSP) model predictions were found to be consistent with the measured FF anisotropy for 6,7Li+235U, however they were under-estimated for 6,7Li+238U particularly at lower energies. Observation of larger FWHM of FF folding angle distribution and sharp increase in peak to valley ratio for FF mass distribution with the decrease in bombarding energy in 6,7Li+238U reactions confirms the presence of breakup induced fission. (authors)

  16. Fission fragment mass and angular distribution in 6,7Li+235,238U reactions

    Santra S.

    2013-12-01

    Full Text Available Fission fragment (FF angular distributions for 6,7Li+235,238U reactions and mass distributions for 6,7Li+238U reactions have been measured at energies near and above the Coulomb barrier. The angle integrated fission cross sections for 6Li induced reactions at sub-barrier energies are found to be higher than 7Li induced reactions possibly due to larger contribution of breakup induced fission in case of the former compared to the latter. The FF anisotropy for 6,7Li+235U was found to be smaller than 6,7Li+238U, manifesting the effect of target ground state spin. The statistical saddle point (SSP model predictions were found to be consistent with the measured FF anisotropy for 6,7Li+235U, however they were under-estimated for 6,7Li+238U particularly at lower energies. Observation of larger FWHM of FF folding angle distribution and sharp increase in peak to valley ratio for FF mass distribution with the decrease in bombarding energy in 6,7Li+238U reactions confirms the presence of breakup induced fission.

  17. Use of 7Li(p,n) reaction as a neutron source in a PGNAA setup.

    Naqvi, A A; Nagadi, M M

    2005-03-01

    The performance of a 7Li(p,n) reaction-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup has been determined for analysis of Portland cement samples using Monte Carlo study. The calculations were carried out for a 7Li(p,n) reaction-based PGNAA setup with an external moderator similar to the one used in a previous 2.8 MeV neutrons-based PGNAA setup. The optimum values of geometry parameters of the 7Li(p,n) reaction-based setup are different from those of the 2.8 MeV neutrons-based setup resulting in better performance of the 7Li(p,n) reaction-based setup. The prompt gamma-ray yield from the 7Li(p,n) reaction-based setup is 60-70% higher than that from the 2.8 MeV neutrons-based setup. Although the performances of the 7Li(p,n) reaction-based setup is comparable with that of a previously studied 3H(p,n) reaction-based setup, yet performance of the 7Li(p,n) reaction-based setup is superior to that of the 3H(p,n) reaction-based setup because it has less radiation hazard due to utilization of non-radioactive neutron producing target. This study has provided a theoretical base for experimental test of a 7Li(p,n) reaction-based PGNAA setup. PMID:15607917

  18. Use of 7Li(p,n) reaction as a neutron source in a PGNAA setup

    The performance of a 7Li(p,n) reaction-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup has been determined for analysis of Portland cement samples using Monte Carlo study. The calculations were carried out for a 7Li(p,n) reaction-based PGNAA setup with an external moderator similar to the one used in a previous 2.8 MeV neutrons-based PGNAA setup. The optimum values of geometry parameters of the 7Li(p,n) reaction-based setup are different from those of the 2.8 MeV neutrons-based setup resulting in better performance of the 7Li(p,n) reaction-based setup. The prompt γ-ray yield from the 7Li(p,n) reaction-based setup is 60-70% higher than that from the 2.8 MeV neutrons-based setup. Although the performances of the 7Li(p,n) reaction-based setup is comparable with that of a previously studied 3H(p,n) reaction-based setup, yet performance of the 7Li(p,n) reaction-based setup is superior to that of the 3H(p,n) reaction-based setup because it has less radiation hazard due to utilization of non-radioactive neutron producing target. This study has provided a theoretical base for experimental test of a 7Li(p,n) reaction-based PGNAA setup

  19. Study of fusion barrier distribution from quasielastic scattering for 6,7Li + 197Au systems

    Earlier we have reported breakup and fusion excitation function measurements in 6,7Li + 197Au systems. In this paper we present the fusion barrier distribution from QEL at backward angles for the same systems, namely, 6,7Li + 197Au

  20. Excitation and decay of 7Li*(4.63) → α + t in the 7Li(αα1)7Li(4.63) and 9Be(dα1)7Li(4.63) reactions in close kinematic conditions

    Angular correlation function (ACF) of alpha particles and tritons from 7Li* (4.63) decay in the d+9Be → α1+7Li*(4.63) → α1+t+α reaction at deuteron energy Ed=13.6 MeV for escape angles Θαlab=45 and 67 deg has been measured. Results of investigation into the α+7Li → α1+7Li*(4.63) → α1+t+d reaction at Eα=27.2 MeV, Θα1lab=30 deg have been used as well. Kinematic conditions for outlet channels of both reactions are identical. An analytical expression for ACF has been derived. The analysis shows that different mechanisms of the first stage of the d+9Be and α+7Li reactions result in differential phase shifts and limits of summing in the formula for ACF and, therefore, in different ACF form

  1. Determination of nuclear reduced transition probabilities by 7Li ion induced Coulomb excitation

    Recently the authors observed that the first excited state of 7Li nucleus was excited in 7Li ion-Cu collision in the energy range 4.9 to 11.9 MeV, and the excitation process was via Coulomb excitation. By using the well known B (E2; g.s. 3-/2 - 478 keV, 1-/2) value of 7Li nucleus and the 7Li induced Coulomb excitation yields of both 7Li projectile and targets, the authors determined the reduced transition probabilities for low-lying states of some medium weight nuclei. The reduced transition probabilities determined this way are free from uncertainties due to target thickness and incident particle collection

  2. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  3. Development of a low resolution (1)H NMR spectroscopic technique for the study of matrix mobility in fresh and freeze-thawed hen egg yolk.

    Au, Carmen; Wang, Tong; Acevedo, Nuria C

    2016-08-01

    Three experiments were conducted in developing a low resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopic technique to study matrix mobility in fresh and freeze-thawed gelled yolk. The Carr-Purcell-Meiboom-Gill (CPMG) sequence was used to measure spin-spin relaxation times of proton pools representing major yolk constituents. A component identification test distinguished 3-4 pools. The least mobile pool was assigned to proteins, protein-lipid and protein-water interactions, and the most mobile to unbound water. The remaining pools were assigned to lipids, lipid-protein and lipid-water interactions. A stability test indicated that yolk had varied matrix mobility within the same sample across five days of refrigeration storage. A reproducibility test demonstrated high repeatability of fresh yolk measurements, but significant differences (p<0.05) were found within gelled yolk samples. This research determined that (1)H NMR spectroscopy, a non-destructive technique, can identify yolk components and detect changes in the matrix. PMID:26988489

  4. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt - NMR, FT-IR and DFT studies

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Regulska, E.; Lewandowski, W.

    2014-01-01

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. The influence of sodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G** method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. 1H and 13C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  5. Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5.

    Rivera, M; Barillas-Mury, C; Christensen, K A; Little, J W; Wells, M A; Walker, F A

    1992-12-01

    The gene coding for the water-soluble domain of the outer mitochondrial membrane cytochrome b5 (OM cytochrome b5) from rat liver has been synthetized and expressed in Escherichia coli. The DNA sequence was obtained by back-translating the known amino acid sequence [Lederer, F., Ghrir, R., Guiard, B., Cortial, S., & Ito, A. (1983) Eur. J. Biochem. 132, 95-102]. The recombinant OM cytochrome b5 was characterized by UV-visible, EPR, and 1H NMR spectroscopy. The UV-visible and EPR spectra of the OM cytochrome b5 are almost identical to the ones obtained from the overexpressed rat microsomal cytochrome b5 [Bodman, S. B. V., Schyler, M. A., Jollie, D. R., & Sligar, S. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9443-9447]. The one-dimensional 1H NMR spectrum of the OM cytochrome b5 indicates that the rhombic perturbation of the ferric center is essentially identical to that in the microsomal beef, rabbit, chicken, and rat cytochromes b5. Two-dimensional 1H NMR spectroscopy (NOESY) and one-dimensional NOE difference spectroscopy were used to assign the contact-shifted resonances that correspond to each of the two isomers that result from the rotation of the heme around its alpha-gamma-meso axis. The assignment of the resonances allowed the determination of the heme orientation ratio in the OM cytochrome b5, which was found to be 1.0 +/- 0.1. It is noteworthy that the two cytochromes b5 that have similar populations of the two heme isomers (large heme disorder) originate from the rat liver. PMID:1333795

  6. NMR spectroscopic and bioinformatic analyses of the LTBP1 C-terminus reveal a highly dynamic domain organisation.

    Ian B Robertson

    Full Text Available Proteins from the LTBP/fibrillin family perform key structural and functional roles in connective tissues. LTBP1 forms the large latent complex with TGFβ and its propeptide LAP, and sequesters the latent growth factor to the extracellular matrix. Bioinformatics studies suggest the main structural features of the LTBP1 C-terminus are conserved through evolution. NMR studies were carried out on three overlapping C-terminal fragments of LTBP1, comprising four domains with characterised homologues, cbEGF14, TB3, EGF3 and cbEGF15, and three regions with no homology to known structures. The NMR data reveal that the four domains adopt canonical folds, but largely lack the interdomain interactions observed with homologous fibrillin domains; the exception is the EGF3-cbEGF15 domain pair which has a well-defined interdomain interface. (15N relaxation studies further demonstrate that the three interdomain regions act as flexible linkers, allowing a wide range of motion between the well-structured domains. This work is consistent with the LTBP1 C-terminus adopting a flexible "knotted rope" structure, which may facilitate cell matrix interactions, and the accessibility to proteases or other factors that could contribute to TGFβ activation.

  7. Elastic scattering of vector polarized 7LiON58Ni

    The elastic scattering of vector polarized 7Li on 58Ni at 20.3 MeV exhibits vector analyzing powers of approximate the same size but of opposite sign as the ones observed for elastic 6Li-58Ni scattering. Present versions of the folding model predict that vector analyzing powers for 7Li should have the same much smaller magnitude than for 6Li scattering. The physical reasons of this observed effect are presently not known. (orig.)

  8. Importance of the tensor interaction in the (/sup 7/Li, /sup 7/Be) reaction

    Dodd, A.C.; Clarke, N.M.; Coopersmith, J.; Griffiths, R.J.; Pearce, K.I.; Stanley, B.; Cook, J.

    1985-09-01

    Data for the /sup 28/Si(/sup 7/Li, /sup 7/Be)/sup 28/Al reaction at 72 MeV and for the /sup 26/Mg(/sup 7/Li, /sup 7/Be)/sup 26/Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions.

  9. The importance of the tensor interaction in the (7Li, 7Be) reaction

    Data for the 28Si(7Li, 7Be)28Al reaction at 72 MeV and for the 26Mg(7Li, 7Be)26Na reaction at 88 MeV are presented together with one-step DWBA calculations using microscopic form factors. The tensor interaction is shown to be important to explain the structureless nature of the angular distributions. (author)

  10. Lines in the spectrum of 7LiH (4728--5298 A)

    The emission spectra of the A1Σ+--X1Σ+ bands of 7LiH were photographed in the 4728A - 5298 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm-1. High purity 7LiH crystals were obtained from Oak Ridge National Laboratory. The atomic percent of 7Li in 7LiH and 7LiD was 99.93 percent. The discharge source was a demountable stainless steel hollow cathode lamp. The lithium hydride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of H2. The discharge was run at about 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of 7LiH are given in this repot 9COO-2326-19). Similar spectra for 6LiH and 6LiD are given in companion reports (COO-2326-17) and (COO-2326-18), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum

  11. NMR spectroscopic and densimetric study of reaction kinetics of formaldehyde polymer formation in water, deuterium oxide, and methanol

    Hahnenstein, I.; Albert, M.; Hasse, H.; Kreiter, C.G.; Maurer, G. (Univ. Kaiserslautern (Germany))

    1995-02-01

    In industrial processes, formaldehyde is mainly handled in aqueous solutions, which often contain methanol. In these solutions, formaldehyde forms predominantly adducts with the solvents. In aqueous solutions, methylene glycol and poly(oxymethylene) glycols are formed, in methanolic solutions hemiformal and poly(oxymethylene) hemiformals. As both the formation of poly(oxymethylene) glycol and of poly(oxymethylene) hemiformal are slow compared to typical residence times in separation equipment, reliable information on kinetics of these reactions is essential for process design. Two independent methods were applied to obtain this information: NMR spectroscopy and high-resolution densimetry. The experiments were carried out at temperatures between 273 and 334 K and pH between 2 and 9. Both for poly(oxymethylene) glycol formation and poly(oxymethylene) hemiformal formation, the minimal reaction rate occurs between pH 3 and 5. At 293 K, the inverse rate constant 1/k at this minimum is about 6 min for poly(oxymethylene) glycol formation and about 110 h for poly(oxymethylene) hemiformal formation. The rate constants determined with NMR spectroscopy and densimetry generally agree well. Previously reported discrepancies between results from both methods are explained by the fact that rate constants of poly(oxymethylene) glycol formation depend strongly on the solvent water or deuterium oxide. Reaction kinetics of poly(oxymethylene) glycol and poly(oxymethylene) hemiformal formation in the mixed-solvent system with water and methanol predicted from results obtained in the single-solvent systems are in good agreement with experimental data.

  12. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-01

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm- 1 and 3500-100 cm- 1 (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. 1H and 13C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. 1H and 13C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules.

  13. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO) investigation and molecular docking study of (R)-2-Amino-1-PhenylEthanol

    Subashini, K.; Periandy, S.

    2016-08-01

    A systematic spectroscopic study of (R)-2-Amino-1-Phenylethanol was carried out using FT-IR, FT-Raman, NMR and UV analysis. FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectrum of the title molecule were recorded in solid phase, the 1H and 13C NMR spectra were recorded in CDCl3 (deuterated chloroform) solution phase and the UV-Vis (200-800 nm) spectrum was recorded in gas phase and ethanol solution phase. Potential energy surface (PES) scan was performed using B3LYP functional with 6-311++G (d, p) basis set. The geometrical parameters (such as bond length, bond angle, dihedral angles) and theoretical frequencies of the title compound were studied from density functional theory (DFT) using B3LYP and B3PW91 functionals with 6-311++G (d, p) basis sets. The computed frequencies were scaled and compared with the experimental values and potential energy distribution (PED) has been tabulated. A comparative study of atomic charges was made by calculating Mulliken, Natural Population Analysis (NPA) and Electrostatic Potential (ESP) simultaneously, with B3LYP/6-311++G (d, p) basis set. 1H and 13C NMR spectra were recorded and chemical shifts were compared to TMS by Gauge-Independent Atomic Orbital (GIAO) method. Electronic properties such as excitation energy, energy gap between HOMO and LUMO was calculated using time dependent DFT technique. NBO analysis, which predicts the different possibilities of electronic transition in the molecule, was computed using B3PW91 functional with 6-311++G (d, p) basis set. The thermodynamic properties such as heat capacity, entropy and enthalpy at different temperatures were computed and analyzed. Molecular docking study shows that the secondary hydroxyl group and the primary amino group in the aliphatic chain attached to the benzene ring are crucial for binding and the title compound might exhibit inhibitory activity against Bacteroides fragilis (3P24) and may act as anti-bacterial agent.

  14. Application of Spectroscopic Techniques (FT-IR, 13C NMR) to the analysis of humic substances in volcanic soils along an environmental gradient (Tenerife, Canary Islands, Spain)

    Rodriguez Rodriguez, Antonio; María Armas Herrera, Cecilia; González Pérez, José Antonio; González-Vila, Francisco Javier; Arbelo Rodríguez, Carmen Dolores; Mora Hernández, Juan Luis; Polvillo Polo, Oliva

    2010-05-01

    Andosols and andic soils are considered as efficient C-sinks in terms of C sequestration. These soils are usually developed from volcanic materials, and are characterized by a predominance of short-range ordered minerals like allophanes, imogolite and other Fe and Al oxyhydroxides. Such materials occur commonly associated with organic compounds, thus generating highly stable organo-mineral complexes and leading to the accumulation of a high amount of organic carbon. Spectroscopic methods like FT-IR and 13C NMR are suitable for the analysis of the chemical structure of soil humic substances, and allow identifying distinct functional groups and protein, lipids, lignin, carbohydrate-derived fragments. In this work we study the structural features of four soils developed on Pleistocene basaltic lavae in Tenerife (Canary Island, Spain), distributed along an altitudinal climatic gradient. The soil sequence comprises soils with different degree of geochemical evolution and andic character, including a mineral ‘Hypersalic Solonchak' (Tabaibal de Rasca), a slightly vitric ‘Luvic Phaeozem' (Los Frailes), a degraded and shallow ‘Endoleptic, fulvic, silandic Andosol' (Siete Lomas), and a well-developed and deep ‘Fulvic, silandic, Andosol' (Ravelo). Samples of the raw soil and humic and fulvic acids isolated from the surface horizons were analyzed. The results show a low content of organic carbon in the mineral soil, the inherited humin predominating, and a very high content of humic and fulvic acids in Andosols. The FT-IR and 13C NMR spectra of the raw soil samples show a low resolution, related to interferences from mineral complexes signals, particularly in soils with lower organic carbon content. 13C NMR shows a predominance of O-alkyl carbon (derived of carbohydrates) in andic soils, whereas O-alkyl and aromatic fractions are most evident in the mineral soil. The humic acids spectra are characterized by a dominance of alkyl and aromatic fractions with a high degree

  15. Spontaneous Lithium Transportation via LiMn2O4/Electrolyte Interface Studied by 6/7Li Solid-State Nuclear Magnetic Resonance

    Highlights: • Spontaneous Li+ exchange between LiMn2O4 and LiPF6-based electrolyte was studied. • 6/7Li solid-state NMR techniques were developed to examine the exchange. • The exchange occurs for stoichiometric LiMn2O4 but not in Li-excess LiMn2O4. • The exchange was approximated by the 1st-order reaction with the rate of 0.024 min-1. • The suppression in Li-excess LiMn2O4 was ascribed to excess amount of Mn4+. - Abstract: Lithium transportation across the interface of LiMn2O4/LiPF6-based electrolyte was studied by 6/7Li solid-state NMR with 6Li-enriched LiPF6. For almost stoichiometric LiMn2O4, we show that exchange of lithium ions occurs across an electrolyte/electrode interface just by immersing LiMn2O4 powder into LiPF6-based electrolyte, while such transportation is suppressed in Li-excess LiMn2O4. The exchange was approximated by the 1st-order reaction, and the rate was estimated from the 6Li/7Li intensities to be 0.024 min−1 at room temperature. The lithium ions penetrated into the surface of a LiMn2O4 particle reach to the core with a time scale of a few hours at room temperature. The suppression of the exchange in Li-excess LiMn2O4 was ascribed to the presence of excess amount of Mn4+

  16. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations.

    Xavier, S; Periandy, S

    2015-10-01

    In this paper, the spectral analysis of 1-phenyl-2-nitropropene is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum mechanical computations using ab-initio and density functional theories. The FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra were recorded in solid phase, the (1)H and (13)C NMR spectra were recorded in CDCl3 solution phase and the UV-Vis (200-800 nm) spectrum was recorded in ethanol solution phase. The different conformers of the compound and their minimum energies are studied using B3LYP functional with 6-311+G(d,p) basis set and two stable conformers with lowest energy were identified and the same was used for further computations. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the modes of vibrations are assigned and the structure the molecule is analyzed in terms of parameters like bond length, bond angle and dihedral angle predicted by both B3LYP and B3PW91 methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non-linear property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for (1)H and (13)C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. PMID:25965169

  17. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  18. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  19. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  20. NMR spectroscopic analysis reveals extensive binding interactions of complex xyloglucan oligosaccharides with the Cellvibrio japonicus glycoside hydrolase family 31 α-xylosidase.

    Silipo, Alba; Larsbrink, Johan; Marchetti, Roberta; Lanzetta, Rosa; Brumer, Harry; Molinaro, Antonio

    2012-10-15

    The study of the interaction of glycoside hydrolases with their substrates is fundamental to diverse applications in medicine, food and feed production, and biomass-resource utilization. Recent molecular modeling of the α-xylosidase CjXyl31A from the soil saprophyte Cellvibrio japonicus, together with protein crystallography and enzyme-kinetic analysis, has suggested that an appended PA14 protein domain, unique among glycoside hydrolase family 31 members, may confer specificity for large oligosaccharide fragments of the ubiquitous plant polysaccharide xyloglucan (J. Larsbrink, A. Izumi, F.M. Ibatullin, A. Nakhai, H.J. Gilbert, G.J. Davies, H. Brumer, Biochem. J. 2011, 436, 567-580). In the present study, a combination of NMR spectroscopic techniques, including saturation transfer difference (STD) and transfer NOE (TR-NOE) spectroscopy, was used to reveal extensive interactions between CjXyl31A active-site variants and xyloglucan hexa- and heptasaccharides. The data specifically indicate that the enzyme recognizes the entire cello-tetraosyl backbone of the substrate and product in positive enzyme subsites and makes further significant interactions with internal pendant α-(1→6)-linked xylosyl units. As such, the present analysis provides an important rationalization of previous kinetic data on CjXyl31A and unique insight into the role of the PA14 domain, which was not otherwise obtainable by protein crystallography. PMID:22961810

  1. Thermally induced rearrangement of hydrogen-bonded helices in solid 4-isopropylphenol as studied by calorimetric, proton NMR, dielectric and near IR spectroscopic methods

    Wójcik, G.; Szostak, M. M.; Misiaszek, T.; Pająk, Z.; Wąsicki, J.; Kołodziej, H. A.; Freundlich, P.

    1999-11-01

    Calorimetric, dielectric and Fourier transform near infrared (IR) spectroscopic methods were used to study molecular dynamics and structural transition in solid 4-isopropylphenol (4IP) above room temperature. Pulse proton nuclear magnetic resonance (NMR) measurements were performed in the 100-340 K temperature range. A phase transition was found at 331.5 K, 1.5 K below the melting point. Energetically inequivalent methyl groups reorientations were observed in differently prepared samples and this suggested that a high-temperature polymorph occurs below the transition point as a metastable phase. Dielectric relaxation measurements showed an electric conductivity similar in value to that in water. This was detected as a pronounced contribution to the imaginary part of dielectric permittivity at temperatures higher than 310 K. Near IR spectra revealed that hydrogen bondings are stronger in the high-temperature phase than in the room-temperature-stable one. We propose that thermally induced molecular rearrangements enable proton transfer in hydrogen bonds (HBs) and this stimulates protonic conduction.

  2. The importance of having different isotopes in NMR/NQR studies

    One of the powers of Nuclear Magnetic Resonance (NMR) as a spectroscopic tool arises from the fact that each stable element of the periodic table (except for Ar and Tc) has at least one isotope that possesses a nuclear magnetic dipole moment and hence can be employed in a NMR experiment. For the benefit of the researcher, 36 elements have even several magnetic isotopes, e.g. H, Li, B, N, Cl, K, Cu, Xe, Ba. Furthermore, there are 62 elements which possess at least one isotope having a nuclear quadrupole moment and thus, in addition to NMR, allow Nuclear Quadrupole Resonance (NQR) experiments. Given this rich supply of isotopes, no wonder that chemical compounds with different isotopes of the same element, for instance H2O and D2O, play an important role in NMR studies. Well known are the structural investigations in liquids by NMR (high-resolution NMR) where, e.g., hydrogen is replaced by deuterium if a certain bond is of special interest. The hydrogen bond studies in ferroelectrics using also deuterium substitution are a typical example from solid-state physics. In our review, we will present less known but representative examples where the NMR study of two isotopes of the same element yields important information on very different characteristic features of the compound (structure, dynamics etc.). We will discuss the following examples: i) Determination of the type of molecular movements of a transient Xe molecule in the gas phase (by using the Xe isotopes 129 Xe and 131 Xe); ii) Classical nature of the isotope effect of the Li diffusion coefficient in Li metal (7 Li and 6 Li in solid Li); iii) Magnetic and electric origin of spin-lattice relaxation and other quantities in cuprate superconductors 63 Cu and 65 Cu); iv) Isotope shift of the temperature of the opening of the spin gap in the superconductor YBa2Cu4O8 (16 O and 18 O exchanged samples). (author)

  3. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.

    Zheng, M; Huang, X; Smith, G K; Yang, X; Gao, X

    1996-11-29

    Recent molecular genetics studies have revealed a correlation between spontaneous, progressive expansion of several DNA trinucleotide repeats and certain hereditary neurodegenerative diseases. Triplet repeat (TR) sequences may be present in structured forms that can mediate the processes interrupting normal cellular replication, transcription, or repair activities, eventually leading to gene mutation. Using high resolution NMR spectroscopy and other biophysical methods, we probed the solution structures and properties of single-stranded TR sequences. These studies have led to the discovery of a new duplex motif (e-motif), present in CCG repeats, and to the elucidation of the structure of the (CTG)3 duplex. In this paper we provide a global picture of the solution behavior of the human disease-related CXG (X = A, C, G, or T) and the comparison GXC (X = A, or T) TR sequences. All six triplet repeats form antiparallel duplexes. The mismatched bases in CAG and CGG repeat duplexes are rather flexible and they do not appear to form stable, paired conformations. By comparison, GAC repeat duplexes and their mismatched A residues are well-structured. Most interestingly, the structures of the disease-related CXG repeats exhibit a propensity for folding at chain lengths as short as 12 residues. Furthermore, the energy barrier for the formation of homo-duplexes from the corresponding complementary hetero-duplexes are much lower for the CXG TR sequences than for the GAC or GTC TR sequences. These results provide insights into the conformation and physiochemical properties of TR sequences. Thus, a basis is provided for further studies of the behavior of long TR sequences in an effort to elucidate the molecular mechanisms of in vivo expansion and function of TR sequences. PMID:8951379

  4. Reactions (d,7Li) and (d,7Be) in 19F nuclei

    Differential cross sections have been measured for the reactions 19F(d,7Li)14N, 19F(d,7Li(/sub 0.478/)14N, 19F(d,7Be)14C, and 19F(d,7Be(/sub 0.429/)14C in a cyclotron beam of deuterons with energy 13.6 MeV. The experimental data were analyzed by the distorted-wave method with inclusion of the finite interaction range and recoil. It is shown that the reactiuns 19F(d,7Li)14N and 19F(d,7Li(/sub 0.478/)14N occur mainly by direct transfer of a 5He cluster from the 4P/sub 1/2/ state of the 19F nucleus to the 1D/sub 3/2/ state of the 7Li nucleus. The differential cross sections for the reactions 19F(d,7Be)14C and 19F(d,7Be(/sub 0.429/)14C could not be explained in terms of the theory of direct transfer of a 5Li cluster

  5. Space distributions and decay probability for excited state of 7Li*(7,45 MeV) in reaction 7Li(alpha, alpha6Li)n

    Differential cross-sections of excitation and decay of 7Li*(7,45 MeV) resonance into 6Li + n channel in three particle reaction 7Li(alpha, alpha6Li)n at alpha-particle energy of 27,2 MeV have been determined in kinematically complete and incomplete experiments. Usage of position sensitive detector made it possible to obtain the data on space distributions of decay events for full range of possible angles and to determine the total probability of this process, which value essentially differs from the data for binary reactions. This result is agreed with previously obtained [1] and confirms the theoretical calculations [2] of decay branching ratio for short lived near-threshold resonances in three particle reactions

  6. Global optical model potentials for symmetrical lithium systems: 6Li+6Li, 7Li+7Li at Elab = 5-40 MeV

    Angular distributions of 6Li+6Li elastic scattering were measured for Elab=5-40 MeV. An optical model analysis of these data together with older data of 7Li+7Li elastic scattering taken at Elab = 8-17 MeV was performed with the aim to search for a ''global'' OM potential which describes elastic scattering in both Li-Li systems in a broad energy range. Both surface and volume absorbing potentials can be found which fulfill this requirement if a linear energy dependence is assumed of the depths of the real as well as the imaginary potential. These depths, if fitted to individual angular distributions, are found to vary in a correlated manner with the beam energy. This is taken as indication of strong coupling between elastic, inelastic, and reaction channels. This is corroborated by the existence of resonances in reaction channels at these energies where the potential depths are most pronouncedly changing. (orig.)

  7. The automatic NMR gaussmeter

    The paper describes the automatic gaussmeter operating according to the principle of nuclear magnetic resonance. There have been discussed the operating principle, the block diagram and operating parameters of the meter. It can be applied to measurements of induction in electromagnets of wide-line radio-spectrometers EPR and NMR and in calibration stands of magnetic induction values. Frequency range of an autodyne oscillator from 0,6 up to 86 MHz for protons is corresponding to the field range from 0.016 up to 2T. Applicaton of other nuclei, such as 7Li and 2D is also foreseen. The induction measurement is carried over automatically, and the NMR signal and value of measured induction are displayed on a monitor screen. (author)

  8. Study on the differential cross sections of the (d, 7Li)-reactions on 13C nuclei

    Differential cross sections of 13C(d, 7Li)8Be and 13C(d, sup(7)Li*sub(0.478))sup(8)Be on 13.6 MeV deuteron cyclotron beam using the ΔExE technique to identify reaction products, in which silicon ΔE detectors, of approximately 5 mk thickness were applied, have been measured. Experimental data have been analyzed according to the Hauser- Feshbach statistical theory and in the approximation of distorted waves with account for finitude of interaction and recoil radius. It is shown that angular distributions of 7Li and sup(7)Li*sub(0.478) ions are described most satisfactorily in the approximation of direct transfer of 5He quasicluster from 2Dsub(1/2) state of 13C nucleus into 2Ssub(3/2) state of 7Li, sup(7)Li*sub(0.478) nuclei

  9. Global optical-model potentials for the elastic scattering of sup(6,7)Li projectiles

    Simultaneous fits have been made to 44 6Li data sets covering the mass range 24-208 and the energy range 13-156 MeV in order to determine an average ('global') optical-model potential for 6Li scattering. A similar study has been made for 25 7Li data sets over the same mass range and an energy range of 28-88 MeV to find an average 7Li potential. With Saxon-Woods factors, constant values may be used for all parameters except for the depth of the imaginary potential which decreases in magnitude with increasing mass. The necessity of energy dependence, Coulomb correction and (for 7Li) a symmetry term is investigated. The variation of the integral properties of the potentials is discussed, and also a comparison is made for the two projectiles. Application of the global potentials is made to inelastic scattering and single-nucleon transfer reactions. (orig.)

  10. 7Li(3He,p)9Be reaction and primordial nucleosynthesis

    The differential cross section for the 7Li(3He, p)9Be reaction has been measured in 50 keV intervals at 8 angles (15deg-160deg) in the energy range from Ec.m.=0.5 to 2.0 MeV, and total cross sections were determined from these data. Since this reaction has been noted as being of possible importance in primordial nucleosynthesis, its astrophysical S-factor was calculated from the data. In addition, the S-factor for the 7Li(3H, n)9Be reaction, also of importance in primordial nucleosynthesis, was estimated from the 7Li(3He, p)9Be data and its thermonuclear reaction rate was calculated. (orig.)

  11. Study of fusion in 6,7Li+197Au near barrier energies

    Excitation functions are measured for complete fusion and transfer reactions of 6Li and 7Li with 197Au at energies around the Coulomb barrier. Coupled channel calculations including the couplings to both target and projectile excited states have been performed and are found to explain the data at energies below the barrier. At above barrier energies the complete fusion cross sections are found to be suppressed compared to the coupled channel calculations for both the systems. A systematic comparison of fusion cross-section for halo nuclei 6,8He and weakly bound stable nuclei 6,7Li on 197Au target is also presented. Large neutron transfer cross-sections are observed for 6,7Li as compared to tightly bound projectiles 12C,16O. (authors)

  12. Breakup mechanisms for 7Li + 197Au, 204Pb systems at sub-barrier energies

    Luong D.H.

    2013-12-01

    Full Text Available Coincidence measurements of breakup fragments were carried out for the 7Li + 197Au and 204Pb systems at sub-barrier energies. The mechanisms triggering breakup, and time-scales of each process, were identified through the reaction Q-values and the relative energy of the breakup fragments. Binary breakup of 7Li were found to be predominantly triggered by nucleon transfer, with p-pickup leading to 8Be → α + α decay being the preferred breakup mode. From the time-scales of each process, the coincidence yields were separated into prompt and delayed components, allowing the identification of breakup process important in the suppression of complete fusion of 7Li at above-barrier energies.

  13. Search for higher excited states of $^{8}$Be* to study the cosmological $^{7}$Li problem

    We would like to study the unresolved $^{7}$Li abundance anomaly by carrying out experiments that destroy the rare isotope $^{7}$Be, the main source of $^{7}$Li. Utilizing a 35 MeV $^{7}$Be beam from HIE-ISOLDE, we would like to measure the (d,p) and (d,d) reactions with T-REX. The higher beam energy, for the first time, would allow us to measure higher excitation energies in $^{8}$Be up to about 20 MeV. With a wider angular coverage, we can make improved average cross-section measurement without assuming isotropy done in earlier works.

  14. Search for a resonant enhancement of the 7Be + d reaction and primordial 7Li abundances

    Big Bang nucleosynthesis calculations, constrained by the Wilkinson Microwave Anisotropy Probe results, produce 7Li abundances almost a factor of four larger than those extrapolated from observations. Since primordial 7Li is believed to be mostly produced by the beta decay of 7Be, one proposed solution to this discrepancy is a resonant enhancement of the 7Be(d,p)2α reaction rate through the 5/2+ 16.7-MeV state in 9B. The 2H(7Be,d)7Be reaction was used to search for such a resonance; none was observed. An upper limit on the width of the proposed resonance was deduced.

  15. Determination of degradation constants of energetic 7*Li ion in liquid media using a thin boron film on silicon wafer

    A novel method to determine degradation constants has been developed for energetic 7*Li ions produced from the 10B (n, α) 7*Li reaction, moving in liquid media. The energetic 7*Li generated in a thin boron film on silicon wafer plunged into a liquid sample in which the wafer was immersed. The degradation constants were determined by analyzing the Doppler-broadened lineshapes of prompt γ-ray at 478 keV emitted from 7*Li. For comparison, degradation constants were also measured for solutions of boron compounds. Values obtained by the two methods gave fair agreement. (author)

  16. In vivo 31P NMR spectroscopic assessment of the endurance and recovery capacity of skeletal muscle: Comparison between the sedentaries and canoe athletes

    In vivo 3P NMR spectroscopic study of forearm wrist flexor muscles was performed in two groups of volunteers composed respectively of 6 sedentaries and 6 canoe athletes. A continuous isometric contraction of endurance exercise was adopted in order to assess the endurance capacity and recovery potential of skeletal muscles. Differences in high energy phosphorus metabolism between the sedentaries and athletes were evaluated with and emphasis on the intracellular pH and Pi/PCr ratio as indicators of high energy phosphorus metabolism, There were no differences of baseline pH and Pi/ PCr ratio between the two groups. The athletes sustained the exercise at a more acidic intracellular pH and at a higher Pi/ PCr radio of intracellular conditions for an all out than did the sedentaries. The recovery rate of pH showed no difference between the two groups. There was a tendency of faster recovery of Pi/ PCr in athletes showing half recovery time (T1/2) of 39.0 ± 3.0 seconds as compared to that of sedentaries (55.7 ± 7.5 seconds). The recovery rate of Pi/ PCr as a function of Pi/ PCr rate at a given period of time was significantly faster in athletes than in sedentaries (P<0.001). The correlation coefficient of the recovery rate of Pi/ PCr against the Pi/ PCr ratio was 0.985 and 0.914 respectively for the athletes and sedentaries. The pH and the Pi/ PCr ratio at an all-out state can be used as indicators of endurance capacity and the recovery rate of Pi/ PCr, as a recovery potential of skeletal muscles

  17. Push-through Direction Injectin NMR Automation

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  18. Design of a 7Li rotating target for neutron production using a Van de Graaff accelerator

    We present a rotating target used for the production of monokinetic neutron fluxes. The neutrons are produced from the 7Li(p,n)7Be reaction for fast neutron elastic and inelastic scattering experiments. This target has been operated with a proton beam current of 8 to 10 μA during six consecutive weeks and has given entire satisfaction

  19. Constraints on Ωb from nucleosynthesis of 7Li in the standard big bang model

    We update standard big bang nucleosynthesis (SBBN) calculations on the basis of recent nuclear physics compilations (NACRE in particular), experimental and theoretical works. By a Monte Carlo technique, we calculate the uncertainties on the light element yields (4He, D, 3He and 7Li) related to nuclear reactions. The results are compared to observations that are thought to be representative of the corresponding primordial abundances. It is found that 7Li could lead to more stringent constraints on the baryonic density of the universe (Ωbh2) than deuterium, because of much higher observation statistics and an easier extrapolation to primordial values. The confrontation of SBBN results with 7Li observations is of special interest since other independent approaches have also recently provided Ωbh2 values: (i) the anisotropies of the cosmic microwave background by the BOOMERANG, CBI, DASI and MAXIMA experiments and (ii) the Lyman-α forest at high redshift. A comparison between these results obtained by different methods provides a test of their consistency and could provide a better determination of the baryonic density in the universe. However, the agreement between Ωbh2 values deduced from SBBN calculation and 7Li observation on the one hand and CMB observations on the other hand is only marginal

  20. THE NEW DETECTIONS OF 7Li/6Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    We have determined the isotopic abundance ratio of 7Li/6Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed ζ Oph for comparison with previous data. The observed abundance ratios were 7Li/6Li = 8.1+3.6-1.8 and 6.3+3.0-1.7 for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within ±2σ error bars and are also consistent with our measurement of 7Li/6Li = 7.1+2.9-1.6 for a cloud along the line of sight to ζ Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of 7Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  1. 7Li nuclear magnetic resonance studies of dynamics in a ternary gel polymer electrolyte based on polymeric ionic liquids

    The influence of the polymeric ionic liquid (PIL) Poly(diallyldimethylammonium bis(trifluoromethylsulfonyl) imide) (PDADMATFSI) on the lithium dynamics was investigated in a ternary gel polymer electrolyte consisting of PDADMATFSI as stabilizing polymer, ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, P14TFSI) and lithium salt (lithium bis(trifluoromethylsulfonyl) imide, LiTFSI). The diffusion coefficient of the lithium ions is investigated by pulsed-field-gradient NMR, the conductivity of the electrolyte is determined by impedance spectroscopy. The local lithium dynamics is characterized by 7Li spin lattice relaxation rates (R1). The relaxation rates are well described by Blombergen-Purcell-Pound (BPP) theory at all polymer concentrations (up to 45 mol%), implying that the Li dynamics is governed by one single motional mode. Interestingly, activation energies for this motion decrease from 20 kJ/mol to 15 kJ/mol with increasing polymer content and are independent on the salt content. We thus conclude that the polymer is interacting with the anion coordination shell, which is accompanied by a very beneficial effect on the local lithium dynamics, as the polymer PDADMATFSI reduces the Li-TFSI interactions. This result is promising for further investigations for potential use of PDADMATFSI-containing gels as electrolytes in energy storage devices

  2. Synergistic effect of the simultaneous chemometric analysis of ¹H NMR spectroscopic and stable isotope (SNIF-NMR, ¹⁸O, ¹³C) data: application to wine analysis.

    Monakhova, Yulia B; Godelmann, Rolf; Hermann, Armin; Kuballa, Thomas; Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred; Rutledge, Douglas N

    2014-06-23

    It is known that (1)H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when (1)H NMR profiles are fused with stable isotope (SNIF-NMR, (18)O, (13)C) data. Variable selection based on clustering of latent variables was performed on (1)H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with (1)H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60-70% correct prediction and (1)H NMR data alone in 82-89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for (1)H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of (1)H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well. PMID:24909771

  3. In situ 7Li and 133Cs Nuclear Magnetic Resonance Investigations on the Role of Cs+ Additive in Lithium-Metal Deposition Process

    Hu, Jian Z.; Zhao, Zhenchao; Hu, Mary Y.; Feng, Ju; Deng, Xuchu; Chen, Xilin; Xu, Wu; Liu, Jun; Zhang, Jiguang

    2016-02-01

    Application of Li metal electrode in rechargeable lithium battery is hindered by safety concerns due to dendritic growth on the electrode over several charge-discharge cycles. We have found previously that adding low concentration Cs+ in electrolytes can promote smooth deposition of lithium onto metal electrode during repeated charge-discharge cycling using idea Li|Cu battery without the using of a separator. In this work, quantitative in situ 7Li and 133Cs NMR investigations using real planar symmetric lithium battery cells with and without Cs+ additives were carried out. It is found that the deposited lithium atoms on electrodes are highly porous. Detailed analysis of the data were carried out by separating the 7Li signal from deposited lithium that was oriented parallel to the electrode surface with the signal from the Li-metal nanorodes oriented perpendicular or nearly perpendicular to the electrode surface. The results demonstrate that addition of Cs+ can significantly enhance both the formation of uniform Li nanorods, and the reversibility of electrode. In situ 133Cs NMR directly confirms that Cs+ migrates to the electrode to form a positively charged electrostatic shield during cycling process. Combining the quantitative analysis of the orientation dependent signals of deposited metal Li and previous ex-situ results, different Li deposition models are proposed. During cycling process, more “active” lithium participates in the Li transfer between the electrode and nanorods for the battery with Cs+, while for the battery without Cs+ more dead and thinker lithium rods are formed and Li transfer between dendrites from different electrodes dominates.

  4. Probing transfer to unbound states of the ejectile with weakly bound 7Li on 93Nb

    Pandit, S K; Mahata, K; Keeley, N; Parkar, V V; Rout, P C; Martel, I; Palshetkar, C S; Kumar, A; Ramachandran, K; Patale, P; Chatterjee, A; Kailas, S

    2016-01-01

    The two-step process of transfer followed by breakup is explored by measuring a rather complete set of exclusive data for reaction channels populating states in the ejectile continua of the $^7$Li+$^{93}$Nb system at energies close to the Coulomb barrier. The cross sections for $\\alpha+\\alpha$ events from one proton pickup were found to be smaller than those for $\\alpha+d$ events from one neutron stripping and $\\alpha+t$ events from direct breakup of $^7$Li. Coupled channels Born approximation and continuum discretized coupled channels calculations describe the data well and support the conclusion that the $\\alpha+d$ and $\\alpha+\\alpha$ events are produced by direct transfer to unbound states of the ejectile.

  5. Role of the cluster structure of 7Li in the dynamics of fragment capture

    Exclusive measurements of prompt γ-rays from the heavy-residues with various light charged particles in the 7Li + 198Pt system, at an energy near the Coulomb barrier (E/Vb∼1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, α- and t-capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two-step process, breakup followed by fusion, in case of the capture of t and α clusters; whereas for 6He+p and 5He+d configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of 7Li in understanding the reaction dynamics at energies around the Coulomb barrier.

  6. Revisiting the 7Li(p,n)7Be reaction near threshold

    In this work we review all the available experimental neutron data for the 7Li(p,n) reaction near threshold which is necessary to obtain an accurate source model for Monte Carlo simulations in Boron Neutron Capture Therapy. Scattered published experimental results such as cross sections, differential neutron yields and total yields were collected and analyzed, exploring the sensitivity of the fitting parameters to the different possible variables and deriving a consistent working set of parameters to evaluate the neutron source near threshold. - Highlights: • We review neutron experimental data for the 7Li(p,n) reaction near threshold. • A new computational method was used to study all the available published data. • A consistent description of the neutron source was derived fitting the available data. • We found that the neutron yield at 0° studied by Kononov is the most sensitive curve. • A consistent set of parameters to parametrize the Breit–Wigner formula is presented

  7. Excitation of continuum states in sup 7 Li and their decay by quantum tunneling

    Utsunomiya, H; Yamagata, T; Ohta, M; Aoki, Y; Hirota, K; Ieki, K; Iwata, Y; Katori, K; Hamada, S; Lui, Y W; Schmitt, R P; Typel, S; Baur, G

    1999-01-01

    Strong forward-backward asymmetries were found in the recent alpha-t coincidence measurement of Coulomb breakup of 42 MeV- sup 7 Li via continuum states. The competition between E1 and E2 multipolarities and higher order effects in Coulomb excitation were investigated by solving the time-dependent Schroedinger equation. It is shown that higher order effects are an essential ingredient to the observed large asymmetries. The relevant reaction mechanism is discussed.

  8. Exploring Light Neutron Rich Nuclei via the (7Li,7Be) Reaction

    A systematic study of the nuclei that can be described as an integer number of α particles plus three neutrons via the (7Li,7Be) reaction at about 8 MeV/u has shown the presence of Bound States Embedded in the Continuum in the energy spectra. These are experimental signatures of the dynamical correlations of an easily polarizable core with a single-particle state of the valence neutron.

  9. An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens

    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by big bang nucleosynthesis (BBN) theory and the Wilkinson Microwave Anisotropy Probe (WMAP) baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2–3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data; in particular, the uncertainty on the reaction rate for3He(α,γ)7Be has reduced to 7.4%, nearly a factor of 2 tighter than previous determinations. (2) The WMAP five-year data set now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects. With these, we now find that the BBN+WMAP predicts7Li/H = (5.24−0.67+0.71) × 10−10. The central value represents an increase by 23%, most of which is due to the upward shift in the3He(α,γ)7Be rate. More significant is the reduction in the7Li/H uncertainty by almost a factor of 2, tracking the reduction in the3He(α,γ)7Be error bar. These changes exacerbate the Li problem; the discrepancy is now a factor 2.4 or 4.2σ (from globular cluster stars) to 4.3 or 5.3σ (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key experimental and astronomical measurements highlighted

  10. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Heusch M.; Ghetta V.; Chabod S.; Brissot R.; Billebaud A.; Méplan O.; Kessedjian G.; Liatard E.

    2010-01-01

    A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2). This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo cal...

  11. New measurement of the 10B(n,α)7 Li through the Trojan Horse Method

    Spartá, Roberta

    2016-04-01

    B(n,α) Li reaction cross section has been measured using the Trojan Horse method, with the specific aim to separate the α1 contribution (coming from the first Li excited level) by the αo (related to the Li ground state), using a very thin target. Preliminary results are shown of the three-body B(d,α7 Li)H cross section.

  12. Synergistic effect of the simultaneous chemometric analysis of {sup 1}H NMR spectroscopic and stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data: Application to wine analysis

    Monakhova, Yulia B., E-mail: yul-monakhova@mail.ru [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012 (Russian Federation); Godelmann, Rolf [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Hermann, Armin [Landesuntersuchungsamt -Institut für Lebensmittelchemie und Arzneimittelprüfung, Emy-Roeder-Straße 1, Mainz 55129 (Germany); Kuballa, Thomas [Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, Karlsruhe 76187 (Germany); Cannet, Claire; Schäfer, Hartmut; Spraul, Manfred [Bruker Biospin GmbH, Silberstreifen, Rheinstetten 76287 (Germany); Rutledge, Douglas N. [AgroParisTech, UMR 1145, Ingénierie Procédés Aliments, 16 rue Claude Bernard, Paris F-75005 (France)

    2014-06-23

    Highlights: • {sup 1}H NMR profilings of 718 wines were fused with stable isotope analysis data (SNIF-NMR, {sup 18}O, {sup 13}C). • The best improvement was obtained for prediction of the geographical origin of wine. • Certain enhancement was also obtained for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data). • Independent component analysis was used as an alternative chemometric tool for classification. - Abstract: It is known that {sup 1}H NMR spectroscopy represents a good tool for predicting the grape variety, the geographical origin, and the year of vintage of wine. In the present study we have shown that classification models can be improved when {sup 1}H NMR profiles are fused with stable isotope (SNIF-NMR, {sup 18}O, {sup 13}C) data. Variable selection based on clustering of latent variables was performed on {sup 1}H NMR data. Afterwards, the combined data of 718 wine samples from Germany were analyzed using linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), factorial discriminant analysis (FDA) and independent components analysis (ICA). Moreover, several specialized multiblock methods (common components and specific weights analysis (ComDim), consensus PCA and consensus PLS-DA) were applied to the data. The best improvement in comparison with {sup 1}H NMR data was obtained for prediction of the geographical origin (up to 100% for the fused data, whereas stable isotope data resulted only in 60–70% correct prediction and {sup 1}H NMR data alone in 82–89% respectively). Certain enhancement was obtained also for the year of vintage (from 88 to 97% for {sup 1}H NMR to 99% for the fused data), whereas in case of grape varieties improved models were not obtained. The combination of {sup 1}H NMR data with stable isotope data improves efficiency of classification models for geographical origin and vintage of wine and can be potentially used for other food products as well.

  13. The 3H(α,γ)7Li reaction at low energies

    The 3H(α,γ) reaction, and its mirror 3He(α,γ) are responsible for 7Li production in the big bang. Discrepancies between experimental data sets, as well as differences between the experimental and theoretical energy dependences, cause the 3H(α,γ)7Li cross section to be uncertain by as much as a factor of two at the relevant astrophysical energies (Ec.m. ∼ 100 keV). The authors report new measurements for 50 c.m. 3H targets and an 85% high-purity germanium detector. Angular distributions were measured at nine energies between 115 and 1200 kev. The astrophysical S-factor is observed to increase moderately with decreasing energy to S(0) ∼ 0.10 keV-b. The branching ratio for captures to the first excited state and ground state of 7Li is found to be ∼0.44, independent of energy. The results are compared to previous experiments and theoretical calculations

  14. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  15. Systematic model-dependent behaviour of fusion involving weakly bound projectiles 6,7Li

    Many measurements on complete fusion (CF) cross section at above barrier energies involving weakly bound stable projectiles (e.g., 6Li, 7Li and 9Be) show suppression by various degrees compared to theoretical estimates as well as experimental CF cross sections of reactions involving strongly bound projectiles. However, there is no concrete picture at sub-barrier energies. The conclusions based on coupled-channels (CC) calculations using different codes (e.g., FRESCO or CCFULL) may differ as the theoretical models used to calculate fusion are not same. In a recent paper on complete fusion in 7Li+152Sm system, the fusion cross sections calculated by CCFULL and FRESCO have been shown to be different despite using same bare potential. It was observed that with the inclusion of only inelastic couplings, the results of FRESCO were much closer to the experimental data in the above barrier region, while the CCFULL results overpredict the data over the entire range. To explore the above observation in different systems involving 6,7Li as projectile, in the present work, a systematic and detailed study has been carried out by means of CC calculations using both FRESCO and CCFULL. The aim is to analyze the differences between the two models of calculations

  16. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.

    Stanke, Monika; Kedziera, Dariusz; Bubin, Sergiy; Adamowicz, Ludwik

    2007-10-01

    Explicitly correlated Gaussian functions have been used to perform very accurate variational calculations for the ground states of (7)Li and (7)Li(-). The nuclear motion has been explicitly included in the calculations (i.e., they have been done without assuming the Born-Oppenheimer (BO) approximation). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. This led to a noticeable improvement of the previously determined variational upper bound to the nonrelativistic energy of Li(-). The Li energy obtained in the calculations matches those of the most accurate results obtained with Hylleraas functions. The finite-mass (non-BO) wave functions were used to calculate the alpha(2) relativistic corrections (alpha=1c). With those corrections and the alpha(3) and alpha(4) corrections taken from Pachucki and Komasa [J. Chem. Phys. 125, 204304 (2006)], the electron affinity (EA) of (7)Li was determined. It agrees very well with the most recent experimental EA. PMID:17919011

  17. Probing the fusion of 7Li with 64Ni at near-barrier energies

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Nanal, V.; Pal, S.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-04-01

    Background: The stable isotopes of Li, 6Li6 and 7Li, have two-body cluster structures of α +d and α +t with α -separation energies or breakup thresholds at 1.47 and 2.47 MeV, respectively. The weak binding of these projectiles introduces several new reaction channels not usually observed in the case of strongly bound projectiles. The impact of these breakup or breakup-like reaction channels on fusion, the dominant reaction process at near-barrier energies, with different target masses is of current interest. Purpose: Our purpose is to explore the fusion, at above and below the Coulmb barrier, of 7Li with 64Ni target in order to understand the effect of breakup or breakup-like processes with medium-mass target in comparison with 6Li, which has a lower breakup threshold. Measurement: The total fusion (TF) excitation of the weakly bound projectile 7Li with the medium-mass target 64Ni has been measured at the near-barrier energies (0.8 to 2 VB). The measurement was performed using the online characteristic γ -ray detection method. The complete fusion (CF) excitation function for the system was obtained using the x n -evaporation channels with the help of statistical model predictions. Results: At the above barrier energies CF cross sections exhibit an average suppression of about 6.5% compared to the one-dimensional barrier penetration model (1DBPM) predictions, while the model describes the measured TF cross section well. But below the barrier, both TF and CF show enhancements compared to 1DBPM predictions. Unlike 6Li, enhancement of CF for 7Li could not be explained by inelastic coupling alone. Conclusion: Whereas the σTF cross sections are almost the same for both the systems in the above barrier region, the suppression of σCF at above the barrier is less for the 7Li+64Ni system than for the 6+64Ni system. Also direct cluster transfer has been identified as the probable source for producing large enhancement in TF cross sections.

  18. NMR study of starch based polymer gel electrolytes: Humidity effects

    In this work, nuclear magnetic resonance spectroscopy (NMR) was used to study the effect of water absorption in polymer gel electrolytes formed by amylopectin rich starch, plasticized with glycerol and containing lithium perchlorate. The position of the 7Li spin-lattice relaxation rate maximum is shifted progressively towards lower temperatures with increasing hydration, reflecting an increase of the lithium mobility. The mechanism responsible for the spin-lattice relaxation of the 7Li nuclei in the gel electrolytes are the fluctuations of the quadrupolar interaction due to the lithium motions. The 7Li relaxation results of the gel electrolyte hydrated with 2.2 water per complex unit suggest that the lithium ions are almost decoupled from the polymer chain and coordinate, hence preferring the water molecules

  19. Sequence variations of in vitro pUC18 plasmid DNA induced by high energy 7Li ion beams implantation

    High energy heavy ion beams is a new mutagen for crop mutation breeding, but limited data are available on the molecular level induced by this mutagen. The in vitro pUC18 plasmid DNA was implanted by 7Li ion beams by doses of 0, 20, 40, 60, 80 and 100Gy, respectively, with the energy of 42.3Mev. The results showed that the damage effects induced by 7Li ion beams implantation was different from low LET rays, even low doses of 7Li ion beam could induce high damage on hydrogen bonds. Percentage of damages on hydrogen bonds of in vitro DNA induced by 7Li ion beams implantation increased with dosage increase up to 40Gy, then reduced with dosage increase, and higher than those of gamma rays in the same dosage. The relationship of dosage and damage percentage was different from that of gamma rays which was positive-linear correlation. Mutation frequency of 7Li ion beam implantation was 1.6 to 4.3 times to that of spontaneous mutation. The relationship of mutation frequency and dosage was similar with that of damage effects on hydrogen bonds, and showed a peak at 40Gy. The above results were identical with biological effects of wheat implanted by 7Li ion beams. Ten mutants were used for sequence analysis, which indicated that the types of base changes included base transversion, transition and deletion. Among all base changes detected, the frequency of bases transition (60%) was higher than that of bases transversion (30%) and bases deletion (10%). It seemed that thymine was more sensitive to the implantation than any other bases and base changes were mainly T→C and C→T. Bases between T and C were seemed to be easily induced by 7Li ion beams. The high percentage of DNA sequence variations could explain primarily the biological effects caused by 7Li ion beams in the M1 generation of crops. (author)

  20. Use of {sup 7}Li(p,n) reaction as a neutron source in a PGNAA setup

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Box No. 1815, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Box No. 1815, Dhahran 31261 (Saudi Arabia)

    2005-03-01

    The performance of a {sup 7}Li(p,n) reaction-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup has been determined for analysis of Portland cement samples using Monte Carlo study. The calculations were carried out for a {sup 7}Li(p,n) reaction-based PGNAA setup with an external moderator similar to the one used in a previous 2.8 MeV neutrons-based PGNAA setup. The optimum values of geometry parameters of the {sup 7}Li(p,n) reaction-based setup are different from those of the 2.8 MeV neutrons-based setup resulting in better performance of the {sup 7}Li(p,n) reaction-based setup. The prompt {gamma}-ray yield from the {sup 7}Li(p,n) reaction-based setup is 60-70% higher than that from the 2.8 MeV neutrons-based setup. Although the performances of the {sup 7}Li(p,n) reaction-based setup is comparable with that of a previously studied {sup 3}H(p,n) reaction-based setup, yet performance of the {sup 7}Li(p,n) reaction-based setup is superior to that of the {sup 3}H(p,n) reaction-based setup because it has less radiation hazard due to utilization of non-radioactive neutron producing target. This study has provided a theoretical base for experimental test of a {sup 7}Li(p,n) reaction-based PGNAA setup.

  1. Implanted $^{7}$Be Targets For The Study of Neutron Interactions With $^{7}$Be : (The "Primordial $^{7}$Li Problem")

    The disagreement of the predicted abundance of primordial $^{7}$Li with the observed abundance is a longstanding problem in Big Bang Nucleosynthesis (BBN) theory (“Primordial $^{7}$Li problem”). While BBN theory correctly predicts the relative abundances of $^{2}$H/$^{1}$H, $^{3}$He/$^{1}$H and $^{4}$He/$^{1}$H (that vary over four orders of magnitudes), but it over-predicts the relative abundance of primordial $^{7}$Li/$^{1}$H by a factor of approximately 3-4 larger than observed (approximately 4-5$\\sigma$ discrepancy). Primordial $^{7}$Li is destroyed during the first 15 minutes primarily via the $^{7}$Li(p,$\\alpha$) reaction. Hence most of the primordial $^7$Li is predicted as the result of the (later when atoms are formed) electron capture $\\beta$-decay of the primordial $^{7}$Be that is produced primarily in the $^{3}$He($\\alpha$,$\\gamma$) )$^{7}$Be reaction. We propose to investigate the direct destruction of $^{7}$Be during (the first 15 minutes of) BBN via the $^{7}$Be(n,$\\alpha$) reaction to ch...

  2. Isoxazole derivatives of alpha-pinene isomers: Synthesis, crystal structure, spectroscopic characterization (FT-IR/NMR/GC-MS) and DFT studies

    Eryılmaz, Serpil; Gül, Melek; İnkaya, Ersin; Taş, Murat

    2016-03-01

    In this paper, the alpha-pinene isoxazole derivatives (3a-b-c, 4a-b) were synthesized via 1,3-dipolar cycloaddition and characterized with FT-IR, 1H NMR, 13C NMR and GC-MS. Isoxazole (C21H23NO) compound (4a) 6,6,7a,-trimethyl-3-(naphthalen-2-yl)-3a,4,5,6,7,7a-hexahydro-5,7-methanobenzo[d] was characterized by X-ray single crystal diffraction technique. The compound crystallizes in the monoclinic space group P 212121, with Z = 4. The molecular geometry of the compound was optimized by applying Density Functional Theory (DFT/B3LYP) method with 6-31G(d,p) and 6-311 + G(d,p) basis sets in the ground state and geometric parameters were compared with the X-ray analysis results of the structure. Results of the experimental FT-IR and NMR spectral analysis were examined in order to determine the compliance with vibrational frequencies, 1H NMR and 13C NMR chemical shifts values by using the Gauge-Independent Atomic Orbital (GIAO) method calculated over the optimized structure. Besides molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behaviour and Mulliken charge analysis of the (4a) compound were computed with the same method in gas phase, theoretically.

  3. Angular Distribution of the 12C(6He, 7Li)11B Reaction

    LI Er-Tao; LI Zhi-Hong; LI Yun-Ju; YAN Sheng-Quan; BAI Xi-Xiang; GUO Bing; SU Jun; WANG You-Bao; WANG Bao-Xiang; LIAN Gang; ZENG Sheng; FANG Xiao; ZHAO Wei-Juan; LIU Wei-Ping

    2009-01-01

    Angular distribution of the 12C(6He, 7Li)11B transfer reaction is measured with a secondary 6He beam of 36.4 Me V for the first time. The experimental angular distribution is well reproduced by the distorted-wave Born approxima-tion (DWBA) calculation. The success of the present experiment shows that it is feasible to measure one-nucleon transfer reaction on a light nucleus target with the secondary beam facility of the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), Beifing.

  4. Phenomenological and microscopic optical potentials for 88 MeV 7Li scattering

    The elastic scattering cross sections for 88 MeV 7Li ions have been measured for targets of 2426Mg and 4048Ca. Analyses using both phenomenological and microscopic optical potentials provide information on the energy dependence of optical parameters, and the extent to which the potentials are determined for these light ions. The use of a double-folding microscopic model demonstrates the need for normalisation of the real potential by a factor of 0.5 in contrast to measurements at lower energies. The contribution of exchange effects, density dependence and break-up are discussed. (author)

  5. Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(I) thiocyanate adducts with bulky monodentate tertiary phosphine ligands.

    Bowmaker, Graham A; Hanna, John V; Hart, Robert D; Healy, Peter C; King, Scott P; Marchetti, Fabio; Pettinari, Claudio; Skelton, Brian W; Tabacaru, Aurel; White, Allan H

    2012-07-01

    A number of adducts of copper(I) thiocyanate with bulky tertiary phosphine ligands, and some nitrogen-base solvates, were synthesized and structurally and spectroscopically characterised. CuSCN:PCy3 (1:2), as crystallized from pyridine, is shown by a single crystal X-ray study to be a one-dimensional polymer ...(Cy3P)2CuSCN(Cy3P)2CuSCN... (1) with the four-coordinate copper atoms linked end-on by S-SCN-N bridging thiocyanate groups. A second form (2), obtained from acetonitrile, was also identified and shown by IR and 31P CPMAS NMR spectroscopy to be mononuclear, with the magnitude of the dν(Cu) parameter measured from the 31P CPMAS and the ν(CN) value from the IR clearly establishing this compound as three-coordinate [(Cy3P)2CuNCS]. Two further CuSCN/PCy3 compounds CuSCN:PCy3 (1:1) (3), and CuSCN:PCy3:py (1:1:1) (4) were also characterized spectroscopically, with the dν(Cu) parameters indicating three- and four-coordinate copper sites, respectively. Attempts to obtain a 1:2 adduct with tri-t-butylphosphine have yielded, from pyridine, the 1:1 adduct as a dimer [(Bu(t)3P)((SCN)(NCS))Cu(PBu(t)3)] (5), while similar attempts with tri-o-tolylphosphine (from acetonitrile and pyridine (= L)) resulted in solvated 1:1:1 CuSCN:P(o-tol)3:L forms as dimeric [{(o-tol)3P}LCu((SCN)(NCS))CuL{P(o-tol)3}] (6 and 8). The solvent-free 1:1 CuSCN:P(o-tol)3 adduct (7), obtained by desolvation of 6, was characterized spectroscopically and dν(Cu) measurements from the 31P CPMAS NMR data are consistent with the decrease in coordination number of the copper atom from four (for 6) (P,N(MeCN)Cu,S,N) to three (for 7) (PCuS,N) upon loss of the acetonitrile of solvation. These results are compared with those previously reported for mononuclear and binuclear PPh3 adducts which demonstrate a clear tendency for the copper centre to remain four-coordinate. The IR spectroscopic measurements on these compounds show that bands in the far-IR spectra provide a much more definitive criterion for

  6. Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy

    Lithium self-diffusion in the low-temperature modification of polycrystalline lithium ortho-silicate Li4SiO4 is investigated by 7Li two-time stimulated echo NMR spectroscopy. Extremely slow Li exchange processes were directly monitored between 300 and 433 K by recording spin-alignment echoes as a function of mixing time varying over six decades from 10-5 to 10 s. In the investigated temperature range the hopping correlation functions show biexponential behaviour. Whereas the first decay step reflects directly Li jumps between electrically different sites, the second one is simply induced by the decay of alignment order due to quadrupolar relaxation. The echo decay rates τ-1 (101 s-1≤τ-1≤104 s-1), which can be identified with Li jump rates, show Arrhenius behaviour with an activation energy of 0.53(1) eV. The directly measured jump rates are in good agreement with those obtained recently by one- and two-dimensional 6Li exchange MAS NMR reported in the literature

  7. Synthesis, structural, and spectroscopic (FT-IR, NMR, and UV) Characterization of 1-(Cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole by experimental techniques and quantum chemical calculations

    Özdemir, Namık; Dayan, Osman; Demirmen, Selin

    2016-05-01

    The title compound ( II), 1-(cyclohexylmethyl)-2-(pyridin-2-yl)-1 H-benzo[ d]imidazole (C19H21N3), was synthesized via N-alkylation of 2-(pyridin-2-yl)-1 H-benzo[ d]imidazole ( I). Both compounds I and II were characterized by IR, NMR and UV-vis spectroscopy. Solid-state structure of compound II was determined by single-crystal X-ray diffraction technique. Furthermore, quantum chemical calculations employing density functional theory (DFT/B3LYP) method with the 6-311++ G( d, p) basis set were performed for the theoretical characterization of the molecular and spectroscopic features of the compounds. Using the TD-DFT method, electronic absorption spectra of the compounds have been predicted at same level. When the obtained results were compared with the experimental findings, it is seen that theoretical results support the experimental data and a good agreement exists between them.

  8. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III

    2004-01-01

    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  9. Monte Carlo modelling of a TLD device containing 7LiF:Mg,Cu,P detectors

    The Monte Carlo code MCNP-4C2 is used to design a new personal thermoluminescence dosemeter that assesses both Hp(10) and Hp(0.07) in mixed photon/electron fields. The new dosemeter utilizes two 7LiF:Mg,Cu,P elements contained within a Harshaw TLD-700H card, itself inside a polypropylene holder with walls 2 mm thick. Several potential designs of holder are considered; the best incorporates a polytetrafluoroethylene cylinder of diameter 18 mm and thickness 4.3 mm that acts as a filter to provide the correct electron cut-off and an acceptably flat Hp(10) relative response to photons, with an open hole in front of the Hp(0.07) element. Response characteristics for both detectors in this final design are presented for irradiation from a variety of angles of interest, with source energies between 16 and 6174 keV used. Comparison is made between modelled and measured data at normal incidence; the relative responses generally agree well. A new estimate for the relative light conversion efficiency relevant to the 7LiF:Mg,Cu,P is also derived and presented

  10. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb–15.7Li

    In the HCLL blanket design, ferritic–martensitic steels are in direct contact with the flowing liquid breeder Pb–15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb–15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA

  11. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb–15.7Li

    Krauss, Wolfgang, E-mail: wolfgang.krauss@kit.edu; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-15

    In the HCLL blanket design, ferritic–martensitic steels are in direct contact with the flowing liquid breeder Pb–15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb–15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  12. Total kinetic energy distribution of fission fragments in 6,7Li + 238U reactions

    The shape and width of fission-fragment (FF) mass and kinetic energy distribution provides a lot of information on the fission reaction mechanism and the structure of the compound nucleus (CN), the fragments as well as the interacting nuclei. The shape of the mass distribution of the fission fragments for the actinides induced by the proton or neutron is known to change with the incident energy. At low energies, it shows a double humped distribution which changes slowly to a single humped distribution as energy increases. However, for a reaction involving a weakly bound projectile (i.e., 6Li + 232Th), a sharp change in the shape of the mass distribution with energy was observed. The sharp increase in the peak to valley ratio (P:V) in the fission-fragment mass distribution in 6Li + 232Th reaction by Itkis et al. and in 6,7Li + 238U reactions by Santra et al. was concluded to be due to the reduced energy transfer to the composite system caused by incomplete fusion (ICF) of alpha or deuteron/triton followed by fissions. Total Kinetic Energy (TKE) distribution of fission fragments is another important observable on which the effect of projectile breakup is not explored yet. In this contribution, the study of breakup/transfer effect on average TKE distribution for 6,7Li + 238U reactions is presented

  13. One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV-Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives

    El-Faham, Ayman; Soliman, Saied M.; Osman, Sameh M.; Ghabbour, Hazem A.; Siddiqui, Mohammed R. H.; Fun, Hoong-Kun; Albericio, Fernando

    2016-04-01

    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R2 = 0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f = 0.1389), 204.2 nm (f = 0.2053), 205.0 (f = 0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.

  14. One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV-Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives.

    El-Faham, Ayman; Soliman, Saied M; Osman, Sameh M; Ghabbour, Hazem A; Siddiqui, Mohammed R H; Fun, Hoong-Kun; Albericio, Fernando

    2016-04-15

    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f=0.1389), 204.2 nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems. PMID:26845586

  15. A novel strategy for site-directed chemical reactions in single stranded DNA--absorption and NMR spectroscopic studies of model compounds.

    Asseline, U; Rozelle, T; Lancelot, G; Thuong, N T

    1992-01-01

    A new and simple model enabling a chemical species to be brought to a preselected site in single strand DNA is reported. Two oligonucleotides containing a propanediol linkage were hybridized to their complementary sequences with an extra-base opposite the propanediol derivative. Absorption studies results shown that the addition of a bisacridine derivative strongly increased the stabilities of both duplexes when added in a 1:1 ratio. NMR studies on one of these duplexes brought evidence of th...

  16. NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by β-Cyclodextrin ( β-CD) and Carboxymethyl- β-cyclodextrin (CM- β-CD)

    β-CD and CM-β-CD as chiral NMR shift agents were used to resolve the enantiomers of noradrenaline (NA). The stoichiometry of each complex formed between the CDs and the enantiomers of NA was found to be 1 : 1 through the continuous variation plots. The binding constants (K) of the complexes were determined from 1H NMR titration curves. This result indicated that both β-CD and CM-β-CD formed the complexes with the S (+)-NA more preferentially than its R(.)-enantiomer. The K values for the complexes with β-CD (KS(+) = 537 M-1 and KR(-) = 516 M-1) was larger than those with CM-β-CD (KS(+) = 435 M-1 and KR(-) = 313 M-1), however, enantioselectivity (α) of S(+)- and R(-)-NA to CM-β-CD (α = 1.38) was larger than that to β-CD (α = 1.04), indicating that CM-β-CD was the better chiral NMR solvating agents for the recognition of the enantiomers of NA. Two dimensional rotating frame nuclear Overhauser enhancement spectroscopy (ROESY) experiments were also performed to explain the binding properties in terms of spatial fitting of the NA molecule into the macrocyclic cavities

  17. Study of the reactions 9Be (d, a0) 7Li, 9Be (d, a1) 7Li*, 9Be (dt)8Be and 9Be (dp0) 10Be from 300 to 1000 keV

    We present the excitation curves, the angular distributions and the total cross-sections for the reactions: 9Be (d α0)7Li, 9Be (d α1)7Li, 9Be (d, t)8Be, 9Be (dp0)10Be, in the energy range from 300 keV to 1 MeV. Our results are in good agreement with the few studies already carried out. In order that the results be presented in absolute values, we have normalized them with those of BIGGERSTAFF. (author)

  18. Study of the {sup 7}Li (p,{alpha}){sup 4}He Reaction at Astrophysical Energies Through the Trojan Horse Method

    Pellegriti, M.G.; Aliotta, M.; Cherubini, S.; Lattuada, M.; Miljanic, D.; Pizzone, R.G.; Romano, S.; Soic, N.; Spitaleri, C.; Zadro, M.; Zappala, R.A.

    2000-12-31

    The Trojan Horse Method has been applied to obtain information about {sup 7}Li(p,{alpha}),{sup 4}He reaction at astrophysical energies. The {sup 7}Li(d,{alpha} n){sup 4}He reaction has been used and the two body reaction cross section for the {sup 7}Li(p,{alpha}){sup 4}He has been extracted together with its astrophysical factor S(E).

  19. Experiment and theory for the reaction 7Li(γ,t)4He for E/sub γ/<50 MeV

    Differential and total cross sections for the 7Li(γ,t)4He reaction were measured. Both real and virtual photons were used in the experiment and gave self-consistent results. The data show a broad resonance indicating the presence of positive parity states near 8 MeV excitation in 7Li. A calculation using an α-3H cluster model of 7Li was also performed. Poor agreement is found between the calculation and experimental results

  20. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-01

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil. PMID:26393239

  1. Covariance analysis of n + 7Li data for ENDF/B-VI

    A new covariance analysis of n/plus/7Li experimental data has been completed for Version VI of ENDFB. The analysis basically updates our 1981 work for ENDFB-V.2 to include new data that has become available since that time and to incorporate cross correlations between different experiments. The bulk of the new measured data consists of some 10 new (or newly revised) tritium-production measurements involving about 70 new data points. The new analysis results in only small changes in the previous evaluation of the tritium-production cross section but significantly reduces the magnitudes of uncertainties due to the more extensive and accurate data base that was used

  2. New method to evaluate the 7Li(p, n)7Be reaction near threshold

    In this work a complete description of the 7Li(p, n)7Be reaction near threshold is given using center-of-mass and relative coordinates. It is shown that this standard approach, not used before in this context, leads to a simple mathematical representation which gives easy access to all relevant quantities in the reaction and allows a precise numerical implementation. It also allows in a simple way to include proton beam-energy spread affects. The method, implemented as a C++ code, was validated both with numerical and experimental data finding a good agreement. This tool is also used here to analyze scattered published measurements such as (p, n) cross sections, differential and total neutron yields for thick targets. Using these data we derive a consistent set of parameters to evaluate neutron production near threshold. Sensitivity of the results to data uncertainty and the possibility of incorporating new measurements are also discussed

  3. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism. (authors)

  4. Beam shaping assembly optimization for 7Li(p,n)7Be accelerator based BNCT

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30 mA at about 2.5 MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the 7Li(p,n)7Be neutron production reaction to obtain neutron beams to treat deep seated tumors. - Highlights: • A Beam Shaping Assembly for accelerator based BNCT has been designed. • A conical port for easy patient positioning and the cooling system are included. • Several configurations can deliver tumor doses greater than 55 RBEGy. • Good tumor doses can be obtained in less than 60 min of irradiation time

  5. Charge and mass distribution in 7Li induced fission of 232Th

    Formation cross sections of about forty fission products have been determined using recoil catcher technique followed by off line gamma-ray spectrometry in 7Li induced fission of 232Th at Elab=41.9, 36.6 and 31.4 MeV. The measured data have been used to deduce charge and mass distributions. Mass distribution is found to be asymmetric at all the three energies. Cross sections of evaporation residues formed in both transfer reactions (232,233,234Pa) as well as in complete fusion (234Np), have also been measured. The measured evaporation residue cross sections and the decay probabilities of target like nuclei (233,234,235Pa) formed in the various transfer reactions, as calculated by PACE2, have been used to estimate the transfer induced fission cross sections. The data indicated that the magnitude of transfer induced fission is very small

  6. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Shrivastava A.

    2013-12-01

    Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.

  7. (1)H NMR spectroscopic elucidation in solution of the kinetics and thermodynamics of spin crossover for an exceptionally robust Fe(2+) complex.

    Petzold, Holm; Djomgoue, Paul; Hörner, Gerald; Speck, J Matthäus; Rüffer, Tobias; Schaarschmidt, Dieter

    2016-09-21

    A series of Fe(2+) spin crossover (SCO) complexes [Fe(5/6)](2+) employing hexadentate ligands (5/6) with cis/trans-1,2-diamino cyclohexanes (4) as central building blocks were synthesised. The ligands were obtained by reductive amination of 4 with 2,2'-bipyridyl-6-carbaldehyde or 1,10-phenanthroline-2-carbaldehyde 3. The chelating effect and the rigid structure of the ligands 5/6 lead to exceptionally robust Fe(2+) and Zn(2+) complexes conserving their structure even in coordinating solvents like dmso at high temperatures. Their solution behavior was investigated using variable temperature (VT) (1)H NMR spectroscopy and VT Vis spectroscopy. SCO behavior was found for all Fe(2+) complexes in this series centred around and far above room temperature. For the first time we have demonstrated that the thermodynamics as well as kinetics for SCO can be deduced by using VT (1)H NMR spectroscopy. An alternative scheme using a linear correction term C(1) to model chemical shifts for Fe(2+) SCO complexes is presented. The rate constant for the SCO of [Fe(rac-trans-5)](2+) obtained by VT (1)H NMR was validated by Laser Flash Photolysis (LFP), with excellent agreement (1/(kHL + kLH) = 33.7/35.8 ns for NMR/LFP). The solvent dependence of the transition temperature T1/2 and the solvatochromism of complex [Fe(rac-trans-5)](2+) were ascribed to hydrogen bond formation of the secondary amine to the solvent. Enantiomerically pure complexes can be prepared starting with R,R- or S,S-1,2-diaminocyclohexane (R,R-trans-4 or S,S-trans-4). The high robustness of the complexes reduces a possible ligand scrambling and allows preparation of quasiracemic crystals of [Zn(R,R-5)][Fe(S,S-5)](ClO4)4·(CH3CN) composed of a 1 : 1 mixture of the Zn and Fe complexes with inverse chirality. PMID:27506162

  8. 19F NMR spectroscopic and relaxation studies of SbF5 and AsF5 intercalated in graphite, graphite fibers, and polyacetylene

    19F NMR spectra are presented for graphite powder reacted with SbF5, NOSbF6, NO2SbF6, graphite fibers reacted with AsF5, and polyacetylene reacted with NOSbF6 and with AsF5. For polyacetylene the linewidths imply rapid rotation and slow diffusion. For the other specimens linewidths imply that both rotation and diffusion are rapid. For SbF5 in graphite an activation enthalpy of 5+-1 kcal/mol is deduced from the observed T1 behavior. (orig.)

  9. Rate of 3H(7Li,n0)9Be and big-bang nucleosynthesis

    The differential cross sections for the 3H(7Li,n0)9Be reaction measured at 5 angles in the energy range E(c.m.)=0.2-0.9 MeV using a pulsed 7Li beam and time-of-flight technique. Absolute values of the cross section were obtained by comparison with the well-known cross section of 3H(d,n)4He at Ed=1.0 MeV. The resulting reaction rates are obtained at temperatures relevant to big-bang nucleosynthesis, and consequences for primordial 9Be abundances are discussed. (orig.)

  10. The reaction 7Li(e,3H)4He,e' between 6 and 15 MeV

    Tritons resulting from the electrodisintegration of 7Li have been measured at 90 deg for an incident electron energy of 23.8 MeV over an energy range which ensured that only tritons emitted in the two-body channel were detected. The electrodisintegration cross sections were converted to equivalent photodisintegration data and compared to earlier results. Large discrepancies are observed. It is found that the (γ,3H) channel contributes appreciably to the electric dipole sum rule for 7Li. (author)

  11. Asymptotic and near-target direct breakup of 6Li and 7Li

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  12. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  13. NMR Studies of Lithium Iodide Based Solid Electrolytes

    Dupree, R.; Howells, R. J.; Hooper, A.;

    1983-01-01

    In mixture of LiI with γAl2O3 the ionic conductivity is found to increase by up to three orders of magnitude over pure LiI. NMR measurements of7Li relaxation times were performed on both anhydrous LiI and a mixture of LiI with 30m/o γAl2O3. The relaxation is found to be purely dipolar in origin f...

  14. Solid-state 51V NMR and infrared spectroscopic study of vanadium oxide supported on TiO2ZrO2

    Vanadium oxide catalyst supported on TiO2-ZrO2 has been prepared by adding Ti(OH)4-Zr(OH)4 powder to an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The characterization of the prepared catalysts was performed using solid-state 51V NMR and FTIR. In the case of calcination temperature at 773 K, vanadium oxide was in a highly dispersed state for the samples containing low loading V2O5 below 25 wt %, but for samples containing high loading V2O5 equal to or above 25 wt %, vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2. The ZrV2O7 compound was formed through the reaction of V2O5 and ZrO2 at 773-973 K, whereas the V3Ti6O17 compound was formed through the reaction of V2O5 and TiO2 at 973-1073 K. The V3Ti6O17 compound decomposed to V2O5 and TiO2 at TiO2 at 1173 K, which were confirmed by FTR and 51V NMR

  15. Solid-state 51V NMR and infrared spectroscopic study of vanadium oxide supported on ZrO2-WO3

    Vanadium oxide catalyst supported on ZrO2-WO3 was prepared by adding the Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using solid-state 51V NMR and FTIR. In the case of calcination temperature at 773 K, for the samples containing low loading V2O5 below 18 wt % vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of ZrO2-WO3. The ZrV2O7 compound was formed through the reaction of V2O5 and ZrO2 at 873 K and the compound decomposed into V2O5 and ZrO2 at 1073 K, which were confirmed by FTIR and 51V NMR

  16. X-ray and 1H-NMR spectroscopic studies of the structures and conformations of the new nootropic agents RU-35929, RU-47010 and RU-35965

    Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio

    1990-10-01

    The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.

  17. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials. PMID:21813258

  18. Post mortem energy metabolism and meat quality of porcine M. longissimus dorsi as influenced by stunning method - A (31)P NMR spectroscopic study.

    Bertram, Hanne Christine; Stødkilde-Jørgensen, Hans; Karlsson, Anders Hans; Andersen, Henrik Jørgen

    2002-09-01

    Post mortem changes in phosphorus metabolites and pH were studied in M. longissimus dorsi from pigs (n=10) stunned either by CO(2) (n=3), electrical (n=2), captive bolt pistol (n=2) or by anesthesia (ketamine) (n=3). (31)P-NMR spectroscopy revealed significant effects of stunning method on changes of the various phosphorus metabolites in the muscle post mortem, with the effect being most pronounced on the degradation of phosphocreatine (PCr). Moreover, the four stunning methods gave rise to large differences in the progress of pH as determined by (31)P-NMR spectroscopy. Using anesthesia as the reference showed that the captive bolt pistol caused the highest rates of post mortem degradation of phosphorus metabolites, electrical stunning intermediate, and CO(2)-stunning causing the lowest post mortem degradation rates, even though CO(2)-stunning also was associated with higher post mortem degradation rates compared with anesthesia. Finally, it was demonstrated that the water-holding capacity (WHC) of the meat was affected by the applied stunning method, as CO(2)-stunning, electrical stunning and captive bolt pistol resulted in mean drip losses of 6.4, 8.3 and 8.6%, respectively (P=0.02). The result displays the significance of induction and progress in post mortem changes on WHC in meat. PMID:22061199

  19. Organometallic derivatives of furan. LII. Synthesis of carbofunctional furylsilanes and their 1H, 13C, and 29Si NMR spectroscopic and quantum-chemical investigation

    Under the standard conditions for the synthesis of furan compounds it is possible to obtain the carbofunctional derivatives of silylated furfural with retention of the trimethylsilyl group in the ring. By NMR and CNDO/2 LCAO MO methods and also as a result of the investigation of the chemical characteristics of silylated furfural and its carbofunctional derivatives it was established that the introduction of a trimethylsilyl group at position 5 of the furan ring does not change the reactivity of the carbofunctional substituents at position 2. The electronic effects of the substituents are hardly transmitted through the furan ring at all. The effect of substituents in the carbofunctional furylsilanes on the electronic structure of the ring is additive

  20. Thermal, conductivity, NMR, and Raman spectroscopic measurements and phase diagram of the Cs2S2O7-CsHSO4 system

    Rasmussen, Søren Birk; Hama, Hind; Lapina, Olga;

    2003-01-01

    The conductivity of the binary system CS2S2O7-CsHSO4 has been measured at 20 different molten compositions in the full composition range and in the temperature range 430-750 K. From the obtained liquidus-solidus phase transition temperatures, the phase diagram has been constructed. It is of the...... from the NMR measurements on CsHSO4, CS2S2O7, and Cs2S2O7-CsHSO4 mixtures. For 11 selected compositions covering the entire composition range of the CS2S2O7-CsHSO4 binary system, the conductivity of the molten state has been expressed by equations of the form k(X) = A(X) + B(X)(T - T-m) + C(X)(T - T...

  1. Primidone - An antiepileptic drug - characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations

    Arjunan, V.; Santhanam, R.; Subramanian, S.; Mohan, S.

    2013-05-01

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR spectra were recorded and the chemical shifts of the molecule were calculated.

  2. Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV-Vis) investigation on benzil dioxime using quantum computational methods

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-03-01

    The spectral analysis of benzil dioxime is carried out using the FTIR, FT Raman, FT NMR and UV-Vis spectra of the compound with the help of quantum computations by density functional theories. The FT-IR (4000 - 400 cm-1) and FT-Raman (4000-100 cm-1) spectra are recorded in solid phase, the 1H and 13C NMR spectra in DMSO phase and the UV spectrum (200-400 nm) in ethanol phase. The different conformers of the compound and their minimum energies are studied by potential energy surface scan, using semi-empirical method PM6. The computed wavenumbers from different methods are scaled so as to agree with the experimental values and the scaling factors are reported. All the fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure the molecule is analyzed interms of parameters like bond length, bond angle and dihedral angles predicted byB3LYP and CAM-B3LYP methods with cc-pVDZ basis sets. The values of dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the molecule are reported, using which the non -linear optical property of the molecule is discussed. The HOMO-LUMO mappings are reported which reveals the different charge transfer possibilities within the molecule. The isotropic chemical shifts predicted for 1H and 13C atoms using gauge invariant atomic orbital (GIAO) theory show good agreement with experimental shifts and the same is discussed in comparison with atomic charges, predicted by Mullikan and APT charge analysis. NBO analysis is carried out to picture the probable electronic transitions in the molecule.

  3. On the hyperfine structures of the ground state(s) in the ${}^{6}$Li and ${}^{7}$Li atoms

    Frolov, Alexei M

    2016-01-01

    Hyperfine structure of the ground $2^{2}S-$states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus we determine the hyperfine structure of the ground (doublet) $2^{2}S-$state(s) in the ${}^{6}$Li and ${}^{7}$Li atoms.

  4. About the reactions 3H(alpha,gamma)7Li and 3He(alpha,gamma)7Be

    In this article the current experimental and theoretical status of the radiative alpha capture reactions 3H(α,γ)7Li and 3He(α,γ)7Be and their relations to primordial nucleosynthesis and the solar neutrino problem are reviewed. (author)

  5. The value of B(E2;3/2- → 1/2-) for 7Li

    Previous experimental information from the Coulomb excitation of the 1/2- first excited state of 7Li is discussed and reanalysed, giving B(E2;3/2- → 1/2-) = 7.59 ± 0.10e2fm4. 28 refs., 3 tabs., 1 fig

  6. The α-continuum from the interaction of 70 MeV polarized 7Li with 54Fe

    The first- and second-rank analysing powers were measured for the α-particle continuum from the interaction of 70 MeV polarized 7Li with 54Fe. The data are consistent with a partial fusion reaction mechanism as the dominant process and can be described by a semiclassical model of analysing powers in transfer reactions. (author)

  7. NMR and impedance studies of nanocrystalline and amorphous ion conductors: lithium niobate as a model system.

    Heitjans, Paul; Masoud, Muayad; Feldhoff, Armin; Wilkening, Martin

    2007-01-01

    Lithium niobate has been chosen as a model system for spectroscopic studies of the influence of different structural forms and preparation routes of an ionic conductor on its ion transport properties. The Li diffusivity in nanocrystalline LiNbO3, prepared either mechanically by high energy ball milling or chemically by a sol-gel route, was studied by means of impedance and solid state 7Li NMR spectroscopy. The Li diffusivity turned out to be strongly correlated with the different grain boundary microstructures of the two nanocrystalline samples and with the degree of disorder introduced during preparation, as seen especially by HRTEM and EXAFS. Although in both samples nanostructuring yields an enhancement of the Li diffusivity compared to that in coarse grained LiNbO3, the Li diffusivity in ball milled LiNbO3 is much higher than in chemically prepared nanocrystalline LiNbO3. The former LiNbO3 sample has a large volume fraction of highly disordered interfacial regions which seem to be responsible for fast Li diffusion and to have a structure very similar to that of the amorphous form. This is in contrast to the chemically prepared sample where these regions have a smaller volume fraction. PMID:17326563

  8. Formation of ultracold 7Li85Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy

    We report the formation of ultracold 7Li85Rb molecules in the a3Σ+ electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ∼62 cm−1 below the 7Li 2s 2S1/2 + 85Rb 5p 2P1/2 asymptote. In addition, we use REMPI spectroscopy to probe the a3Σ+ state and excited electronic 33Π and 43Σ+ states and identify a3Σ+ (v″ = 7–13), 33Π (vΠ′ = 0–10), and 43Σ+ (vΣ′ = 0–5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state

  9. Formation of ultracold (7)Li(85)Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy.

    Altaf, Adeel; Dutta, Sourav; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P; Elliott, D S

    2015-03-21

    We report the formation of ultracold (7)Li(85)Rb molecules in the a(3)Σ(+) electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ∼62 cm(-1) below the (7)Li 2s (2)S1/2 + (85)Rb 5p (2)P1/2 asymptote. In addition, we use REMPI spectroscopy to probe the a(3)Σ(+) state and excited electronic 3(3)Π and 4(3)Σ(+) states and identify a(3)Σ(+) (v″ = 7-13), 3(3)Π (vΠ' = 0-10), and 4(3)Σ(+) (vΣ' = 0-5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state. PMID:25796252

  10. Validity test of the Trojan Horse Method applied to the {sup 7}Li+p{yields} {alpha}+{alpha} reaction via the {sup 3}He break-up

    Tumino, A.; Spitaleri, C.; Sergi, M.L.; Cherubini, S.; La Cognata, M.; Lamia, L.; Romano, S.; Tudisco, S. [Universita di Catania, Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Kroha, V.; Burjan, V.; Novac, J.; Vincour, J. [Nuclear Physics Institute of ASCR, Rez, Prague (Czech Republic); Fueloep, Z.; Somorjai, E. [Institute of Nuclear Research of Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Pizzone, R.G. [INFN Laboratori Nazionali del Sud, Catania (Italy)

    2006-03-15

    The Trojan Horse Method (THM) was applied to the {sup 3}He+{sup 7}Li interaction in order to investigate the quasi-free {sup 7}Li(p,{alpha}){sup 4}He reaction. The three-body experiment was performed at 33 MeV corresponding to a {sup 7}Li-p relative energy ranging from 50 keV to 7 MeV. The extracted {sup 7}Li(p,{alpha}){sup 4}He quasi-free cross-section was compared with the behavior of direct data, as well as with the result of a previous THM investigation on the {sup 7}Li(p,{alpha}){sup 4}He reaction off the neutron in {sup 2}H. A good agreement between data sets shows up throughout the energy range investigated, providing a very important validity test of the pole approximation for the THM. (orig.)

  11. Stepwise substitution of Μ3-Te ligands in octahedral cluster core (Re6Te8)2+: NMR spectroscopic evidence of equilibrium between chemical forms

    High-temperature reactions of the (Re6Te8)Te7 rhenium telluride with elementary sulfur and selenium, leading to formation of substitution solid solutions of the (Re6Te8-xYx)Te7 type, where by Y=S, Se,; 0≤x≤8, are studied. Complex salts of the K4(Re6Te8-xYx)(CN)6 compositions, preserving the cluster nucleus of the source compounds, are synthesized through interaction of the (Re6Te8-xYx)Te7 solid phases with the KCN melt. The salts water solutions are studied through the NMR spectroscopy method on 77Se and 125Te nuclei. Complex spectra for various composition samples are obtained. The additive model applied adequately describes the NMP spectra for all studied samples. The conclusion is made on the basis of the data obtained that the (Re6Te8-xYx)Te7 phases with certain x-values contain practically the set of different chemical forms (with different values), whereby quantitative ratios between them are determined by corresponding equilibrium constants

  12. In Vitro Monitoring of Total Choline Levels in a Bioartificial Pancreas: 1H NMR Spectroscopic Studies of the Effects of Oxygen Level

    Long, Robert C.; Papas, Klearchos K.; Sambanis, Athanassios; Constantinidis, Ioannis

    2000-09-01

    This investigation implements specifically designed solvent-suppressed adiabatic pulses whose properties make possible the long-term monitoring of 1H NMR detectable metabolites from alginate/poly-l-lysine/alginate (APA)-encapsulated βTC3 cells. Our encapsulated preparations were maintained in a perfusion bioreactor for periods exceeding 30 days. During this prolonged cultivation period, the cells were exposed to repetitive hypoxic episodes of 4 and 24 h. The ratio of the total choline signal (3.20 ppm) to the reference signal (observed at 0.94 ppm assigned to isoleucine, leucine, and valine) decreased by 8-10% for the 4-h and by 20-32% for the 24-h episodes and returned to its prehypoxic level upon reoxygenation. The decrease in the mean value of total choline to reference signal ratio for three 4-h and two 24-h episodes in two different cultures was highly significant (P metabolism are suggested. In addition, the implications of these findings to the development of a noninvasive monitoring method for tissue-engineered constructs composed of encapsulated cells are discussed.

  13. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  14. Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide

    Muthu, S.; Uma Maheswari, J.; Sundius, Tom

    2013-05-01

    Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.

  15. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  16. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A 2H-2 and 7Li solid-state MAS NMR study

    Nielsen, Ulla Gro; Grey, Clare P.; Paik, Jonkim

    2008-01-01

    2H and 7LiMAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepiclocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, e...

  17. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR, Theoretical and Microbiological Study of trans o-Coumaric Acid and Alkali Metal o-Coumarates

    Małgorzata Kowczyk-Sadowy

    2015-02-01

    Full Text Available This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR, Raman (FT-Raman, ultraviolet-visible (UV-VIS and nuclear magnetic resonance (1H- and 13C-NMR were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans.

  18. Spectroscopic (FT-IR, FT-Raman, 1H- and 13C-NMR), theoretical and microbiological study of trans o-coumaric acid and alkali metal o-coumarates.

    Kowczyk-Sadowy, Małgorzata; Świsłocka, Renata; Lewandowska, Hanna; Piekut, Jolanta; Lewandowski, Włodzimierz

    2015-01-01

    This work is a continuation of research on a correlation between the molecular structure and electronic charge distribution of phenolic compounds and their biological activity. The influence of lithium, sodium, potassium, rubidium and cesium cations on the electronic system of trans o-coumaric (2-hydroxy-cinnamic) acid was studied. We investigated the relationship between the molecular structure of the tested compounds and their antimicrobial activity. Complementary molecular spectroscopic techniques such as infrared (FT-IR), Raman (FT-Raman), ultraviolet-visible (UV-VIS) and nuclear magnetic resonance (1H- and 13C-NMR) were applied. Structures of the molecules were optimized and their structural characteristics were calculated by the density functional theory (DFT) using the B3LYP method with 6-311++G** as a basis set. Geometric and magnetic aromaticity indices, atomic charges, dipole moments and energies were also calculated. Theoretical parameters were compared to the experimental characteristics of investigated compounds. Correlations between certain vibrational bands and some metal parameters, such as electronegativity, ionization energy, atomic and ionic radius, were found. The microbial activity of studied compounds was tested against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris and Candida albicans. PMID:25689641

  19. Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold

    Transportable accelerator sources of epithermal neutrons are crucial for the development of hospital-based boron neutron capture therapy (BNCT) as a treatment modality for brain cancers. One method for producing such epithermal neutrons is near-threshold (p,n) reactions as studied by our group, as well as several other investigators. As part of this effort, we have developed accurate methods for computing the angular distributions and energy spectra of neutrons from thick targets using the 7Li(p,n)7Be reaction near threshold. Neutron yields are calculated for lithium metal as well as several lithium compounds of low molecular weight. The calculational method is discussed, with emphasis on the improvements over previously published methods. Neutron energy spectra, angular distributions, and total yields for proton beam energies up to 120 keV above threshold are presented. A method is also demonstrated for calculating neutron yields for targets that are not sufficiently thick to slow protons past the reaction threshold

  20. Elastic scattering and fusion cross-sections in 7Li + 27Al reaction

    D Patel; S Santra; S Mukherjee; B K Nayak; P K Rath; V V Parkar; R K Choudhury

    2013-10-01

    With an aim to understand the effects of breakup and transfer channels on elastic scattering and fusion cross-sections in the 7Li + 27Al reaction, simultaneous measurement of elastic scattering angular distributions and fusion cross-sections have been carried out at various energies (lab = 8.0–16.0 MeV) around the Coulomb barrier. Optical model (OM) analysis of the elastic scattering data does not show any threshold anomaly or breakup threshold anomaly behaviour in the energy dependence of the real and imaginary parts of the OM potential. Fusion cross-section at each bombarding energy is extracted from the measured -particle evaporation energy spectra at backward angles by comparing with the statistical model prediction. Results on fusion cross-sections from the present measurements along with data from the literature have been compared with the coupled-channels predictions. Detailed coupled-channels calculations have been carried out to study the effect of coupling of breakup, inelastic and transfer, channels on elastic scattering and fusion. The effect of 1-stripping transfer coupling was found to be significant compared to that of the projectile breakup couplings in the present system.

  1. Coherent photoproduction of π0- and η-mesons off 7Li

    Coherent photoproduction of π0-mesons from threshold (Eth ∼ 136 MeV) throughout the Δ-resonance region and of η-mesons close to the production threshold (Eth ∼ 570 MeV) for η has been measured for 7Li nuclei. The experiment was performed using the tagged-photon beam of the Mainz MAMI accelerator with the Crystal Ball and TAPS detectors combined to give an almost 4 π solid-angle electromagnetic calorimeter. The reactions were identified by a combined invariant-mass and missing-energy analysis. A comparison of the pion data to plane-wave impulse modelling tests the nuclear mass form factor. So far coherent η production had been only identified for the lightest nuclear systems (2H and 3He). For 3He a large enhancement of the cross section above plane-wave approximations had been reported, indicating the formation of a quasi-bound state. The present Li data for η production agree with a plane-wave approximation. Contrary to 3He, neither a threshold enhancement of the total cross section nor a deviation of the angular distributions from the expected form factor dependence were observed. (orig.)

  2. Search for solar axions emitted in the M1-transition of 7Li* with Borexino CTF

    Results of background measurements with a prototype of the Borexino detector were used to search for 478 keV solar axions emitted in the M1-transitions of 7Li*. The Compton conversion of axion to a photon A+e→e+γ, axioelectric effect A+e+Z→e+Z, decay of axion in two photons A→2γ and Primakoff conversion on nuclei A+Z→γ+Z are considered. The upper limit on constants of interaction of axion with electrons, photons and nucleons -gAegAN≤(1.0-2.4) x 10-10 at mA≤450 keV and gAγgAN≤5 x 10-9 GeV-1 at mA≤10 keV are obtained (90%c.l.). For heavy axions with mass at 100AAe-8 and gAγ-9-10-8 are obtained in assumption that gAN depends on mA as for KSVZ axion model. These limits are stronger than obtained in previous laboratory-based experiments using nuclear reactor and artificial radioactive sources. (orig.)

  3. NMR and conductivity study of PEO-based composite polymer electrolytes

    The influence of the space charge created by the presence of TiO2 nanoparticles on the lithium and polymer chain mobility have been investigated in solid composite polymer electrolytes (CPE), poly(ethylene oxide) (PEO) LiClO4, by using complex impedance spectroscopy and nuclear magnetic resonance (NMR). Special care was taken with the synthesis and the characterization of the TiO2 particles and with the composite preparation. The conductivity and NMR measurements were undertaken in composite samples nanoparticles having constant total surface area. Proton (1H) and lithium (7Li) lineshapes and spin-lattice relaxation times were measured as a function of temperature. Activation energies extracted from the 7Li relaxation data are in the range 0.20-0.22 eV. The NMR decoupling experiment suggests that the Li-Li interactions are stronger in the composites when compared with those of the ceramic free electrolytes

  4. The 10B(n,α0)7Li and 10B(n,αlγ)7Li alpha-particle angular distributions, branching ratios and cross-sections measurements for En < 3 MeV

    The 10B(n,α0)7Li and 10B(n,αiγ)7Li angular distributions have been measured at the GELINA time-of-flight spectrometer in the incident neutron energy range from 0.1 keV to 1 MeV by means of a twin Frisch-grid ionization chamber. With this type of detector it is possible to measure the angular distribution of the charged reaction fragments in a close to 2x2π solid angle with ∼100% efficiency and a clear separation of both reaction channels: emission to the 7Li ground state (α0) or to its first excited state (α1). A strong angular anisotropy was observed at ∼ 520 keV. In order to extend the energy range up to 2.5-3 MeV and to measure, also, the reaction cross sections, a double twin Frisch-grid ionization chamber was constructed. It is loaded with two very thin 94% 10B-enriched samples, mounted back-to-back with 235U samples on the common cathodes. New data acquisition, visualization and analysis software is used in a new set of long-term measurements, which are still going on.

  5. The 10B(n,α0)7Li and 10B(n,αlγ)7Li alpha-particle angular distributions, branching ratios and cross-sections measurements for En < 3 MeV

    Hambsch, F. J.; Ruskov, I.; Vidali, M.

    2010-01-01

    The 10B(n,α0)7Li and 10B(n,αiγ)7Li angular distributions have been measured at the GELINA time-of-flight spectrometer in the incident neutron energy range from 0.1 keV to 1 MeV by means of a twin Frisch-grid ionization chamber. With this type of detector it is possible to measure the angular distribution of the charged reaction fragments in a close to 2×2π solid angle with ~100% efficiency and a clear separation of both reaction channels: emission to the 7Li ground state (α0) or to its first excited state (α1). A strong angular anisotropy was observed at ~ 520 keV. In order to extend the energy range up to 2.5-3 MeV and to measure, also, the reaction cross sections, a double twin Frisch-grid ionization chamber was constructed. It is loaded with two very thin 94% 10B-enriched samples, mounted back-to-back with 235U samples on the common cathodes. New data acquisition, visualization and analysis software is used in a new set of long-term measurements, which are still going on.

  6. Signal Processing for Spectroscopic Applications

    Gudmundson, Erik

    2010-01-01

    Spectroscopic techniques allow for studies of materials and organisms on the atomic and molecular level. Examples of such techniques are nuclear magnetic resonance (NMR) spectroscopy—one of the principal techniques to obtain physical, chemical, electronic and structural information about molecules—and magnetic resonance imaging (MRI)—an important medical imaging technique for, e.g., visualization of the internal structure of the human body. The less well-known spectroscopic technique of nucle...

  7. Spin and parity determinations of excited 15N based on polarized and unpolarized 12C(7Li, α)15N reaction data at E lab = 34 MeV

    From an experiment conducted at the Florida State University Accelerator Laboratory with a 34 MeV polarized 7Li beam bombarding a 12C target, we have obtained angular distributions and analyzing powers for states of 15N up to 20 MeV in excitation energy. This study not only offers the possibility to assign spin and parity to several states in 15N, but also serves to obtain nuclear potential parameters used in Distorted Wave Born (DWBA) and Coupled Channel Born (CCBA) Approximations to generate theoretical angular distributions and vector analyzing powers that give the best description of the experimental data. Under the assumption that the reaction mechanism is a three nucleon transfer, the determination of shell model nucleonic configurations and spectroscopic factors is possible for the 15N states studied

  8. Fission products yield in the neutron-induced fission of 232Th using neutrons source from 7Li( p, n)7Be reaction at incident proton energy of 20 MeV

    This paper presents the measurement of fission product yields from the neutron induced fission of 232Th. These measurements were carried out using the neutron source from 7Li (p,n) reaction at TIFR-BARC Pelletron facility. The yields were obtained using activation and off-line gamma ray spectroscopic technique. The fission yields values are reported for twelve fission products. Activated targets were counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. The results obtained from the present work were compared with the similar data of mono-energetic neutrons of comparable energy from literature and are found to be in good agreement

  9. Multinuclear NMR Imaging of Fluid Phases in Berea Sandstone

    Sarkar, S. N.; Dechter, J. J.; Komoroski, R. A.

    Multinuclear NMR of 7Li, 19F, and 1H has been investigated as a method for discriminating multiple fluid phases in porous rock. Good 7Li NMR images from LiCl brine in saturated Berea sandstone were obtained within a few hours at 1 × 1 × 5 mm 3 resolution using a low-TE, 3D volume imaging sequence. At 4.7 T, the 7Li T1 was 750 ms, and T2 was 10 ms. High-quality 19F and 1H images of a model fluorinated injectant (trifluorotoluene) in Berea were obtained at 0.4 × 0.4 × 3 mm 3 resolution in a few hours. Fluorine-19 imaging was found to be easier than 1H imaging due to the narrower 19F resonance and comparable T1 and T2 in Berea sandstone. Lithium-7 and 19F imaging offer alternatives for discriminating aqueous and organic phases unambiguously in flooded oil cores, especially where 1H signals for the two phases are unresolved.

  10. RBEs of thermal neutron beam and the 10B(n,α)7Li reaction on skin in the hamster

    The skin relative biologic effectiveness (RBE) of a thermal neutron beam and the 10B(n,α)7Li reaction were determined by using Syrian (Golden) hamsters and compared with the RBE of a 9-MeV electron beam. The boron used in our experiment was 10B-paraboronophenylalanine (10B-BPA). The Kyoto University Research Reactor was used as the source of thermal neutrons. In the skin dose-response curve, thermal neutron beams produced an almost linear relationship between the maximum skin reaction and the absorbed dose. The RBE obtained in this experimental system was about 2.0. The RBEs of the 14N(n,p)14C and the 10B(n,α)7Li reaction were estimated as 3.1 and about 1.6, respectively, with the assumption that each component of radiation was additive

  11. Simultaneous description of CF, ICF and TF data of 6,7Li + 209Bi reaction using new ICF mode

    The systematic behavior of the fusion suppression factors and ICF probability as a function of target mass is not well understood, despite the CF experimental data being available for a number of projectile-target systems. In our recent paper, a new method was proposed to calculate the ICF probability which is based on absorption cross sections obtained from the CDCC calculations. In continuation of this work, we have also carried out similar calculations for 6,7Li + 209Bi where the experimental data of CF and ICF is available. In the recent paper by Marta et al., the semi-classical model calculations were attempted to understand CF and ICF data for 6,7Li + 209Bi, which was not explaining the data quite well. Here, we have demonstrated the use of quantum mechanical treatment for simultaneous explanation of CF, ICF and TF over a large energy range

  12. Determination of 2> from fission fragment anisotropy for reactions involving weakly bound 6,7Li projectiles

    Fission fragment (FF) angular distributions for 6,7Li+235,238U reactions and FF mass distributions for 6,7Li+238U reactions have been measured at energies around the Coulomb barrier and reported in earlier symposia. The aim is to investigate the effect of projectile breakup on various observables in fission reactions. Due to low breakup threshold there is a probability of breakup of the projectiles which in turn may affect the compound nucleus (CN) formation cross section. In the present study it is proposed to determine the 2 > from the measured fission fragment anisotropy and compare them with the ones obtained from coupled channels calculations to investigate the effect of projectile breakup

  13. AB-BNCT beam shaping assembly based on 7Li(p,n)7Be reaction optimization

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction 7Li(p,n)7Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  14. Preliminary study of the 19F(7Li,7Be)19O reaction at 52 MeV with MAGNEX

    Cavallaro, M; Cappuzzello, F; Carbone, D; Foti, A; Orrigo, S E A; Rodrigues, M R D; Schillaci, M; Borello-Lewin, T; Petrascu, H

    2010-01-01

    The 19F(7Li,7Be)19O charge-exchange reaction at 52 MeV incident energy has been performed at INFN-LNS in Catania using the MAGNEX spectrometer. The use of an algebraic ray-reconstruction technique has allowed to extract the 19O excitation energy spectrum and the experimental angular distributions obtained with a single angular setting of the spectrometer.

  15. Cation and anion dynamics in the fast-ion conducting rotor phase of 7Li2SO4

    Complete text of publication follows. At 848 K, lithium sulfate undergoes a first-order phase transition. The high-temperature cubic a phase is a good cation conductor. At the same time, the oxo-anions are rotationally disordered. There has been a long debate about whether and how the rapid anion reorientation might enhance the canon transport through the crystal. We have performed quasielastic neutron scattering experiments on 7Li2SO4 in order to examine both anion and cation dynamics in this material. At Q -1, the quasielastic linewidth varies as DQ2 where D represents the Li tracer diffusion coefficient. At higher Q, we find a wave-like structure with linewidth maxima at 1.4 A-1 and 2.5 A-1 and a minimum at 1.9 A-1. This behavior is typical of coherent diffusion (7Li scatters both coherently and incoherently). We also see, at higher Q, a (coherent) quasielastic contribution from the oxygen nuclei due to the anion reorientation. Oxygen scattering is also found in the sodium cation conducting rotor phase of Na3PO4 where it is the predominant quasielastic component. Since the quasielastic scattering of 7Li2SO4 contains both cation and anion contributions, we perform classical molecular dynamics studies based on pair potentials from the literature. Results of these simulations are compared to the experimental dynamic structure factors. (author)

  16. Improved information on electron screening in 7Li(p,α)α using the Trojan-horse method

    The available astrophysical S(E) factor data for the reaction 7Li(p,α)α at 10b(E) factor curve for bare nuclides drops below the data, which in turn represent the case of electron-shielded nuclides, i.e. the electron-shielded Ss(E) factor. The comparison between Sb(E) and Ss(E) leads to an electron-screening potential energy Ue=350 eV, which is much higher than the adiabatic limit of 175 eV and not understood at present. The deduced value of Sb(0) is considerably smaller than the previously adopted value of 59 keV b, significantly increasing the calculated abundance of 7Li in big-bang nucleosynthesis. The Trojan-horse method was applied to the reaction 7Li(p,α)α to determine the energy dependence of the Sb(E) factor for 10b(E) curve and suggest that the THM may become a powerful way to obtain improved information on low-energy cross-sections and associated electron-screening effects in a model-independent way. (orig.)

  17. Local structure of LiB3O5 single crystal from 7Li nuclear magnetic resonance

    The local structure of LiB3O5 single crystal was investigated with 7Li (I=3/2) nuclear magnetic resonance measurements. We observed four different spectra, which could be divided into two groups corresponding to two kinds of lithium atoms, LiA and LiB, lying at crystallographically equivalent sites and magnetically inequivalent sites. From these results, the quadrupole coupling constants and the asymmetry parameters were determined at room temperature and are e2qQ/h=143±1 kHz and η=0.6±0.1 for 7Li. The directions of the principal axes of the electric field gradient tensors were also determined. The spectra for the two groups have the same principal values of the electric field gradient tensor, but different orientations, and originate from magnetically inequivalent sites. Also, the 7Li spin-lattice relaxation rate was measured, and the measured relaxation rate was found to be proportional to the temperature. The temperature-dependent single phonon process is considered to be more effective than the Raman process for nuclear quadrupole relaxation. In addition, we discuss the correlation between the asymmetry parameter and the largest nonlinear optical coefficient

  18. Evaluation of chemopreventive response of two cycloxygenase-2 inhibitors, etoricoxib and diclofenac in rat colon cancer using FTIR and NMR spectroscopic techniques Evaluación de la respuesta quimiopreventiva de dos inhibidores de la ciclooxigenasa 2, etoricoxib y diclofenaco en el cáncer de colon murino empleando las técnicas espectroscópicas FTIR Y NMR

    M. Kaur Saini

    2010-08-01

    Full Text Available Non steroidal anti inflammatory drugs (NSAIDs are efficacious in chemoprevention of colorectal cancer. Therefore, the potential ability of Etoricoxib, a selective cycloxygenase-2(COX-2 inhibitor and Diclofenac, a preferential COX-2 inhibitor are considered in the chemoprevention of 1, 2-dimethylhydrazine (DMH induced colon carcinogenesis in rat model. DMH was injected s.c. for six weeks while Etoricoxib and Diclofenac were fed daily orally alone and also in combination with an weekly subcutaneous injection of 1,2-dimethylhydrazine dihydrochloride (DMH to the rats. After the treatment period of 6 weeks the animals were sacrificed by an overdose of ether anesthesia and the colonic tissues were removed and studied by the FTIR and NMR Spectroscopic techniques to evaluate the changes occurring in the lipid bilayer of colonic membrane lipids. The alterations in wave number of FTIR spectra as well as the chemical shifts of NMR spectra were recorded which signify the modulation of membrane lipids during colon carcinogenesis and possible cancer prevention by the oral administration of NSAIDs in an experimental model of chemical induced colon carcinogenesis.Los fármacos antiinflamatorios no esteroideos (AINE son eficaces en la prevención del cáncer colorrectal. Por lo tanto, la capacidad potencial de Etoricoxib, un inhibidor selectivo de la ciclooxigenasa-2(COX-2, y de Diclofenaco, un inhibidor preferencial de la COX-2, se considera en la quimioprevención de la carcinogénesis de colon inducida por 1, 2-dimetilhidracina (DMH en el modelo murino. Se inyectó s.c. DMH durante 6 semanas a la vez que se administraban diariamente por vía oral Etoricoxib y Diclofenaco solos y en combinación con una inyección s.c. semanal de dihidrocloruro de 1,2-dimetilhidracina (DMH a las ratas. Después del período de tratamiento de 6 semanas, se sacrificó a los animales mediante una sobredosis de anestesia con éter y se extirpó el tejido colónico para estudio con

  19. Non-thermal processes in standard big bang nucleosynthesis: II. Two-body disintegration of D, 7Li, 7Be nuclei by fast neutrons

    Continuing the analysis of non-thermal effects in standard big bang nucleosynthesis (JCAP05(2008)010), we examine the role of suprathermal nuclear reactions induced in the early universe plasma by energetic nucleons of various origins. The processes of present interest are break-ups of D, 7Li, 7Be nuclei induced by 14-MeV neutrons generated in the plasma via the T(d, n)4He reaction. It is shown that this reaction forms the ensemble of fast neutrons whose fraction in the plasma neutron component is at the level of 0.01 %. In spite of the small percentage, such neutrons can effectively destroy the loosely bound D, 7Li, 7Be nuclei. It is found that at temperatures T9 7Li dominate over other reactions occurring in the n+D and n+7Li systems. However, the non-thermal neutronic effects prove to be insufficiently strong to modify the standard picture of nucleosynthesis. The D, 3He, 4He abundances are obtained to remain unchanged, and only a little effect is marked for primordial 7Li. The 0.01 % fraction of plasma neutrons (fast DT neutrons) reduces the 7Li abundance by 0.02 %

  20. Spectral flux of the p-7Li(C Q-M neutron source measured by proton recoil telescope

    Simakov S.P.

    2010-10-01

    Full Text Available The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n and 12C(p,n reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample on the spectral flux is discussed in details.

  1. Improved information on electron screening in {sup 7}Li(p,{alpha}){alpha} using the Trojan-horse method

    Aliotta, M.; Rolfs, C.; Strieder, F. [Inst. fuer Physik mit Ionenstrahlen, Ruhr-Universitaet Bochum (Germany); Spitaleri, C.; Lattuada, M.; Musumarra, A.; Pizzone, R.G. [Dipt. di Metodologie Fisiche e Chimiche per l' Ingegneria, Univ. di Catania (Italy); Tumino, A. [Catania Univ. (Italy). Ist. di Astronomia

    2000-12-01

    The available astrophysical S(E) factor data for the reaction {sup 7}Li(p,{alpha}){alpha} at 10=}100 keV, while at lower energies this calculated S{sub b}(E) factor curve for bare nuclides drops below the data, which in turn represent the case of electron-shielded nuclides, i.e. the electron-shielded S{sub s}(E) factor. The comparison between S{sub b}(E) and S{sub s}(E) leads to an electron-screening potential energy U{sub e}=350 eV, which is much higher than the adiabatic limit of 175 eV and not understood at present. The deduced value of S{sub b}(0) is considerably smaller than the previously adopted value of 59 keV b, significantly increasing the calculated abundance of {sup 7}Li in big-bang nucleosynthesis. The Trojan-horse method was applied to the reaction {sup 7}Li(p,{alpha}){alpha} to determine the energy dependence of the S{sub b}(E) factor for 10

  2. Calculation of Double-Differential Cross Sections of n+7Li Reactions Below 20 MeV

    ZHANG Jing-Shang; HAN Ying-Lu

    2002-01-01

    A new reaction model for light nuclei is proposed to analyze the measured data,especially for analysis of the double-differential cross sections of the outgoing particles.Many channels arc opened in the n + 7Li reaction below En< 20 MeV.The reaction mechanism is very complex,beside the sequential emissions there are also three-body breakup processes.Because of a strong recoil effect of light nucleus reactions,the energy balance is strictly taken into account.The comparisons of the calculated results with the double-differential measurements indicate that the model calculations are successful for the total outgoing neutrons.

  3. Angular measurement of the energy distribution of neutrons from the thick target 7Li(p,n)7Be source

    The energy spectrum of neutrons emitted from a thick lithium target bombarded by protons has been measured as a function of neutron angle of emission. The measurements were done at proton energies up to 2.8 MeV and at 30 deg. intervals in the range 0 to 120 deg. using proportional detectors with gas fillings of hydrogen and methane. A review is given of papers published on the 7Li(p,n)7 Be reactions at 0 deg.; where applicable, comparisons are made with the present results

  4. Role of neutron transfer processes on the 6Li+120Sn and 7Li+119Sn fusion reactions

    Fisichella M.

    2015-01-01

    Full Text Available The results concerning the study of 6Li+120Sn and 7Li+119Sn systems are presented. These two sistems are characterised by very similar structures of the interacting nuclei and by different Q-value for one-and two- neutron transfer. Our aim is to disentangle the possible effects due to the different n-transfer Q-values, at sub-barriers energies, by comparing the two fusion excitation function. In these experiments the fusion cross section has been measured by using a stack activation technique. No particular differences in the two fusion excitation functions have been observed.

  5. R-matrix Analysis for the 8Be System and Features in the p+7Li Reaction Over Resonance Region

    Kunieda Satoshi

    2016-01-01

    Full Text Available A comprehensive R-matrix analysis is currently underway for the 8Be compound system toward a consistent evaluation of the p+7Li reaction cross-sections over the resonance energy region. In this analysis, the energy eigenvalues are fixed to the level energies given in ENSDF, and we searched for values of the boundary condition parameters as well as the reduced-width amplitudes. It is found that some additional levels are necessary to fit the resonant shape of experimental cross-sections. Besides, the channel radii obtained may be consistent with well-known physical pictures of the atomic nucleus.

  6. R-matrix Analysis for the 8Be System and Features in the p+7Li Reaction Over Resonance Region

    Kunieda, Satoshi

    2016-06-01

    A comprehensive R-matrix analysis is currently underway for the 8Be compound system toward a consistent evaluation of the p+7Li reaction cross-sections over the resonance energy region. In this analysis, the energy eigenvalues are fixed to the level energies given in ENSDF, and we searched for values of the boundary condition parameters as well as the reduced-width amplitudes. It is found that some additional levels are necessary to fit the resonant shape of experimental cross-sections. Besides, the channel radii obtained may be consistent with well-known physical pictures of the atomic nucleus.

  7. NMR spectroscopic investigations on flavin catalyzed photooxidations

    Feldmeier, Christian

    2015-01-01

    Nature makes broad use of sunlight as an energy source for chemical conversions. In recent years the use of light as a driving force for chemical conversions has gained much attention in synthetic chemistry and the area of photocatalysis has seen rapid advances. These rapid developments in synthetic applications have heightened the need for comprehensive mechanistic pictures of the underlying mechanisms to enable a rational design of photocatalytic systems. Transient absorption spectroscopy h...

  8. 7Li(p-arrow-right,π+)8Li and 7Li(p-arrow-right,π-)8B reactions at T/sub p/ = 200 MeV

    Angular distributions of the cross sections and analyzing powers for the 7Li(p,π/sup +- /) reactions leading to the ground and first two excited states of the isobaric analog final nuclei 8Li and 8B have been measured at T/sub p/ = 200.4 MeV and 199.2 MeV, respectively. The (p,π+) cross sections are an order of magnitude larger than those of the (p,π-) reaction and exhibit a much stronger angular dependence. The (p,π+) analyzing power patterns are essentially state independent and similar to that of the elementary pp→dπ+ reaction near threshold. The analyzing power angular distribution for the 7Li(p,π-) 8B(2.32 MeV, 3+) transition exhibits a ''signature'' characteristic of (p,π-) transitions to stretched high-spin two-particle one-hole final states, which is distinctly different from the pattern observed for transitions to low-spin final states. The differences between the two reactions are interpreted in terms of the dynamics of the elementary pp→dπ+ and pn→ppπ- processes

  9. Using the Doppler broadened γ line of the 10B(n,αγ)7Li reaction for thermal neutron detection

    Ben-Galim, Y.; Wengrowicz, U.; Moreh, R.; Orion, I.; Raveh, A.

    2016-02-01

    When a thermal neutron is absorbed by 10B in the 10B(n,α)7Li reaction, there is a chance of 94% that a 478 keV photon be emitted by an excited 7Li nucleus. This reaction is exothermic with a Q-value of 2.31 MeV and the nuclei are emitted with kinetic energies of E(α)=1.47 MeV and E(7Li*)=0.84 MeV. This implies that the 478 keV γ line is emitted by a moving 7Li nucleus and hence is expected to be Doppler broadened. In the present work we suggest to use this broadening of the γ line as a fingerprint for the detection of thermal neutrons using a high resolution gamma spectrometer. We thus developed a Monte Carlo program using a MATLAB code based on a High Purity Germanium (HPGe) detector coupled with a Boron Carbide (B4C) sheet to calculate the γ line broadening. Our simulation shows that the FWHM width of the resulting γ line is 12.6 keV, in good agreement with our measurement. Hence the broadened γ line emitted by the 10B(n,αγ)7Li reaction and detected by a HPGe detector shows that this method is an effective tool for neutron detection while maintaining good gamma discrimination.

  10. Study of the reactions 6Li(pα)3He, 6Li(dα)4He, 6Li(dp0)7Li and 6Li(dp1)7Li* from 300 keV to 1000 keV

    Experimental results are presented for the four reactions 6Li (pα)3He, 6Li (dα)4He, 6Li (dp0)7Li and 6Li (dp1)7Li* between 300 keV and 1000 keV. The angular distributions, the excitation curves and the total cross-section curves are presented in absolute values. (authors)

  11. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  12. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the 7Li(p,n) reaction

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-7Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, 238U and 232Th fission counters, 7LiF and natLiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10-4 eV and the energy of peak neutrons generated by the 7Li(p,n) reaction. (author)

  13. Compact NMR

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  14. Compact NMR

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  15. Helium Bubbles Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behaviour in HCLL Breeding Channels

    COMPU task is devoted to develop a Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle for HCLL and HCPB blanket lines for DEMO. At the actual stage of definition of HCLL blanket design line this global objective requires to progress specifically on the physical reliability of tritium transport assessments at blanket design level. A rough reliability assessment with the identify cation of physical phenomena determining permeation rates into the coolant was tentatively advanced in COMPU Task Deliverable 1. In HCLL design, the tritium diffusion in the alloy under the flow conditions and radiation effects in Pb15.7Li can be theoretically justifies ed as the rate limiting processes for tritium transfer into the coolant. This Deliverable 2 focuses on the analysis of a specific radiation effect: the potential role of helium bubbles in Pb15.7Li, the discussion of its implications on tritium assessment for HCLL design and consequently the analysis of its quantitative impact (as cycle input) on HCLL PFD tritium cycle design. Thus, the contents of this report investigate: (1) the rationality of the consideration on HCLL design of helium bubble cavitation phenomena in irradiated Pb15.7Li channels on the base of fundamental analysis (He solution states in Pb15.7Li) from empirical clues provided by Pb15.7Li irradiation tests, (2) a preliminary rough He-bubble cavitation design assessment and bases for a more precise FEM calculation for helium bubble cavitation phenomena in HCLL blanket channels, (3) the analysis of direct experimental data and numerical developments needed for a precise cavitation assessment and (4) a proposal of the lay-out and general specifications of an integral proof-of-principle Cavitation Experiment (Cevitex) of Helium in Pb15.7Li. (Author) 40 refs

  16. Helium Bubbles Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behaviour in HCLL Breeding Channels

    Sedano, L. A.

    2007-09-27

    COMPU task is devoted to develop a Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle for HCLL and HCPB blanket lines for DEMO. At the actual stage of definition of HCLL blanket design line this global objective requires to progress specifically on the physical reliability of tritium transport assessments at blanket design level. A rough reliability assessment with the identify cation of physical phenomena determining permeation rates into the coolant was tentatively advanced in COMPU Task Deliverable 1. In HCLL design, the tritium diffusion in the alloy under the flow conditions and radiation effects in Pb15.7Li can be theoretically justifies ed as the rate limiting processes for tritium transfer into the coolant. This Deliverable 2 focuses on the analysis of a specific radiation effect: the potential role of helium bubbles in Pb15.7Li, the discussion of its implications on tritium assessment for HCLL design and consequently the analysis of its quantitative impact (as cycle input) on HCLL PFD tritium cycle design. Thus, the contents of this report investigate: (1) the rationality of the consideration on HCLL design of helium bubble cavitation phenomena in irradiated Pb15.7Li channels on the base of fundamental analysis (He solution states in Pb15.7Li) from empirical clues provided by Pb15.7Li irradiation tests, (2) a preliminary rough He-bubble cavitation design assessment and bases for a more precise FEM calculation for helium bubble cavitation phenomena in HCLL blanket channels, (3) the analysis of direct experimental data and numerical developments needed for a precise cavitation assessment and (4) a proposal of the lay-out and general specifications of an integral proof-of-principle Cavitation Experiment (Cevitex) of Helium in Pb15.7Li. (Author) 40 refs.

  17. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  18. New method to evaluate the {sup 7}Li(p, n){sup 7}Be reaction near threshold

    Herrera, María S., E-mail: herrera@tandar.cnea.gov.ar [Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, Buenos Aires B1650KNA (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ (Argentina); Escuela de Ciencia y Tecnología, UNSAM, 25 de Mayo y Francia, Buenos Aires B1650KNA (Argentina); Moreno, Gustavo A. [YPF Tecnología, Baradero S/N, Buenos Aires 1925 (Argentina); Departamento de Física J. J. Giambiagi, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires 1428 (Argentina); Kreiner, Andrés J. [Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, Buenos Aires B1650KNA (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ (Argentina); Escuela de Ciencia y Tecnología, UNSAM, 25 de Mayo y Francia, Buenos Aires B1650KNA (Argentina)

    2015-04-15

    In this work a complete description of the {sup 7}Li(p, n){sup 7}Be reaction near threshold is given using center-of-mass and relative coordinates. It is shown that this standard approach, not used before in this context, leads to a simple mathematical representation which gives easy access to all relevant quantities in the reaction and allows a precise numerical implementation. It also allows in a simple way to include proton beam-energy spread affects. The method, implemented as a C++ code, was validated both with numerical and experimental data finding a good agreement. This tool is also used here to analyze scattered published measurements such as (p, n) cross sections, differential and total neutron yields for thick targets. Using these data we derive a consistent set of parameters to evaluate neutron production near threshold. Sensitivity of the results to data uncertainty and the possibility of incorporating new measurements are also discussed.

  19. The photonuclear reaction 7Li(γ, t)α and the model of light cluster interaction

    The characteristic of photonuclear reaction 7Li(γ, t)α have been computed in different αt-cluster models. Two pure attractive αt-potentials and two their spectrum- and phase-equivalent supersymmetric partners with repulsive core were used. Both an ordinary two-cluster model and the orthogonality conditions model by Saito have been applied. The process amplitude has been calculated in coordinate representation based on multipole expansion of wave functions and transition operator. Both for states of the continuous spectrum and for bound state, the wave functions of relative motion in the αt-system are computed directly from the Schroedinger equation. The sensitivity of the reaction characteristics to the choice of model and potential is revealed. The Saito model and potentials with no repulsive core provide somewhat better description of experimental data

  20. Analysis of diffractive features in elastic scattering of {sup 7}Li by different target nuclei at different energies

    Badran, R. I.; Masri, Dana Al [Physics Department, Faculty of Sciences, The Hashemite University, Zarqa (Jordan)

    2013-12-16

    The diffractive features of angular distribution have been investigated by analyzing the experimental data for a set of elastic scattering processes of {sup 7}Li by different target nuclei at different laboratory energies. Both Frahn-Venter and McIntyre models are used to analyze experimental data of angular distribution for elastic scattering processes. The theoretical models can reasonably reproduce the general pattern of the data. Some geometrical parameters for colliding nuclei have been obtained from the elastic scattering processes. It is found that interpretation of the diffractive features of the data is model-independent. The values of extracted parameters, from adopted models, are found comparable to each other and to those of others. The total reaction cross section is correlated to the incident laboratory energy for each scattering and values of total reaction cross section are found comparable with those of others.

  1. Elastic and inelastic angular distributions of the 7Li+120Sn system for energies near the Coulomb barrier

    Zagatto, V. A. B.; Oliveira, J. R. B.; Gasques, L. R.; Alcántara-Núñez, J. A.; Duarte, J. G.; Aguiar, V. P.; Medina, N. H.; Seale, W. A.; Pires, K. C. C.; Freitas, A.; Lubian, J.; Shorto, J. M. B.; Genezini, F. A.; Rossi, E. S., Jr.

    2016-06-01

    The reaction of 7Li+120Sn has been measured at bombarding energies of 21, 24 and 27 MeV. The {2}+\\to {0}+ γ -ray transition in 120Sn was observed and the angular distribution for the 2+ excited state was obtained. Coupled channels and coupled-reaction channels calculations, including the dynamical polarization potential due to the projectile break-up, obtained from continuum discretized coupled channel calculations, were performed. The comparison between the existing experimental elastic angular distribution with the coupled-reaction channels calculations indicates that the 1n stripping transfer is the most intense channel to be coupled and the 2n stripping reaction occurs sequentially rather than directly, however, further data must be analyzed to confirm this indication. The experimental elastic and inelastic scattering data were well described by the calculations, but some discrepancies in these channels may indicate the need for corrections to the nuclear potential and/or the necessity to incorporate further channels.

  2. Separation of no-carrier-added 62Zn from 7Li irradiated cobalt target using calcium alginate beads

    A 59Co target was irradiated with 47 MeV 7Li, which produced NCA 62Zn in the target matrix. NCA 62Zn was separated from the target matrix by adsorption on calcium alginate beads kept in HNO3 solutions of different pH values (1-6). The optimum separation condition was achieved at pH 5, where ∼83% NCA 62Zn was adsorbed on the alginate beads along with some contamination from the bulk Co. The complete separation of 62Zn from the bulk was achieved on desorbing Co from the beads with 0.1 M NaNO2. The remaining 62Zn was separated on re-adsorption under the same condition. (author)

  3. R-matrix analysis of reactions in the 9B compound system applied to the 7Li problem in BBN

    Paris, M.; Hale, G.; Hayes-Sterbenz, A.; Jungman, G.

    2016-01-01

    Recent activity in solving the ‘lithium problem’ in big bang nucleosynthesis has focused on the role that putative resonances may play in resonance-enhanced destruction of 7Li. Particular attention has been paid to the reactions involving the 9B compound nuclear system, d+7Be → 9B. These reactions are analyzed via the multichannel, two-body unitary R-matrix method using the code EDA developed by Hale and collaborators. We employ much of the known elastic and reaction data, in a four-channel treatment. The data include elastic 3He +6Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6Li(3He,p)8Be* and from 0.4 to 5.0 MeV for the 6Li(3He,d)7Be reaction. Capture data have been added to an earlier analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6Li(3He,γ)9B. The resulting resonance parameters are compared with tabulated values, and previously unidentified resonances are noted. Our results show that there are no near d+7Be threshold resonances with widths that are 10’s of keV and reduce the likelihood that a resonance-enhanced mass-7 destruction mechanism, as suggested in recently published work, can explain the 7Li problem.

  4. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. PMID:27054702

  5. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-01

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311 ++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.

  6. Breakup of 42 MeV 7Li projectiles in the fields of 12C and 197Au nuclei

    Dhruba Gupta; C Samanta; R Kanungo; P Basu; Subinit Roy; S Kailas; A Chatterjee; B J Roy; K Mahata; A Samant; A Shrivastava

    2001-07-01

    Inclusive cross sections of particles and tritons from the breakup of 42 MeV 7Li by 12C and 197Au targets are presented and analysed in the framework of the Serber model. Spectral distortions due to the targets and relevant reaction mechanisms are discussed.

  7. The 3He(alpha, gamma)7Be reaction rate, solar 7Be and 8B neutrino fluxes, and the production of 7Li during the Big Bang

    The 3He(α,γ)7Be reaction plays an important role both in determining the predicted fluxes of 7Be and 8B neutrinos from our Sun, and in the calculation of primordial 7Li production. In light of the highly precise determination of the baryon-to-photon ratio from the cosmic microwave background data, it is necessary to re-determine primordial 7Li production. Recent experimental nuclear astrophysics work has led to an improved determination of the 3He(α,γ)7Be cross section, with several experiments clustered at E = 0.5 MeV center-of-mass energy and above [2, and references therein]. On the other hand, precisely calibrated 7Be and 8B neutrino fluxes from the Sun are now available. Assuming the accepted solar central temperature to be correct, the neutrino flux data can be used to determine the 3He(α,γ)7Be cross section at the solar Gamow peak, E = 0.03 MeV. The energy range relevant for Big Bang 7Li production lies just between 0.03 and 0.5 MeV. The poster aims to use the two above described levels in order to improve the precision of the predicted primordial abundance of 7Li. It updates a previous work that appeared before the new cross section, solar neutrino and microwave background data were available. (author)

  8. Electrical conductivity, differential scanning calorimetry, X-ray diffraction, and 7Li nuclear magnetic resonance studies of n-CxH(2x+1)OSO3Li (x = 12, 14, 16, 18, and 20)

    Electrical conductivity (σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C xH(2x+1)OSO3Li (x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C xH(2x+1)OSO3Na and n-C xH(2x+1)OSO3K (x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (ΔS). For n-C 18H37OSO3Li and n-C 20H41OSO3Li salts, each melting point produced a small ΔSmp value compared with the total entropy change in the solid phases (ΔStr1+ΔStr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18H37OSO3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals

  9. 1H, 13C and 31P-NMR spectroscopic study of glucose metabolism of muscle larva Trichinella spiralis (U.S.A. strain), and the effects of the end-products on the host (mouse)

    1H- and 13C-nuclear magnetic resonance (NMR) spectroscopy was used to identify and quantitate metabolites excreted by muscle larva Trichinella spiralis maintained aerobically in the presence of D- (13C6) glucose and (1, 1'-13C2) succinate. End-products of glucose metabolism studied by 1H-NMR were lactate, acetate, succinate, proionate, n-valerate and alanine, at the molar ratio of 1:2:1:0.6:0.5:0.6. 13C-NMR measurement proved that all the products originated from the glucose in the medium via the phosphoenolpyruvate carboxykinase-succinate pathway and the tricarboxylic acid cycle. In vivo 31P-NMR spectra were also taken by the surface coil method from the leg muscle of mice which had been infected with T. spiralis. Intracelluar pH and relative amount of ATP in the leg muscle of the infected mice were found to decrease significantly as compared with that of control mice. (author)

  10. Ab initio calculation on the analytic potential energy functions for the state a3∑u+ and the state b3∏u of spin-aligned trimer 7Li2

    Shi De-Heng; Sun Jin-Feng; Yang Xiang-Dong; Zhu Zun-Lue; Liu Yu-Fang

    2005-01-01

    The energies, equilibrium geometries and harmonic frequencies of the triplet excited states (a3∑u+ and b3∏u) of spin-aligned trimer 7Li2 are firstly calculated by using a symmetry adapted cluster-configuration interaction method.The potential curves for the two excited states have least squares fitted by the Murrell-Sorbie function. The spectroscopic data (Be, αe, ωe, and ωeχe) and the force constants (f2, f3 and f4) are calculated. It is found that the spin-aligned triplet excited state b3∏u is more stable than the ground state X1∑g+, and that the Murrell-Sorbie function form is suitable not only for the ground state but also for the spin-aligned triplet excited states. Comparison between the theoretical determinations of dissociation energies, equilibrium interatomic distances and harmonic frequencies with the agreement between theories and experiments.