WorldWideScience

Sample records for 750-labeled phospholipid micelles

  1. Effect of Vesicle-to-Micelle Transition on the Interactions of Phospholipid/Sodium Cholate Mixed Systems with Curcumin in Aqueous Solution.

    Zhang, Sha; Wang, Xiaoyong

    2016-08-01

    The role of vesicle-to-micelle transition has been investigated in the interactions of phospholipid vesicles, phospholipid/sodium cholate (NaC) mixed vesicles, and phospholipid/NaC mixed micelles with curcumin in aqueous solution. The addition of NaC causes phospholipid vesicles to transit into phospholipid/NaC mixed vesicles and phospholipid/NaC mixed micelles. Turbidity measurement reveals that the presence of curcumin increases the NaC concentration for the solubilization of phospholipid vesicles, which indicates that the bound curcumin tends to suppress the vesicle-to-micelle transition. The pyrene polarity index and curcumin fluorescence anisotropy measurements suggest that phospholipid/NaC mixed micelles have a more compact structure than that of phospholipid vesicles and phospholipid/NaC mixed vesicles. Curcumin associated with phospholipid vesicles, phospholipid/NaC mixed vesicles, and phospholipid/NaC mixed micelles often results in higher intensities of absorption and fluorescence than those of free curcumin. However, phospholipid/NaC mixed vesicles lead to the highest values of absorption and fluorescence intensities, binding constant, and radical-scavenging capacity with curcumin. The different structures in the phospholipid bilayer of phospholipid/NaC mixed vesicles and the hydrophobic part of phospholipid/NaC mixed micelles where curcumin located are discussed to explain the interaction behaviors of phospholipid/NaC mixed systems with curcumin. PMID:27403579

  2. Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes

    Valente, Gianpiero; Fanizza, Elisabetta; Laquintana, Valentino; Denora, Nunzio; Fasano, Anna; Striccoli, Marinella; Colella, Matilde; Agostiano, Angela; Curri, M. Lucia; Liuzzi, Grazia Maria

    2016-01-01

    Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo

  3. Ultrafast vibrational dynamics of water confined in phospholipid reverse micelles

    Elsaesser T.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of OH stretching and bending vibrations of water inside dioleoylphosphatidylcholine (DOPC reverse micelles in a wide range of hydration. A strong hydration level dependence for the spectral diffusion rates is found and explained by the distinctly different environment for single water molecules bound to the anionic phosphate group. We show that the energy relaxation pathway of the OH stretching vibration at low hydration level involves the OH bending.

  4. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka; Walz, Thomas; Lu, Chafen; Springer, Timothy A

    2008-01-01

    in detergent micelles and phospholipid bilayers. In the presence of EGF, catalytically active EGFR dimers can be isolated by gel filtration in dodecyl maltoside. Visualization of the dimeric species by negative stain electron microscopy and single particle averaging reveals an overall structure of...... the extracellular domain that is similar to previously published crystal structures and is consistent with the C-termini of domain IV being juxtaposed against one another as they enter the transmembrane domain. Although detergent-soluble preparations of EGFR are stable as dimers in the presence of EGF...

  5. Preparation and characterization of unilamellar vesicles from cholate-phospholipid micelle treated with cholestyramine.

    Ventimiglia, J B; Levesque, M C; Chang, T Y

    1986-09-01

    Cholestyramine, a well-known bile-salt sequestrant, can be used effectively to remove cholate or deoxycholate from a solution of phosphatidylcholine-bile salt mixed micelle. Upon removal of the bile salt, unilamellar phospholipid vesicles form essentially instantaneously. Cholestyramine resin could be pelleted and removed from the vesicle solution after a low speed centrifugation. Based on phosphate analyses, the recovery of vesicles was approximately 60% of the starting material. The average diameter of these vesicles, as estimated by gel exclusion chromatography on sephacryl S-1000 beads and by trapped volume measurement using [3H]sucrose, ranged between 85 to 121 nm. Phosphatidylethanolamine, cholesterol, or n-alkane such as tetradecane can be incorporated into the vesicles without any selective loss; however, selective loss was experienced when negatively charged phospholipid species such as phosphatidylglycerol or phosphatidylserine was included in vesicle formation. PMID:3777436

  6. Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales

    We have designed new nano-probes applicable for both positron emission tomography (PET) and optical fluorescence in vivo imaging. Fluorine-18, which is commonly used for clinical imaging, has been coupled to phospholipid quantum dot (QD) micelles. This probe was injected in mice and we demonstrated that its dynamic quantitative whole body biodistribution and pharmacokinetics could be monitored using PET as well as the kinetics of their cellular uptake using in vivo fibered confocal fluorescence imaging. Phospholipid micelle encapsulation of QDs provides a highly versatile surface chemistry to conjugate multiple chemicals and biomolecules with controlled QD: molecule valency. Here, we show that, in contrast with several previous studies using other QD polymer coatings, these phospholipid QD micelles exhibit long circulation half-time in the blood stream (on the order of 2 h) and slow uptake by reticulo-endothelial system. (authors)

  7. A novel drug–phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo

    Xia HJ

    2013-02-01

    Full Text Available Hai-jian Xia,1,2 Zhen-hai Zhang,1 Xin Jin,1 Qin Hu,1 Xiao-yun Chen,1 Xiao-bin Jia11Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China; 2College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, ChinaAbstract: Mixed micelles are widely used to increase solubility and bioavailability of poorly soluble drugs. One promising antitumor drug candidate is 20(S-protopanaxadiol (PPD, although its clinical application is limited by low water solubility and poor bioavailability after oral administration. In this study, we developed mixed micelles consisting of PPD–phospholipid complexes and Labrasol® and evaluated their potential for oral PPD absorption. Micelles were prepared using a solvent-evaporation method, and their physicochemical properties, including particle size, zeta potential, morphology, crystal type, drug loading, drug entrapment efficiency, and solubility, were characterized. Furthermore, in vitro release was investigated using the dialysis method, and transport and bioavailability of the mixed micelles were investigated through a Caco-2 cell monolayer and in vivo absorption studies performed in rats. Compared with the solubility of free PPD (3 µg/mL, the solubility of PPD in the prepared mixed micelles was 192.41 ± 1.13 µg/mL in water at room temperature. The in vitro release profiles showed a significant difference between the more rapid release of free PPD and the slower and more sustained release of the mixed micelles. At the end of a 4-hour transport study using Caco-2 cells, the apical-to-basolateral apparent permeability coefficients (Papp increased from (1.12 ± 0.21 × 106 cm/s to (1.78 ± 0.16 × 106 cm/s, while the basolateral-to-apical Papp decreased from (2.42 ± 0.16 × 106 cm/s to (2.12 ± 0.32 × 106. In this pharmacokinetic study, compared with the bioavailability of free PPD (area under the curve [AUC]0–8, the

  8. Membrane-surfactant interactions. The role of surfactant in mitochondrial complex III-phospholipid-Triton X-100 mixed micelles

    Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear

  9. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Biochemical and Histopathological Pulmonary Changes in Mice

    Radu (Balas), Mihaela; Din (Popescu), Ioana Mihaela; Hermenean, Anca; Cinteză, Otilia Ludmila; Burlacu, Radu; Ardelean, Aurel; Dinischiotu, Anca

    2015-01-01

    The biochemical and histopathological changes induced by the exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles (IONPs-PM) in CD-1 mice lungs were analyzed. After 2, 3, 7 and 14 days following the intravenous injection of IONPs-PM (5 and 15 mg Fe/kg bw), lactate dehydrogenase (LDH) activity, oxidative stress parameters and the expression of Bax, Bcl-2, caspase-3 and TNF-α were evaluated in lung tissue. An increase of catalase (CAT) and glutathione reductase (GR) activities on the second day followed by a decrease on the seventh day, as well as a decline of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity on the third and seventh day were observed in treated groups vs. controls. However, all these enzymatic activities almost fully recovered on the 14th day. The reduced glutathione (GSH) and protein thiols levels decreased significantly in nanoparticles-treated groups and remained diminished during the entire experimental period; by contrast malondialdehyde (MDA) and protein carbonyls increased between the 3rd and 14th day of treatment vs. control. Relevant histopathological modifications were highlighted using Hematoxylin and Eosin (H&E) staining. In addition, major changes in the expression of apoptosis markers were observed in the first week, more pronounced for the higher dose. The injected IONPs-PM generated a dose-dependent decrease of the mouse lung capacity, which counteracted oxidative stress, thus creating circumstances for morphopathological lesions and oxidation processes. PMID:26690409

  10. Development and evaluation of vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical

    Shen R

    2016-04-01

    Full Text Available Roger Shen,1 Jane J Kim,2 Mingyi Yao,2,3 Tamer A Elbayoumi2,3 1Department of Family Medicine, Northeastern Health Systems-Tahlequah City Hospital, Tahlequah, OK, USA; 2Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, 3Nanomedicine Center of Excellence in Translational Nanomedicine, Midwestern University, Glendale, AZ, USA Abstract: Berberine (Brb is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs, and oral bioavailability. Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000] (PEG-PE mixed with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS (PEG-succinate ester of vitamin E, in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory

  11. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical

    Shen, Roger; Kim, Jane J; Yao, Mingyi; Elbayoumi, Tamer A

    2016-01-01

    Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability). Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-PE) mixed with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-succinate ester of vitamin E), in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory concentration values in PC3 and LNPaC, respectively), compared to free Brb. Mixed PEG-PE/TPGS micelles represent a promising delivery platform for the sparingly soluble anticancer agent, Brb, encouraging further pharmaceutical development of this drug for cancer therapy. PMID:27217747

  12. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats. PMID:24615733

  13. 21 CFR 358.750 - Labeling of drug products for the control of dandruff, seborrheic dermatitis, or psoriasis.

    2010-04-01

    ... dandruff, seborrheic dermatitis, or psoriasis. 358.750 Section 358.750 Food and Drugs FOOD AND DRUG... Dermatitis, and Psoriasis § 358.750 Labeling of drug products for the control of dandruff, seborrheic dermatitis, or psoriasis. (a) Statement of identity. The labeling of the product contains the...

  14. Micelles Hydrodynamics

    Svintradze, David V

    2016-01-01

    A micelle consists of monolayer of lipid molecules containing hydrophilic head and hydrophobic tail. These amphiphilic molecules in aqueous environment aggregate spontaneously into monomolecular layer held together due to hydrophobic effect by weak non-covalent forces. Micelles are flexible surfaces that show variety of shapes of different topology, but remarkably in mechanical equilibrium conditions they are spherical in shape. The shape and size of a micelle are functions of many variables such as lipid concentration, temperature, ionic strength, etc. Addressing the question, why the shape of micelles is sphere in mechanical equilibrium conditions, analytically proved to be a difficult problem. In the following paper we offer the shortest and elegant analytical proof of micelles spheroidal nature when they are thermodynamically equilibrated with solvent. The formalism presented in this paper can be readily extended to any homogenous surfaces, such are vesicles and membranes.

  15. Janus Micelles

    Erhardt, R.; Böker, A.; Zettl, H; H. KAYA; PYCKHOUT-HINTZEN, W.; Krausch, G.; Abetz, V.; A. Müller

    2001-01-01

    A novel strategy to synthesize amphiphilic surface-compartmentalized nanoparticles based on linear ABC triblock copolymers is presented. These so-called Janus micelles consist of a cross-linked core and a corona with a "northern" and a "southern" hemisphere. Selectively cross-linking spherical domains of the polybutadiene middle block in a well-ordered bulk morphology of a polystyrene-block-polybutadiene-block-poly( methyl methacrylate) triblock copolymer (SBM) leads to the conservation of th...

  16. Lipid metabolizing enzyme activities modulated by phospholipid substrate lateral distribution.

    Salinas, Dino G; Reyes, Juan G; De la Fuente, Milton

    2011-09-01

    Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters--without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes. PMID:21108012

  17. Bactericidal block copolymer micelles.

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  18. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    Selinsky, B S; Zhou, Z; Fojtik, K G; Jones, S R; Dollahon, N R; Shinnar, A E

    1998-03-13

    structures release from the bilayers and aggregate to form either new vesicles or squalamine/phospholipid mixed micelles. PMID:9545568

  19. In Vitro Evaluation of Theranostic Polymeric Micelles for Imaging and Drug Delivery in Cancer

    Kumar, Rajiv; Kulkarni, Apurva; Nagesha, Dattatri K; Sridhar, Srinivas

    2012-01-01

    For the past decade engineered nanoplatforms have seen a momentous progress in developing a multimodal theranostic formulation which can be simultaneously used for imaging and therapy. In this report we describe the synthesis and application of theranostic phospholipid based polymeric micelles for optical fluorescence imaging and controlled drug delivery. CdSe quantum dots (QDs) and anti-cancer drug, doxorubicin (Dox), were co-encapsulated into the hydrophobic core of the micelles. The micell...

  20. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  1. Complex coacervate core micelles.

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized. PMID:19038373

  2. [Milk phospholipids as nutraceutic].

    Ambroziak, Adam; Cichosz, Grazyna

    2013-01-01

    Almost the all milk fat is closed inside fat globules possessing envelope of phospholipids, glycosphingolipids, cholesterols and proteins. Phospholipids of milk are composed of phosphatidylcholine (lecithin), phosphatidylethanolamine (kefalin), sphingomyelin, also phosphatidylinositol, phosphatidylserine and lizophosphatidylcholine (lizolecithin) and make 30% of the milk fat globule membrane. Phospholipids possess pro-health properties. They act neuroprotectively, regulate brain activity, improve memory and resistance to stress, reduce depression risk, Alzheimer and Parkinson diseases. Due to participation in molecular transport, they influence cell growth and development, speed up organism regeneration after great physical effort. The phospholipids limit cholesterol absorption from gastrointestinal tract, are effective in liver therapy (steatosis, alcohol intoxication). Moreover, they are inhibitors of proinflammation factors, pathogens of alimentary canal and cancers (e.g. of colon and adenoma). Alkiloglycerphospholipids - unique component of milk fat - stimulate immune system and protect tissues against toxic action of hydroxyl radicals that is generated during radiotherapy. PMID:23488289

  3. Enhanced incorporation of dietary DHA into lymph phospholipids by altering its molecular carrier.

    Subbaiah, Papasani V; Dammanahalli, Karigowda J; Yang, Peng; Bi, Jian; O'Donnell, J Michael

    2016-08-01

    Several previous studies indicated that for optimal uptake by the brain, docosahexaenoic acid (DHA) should be present as phospholipid in the plasma. However most of dietary DHA is absorbed as triacylglycerol (TAG) because it is released as free fatty acid during digestion of either TAG-DHA (fish oil) or sn-2-DHA phospholipid (krill oil), and subsequently incorporated into TAG of chylomicrons. We tested the hypothesis that the absorption of DHA as phospholipid can be increased if it is present in the sn-1 position of dietary phospholipid or in lysophosphatidylcholine (LPC), because it would escape the hydrolysis by pancreatic phospholipase A2. We infused micelle containing the DHA either as LPC or as free acid, into the duodenum of lymph cannulated rats, and analyzed the chylomicrons and HDL of the lymph for the DHA-containing lipids. The results show that while the total amount of DHA absorbed was comparable from the two types of micelle, the percentage of DHA recovered in lymph phospholipids was 5 times greater with LPC-DHA, compared to free DHA. Furthermore, the amount of DHA recovered in lymph HDL was increased by 2-fold when LPC-DHA micelle was infused. These results could potentially lead to a novel strategy to increase brain DHA levels through the diet. PMID:27178174

  4. Development of Polysorbate 80/Phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models

    Song, Hua; Geng, Hongquan; Ruan, Jing; Wang, Kan; Bao, Chenchen; Wang, Juan; Peng, Xia; Zhang, Xueqing; Cui, Daxiang

    2011-04-01

    Docetaxel (DTX) is a very important member of taxoid family. Despite several alternative delivery systems reported recently, DTX formulated by Polysorbate 80 and alcohol (Taxotere®) is still the most frequent administration in clinical practice. In this study, we incorporated DTX into Polysorbate 80/Phospholipid mixed micelles and compared its structural characteristics, pharmacokinetics, biodistribution, and blood compatibility with its conventional counterparts. Results showed that the mixed micelles loaded DTX possessed a mean size of approximately 13 nm with narrow size distribution and a rod-like micelle shape. In the pharmacokinetics assessment, there was no significant difference between the two preparations ( P > 0.05), which demonstrated that the DTX in the two preparations may share a similar pharmacokinetic process. However, the Polysorbate 80/Phospholipid mixed micelles can increase the drug residence amount of DTX in kidney, spleen, ovary and uterus, heart, and liver. The blood compatibility assessment study revealed that the mixed micelles were safe for intravenous injection. In conclusion, Polysorbate 80/Phospholipid mixed micelle is safe, can improve the tumor therapeutic effects of DTX in the chosen organs, and may be a potential alternative dosage form for clinical intravenous administration of DTX.

  5. Surfactant phospholipid metabolism.

    Agassandian, Marianna; Mallampalli, Rama K

    2013-03-01

    Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23026158

  6. Equation of State for Phospholipid Self-Assembly

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies...... of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical...

  7. Polymerization of anionic wormlike micelles.

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  8. Surfactant phospholipid metabolism

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant compone...

  9. LCA of Egg Phospholipids

    Berggren, Anders

    2013-01-01

    Egg phospholipids are a group of fats or lipids in the egg yolk, commonly used as emulsifiers in the chemical industry to facilitate the dissolving of substances. The pharmaceutical company Fresenius-Kabi manufactures this product and seeks a better understanding of the product’s major environmental impacts in order to comply with the ISO 14001 requirements, communicate its environmental performance and choose raw materials that result in lower environmental impacts. The aim of this study is ...

  10. Phospholipid electrospun nanofibers: effect of solvents and co-axial processing on morphology and fiber diameter

    Jørgensen, Lars; Qvortrup, Klaus; Chronakis, Ioannis S.

    2015-01-01

    Asolectin phospholipid nano-microfibers were prepared using electrospinning processing. The asolectin fibers were studied by scanning electron microscopy, and the fiber morphology was found to be strongly dependent on the phospholipid concentration and the solvents used. The solvents studied were...... does not follow the theoretically predicted value of similar to 0.35 mu m because of the intermolecular aggregation between the reverse micelles formed in the highly concentrated asolectin solutions. However, when co-axial solvent electrospinning was applied, where the outer needle contains a pure...

  11. Tetracycline diffusion through phospholipid bilayers and binding to phospholipids.

    Argast, M; Beck, C.F.

    1984-01-01

    The ability of tetracycline to pass through phospholipid bilayers by diffusion was investigated. Liposomes did not retain enclosed tetracycline. Accumulation of tetracycline was observed with liposomes containing entrapped Tet repressor protein. These results indicate that the drug can pass through lipid bilayers. The antibiotic was also shown to bind to liposomes and isolated phospholipids.

  12. In Vitro Evaluation of Theranostic Polymeric Micelles for Imaging and Drug Delivery in Cancer

    Rajiv Kumar, Apurva Kulkarni, Dattatri K Nagesha, Srinivas Sridhar

    2012-01-01

    Full Text Available For the past decade engineered nanoplatforms have seen a momentous progress in developing a multimodal theranostic formulation which can be simultaneously used for imaging and therapy. In this report we describe the synthesis and application of theranostic phospholipid based polymeric micelles for optical fluorescence imaging and controlled drug delivery. CdSe quantum dots (QDs and anti-cancer drug, doxorubicin (Dox, were co-encapsulated into the hydrophobic core of the micelles. The micelles are characterized using optical spectroscopy for characteristic absorbance and fluorescence features of QDs and Dox. TEM and DLS studies yielded a size of <50 nm for the micellar formulations with very narrow size distribution. A sustained release of the drug was observed from the co-encapsulated micellar formulation. In vitro optical fluorescence imaging and cytotoxicity studies with HeLa cell line demonstrated the potential of these micellar systems as efficient optical imaging and therapeutic probes.

  13. Dye Encapsulation in Polynorbornene Micelles.

    Bell, Nia C; Doyle, Samantha J; Battistelli, Giulia; LeGuyader, Clare L M; Thompson, Matthew P; Poe, Ambata M; Rheingold, Arnold; Moore, Curtis; Montalti, Marco; Thayumanavan, S; Tauber, Michael J; Gianneschi, Nathan C

    2015-09-01

    The encapsulation efficiency of high-Tg polynorbornene micelles was probed with a hydrophobic dye 2,6-diiodoboron-dipyrromethene (BODIPY). Changes in the visible absorption spectra of aggregated versus monomeric dye molecules provided a probe for assessing encapsulation. Polynorbornene micelles are found to be capable of loading up to one BODIPY dye per ten polymers. As the hydrophilic block size increased in the polymeric amphiphiles, more of the dye was incorporated within the micelles. This result is consistent with the dye associating with the polymer backbone in the shell of the micelles. The encapsulation rate varied significantly with temperature, and a slight dependence on micellar morphology was also noted. Additionally, we report a 740 μs triplet lifetime for the encapsulated BODIPY dye. The lifetime is the longest ever recorded for a BODIPY triplet excited state at room temperature and is attributed to hindered triplet-triplet annihilation in the high-viscosity micellar shell. PMID:26305151

  14. Enzyme recovery using reversed micelles.

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. The considerable biotechnological potential of these systems is derived principally from the ability of the water d...

  15. Glycation Reactions of Casein Micelles.

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles. PMID:27018258

  16. Phospholipid profiles of Clostridium difficile.

    Drucker, D B; Wardle, H. M.; Boote, V.

    1996-01-01

    Phospholipid molecular species present in 32 isolates of Clostridium difficile were examined by fast atom bombardment-mass spectrometry in negative-ion mode. This revealed major anions consistent with the expected presence of the following phosphatidylglycerol (PG) analogs: PG(31:2), PG(32:1), PG(33:2), PG(33:1), PG(34:2), and PG(34:1). The major phospholipid molecular species are distinct from those of other bacterial groups examined.

  17. Cell signalling and phospholipid metabolism

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  18. Mechanism of cellular phospholipid efflux.

    Kozar, R A; McKeone, B J; Pownall, H J

    1993-11-01

    Plasma phospholipid binding to cell-derived cholesterol is important in reverse cholesterol transport, a key step in the regression of atherosclerosis. However, the mechanism by which phospholipids are transferred from cells to plasma remains unclear. [3H]Choline-labeled phospholipid efflux from fibroblasts has been studied using plasma and its components as acceptors. The kinetics were resolved into a fast component (k1 = 0.119 +/- 0.23 min-1) that corresponded to high-affinity binding of high-density lipoproteins (HDL) to the cell surface and a slow component (k2 = 0.0047 +/- 0.0009 min-1) due to protein-mediated desorption (n = 3). Altering the donor charge with heparinase or the acceptor charge by acetylation abolished the fast component, while the slow phase was unchanged. Only HDL displayed biexponential kinetics, comparable to whole plasma. Half-lives for low-density lipoprotein and very-low-density lipoprotein were t1/2 = 278 +/- 22 min and t1/2 = 1003 +/- 147 min, respectively. In the absence of transfer factor, HDL alone significantly reduced phospholipid efflux (t1/2 = 663 min). Phospholipid transfer protein restored biexponential kinetics. We conclude that cell membranes are a potentially important source of plasma phospholipids and that protein-mediated transfer to HDL is the major route for cell-to-plasma transfer. This step represents a locus for anti-atherosclerotic intervention. PMID:8231174

  19. Casein micelle structure: a concise review

    Chanokphat Phadungath

    2005-01-01

    Milk is a complex biological fluid with high amount of proteins, lipid and minerals. The function of milk is to supply nutrients such as essential amino acids required for the growth of the newborn. In addition, due to the importance of casein and casein micelles for the functional behavior of dairy products, the nature and structure of casein micelles have been studied extensively. However, the exact structure of casein micelles is still under debate. Various models for casein micelle struct...

  20. Dicarboxylic phospholipids and irradiated biomembranes

    It was decided to study the effects of ionizing radiations on biomembranes, with special reference to erythrocytes and liver microsomes representing two kinds of membrane very common in nature. Diacid phospholipids were observed at these membranes and the results are reported in part one of this work. It appeared essential to examine as far as possible the metabolism, in vitro and in animals, of these diacids and to find out whether certain harmful effects of radiations on the proteins (membrane permeability changes and enzyme inactivation) could be due to the action of these newly formed compounds. The study of acid compounds formed under irradiation was limited to nonanal-9-oic acid and azelaic acid. Part two deals with the incorporation of acid and diacid compounds into lipids and the effects of diacid phospholipids on the membrane permeability. A chapter is devoted to the changes in certain enzyme activities brought about by diacid phospholipids

  1. Ultrafast dynamics of water in cationic micelles.

    Dokter, Adriaan M; Woutersen, Sander; Bakker, Huib J

    2007-03-28

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles. PMID:17411144

  2. Ultrafast dynamics of water in cationic micelles

    Dokter, Adriaan M.; Woutersen, Sander; Bakker, Huib J.

    2007-03-01

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D2O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.

  3. Micelle Structure and Hydrophobic Hydration.

    Long, Joshua A; Rankin, Blake M; Ben-Amotz, Dor

    2015-08-26

    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated n-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized. PMID:26222042

  4. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis

    The conformation of the glycerol group of a number of diacyl and monoacyl (lyso) phospholipids differing in the chemical nature of the head group was studied by 1H high-resolution NMR and X-ray crystallography. The NMR measurements were carried out with solutions or micellar dispersions of the lipids in deuteriated organic solvents or 2H2O. Both solutions, in which the lipid is present as monomers, and lipid micelles give rise to good high-resolution NMR spectra exhibiting spin coupling hyperfine interactions. From 1H spin coupling it is concluded that there are two stable conformations about the glycerol C(2)-C(3) bond of phospholipids. By comparison of NMR and single-crystal X-ray data it is obvious that both conformations are minimum free energy conformations. Rotamer A is the conformation prevailing in phospholipid single-crystal structures. The conformation of rotamer B is also found in phospholipid single-crystal structures though to a lesser extent. NMR measurements indicate that in liquid crystals the diacylglycerol part of phospholipids fluctuates between the two stable staggered conformations of rotamers A and B. The transition between rotamers A and B is fast on the NMR time scale and must be accompanied by appropriate changes in the torsion angles β1 to β4 and γ1 to γ4 of the two fatty acyl chains. It is clear from the data presented that the parallel alignment of the hydrocarbon chains or chain stacking in phospholipid aggregates such as bilayers or micelles is the fundamental principle governing the conformation of the C(2)-C(3) glycerol bond

  5. Fast local dynamics in CTAB micelles

    Sharma, V. K.; Mitra, S.; Embs, J. Peter; Mukhopadhyay, R.

    2012-06-01

    Molecular dynamics of cetyltrimethylammonium Bromide (CTAB) micelle has been studied in the temperature range 310-340 K using quasielastic neutron scattering technique. Data analysis clearly shows the presence of two distinct motions; i) whole micellar motion or global diffusion and ii) faster internal motion of the CTAB monomer. The global diffusion associated with the whole micelle is found to be Fickian in nature and diffusivity is found to increase with temperature. A localized translational model describes internal motion of the micelles. Addition of an electrolyte, which is known to affect the size/shape of micelles, does not affect the dynamics of the CTAB micelles. This is in contrast with anionic sodium dodecyl sulfate micelles where addition of electrolyte results in slowing down of the dynamics.

  6. Oxidative stability of marine phospholipids

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale;

    Many studies have shown that marine phospholipids (MPL) provide more advantages than fish oil. They have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil). The objective...... of this study is to investigate the oxidative and hydrolytic stability of MPL. In addition, this study also investigates the effect of chemical composition of MPL and Maillard reaction (interaction between lipids oxidation products with the residue of amino acids) on MPL emulsions’ stability. Firstly, MPL were...... prepared in the form of emulsions by high pressure homogenizer. Then, the oxidative and hydrolytic stability of phospholipids was investigated by measurement of simple chemical analyses such as Peroxide Value and Free Fatty Acids, and 31PNMR after 32 days storage at 2ºC. The oxidative stability of MPL...

  7. Nanomechanics of electrospun phospholipid fiber

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  8. Nanomechanics of electrospun phospholipid fiber

    Mendes, Ana Carina Loureiro; Nikogeorgos, Nikolaos; Lee, Seunghwan;

    2015-01-01

    . At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip....... The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h. (c) 2015 AIP Publishing LLC....

  9. Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry

    Trimpin, Sarah; Tan, Bo; Bohrer, Brian C.; O'Dell, David K.; Merenbloom, Samuel I.; Pazos, Mauricio X.; Clemmer, David E.; Walker, J. Michael

    2009-10-01

    Increasingly comprehensive questions related to the biosynthesis of lipids relevant to understanding new signaling pathways have created daunting tasks for their chemical analysis. Here, ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques combined with electrospray ionization have been used to examine mixtures of closely related lipid structures. The drift time distributions of sphingomyelins show baseline separations for ethylene chain length differences ([Delta] ~ 1.2 ms) and partial separations in single unsaturation differences ([Delta] ~ 0.3 ms) revealing that the most compact structures are observed with shorter chains and increasing unsaturation. Drift time distributions of different ionizations frequently fall into families with the same drift times (isodrifts) indicating that the ion attached to the lipid has little structural influence. The present data show that phospholipids, especially phosphatidylinositol, aggregate to form inverted micelles. Phospholipids (phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylinositol) are effectively separated according to their polar head groups. This method also provides information about the mixture composition of the chemically different lipids N-palmitoyl glycine, N-arachidonoyl ethanolamide, and phosphatidylcholine existing over an array of charge states and sizes (inverted micelles) depending on mixture concentration. Multidimensional IMS3-MS introduces an additional dimension to fragmentation analysis by separating the fragmented ions into groups related to size, shape and charge and allows determination of sn-1 and sn-2 substitution as is shown for phosphatidylglycerols. This contribution provides evidence for extending the targeted approach to global lipidomics analysis using the high-efficiency gas-phase separation afforded by multidimensional IMS-MS.

  10. Adsorption of ruthenium red to phospholipid membranes.

    Voelker, D; Smejtek, P

    1996-01-01

    We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosp...

  11. Regulation of phospholipid synthesis in yeast

    Carman, George M.; Han, Gil-Soo

    2009-01-01

    Phospholipid synthesis in the yeast Saccharomyces cerevisiae is a complex process that involves regulation by both genetic and biochemical mechanisms. The activity levels of phospholipid synthesis enzymes are controlled by gene expression (e.g., transcription) and by factors (lipids, water-soluble phospholipid precursors and products, and covalent modification of phosphorylation) that modulate catalysis. Phosphatidic acid, whose levels are controlled by the biochemical regulation of key phosp...

  12. Mixed micelle structure: charge and alcohol influence

    After a brief summary of the method used to derive the structure of a micelle from a small-angle scattering experiment, the results of a study on mixed micelles are presented. The extension of the method to ternary solutions is described and the difficulties encountered are outlined

  13. Radiolytic decomposition products of phospholipids

    Phospholipids are an important part of biological and food systems, even though they are not a major constituent of these systems. Little information has been reported concerning the effects of ionizing radiation on phospholipids. However, extensive work has been performed on triacylglycerols, fatty acids and various natural fats and oils. The purpose of this study was to compare the effects of ionizing radiation on triacylglycerols and phospholipids. The effects of radiation on monoacylglycerols and diacylglycerols were also studied. Monopalmitoylglycerol dipalmitoylglycerol, tripalmitoylglycerol, 1,2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine and vegetable 3-sn-phosphatidylcholine were sealed in glass tubes and irradiated at 50 Mrad dose levels. Volatile components were collected by cold-finger distillation and the distillate further fractionated into oxygenated and non-oxygenated fractions. Identification of volatile radiolytic products was accomplished by gas chromatography and mass spectrometry. Quantitative analysis was carried out by the use of gas chromatography with appropriate internal standards. Non-volatile products were separated and identified by thin layer chromatography. Qualitatively, the volatile compounds recovered from monopalmitoylglycerol, dipalmitoylglycerol, tripalmitoylglycerol and 3-sn-phosphatidylethanolamine were very similar. The compounds identified from tripalmitoylglycerol by other workers were confirmed. They include a series of alkanes and alkenes, as well as hexadecanal, 2-dodecylcyclobutanone, methyl palmitate and ethyl palmitate. In addition, a number of compounds were identified which had not been reported previously. These compounds include short chain aldehydes, methyl esters and ethyl esters as well as 2-ketones, 3-ketones and 4-ketones. The compounds recovered from vegetable 3-sn-phosphatidylcholine reflected the unsaturated nature of the fatty acid composition of the substrate

  14. Enzymatic modification of phospholipids forfunctional applications and human nutrition

    Guo, Zheng; Vikbjerg, Anders / Falk; Xu, Xuebing

    2005-01-01

    Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid...... phospholipids. This work reviews the natural occurrence and structural characteristics of phospholipids, their updated knowledge on manifold biological and nutritional functions, traditional and novel physical and chemical approaches to modify phospholipids as well as their applications to obtain novel...

  15. Packing of ganglioside-phospholipid monolayers

    Majewski, J.; Kuhl, T.L.; Kjær, K.;

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid dipa...

  16. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin

    2016-01-01

    apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light...

  17. Stabilization of functional recombinant cannabinoid receptor CB(2 in detergent micelles and lipid bilayers.

    Krishna Vukoti

    Full Text Available Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB(2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB(2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB(2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of (2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB(2 in dodecyl maltoside (DDM/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB(2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at

  18. Patterning and characterization of model phospholipid membranes

    Kassu, Aschalew; Calzzani, Fernando A., Jr.; Taguenang, Jean M.; Sileshi, Redahegn K.; Sharma, Anup

    2008-08-01

    Phospholipid, which is a building block of biological membranes, plays an important role in compartmentalization of cellular reaction environment and control of the physicochemical conditions inside the reaction environment. Phospholipid bilayer membrane has been proposed as a natural biocompatible platform for attaching biological molecules like proteins for biosensing related application. Due to the enormous potential applications of biomimetic model biomembranes, various techniques for depositions and patterning of these membranes onto solid supports and their possible biotechnological applications have been reported by different groups. In this work, patterning of phospholipid thin-films is accomplished by interferometric lithography as well as using lithographic masks in liquid phase. Surface Enhanced Raman Spectroscopy and Atomic Force microscopy are used to characterize the model phospholipid membrane and the patterning technique. We describe an easy and reproducible technique for direct patterning of azo-dye (NBD)-labeled phospholipid (phosphatidylcholine) in aqueous medium using a low-intensity 488 nm Ar+ laser and various kinds of lithographic masks.

  19. Dynamic Processes in Diblock Copolymer Micelles

    Robertson, Megan; Singh, Avantika

    2013-03-01

    Diblock copolymers, which form micelle structures in selective solvents, offer advantages of robustness and tunability of micelle characteristics as compared to small molecule surfactants. Diblock copolymer micelles in water have been a subject of great interest in drug delivery applications based on their high loading capacity and targeted drug delivery. The aim of this work is to understand the dynamic processes which underlie the self-assembly of diblock copolymer micelle systems which have a semi-crystalline core. Due to the large size of the molecules, the self-assembly of block copolymer micelles occurs on significantly longer time scales than small molecule analogues. The present work focuses on amphiphilic diblock copolymers containing blocks of poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic, semi-crystalline polymer), which spontaneously self-assemble into spherical micelles in water. A variety of experimental techniques are used to probe the kinetic processes relevant to micelle self-assembly, including time-resolved neutron scattering, dynamic light scattering, pulsed field gradient nuclear magnetic resonance, and fluorescence resonance energy transfer experiments.

  20. Chemical reactions in reverse micelle systems

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  1. Casein micelle structure: a concise review

    Chanokphat Phadungath

    2005-01-01

    Full Text Available Milk is a complex biological fluid with high amount of proteins, lipid and minerals. The function of milk is to supply nutrients such as essential amino acids required for the growth of the newborn. In addition, due to the importance of casein and casein micelles for the functional behavior of dairy products, the nature and structure of casein micelles have been studied extensively. However, the exact structure of casein micelles is still under debate. Various models for casein micelle structure have been proposed. Most of the proposedmodels fall into three general categories, which are: coat-core, subunit (sub-micelles, and internal structure models. The coat-core models, proposed by Waugh and Nobel in 1965, Payens in 1966, Parry and Carroll in 1969, and Paquin and co-workers in 1987, describe the micelle as an aggregate of caseins with outer layer differing in composition form the interior, and the structure of the inner part is not accurately identified. The sub-micelle models, proposed by Morr in 1967, Slattery and Evard in 1973, Schmidt in 1980, Walstra in1984, and Ono and Obata in 1989, is considered to be composed of roughly spherical uniform subunits. The last models, the internal structure models, which were proposed by Rose in 1969, Garnier and Ribadeau- Dumas in 1970, Holt in 1992, and Horne in 1998, specify the mode of aggregation of the different caseins.

  2. Ibuprofen induced drug loaded polymeric micelles

    Song Wei Tan; Hong Jun Wang; Ke Hua Tu; Hong Liang Jiang; Li Qun Wang

    2011-01-01

    Three model drugs with different function groups were chosen to dialyze with dextran-graft-poly (N-isopropylacrylamide). Only ibuprofen could induce the formation of drug loaded micelles, which was confirmed with dynamic light scattering and transmission electron microscope. Hydrogen-bonding between the amide groups of poly (N-isopropylacrylamide) and the carboxyl groups of ibuprofen was driving force for the drug-loaded micelle. It was also found that the diameter of the ibuprofen-loaded micelles changed reversibly against temperature.

  3. Egg Phospholipids and Cardiovascular Health

    Christopher N. Blesso

    2015-04-01

    Full Text Available Eggs are a major source of phospholipids (PL in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL function. Based on pre-clinical studies, egg phosphatidylcholine (PC and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO, a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized.

  4. Connexin channels and phospholipids: association and modulation

    Harris Andrew L

    2009-08-01

    Full Text Available Abstract Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion

  5. Polysaccharide-Based Micelles for Drug Delivery

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  6. Structure and dynamics of glycosphingolipid micelles

    Disialoganglioside (GD1a) is one of the functional lipids involved in various surface events on biological cells. In order to clarify a relation between the structural feature and dynamics of the GD1a micelle depending on temperature elevation, we have carried out neutron spin echo (NSE) and synchrotron radiation small-angle X-ray scattering (SR-SAXS) measurements. We have found that the change of the dynamics of the micelle is coupled with the dehydration of ganglioside headgroups. (author)

  7. Electrosorption of pectin onto casein micelles

    Tuinier, R.; Rolin, C.; de Kruif, C.G.

    2002-01-01

    Pectin, a polysaccharide derived from plant cells of fruit, is commonly used as stabilizer in acidified milk drinks. To gain a better understanding of the way that pectin stabilizes these drinks, we studied the adsorption and layer thickness of pectin on casein micelles in skim milk dispersions. Dynamic light scattering was used to measure the layer thickness of adsorbed pectin onto casein micelles in situ during acidification. The results indicate that the adsorption of pectin onto casein mi...

  8. Casein Micelle Dispersions under Osmotic Stress

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic press...

  9. The preparation of a complex of insulin-phospholipids and their interaction mechanism.

    Zhou, Cuiping; Xia, Xuejun; Liu, Yuling; Li, Lin

    2012-09-01

    Subcutaneous injections of insulin remain the standard treatment for insulin-dependent diabetic patients, and noninvasive routes are studied but with little success. One of the reasons is that insulin is a hydrophilic compounds and is difficult to cross the mucosa barrier. In this paper, we developed a novel technique to fabricate the insulin-phospholipids complex by a solvent evaporation method with the aim of improving the lipophilicity of insulin. A systematic study on the preparation conditions of the insulin-phospholipids complex is reported in the present work. The formation mechanism and the physicochemical properties of the complex are studied. The associated efficiency of the phospholipids and insulin can be up to 100% when their mass ratio is 7.5 : 1 or more, and the solubility of the complex is improved more than 40 000 times compared with that of insulin alone in the n-octyl alcohol. The results of the insulin content in the complex and hypoglycemic effects in diabetic mice indicated that insulin was able to withstand the preparation procedure. The stability results showed that the complex was stable for 1 year at -20 °C. The interaction mechanism of this formation is that the peptide bonds of insulin interact with the water-soluble head of phospholipids, forming a reverse micelle-like structure. This novel complex will be of great importance in the drug delivery system for insulin via noninvasive routes. This method is cost effective, scalable, and can be used in many other peptide drugs. PMID:22833363

  10. Cell signalling and phospholipid metabolism. Final report

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  11. Molar volumes of mixed micelles as a measure of nonideality of mixing of micelles

    Funasaki, N.; Hada, S.

    1982-06-24

    Partial molar volumes of mixed micelles for the pentaoxyethylene glycol dodecyl ether (DE5)-heptaoxyethylene glycol dodecyl ether (DE7) and octaoxyethylene glycol dodecyl ether (DE8)-methyl P-hydroxybenzoate (MP) systems are determined from the densities of solutions of 2 surfactants kept at a fixed molar ratio and at concentrations much higher than the critical micelle concentration. Values for the partial molar volumes of the anionic fluorocarbon surfactant (NF)-sodium tetradecyl sulfate (STS) system are determined in a similar fashion but for a constant micellar composition. When micelles of DE5 and DE7 mix, the volume changes Delta V are zero. The Delta V values of the DE8-MP system are negative, whereas those of the NF-STS system are positive. The Delta V values of the NF-STS system change linearly with the mole fraction of STS in micelles, indicating that 2 kinds of mixed micelles coexist in this region. 40 references.

  12. Health effects of dietary phospholipids

    Küllenberg Daniela

    2012-01-01

    Full Text Available Abstract Beneficial effects of dietary phospholipids (PLs have been mentioned since the early 1900's in relation to different illnesses and symptoms, e.g. coronary heart disease, inflammation or cancer. This article gives a summary of the most common therapeutic uses of dietary PLs to provide an overview of their approved and proposed benefits; and to identify further investigational needs. From the majority of the studies it became evident that dietary PLs have a positive impact in several diseases, apparently without severe side effects. Furthermore, they were shown to reduce side effects of some drugs. Both effects can partially be explained by the fact that PL are highly effective in delivering their fatty acid (FA residues for incorporation into the membranes of cells involved in different diseases, e.g. immune or cancer cells. The altered membrane composition is assumed to have effects on the activity of membrane proteins (e.g. receptors by affecting the microstructure of membranes and, therefore, the characteristics of the cellular membrane, e.g. of lipid rafts, or by influencing the biosynthesis of FA derived lipid second messengers. However, since the FAs originally bound to the applied PLs are increased in the cellular membrane after their consumption or supplementation, the FA composition of the PL and thus the type of PL is crucial for its effect. Here, we have reviewed the effects of PL from soy, egg yolk, milk and marine sources. Most studies have been performed in vitro or in animals and only limited evidence is available for the benefit of PL supplementation in humans. More research is needed to understand the impact of PL supplementation and confirm its health benefits.

  13. Structural properties of self-assembled polymeric micelles

    Mortensen, K.

    1998-01-01

    At present, the thermodynamic understanding of complex copolymer systems is undergoing important developments. Block copolymers aggregate in selective solvents into micelles of various form and size depending on molecular architecture and interaction parameters. The micelles constitute the basis ...

  14. Efficient deacylation of N-acylimidazoles by functionalized surfactant micelles

    Ihara, Yasuji; Nango, Mamoru; Koga, Joichi; ナンゴ, マモル; 南後, 守

    1989-01-01

    Hydroxylated surfactant micelles are powerful catalysts for the deacylation of N-acylimidazoles under neutral conditions; the deacylation rates of hydrophobia acylimidazoles are accelerated remarkably by functionalized micelles containing three hydroxy groups at the polar head.

  15. Dynamics of SDS Micelles: Neutron Scattering Study

    Sharma, V. K.; Mitra, S.; Verma, G.; Hassan, P. A.; Sakai, V. Garcia; Mukhopadhyay, R.

    2011-07-01

    Here we report dynamics of Sodium Dodecyl Sulphate (SDS) micelles as investigated by high-resolution incoherent quasielastic neutron scattering technique. Data analysis clearly shows the presence of two distinct motions namely global diffusion of the micelles and faster internal motion of the SDS monomer. The global diffusion is found to be Fickian in nature and the corresponding diffusion coefficient is consistent with those obtained from dynamic light scattering measurements. Internal motion of the micelles is described by a localized translational motion in which hydrogen atoms closer to the head group move within smaller spheres with lower diffusion constant compared to the hydrogen atoms away from head group, suggesting more flexibility and faster movement of the chain away from the head group.

  16. Vibrational dynamics of ice in reverse micelles.

    Dokter, Adriaan M; Petersen, Christian; Woutersen, Sander; Bakker, Huib J

    2008-01-28

    The ultrafast vibrational dynamics of HDO:D(2)O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is studied to characterize the micellar structure. Small reverse micelles with a water content up to approximately 150 water molecules contain an amorphous form of ice that shows remarkably different vibrational dynamics compared to bulk hexagonal ice. The micellar amorphous ice has a much longer vibrational lifetime than bulk hexagonal ice and micellar liquid water. The vibrational lifetime is observed to increase linearly from 0.7 to 4 ps with the resonance frequency ranging from 3100 to 3500 cm(-1). From the pump dependence of the vibrational relaxation the homogeneous linewidth of the amorphous ice is determined (55+/-5 cm(-1)). PMID:18247971

  17. Vibrational dynamics of ice in reverse micelles

    Dokter, Adriaan M.; Petersen, Christian; Woutersen, Sander; Bakker, Huib J.

    2008-01-01

    The ultrafast vibrational dynamics of HDO :D2O ice at 180K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is studied to characterize the micellar structure. Small reverse micelles with a water content up to approximately 150 water molecules contain an amorphous form of ice that shows remarkably different vibrational dynamics compared to bulk hexagonal ice. The micellar amorphous ice has a much longer vibrational lifetime than bulk hexagonal ice and micellar liquid water. The vibrational lifetime is observed to increase linearly from 0.7to4ps with the resonance frequency ranging from 3100to3500cm-1. From the pump dependence of the vibrational relaxation the homogeneous linewidth of the amorphous ice is determined (55±5cm-1).

  18. Pros and cons of phospholipid asymmetry in erythrocytes

    Aiswarya Sathi

    2014-01-01

    Full Text Available Phospholipids of erythrocyte are found as bilayer with choline containing phospholipid like phosphatidyl choline and sphingomylein in the outer layer and amine containing phospholipid like phosphatidyl ethanolamine and phosphatidyl serine in the inner layer. This arrangement is known as phospholipid asymmetry. Lipid asymmetry is maintained throughout the entire life span of red blood cell and is disturbed when cells enter into the stage of apoptosis. We here discuss some of the conditions in which phospholipid asymmetry of erythrocyte is maintained and disturbed and the various detection methods to check the distortion phospholipid asymmetry of it.

  19. Structure and dynamics of glycosphingolipid micelles

    Hirai, Mitsuhiro; Iwase, Hiroki; Hayakawa, Tomohiro [Department of Physics, Gunma University, Maebashi, Gunma (Japan)

    2001-03-01

    Disialoganglioside (G{sub D1a}) is one of the functional lipids involved in various surface events on biological cells. In order to clarify a relation between the structural feature and dynamics of the G{sub D1a} micelle depending on temperature elevation, we have carried out neutron spin echo (NSE) and synchrotron radiation small-angle X-ray scattering (SR-SAXS) measurements. We have found that the change of the dynamics of the micelle is coupled with the dehydration of ganglioside headgroups. (author)

  20. Statistical crystallography of surface micelle spacing

    Noever, David A.

    1992-01-01

    The aggregation of the recently reported surface micelles of block polyelectrolytes is analyzed using techniques of statistical crystallography. A polygonal lattice (Voronoi mosaic) connects center-to-center points, yielding statistical agreement with crystallographic predictions; Aboav-Weaire's law and Lewis's law are verified. This protocol supplements the standard analysis of surface micelles leading to aggregation number determination and, when compared to numerical simulations, allows further insight into the random partitioning of surface films. In particular, agreement with Lewis's law has been linked to the geometric packing requirements of filling two-dimensional space which compete with (or balance) physical forces such as interfacial tension, electrostatic repulsion, and van der Waals attraction.

  1. Storage stability of marine phospholipids emulsions

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale;

    Marine phospholipids (MPL) are believed to provide more advantages than fish oil from the same source. They are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic...... acids (DHA) than oily triglycerides (fish oil). Therefore, the objective of this study is to explore the feasibility of using marine phospholipids emulsions as delivery system through investigation of the physical, oxidative and hydrolytic stability of MPL emulsions with or without addition of fish oil....... The effect of initial Peroxide Value, total lipids, phospholipids and antioxidants content on stability of MPL emulsions were studied. The physical stability was investigated through measurement of particle size distribution and creaming stability, which involve measurement of changes (%) in emulsion volume...

  2. Packing of ganglioside-phospholipid monolayers

    Majewski, J.; Kuhl, T.L.; Kjær, K.; Smith, G.S.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... DPPE monolayer and does not distort the hexagonal in-plane unit cell or out-of-plane two-dimensional (2-D) packing compared with a pure DPPE monolayer. The oligosaccharide headgroups were found to extend normally from the monolayer surface, and the incorporation of these glycolipids into DPPE...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  3. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  4. Toxicity of oxidized phospholipids in cultured macrophages

    Stemmer Ute

    2012-09-01

    Full Text Available Abstract Background The interactions of oxidized low-density lipoprotein (LDL and macrophages are hallmarks in the development of atherosclerosis. The biological activities of the modified particle in these cells are due to the content of lipid oxidation products and apolipoprotein modification by oxidized phospholipids. Results It was the aim of this study to determine the role of short-chain oxidized phospholipids as components of modified LDL in cultured macrophages. For this purpose we investigated the effects of the following oxidized phospholipids on cell viability and apoptosis: 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC, 1-palmitoyl-2-(5-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC and oxidized alkylacyl phospholipids including 1-O-hexadecyl-2-glutaroyl-sn-glycero-3-phosphocholine (E-PGPC and 1-O-hexadecyl-2-(5-oxovaleroyl-sn-glycero-3-phosphocholine (E-POVPC. We found that these compounds induced apoptosis in RAW264.7 and bone marrow-derived macrophages. The sn-2 carboxyacyl lipid PGPC was more toxic than POVPC which carries a reactive aldehyde function in position sn-2 of glycerol. The alkylacyl phospholipids (E-PGPC and E-POVPC and the respective diacyl analogs show similar activities. Apoptosis induced by POVPC and its alkylether derivative could be causally linked to the fast activation of an acid sphingomyelinase, generating the apoptotic second messenger ceramide. In contrast, PGPC and its ether analog only negligibly affected this enzyme pointing to an entirely different mechanism of lipid toxicity. The higher toxicity of PGPC is underscored by more efficient membrane blebbing from apoptotic cells. In addition, the protein pattern of PGPC-induced microparticles is different from the vesicles generated by POPVC. Conclusions In summary, our data reveal that oxidized phospholipids induce apoptosis in cultured macrophages. The mechanism of lipid toxicity, however, largely depends on the structural features of the

  5. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles

  6. Phospholipids accumulation in mucolipidosis IV cultured fibroblasts.

    Bargal, R; Bach, G

    1988-01-01

    Cultured fibroblasts from mucolipidosis IV patients accumulated phospholipids when compared to normal controls or cells from other genotypes. The major stored compounds were identified as phosphatidylcholine, phosphatidylethanolamine and to a larger extent lysophosphatidylcholine and lysobisphosphatidic acid. Pulse chase experiments of 32P-labelled phospholipids showed increased retention of these compounds in the mucolipidosis IV lines throughout the pulse and chase periods. Phospholipase A1, A2, C, D and lysophospholipase showed normal activity in the mucolipidosis IV lines and thus the metabolic cause for this storage remains to be identified. PMID:3139925

  7. Structural investigation into the influence of lipolysis products on the structure of bile salt micelles

    Free fatty acids play a vital role as fuel for cells and in lipid metabolism. During lipid digestion in the gastrointestinal tract, triglycerides are hydrolyzed resulting in the amphiphilic products free fatty acids and monoglycerides. These components, together with bile salts, are responsible for the transport of lipids and poorly water soluble nutrients and xenobiotics from the intestine into the circulatory system of the body. In this study we show that the self-assembly of digestion products from medium chain triglycerides (tricaprylin) in combination with bile salt and phospholipid is highly pH responsive. Individual building blocks of caprylic acid within the mixed colloidal structures are mapped using a combination of neutron scattering combined with both solvent contrast variation and selective deuteration as well as synchrotron-based small angle Xray scattering. Modelling of the scattering data shows transitions in size and shape of the micelles in combination with a transfer of the caprylic acid from the core of the micelles to the shell or into the bulk water upon increasing pH. The results help to understand the process of lipid digestion with a focus on colloidal structure formation and transformation for the delivery of triglyceride lipids and other hydrophobic functional molecules.

  8. Rapid anionic micelle-mediated alpha-synuclein fibrillization in vitro.

    Necula, Mihaela; Chirita, Carmen N; Kuret, Jeff

    2003-11-21

    Parkinson's disease is characterized by the aggregation of alpha-synuclein into filamentous forms within affected neurons of the basal ganglia. Fibrillization of purified recombinant alpha-synuclein is inefficient in vitro but can be enhanced by the addition of various agents including glycosaminoglycans and polycations. Here we report that fatty acids and structurally related anionic detergents greatly accelerate fibrillization of recombinant alpha-synuclein at low micromolar concentrations with lag times as short as 11 min and apparent first order growth rate constants as fast as 10.4 h-1. All detergents and fatty acids were micellar at active concentrations because of an alpha-synuclein-dependent depression of their critical micelle concentrations. Other anionic surfaces, such as those supplied by anionic phospholipid vesicles, also induced alpha-synuclein fibrillization, with resultant filaments originating from their surface. These data suggest that anionic surfaces presented as micelles or vesicles can serve to nucleate alpha-synuclein fibrillization, that this mechanism underlies the inducer activity of anionic surfactants, and that anionic membranes may serve this function in vivo. PMID:14506232

  9. Influence of succinylation on the conformation of yak casein micelles.

    Yang, Min; Cui, Na; Fang, Yan; Shi, Ying; Yang, Jitao; Wang, Jiangyu

    2015-07-15

    Succinylation modifies the physicochemical characteristics and improves the functional properties of proteins. This study assessed the effects of succinylation on the conformation of yak casein micelles with seven degree of modification. The results revealed that succinylation contributed to the dissociation of casein micelles. With the increase of succinylated degree, soluble nitrogen and minerals content increased, while casein micelle size and polydispersity index of micelles decreased. Succinylation affected the spatial conformation of yak casein micelles: turn decreased, ß-sheet and α-helix increased, and irregular structure were non-significantly affected. The intrinsic and ANS fluorescence intensity decreased and the maximum emission wavelength shifted red with increasing succinylation. Based on the results, the structure of yak casein micelles was characteristic of the sub-micelle model. PMID:25722161

  10. Acid Hydrolysis of Bromazepam Catalyzed by Micelles, Reverse Micelles, and Microemulsions

    Ferdousi Begum

    2015-01-01

    Full Text Available Kinetics of the acid hydrolysis of bromazepam (Bz has been investigated in micelles, reverse micelles, and microemulcions of cetyltrimethylammonium bromide (CTAB by spectrophotometric method. The rate of the acid hydrolysis of Bz was found to be enhanced both below and above the critical micelle concentration (CMC of CTAB in aqueous solution. The pseudo-first-order rate constant (k′ shows an initial decrease for both low and high H+ concentrations. With further increase in [CTAB], at low [H+], the k′ attains an almost constant value, while, at high [H+], the k′ passes through a maximum and then decreases. The kinetic data for catalysis by micelles of CTAB was interpreted with the pseudophase ion exchange (PIE model. In CTAB/cyclohexane/1-butanol/water microemulsions, as the water to surfactant ratio (wo increases, the physicochemical properties and droplet sizes of microemulsions significantly change and distinct changes in reaction environment can be marked. The rate of the hydrolysis reaction exhibits excellent correlation with the physicochemical properties and droplet sizes of the microemulsions and reverse micelles of CTAB. At [H+] = 0.001 M, in reverse micelles and microemulsions of CTAB, the k′ of the acid hydrolysis of Bz decreases sharply followed by a slight increase with increasing wo.

  11. A facile surfactant critical micelle concentration determination

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-01-01

    Liquid surface curvature variations in microplate wells due to different liquid surface tension cause significant signal change in spectroscopic measurement using a plate reader with a vertical detecting light beam. The signals have been quantitated and used to develop a method for facile surfactant critical micelle concentration determination.

  12. Spontaneous symmetry breaking: formation of Janus micelles

    Voets, I.K.; Fokkink, R.G.; Hellweg, T.; King, S.M.; Waard, de P.; Keizer, de A.; Cohen Stuart, M.A.

    2009-01-01

    We describe the preparation and solution properties of Janus micelles, i.e., non-centrosymmetric nanoparticles with compartmentalized shells, via co-assembly of two fully water-soluble block copolymers. They consist of a mixed core of poly(N-methyl-2-vinyl pyridinium iodide) (P2MVP) and poly(acrylic

  13. Antibacterial polyelectrolyte micelles for coating stainless steel.

    Falentin-Daudré, Céline; Faure, Emilie; Svaldo-Lanero, Tiziana; Farina, Fabrice; Jérôme, Christine; Van De Weerdt, Cécile; Martial, Joseph; Duwez, Anne-Sophie; Detrembleur, Christophe

    2012-05-01

    In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications. PMID:22506542

  14. Casein micelles and their internal structure

    De Kruif, Cornelis G [ORNL; Huppertz, Thom [NIZO Food Research; Urban, Volker S [ORNL; Petukhov, Andrei V [Van ' t Hoff laboratory for Physical and Colloid Chemistry, Utrecht University, The Netherlands

    2012-01-01

    The internal structure of casein micelles was studied by calculating the small-angle neutron and X-ray scattering and static light scattering spectrum (SANS, SAXS, SLS) as a function of the scattering contrast and composition. We predicted experimental SANS, SAXS, SLS spectra self consistently using independently determined parameters for composition size, polydispersity, density and voluminosity. The internal structure of the casein micelles, i.e. how the various components are distributed within the casein micelle, was modeled according to three different models advocated in the literature; i.e. the classical sub-micelle model, the nanocluster model and the dual binding model. In this paper we present the essential features of these models and combine new and old experimental SANS, SAXS, SLS and DLS scattering data with new calculations that predict the spectra. Further evidence on micellar substructure was obtained by internally cross linking the casein micelles using transglutaminase, which led to casein nanogel particles. In contrast to native casein micelles, the nanogel particles were stable in 6 M urea and after sequestering the calcium using trisodium citrate. The changed scattering properties were again predicted self consistently. An important result is that the radius of gyration is independent of contrast, indicating that the mass distribution within a casein micelle is homogeneous. Experimental contrast is predicted quite well leading to a match point at a D{sub 2}O volume fraction of 0.41 ratio in SANS. Using SANS and SAXS model calculations it is concluded that only the nanocluster model is capable of accounting for the experimental scattering contrast variation data. All features and trends are predicted self consistently, among which the 'famous' shoulder at a wave vector value Q = 0.35 nm{sup -1}. In the nanocluster model, the casein micelle is considered as a (homogeneous) matrix of caseins in which the colloidal calcium phosphate (CCP

  15. Constrained modeling of spin–labeled major coat protein mutants from M13 bacteriophage in a phospholipid bilayer

    Bashtovyy, Denys; Marsh, Derek; Hemminga, Marcus A.; PÁLI, Tibor

    2001-01-01

    The family of three-dimensional molecular structures of the major coat protein from the M13 bacteriophage, which was determined in detergent micelles by NMR methods, has been analyzed by constrained geometry optimization in a phospholipid environment. A single-layer solvation shell of dioleoyl phosphatidylcholine lipids was built around the protein, after replacing single residues by cysteines with a covalently attached maleimide spin label. Both the residues substituted and the phospholipid were chosen for comparison with site-directed spin labeling EPR measurements of distance and local mobility made previously on membranous assemblies of the M13 coat protein purified from viable mutants. The main criteria for identifying promising candidate structures, out of the 300 single-residue mutant models generated for the membranous state, were 1) lack of steric conflicts with the phospholipid bilayer, 2) good match of the positions of spin-labeled residues along the membrane normal with EPR measurements, and 3) a good match between the sequence profiles of local rotational freedom and a structural restriction parameter for the spin-labeled residues obtained from the model. A single subclass of structure has been identified that best satisfies these criteria simultaneously. The model presented here is useful for the interpretation of future experimental data on membranous M13 coat protein systems. It is also a good starting point for full-scale molecular dynamics simulations and for the design of further site-specific spectroscopic experiments. PMID:11316878

  16. Spectrin-phospholipid interaction. A monolayer study

    Mombers, C.; Gier, J. de; Demel, R.A.; Deenen, L.L.M. van

    1980-01-01

    1.(1) The interaction of synthetic and natural phospholipids with spectrin, purified from human erythrocyte membranes, was studied using the monolayer technique at constant surface pressure. Spectrin penetration into the lipid monolayer was recorded as the rate of surface area increase on a two-comp

  17. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.;

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...

  18. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.

  19. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Lorieau, Justin L.; Maltsev, Alexander S.; Louis, John M.; Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Laboratory of Chemical Physics (United States)

    2013-04-15

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.

  20. Structural changes in block copolymer micelles induced by cosolvent mixtures

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.; Sullivan, Millicent O.; Epps, III, Thomas H. (Delaware)

    2012-11-26

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.

  1. Interaction of lactoferrin and lysozyme with casein micelles.

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles. PMID:21932853

  2. Structural changes in block copolymer micelles induced by cosolvent mixtures

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.

  3. Preparation and Evaluation of Inhalable Itraconazole Chitosan Based Polymeric Micelles

    Esmaeil Moazeni

    2012-12-01

    Full Text Available Background: This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA.Methods: Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering andtransmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger.Results: The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process.Conclusions: In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation.

  4. Implicit solvent simulations of DPC micelle formation.

    Lazaridis, Themis; Mallik, Buddhadeb; Chen, Yong

    2005-08-11

    The formation of micelles by dodecylphosphocholine (DPC) is modeled by treating the surfactants in atomic detail and the solvent implicitly, in the spirit of the EEF1 solvation model for proteins. The solvation parameters of the DPC atoms are carried over from those of similar atoms in proteins. A slight adjustment of the parameters for the headgroup was found necessary for obtaining an aggregation number consistent with experiment. Molecular dynamics simulations of 960 DPC molecules at different concentrations are used to obtain the aggregation number, the micelle size distribution, and the CMC. At 20 mM concentration we obtain an aggregation number of 53-56 and a CMC of 1.25 mM, values close to the experimental ones. At 100 mM the aggregation number increases to 90. Simulations of individual micelles of varying size show that the effective energy per surfactant molecule is initially a decreasing function of aggregation number but stabilizes at about 60 molecules. The van der Waals term and the desolvation of nonpolar groups contribute to micellization, whereas the desolvation of polar groups opposes it. From the difference between the effective energy and the free energy (calculated from the CMC), the translational and rotational entropy contributions to the free energy are estimated at about 7 kcal/mol per monomer. The micelles obtained here are more irregular than those obtained in explicit water simulations. This modeling approach allows the study of larger surfactant aggregates for longer times and the extraction of thermodynamic in addition to structural information. PMID:16852911

  5. Thermoresponsive polymer micelles as potential nanosized cancerostatics

    Laga, Richard; Janoušková, Olga; Ulbrich, Karel; Pola, Robert; Blažková, Jana; Filippov, Sergey K.; Etrych, Tomáš; Pechar, Michal

    2015-01-01

    Roč. 16, č. 8 (2015), s. 2493-2505. ISSN 1525-7797 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : RAFT polymerization * polymer therapeutics * thermo-responsive micelles Subject RIV: CE - Biochemistry Impact factor: 5.750, year: 2014

  6. Chain exchange in triblock copolymer micelles

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  7. Toward a Standard Protocol for Micelle Simulation.

    Johnston, Michael A; Swope, William C; Jordan, Kirk E; Warren, Patrick B; Noro, Massimo G; Bray, David J; Anderson, Richard L

    2016-07-01

    In this paper, we present protocols for simulating micelles using dissipative particle dynamics (and in principle molecular dynamics) that we expect to be appropriate for computing micelle properties for a wide range of surfactant molecules. The protocols address challenges in equilibrating and sampling, specifically when kinetics can be very different with changes in surfactant concentration, and with minor changes in molecular size and structure, even using the same force field parameters. We demonstrate that detection of equilibrium can be automated and is robust, for the molecules in this study and others we have considered. In order to quantify the degree of sampling obtained during simulations, metrics to assess the degree of molecular exchange among micellar material are presented, and the use of correlation times are prescribed to assess sampling and for statistical uncertainty estimates on the relevant simulation observables. We show that the computational challenges facing the measurement of the critical micelle concentration (CMC) are somewhat different for high and low CMC materials. While a specific choice is not recommended here, we demonstrate that various methods give values that are consistent in terms of trends, even if not numerically equivalent. PMID:27096611

  8. Temperature Effect on the Nanostructure of SDS Micelles in Water

    Hammouda, Boualem

    2013-01-01

    Sodium dodecyl sulfate (SDS) surfactants form micelles when dissolved in water. These are formed of a hydrocarbon core and hydrophilic ionic surface. The small-angle neutron scattering (SANS) technique was used with deuterated water (D2O) in order to characterize the micelle structure. Micelles were found to be slightly compressed (oblate ellipsoids) and their sizes shrink with increasing temperature. Fits of SANS data to the Mean Spherical Approximation (MSA) model yielded a calculated micel...

  9. The Size Distribution of Bovine Casein Micelles: A Review

    Holt, C.

    1985-01-01

    This review considers the average size and size distribution of bovine casein micelles as measured by electron microscopy, light scattering and controlled pore glass chromatography, and the origin and biological function of the size distribution. Recent work by electron microscopy has given average sizes in reasonable agreement with measurements on the same milk sample by light scattering . It is suggested that natural variations in averaqe micelle size and overestimation of micelle radii ...

  10. Conducting gramicidin channel activity in phospholipid monolayers.

    A. Nelson

    2001-01-01

    Potential step amperometry (chronoamperometry) of the Tl(I)/Tl(Hg) electrochemical reduction process has been used to investigate the underlying mechanisms of gramicidin activity in phospholipid monolayers. The experiments were carried out at gramicidin-modified dioleoyl phosphatidylcholine (DOPC)-coated electrodes. Application of a potential step to the coated electrode system results in a current transient that can be divided into two regions. An initial exponential decay of current corresp...

  11. Dietary Phospholipids and Intestinal Cholesterol Absorption

    Sally Tandy; Chung, Rosanna W. S.; Elaine Wat; Alvin Kamili; Cohn, Jeffrey S.

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the abili...

  12. Group B streptococcal phospholipid causes pulmonary hypertension

    Curtis, Jerri; Kim, Geumsoo; Wehr, Nancy B.; Levine, Rodney L

    2003-01-01

    Group B Streptococcus is the most common cause of bacterial infection in the newborn. Infection in many cases causes persistent pulmonary hypertension, which impairs gas exchange in the lung. We purified the bacterial components causing pulmonary hypertension and identified them as cardiolipin and phosphatidylglycerol. Synthetic cardiolipin or phosphatidylglycerol also induced pulmonary hypertension in lambs. The recognition that bacterial phospholipids may cause pulmonary hypertension in new...

  13. Core-cross-linked polymer micelles via living polymerizations

    This work reports a general synthesis to core-cross-linked polymer micelles directly from monomers by two typical living polymerizations, anionic polymerization and atom transfer radical polymerization. The micelle concentrations are hundred times higher than those by traditional synthetic method using selective solvents. The morphologies of polymer micelles can be controlled to be spheres, fibers, and graft-like aggregates by varying the experimental conditions. Micelles with the same polymer in both the core and the shell have also been synthesized by this approach.

  14. Diclofenac/biodegradable polymer micelles for ocular applications

    Li, Xingyi; Zhang, Zhaoliang; Li, Jie; Sun, Shumao; Weng, Yuhua; Chen, Hao

    2012-07-01

    In this paper, methoxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle formulations as promising nano-carriers for poorly water soluble drugs were investigated for the delivery of diclofenac to the eye. Diclofenac loaded MPEG-PCL micelles were prepared by a simple solvent-diffusion method and characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), differential scanning calorimetery (DSC), etc. With the analysis of XRD and DSC, the diclofenac was present as an amorphous state in the formulation. The in vitro release profile indicated a sustained release manner of diclofenac from the micelles. Meanwhile, in vivo studies on eye irritation were performed with blank MPEG-PCL micelles (200 mg ml-1). The results showed that the developed MPEG-PCL micelles were non-irritants to the eyes of rabbits. In vitro penetration studies across the rabbit cornea demonstrated that the micelle formulations exhibited a 17-fold increase in penetration compared with that of diclofenac phosphate buffered saline (PBS) solution. The in vivo pharmacokinetics profile of the micelle parent drug in the aqueous humor of the rabbit was evaluated and the data showed that the diclofenac loaded MPEG-PCL micelles exhibited a 2-fold increase in AUC0-24 h than that of the diclofenac PBS solution eye drops. These results suggest a great potential of our micelle formulations as a novel ocular drug delivery system to improve the bioavailability of the drugs.

  15. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  16. Annexin-Phospholipid Interactions. Functional Implications

    Javier Turnay

    2013-01-01

    Full Text Available Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6 homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.

  17. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  18. Photophysical properties of pyronin dyes in reverse micelles of AOT

    The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in reverse micelles formed with water/sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane were investigated by UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. This study was carried out a wide range of reverse micelle sizes, with hydrodynamic radii ranging from 1.85 to 9.38 nm. Significant photophysical parameters as band shifts, fluorescence quantum yields and fluorescence lifetimes were determined to understand how photophysical and spectroscopic features of the dye compounds were affected by the variation of reverse micelle sizes. In this regard, control of reverse micelle size by changing W0, the molar ratio of water to surfactant, allowed tuning the photophysical properties of the dyes in organic solvent via reverse micelle. Non-fluorescent H-aggregates of pyronin dyes were observed for the smaller reverse micelles whereas an increase in the reverse micelle size induced an increment in the amount of dye monomers instead of dye aggregates. Thus, the fluorescence intensities of the dyes were improved by increasing W0 due to the predomination of the fluorescent dye monomers. As a result, the fluorescence quantum yields also increased. The fluorescence lifetimes of the dyes in the reverse micelles were determined by the time-resolved fluorescence decay studies. Evaluation of the fluorescence lifetimes calculated for pyronin dyes in the reverse micelles showed that the size of reverse micelle affected the fluorescence lifetimes of pyronin dyes. -- Highlights: • The photophysical properties of pyronin dyes were examined by spectroscopic techniques. • Optical properties of the dyes were tuned by changing of W0 values. • The fluorescence lifetime and quantum yield values of the dyes in reverse micelles were discussed

  19. Periodic synthesis of phospholipids during the Caulobacter crescentus cell cycle.

    O'Neill, E A; Bender, R A

    1987-01-01

    Net phospholipid synthesis is discontinuous during the Caulobacter crescentus cell cycle with synthesis restricted to two discrete periods. The first period of net phospholipid synthesis begins in the swarmer cell shortly after cell division and ends at about the time when DNA replication initiates. The second period of phospholipid synthesis begins at a time when DNA replication is about two-thirds complete and ends at about the same time that DNA replication terminates. Thus, considerable D...

  20. Phospholipid flippases: building asymmetric membranes and transport vesicles

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2011-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal...

  1. Critical assessment of phospholipid measurement in amniotic fluid.

    Badham, L P; Worth, H G

    1975-09-01

    We assessed several methods of inorganic phosphate assay for their suitability in estimating phospholipids in digested extracts of amniotic fluids. The extraction and digestion procedures used for phospholipids from amniotic fluid were also examined critically. The effect of contamination by blood or obstetric cream has been examined. Accordingly, we suggest a method for measuring total phospholipids in amniotic fluids, and results of it are compared with the lecithin/sphingomyelin ratio measurement in some clinical situations. PMID:1157310

  2. Marine Phospholipids: Methods to Measure Oxidation Status and Stability

    Evensen, Henning

    2014-01-01

    Marine phospholipids (MPL) have a higher content of the omega-3 fatty acids EPA and DHA than triacylglycerols from the same source. In addition they have been shown to have a better bioavailability, and a better resistance towards oxidation. However, marine phospholipids are highly susceptible to oxidation because of the high amount of polyunsaturated fatty acids. This makes it challenging to incorporate phospholipids in food products. Knowledge of the oxidative status and stability of marine...

  3. Absorption Complex between Porphyrin and Phenothiazine in Reverse Micelles

    2002-01-01

    The interaction between amphiphilic porphyrin and phenothiazine in AOT/isooctane/ water reverse micelle was investigated by UV-Vis spectra. A new absorption complex between the two species is formed in such circumstances, which is ascribed to the enrichment of the components by the reverse micelle. The fluorescence quenching of CHTTP by PTH becomes more efficient after the formation of the absorption complex.

  4. Use of reverse micelles in membrane protein structural biology

    Membrane protein structural biology is a rapidly developing field with fundamental importance for elucidating key biological and biophysical processes including signal transduction, intercellular communication, and cellular transport. In addition to the intrinsic interest in this area of research, structural studies of membrane proteins have direct significance on the development of therapeutics that impact human health in diverse and important ways. In this article we demonstrate the potential of investigating the structure of membrane proteins using the reverse micelle forming surfactant dioctyl sulfosuccinate (AOT) in application to the prototypical model ion channel gramicidin A. Reverse micelles are surfactant based nanoparticles which have been employed to investigate fundamental physical properties of biomolecules. The results of this solution NMR based study indicate that the AOT reverse micelle system is capable of refolding and stabilizing relatively high concentrations of the native conformation of gramicidin A. Importantly, pulsed-field-gradient NMR diffusion and NOESY experiments reveal stable gramicidin A homodimer interactions that bridge reverse micelle particles. The spectroscopic benefit of reverse micelle-membrane protein solubilization is also explored, and significant enhancement over commonly used micelle based mimetic systems is demonstrated. These results establish the effectiveness of reverse micelle based studies of membrane proteins, and illustrate that membrane proteins solubilized by reverse micelles are compatible with high resolution solution NMR techniques

  5. Electron solvation in aqueous reverse micelles: Equilibrium properties

    Laria, Daniel; Kapral, Raymond

    2002-10-01

    Microscopic aspects of electron solvation in aqueous reverse micelles are investigated using molecular dynamics simulation techniques. Two micelle sizes, with water/surfactant ratios of 3 and 7.5, are examined. The electron is treated quantum mechanically using Feynman path integral methods while the water, surfactant head groups, and counter ions are treated classically. Through computations of the free energy as a function of the radial distance, the electron is found to be preferentially solvated in the interior of the micelle in the "bulk" water pool. For small micelles, the presence of the electron leads to a depletion of water in the central region of the micelle and thus strongly disrupts the water equilibrium structure. Contact and solvent-separated ion pairs between the electron and Na+ counter ions are found to play an important role in the equilibrium structure. For the two micelle sizes investigated, the most stable solvation structures correspond to contact ion pairs. The localization of the electronic charge distribution is found to increase with micelle size, signaling more efficient solvation in larger micelles.

  6. Use of reverse micelles in membrane protein structural biology

    Van Horn, Wade D. [Vanderbilt University School of Medicine, Department of Biochemistry and Center for Structural Biology (United States); Ogilvie, Mark E.; Flynn, Peter F. [University of Utah, Department of Chemistry (United States)], E-mail: peter.flynn@utah.edu

    2008-03-15

    Membrane protein structural biology is a rapidly developing field with fundamental importance for elucidating key biological and biophysical processes including signal transduction, intercellular communication, and cellular transport. In addition to the intrinsic interest in this area of research, structural studies of membrane proteins have direct significance on the development of therapeutics that impact human health in diverse and important ways. In this article we demonstrate the potential of investigating the structure of membrane proteins using the reverse micelle forming surfactant dioctyl sulfosuccinate (AOT) in application to the prototypical model ion channel gramicidin A. Reverse micelles are surfactant based nanoparticles which have been employed to investigate fundamental physical properties of biomolecules. The results of this solution NMR based study indicate that the AOT reverse micelle system is capable of refolding and stabilizing relatively high concentrations of the native conformation of gramicidin A. Importantly, pulsed-field-gradient NMR diffusion and NOESY experiments reveal stable gramicidin A homodimer interactions that bridge reverse micelle particles. The spectroscopic benefit of reverse micelle-membrane protein solubilization is also explored, and significant enhancement over commonly used micelle based mimetic systems is demonstrated. These results establish the effectiveness of reverse micelle based studies of membrane proteins, and illustrate that membrane proteins solubilized by reverse micelles are compatible with high resolution solution NMR techniques.

  7. Enzyme catalysed production of phospholipids with modified fatty acid profile

    Vikbjerg, Anders Falk

    2006-01-01

    projektet var at udvikle processer baseret på enzymatisk interesterificering til produktion af phospholipider med specifik fedtsyre profil (strukturerede phospholipider), og opsætning af membrane separationssystemer til oprensning af strukturerede phospholipider efter reaktion. Produktionen af strukturerede...... under dette arbejde udviklet en ”downstream” proces, som involver ultrafiltrering. I apolære solventer har phospholipider tendens til a danne ”reverse micelles”, som kan adskilles fra fedtsyrer og solvent ved anvendelse af passende membraner. Ydermere blev fysiske egenskaber af specifikke strukturerede...

  8. pH dependent polymeric micelle adsorption

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly

  9. Magainin II modified polydiacetylene micelles for cancer therapy

    Yang, Danling; Zou, Rongfeng; Zhu, Yu; Liu, Ben; Yao, Defan; Jiang, Juanjuan; Wu, Junchen; Tian, He

    2014-11-01

    Polydiacetylene (PDA) micelles have been widely used to deliver anticancer drugs in the treatment of a variety of tumours and for imaging living cells. In this study, we developed an effective strategy to directly conjugate magainin II (MGN-II) to the surface of PDA micelles using a fluorescent dye. These stable and well-defined PDA micelles had high cytotoxicity in cancer cell lines, and were able to reduce the tumour size in mice. The modified PDA micelles improved the anticancer effects of MGN-II in the A549 cell line only at a concentration of 16.0 μg mL-1 (IC50). In addition, following irradiation with UV light at 254 nm, the PDA micelles gave rise to an energy transfer from the fluorescent dye to the backbone of PDA micelles to enhance the imaging of living cells. Our results demonstrate that modified PDA micelles can not only be used in the treatment of tumors in vitro and in vivo in a simple and directed way, but also offer a new platform for designing functional liposomes to act as anticancer agents.Polydiacetylene (PDA) micelles have been widely used to deliver anticancer drugs in the treatment of a variety of tumours and for imaging living cells. In this study, we developed an effective strategy to directly conjugate magainin II (MGN-II) to the surface of PDA micelles using a fluorescent dye. These stable and well-defined PDA micelles had high cytotoxicity in cancer cell lines, and were able to reduce the tumour size in mice. The modified PDA micelles improved the anticancer effects of MGN-II in the A549 cell line only at a concentration of 16.0 μg mL-1 (IC50). In addition, following irradiation with UV light at 254 nm, the PDA micelles gave rise to an energy transfer from the fluorescent dye to the backbone of PDA micelles to enhance the imaging of living cells. Our results demonstrate that modified PDA micelles can not only be used in the treatment of tumors in vitro and in vivo in a simple and directed way, but also offer a new platform for

  10. Influence of race and crossbreeding on casein micelles size.

    Freitas, Denise R; Fonseca, Leorges M; Souza, Fernando N; Ladeira, Cristiane V G; Diniz, Soraia A; Haddad, João Paulo A; Ferreira, Diêgo S; Santoro, Marcelo M; Cerqueira, Mônica M O P

    2015-05-01

    Casein (CN) micelles are colloidal aggregates of protein dispersed in milk, the importance of which in the dairy industry is related to functionality and yield in dairy products. The objective of this work was to investigate the correlation of milk CN micelles diameter from Holstein and Zebu crossbreds with milk composition (protein, fat, lactose, total and nonfat solids and milk urea nitrogen), somatic cell count (SCC), age, lactation stage and production. Average casein micelles diameters of milk samples obtained from 200 cows were measured using photon correlation spectroscopy and multiple regression analysis was used to find relationship between variables. CN micelle diameter, SCC and nonfat solids were different between animals with different Holstein crossbreed ratios, which suggests influence of genetic factors, mammary gland health and milk composition. Overall, results indicate the potential use of CN micelle diameter as a tool to select animals to produce milk more suitable to cheese production. PMID:25488503

  11. Motional Coherence in Fluid Phospholipid Membranes

    Rheinstadter, Maikel C; Flenner, Elijah J; Bruening, Beate; Seydel, Tilo; Kosztin, Ioan

    2008-01-01

    We report a high energy-resolution neutron backscattering study, combined with in-situ diffraction, to investigate slow molecular motions on nanosecond time scales in the fluid phase of phospholipid bilayers of 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine (DMPC) and DMPC/40% cholesterol (wt/wt). A cooperative structural relaxation process was observed. From the in-plane scattering vector dependence of the relaxation rates in hydrogenated and deuterated samples, combined with results from a 0.1 microsecond long all atom molecular dynamics simulation, it is concluded that correlated dynamics in lipid membranes occurs over several lipid distances, spanning a time interval from pico- to nanoseconds.

  12. Therapeutic surfactant-stripped frozen micelles

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  13. Screening for the drug-phospholipid interaction: correlation to phospholipidosis

    Alakoskela, Juha-Matti; Vitovic, Pavol; Kinnunen, Paavo K J

    2009-01-01

    Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic pro...

  14. Redox-Responsive Micelles with Cores Crosslinked via Click Chemistry.

    Zhang, Xiaojin; Dong, Hui; Fu, Shuangli; Zhong, Zhenlin; Zhuo, Renxi

    2016-06-01

    Redox-responsive micelles with cores crosslinked via click chemistry are developed to improve the stability of polymer micelles. Amphiphilic block copolymer mPEG-b-P(DTC-ADTC) with pendant azido groups on the hydrophobic chains is synthesized by the ring-opening polymerization of 2,2-bis(azidomethyl)trimethylene carbonate (ADTC) and 2,2-dimethyltrimethylene carbonate (DTC) with monomethoxy poly(ethylene glycol) (mPEG) as an initiator. mPEG-b-P(DTC-ADTC) self-assemble to form the micelles in aqueous solution and the cores of the micelles are crosslinked via click chemistry to afford redox-responsive core-crosslinked micelles. Core-crosslinking enhances the stability of the micelles in aqueous solution and improve the drug-loading property. The redox-responsive core-crosslinked micelles can be reduced by the addition of reducing agents such as dithiothreitol (DTT), and thus release the loaded drug quickly in the presence of DTT. PMID:27150437

  15. Regulation of lung surfactant phospholipid synthesis and metabolism.

    Goss, Victoria; Hunt, Alan N; Postle, Anthony D

    2013-02-01

    The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states. PMID:23200861

  16. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  17. Polymeric micelle as the pseudostationary phase in electrokinetic chromatography.

    Wang, Boni; Ni, Xinjiong; Yu, Meijuan; Cao, Yuhua

    2012-07-01

    A simple, green, and novel approach to prepare polymeric micelle with amphiphilic random copolymer P (MMA-co-MAA) via neutralization in aqueous medium has been developed, and the polymeric micelle was firstly applied as a pseudostationary phase (PSP) in electrokinetic chromatography (EKC) in the present work. Three structurally similar corticosteroids namely hydrocortisone, prednisolone, and prednisone were separated with EKC using polymeric micelle as PSP to assess the separation performance. The effects of polymeric concentration and pH on micellar microstructure including size, morphology, surface charge density and EKC performances have been investigated. TEM showed that amphiphilic random copolymers were self-assembled via neutralization to form micelles with well-defined size and shape. The size and shape of the micelle depended on the P (MMA-co-MAA) concentration and pH. At the concentration of 0.048 mM and pH 9.2, the polymeric micelles were of monodispersity and perfect spheres. DLS showed the size of micelle was almost equal as polymer concentration in the range of 0.0096-0.048 mM, and then enlarged sharply at the concentration larger than 0.048 mM. However, the zeta potentials of micelle were nearly unchanged. The polymer concentration is also the key parameter for EKC separation. Under the optimum conditions, three analytes could be baseline separated within 7.4 min. Compared with typical MEKC, MEEKC, and MEKC modified with IL ([Bmim]BF₄), the developed method was more rapid, efficient, and higher selective. The separation mechanism using polymeric micelle as PSP was reverse-phase interaction. The actual cosmetic samples were analyzed with recoveries between 97.3% and 113%. PMID:22633065

  18. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N.

    2009-01-01

    We present relative binding free energy calculations for six antimicrobial peptide–micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial mem...

  19. Self-assembly of micelles into designed networks

    Pyatenko Alexander

    2007-01-01

    Full Text Available AbstractThe EO20PO70EO20(molecular weight 5800 amphiphile as a template is to form dispersed micelle structures. Silver nanoparticles, as inorganic precursors synthesized by a laser ablation method in pure water, are able to produce the highly ordered vesicles detected by TEM micrography. The thickness of the outer layer of a micelle, formed by the silver nanoparticles interacting preferentially with the more hydrophilic EO20block, was around 3.5 nm. The vesicular structure ensembled from micelles is due to proceeding to the mixture of cubic and hexagonal phases.

  20. Pressure-induced structural transition of nonionic micelles

    V K Aswal; R Vavrin; J Kohlbrecher; A G Wagh

    2008-11-01

    We report dynamic light scattering and small angle neutron scattering studies of the pressure-induced structural transition of nonionic micelles of surfactant polyoxyethylene 10 lauryl ether (C12E10) in the pressure range 0 to 2000 bar. Measurements have been performed on 1 wt% C12E10 in aqueous solution with and without the addition of KF. Micelles undergo sphere to lamellar structural transitions as the pressure is increased. On addition of KF, rod-like micelles exist at ambient pressure, which results in rod-like to lamellar structural transition at a much lower pressure in the presence of KF. Micellar structural transitions have been observed to be reversible.

  1. Photophysical study of a charge transfer oxazole dye in micelles: Role of surfactant headgroups

    Maiti, Jyotirmay [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Sarkar, Yeasmin; Parui, Partha Pratim [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Chakraborty, Sandipan [Department of Microbiology, University of Calcutta, Kolkata 700019 (India); Biswas, Suman [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Das, Ranjan, E-mail: ranjan.das68@gmail.com [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-07-15

    Photophysics of 5-(4′′-dimethylaminophenyl)-2-(4′-sulfophenyl)oxazole, sodium salt (DMO) which undergoes intramolecular charge transfer in the excited state was studied in micelles. In the cationic and the nonionic micelles, significantly higher fluorescence quantum yield is observed in comparison to the anionic micelles, due to much lower accessibility of DMO to the water molecules in the former micelles than the latter. Time-resolved fluorescence decays were characterized by a fast (τ{sub 1}) and a slow (τ{sub 2}) component of decay in all the micelles. The fast decay component (τ{sub 1}) increases significantly in going from the anionic micelles to the cationic micelles, because of the poorly hydrated headgroup region of the latter micelles compared to the former. Furthermore, much higher value of the slow component of decay (τ{sub 2}) is observed for the cationic and the neutral micelles than the anionic micelles. This is attributed to the increased penetration of water molecules into the micellar core of the anionic micelles compared to the cationic and the neutral micelles. - Highlights: • Photophysics of the fluorophore are remarkably different in the cationic and the anionic micelles. • Differential hydration of the surfactant headgroups gives rise to significantly different fluorescence quantum yield and lifetime in oppositely charged micelles. • Electrostatic interactions fine tune location of the fluorophore in the micelle–water interface of ionic micelles.

  2. The impact of phospholipids and phospholipid removal on bioanalytical method performance.

    Carmical, Jennifer; Brown, Stacy

    2016-05-01

    Phospholipids (PLs) are a component of cellmembranes, biological fluids and tissues. These compounds are problematic for the bioanalytical chemist, especially when PLs are not the analytes of interest. PL interference with bioanalysis highly impacts reverse-phase chromatographic methods coupled with mass spectrometric detection. Phospholipids are strongly retained on hydrophobic columns, and can cause significant ionization suppression in the mass spectrometer, as they outcompete analyte molecules for ionization. Strategies for improving analyte detection in the presence of PLs are reviewed, including in-analysis modifications and sample preparation strategies. Removal of interfering PLs prior to analysis seems to be most effective atmoderating thematrix effects fromthese endogenous cellular components, and has the potential to simplify chromatography and improve column lifetime. Products targeted at PL removal for sample pre-treatment, as well as products that combine multiplemodes of sample preparation (i.e. Hybrid SPE), show significant promise inmediating the effect on PL interference in bioanalysis. PMID:26773720

  3. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the FibPep-ION-Micelle

  4. Spontaneous transfer of gangliotetraosylceramide between phospholipid vesicles

    The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles and large, unilamellar acceptor vesicles were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [14C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. (Abstract Truncated)

  5. Conformation and Orientation of Phospholipid Molecule in Pure Phospholipid Monolayer During Compressing

    XUE Weilan; WANG Dan; ZENG Zuoxiang; GAO Xuechao

    2013-01-01

    On the basis of energy conservation law and surface pressure isotherm,the conformation energy changes of dipalmitoylphosphatidylcholine(DPPC)and dipalmitoylphosphatidylglycerol(DPPG)in pure phospholipid monolayer at the air/water interface during compression are derived.The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software.Based on following assumptions:(1)the conformation energy change is mainly caused by the rotation of one special bond;(2)the atoms of glycerol near the water surface are active;(3)the rotation is motivated by hydrogen-bond action;(4)the rotation of bond is inertial,one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs.dihedral angle.The thickness of the simulated phospholipid monolayer is consistent with published experimental result.According to molecular areas at different states,the molecular orientations in the compressing process are also developed.

  6. Structure and reactivity in amphiphile-water micelles

    Following a review of the general properties of micelles, this report contains two parts: - A structural study of octylphosphate micelles. Important structural changes have been evidenced by mean of small angle neutron scattering as the electrical charge of the interface is varied. The NMR relaxation study of the conformation of the hydrocarbon chains has shown that the micellar core is disordered in contrast with the interface which is rather structured. The diffusion motions in the interface and the segmental motions of the chains are fast. - Studies on the reactivity in micelles have been carried out. A large micellar effect on the complexation of transition ions by amphiphilic ligands is evidenced. The problem of solute localization in micelles is developed with few examples. (author)

  7. Interactions of casein micelles with calcium phosphate particles.

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk. PMID:24896851

  8. Influence of succinylation on physicochemical property of yak casein micelles.

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. PMID:26213046

  9. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite

    Mishael, Y. G.; Undabeytia López, Tomás; Rytwo, Giora; Papahadjopoulos Sternberg, B.; Rubin, Baruch; Nir, Shlomo

    2002-01-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption o...

  10. A neutron scattering study of triblock copolymer micelles

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  11. Structure of strongly interacting polyelectrolyte diblock copolymer micelles

    Korobko, A.V.; Jesse, W.; Lapp, A.; Egelhaaf, S. U.; van der Maarel, J. R. C.

    2004-01-01

    The structure of spherical micelles of the diblock poly(styrene-block-acrylic acid) [PS-b-PA] copolymer in water was investigated up to concentrations where the polyelectrolyte coronal layers have to shrink and/or interpenetrate in order to accommodate the micelles in the increasingly crowded volume. We obtained the partial structure factors pertaining to the core and corona density correlations with small angle neutron scattering (SANS) and contrast matching in the water. The counterion stru...

  12. The Size Distribution of Casein Micelles in Camel Milk

    Farah, Z.; Ruegg, M. W.

    1989-01-01

    The size distribution of casein micelles in camel milk has been determined by electron microscopy. Individual and pooled samples were cryo-fixed by rapid freezing and freeze-fractured. Electron micrographs of the freeze-fracture replica revealed a relatively broad size distribution, with an average micelle dimeter around 280 nm in the volume distribution curve. The distribution was significantly broader than that of the particles of cow's or human milk and showed a greater number of large ...

  13. Preconcentration of strontium by micelle modified solid phase extraction

    The preconcentration of strontium using a solid phase separation technique with selective micelle forming complexant has been studied. Di-2-ethylhexylphosphoric acid and its thio- and dithio derivatives were used as modifiers. The goal of this work was to study the influence of physico-chemical parameters on recovery of strontium after its preconcentration on reverse phase (Si-C-18) using micelle modifiers. (author) 5 refs.; 7 figs

  14. A neutron scattering study of triblock copolymer micelles

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  15. Predicting proton titration in cationic micelle and bilayer environments

    Brian H. Morrow; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-01-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and l...

  16. Rheology and phase behavior of dense casein micelle dispersions

    Bouchoux, A.; Debbou, B.; Gésan-Guiziou, G.; Famelart, M.-H.; Doublier, J.-L.; Cabane, B.

    2009-10-01

    Casein micelle dispersions have been concentrated through osmotic stress and examined through rheological experiments. In conditions where the casein micelles are separated from each other, i.e., below random-close packing, the dispersions have exactly the flow and dynamic properties of the polydisperse hard-sphere fluid, demonstrating that the micelles interact only through excluded volume effects in this regime. These interactions cause the viscosity and the elastic modulus to increase by three orders of magnitude approaching the concentration of random-close packing estimated at Cmax≈178 g/l. Above Cmax, the dispersions progressively turn into "gels" (i.e., soft solids) as C increases, with elastic moduli G' that are nearly frequency independent. In this second regime, the micelles deform and/or deswell as C increases, and the resistance to deformation results from the formation of bonds between micelles combined with the intrinsic mechanical resistance of the micelles. The variation in G' with C is then very similar to that observed with concentrated emulsions where the resistance to deformation originates from a set of membranes that separate the droplets. As in the case of emulsions, the G' values at high frequency are also nearly identical to the osmotic pressures required to compress the casein dispersions. The rheology of sodium caseinate dispersions in which the caseins are not structured into micelles is also reported. Such dispersions have the behavior of associative polymer solutions at all the concentrations investigated, further confirming the importance of structure in determining the rheological properties of casein micelle systems.

  17. Structural changes of casein micelles in a calcium gradient film

    Gebhardt, R.; Burghammer, M.; Riekel, C.; Roth, S. V.; Müller-Buschbaum, P.

    2008-01-01

    Calcium gradients are prepared by sequentially filling a micropipette with casein solutions of varying calcium concentration and spreading them on glass slides. The casein film is formed by a solution casting process, which results in a macroscopically rough surface. Microbeam grazing incidence small-angle X-ray scattering (microGISAXS) is used to investigate the lateral size distribution of three main components in casein films: casein micelles, casein mini-micelles, and micellar calcium pho...

  18. Casein Micelles: Size Distribution in Milks from Individual Cows

    Kruif, C.G. de; Huppertz, T.

    2012-01-01

    The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences in the size and polydispersity of the casein micelles were observed between the milks of different cows, but not as a function of stage of milking or stage of lactation and not even over successive ...

  19. Atomic Model and Micelle Dynamics of QS-21 Saponin

    Conrado Pedebos; Laércio Pol-Fachin; Ramon Pons; Cilâine V. Teixeira; Hugo Verli

    2014-01-01

    QS-21 is a saponin extracted from Quillaja saponaria, widely investigated as a vaccine immunoadjuvant. However, QS-21 use is mainly limited by its chemical instability, significant variety in molecular composition and low tolerance dose in mammals. Also, this compound tends to form micelles in a concentration-dependent manner. Here, we aimed to characterize its conformation and the process of micelle formation, both experimentally and computationally. Therefore, molecular dynamics (MD) simula...

  20. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite.

    Mishael, Yael Golda; Undabeytia, Tomas; Rytwo, Giora; Papahadjopoulos-Sternberg, Brigitte; Rubin, Baruch; Nir, Shlomo

    2002-05-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption of hexadecyltrimethylammonium (HDTMA) and octadecyltrimethylammonium (ODTMA) on montmorillonite was studied above and below their critical micelle concentrations (CMC). At concentrations above the CMC, the loading exceeded the clay's cation exchange capacity (CEC) and indicated higher affinity of the cation with the longer alkyl chain. An adsorption model could adequately simulate adsorption at concentrations below the CMC, and yield fair predictions for the effect of ionic strength. The model indicated that above the CMC adsorbed micelles contributed significantly to the amount of ODTMA adsorbed. Evidence for adsorption of ODTMA micelles on montmorillonite was provided by X-ray diffraction, freeze-fracture electron microscopy, and dialysis bag measurements. SFM was not adsorbed directly on the clay mineral, and adsorbed at low levels, when the organic cation was adsorbed as monomers. In contrast, a large fraction of SFM adsorbed on the clay mineral when incorporated in micelles that adsorbed on the clay. PMID:11982411

  1. Atomic Model and Micelle Dynamics of QS-21 Saponin

    Conrado Pedebos

    2014-03-01

    Full Text Available QS-21 is a saponin extracted from Quillaja saponaria, widely investigated as a vaccine immunoadjuvant. However, QS-21 use is mainly limited by its chemical instability, significant variety in molecular composition and low tolerance dose in mammals. Also, this compound tends to form micelles in a concentration-dependent manner. Here, we aimed to characterize its conformation and the process of micelle formation, both experimentally and computationally. Therefore, molecular dynamics (MD simulations were performed in systems containing different numbers of QS-21 molecules in aqueous solution, in order to evaluate the spontaneous micelle formation. The applied methodology allowed the generation of micelles whose sizes were shown to be in high agreement with small-angle X-ray scattering (SAXS. Furthermore, the ester linkage between fucose and acyl chain was less solvated in the micellar form, suggesting a reduction in hydrolysis. This is the first atomistic interpretation of previous experimental data, the first micellar characterization of saponin micelles by SAXS and first tridimensional model of a micelle constituted of saponins, contributing to the understanding of the molecular basis of these compounds.

  2. Morphology of polysorbate 80 (Tween 80) micelles in aqueous dimethyl sulfoxide solutions

    Aizawa, Hideki

    2010-01-01

    The structures of micelles of the surfactant polysorbate 80 (Tween 80) in 0–50% aqueous dimethyl sulfoxide (DMSO) solutions (pH 7.2, ionic strength 2.44 mM) were investigated by means of small-angle X-ray scattering. At DMSO concentrations of 0–20%, core–shell cylinder micelles formed, and at 30–50% DMSO, core–shell discus micelles formed, that is, changing the hydrophobicity of the DMSO solvent mixture changed the micelles from core–shell cylinder micelles to core–shell discus micelles....

  3. Surface induced ordering of micelles at the solid-liquid interface

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The...... structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  4. Isolation of Phospholipid from Egg Yolk with Ultrasonic Separation Technology

    Yu-mei Jia

    2014-03-01

    Full Text Available This study presented a new solution of isolation for phospholipid from egg yolks by ultrasonic wave. Degradation of phospholipid was discussed with the aggregation of micro-particles. The frequency of ultrasonic wave was 20 kHz. Lubricant was treated for 9 min under 0, 200, 400, 600W, respectively. It was showed that concentration of phospholipid reduced as ultrasonic power and time increased. Ultrasonic wave was useful for degradation of high molecular protein. Phospholipid secondary structure transforming was also observed, which was affected by ultrasonic wave. Suspension particles aggregated under the different ultrasonic wave condition. Content of the aggregation increased and volume of the aggregate reduced as ultrasonic treatment time increased.

  5. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Sutter, Esther [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Oliveira, Anna Paula de; Tobler, Kurt [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Sonda, Sabrina [Institute of Parasitology, University of Zuerich (Switzerland); Kaech, Andres [Center for Microscopy and Image Analysis, University of Zuerich (Switzerland); Lucas, Miriam S. [Electron Microscopy ETH Zuerich (EMEZ), Swiss Federal Institute of Technology, Zuerich (Switzerland); Ackermann, Mathias [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Wild, Peter, E-mail: pewild@access.uzh.ch [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland)

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  6. Phospholipids of the lung in normal, toxic, and diseased states

    Akino, T.; Ohno, K.

    1981-01-01

    The highly pulmonary concentration of 1,2-dipalmitoyl-sn-glycerol-3-phosphorylcholine (dipalmitoyllecithin) and its implication as an important component of lung surfactant have promoted investigation of phospholipid metabolism in the lung. This review will set the contents including recent informations for better understanding of phospholipid metabolism of the lung in normal state (physiological significances of lung phospholipids, characteristics of phospholipids in lung tissue and alveolar washing, biosynthetic pathways of dipalmitoyllecithin, etc.) as well as in toxic states (pulmonary oxygen toxicity, etc.) and in diseased states (idiopathic respiratory distress syndrome, pulmonary alveolar proteinosis, etc.) Since our main concern has been to clarify the most important route for supplying dipalmitoyllecithin, this review will be focused upon the various biosynthetic pathways leading to the formation of different molecular species of lecithin and their potential significance in the normal, toxic, and diseased lungs.

  7. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [3H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [3H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  8. TRANSDERMAL DELIVERY OF CYCLOSPORIN A SOLUBILIZED IN MIXED MICELLES THROUGH MICE SKIN%混合胶团增溶的环孢素A经小鼠皮肤的渗透作用

    吴涛; 郭健新; 平其能; 金飞燕; 孙喜文

    2001-01-01

    AIM To investigate the transdermal delivery effects of cyclosporine A solubilized in mixed micelles composed of phospholipid and different surfactants. METHODS When applied onto the excised abdominal skin of the mice occlusively, the enhancing effects of various mixed micelles on the penetration of cyclosporin A were assessed by an in vitro permeation technique. In vivo study was carried out by topical application of sodium cholate-phospholipid mixed micelles onto the mice skin and drug blood concentration was detected. RESULTS In vitro, mixed micelles containing different surfactants displayed distinct permeability and corresponded to the following order: sodium cholate > sodium deoxycholate > Trition X-100 > Tween-20. In vivo, peak drug concentration was detected at 5 h and after that the concentration fell down slowly. CONCLUSION Mixed micelles were shown to be efficient carrier for the transdermal delivery of the lipophilic polypeptide when kept in solution during the application process.%目的研究由不同表面活性剂和磷脂所组成的混合胶团(mixed micelles)对环孢素A经小鼠皮肤给药的渗透促进作用。方法将含药混合胶团溶液封闭性应用于离体或在体小鼠皮肤,测定接收介质和血液中环孢素A含量。结果离体条件下,不同表面活性剂和磷脂所形成的混合胶团的皮肤渗透作用强度为:胆酸钠-磷脂混合胶团>脱氧胆酸钠-磷脂混合胶团>Triton X-100-磷脂混合胶团>Tween-20-磷脂混合胶团。在体条件下,用胆酸钠-磷脂混合胶团后,5 h血药浓度达峰值,随后血药浓度缓慢下降。结论混合胶团在水溶液状态下对大分子难溶药物环孢素A具有一定的皮肤促渗效果。

  9. Linking Phospholipid flippases to vesicle-mediated protein transport

    Muthusamy, Baby-Periyanayaki; Natarajan, Paramasivam; Zhou, Xiaoming; Graham, Todd R.

    2009-01-01

    Type IV P-type ATPases (P4-ATPases) are a large family of putative phospholipid translocases (flippases) implicated in the generation of phospholipid asymmetry in biological membranes. P4-ATPases are typically the largest P-type ATPase subgroup found in eukaryotic cells, with five members in Saccharomyces cerevisiae, six members in Caenorhabditis elegans, 12 members in Arabidopsis thaliani and 14 members in humans. In addition, many of the P4-ATPases require interaction with a noncatalytic su...

  10. Effects of gamma irradiation on solid and lyophilised phospholipids

    Stensrud, G.; Redford, K.; Smistad, G.; Karlsen, J.

    1999-11-01

    The effects of gamma irradiation (25 kGy) as a sterilisation method for phospholipids (distearoylphosphatidylcholine and distearoylphosphatidylglycerol) were investigated. 31P-NMR revealed minor chemical degradation of the phospholipids but lower dynamic viscosity and pseudoplasticity, lower turbidity, higher diffusion constant, smaller size, more negative zeta potential and changes in the phase transition behaviour of the subsequently produced liposomes were observed. The observed changes could to some extent be explained by the irradiation-induced degradation products (distearoylphosphatidic acid, fatty acids, lysophospholipids).

  11. Dielectric Analysis for the Spherical and Rodlike Micelle Aggregates Formed from a Gemini Surfactant: Driving Forces of Micellization and Stability of Micelles.

    Wang, Shanshan; Zhao, Kongshuang

    2016-08-01

    The self-aggregation behavior of Gemini surfactant 12-2-12 (ethanediyl-1,2-bis(dimethyldodecylammonium bromide)) in water was investigated by dielectric relaxation spectroscopy (DRS) over a frequency range from 40 Hz to 110 MHz. Dielectric determination shows that well-defined spherical micelles formed when the concentration of the surfactant was above a critical micelle concentration CMC1 of 3 mM and rodlike micelles formed above CMC2, 16 mM. The formation mechanism of the spherical micelles and their transition mechanism to clubbed micelles were proposed by calculating the degree of counterion binding of the micelles. The interactions between the head groups and the hydrophobic chains of the surfactant led to the formation of the micelles, whereas the transition is mainly attributed to the interaction among the hydrophobic chains. By analyzing the dielectric relaxation observed at about 10(7) Hz based on the interface polarization theory, the permittivity and conductivity of micelle aggregates (spherical and clubbed) and volume fraction of micelles were calculated theoretically as well as the electrical properties of the solution medium. Furthermore, we also calculated the electrokinetic parameters of the micelle particle surface, surface conductivity, surface charge density, and zeta potential, using the relaxation parameters and phase parameters. On the basis of these results, the balance of forces controlling morphological transitions, interfacial electrokinetic properties, and the stability of the micelle aggregates was discussed. PMID:27396495

  12. Millimeter-area, free standing, phospholipid bilayers.

    Beltramo, Peter J; Van Hooghten, Rob; Vermant, Jan

    2016-05-11

    Minimal model biomembrane studies have the potential to unlock the fundamental mechanisms of cellular function that govern the processes upon which life relies. However, existing methods to fabricate free-standing model membranes currently have significant limitations. Bilayer sizes are often tens of micrometers, decoupling curvature or substrate effects, orthogonal control over tension, and solvent exchange combined with microscopy techniques is not possible, which restricts the studies that can be performed. Here, we describe a versatile platform to generate free standing, planar, phospholipid bilayers with millimeter scale areas. The technique relies on an adapted thin-film balance apparatus allowing for the dynamic control of the nucleation and growth of a planar black lipid membrane in the center of an orifice surrounded by microfluidic channels. Success is demonstrated using several different lipid types, including mixtures that show the same temperature dependent phase separation as existing protocols, moreover, membranes are highly stable. Two advantages unique to the proposed method are the dynamic control of the membrane tension and the possibility to make extremely large area membranes. We demonstrate this by showing how a block polymer, F68, used in drug delivery increases the membrane compliance. Together, the results demonstrate a new paradigm for studying the mechanics, structure, and function of model membranes. PMID:27050618

  13. Tissue phospholipids (TPL) in avian tuberculosis (AT)

    AT constitutes one of the major problems in animal husbandry. Chickens (white, leg horn, male, 400-600 g) were infected with Mycobacterium avium maintained on I.U.T. medium to induce clinical AT which was confirmed by histopathological examinations of the affected tissues. Fatty infiltration and tissue enlargement was visible in infected birds. After 4 wks, incorporation of i.v. 32P (50 uCi/100 g body wt.) in affected tissues was followed for 3,7,9,12 hr intervals. Lipids were extracted and fractionated by silicic acid (SA) column and SA impregnated paper chromatography. When compared with pair-fed controls, in AT slower turnover of TPL in liver, slightly higher in heart and significantly increased turnover of TPL in serum were observed. No appreciable change in total TPL content was noticed in brain, spleen and kidney. Further fractionation of TPL provided better understanding of the metabolism. Increase in lysophosphatidyl-choline (LPC) and -ethanolamine (LPE) content, powerful hemolytic agents, in liver may explain frequent occurrence of anemia in tuberculosis. Also, a concomitant marked increase in the ratio of total saturated/unsaturated fatty acids is observed in serum phosphatidyl choline fraction. This confirms the observation that the membrane phospholipid metabolism is significantly affected in tuberculosis infection

  14. Molecular Insights into Phospholipid -- NSAID Interactions

    Babu Boggara, Mohan; Krishnamoorti, Ramanan

    2007-03-01

    Non steroidal anti inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. Using all atomistic simulations and two different methodologies, we studied the partitioning behavior of two model NSAIDs (Aspirin and Ibuprofen) as a function of pH and drug loading. The results from two methodologies are consistent in describing the equilibrium drug distribution in the bilayers. Additionally, the heterogeneity in density and polarity of the bilayer in the normal direction along with the fact that NSAIDs are amphiphilic (all of them have a carboxylic acid group and a non-polar part consisting of aromatic moieties), indicate that the diffusion mechanism in the bilayer is far different compared to the same in a bulk medium. This study summarizes the various effects of NSAIDs and their behavior inside the lipid bilayer both as a function of pH and drug concentration.

  15. The phospholipid vesicles coating on metal chelated inorganic surfaces

    This work showed the formation of phospholipid vesicle coating on inorganic sericite surface with characterization by combining electron microscopy of FE-SEM, TEM, AFM, and qualitatively evaluated the coated phospholipid vesicle by XPS as a function of etching time. The possibility of phospholipid vesicle mobility on the surface was restrained by the chelation effect of magnesium cation. The stabilization properties of phospholipid vesicles on sericite surface were demonstrated by the various concentration of magnesium cation. The presence of magnesium was found to have a much more pronounced influence on the lipid deposition process. The Mg cation plays an important role for attaching the phospholipids with optimum concentration of 7 mM. Totally, the phospholipid vesicles coating on inorganic powder could be useful for bio-related fields such as cosmetics and drug delivery system as the key functional compounds. We hope this basic result lead to a general and simple approach to prepare a wide a range of controlled releasing materials including an encapsulation with cosmetics or drugs

  16. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility. PMID:25630300

  17. The Use of Dodecylphosphocholine Micelles in Solution NMR

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  18. Micelles as Soil and Water Decontamination Agents.

    Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali

    2016-05-25

    Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment. PMID:27136750

  19. Structural investigation of diglycerol polyisostearate reverse micelles in organic solvents.

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Oyama, Keiichi; Matsuzawa, Makoto; Aramaki, Kenji

    2009-09-24

    The structure of glycerol-based reverse micelles in the surfactant/oil binary system without external water addition has been investigated using a small-angle X-ray scattering technique, and different tunable parameters for the structure control of reverse micelles are determined. The scattering data were evaluated by the generalized indirect Fourier transformation (GIFT) method and complemented by model fitting. It was found that diglycerol polyisostearates (abbreviated as (iso-C18)nG2, n=2-4, where n represents the number of isosterate chains per surfactant molecule) form reverse micelles in a variety of organic solvents such as cyclohexane, n-decane, and n-hexadecane without the addition of water from outside, and their structure (shape and size) depends on solvent properties (alkyl chain length), tail architecture of the surfactant, temperature, and added water. Small globular types of micelles were observed in the (iso-C18)2G2/cyclohexane system at 25 degrees C. The micellar size and the aggregation number were increased with increasing the alkyl chain length of the oils resulting in elongated ellipsoidal prolate or rodlike type micelles in the (iso-C18)2G2/hexadecane system. This structural evolution is caused by the different penetration tendency depending on the chain length of oils to the lipophilic chain of the surfactant. At fixed oil, composition, and temperature, the tail architecture of the surfactant played a crucial role in the micellar structure. The micellar size and, hence, the aggregation number decreased monotonically with increasing number of isostearate chain per surfactant molecule due to the voluminous lipophilic part of the surfactant. Composition could not modulate the structure of micelles but led to strong repulsive interactions among the micelles due to reduced osmotic compressibility of the system at higher concentrations. Increasing temperature decreased the micellar size, while the cross-section structure remains essentially the

  20. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  1. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    Ek, Pramod Kumar; Andresen, Thomas Lars; Almdal, Kristoffer

    2012-01-01

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona micelle based ratiometric fluorescence pH nanosensor fabrications. Two synthetic strategies such as post micelle modification and mixed micellisation (co-micellisation) were employed for pH nanosenso...

  2. Hydrolytic Degradation of Poly (ethylene oxide)-block-Polycaprolactone Worm Micelles

    Geng, Yan; Discher, Dennis E.

    2005-01-01

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly (ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by poly...

  3. Determination of the aggregation number for micelles by isothermal titration calorimetry

    Olesen, Niels Erik; Holm, Rene; Westh, Peter

    2014-01-01

    Isothermal titration calorimetry (ITC) has previously been applied to estimate the aggregation number (n), Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of micellization. However, some difficulties of micelle characterization by ITC still remain; most micelles have aggregation numbers...... insight into optimal design of titration protocols for micelle characterization. By applying the new method, the aggregation number of sodium dodecyl sulphate and glycochenodeoxycholate was determined at concentrations around their critical micelle concentration (CMC)...

  4. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model

    Qinjie Wu; Ning Wang; Tao He; Jinfeng Shang; Ling Li; Linjiang Song; Xi Yang; Xia Li; Na Luo; Wenli Zhang; Changyang Gong

    2015-01-01

    Tissue adhesion is a common complication after surgery. In this work, a dexamethasone loaded polymeric micelles in thermosensitive hydrogel composite (Dex hydrogel) was prepared, which combined the anti-adhesion barrier with controlled release of anti-adhesion drug. Dexamethasone (Dex) was encapsulated in polymeric micelles (Dex micelles), and then the Dex micelles were loaded into biodegradable and thermosensitive hydrogel. The obtained Dex hydrogel showed a temperature-dependent sol-gel-sol...

  5. Curcumin-Loading-Dependent Stability of PEGMEMA-Based Micelles Affects Endocytosis and Exocytosis in Colon Carcinoma Cells.

    Chang, Teddy; Trench, David; Putnam, Joshua; Stenzel, Martina H; Lord, Megan S

    2016-03-01

    Polymeric micelles were formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(PEGMEMA)-b-PS) block copolymer of two different chain lengths. The micelles formed were approximately 16 and 46 nm in diameter and used to encapsulate curcumin. Upon loading of the curcumin into the micelles, their size increased to approximately 34 and 80 nm in diameter, respectively, with a loading efficiency of 58%. The unloaded micelles were not cytotoxic to human colon carcinoma cells, whereas only the smaller loaded micelles were cytotoxic after 72 h of exposure. The micelles were rapidly internalized by the cells within minutes of exposure, with the loaded micelles internalized to a greater extent owing to their enhanced stability compared to that of the unloaded micelles. The larger micelles were more rapidly internalized and exocytosed than the smaller micelles, demonstrating the effect of micelle size and drug loading on drug delivery and cytotoxicity. PMID:26755445

  6. Biomimetic oral mucin from polymer micelle networks

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  7. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  8. Artificial Self-Sufficient P450 in Reversed Micelles

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  9. Multicompartment Micelles From π-Shaped ABC Block Copolymers

    XIA Jun; ZHONG Chong-Li

    2007-01-01

    Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from n-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike,X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since π-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles.

  10. Electron capture in water pools of reversed micelles

    The rate constants of excess electron attachment to reversed H2O-AOT micelles in liquid isooctane were measured by a picosecond pulse-conductivity technique at 220C. Electron attachment rates were less than the diffusion-controlled rate at molar ratios ω0 =[H2O]/[AOT] less than 12 but increased to the diffusion-controlled rate of approx. 1015M-1s-1 at ω0 = 37 where the micelle radius was approx. 100A. The transition from nondiffusion-controlled to diffusion-controlled electron attachment implies that free or non-AOT bound water in the micellar water pools is required for efficient electron attachment, which is consistent with earlier NMR, fluorescence, and polarization studies of electron capture by reversed H2O-AOT micelles

  11. Liquid-liquid extraction by reversed micelles in biotechnological processes

    Kilikian B. V.

    2000-01-01

    Full Text Available In biotechnology there is a need for new purification and concentration processes for biologically active compounds such as proteins, enzymes, nucleic acids, or cells that combine a high selectivity and biocompatibility with an easy scale-up. A liquid-liquid extraction with a reversed micellar phase might serve these purposes owing to its capacity to solubilize specific biomolecules from dilute aqueous solutions such as fermentation and cell culture media. Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. These reversed micelles are capable of selectively solubilizing polar compounds in an apolar solvent. This review gives an overview of liquid-liquid extraction by reversed micelles for a better understanding of this process.

  12. Structural characterization of casein micelles: shape changes during film formation

    The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. (paper)

  13. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  14. Topology, length scales, and energetics of surfactant micelles.

    Dhakal, Subas; Sureshkumar, Radhakrishna

    2015-07-14

    We study the morphology, energetics, and kinetics of a self-associating model cationic surfactant in water using large-scale coarse-grained molecular dynamics simulations over time scales that allow for probing micelle recombination dynamics. We develop an algorithm to track micelle contours and quantify various microstructural features such as contour length distribution, persistence length, and mesh size. We predict reliably the end-cap energy and recombination time of micelles, directly from molecular simulations for the first time. We further consider the variation of solution viscosity as a function of salt concentration and show that branched and multiconnected structures govern the experimentally observed anomalous dependence of zero-shear viscosity on salt concentration. Overall, simulation predictions are in good agreement with experiments. PMID:26178125

  15. Formation and degradation of multicomponent multicore micelles: insights from dissipative particle dynamics simulations.

    Chen, Houyang; Ruckenstein, Eli

    2013-05-01

    Dissipative particle dynamics (DPD) simulation is employed to examine (i) the multicomponent multicore micelle (MMM) formation from two kinds of star-shaped copolymers: A2B4B4 and C2B4B4 where A, B, and C are the segments of the copolymers and (ii) the degradation of multicomponent multicore micelles. Regarding the micelle formation, single-core micelles with the core composed of two components (SCII), multicomponent multicore micelles with each core composed of two components (MMII), multicomponent multicore micelles with each of the cores composed of one component (MMI), and multicomponent multicore rod micelles (MMRI) are considered. By changing the ratio between the number of segments of one of the polymers and the total number of segments of the two copolymers, the number of cores generated and their composition can be controlled. Considering that only C2B4B4 is degraded to 2C1 + 2B4, it was found that SCII, MMII, and MMI micelles degraded to a single irregular network core, to multicores with cores formed of loose aggregates, and to multicore micelles, respectively. The dynamics of micelle formation has several stages (small aggregates (nuclei) → growth of aggregates → micellization) whereas the dynamics of degradation involves the diffusion of the degraded components inside and outside micelles and the rearrangement of the cores of the micelles into new cores. PMID:23578256

  16. COMPARISON OF DRUG DELIVERY PROPERTIES OF PEG-b-PDHPC MICELLES WITH DIFFERENT COMPOSITIONS

    Chun-yan Long; Ming-ming Sheng; Bin He; Yao Wu; Gang Wang; Zhong-wei Gu

    2012-01-01

    An anti-tumor drug doxombicin was encapsulated in micelles of poly(ethylene glycol)-b-poly(2,2-dihydroxyl-methyl propylene carbonate) (PEG-b-PDHPC) diblock copolymers.The morphology of both blank micelles and drug loaded micelles was characterized by TEM.The in vitro drug release profiles of micelles were investigated.The cytotoxicity of the micelles was evaluated by incubating with Hela tumor cells and 3T3 fibroblasts.The drug loaded micelles were co-cultured with HepG2 cells to evaluate the in vitro anti-tumor efficacies.The results showed that the mean sizes of both micelles with different copolymer compositions increased after being loaded with drugs.The drug release rate of PEG45-b-PDHPC34 micelles was faster than that of rnPEG114-b-PDHPC26 micelles.Both of the two block copolymers were non-toxic.The confocal laser scanning microscopy and flow cytometry results showed that both the drug loaded micelles could be internalized efficiently in HepG2 cells.The PEG45-b-PDHPC34 micelles exhibited higher anti-tumor activity comparing to mPEG114-b-PDHPC26 micelles.

  17. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.

    Bachhav, Y G; Mondon, K; Kalia, Y N; Gurny, R; Möller, M

    2011-07-30

    Efficient topical drug administration for the treatment of superficial fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. The objective of the present investigation was to develop aqueous micelle solutions of clotrimazole (CLZ), econazole nitrate (ECZ) and fluconazole (FLZ) using novel amphiphilic methoxy-poly(ethylene glycol)-hexyl substituted polylactide (MPEG-hexPLA) block copolymers. The CLZ, ECZ and FLZ formulations were characterized with respect to drug loading and micelle size. The optimal drug formulation was selected for skin transport studies that were performed using full thickness porcine and human skin. Penetration pathways and micellar distribution in the skin were visualized using fluorescein loaded micelles and confocal laser scanning microscopy. The hydrodynamic diameters of the azole loaded micelles were between 70 and 165nm and the corresponding number weighted diameters (d(n)) were 30 to 40nm. Somewhat surprisingly, the lowest loading efficiency (13-fold higher than that from Pevaryl® cream (22.8±3.8 and 1.7±0.6μg/cm(2), respectively). A significant enhancement was also observed with human skin; the amounts of ECZ deposited were 11.3±1.6 and 1.5±0.4μg/cm(2), respectively (i.e., a 7.5-fold improvement in delivery). Confocal laser scanning microscopy images supported the hypothesis that the higher delivery observed in porcine skin was due to a larger contribution of the follicular penetration pathway. In conclusion, the significant increase in ECZ skin deposition achieved using the MPEG-dihexPLA micelles demonstrates their ability to improve cutaneous drug bioavailability; this may translate into improved clinical efficacy in vivo. Moreover, these micelle systems may also enable targeting of the hair follicle and this will be investigated

  18. Amiodarone--induced changes in surfactant phospholipids of rat lung.

    Padmavathy, B; Devaraj, H; Devaraj, N

    1993-04-01

    Amiodarone HCl (AD) is a very effective antiarrhythmic drug, but its use is often associated with serious pulmonary complications. It is shown to induce lung phospholipidosis. Nevertheless, the effects of this drug on pulmonary surfactant which is composed of about 75% phospholipids and which prevents alveolar collapse is not known. Therefore, we have examined the effect of AD on the intra- and extracellular surfactant pools and on the levels of phosphatidylcholine (PC), the primary constituent of pulmonary surfactant. Male Wistar rats were fed AD (175 mg/kg) by oral gavage for three weeks. At the end of the experimental period, the rats were killed, the lungs removed and perfused, and surfactant isolated. Some lungs were prepared for ultrastructural examination. Phospholipid was assayed in the intra- and extracellular surfactant. Amiodarone produced a significant increase in both the intra- and extracellular surfactant phospholipid along with an appreciable change in the phospholipid profile. Also, the drug seemed to increase the number of lamellar inclusions in the surfactant producing type II alveolar cells. These data suggest that administration of AD leads to an increase in the lung surfactant phospholipid levels and lamellar bodies in alveolar type II cells. PMID:8510769

  19. Effect of cellular phospholipid modification on phorbol diester binding

    The influence of cellular lipid composition on the specific binding of [20-3H]phorbol-12,13-dibutyrate to intact human promyelocytic leukemia cells was investigated. Cellular phospholipid composition could be manipulated by culturing cells in serum-free, chemically defined media containing base analogues of phospholipid polar head groups. Human promyelocytic leukemia cells grown in the presence of dimethylethanolamine, monomethylethanolamine, 3-aminopropanol, or isopropylethanolamine assimilated these natural and unnatural base moieties into endogenous phospholipids to the extent that 22 to 52% of the cell glycerophospholipids contained the base analogue. The formation of the phospholipid analogues was accompanied by a pronounced reduction in the levels of intracellular choline and ethanolamine glycerophospholipids. Analogue-supplemented cultures exhibited a reduced growth rate compared to control cells maintained in choline-containing medium. Specific [20-3H ]phorbol-12,13-dibutyrate binding was examined in lipid-altered cells and shown to be markedly higher (approximately 200% of control) in cells grown with dimethyl- or monomethylethanolamine. In contrast, exposure of cells to 3-aminopropanol or isopropylethanolamine resulted in a major reduction in [20-3H]phorbol-12,13-dibutyrate binding. Only minimal changes in nonspecific binding occurred between control and experimental cells. Because phorbol esters are highly membrane targeted, it is possible that phospholipid modification or the resulting changes in membrane organization influence receptor dynamics

  20. Control of phospholipid flip-flop by transmembrane peptides

    Kaihara, Masanori; Nakao, Hiroyuki; Yokoyama, Hirokazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Endo, Hitoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ishihama, Yasushi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Handa, Tetsurou [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minami-Tamagaki-cho, Suzuka, Mie 513-8670 (Japan); Nakano, Minoru, E-mail: mnakano@pha.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2013-06-20

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity.

  1. Ibuprofen-phospholipid solid dispersions: improved dissolution and gastric tolerance.

    Hussain, M Delwar; Saxena, Vipin; Brausch, James F; Talukder, Rahmat M

    2012-01-17

    Solid dispersions of ibuprofen with various phospholipids were prepared, and the effect of phospholipids on the in vitro dissolution and in vivo gastrointestinal toxicity of ibuprofen was evaluated. Most phospholipids improved the dissolution of ibuprofen; dimyristoylphosphatidyl-glycerol (DMPG) had the greatest effect. At 45 min, the extent of dissolution of ibuprofen from the ibuprofen-DMPG system (weight ratio 9:1) increased about 69% compared to ibuprofen alone; the initial rate of dissolution increased sevenfold. Increasing the DMPG content from 9:1 to 4:1 in this system did not significantly increase the rate and the extent of dissolution. X-ray diffraction and scanning electron micrograph indicated a smaller crystallite size of ibuprofen with fairly uniform distribution in the ibuprofen-DMPG solid dispersion. A small amount of carrier phospholipid significantly increases the rate and the extent of dissolution, which may increase the bioavailability of ibuprofen. The number of ulcers >0.5mm in size formed in the gastric mucosa of rats following ibuprofen, DMPG, DMPC and DPPC solid dispersions (ibuprofen and phospholipid weight ratio 4:1) were 8.6 ± 6.2, 3.9 ± 5.3, 5.3 ± 4.9 and 9.1 ± 7.4, respectively. Solid dispersion of ibuprofen with DMPG was significantly less irritating to the gastric mucosa than ibuprofen itself (one-way ANOVA, p<0.05). Solid dispersion of ibuprofen and DMPG decreases the gastric side effects of ibuprofen. PMID:22101290

  2. Phospholipids of subcellular organelles isolated from cultured BHK cells.

    Brotherus, J; Renkonen, O

    1977-02-23

    Mitochondrial and nuclei were purified from cultured hamster fibroblasts (BHK21 cells) by centrifugation in sucrose gradients. The phospholipid compositions of the preparations were compared to those of the previously purified plasma membranes, endoplasmic reticulum and lysosomes. The mitochondria had a characteristically high content (approx. 16% of lipid phosphorus) of cardiolipin, which was practically absent from the other purified organelles. The nuclei were enriched in phosphatidylcholine and phosphatidylinositol (approx. 68% and 5% of lipid phosphorus, respectively). Lysobisphosphatidic acid was almost absent from the mitochondria and nuclei, as well as from the plasma membrane and endoplasmic reticulum, which suggests that this phospholipid is confined to the lysosomes of the BHK cell. The nuclei and the mitochondria contained relatively little sphingomyelin, a characteristic lipid of the plasma membrane. The distributions of the total cellular phospholipid and protein between the various organelles were calculated and compared to the corresponding data estimated for the rat liver. The BHK cell contained relatively more phospholipids in the nucleus and the lysosomes than the liver. All the organelles of the BHK cell contained less protein per phospholipid than the equivalent organelles of the liver. PMID:836856

  3. Control of phospholipid flip-flop by transmembrane peptides

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity

  4. Proton transfer in ionic and neutral reverse micelles.

    Lawler, Christian; Fayer, Michael D

    2015-05-14

    Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the methoxy derivative of HPTS. These experiments were compared to the same experiments in bulk water. It was found that in ionic reverse micelles (surfactant Aerosol OT, AOT), orientational motion (fluorescence anisotropy decay) of MPTS was relatively unhindered, consistent with MPTS being located in the water core of the reverse micelle away from the water-surfactant interface. In nonionic reverse micelles (surfactant Igepal CO-520, Igepal), however, orientational anisotropy displayed a slow multiexponential decay consistent with wobbling-in-a-cone behavior, indicating MPTS is located at the water-surfactant interface. HPTS proton transfer in ionic reverse micelles followed kinetics qualitatively like those in bulk water, albeit slower, with the long-time power law time dependence associated with recombination of the proton with the dissociated photoacid, suggesting a modified diffusion-controlled process. However, the power law exponents in the ionic reverse micelles are smaller (∼ -0.55) than that in bulk water (-1.1). In neutral reverse micelles, proton-transfer kinetics did not show discernible power law behavior and were best represented by a two-component model with one relatively waterlike population and a population with a faster fluorescence lifetime and negligible proton transfer. We explain the Igepal results on the basis of close association between the probe and the neutral water-surfactant interface, with the probe experiencing a distribution of more and less waterlike environments. In addition, the observation in bulk water of a power law t(-1.1) for diffusion

  5. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  6. Optical properties of gold colloids formed in inverse micelles

    We discuss the formation of gold metal colloids in a variety of surfactant/solvent systems. Static and dynamic light scattering, small angle x-ray and neutron scattering, TEM analysis, and UV-visible absorbance are used to characterize the kinetics of formation and final colloid stability. These gold colloids exhibit a dramatic blueshift and broadening of the plasmon resonance with decreasing colloid size. Several types of reduction method are discussed and differences between micelle (water-free) or microemulsions as reaction media are compared. Use of inverse micelles allows smaller clusters to be formed with greater long-term stability

  7. Solubilization of beclomethasone dipropionate in sterically stabilized phospholipid nanomicelles (SSMs: physicochemical and in vitro evaluations

    Peh KK

    2012-02-01

    Full Text Available Mohanad Naji Sahib, Shaymaa Abdalwahed Abdulameer, Yusrida Darwis, Kok Khiang Peh, Yvonne Tze Fung TanSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MalaysiaBackground: The local treatment of lung disorders such as asthma and chronic obstructive pulmonary disease via pulmonary drug delivery offers many advantages over oral or intravenous routes of administration. This is because direct deposition of a drug at the diseased site increases local drug concentrations, which improves the pulmonary receptor occupancy and reduces the overall dose required, therefore reducing the side effects that result from high drug doses. From a clinical point of view, although jet nebulizers have been used for aerosol delivery of water-soluble compounds and micronized suspensions, their use with hydrophobic drugs has been inadequate.Aim: To evaluate the feasibility of sterically stabilized phospholipid nanomicelles (SSMs loaded with beclomethasone dipropionate (BDP as a carrier for pulmonary delivery.Methods: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol 5000 polymeric micelles containing BDP (BDP-SSMs were prepared by the coprecipitation and reconstitution method, and the physicochemical and in vitro characteristics of BDP-SSMs were investigated.Results: BDP-SSMs were successfully prepared with a content uniformity and reproducibility suitable for pulmonary administration. The maximum solubility of BDP in SSMs was approximately 1300 times its actual solubility. The particle size and zeta potential of BDP-SSMs were 19.89 ± 0.67 nm and -28.03 ± 2.05 mV, respectively. The SSMs system slowed down the release of BDP and all of the aerodynamic values of the aerosolized rehydrated BDP-SSMs were not only acceptable but indicated a significant level of deposition in the lungs.Conclusion: The SSM system might be an effective way of improving the therapeutic index of nebulized, poorly soluble corticosteroids

  8. Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity.

    Tschantz, W R; Paetzel, M; Cao, G; Suciu, D; Inouye, M; Dalbey, R E

    1995-03-28

    Leader peptidase is a novel serine protease in Escherichia coli, which functions to cleave leader sequences from exported proteins. Its catalytic domain extends into the periplasmic space and is anchored to the membrane by two transmembrane segments located at the N-terminal end of the protein. At present, there is no information on the structure of the catalytic domain. Here, we report on the properties of a soluble form of leader peptidase (delta 2-75), and we compare its properties to those of the wild-type enzyme. We find that the truncated leader peptidase has a kcat of 3.0 S-1 and a Km of 32 microM with a pro-OmpA nuclease A substrate. In contrast to the wild-type enzyme (pI of 6.8), delta 2-75 is water-soluble and has an acidic isoelectric point of 5.6. We also show with delta 2-75 that the replacement of serine 90 and lysine 145 with alanine residues results in a 500-fold reduction in activity, providing further evidence that leader peptidase employs a catalytic serine/lysine dyad. Finally, we find that the catalysis of delta 2-75 is accelerated by the presence of the detergent Triton X-100, regardless if the substrate is pro-OmpA nuclease A or a peptide substrate. Triton X-100 is required for optimal activity of delta 2-75 at a level far below the critical micelle concentration. Moreover, we find that E. coli phospholipids stimulate the activity of delta 2-75, suggesting that phospholipids may play an important physiological role in the catalytic mechanism of leader peptidase. PMID:7696258

  9. Products and mechanism of the reaction of ozone with phospholipids in unilamellar phospholipid vesicles

    Santrock, J.; Gorski, R.A.; O' Gara, J.F. (Biomedical Science Department, General Motors Research Laboratories, Warren, MI (United States))

    1992-01-01

    While considerable effort has been expended on determining the health effects of exposure to typical urban concentrations of O3, little is known about the chemical events responsible for toxicity. Phospholipids containing unsaturated fatty acids in the cell membranes of lung cells are likely reaction sites for inhaled ozone (O3). In this study, we examined the reaction of O3 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in unilamellar phospholipid vesicles. Reaction of ozone with the carbon-carbon double bond of POPC yielded an aldehyde and a hydroxy hydroperoxide. The hydroxy hydroperoxide eliminated H2O2 to yield a second aldehyde. Upon further ozonolysis, the aldehydes were oxidized to the corresponding carboxylic acids. A material balance showed that no other reaction consumed POPC and O3 or produced these products. As a mechanistic probe, we measured incorporation of oxygen-18 from 18O3 into aldehyde, carboxylic acid, and H2O2. Approximately 50% of the aldehyde oxygen atoms were derived from O3. Oxygen in H2O2 was derived solely from O3, where both oxygen atoms in a molecule of H2O2 were from the same molecule of O3. One of the carboxylic acid oxygen atoms was derived from the precursor aldehyde, while the other was derived from O3. These results support the following mechanism. Cleavage of the carbon-carbon double bond of POPC by O3 yields a carbonyl oxide and an aldehyde. Reaction of H2O with the carbonyl oxide yields a hydroxy hydroperoxide, preventing formation ozonide by reaction of the carbonyl oxide and aldehyde. Elimination of H2O2 from the hydroxy hydroperoxide yields a second aldehyde. Oxidation of the aldehydes by O3 yields carboxylic acids.

  10. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  11. Increased Placental Phospholipid Levels in Pre-Eclamptic Pregnancies

    Peter Bütikofer

    2013-02-01

    Full Text Available Physiological pregnancy is associated with an increase in lipids from the first to the third trimester. This is a highly regulated response to satisfy energy and membrane demands of the developing fetus. Pregnancy disorders, such as pre-eclampsia, are associated with a dysregulation of lipid metabolism manifesting in increased maternal plasma lipid levels. In fetal placental tissue, only scarce information on the lipid profile is available, and data for gestational diseases are lacking. In the present study, we investigated the placental lipid content in control versus pre-eclamptic samples, with the focus on tissue phospholipid levels and composition. We found an increase in total phospholipid content as well as changes in individual phospholipid classes in pre-eclamptic placental tissues compared to controls. These alterations could be a source of placental pathological changes in pre-eclampsia, such as lipid peroxide insult or dysregulation of lipid transport across the syncytiotrophoblast.

  12. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  13. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  14. Shear-induced morphology in mixed phospholipid films

    Hirsa, Amir; Young, James; Posada, David; Lopez, Juan

    2014-11-01

    Flow of mixed phospholipid films on liquid surfaces plays a significant role in biological processes ranging from lipid bilayer fluidity and the associated behavior of cellular membranes, to flow on the liquid lining in the lungs. Phospholipid films are also central to the process of two-dimensional protein crystallization below a ligand-bearing film. Here, we study a binary mixture of phospholipids that form an insoluble monolayer on the air-water interface. Brewster angle microscopy reveals that a shearing flow induces a phase separation in the binary film, resulting in the appearance of 10 micron-scale dark domains. Hydrodynamic response of the binary film is quantified at the macro-scale by measurements of the surface shear viscosity, via a deep-channel surface viscometer. Reynolds number was shown to be a state variable, along with surface pressure, controlling the surface shear viscosity of a biotinylated lipid film.

  15. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was ∼90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were eq) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively

  16. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core...... micelles. Shell cross-linking on PEG-b-PAEMA-b-PS micelles was performed by amidation reactions between the amino groups of PAEMA blocks using a di-carboxylic acid cross-linker. Also a dendritic cross-linker based click chemistry was used to stabilize the PEG-b-PAEMA-b-PES micelle having click readied PES...

  17. NMR analyses of deuterated phospholipids isolated from Pichia angusta

    Massou, S.; Augé, S.; Tropis, M.; Lindley, N. D.; Milon, A.

    1998-02-01

    The phospholipid composition of methylotrophic yeasts grown on deuterated and hydrogenated media has been determined by proton and phosphorus NMR. By using a line narrowing solvent, we could obtain linewidth lower than 2 Hz, and all the resonances could be resolved. Phospholipids were identified on the basis of their chemical shift and by 31P - H correlations (HMQC - HOHAHA gradient enhanced experiments). We have thus analysed qualitatively and quantitatively lipids mixtures directly after chloroform-methanol extraction. The lipid composition is deeply modified after growth in deuterated medium were phosphatidyl Inositol (PI) becomes the major lipid, instead of a PC, PS, PI mixture in hydrogenated conditions. La composition en phospholipides de levures méthylotrophes ayant poussé sur des milieux de cultures hydrogénés et deutériés a été déterminée par RMN du proton et du phosphore31. L'utilisation d'un solvant d'affinement a permis d'obtenir des largeurs de raies inférieures à 2Hz et de résoudre toutes les classes de phospholipides. Ils sont ensuite identifiés par leur déplacement chimique et par des corrélations phosphore - proton spécifiques (expériences HMQC-HOHAHA gradients). Cette approche a permis une analyse qualitative et quantitative de mélanges de phospholipides directement après extraction au chloroforme-méthanol. La composition en phospholipides est profondément modifiée lors de la croissance en milieu perdeutérié où l'on observe un lipide majoritaire, le phosphatidyl Inositol (PI), au lieu d'un mélange PC, PS PI en milieu hydrogéné.

  18. Structure and mechanism of ATP-dependent phospholipid transporters

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien;

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit...

  19. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  20. Micelle hydrogels for three-dimensional dose verification

    Babic, S.; Battista, J.; Jordan, K.

    2009-05-01

    Gelatin hydrogels form a transparent and colourless matrix for polymerization or chromic reactions initiated by absorption of ionizing radiation. Generally, hydrogel chemistries have been limited to water soluble reactants. Work to adapt a water insoluble colourless leuco dye to coloured dye conversion reaction in hydrogels, led to the idea that micelles (i.e. tiny aggregates of surfactant molecules) may provide the necessary polar and nonpolar hybrid environment. Both leucomalachite green and leuco crystal violet radiochromic gels have been developed as three-dimensional (3-D) radiochromic dosimeters for optical computed tomography (CT) scanners. It has been found that the post-irradiation diffusion rates strongly correlate with the solubility of the leuco dyes. Since the crystal violet dye is more soluble in the micelle than in the surrounding water, the dose distribution degrades at the slower rate of micelle diffusion, thus yielding stable images of dose. A dosimetric characterization of leucomalachite green and leuco crystal violet gels, respectively, reveals that tissue equivalent micelle hydrogels are promising dosimeters for radiation therapy 3-D dose verification.

  1. Polymeric micelles in anticancer therapy : targeting, imaging and triggered release

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J Frank W; Hennink, Wim E

    2010-01-01

    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  2. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Jensen, Andreas Tue Ingemann

    . 64Cu allows longer scans (up to 48 hours), which mirrors the duration of nanoparticle pharmacokinetics. It is a metal and must be attached to polymeric micelles by covalently conjugated chelators. DOTA and CB‐TE2A are two such chelators, but DOTA is widely believed to be unstable in‐vivo. DOTA and CB...... mice. These micelles were 20‐45 nm. They showed good tumor uptake (4‐5 %ID/g, 48h) and limited uptake in liver (5‐7 %ID/g, 48h) and spleen (3‐6 %ID/g, 48h). It was concluded that there did not seem to be a significant difference between DOTA and CB‐TE2A in‐vivo. In addition, crosslinked micelles (with......This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete...

  3. Transport of charged Aerosol OT inverse micelles in nonpolar liquids.

    Karvar, Masoumeh; Strubbe, Filip; Beunis, Filip; Kemp, Roger; Smith, Ashley; Goulding, Mark; Neyts, Kristiaan

    2011-09-01

    Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses. PMID:21728309

  4. SANS from reverse micelles in various oil phases

    Full text: Small angle neutron scattering (SANS) has been used to investigate the effect of solvency on the structure of water-in-oil microemulsions at 25 deg C and 55 deg C. The microemulsions contain reverse micelles which are composed of a non-ionic surfactant with a polyisobutylene oligomer tail and acid-amide headgroup, and an aqueous solution of an electrolyte as the core. The composition of the continuous phase is varied systematically from neat hexadecane, toluene and cyclohexane to a 1:1 combination by volume of each type of oil. The micellar radius, R, and volume fraction of the micelles in the oil phase are found to vary as a function of temperature and the composition of the continuous phase. For a one component oil phase, the size of the micelles changes according to the polarity of the phase viz. R{toluene > cyclohexane > hexadecane}. For the two component continuous phase, the size of the micelles is greatest for the most polar toluene/cyclohexane mixture, whilst for the other combinations it follows the order hexadecane/cyclohexane > hexadecane/toluene. The volume fraction yields the trend hexadecane .cyclohexane >> toluene for the one component oil phase and hexadecane/cyclohexane > hexadecane/toluene > cyclohexane/toluene for the mixed oil system, indicating the greater solubility of the surfactant in toluene. The radius and volume fraction decrease with temperature

  5. Ultrafast energy transfer in water-AOT reverse micelles

    Cringus, Dan; Bakulin, Artem; Lindner, Joerg; Voehringer, Peter; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    2007-01-01

    A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model sys

  6. Vibrational energy relaxation of water in Aerosol OT reverse micelle

    Pang, Yoonsoo; Deak, John; Dlott, Dana

    2005-03-01

    An IR-Raman technique with mid-IR pump and anti-Stokes Raman probe is used to investigate reverse micelle mixture of Aerosol OT, water, and carbon tetrachloride, where polar water phase and nonpolar oil phase is separated by a monolayer of surfactant molecules. Anti-Stokes Raman scattering is only dependent on the population of vibrationally excited states, thus time-dependent population changes of parent/daughter vibrations can be monitored with this technique. Vibrational energy from nanodroplet of water is transferred to the surfactant head group in 1.8 ps and then out to solvent in 10 ps. Vibrational energy directly pumped into the surfactant tail group results in a slower 20-40 ps energy transfer to solvent. This energy transfer cannot be explained by ordinary heat transfer, but the specific vibrational energy relaxation pathway such as sulfonate stretch of surfactant molecules should be used. We can change the water-to-solvent energy transfer rate by adopting different size of reverse micelles or changing pump frequency over the broad OH stretch mode of water due to hydrogen bond network. Water molecules confined in nanometer scale reverse micelles have very different properties from bulk water and we have found many differences between the vibrational dynamics of water in these reverse micelles and those of bulk water.

  7. What can be expected from NMR in reversed micelles?

    A review is given of NMR studies on reversed micellar systems since 1970. General principles are emphasized through examples which have led to relevant physico-chemical results in the area. NMR techniques or theories are not detailed in order to focus primarily on the information obtained on the micelles. (author). 50 refs.; 9 figs

  8. SANS study of nanoparticles based on block copolymer micelles

    Pleštil, Josef; Pospíšil, Herman; Kuklin, A. I.

    Dubna: Joint Institute for Nuclear Research, Lomonosov Moscow State University, 2005. s. 22. ISBN 5-9530-0086-3. [Workshop on Investigations at the IBR-2 Pulsed Reactor /4./. 15.6.2005-18.6.2005, Dubna] R&D Projects: GA ČR GA203/03/0600 Keywords : SANS * block copolymer micelles * nanoparticles Subject RIV: CD - Macromolecular Chemistry

  9. CASEIN MICELLE STRUCTURE: THE PAST AND THE PRESENT

    At the heart of the milk system are the colloidal casein–calcium–transport complexes termed the casein micelles. The application of physical chemical techniques such as light, neutron, and X-ray scattering, and Electron Microscopy (EM) has yielded a wealth of experimental detail concerning the struc...

  10. In vivo toxicity of cationic micelles and liposomes

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar;

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  11. Molecular dynamics simulation strategies for protein-micelle complexes.

    Cheng, Xi; Kim, Jin-Kyoung; Kim, Yangmee; Bowie, James U; Im, Wonpil

    2016-07-01

    The structure and stability of membrane proteins can vary widely in different detergents and this variability has great practical consequences for working with membrane proteins. Nevertheless, the mechanisms that operate to alter the behavior of proteins in micelles are poorly understood and not predictable. Atomic simulations could provide considerable insight into these mechanisms. Building protein-micelle complexes for simulation is fraught with uncertainty, however, in part because it is often unknown how many detergent molecules are present in the complex. Here, we describe several convenient ways to employ Micelle Builder in CHARMM-GUI to rapidly construct protein-micelle complexes and performed simulations of the isolated voltage-sensor domain of voltage-dependent potassium-selective channel and an antimicrobial peptide papiliocin with varying numbers of detergents. We found that once the detergent number exceeds a threshold, protein-detergent interactions change very little and remain very consistent with experimental observations. Our results provide a platform for future studies of the interplays between protein structure and detergent properties at the atomic level. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26679426

  12. The Critical Micelle Concentration of Asphaltenes as Measured by Calorimetry

    Andersen, Simon Ivar; Christensen, S. D.

    2000-01-01

    solvent mixture) is titrated with a solution of asphaltene in the same solvent. The asphaltene concentration of the injected solution is at a level above the critical micelle concentration (CMC). In the present paper the procedure is applied in investigation of asphaltenes as well as subfractions...

  13. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. PMID:25828659

  14. Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery

    A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA-PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA-PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly(l-lactide)-poly(ethylene-glycol) (PLLA-PEG) and poly(D-lactide)-poly(ethylene-glycol) (PDLA-PEG) were synthesized by the ring-opening polymerization of l-lactide and d-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA-PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8-4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer. Compared with the single PLLA-PEG or PDLA-PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application. The rifampin loading capacity and encapsulation efficiency by the stereocomplex micelles were higher than those by the single polymer micelles, respectively. The drug release time in vitro was depending on the composites of the block copolymers and also could be controlled by the polymer molecular weight and the morphology of the polymer micelles

  15. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers.

    Peng, Z. Y.; Simplaceanu, V; Dowd, S R; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer...

  16. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy. PMID:25974198

  17. Phosphatidate Kinase, A Novel Enzyme in Phospholipid Metabolism (Characterization of the Enzyme from Suspension-Cultured Catharanthus roseus Cells).

    Wissing, J. B.; Kornak, B.; Funke, A.; Riedel, B.

    1994-01-01

    Phosphatidate kinase (adenosine 5[prime]-triphosphate:phosphatidic acid phosphotransferase), a novel enzyme of phospholipid metabolism, was detected recently in the plasma membranes of suspension-cultured Catharanthus roseus cells and purified (J.B. Wissing, H. Behrbohm [1993] Plant Physiol 102: 1243-1249). In the present work the properties of phosphatidate kinase are described. The enzyme showed a pH optimum of 6.1 and an isoelectric point of 4.8, and was rather stable in the presence of its substrates. Although the kinase accepted both ATP and GTP, with Km values of about 12 and 18 [mu]M, respectively, the only lipid substrate was phosphatidic acid; neither lysophosphatidic acid nor any other lipid tested was phosphorylated. With 32P- and 14C-labeled diacylglycerol pyrophosphate, the product of the enzyme, it was shown that the kinase catalyzes a reversible reaction. The activity of the extracted enzyme depended on the presence of surfactants such as Triton X-100 or [beta]-octylglucoside, whereas deoxycholate was strongly inhibitory. Kinetic analysis with Triton X-100/phosphatidate mixed micelles performed according to the "surface dilution" kinetic model showed saturation kinetics with respect to both bulk and surface concentration of phosphatidate. The interfacial Michaelis constant for phosphatidate was determined as 0.6 mol %. PMID:12232252

  18. Coverage and disruption of phospholipid membranes by oxide nanoparticles

    Pera, H.; Nolte, T.M.; Leermakers, F.A.M.; Kleijn, J.M.

    2014-01-01

    We studied the interactions of silica and titanium dioxide nanoparticles with phospholipid membranes and show how electrostatics plays an important role. For this, we systematically varied the charge density of both the membranes by changing their lipid composition and the oxide particles by changin

  19. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  20. Membrane Phospholipid Redistribution in Cytokinesis: A Theoretical Model

    Mei-Wen AN; Wen-Zhou WU; Wei-Yi CHEN

    2005-01-01

    In cell mitosis, cytokinesis is a major deformation process, during which the site of the contractile ring is determined by the biochemical stimulus from asters of the mitotic apparatus, actin and myosin assembly is related to the motion of membrane phospholipids, and local distribution and arrangement of the microfilament cytoskeleton are different at different cytokinesis stages. Based on the Zinemanas-Nir model, a new model is proposed in this study to simulate the entire process by coupling the biochemical stimulus with the mechanical actions. There were three assumptions in this model: the movements of phospholipid proteins are driven by gradients of biochemical stimulus on the membrane surface; the local assembly of actin and myosin filament depends on the amount of phospholipid proteins at the same location;and the surface tension includes membrane tensions due to both the passive deformation of the membrane and the active contraction of actin filament, which is determined by microfilament redistribution and rearrangement. This model could explain the dynamic movement of microfilaments during cytokinesis and predict cell deformation. The calculated results from this model demonstrated that the reorientation of phospholipid proteins and the redistribution and reorientation of microfilaments may play a crucial role in cell division. This model may better represent the cytokinesis process by the introduction of biochemical stimulus.

  1. Prostaglandin phospholipid conjugates with unusual biophysical and cytotoxic properties

    Pedersen, Palle Jacob; Adolph, Sidsel K.; Andresen, Thomas Lars;

    2010-01-01

    The synthesis of two secretory phospholipase A(2) IIA sensitive 15-deoxy-Delta(12,14)-prostaglandin J(2) phospholipid conjugates is described and their biophysical and biological properties are reported. The conjugates spontaneously form particles in the liposome size region upon dispersion in an...

  2. Biomembrane modeling: molecular dynamics simulation of phospholipid monolayers

    Thompson, T.R.

    1979-01-01

    As a first step toward a computer model of a biomembrane-like bilayer, a dynamic, deterministric model of a phospholipid monolayer has been constructed. The model moves phospholipid-like centers of force according to an integrated law of motion in finite difference form. Forces on each phospholipid analogue are derived from the gradient of the local potential, itself the sum of Coulombic and short-range terms. The Coulombic term is approximated by use of a finite-difference form of Poisson's equation, while the short-range term results from finite-radius, pairwise summation of a Lennard-Jones potential. Boundary potentials are treated in such a way that the model is effectively infinite in extent in the plane of the monolayer. The two-dimensional virial theorem is used to find the surface pressure of the monolayer as a function of molecular area. Pressure-versus-area curves for simulated monolayers are compared to those of real monolayers. Dependence of the simulator's behavior on Lennard-Jones parameters and the specific geometry of the molecular analogue is discussed. Implications for the physical theory of phospholipid monolayers and bilayers are developed.

  3. Lysosomal phospholipids from rat liver after treatment with different drugs.

    Tjiong, H B; Lepthin, J; Debuch, H

    1978-01-01

    Rats were treated with 5 different drugs p-ethoxyacetanilide (I), indometacin (II) and nor-amidopyrine-methanesulfonate (III), O,O'-bis(diethylaminoethyl)hexestrol(IV) and choloroquine (V) for 3 - 4 weeks. Liver cell fractions were isolated by discontinuous gradient centrifugation and the specific activity of acid phosphatase was determined in each. Lysosomal fractions contained widely varying amounts of this marker enzyme, indicating that the concentration of lysosomes within these fractions differed. The amounts and patterns of phospholipids reflected this fact. Since we assumed bis(monoacylglycero)phosphate [(MAG)2-P; synonym:lysobisphosphatidic acid] is a marker lipid for secondary lysosomes, we expected and found significant quantities of this acidic phospholipid only in those lysosomal fractions which were also rich in acid phosphatase activity. 12% of the lysosomal phospholipids from animals receiving the hexestrol derivative (IV), and 19% of those from the chloroquine (V) experiment were present as (MAG)2P. The fatty acid compositions of this lysosomal phospholipid were not the same in all lysosome fractions. The more (MAG)2P present in the lysosomes, the more unsaturated are the fatty acids. Thus, after treatment with chloroquine, more than 90% of the fatty acids from (MAG)2P are unsaturated; C22:6 represents about 70% of the total. PMID:627402

  4. Calcium-phospholipid enhanced protein phosphorylation in human placenta

    Calcium-activated, phospholipid-dependent protein phosphorylation has not been studied in placenta. Human placental cytosol was subjected to an endogenous protein phosphorylation assay using [γ-32P]ATP in the presence of calcium and phosphatidylserine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, calcium (10-6 M) in combination with phosphatidylserine (50 μg/ml) significantly enhanced (P 32P incorporation into phosphoproteins having mol wt 47,000, 43,000, and 37,000. Half-maximal 22P incorporation was observed with 3.5 x 10-7 M Ca2+ in the presence of phosphatidylserine (50 μg/ml). The effect of phosphatidylserine was biphasic. In the presence of Ca 10-6 M, 32P incorporation increased to a maximum at 70 +g/ml of phosphatidylserine. The increase was suppressed at 150 μg/ml. Tetracaine caused a dose-dependent inhibition of calcium-activated, phospholipid-dependent enhancement of the three phosphoproteins. Calcium in the absence of phospholipid enhanced the phosphorylation of a protein of 98,000 mol wt. Phosphatidylserine suppressed this enhancement. Calmodulin (10-6 M) had no detectable effect upon phosphorylation beyond that of calcium alone, but the calmodulin inhibitor R-24571 specifically inhibited the calcium-stimulated 98,000 mol wt phosphoprotein. Calcium-activated, phospholipid-dependent phospholipid-dependent phosphoproteins are present in human placental cytosol; whether calcium-activated, calmodulin-dependent phosphoproteins also are present remains a question

  5. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  6. Permeability of phospholipid membrane for small polar molecules determined from osmotic swelling of giant phospholipid vesicles

    Peterlin, Primoz; Diamant, Haim; Haleva, Emir

    2012-01-01

    A method for determining permeability of phospholipid bilayer based on the osmotic swelling of micrometer-sized giant unilamellar vesicles (GUVs) is presented as an alternative to the two established techniques, dynamic light scattering on liposome suspension, and electrical measurements on planar lipid bilayers. In the described technique, an individual GUV is transferred using a micropipette from a sucrose/glucose solution into an isomolar solution containing the solute under investigation. Throughout the experiment, vesicle cross-section is monitored and recorded using a digital camera mounted on a phase-contrast microscope. Using a least-squares procedure for circle fitting, vesicle radius R is computed from the recorded images of vesicle cross-section. Two methods for determining membrane permeability from the obtained R(t) dependence are described: the first one uses the slope of R(t) for a spherical GUV, and the second one the R(t) dependence around the transition point at which a flaccid vesicle trans...

  7. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Ingemann Jensen, A.T.

    2013-06-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  8. Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery.

    Wang, Yan; Li, Qiu Yu; Liu, Xu Bo; Zhang, Can Yang; Wu, Zhi Min; Guo, Xin Dong

    2015-11-25

    The microstructures of doxorubicin-loaded micelles prepared from block polymers His(x)Lys10 (x = 0, 5, 10) conjugated with docosahexaenoic acid (DHA) are investigated under different pH conditions, using dissipative particle dynamics (DPD) simulations. The conformation of micelles and the DOX distributions in micelles were obviously influenced by pH values and the length of the histidine segment. At pH >6.0, the micelles self-assembled from the polymers were dense and compact. The drugs were entrapped well within the micellar core. The particle size increases as the histidine length increases. With the decrease of pH value to be lower than 6.0, there was no distinct difference for the micelles self-assembled from the polymer without histidine residues. However, the micelles prepared from the polymers with histidine residues shows a structural transformation from dense to swollen conformation, leading to an increased particle size from 10.3 to 14.5 DPD units for DHD-His10Lys10 micelles. This structural transformation of micelles can accelerate the DOX release from micelles under lower pH conditions. The in vitro drug release from micelles is accelerated by the decrease of pH value from 7.4 (physiological environment) to 5.0 (lysosomal environment). The integration of simulation and experiments might be a valuable method for the optimization and design of biomaterials for drug delivery with desired properties. PMID:26539742

  9. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Hauff, Simone [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany); Vetter, Walter [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany)], E-mail: w-vetter@uni-hohenheim.de

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was {approx}90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC{sub eq}) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese

  10. Phospholipid decoration of microcapsules containing perfluorooctyl bromide used as ultrasound contrast agents.

    Díaz-López, Raquel; Tsapis, Nicolas; Libong, Danielle; Chaminade, Pierre; Connan, Carole; Chehimi, Mohamed M; Berti, Romain; Taulier, Nicolas; Urbach, Wladimir; Nicolas, Valérie; Fattal, Elias

    2009-03-01

    We present here an easy method to modify the surface chemistry of polymeric microcapsules of perfluorooctyl bromide used as ultrasound contrast agents (UCAs). Capsules were obtained by a solvent emulsification-evaporation process with phospholipids incorporated in the organic phase before emulsification. Several phospholipids were reviewed: fluorescent, pegylated and biotinylated phospholipids. The influence of phospholipid concentration on microcapsule size and morphology was evaluated. Only a fraction of the phospholipids is associated to microcapsules, the rest being dissolved with the surfactant in the aqueous phase. Microscopy shows that phospholipids are present within the shell and that the core/shell structure is preserved up to 0.5 mg fluorescent phospholipids, up to about 0.25 mg pegylated phospholipids or biotinylated phospholipids (for 100 mg of polymer, poly(lactide-co-glycolide) (PLGA)). HPLC allows quantifying phospholipids associated to capsules: they correspond to 10% of pegylated phospholipids introduced in the organic phase. The presence of pegylated lipids at the surface of capsules was confirmed by X-ray photon electron spectroscopy (XPS). The pegylation did not modify the echographic signal arising from capsules. Finally biotinylated microcapsules incubated with neutravidin tend to aggregate, which confirms the presence of biotin at the surface. These results are encouraging and future work will consist of nanocapsule surface modification for molecular imaging. PMID:19097640

  11. Silver chloride micelle-induced tuning of pseudocapacitive manganese dioxide

    Ag-doped pseudocapacitive MnO2 materials are synthesized by reacting MnO4− with Mn2+ solution intentionally tuned with AgCl micelles. AgCl micelles serve as inducing template and play dual role for MnO2 growth: porosity generator and Ag-doping agent. The AgCl micelle–induced MnO2 has higher porosity, higher specific surface area, higher electrical conductivity and better ion diffusion, thus exhibiting dramatically improved pseduocapacitance and charge-discharge performance. Compared with pure MnO2, the prepared MnO2 containing 5 atomic percent of Ag exhibits almost doubled specific capacitance (488F g−1) and the existence of Ag dopant in MnO2 enhances the charge-discharge efficiency

  12. Folding of DsbB in mixed micelles

    Otzen, Daniel

    2003-01-01

    sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS) and...... dodecyl maltoside (DM). This analysis incorporates both folding and unfolding rates, making it possible to determine both the stability of the native state and the process by which the protein folds. Refolding and unfolding occur on the second to millisecond timescale and involve only one relaxation phase...... data are always open to alternative interpretations, time-resolved studies in mixed micelles provide a useful approach to measure membrane protein stability over a wide range of concentrations of SDS and DM, as well as a framework for the future characterization of the DsbB folding mechanism....

  13. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Arghya Dey; G Naresh Patwari

    2011-11-01

    An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and not in case of cationic (CTAB) or neutral (Trition X -100) surfactants. ESPT of C-102 was also observed in aqueous solutions but on addition of very high concentrations of hydrochloric acid. However, on comparing the ratio of the protonated species from the emission spectra in the presence and absence of SDS micelle, a conclusive estimation of the local proton concentration at the Stern layer of SDS micelles could be evaluated.

  14. Construction of the Active Site of Metalloenzyme on Au NC Micelles

    ZHANG, Zhiming; FU, Qiuan; HUANG, Xin; XU, Jiayun; LIU, Junqiu; SHEN, Jiacong

    2009-01-01

    For developing an efficient nanoenzyme system with self-assembly strategy, gold nanocrystal micelles (Au NC micelles) with inserted catalytic Zn(Ⅱ) centers were constructed by self-assembly of a catalytic ligand [N,N-bis(2-aminoethyl)-N'dodecylethylenediamine] Zn(Ⅱ) complexes (Zn(Ⅱ)L) on the surface of Au NC via hy- drophobic interaction. The functionalized Au NC micelles acted as an excellent nanoenzyme model for imitating ribonuclease. The catalytic capability of the Au NC micelles was evaluated by accelerating the cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP). These functionalized Au NC micelles exhibited considerable ri- bonuclease-like activities by a factor of 4.9×104 (kcat/kuncat) for the cleavage of HPNP in comparison to the sponta- neous cleavage of HPNP at 37℃. The catalytic capability of the functionalized Au NC micelles can be considera- bly compared to other models reported previously as nanoenzymes under the comparable conditions.

  15. Interactions between tea catechins and casein micelles and their impact on renneting functionality.

    Haratifar, Sanaz; Corredig, Milena

    2014-01-15

    Many studies have shown that tea catechins bind to milk proteins. This research focused on the association of tea polyphenols with casein micelles, and the consequences of the interactions on the renneting behaviour of skim milk. It was hypothesized that epigallocatechin-gallate (EGCG), the main catechin present in green tea, forms complexes with the casein micelles and that the association modifies the processing functionality of casein micelles. The binding of EGCG to casein micelles was quantified using HPLC. The formation of catechin-casein micelles complexes affected the rennet induced gelation of milk, and the effect was concentration dependent. Both the primary as well as the secondary stage of gelation were affected. These experiments clearly identify the need for a better understanding of the effect of tea polyphenols on the processing functionality of casein micelles, before milk products can be used as an appropriate platform for delivery of bioactive compounds. PMID:24054208

  16. Stability of Self-Assembled Polymeric Micelles in Serum

    Lu, Jiao; Owen, Shawn C.; Shoichet, Molly S.

    2011-01-01

    The stability of polymeric nanoparticles in serum is critical to their use in drug delivery where dilution after intravenous injection often results in nanoparticle disassembly and drug unloading; however, few investigate this in biologically relevant media. To gain greater insight into nanoparticle stability in blood, the stability of self-assembled polymeric micelles of poly(d,l-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-g-poly(ethylene glycol), P(LA-co-TMCC)-g-PEG, were tested in...

  17. Polymer Micelles with Crystalline Cores for Thermally Triggered Release

    Glover, Amanda L.; Nikles, Sarah M.; Nikles, Jacqueline A.; Brazel, Christopher S.; David E. Nikles

    2012-01-01

    Interest in the use of poly(ethylene glycol)-b-polycaprolactone diblock copolymers in a targeted, magnetically triggered drug delivery system has led to this study of the phase behavior of the polycaprolactone core. Four different diblock copolymers were prepared by the ring opening polymerization of caprolactone from the alcohol terminus of poly(ethylene glycol) monomethylether, Mn ~ 2,000. The critical micelle concentration depended on the degree of polymerization for the polycaprolactone b...

  18. PEGylated Albumin-Based Polyion Complex Micelles for Protein Delivery.

    Jiang, Yanyan; Lu, Hongxu; Chen, Fan; Callari, Manuela; Pourgholami, Mohammad; Morris, David L; Stenzel, Martina H

    2016-03-14

    An increasing amount of therapeutic agents are based on proteins. However, proteins as drug have intrinsic problems such as their low hydrolytic stability. Delivery of proteins using nanoparticles has increasingly been the focus of interest with polyion complex micelles, prepared from charged block copolymer and the oppositely charged protein, as an example of an attractive carrier for proteins. Inspired by this approach, a more biocompatible pathway has been developed here, which replaces the charged synthetic polymer with an abundant protein, such as albumin. Although bovine serum albumin (BSA) was observed to form complexes with positively charged proteins directly, the resulting protein nanoparticle were not stable and aggregated to large precipitates over the course of a day. Therefore, maleimide functionalized poly(oligo (ethylene glycol) methyl ether methacrylate) (MI-POEGMEMA) (Mn = 26000 g/mol) was synthesized to generate a polymer-albumin conjugate, which was able to condense positively charged proteins, here lysozyme (Lyz) as a model. The PEGylated albumin polyion complex micelle with lysozyme led to nanoparticles between 15 and 25 nm in size depending on the BSA to Lyz ratio. The activity of the encapsulated protein was tested using Sprouty 1 (C-12; Spry1) proteins, which can act as an endogenous angiogenesis inhibitor. Condensation of Spry1 with the PEGylated albumin could improve the anticancer efficacy of Spry1 against the breast cancer cells lowering the IC50 value of the protein. Furthermore, the high anticancer efficacy of the POEGMEMA-BSA/Spry1 complex micelle was verified by effectively inhibiting the growth of three-dimensional MCF-7 multicellular tumor spheroids. The PEGylated albumin complex micelle has great potential as a drug delivery vehicle for a new generation of cancer pharmaceuticals. PMID:26809948

  19. Neural modeling of bromelain extraction by reversed micelles

    Ana Maria Frattini Fileti; Gilvan Anderson Fischer; Elias Basile Tambourgi

    2010-01-01

    A pulsed-cap microcolumn was used for bromelain extraction from pineapple juice by reversed micelles. The cationic micellar solution used BDBAC as the surfactant, isooctane as the solvent and hexanol as the co-solvent. In order to capture the dynamic behavior and the nonlinearities of the column, the operating conditions were modified in accordance with the central composite design for the experiment, using the ratio between the light phase flow rate and the total flow rate, and the time inte...

  20. Design and characterization of multicompartment micelles in aqueous solution

    Kubowicz, Stephan

    2005-01-01

    Self-assembly of polymeric building blocks is a powerful tool for the design of novel materials and structures that combine different properties and may respond to external stimuli. In the past decades, most studies were focused on the self-assembly of amphiphilic diblock copolymers in solution. The dissolution of these block copolymers in a solvent selective for one block results mostly in the formation of micelles. The micellar structure of diblock copolymers is inherently limited to a homo...

  1. Polymeric micelles for solubilization and targeting of hydrophobic drugs

    Miller, Tobias

    2013-01-01

    This thesis focussed on the encapsulation of hydrophobic drugs into polymeric micelles and was intended to show the strengths and limitations of these self-assembling systems in terms of solubilization and drug targeting. Characterization of hydrophobic drug solubilization prior to intravenous injection was one of the key goals of this thesis. For this purpose a novel drug loading procedure was developed based on mechanistic considerations during the loading processes (Chapter 2). The cosolve...

  2. Solving the mystery of the internal structure of casein micelles.

    Ingham, B; Erlangga, G D; Smialowska, A; Kirby, N M; Wang, C; Matia-Merino, L; Haverkamp, R G; Carr, A J

    2015-04-14

    The interpretation of milk X-ray and neutron scattering data in relation to the internal structure of the casein micelle is an ongoing debate. We performed resonant X-ray scattering measurements on liquid milk and conclusively identified key scattering features, namely those corresponding to the size of and the distance between colloidal calcium phosphate particles. An X-ray scattering feature commonly assigned to the particle size is instead due to protein inhomogeneities. PMID:25711160

  3. Biosensors with reversed micelle-enzyme sensitive membrane

    2000-01-01

    The effect of reversed micelle on the conformation of enzyme was studied by sensor techniques. By means of measurement of the response current of GOD enzyme membrane electrode, the effects of enzyme embedded in AOT reversed micellar on GOD conformation and catalytic activity are discussed. The results show that the response current increased greatly with decreasing ratio of GOD/AOT, meaning that the catalytic activity and the conformation stability of enzyme were enhanced.

  4. Predicting proton titration in cationic micelle and bilayer environments

    Morrow, Brian H.; Shen, Jana K. [Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201 (United States); Eike, David M.; Murch, Bruce P.; Koenig, Peter H. [Computational Chemistry, Modeling and Simulation GCO, Procter and Gamble, Cincinnati, Ohio 45201 (United States)

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  5. Chain exchange kinetics of block copolymer micelles in ionic liquids

    Ma, Yuanchi; Lodge, Timothy

    The chain exchange kinetics of block copolymer micelles has been studied using time-resolved small-angle neutron scattering (TR-SANS), a key tool in determining the average micelle composition in contrast-matched solvents. In this work, PMMA-block-PnBMA was selected as the model block copolymer, which has a LCST behavior in the common ionic liquids, [EMIM][TFSI] and [BMIM][TFSI]. We examined the chain exchange kinetics of three PMMA-block-PnBMA copolymers, with identical PMMA block length (MPMMA = 25000) and different PnBMA block lengths (MPnBMA = 24000, 35000 and 53000); the Flory-Huggins interaction parameter (χ) between the core (PnBMA) and the solvent were varied by mixing [EMIM][TFSI] and [BMIM][TFSI] in different ratios. We found that the relaxation of the initial segregation of h- and d- micelles followed the same form with the time as previously developed by our group. Assuming that single chain expulsion is the rate limiting step, the thermal barrier was found to depend linearly on the core block length (Ncore) . Furthermore, the effect of χ on the chain exchange kinetics will also be discussed.

  6. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media

    Schacher, Felix [University of Bayreuth; Walther, Andreas [Helsinki University of Technology, Helsinki, Finland; Ruppel, Markus A [ORNL; Drechsler, Markus [Universitat Bayreuth; Muller, Axel [Universitat Bayreuth

    2009-01-01

    The formation of multicompartment micelles featuring a spheres on sphere core morphology in acetone as a selective solvent is presented. The polymers investigated are ABC triblock terpolymers, polybutadieneb-poly(2-vinyl pyridine)-b-poly(tert-butyl methacrylate) (BVT), which were synthesized via living sequential anionic polymerization in THF. Two polymers with different block lengths of the methacrylate moiety were studied with respect to the formation of multicompartmental aggregates. The micelles were analyzed by static and dynamic light scattering as well as by transmission electron microscopy. Cross-linking of the polybutadiene compartment could be accomplished via two different methods, cold vulcanization and with photopolymerization after the addition of a multifunctional acrylate. In both cases, the multicompartmental character of the micellar core is fully preserved, and the micelles could be transformed into core-stabilized nanoparticles. The successful cross-linking of the polybutadiene core is indicated by 1H NMR and by the transfer of the aggregates into nonselective solvents such as THF or dioxane.

  7. Predicting proton titration in cationic micelle and bilayer environments

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs

  8. Light-responsive viscoelastic fluids based on anionic wormlike micelles.

    Lu, Yechang; Zhou, Tengfei; Fan, Qing; Dong, Jinfeng; Li, Xuefeng

    2013-12-15

    A new class of light-responsive viscoelastic fluids based on anionic wormlike micelles is reported. The key components are sodium oleate (NaOA) and a cationic azobenzene dye, 1-[2-(4-phenylazo-phenoxy)-ethyl]-3-methylimidazolium bromide (C0AZOC2IMB). These binary systems are gel-like fluids at certain concentration ratios of [C0AZOC2IMB]/[NaOA], e.g. 35/100, owing to the formation of long, entangled wormlike micelles. The viscosity of these fluids can be controlled reversibly by light due to photo isomerization between trans-C0AZOC2IMB and cis-C0AZOC2IMB. For example, the zero-shear viscosity (η0) of an originally gel-like sample is high up to ~1300 Pa s when C0AZOC2IMB is in its trans from, whereas the mixture becomes a Newtonian fluid with η0 about 0.01 Pa s after UV light irradiation. For the post-irradiated cis-C0AZOC2IMB, short cylindrical micelles form, hence accounting for the lower viscosity. Evidence for the structural transition is provided by UV-vis spectra, rheology, (1)H NMR and cryo-transmission electronic microscopy measurements. PMID:24144381

  9. Anionic micelles and vesicles induce tau fibrillization in vitro.

    Chirita, Carmen N; Necula, Mihaela; Kuret, Jeff

    2003-07-11

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of recombinant tau can be induced by treatment with various agents, including phosphotransferases, polyanionic compounds, and fatty acids. Here we characterize the structural features required for the fatty acid class of tau fibrillization inducer using recombinant full-length tau protein, arachidonic acid, and a series of straight chain anionic, cationic, and nonionic detergents. Induction of measurable tau fibrillization required an alkyl chain length of at least 12 carbons and a negative charge consisting of carboxylate, sulfonate, or sulfate moieties. All detergents and fatty acids were micellar at active concentrations, due to a profound, taudependent depression of their critical micelle concentrations. Anionic surfaces larger than detergent micelles, such as those supplied by phosphatidylserine vesicles, also induced tau fibrillization with resultant filaments originating from their surface. These data suggest that anionic surfaces presented as micelles or vesicles can serve to nucleate tau fibrillization, that this mechanism underlies the activity of fatty acid inducers, and that anionic membranes may serve this function in vivo. PMID:12730214

  10. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles...

  11. Cross-linked pH sensitive polymer micelles for drug delivery systems

    Cajot, Sébastien; Jérôme, Christine

    2009-01-01

    Over the last decade, polymer micelles attracted an increasing interest in drug pharmaceutical research because they could be used as efficient drug delivery systems. Micelles of amphiphilic block copolymers are supramolecular core-shell type assemblies of tens of nanometers in diameter. In principle, the micelles core is usually constructed with biodegradable hydrophobic polymers such as aliphatic polyesters, e.g. poly(ɛ-caprolactone) (PCL), which serves as a reservoir for the incorpora...

  12. Surface tension model for surfactant solutions at the critical micelle concentration

    Burlatsky, S. F.; Atrazhev, V. V.; Dmitriev, D. V.; Sultanov, V. I.; Timokhina, E. N.; Ugolkova, E. A.; Tulyani, S.; Vincitore, A.

    2013-01-01

    A model for the limiting surface tension of surfactant solutions (surface tension at and above the critical micelle concentration, cmc) was developed. This model takes advantage of the equilibrium between the surfactant molecules on the liquid/vacuum surface and in micelles in the bulk at the cmc. An approximate analytical equation for the surface tension at the cmc was obtained. The derived equation contains two parameters, which characterize the intermolecular interactions in the micelles, ...

  13. Polymeric micelles and molecular modeling applied to the development of radiopharmaceuticals

    Sibila Roberta Marques Grallert; Carlota Oliveira Rangel-Yagui; Kerly Fernanda Mesquita Pasqualoto; Leoberto Costa Tavares

    2012-01-01

    Micelles composed of amphiphilic copolymers linked to a radioactive element are used in nuclear medicine predominantly as a diagnostic application. A relevant advantage of polymeric micelles in aqueous solution is their resulting particle size, which can vary from 10 to 100 nm in diameter. In this review, polymeric micelles labeled with radioisotopes including technetium (99mTc) and indium (111In), and their clinical applications for several diagnostic techniques, such as single photon emissi...

  14. How to Squeeze a Sponge: Casein Micelles under Osmotic Stress, a SAXS Study

    Bouchoux, Antoine; Gésan-Guiziou, Geneviève; Pérez, Javier; Cabane, Bernard

    2010-01-01

    By combining the osmotic stress technique with small-angle x-ray scattering measurements, we followed the structural response of the casein micelle to an overall increase in concentration. When the aqueous phase that separates the micelles is extracted, they behave as polydisperse repelling spheres and their internal structure is not affected. When they are compressed, the micelles lose water and shrink to a smaller volume. Our results indicate that this compression is nonaffine, i.e., some p...

  15. Cryo-transmission electron tomography of native casein micelles from bovine milk

    Trejo, R.; Dokland, T; Jurat-Fuentes, J.; Harte, F.

    2011-01-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic recons...

  16. Effect of Calcium Concentration on the Structure of Casein Micelles in Thin Films

    Müller-Buschbaum, P.; Gebhardt, R.; Roth, S. V.; Metwalli, E.; Doster, W.

    2007-01-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with ato...

  17. Triclosan-loaded Tooth-binding Micelles for Prevention and Treatment of Dental Biofilm

    Chen, Fu; Rice, Kelly C.; Liu, Xin-Ming; Reinhardt, Richard A.; Bayles, Kenneth W.; Wang, Dong

    2010-01-01

    The purpose of the present study was to develop tooth-binding micelle formulations and evaluate their ability to both inhibit initial biofilm formation as well as decrease the viability of preformed biofilm using an in vitro dental biofilm model. Alendronate (ALN, a bisphosphonate) was covalently attached to the ends of different Pluronic copolymers to confer tooth-binding ability to the micelles, and triclosan was used as a model drug. Based on different micelle preparation methods, Pluronic...

  18. Synthesis of ultrafine, multicomponent particles using phospholipid vesicles

    This paper reports that because of their unique properties of self-assembly and selective ion permeability across the lipid bilayers, phospholipid vesicles were used as reaction vessels for the synthesis of ultrafine, multicomponent ceramic particles containing Y, Ba, Cu, and Ag. Chemical inhomogeneities in the system were limited to the individual particle size (2O particles before and after the removal of the phospholipid molecules. Particle packing was greatly improved in the surfactant coated particles. This demonstrates the multifunctionality of this biomimetic system in which the vesicle membrane simultaneously acts as: a reaction cell for particle precipitation, an ion selective membrane that affects precipitation kinetics, a barrier to prevent spontaneous agglomeration of the ultrafine particles, and a lubricant dispersant that facilitates particle rearrangement during consolidation

  19. The influence of plant hormones on phospholipid monolayer stability.

    Gzyl-Malchera, Barbara; Filek, Maria; Brezesinski, Gerald; Fischer, Antje

    2007-01-01

    The influence of hormones in water subphase on the stability of monolayers built of phospholipid mixtures extracted from embryogenic (PLE) and nonembryogenic (PLNE) wheat calli was examined. Additionally, experiments on individual lipids, dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidic acid (DPPA), were performed. DPPC was chosen because it was the main phospholipid present in both calli. Negatively charged DPPA could mimic a negatively charged natural mixture of lipids. As hormones, auxins (IAA and 2,4-D), cytokinins (zeatin and kinetin) and zearalenone were chosen. The time of monolayer stability for PLNE calli was much longer than for PLE calli. Kinetics of monolayer stability of PLNE was similar to DPPA, whereas that of PLE was similar to DPPC. Generally, hormones increased the time after which the monolayer stability was reached and decreased the surface pressure. The greatest effect was observed for auxins (especially IAA), whereas cytokinins affected the monolayer stability to a lesser degree. PMID:17425106

  20. Interactions Mode of Amphoteric Molecules with Ordered Phospholipid Membrane

    SUNJin; CHENGGang; HEZhong-gui; WANGshu-jun; CHENJi-min

    2003-01-01

    Aim:To explore interaction mode between amphoteric molecules with the ordered phospholipid membrane.Methods:Membrane interactions were determined by immobilized artificial membrane(IAM) chromatography and solutes hydroph9obicity was measured by n-octanol/buffer system.Results:The ampholytes,similar to bases,generally exhibited higher membrane affinity than expected from their hydrophobicity,resulting from the attractive polar interaction with phospholipid membrane.Furthermore,the strength of additional polar interaction with membrane(Δlg kLAM) was then calculat ed.The Δlg KIAMvalues were far greater for bases and ampholytes ranging from 0.50-1.39,than those for acids and neutrals with the scope from-0.55-0.44.Conclusion :Considering the microspecies distribution of amphoteric molecules,it was assumed that not only neutral and positive but also zwitterionic microspecies are capable of partitioning into ordered amphoteric lipid membrane with complementarily conformational and energetically favorable interactions.

  1. Hormetic and anti-inflammatory properties of oxidized phospholipids.

    Mauerhofer, Christina; Philippova, Maria; Oskolkova, Olga V; Bochkov, Valery N

    2016-06-01

    Oxidized phospholipids are generally recognized as deleterious factors involved in disease pathogenesis. This review summarizes the data suggesting that under certain biological conditions the opposite is correct, namely that OxPLs can also induce protective effects. Examples that are discussed in the review include upregulation of antioxidant genes, inhibition of inflammatory signaling pathways through Nrf2-dependent and -independent mechanisms, antagonism of Toll-like receptors, immuno-modulating and immuno-suppressive action of OxPLs in adaptive immunity and autoimmune disease, activation of PPARs known for their anti-inflammatory action, as well as protective action against lung edema in acute lung inflammation. The data support the notion that oxidation of phospholipids provides a negative feedback preventing damage to host tissues due to uncontrolled inflammation and oxidative stress. PMID:26948981

  2. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  3. Solution structure of detergent micelles at conditions relevant to membrane protein crystallization.

    Littrell, K.; Thiyagarajan, P.; Tiede, D.; Urban, V.

    1999-07-02

    In this study small angle neutron scattering was used to characterize the formation of micelles in aqueous solutions of the detergents DMG and SPC as a function of detergent concentration and ionic strength of the solvent. The effects on the micelle structure of the additives glycerol and PEG, alone as well as in combination typical for actual membrane protein crystallization, were also explored. This research suggests that the micelles are cigar-like in form at the concentrations studied. The size of the micelles was observed to increase with increasing ionic strength but decrease with the addition of glycerol or PEG.

  4. ADVANCES IN MICROEMULSION PHASE ON SELF-ASSEMBLY AND MICELLE EXTRACTION WITH BLOCK COPOLYMERS

    Chen Guo; Hao Wen; Huizhou Liu

    2005-01-01

    In this paper we review our work on self-assembly of the system, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, which is a kind of macromolecular complex fluids. The control of self-assembly could be obtained by adding inorganic salts or aliphatic alcohols. By self-assembly of amphiphilic block copolymers, a microemulsion phase is formed, which could be applied in micelle extraction, such as hollow-fiber membrane micelle extraction, magnetic micelle extraction and immobilized micelle extraction.

  5. Small angle neutron scattering study of the micelle structure of amphiphilic block copolymers

    The amphiphilic block copolymers of vinyl ether were prepared by living cationic polymerization. The partially deuterated copolymers for SANS experiments were especially synthesized by introducing deuterated phenyl units in the hydrophobic chain. SANS measurements were performed for aqueous solutions of these copolymers by changing H2O/D2O ratios. The SANS profiles indicate that the micelles in the present system exhibit a core-shell structure and that the size and shape of micelles are largely dependent on the length of hydrophobic chain. The micelle of shorter hydrophobic chain was found to be nearly spherical, whereas the micelle of longer hydrophobic chain was confirmed to have an ellipsoidal shape

  6. Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery

    Jeong Hwan Kim

    2014-08-01

    Full Text Available Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy. The triblock copolymer, poly(l-aspartic acid-b-poly(ethylene glycol-b-poly(l-aspartic acid (PLD-b-PEG-b-PLD, spontaneously self-assembled with doxorubicin (DOX via electrostatic interactions to form spherical micelles with a particle size of 60–80 nm (triblock ionomer complexes micelles, TBIC micelles. These micelles exhibited a high loading capacity of 70% (w/w at a drug/polymer ratio of 0.5 at pH 7.0. They showed pH-responsive release patterns, with higher release at acidic pH than at physiological pH. Furthermore, DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line. Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis. These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats. Overall, these findings indicate that PLD-b-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.

  7. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles.

    Elsabahy, Mahmoud; Perron, Marie-Eve; Bertrand, Nicolas; Yu, Ga-Er; Leroux, Jean-Christophe

    2007-07-01

    Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (<10 mg/L). Micelle morphology depended on the nature of the hydrophobic block, with PBO- and PSO-based micelles yielding monodisperse spherical and cylindrical nanosized aggregates, respectively. The maximum solubilization capacity for DCTX ranged from 0.7 to 4.2% and was the highest for PSO micelles exhibiting the longest hydrophobic segment. Despite their high affinity for DCTX, PEO-b-PSO micelles were not able to efficiently protect DCTX against hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes. PMID:17579476

  8. Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin

    Jixue Wang; Weiguo Xu; Jianxun Ding; Shengfan Lu; Xiaoqing Wang; Chunxi Wang; Xuesi Chen

    2015-01-01

    Nanoscale micelles as an effective drug delivery system have attracted increasing interest in malignancy therapy. The present study reported the construction of the cholesterol-enhanced doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (CDM/DOX), poly(L-lactide)-based micelle (CLM/DOX), and stereocomplex micelle (CSCM/DOX) from the equimolar enantiomeric 4-armed poly(ethylene glycol)–polylactide copolymers in aqueous condition. Compared with CDM/DOX and CLM/DOX, CSCM/DOX showed the small...

  9. Transport of cadmium ions across model supported phospholipid membranes

    Navrátil, Tomáš; Šestáková, Ivana; Mareček, Vladimír; Štulík, Karel

    Ústí nad Labem: BEST servis, 2010 - (Navrátil, T.; Barek, J.), s. 119-123 ISBN 978-80-254-6710-7. [Modern Electroanalytical Methods /30./. Jetřichovice (CZ), 24.05.2010-28.05.2010] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : membranes * phospholipids * heavy metals * electrochemical impendance spectroscopy Subject RIV: CG - Electrochemistry

  10. Structural elucidation of phospholipids in omega-3 food supplements

    Brogård, Charlotte Nikolaisen

    2014-01-01

    A novel method was developed for UPLC-MS analysis of phospholipids in complex lipid samples. The methods developed allowed for identification and structural elucidation of different PL species and by utilizing MSE technology, rapid qualitative analyses of complex lipid samples were made possible. By using UPLC-MS it was confirmed that a high proportion of the total content of commercial marine oils contained the essential fatty acids EPA and DHA. The study also showed that the two differen...

  11. Role of inositol phospholipid signaling in natural killer cell biology

    Gumbleton, Matthew; Kerr, William G.

    2013-01-01

    Natural killer (NK) cells are important for host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to both prevent autoimmunity and acquire lytic capacity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the inositol ph...

  12. Ultradeformable phospholipid vesicles as a drug delivery system: a review

    Romero, Eder Lilia

    2015-01-01

    Maria Jose Morilla, Eder Lilia RomeroNanomedicine Research Program, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina Abstract: Ultradeformable vesicles are highly deformable (elastic/flexible) liposomes made of phospholipids plus highly mobile hydrophilic detergents capable of penetrating the intact skin across the stratum corneum and reaching the viable epidermis. Ultradeformable vesicles are more effective than conventional liposomes in deliveri...

  13. Association of anti-phospholipid antibodies with connective tissue diseases

    Reena Rai; Swetha, T.

    2015-01-01

    Background: The antiphospholipid antibodies (APLA) are directed against phospholipids and their binding proteins and are frequently found in association with connective tissue disorders. Systemic lupus erythematoses (SLE) with APLA may cause a diagnostic dilemma as there are several manifestations like haemolytic anemia, thrombocytopenia, neurologic manifestations, leg ulcerations, serositis proteinuria which overlap in both these conditions. We conducted a study to find out the association o...

  14. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells

    Smith, Tim A. D.; Phyu, Su M.

    2016-01-01

    Introduction The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. Methods MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14...

  15. Effect of dipolar-angle on phospholipid assembly

    Paul, Tanay

    2016-01-01

    We report the effect of lipid head-group dipole orientation on phase behaviour of phospholipid assembly. The work explains molecular-scale mechanism of ion-lipid, anesthetic-lipid interactions where reorientation of dipoles play important role in membrane potential modification. Molecular Dynamics simulations are performed to analyse structure-property relationship and dynamical behaviour of lipid biomembranes considering coarse-grained model interactions.

  16. Phospholipid interactions in model membrane systems. I. Experiments on monolayers.

    Mingins, J; Stigter, D; Dill, K A

    1992-01-01

    We study the lateral headgroup interactions among phosphatidylcholine (PC) molecules and among phosphatidylethanolamine (PE) molecules in monolayers and extend our previous models. In this paper, we present an extensive set of pressure-area isotherms and surface potential experiments on monolayers of phospholipids ranging from 14 to 22 carbons in length at the n-heptane/water interface, over a wide range of temperature, salt concentration, and pH on the acid side. The pressure data presented ...

  17. Incorporation of peptides in phospholipid aggregates using ultrasound

    Silva, Raquel; Little, Collin; Ferreira, Helena; Paulo, Artur Cavaco

    2008-01-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LL...

  18. The Effects of Gramicidin on the Structure of Phospholipid Assemblies

    Szule, J. A.; Rand, R. P.

    2003-01-01

    Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model s...

  19. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria.

    Kozloff, L. M.; Turner, M.A.; Arellano, F; Lute, M

    1991-01-01

    The nature of the phospholipids of the various bacteria that have ice nucleation activity in supercooled water has been determined. The seven bacteria studied included Pseudomonas syringae, Erwinia herbicola, three Escherichia coli K-12 strains that are phenotypically Ice+ because they contain plasmids with different amounts of either P. syringae or E. herbicola cloned DNA, and two E. coli K-12 strains without cloned ice gene DNA. All five Ice+ bacterial strains contained small amounts (0.1 t...

  20. Phospholipid transfer activities in toad oocytes and developing embryos

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing 14C-labeled phospholipids and 3H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily after fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth

  1. The micromethod for determination of cholesterol, cholesteryl esters and phospholipids

    Okabe,Akinobu

    1974-12-01

    Full Text Available We examined the method for determining microquantities of lipids, including cholesterol, cholesteryl esters and phospholipids. A standard colorimetric procedure of cholesteryl esters was modified to accommodate a quantitative thin-layer chromatography. This method involved the following steps. (1 Separation of lipids by a thin-layer chromatography: Lipids were applied to Silica gel G plates. Plates were developed with petroleum ether-diethyl etheracetic acid (82: 18: 2, vIvIv. (2 Elution of cholesterol and its esters from scraped silica gel: After scraping the silica gel with adhered cholesterol and its esters, they were eluted with chloroform-methanol (4: 1, v,tv. In the case of phspholipids, the silica gel was calcified. (3 Colorimetric determination of the lipids: Cholesterol and its esters eluted from the silica gel were determined by the method of ZAK with ROSENTHAL'S color reagent directly and after saponification, respectively. Phospholipids were calculated from the phosphorous content determined by the method of KATES. On the basis of examination of recovery and analyses of lipids extracted from tissue, it was concluded that this method permitted a reliable estimation of microquantities of cholesterol, its esters and phospholipids from small amounts of biological materials.

  2. Phospholipid analogue distributions of Iranian isolates of candida

    The aim of this study was to analyse polar lipids of candida species isolated from Ahwas (Iran) by fast Atom bombardment mass spectrometry . Nine isolates of Candida Sp. were identified by growth at 45digc, production of chlamydoconidia on cornmeal agar, colonial colour on CHROMagar Candida, germ tube production and ID 32 C kits. Then polar lipids were extracted from freeze-dried cultures and analysed using Fast Atom Bombardment Mass Spectrometry. The most intense carboxylate and phospholipid molecular species anions were of m/z 281 (C18:1) and m/z 515 (PA 23:2). However, the most intense carboxylate and phospholipid analogues in Candida Parapsilosis were 292 (Un) and 555 (PA 26:3), which differed from other yeasts. Isolates were grouped by single linkage clustering based on correlation coefficient for strain pairs calculated with carboxylate and phospholipid molecular species distributions. Fast Atom Bombardment Mass Spectrometry can differentiate the C. albicans based on analysis of polar lipid distributions.These findings support that differentiation between C. albicans and other species is possible based on polar lipids

  3. Hydrophobic Silica Nanoparticles Induce Gel Phases in Phospholipid Monolayers.

    Orsi, Davide; Rimoldi, Tiziano; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Cristofolini, Luigi

    2016-05-17

    Silica nanoparticles (SiNP) can be incorporated in phospholipid layers to form hybrid organic-inorganic bidimensional mesostructures. Controlling the dynamics in these mesostructures paves the way to high-performance drug-delivery systems. Depending on the different hydrophobicity/hydrophilicity of SiNP, recent X-ray reflectivity experiments have demonstrated opposite structural effects. While these are reasonably well understood, less is known about the effects on the dynamics, which in turn determine molecular diffusivity and the possibility of drug release. In this work we characterize the dynamics of a mixed Langmuir layer made of phospholipid and hydrophobic SiNP. We combine X-ray photon correlation spectroscopy and epifluorescence discrete Fourier microscopy to cover more than 2 decades of Q-range (0.3-80 μm(-1)). We obtain evidence for the onset of an arrested state characterized by intermittent stress-relaxation rearrangement events, corresponding to a gel dominated by attractive interactions. We compare this with our previous results from phospholipid/hydrophilic SiNP films, which show an arrested glassy phase of repulsive disks. PMID:27133453

  4. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. PMID:27286632

  5. Changes in phospholipid metabolism during B lymphocyte activation

    Phospholipid metabolism in murine B lymphocytes stimulated with anti-Ig bound to Sepharose has been examined. T cell-depleted splenic B lymphocytes cultured with Sepharose-coupled, affinity-purified goat anti-mouse Ig (GAMIg) increased the incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol within 3 hr and increased [3H]-thymidine uptake at 48 hr. No increase in labeling was observed in phosphatidylethanolamine, phosphatidylcholine, or phosphatidylserine. Based on both negative and positive selection procedures, it was demonstrated that these responses occurred in B lymphocytes. In contrast to the thymidine uptake response did not require the presence of accessory cells or exogenous cytokines. The same selective changes in phospholipid metabolism were observed in neoplastic B lymphocytes (BCL1) after treatment with Sepharose anti-μ, but not with Sepharose anti-Ia or Sepharose normal Ig. The dose-response relationships of 32PO4 incorporation into phosphatidic acid and phosphatidylinositol and [3H] thymidine uptake were nearly identical in BCL1 cells. The results of these experiments indicate that interaction B lymphocytes with insolubilized anti-Ig results in prompt and selective changes in phospholipid metabolism that appear to be correlated with B lymphocyte proliferation

  6. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulat...

  7. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX

  8. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Cuong, Nguyen-Van [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Department of Chemical Engineering, Ho Chi Minh City University of Industry, 12 Nguyen Van Bao St, Ho Chi Minh (Viet Nam); Jiang, Jian-Lin; Li, Yu-Lun [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Chen, Jim-Ray [Department of Pathology, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Jwo, Shyh-Chuan [Division of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Hsieh, Ming-Fa, E-mail: mfhsieh@cycu.edu.tw [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China)

    2010-12-28

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX.

  9. Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces

    The biomimetic phospholipid anti-biofouling multilayers were constructed on the biomedical poly(ethylene terephthalate) (PET) through the combination of layer-by-layer assembly and Michael addition reaction. Two biomacromolecules with opposite charges, alginate and chitosan, were sequentially adsorbed onto PET samples. The assembled multilayer was subsequently crosslinked with glutaraldehyde and biomimetic phospholipids was introduced into the assembled multilayer through the Michael addition of 2-methacryloyloxyethyl phosphorylcholine (MPC). The multilayer and phospholipid-modified PETs showed excellent hemocompatibility

  10. Continuous Production of Structured Phospholipids in a Packed Red Reactor with Lipase from Thermomyces lanuginosa

    Vikbjerg, Anders Falk; Peng, Lifeng; Mu, Huiling;

    2005-01-01

    The possibilities of producing structured phospholipids by lipase-catalyzed acidolysis between soybean phospholipids and caprylic acid were examined in continuous packed bed enzyme reactors. Acidolysis reactions were performed in both a solvent system and a solvent-free system with the commercial...... was favored by high substrate ratio between acyl donor and phospholipids, longer residence time, and higher reaction temperature. Under certain conditions, an incorporation of around 30% caprylic acid can be obtained in continuous operation with hexane as the solvent....

  11. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. T...

  12. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  13. Effect of Spacers on CMCs and Micelle-forming Enthalpies of Gemini Surfactants by Titration Microcalorimetry

    2000-01-01

    The critical micelle concentrations (CMC) and the micelle-forming enthalpies (D Hmic) of gemini surfactants were first measured by the precise titration microcalorimetry. The results showed that D Hmic values are negative, and there is an exothermal minimum between s=4 and s=6. Furthermore, the CMCs of the surfactants are in good agreement with literature values.

  14. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ∼ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  15. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles.

    Guo, Jintang; Hong, Hao; Chen, Guojun; Shi, Sixiang; Zheng, Qifeng; Zhang, Yin; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo; Gong, Shaoqin

    2013-11-01

    Unimolecular micelles formed by dendritic amphiphilic block copolymers poly(amidoamine)-poly(L-lactide)-b-poly(ethylene glycol) conjugated with anti-CD105 monoclonal antibody (TRC105) and 1,4,7-triazacyclononane-N, N', N-triacetic acid (NOTA, a macrocyclic chelator for (64)Cu) (abbreviated as PAMAM-PLA-b-PEG-TRC105) were synthesized and characterized. Doxorubicin (DOX), a model anti-cancer drug, was loaded into the hydrophobic core of the unimolecular micelles formed by PAMAM and PLA via physical encapsulation. The unimolecular micelles exhibited a uniform size distribution and pH-sensitive drug release behavior. TRC105-conjugated unimolecular micelles showed a CD105-associated cellular uptake in human umbilical vein endothelial cells (HUVEC) compared with non-targeted unimolecular micelles, which was further validated by cellular uptake in CD105-negative MCF-7 cells. In 4T1 murine breast tumor-bearing mice, (64)Cu-labeled targeted micelles exhibited a much higher level of tumor accumulation than (64)Cu-labeled non-targeted micelles, measured by serial non-invasive positron emission tomography (PET) imaging and confirmed by biodistribution studies. These unimolecular micelles formed by dendritic amphiphilic block copolymers that synergistically integrate passive and active tumor-targeting abilities with pH-controlled drug release and PET imaging capabilities provide the basis for future cancer theranostics. PMID:23932288

  16. Controlled hydrophobic functionalization of natural fibers through self-assembly of amphiphilic diblock copolymer micelles.

    Aarne, Niko; Laine, Janne; Hänninen, Tuomas; Rantanen, Ville; Seitsonen, Jani; Ruokolainen, Janne; Kontturi, Eero

    2013-07-01

    The functionalization of natural fibers is an important task that has recently received considerable attention. We investigated the formation of a hydrophobic layer from amphiphilic diblock copolymer micelles [polystyrene-block-poly(N-methyl-4-vinyl pyridinium iodide)] on natural fibers and on a model surface (mica). A series of micelles were prepared. The micelles were characterized by using cryoscopic TEM and light scattering, and their hydrophobization capability was studied through contact angle measurements, water adsorption, and Raman imaging. Mild heat treatment (130 °C) was used to increase the hydrophobization capability of the micelles. The results showed that the micelles could not hydrophobize a model surface, but could render the natural fibers water repellent both with and without heat treatment. This effect was systematically studied by varying the composition of the constituent blocks. The results showed that the micelle size (and the molecular weight of the constituent diblock copolymers) was the most important parameter, whereas the cationic (hydrophilic) part played only a minor role. We hypothesized that the hydrophobization effect could be attributed to a combination of the micelle size and the shrinkage of the natural fibers upon drying. The shrinking caused the roughness to increase on the fiber surface, which resulted in a rearrangement of the self- assembled layer in the wet state. Consequently, the fibers became hydrophobic through the roughness effects at multiple length scales. Mild heat treatment melted the micelle core and decreased the minimum size necessary for hydrophobization. PMID:23687082

  17. Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with Pluronic P123

    Li-mei HAN; Lie GUO; Li-jun ZHANG; Qing-song WANG; Xiao-ling FANG

    2006-01-01

    Aim: To investigate the preparation, in vitro release, in vivo pharmacokinetics and tissue distribution of a novel polymeric micellar formulation of paclitaxel (PTX) with Pluronic P123. Methods: The polymeric micelles of paclitaxel with Pluronic PI23 were prepared by a solid dispersion method. The characteristics of micelles including particle size distribution, morphology and in vitro release of PTX from micelles were carried out. PTX-loaded micellar solutions were administered through the tail vein to healthy Sprague-Dawley rats and Kunming strain mice to assess the pharmacokinetics and tissue distribution of PTX, respectively. Taxol, the commercially available intravenous formulation of PTX, was also administered as control. Results: By using a dynamic light scattering sizer and a transmission electron microscopy, it was shown that the PTX-loaded micelles had a mean size of approximately 25 nm with narrow size distribution and a spherical shape. PTX was continuously released from Pluronic PI23 micelles in release medium containing 1 mol/L sodium salicylate for 24 h at 37℃. In the pharmacokinetic assessment, t1/2β and AUC of micelle formulation were 2.3 and 2.9-fold higher than that of Taxol injection. And the PTX-loaded micelles increased the uptake of PTX in the plasma, ovary and uterus, lung, and kidney, but decreased uptake in the liver and brain in the biodistribution study. Conclusion: Polymeric micelles using Pluronic P123 can effectively solubilize PTX, prolong blood circulation time and modify the biodistribution of PTX.

  18. Dissipative particle dynamics simulation study of poly(2-oxazoline)-based multicompartment micelle nanoreactor.

    Chun, Byeong Jae; Fisher, Christina Clare; Jang, Seung Soon

    2016-02-17

    We investigate multicompartment micelles consisting of poly(2-oxazoline)-based triblock copolymers for nanoreactor applications, using the DPD simulation method to characterize the internal structure of the micelles and the distribution of reactant. The DPD simulation parameters are determined from the Flory-Huggins interaction parameter (χFH). From the snapshots of the micellar structures and radial distribution function of polymer blocks, it is clearly presented that the micelle is multicompartmental. In addition, by implementing the DPD simulations in the presence of reactants, it is found that Reac-C4 and Reac-OPh are associate well with the hydrophilic shell of the micelle, whereas the other two reactants, Reac-Ph and Reac-Cl, are not incorporated into the micelle. From our DPD simulations, we confirm that the miscibility (solubility) of reactant with the micelle has a strong correlation with the rate of hydrolysis kinetic resolution. Utilizing accurate methods evaluating accurate χFH parameters for molecular interactions in micelle system, this DPD simulation can have a great potential to predict the structures of micelles consisting of designed multiblock copolymers for useful reactions. PMID:26853511

  19. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed...

  20. Tuneable & degradable polymeric micelles for drug delivery: from synthesis to feasibility in vivo

    Rijcken, C.J.F.

    2007-01-01

    In recent years, colloidal systems (e.g. liposomes, nanoparticles and micelles) are increasingly applied as vehicles for controlled drug delivery purposes. Ideally, the encapsulation of hydrophobic drugs in a micellar core prolongs the systemic circulation and drug-loaded micelles selectively accumu

  1. Molecular dynamics simulations of helical antimicrobial peptides in SDS micelles: what do point mutations achieve?

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2005-01-01

    We report long time scale simulations of the 18-residue helical antimicrobial peptide ovispirin-1 and its analogs novispirin-G10 and novispirin-T7 in SDS micelles. The SDS micelle serves as an economical and effective model for a cellular membrane. Ovispirin, which is initially placed along a mic...

  2. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang

    2011-12-01

    Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  3. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Li Xinru

    2011-01-01

    Full Text Available Abstract Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol-poly(lactide (mPEG-PLA and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15, were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12. Stability analysis of the mixed micelles in bovine serum albumin (BSA solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  4. Photopolymerized micelles of diacetylene amphiphile: physical characterization and cell delivery properties.

    Neuberg, Patrick; Perino, Aurélia; Morin-Picardat, Emmanuelle; Anton, Nicolas; Darwich, Zeinab; Weltin, Denis; Mely, Yves; Klymchenko, Andrey S; Remy, Jean-Serge; Wagner, Alain

    2015-07-25

    A series of polydiacetylene (PDA) - based micelles were prepared from diacetylenic surfactant bearing polyethylene glycol, by increasing UV-irradiation times. These polymeric lipid micelles were analyzed by physicochemical methods, electron microscopy and NMR analysis. Cellular delivery of fluorescent dye suggests that adjusting the polymerization state is vital to reach the full in vitro potential of PDA-based delivery systems. PMID:26095460

  5. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  6. Effects of gamma-irradiation on some properties of bovine casein micelles

    Sedimentation studies and electron microscopic observations revealed that an association between casein micelles dispersed in water or milk serum was not induced significantly by gamma-irradiation of exposure up to 3 x 106R, whereas a release of nonprotein nitrogen was observed to a certain extent. It was concluded from the results of turbidi-metry and gel filtration using 3 size groups of casein micelles, namely large, medium and small, that an irradiation-induced polymerization or association occurred within individual casein micelles, and strengthend the micelle structure. Thus the irradiated casein micelles resisted, more or less, to the solubilizing effect of NaCl, EDTA, pyrophosphate and urea. Stabilities of casein micelles for ethanol and for acidification to an isoelectric point were decreased and increased, respectively, after irradiation. Gamma irradiation also caused the decrease of glycomacropeptide released from casein micelles by the action of rennin, and this resulted in the delay of rennin-coagulation of casein. There were no essential differences among the 3 size groups of casein micelles concerning the above described tendencies. (auth.)

  7. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara;

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle forma...

  8. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells

  9. Unimolecular micelles and electrostatic nanoassemblies stemming from hyperbranched polyethyleneimine

    Full text: Hyperbranched polyethyleneimine (HPEI) was used as a building block to construct different self-assembled soft nanomaterials. This was accomplished via covalent linkage of carboxylic acids (CA) of different chain lengths to terminal amino groups of HPEI, thus leading to the formation of reverse unimolecular micelles constituted of a hydrophilic core and a hydrophobic shell. On the other hand, acid base interactions in organic solvents between CAs and peripheral amino groups of HPEI also facilitated the formation of electrostatic assemblies with reverse micellar properties. In this work we describe the formation of both structures as well as their characterization using diverse techniques including SAXS, NMR, IR, and fluorescence spectroscopy, among others. Unimolecular micelles were synthesized through the reaction of HPEI (Mn= 10 KDa) and acyl chlorides with different chain lengths (C8, C10, C12, C14, C16, C18). Depending on the chain length, the solvent and the temperature, a broad variety of supra macromolecular assemblies can be observed by SAXS measurements, including structured aggregation, and gelation. Hyperbranched electrostatic assemblies were simply produced by mixing HPEI with selected carboxylic acids (C8, C10, C12, C14, C16, C18) in an appropriate solvent, which dissolves the CA, or both reactants, i.e. chloroform, toluene or THF. The formation of the assemblies was corroborated using FT-IR by monitoring the appearance of the carboxylate bands. SAXS experiments of electrostatically assembled micelles showed globular, core-shell structures, whose characteristics are similar, in many cases, to their covalent counterparts prepared using the same chain length CA shells. (author)

  10. Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface

    Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

    2006-01-01

    When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The ...

  11. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max [L.] Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with [1-14C] acetate, 1 mM Na acetate and 50 μg/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction

  12. Proton NMR study of the interactions of catecholamines with phospholipids from chicken erythrocyte membranes

    Varoucha, D.

    1985-01-01

    High-resolution NMR spectroscopy has been applied to the study of the interaction of catecholamines, norepinephrine, epinephrine, isoproterenol and their antagonists propranolol and alprenolol with sonicated phospholipids extracted from chicken erythrocyte membranes (CEM). The catecholamine molecules are immobilized by the phospholipids of CEM and the magnitude of the effect seems to depend on the alkyl substitution of their amino group. Upon introduction of alprenolol and propranolol into phospholipid vesicles a broadening of the resonances of the n-methyl alkyl chain and the terminal methyl protons was observed. The results present evidence about the specificity of the interactions of catecholamines with phospholipids from CEM.

  13. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  14. Protein structures in SDS micelle-protein complexes.

    Parker, W.; Song, P. S.

    1992-01-01

    Sodium dodecyl sulfate (SDS) is used more often than any other detergent as an excellent denaturing or "unfolding" detergent. However, formation of ordered structure (alpha-helix or beta-sheet) in certain peptides is known to be induced by interaction with SDS micelles. The SDS-induced structures formed by these peptides are amphiphilic, having both a hydrophobic and a hydrophilic face. Previous work in this area has revealed that SDS induces helical folding in a wide variety of non-helical p...

  15. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG5K-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG5K-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG5K-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein

  16. Process of forming compounds using reverse micelle or reverse microemulsion systems

    Linehan, John C.; Fulton, John L.; Bean, Roger M.

    1998-01-01

    The present invention is directed to a process for producing a nanometer-sized metal compound. The process comprises forming a reverse micelle or reverse microemulsion system comprising a polar fluid in a non-polar or low-polarity fluid. A first reactant comprising a multi-component, water-soluble metal compound is introduced into the polar fluid in a non-polar or low-polarity fluid. This first reactant can be introduced into the reverse micelle or reverse microemulsion system during formation thereof or subsequent to the formation of the reverse micelle or microemulsion system. The water-soluble metal compound is then reacted in the reverse micelle or reverse microemulsion system to form the nanometer-sized metal compound. The nanometer-sized metal compound is then precipitated from the reverse micelle or reverse microemulsion system.

  17. Tuning intermicellar potential of Triton X-100– anthranilic acid mixed micelles

    Gunjan Verma; V K Aswal; S K Kulshreshtha; C Manohar; P A Hassan; Eric W Kaler

    2008-11-01

    Structural parameters of micelles formed by Triton X-100 in the presence of solubilized anthranilic acid at different pH values was investigated using light scattering and small angle neutron scattering. Analysis of the SANS data indicate that micelles are oblate ellipsoidal in nature with little variation in the dimensions, in the investigated pH range (from 0.5 to 6.0). The interaction potential of the micelles shows a minimum closer to the isoelectric point of anthranilic acid. A similar variation is observed in the cloud point of the micelles with pH. The observed variation in the interaction potential with pH of the micellar solution can be explained in terms of the reversal of charge on anthranilic acid due to shift in the acid–base equilibrium. The variation in interaction potential and cloud point with pH is modelled using Coulombic repulsion of charged molecules at the micelle interface.

  18. Sulfosulfuron incorporated in micelles adsorbed on montmorillonite for slow release formulations.

    Mishael, Yael G; Undabeytia, Tomas; Rabinovitz, Onn; Rubin, Baruch; Nir, Shlomo

    2003-04-01

    Slow release formulations of the anionic herbicide sulfosulfuron (SFS) were prepared by incorporating it in micelles of an organic cation octadecyltrimethylammonium, which adsorb on the clay-mineral montmorillonite. The fraction of SFS adsorbed on the micelle-clay complex reached 98%, whereas for monomer-clay complexes, its adsorption was insignificant. Fluorescence studies showed surface contact between the micelles and the clay surface. The rate of SFS release from the micelle-clay formulations in aqueous suspensions was slow (clay formulation. A plant bioassay in Rehovot soil showed that these respective formulations yielded 23 and 65% of shoot growth inhibition of foxtail. Consequently, the slow release micelle-clay formulations of SFS yield significantly reduced leaching and enhanced biological activity, thus providing environmental and agricultural advantages. PMID:12670166

  19. pH-responsive release of proteins from biocompatible and biodegradable reverse polymer micelles.

    Koyamatsu, Yuichi; Hirano, Taisuke; Kakizawa, Yoshinori; Okano, Fumiyoshi; Takarada, Tohru; Maeda, Mizuo

    2014-01-10

    A reverse polymer micelle with a diameter of 100nm was prepared for a protein carrier releasing payloads in a pH-dependent manner. The reverse polymer micelle was made from an amphiphilic diblock copolymer of biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) and biocompatible poly(ethylene glycol) (PEG). PLGA having a terminal carboxyl group was additionally embedded in the micelle's PLGA layer via hydrophobic interaction. The micelles encapsulating bovine serum albumin and streptavidin released the proteins under neutral and basic conditions, whereas the proteins remained in the interior at acidic pH. Using erythropoietin as a protein drug, it was also exemplified that the released protein retained its cell proliferation activity even after rigorous formulation processes, including water-in-oil emulsion. The present reverse polymer micelle could potentially find application as an oral protein drug delivery carrier. PMID:24200745

  20. Dissipative Particle Dynamics Study on Aggregation of MPEG- PAE-PLA Block Polymer Micelles Loading Doxorubicine

    杨楚芬; 孙尧; 章莉娟; 朱国典; 张灿阳; 钱宇

    2012-01-01

    To guide the molecular design of the pH-sensitive triblock amphiphilic polymer MPEG-PAE-PLA and the for- mula design of its doxorubicine (DOX)-loaded micelles, dissipative particle dynamics (DPD) simulations are em- ployed to investigate the aggregation behaviors of the DOX-loaded micelles. The simulation results showed that the aggregate morphologies of micelles and DOX distribution are influenced by degree of polymerization of blocks, and the proposed structure of polymer is MPEG44-PAE3-PLA4. With different contents of polymer or DOX, differ- ent aggregate morphologies of the micelles, like microsphere, spindle/column, reticulation or lamella are observed. To prepare the micro-spherical DOX-loaded micelles, the polymer content is proposed as 10%--15%, and the DOX content less than 10%.

  1. Macroscopic alignment of nanoparticle arrays in soft crystals of cubic and cylindrical polymer micelles

    Pozzo, D. C.; Walker, L. M.

    2008-05-01

    We describe a method to organize nanometer-sized hydrophilic particles into ordered arrays by templating them in the soft, micelle-crystal phases (spherical and cylindrical) of a thermoreversible block copolymer. Small-angle neutron scattering (SANS) with contrast variation is used to show that the dispersed particles (in this case, proteins or silica) form structured arrays by being constrained in the interstitial cavities between the polymer micelles in the ordered micelle crystal. Simple shear is used to macroscopically align both phases of the nanocomposites (micelles and particles) into macro-domains. The temperature-induced order-order transition between templates of spherical and cylindrical micelles is demonstrated as a reversible technique to modify the structure of the templated nanoparticle arrays.

  2. DNA polymerase beta reveals enhanced activity and processivity in reverse micelles.

    Anarbaev, Rashid O; Rogozina, Anastasia L; Lavrik, Olga I

    2009-04-01

    Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase beta in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. PMID:19138815

  3. Islet amyloid polypeptide inserts into phospholipid monolayers as monomer.

    Engel, Maarten F M; Yigittop, HaciAli; Elgersma, Ronald C; Rijkers, Dirk T S; Liskamp, Rob M J; de Kruijff, Ben; Höppener, Jo W M; Antoinette Killian, J

    2006-02-24

    Amyloid deposits in the pancreatic islets of Langerhans are thought to be a main factor responsible for death of the insulin-producing islet beta-cells in type 2 diabetes. It is hypothesized that beta-cell death is related to interaction of the 37 amino acid residue human islet amyloid polypeptide (hIAPP), the major constituent of islet amyloid, with cellular membranes. However, the mechanism of hIAPP-membrane interactions is largely unknown. Here, we study the nature and the molecular details of the initial step of hIAPP-membrane interactions by using the monolayer technique. It is shown that both freshly dissolved hIAPP and the non-amyloidogenic mouse IAPP (mIAPP) have a pronounced ability to insert into phospholipid monolayers, even at lipid packing conditions that exceed the conditions that occur in biological membranes. In contrast, the fibrillar form of hIAPP has lost the ability to insert. These results, combined with the observations that both the insertion kinetics and the dependence of insertion on the initial surface pressure are similar for freshly dissolved hIAPP and mIAPP, indicate that hIAPP inserts into phospholipid monolayers most likely as a monomer. In addition, our results suggest that the N-terminal part of hIAPP, which is nearly identical with that of mIAPP, is largely responsible for insertion. This is supported by experiments with hIAPP fragments, which show that a peptide consisting of the 19 N-terminal residues of hIAPP efficiently inserts into phospholipid monolayers, whereas an amyloidogenic decapeptide, consisting of residues 20-29 of hIAPP, inserts much less efficiently. The results obtained here suggest that hIAPP monomers might insert with high efficiency in biological membranes in vivo. This process could play an important role as a first step in hIAPP-induced membrane damage in type 2 diabetes. PMID:16403520

  4. Phospholipid and Hydrocarbon Interactions with a Charged Electrode Interface.

    Levine, Zachary A; DeNardis, Nadica Ivošević; Vernier, P Thomas

    2016-03-22

    Using a combination of molecular dynamics simulations and experiments we examined the interactions of alkanes and phospholipids at charged interfaces in order to understand how interfacial charge densities affect the association of these two representative molecules with electrodes. Consistent with theory and experiment, these model systems reveal interfacial associations mediated through a combination of Coulombic and van der Waals forces. van der Waals forces, in particular, mediate rapid binding of decane to neutral electrodes. No decane binding was observed at high surface charge densities because of interfacial water polarization, which screens hydrophobic attractions. The positively charged choline moiety of the phospholipid palmitoyloleoylphosphatidylcholine (POPC) is primarily responsible for POPC attraction by a moderately negatively charged electrode. The hydrocarbon tails of POPC interact with the hydrophobic electrode interface similarly to decane. Previously reported electrochemical results confirm these findings by demonstrating bipolar displacement currents from PC vesicles adhering to moderately negatively charged interfaces, originating from the choline interactions observed in simulations. At more negatively charged interfaces, choline-to-surface binding was stronger. In both simulations and experiments the maximal interaction of anionic PS occurs with a positively charged interface, provided that the electrostatic forces outweigh local Lennard-Jones interactions. Direct comparisons between the binding affinities measured in experiments and those obtained in simulations reveal previously unobserved atomic interactions that facilitate lipid vesicle adhesion to charged interfaces. Moreover, the implementation of a charged interface in molecular dynamics simulations provides an alternative method for the generation of large electric fields across phospholipid bilayers, especially for systems with periodic boundary conditions, and may be useful for

  5. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity

    Liu, Yuling; Xu, Yingqi; Wu, Minghui; Fan, Lijiao; He, Chengwei; Wan, Jian-Bo; Li, Peng; Chen, Meiwan; Li, Hui

    2016-01-01

    Mitoxantrone (MIT) is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES) amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT) micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50) value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines). In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy. PMID:27471384

  6. Separation of phosphatidylcholine from soybean phospholipids by simulated moving bed

    L(U) Yu-bin; YANG Yi-wen; WU Ping-dong

    2006-01-01

    A simulated moving bed (SMB), equipped with eight silica-gel columns, was used to separate phosphatidylcholine (PC) from soybean phospholipids. The effects of flow rate in Sections 2 (Q2) and 3 (Q3), switching time, feed flow rate and feed concentration on the operating performance parameters: purity, recovery, productivity and desorbent consumption were studied.Operating conditions leading to more than 90% purity in both outlet streams have been identified, together with those achieving optimal performance. Regions leading to complete separation are observed and explained theoretically. As the mass-transfer effect was not considered, the triangle theory only gives initial guesses for the optimal operating conditions.

  7. Transport of Phytochelatin PC2 across Model Phospholipid Membrane

    Šestáková, Ivana; Nováková, Kateřina; Josypčuk, Bohdan; Navrátil, Tomáš

    Ústí nad Labem : Best Servis, 2014 - (Navrátil, T.; Fojta, M.; Pecková, K.), s. 190-192 ISBN 978-80-905221-2-1. [Moderní Elektrochemické Metody /34./. Jetřichovice (CZ), 19.05.2014-23.05.2014] R&D Projects: GA ČR GAP206/11/1638; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : Phospholipid membrane * Phytochelatin * Transport Subject RIV: CG - Electrochemistry

  8. Study of ion transports across model phospholipid bilayers

    Navrátil, Tomáš; Šestáková, Ivana; Mareček, Vladimír

    Brno : PřF Masarykovy univerzity, 2009, s. 106-108. ISBN 978-80-7375-309-2. [Pracovní setkání fyzikálních chemiků a elektrochemiků /9./. Brno (CZ), 29.06.2009-30.06.2009] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : supported phospholipid bilayer * transport of charged particles * voltammetry * electrochemical impedance spectroscopy Subject RIV: CG - Electrochemistry

  9. Static structure factor of polymerlike micelles: Overall dimension, flexibility, and local properties of lecithin reverse micelles in deuterated isooctane

    Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.; Schurtenberger, P.

    1997-01-01

    We report a systematic investigation of the static structure factor S(q,c) of polymerlike reverse micelles formed by soybean lecithin and trace amounts of water in deuterated isooctane using small-angle neutron scattering and static light scattering. The experimental data for different...... transformation and square-root deconvolution techniques. We demonstrate that we can determine structural properties such as the micellar cross-section profile and flexibility as well as quantitatively incorporate the influence of micellar growth and excluded-volume effects on S(q,c)....

  10. pH-Responsive Micelle Sequestrant Polymers Inhibit Fat Absorption.

    Qian, Jian; Sullivan, Bradley P; Berkland, Cory

    2015-08-10

    Current antiobesity therapeutics are associated with side effects and/or poor long-term patient compliance, necessitating development of more efficacious and safer alternatives. Herein, we designed and engineered a new class of orally acting pharmaceutical agents, or micelle sequestrant polymers (MSPs), that could respond to the pH change in the gastrointestinal (GI) tract and potentially sequester lipid micelles; inhibiting lipid absorption through a pH-triggered flocculation process. These MSPs, derived from poly(2-(diisopropylamino)ethyl methacrylate) and poly(2-(dibutylamino)ethyl methacrylate), were soluble in acidic media, but they transitioned to become insoluble around pH 7.2 and 6.1, respectively. MSPs showed substantial bile acid and triglyceride sequestration capacity with fast pH response tested in vitro. In vivo study showed that orally dosed MSPs significantly enhanced fecal elimination of triglycerides and bile acids. Several MSPs increased fecal elimination of triglycerides by 9-10 times compared with that of the control. In contrast, fecal concentration of bile acids, but not triglycerides, was increased by cholestyramine or Welchol. Importantly, fecal elimination of bile acids and triglycerides was unaltered by addition of control dietary fibers. MSPs may serve as a novel approach to weight loss that inhibits excess caloric intake by preventing absorption of excess dietary triglycerides. PMID:26133544

  11. Modulation of ROS production in human leukocytes by ganglioside micelles

    M. Gavella

    2010-10-01

    Full Text Available Recent studies have reported that exogenous gangliosides, the sialic acid-containing glycosphingolipids, are able to modulate many cellular functions. We examined the effect of micelles of mono- and trisialoganglioside GM1 and GT1b on the production of reactive oxygen species by stimulated human polymorphonuclear neutrophils using different spectroscopic methods. The results indicated that exogenous gangliosides did not influence extracellular superoxide anion (O2.- generation by polymorphonuclear neutrophils activated by receptor-dependent formyl-methionyl-leucyl-phenylalanine. However, when neutrophils were stimulated by receptor-bypassing phorbol 12-myristate 13-acetate (PMA, gangliosides above their critical micellar concentrations prolonged the lag time preceding the production in a concentration-dependent way, without affecting total extracellular O2.- generation detected by superoxide dismutase-inhibitable cytochrome c reduction. The effect of ganglioside GT1b (100 µM on the increase in lag time was shown to be significant by means of both superoxide dismutase-inhibitable cytochrome c reduction assay and electron paramagnetic resonance spectroscopy (P < 0.0001 and P < 0.005, respectively. The observed phenomena can be attributed to the ability of ganglioside micelles attached to the cell surface to slow down PMA uptake, thus increasing the diffusion barrier and consequently delaying membrane events responsible for PMA-stimulated O2.- production.

  12. Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers.

    Capponi, Sara; Freites, J Alfredo; Tobias, Douglas J; White, Stephen H

    2016-02-01

    Organized as bilayers, phospholipids are the fundamental building blocks of cellular membranes and determine many of their biological functions. Interactions between the two leaflets of the bilayer (interleaflet coupling) have been implicated in the passage of information through membranes. However, physically, the meaning of interleaflet coupling is ill defined and lacks a structural basis. Using all-atom molecular dynamics simulations of fluid phospholipid bilayers of five different lipids with differing degrees of acyl-chain asymmetry, we have examined interleaflet mixing to gain insights into coupling. Reasoning that the transbilayer distribution of terminal methyl groups is an appropriate measure of interleaflet mixing, we calculated the transbilayer distributions of the acyl chain terminal methyl groups for five lipids: dioleoylphosphatidylcholine (DOPC), palmitoyloleoylphosphatidylcholine (POPC), stearoyloleoylphosphatidylcholine (SOPC), oleoylmyristoylphosphatidylcholine (OMPC), and dimyristoylphosphatidylcholine (DMPC). We observed in all cases very strong mixing across the bilayer midplane that diminished somewhat with increasing acyl-chain ordering defined by methylene order parameters. A hallmark of the interleaflet coupling idea is complementarity, which postulates that lipids with short alkyl chains in one leaflet will preferentially associate with lipids with long alkyl chains in the other leaflet. Our results suggest a much more complicated picture for thermally disordered bilayers that we call distributed complementarity, as measured by the difference in the peak positions of the sn-1 and sn-2 methyl distributions in the same leaflet. PMID:26657692

  13. [Some peculiarities of brain phospholipids in deep sea fishes].

    Pomazanskaia, L F; Pravdina, N I; Chirkovskaia, E V

    1975-01-01

    Total phospholipids (PL) as well as the content of various phospholipid classes and their fatty acid composition have been investigated in the brain of mesopelagic and abyssal marine teleosts. These species were compared to shallow water ones. The brain of deep sea fishes was found to be very poor in PL as compared to the brain of mesopelagic ans surface water species. No differences concerning the brain PL content were revealed between the two last mentioned groups. The relative content of separate PL classes was very similar in all the species studied irrespectively of the depth of their habitat. Peculiarities were found in fatty acid composition of individual PL from deep sea species as compared to surface ones. The deeper the habitat, the lower the content of saturated fatty acids, especially of the stearic acid. The lowest content of saturated fatty acids, maximum level of polyenoic fatty acids as well as some peculiarities in the relative content of particular fatty acids were found in the brain of ultraabyssal (6, 000 m) Leucicorus sp. PMID:1217333

  14. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  15. The herpes simplex virus 1 US3 regulates phospholipid synthesis

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of US3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the US3 deletion mutant R7041(ΔUS3), and quantified membranes involved in viral envelopment. We report that (i) [3H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041(ΔUS3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041(ΔUS3) infection forming folds that equaled ∼45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled ∼2400 R7041(ΔUS3) virions per cell, and (iv) during R7041(ΔUS3) infection, the Golgi complex expanded dramatically. The data indicate that US3 plays a significant role in regulation of membrane biosynthesis.

  16. Characterization of the phospholipid methyltransferase in RBC ghost preparations

    The activity of the phospholipid methyltransferase from human RBC ghosts was studied using radio-HPLC techniques to analyze the products. Both monomethyl phosphatidyl ethanolamine (MMPE) and dimethyl phosphatidyl ethanolamine (DMPE) were used as substrated. The reaction rate was linear for 45 min. Apparent K/sub M/s of 24-28 uM and 19-21 uM were measured for these two substrates, respectively. The reaction rate was not linear with protein. It appeared to increase logarithmic. An apparent K/sub M/ for S-adenosylmethionine was 36-45 uM. These K/sub M/ values are similar to those reported by others for liver. As the concentration of MMPE was increased, the ratio of DMPE/PC also increased due largely to a greater increase in DMPE formation. Optimal reaction rates for the formation of DMPE were 0.9-1.3 pmol/mg/min, and an optimal rate of about 1.7-2.4 pmol/min/mg was measured for the conversion of DMPE to phosphatidyl choline (PC). Freezing the ghost preparation did not affect the activity of the enzyme. When no exogenous phospholipid was added to the incubation, the sum of the formation rates of all three methylated products was about 26 pmol/mg/hr. The relative amount of each product was 46% MMPE, 32% DMPE and 22% PC. When either MMPE or DMPE was added as substrate, the formation of MMPE was reduced to less than 1%

  17. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures.

    Pellach, Michal; Atsmon-Raz, Yoav; Simonovsky, Eyal; Gottlieb, Hugo; Jacoby, Guy; Beck, Roy; Adler-Abramovich, Lihi; Miller, Yifat; Gazit, Ehud

    2015-01-01

    Phospholipid membranes could be considered a prime example of the ability of nature to produce complex yet ordered structures, by spontaneous and efficient self-assembly. Inspired by the unique properties and architecture of phospholipids, we designed simple amphiphilic decapeptides, intended to fold in the center of the peptide sequence, with a phosphorylated serine "head" located within a central turn segment, and two hydrophobic "tails". The molecular design also included the integration of the diphenylalanine motif, previously shown to facilitate self-assembly and increase nanostructure stability. Secondary structure analysis of the peptides indeed indicated the presence of stabilized conformations in solution, with a central turn connecting two hydrophobic "tails", and interactions between the hydrophobic strands. The mechanisms of assembly into supramolecular structures involved structural transitions between different morphologies, which occurred over several hours, leading to the formation of distinctive nanostructures, including half-elliptical nanosheets and curved tapes. The phosphopeptide building blocks appear to self-assemble via a particular combination of aromatic, hydrophobic and ionic interactions, as well as hydrogen bonding, as demonstrated by proposed constructed simulated models of the peptides and self-assembled nanostructures. Molecular dynamics simulations also gave insight into mechanisms of structural transitions of the nanostructures at a molecular level. Because of the biocompatibility of peptides, the phosphopeptide assemblies allow for expansion of the library of biomolecular nanostructures available for future design and application of biomedical devices. PMID:25802000

  18. Structure and organization of phospholipid/polysaccharide nanoparticles

    In recent years nanoparticles and microparticles composed of polymeric or lipid material have been proposed as drug carriers for improving the efficacy of encapsulated drugs. For the production of these systems different materials have been proposed, among them phospholipids and polysaccharides due to their biocompatibility, biodegradability, low cost and safety. We report here a morphological and structural investigation, performed using cryo-TEM, static light scattering and small angle neutron and x-ray scattering, on phospholipid/saccharide nanoparticles loaded with a lipophilic positively charged drug (tamoxifen citrate) used in breast cancer therapy. The lipid component was soybean lecithin; the saccharide one was chitosan that usually acts as an outer coating increasing vesicle stability. The microscopy and scattering data indicate the presence of two distinct nanoparticle families: uni-lamellar vesicles with average radius 90 A and multi-lamellar vesicles with average radius 440 A. In both families the inner core is occupied by the solvent. The presence of tamoxifen gives rise to a multi-lamellar structure of the lipid outer shell. It also induces a positive surface charge into the vesicles, repelling the positively charged chitosan molecules which therefore do not take part in nanoparticle formation

  19. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  20. Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy

    Susana Machado

    2014-01-01

    Full Text Available Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE or cholesterol (Chol. Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane-carbamoyl]-cholesterol (DC-Chol and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.

  1. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  2. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer

    Salzano, G; Riehle, R.; Navarro, Gemma; Perche, Federico; Rosa, G.; Torchilin, VT

    2013-01-01

    The discovery that survivin, a small anti-apoptotic protein, is involved in chemoresistance, opens a new scenario to overcome the drug resistance in cancer. It was shown that siRNA can efficiently inhibit the expression of survivin in cancer cells. However, the clinical use of siRNA is still hampered by an unfavorable pharmacokinetic profile. To address this problem, earlier we developed a novel system to deliver siRNA into cancer cells. Namely, we reversibly modified the survivin siRNA with ...

  3. Extraction of lysozyme, alpha-chymotrypsin, and pepsin into reverse micelles formed using an anionic surfactant, isooctane, and water.

    Chang, Q; Liu, H; Chen, J

    1994-11-01

    The extraction of lysozyme, alpha-chymotrypsin, and pepsin from buffered salt solutions into reverse micelles was examined at different pH values and surfactant concentrations. The reverse micelles was formed by mixing aqueous buffer supplemented with KCl and an organic phase of isooctane(2,2,4-trimethylpentane), containing the anionic surfactant, Aerosol O. T. (dioctyl ester of sodium sulfosuccinic acid). The technique of dynamic laser scattering was used to measure the size of reverse micelles which were in equilibrium with the aqueous phase. It was found that the size of the reverse micelles decreased with increasing ionic strength but increased with increasing AOT concentration. In the process of extraction, the reverse micelles might have rearranged themselves to host the protein. The sizes of protein-filled and -unfilled reverse micelles were different, and an open equilibrium could be reached between them. Under the extraction conditions, only a small number of micelles were found to contain protein. PMID:7522474

  4. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  5. Structural evaluation of phospholipidic nanovesicles containing small amounts of chitosan.

    Mertins, Omar; Cardoso, Mateus Borba; Pohlmann, Adriana Raffin; da Silveira, Nádya Pesce

    2006-08-01

    In this study we present a full characterization of nanovesicles containing soybean phosphatidylcholine and polysaccharide chitosan. The nanovesicles were prepared by the reverse phase evaporation method, including the preparation of reverse micelles followed by the formation of an organogel, which is dispersed in water to yield the final liposomal particles. Structural changes as a function of the chitosan amount and the filter porosity used in the nanovesicles preparation were studied employing Static and Dynamic Light Scattering as well as Small Angle X-ray Scattering. The hydrodynamic radius of the nanovesicles ranged between 106 and 287 nm, depending on the chitosan contents and the filter porosity. A comparison with nanovesicles free of chitosan indicates the existence of higher contents of multilamellar structures that depends on the chitosan concentration in the vesicles containing chitosan. Typical spherical vesicles having nanometric diameters with polydispersity mostly desired in the biomedical area could only be achieved by filtration through a 0.45 microm porous filter. PMID:17037851

  6. Characterization and localization of in vivo phospholipid methylation in the hamster testis

    Although previous studies have demonstrated that phospholipid methylation occurs in the testis and may be involved in Leydig cell function, phospholipid methylation in spermatogenic cells has not been characterized. In this study we describe the occurrence, time course, and localization of phospholipid methylation in the hamster testis following intratesticular injection of radioactive methyl precursor. Adult and pubertal (seven day old) hamsters were injected intratesticularly with [3H-methyl]-methionine and sacrificed 10 min. to 31 hours thereafter. The testes were then removed and homogenized or dispersed into cell suspensions. Spermatogenic cell and Leydig cell enriched preparations were isolated from the dispersed cell preparations using elutriation and Percoll gradient centrifugation and assayed for methylated phospholipids and proteins. These experiments demonstrated that (1) phospholipid methylation occurs in the hamster testis at a level seven-fold greater than protein methylation, (2) the incorporation of radioactivity associated with phospholipid methylation is progressive over time, and (3) in vivo, spermatogenic cell preparations enriched with pachytene spermatocytes have an almost four-fold higher level of measurable phospholipid methylation when compared to whole testis preparations. Taken together, these results suggest that phospholipid methylation may play an important stage-specific role in spermatogenesis

  7. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a m

  8. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  9. Preparation and evaluation of reduction-responsive nano-micelles for miriplatin delivery.

    Zhang, Ying; Hu, Dejian; Han, Shangcong; Yan, Guowen; Ma, Chao; Wei, Chen; Yu, Miao; Li, Dongmei; Sun, Yong

    2016-06-01

    A reduction-responsive amphiphilic core-shell micelle for miriplatin delivery was prepared and evaluated. A pyrene-terminated poly(2-(dimethylamino) ethyl acrylate) was synthesized through reversible addition-fragmentation chain transfer polymerization with 4-cyano-4-(ethylthiocarbonothioylthio) pentanoic acid as reversible addition-fragmentation chain transfer reagent and further modified by 2,2'-dithiodiethanol and 1-pyrenebutyric acid. Self-assembled blank micelles and drug-loaded micelles were obtained by dialysis method, and the particle size was proved to be about 40 nm with narrow dispersity by dynamic laser light scattering. Morphology results showed that blank micelles and drug-loaded micelles were spherical nanoparticles confirmed by transmission electron microscope, and the critical micelle concentration was as low as 6.09 µg/mL via pyrene fluorescence probe method. The reductive sensitivity of disulfide bond in BMs was further verified by changes in particle size, pyrene fluorescence intensity ratio (I338/I333), and morphology after treatment by dithiothreitol. Moreover, drug release rate in vitro of drug-loaded micelles was evaluated and the results suggested that this amphiphilic pyrene-modified poly(2-(dimethylamino) ethyl acrylate) can be used as reduction-triggered controlled release drug delivery carrier for hydrophobic drug. PMID:26743756

  10. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo.

    Yang, Xi; Li, Zhaojun; Wang, Ning; Li, Ling; Song, Linjiang; He, Tao; Sun, Lu; Wang, Zhihan; Wu, Qinjie; Luo, Na; Yi, Cheng; Gong, Changyang

    2015-01-01

    To develop injectable formulation and improve the stability of curcumin (Cur), Cur was encapsulated into monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) (MPEG-P(CL-co-TMC)) micelles through a single-step solid dispersion method. The obtained Cur micelles had a small particle size of 27.6 ± 0.7 nm with polydisperse index (PDI) of 0.11 ± 0.05, drug loading of 14.07 ± 0.94%, and encapsulation efficiency of 96.08 ± 3.23%. Both free Cur and Cur micelles efficiently suppressed growth of CT26 colon carcinoma cells in vitro. The results of in vitro anticancer studies confirmed that apoptosis induction and cellular uptake on CT26 cells had completely increased in Cur micelles compared with free Cur. Besides, Cur micelles were more effective in suppressing the tumor growth of subcutaneous CT26 colon in vivo, and the mechanisms included the inhibition of tumor proliferation and angiogenesis and increased apoptosis of tumor cells. Furthermore, few side effects were found in Cur micelles. Overall, our findings suggested that Cur micelles could be a stabilized aqueous formulation for intravenous application with improved antitumor activity, which may be a potential treatment strategy for colon cancer in the future. PMID:25980982

  11. Octreotide-functionalized and resveratrol-loaded unimolecular micelles for targeted neuroendocrine cancer therapy

    Xu, Wenjin; Burke, Jocelyn F.; Pilla, Srikanth; Chen, Herbert; Jaskula-Sztul, Renata; Gong, Shaoqin

    2013-09-01

    Medullary thyroid cancer (MTC) is a neuroendocrine tumor (NET) that is often resistant to standard therapies. Resveratrol suppresses MTC growth in vitro, but it has low bioavailability in vivo due to its poor water solubility and rapid metabolic breakdown, as well as lack of tumor-targeting ability. A novel unimolecular micelle based on a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for NET-targeted delivery. The hyperbranched amphiphilic block copolymer consisted of a dendritic Boltorn® H40 core, a hydrophobic poly(l-lactide) (PLA) inner shell, and a hydrophilic poly(ethylene glycol) (PEG) outer shell. Octreotide (OCT), a peptide that shows strong binding affinity to somatostatin receptors, which are overexpressed on NET cells, was used as the targeting ligand. Resveratrol was physically encapsulated by the micelle with a drug loading content of 12.1%. The unimolecular micelles exhibited a uniform size distribution and spherical morphology, which were determined by both transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cellular uptake, cellular proliferation, and Western blot analyses demonstrated that the resveratrol-loaded OCT-targeted micelles suppressed growth more effectively than non-targeted micelles. Moreover, resveratrol-loaded NET-targeted micelles affected MTC cells similarly to free resveratrol in vitro, with equal growth suppression and reduction in NET marker production. These results suggest that the H40-based unimolecular micelle may offer a promising approach for targeted NET therapy.

  12. Structure of diglycerol polyisostearate nonionic surfactant micelles in nonpolar oil hexadecane: a SAXS study.

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Oyama, Keiichi; Matsuzawa, Makoto; Aramaki, Kenji

    2010-01-01

    Using a small-angle X-ray scattering technique, shape and size, and internal structure of diglycerol polyisostearate nonionic surfactant micelles in nonpolar oil n-hexadecane (HD) were investigated at 25 degrees C. Furthermore, the effect of added water on the structure of host reverse micelles was also investigated. The scattering data were evaluated by the generalized indirect Fourier transformation (GIFT) method and model fittings. It was found that diglycerol polyisostearate (abbreviated as (iso-C18)nG2, where n=2-4 represent the number of isostearate chain per surfactant molecule) spontaneously form reverse micelles in HD at 25 degrees C and their geometry (shape and size, and internal structure) could flexibly be controlled by a small change in the lipophilic tail architecture of the surfactant, temperature, and water addition. Increasing number of isostearate chain per surfactant molecule decreases the micelles size favoring prolate-to-sphere type transition. This phenomenon could be best understood due to voluminous lipophilic part of the surfactant. Increasing temperature decreases the size of the reverse micelles due to enhanced inter-penetration of the surfactant chain and the oil and also due to dominant hydrophobic character of the surfactant at higher temperatures. In the studies of effect of added water on the structure of micelles, it was found that the reverse micelles swell with water causing two dimensional micellar growths. PMID:20513967

  13. Spectral Properties and Solubilization Location of 2'-Ethylhexyl 4-(N,N-Dimethylamino)benzoate in Micelles

    Ning Ding; Xin-zhen Du; Chun Wang; Xiao-quan Lu

    2008-01-01

    Dual fluorescence and UV absorption of 2'-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic,non-ionic and anionic miceUes.When EHDMAB was solubilized in different micellss, the UV absorption of EHDMAB was enhanced.Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles,whereas TICT emission with shorter wavelength was obtained in non-ionic micelles.In particular,dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles.UV radiation absorbed mainly decays via TICT emission and radiationless deactivation.The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents.In terms of the molecular structures and sizes of EHDMAB and surfactants,each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2'-ethylhexyl chain toward the hydrophobic micellar core.Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.

  14. Characterization of Cetyltrimethylammonium Bromide/Hexanol Reverse Micelles by Experimentally Benchmarked Molecular Dynamics Simulations.

    Fuglestad, Brian; Gupta, Kushol; Wand, A Joshua; Sharp, Kim A

    2016-02-23

    Encapsulation of small molecules, proteins, and other macromolecules within the protective water core of reverse micelles is emerging as a powerful strategy for a variety of applications. The cationic surfactant cetyltrimethylammonium bromide (CTAB) in combination with hexanol as a cosurfactant is particularly useful in the context of solution NMR spectroscopy of encapsulated proteins. Small-angle X-ray and neutron scattering is employed to investigate the internal structure of the CTAB/hexanol reverse micelle particle under conditions appropriate for high-resolution NMR spectroscopy. The scattering profiles are used to benchmark extensive molecular dynamics simulations of this reverse micelle system and indicate that the parameters used in these simulations recapitulate experimental results. Scattering profiles and simulations indicate formation of homogeneous solutions of small approximately spherical reverse micelle particles at a water loading of 20 composed of ∼150 CTAB and 240 hexanol molecules. The 3000 waters comprising the reverse micelle core show a gradient of translational diffusion that reaches that of bulk water at the center. Rotational diffusion is slowed relative to bulk throughout the water core, with the greatest slowing near the CTAB headgroups. The 5 Å thick interfacial region of the micelle consists of overlapping layers of Br(-) enriched water, CTAB headgroups, and hexanol hydroxyl groups, containing about one-third of the total water. This study employs well-parametrized MD simulations, X-ray and neutron scattering, and electrostatic theory to illuminate fundamental properties of CTAB/hexanol reverse micelle size, shape, partitioning, and water behavior. PMID:26840651

  15. Micelle-templated composite quantum dots for super-resolution imaging

    Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS–CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn–ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn2+ dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS–CdSe QDs (ZnS–CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright ‘on’ state to a dark ‘off’ state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging. (papers)

  16. Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin

    Jixue Wang

    2015-01-01

    Full Text Available Nanoscale micelles as an effective drug delivery system have attracted increasing interest in malignancy therapy. The present study reported the construction of the cholesterol-enhanced doxorubicin (DOX-loaded poly(D-lactide-based micelle (CDM/DOX, poly(L-lactide-based micelle (CLM/DOX, and stereocomplex micelle (CSCM/DOX from the equimolar enantiomeric 4-armed poly(ethylene glycol–polylactide copolymers in aqueous condition. Compared with CDM/DOX and CLM/DOX, CSCM/DOX showed the smallest hydrodynamic size of 96 ± 4.8 nm and the slowest DOX release. The DOX-loaded micelles exhibited a weaker DOX fluorescence inside mouse renal carcinoma cells (i.e., RenCa cells compared to free DOX·HCl, probably because of a slower DOX release. More importantly, all the DOX-loaded micelles, especially CSCM/DOX, exhibited the excellent antiproliferative efficacy that was equal to or even better than free DOX·HCl toward RenCa cells attributed to their successful internalization. Furthermore, all of the DOX-loaded micelles exhibited the satisfactory hemocompatibility compared to free DOX·HCl, indicating the great potential for systemic chemotherapy through intravenous injection.

  17. The role of ABCB4 gene in the pathogenesis of low phospholipid associated cholelithiasis%ABCB4基因在低磷脂相关性胆石病发病机制中的作用

    李波

    2012-01-01

    人类肝细胞毛细胆管膜上ABCB4基因编码生成多药耐药蛋白3.该蛋白负责将磷脂从毛细胆管膜内侧转运到胆管腔,与胆汁酸盐微粒形成混合微粒以溶解胆固醇.当ABCB4基因缺陷时,胆汁中磷脂减少或缺乏,可使胆固醇呈过饱和状态促进胆固醇结晶形成.人类ABCB4基因突变导致的胆石病称为低磷脂相关性胆石病.其特征是青少年时出现明显胆石病症状和胆囊切除术后反复发作症状.低磷脂相关性胆石病是罕见的单基因突变的染色体隐性遗传病.突变的方式包括纯合子和杂合子突变,集中于在外显子编码区、内含子区域和5' UTR(untranslated region)区域.%The adenosine triphosphate-binding cassette subfamily member 4 (ABCB4) gene encodes multidrug resistance rotein 3 (MDR3),which is expressed on the cannalicular membranes of hepatocytes and translocates major phospholipids from the inner to the outer leaflet.Phospholipids are the major carrier and solvent of cholesterol,and in combination with bile salts form mixed micelles.Defects in ABCB4 function cause a low phospholipid content in bile,resulting in cholesterol supersaturation and crystal formation.Low phospholipid-associated cholelithiasis (LPAC) is characterized by the association of ABCB4 mutations and a low biliary phospholipid concentration,resulting in symptomatic gallstones starting before age 40 years,a high serum gamma glutamyl transferase (γ-GT) activity,intrahepatic microlithiasis,and recurrent biliary symptoms despite cholecystectomy.LPAC is an autosomal recessive condition caused by a rare single-gene mutation,commonly occurring in ABCB4,and can include homozygous and heterozygous point mutations in introns,coding exons,and 5 UTR regions.

  18. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles.

    Sayyed-Ahmad, Abdallah; Khandelia, Himanshu; Kaznessis, Yiannis N

    2009-09-01

    We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity. PMID:21113423

  19. Chitosan cushioned phospholipid membrane and its application in imaging ellipsometry based-biosensor

    Zhang Yibang, E-mail: ybzhang2007@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215125 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen Yanyan, E-mail: yychen2006@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215125 (China); Jin Gang, E-mail: gajin@imech.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215125 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-01

    Chitosan cushion can support the air stability of phospholipid membrane, but the problem of serum solubility of phospholipid membrane prevents it from use in serum detection applications. Poly (ethylene glycol) (PEG) shielding promises both stability and non-specific adsorption resistance for phospholipid membrane. An air stable phospholipid membrane microarray has been successfully fabricated on chitosan modified silicon wafer. We have demonstrated the potential application of PEGylated phospholipid membrane in imaging ellipsometry-based protein biosensor. Because of the strong resistance against non-specific adsorption of serum, antigens are immobilized onto the membrane surface through chemical activation and further bind their antibodies without using blocking agent. Taking advantage of the multiple and parallel reaction capabilities of microfluidic reactor system, we have assayed the binding by varying both the density of antigen on the membrane surface and the concentration of antibody in solution.

  20. Chitosan cushioned phospholipid membrane and its application in imaging ellipsometry based-biosensor

    Chitosan cushion can support the air stability of phospholipid membrane, but the problem of serum solubility of phospholipid membrane prevents it from use in serum detection applications. Poly (ethylene glycol) (PEG) shielding promises both stability and non-specific adsorption resistance for phospholipid membrane. An air stable phospholipid membrane microarray has been successfully fabricated on chitosan modified silicon wafer. We have demonstrated the potential application of PEGylated phospholipid membrane in imaging ellipsometry-based protein biosensor. Because of the strong resistance against non-specific adsorption of serum, antigens are immobilized onto the membrane surface through chemical activation and further bind their antibodies without using blocking agent. Taking advantage of the multiple and parallel reaction capabilities of microfluidic reactor system, we have assayed the binding by varying both the density of antigen on the membrane surface and the concentration of antibody in solution.

  1. Phospholipid Membrane Protection by Sugar Molecules during Dehydration-Insights into Molecular Mechanisms Using Scattering Techniques

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary [ANSTO; (USD); (ANU); (RMIT)

    2014-09-24

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  2. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel

    Kim, Sungwon; Kim, Ji Young; Huh, Kang Moo; Acharya, Ghanshyam; Park, Kinam

    2008-01-01

    Hydrotropic polymers (HPs) and their micelles have been recently developed as vehicles for delivery of poorly water-soluble drugs, such as paclitaxel (PTX), by oral administration. The release of PTX from HP micelles, however, was slow and it took more than a day for complete release of the loaded PTX. Since the gastrointestinal (GI) transit time is known to be only several hours, pH-sensitive HP micelles were prepared for fast release of the loaded PTX responding to pH changes along the GI t...

  3. pH-responsive layer-by-layer films of zwitterionic block copolymer micelles

    Demirel, Adem Levent; Yusan, Pelin; Tuncel, İrem; Bütün, Vural; Erel-Goktepe, İrem

    2014-01-01

    We report a strategy to incorporate micelles of poly[3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate]-block-poly[2-(diisopropylamino) ethyl methacrylate] (beta PDMA-b-PDPA) into electrostatic layer-by-layer (LbL) films. We obtained micelles with pH-responsive PDPA-cores and zwitterionic bPDMA-coronae at pH 8.5 through pH-induced self-assembly of bPDMA-b-PDPA in aqueous solution. To incorporate bPDMA-b-PDPA micelles into LbL films, we first obtained a net electrical charge on bPDM...

  4. Sphere-to-rod transition of triblock copolymer micelles at room temperature

    R Ganguly; V K Aswal; P A Hassan; I K Gopalakrishnan; J V Yakhmi

    2004-08-01

    A room temperature sphere-to-rod transition of the polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymer, (PEO)20 (PPO)70 (PEO)20 micelles have been observed in aqueous medium under the influence of ethanol and sodium chloride. Addition of 5-10% ethanol induces a high temperature sphere-to-rod transition of the micelles, which is brought to room temperature upon addition of NaCl. The inference about the change in the shape of the micelles has been drawn from small-angle neutron scattering (SANS) and viscosity studies.

  5. Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres.

    You, Jian; Wang, Zuhua; Du, Yongzhong; Yuan, Hong; Zhang, Peizun; Zhou, Jialin; Liu, Fei; Li, Chun; Hu, Fuqiang

    2013-06-01

    It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR

  6. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells.

    Aydin, Omer; Youssef, Ibrahim; Yuksel Durmaz, Yasemin; Tiruchinapally, Gopinath; ElSayed, Mohamed E H

    2016-04-01

    We report the synthesis of an amphiphilic triblock copolymer composed of a hydrophilic poly(ethylene glycol) (PEG) block, a central poly(acrylic acid) (PAA) block, and a hydrophobic poly(methyl methacrylate) (PMMA) block using atom transfer radical polymerization technique. We examined the self-assembly of PEG-b-PAA-b-PMMA copolymers in aqueous solutions forming nanosized micelles and their ability to encapsulate hydrophobic guest molecules such as Nile Red (NR) dye and cabazitaxel (CTX, an anticancer drug). We used 2,2β'-(propane-2,2-diylbis(oxy))-diethanamine to react with the carboxylic acid groups of the central PAA block forming acid-labile, shell cross-linked micelles (SCLM). We investigated the loading efficiency and release of different guest molecules from non-cross-linked micelles (NSCLM) and shell cross-linked micelles (SCLM) prepared by reacting 50% (SCLM-50) and 100% (SCLM-100) of the carboxylic acid groups in the PAA in physiologic (pH 7.4) and acidic (pH 5.0) buffer solutions as a function of time. We examined the uptake of NR-loaded NSCLM, SCLM-50, and SCLM-100 micelles into PC-3 and C4-2B prostate cancer cells and the effect of different micelle compositions on membrane fluidity of both cell lines. We also investigated the effect of CTX-loaded NSCLM, SCLM-50, and SCLM-100 micelles on the viability of PC-3 and C4-2B cancer cells compared to free CTX as a function of drug concentration. Results show that PEG-b-PAA-b-PMMA polymers form micelles at concentrations ≥11 μg/mL with an average size of 40-50 nm. CTX was encapsulated in PEG-b-PAA-b-PMMA micelles with 55% loading efficiency in NSCLM. In vitro release studies showed that 30% and 85% of the loaded CTX was released from SCLM-50 micelles in physiologic (pH 7.4) and acidic (pH 5.0) buffer solutions over 30 h, confirming micelles' sensitivity to solution pH. Results show uptake of NSCLM and SCLM into prostate cancer cells delivering their chemotherapeutic cargo, which triggered efficient cancer

  7. Pressure-induced dissociation of casein micelles: size distribution and effect of temperature

    Gebhardt R.

    2005-01-01

    Full Text Available Pressure-induced dissociation of a turbid solution of casein micelles was studied in situ in static and dynamic light scattering experiments. We show that at high pressure casein micelles decompose into small fragments comparable in size to casein monomers. At intermediate pressure we observe particles measuring 15 to 20 nm in diameter. The stability against pressure dissociation increased with temperature, suggesting enhanced hydrophobic contacts. The pressure transition curves are biphasic, compatible with a temperature (but not pressure-dependent conformational equilibrium of two micelle species. Our thermodynamic model predicts an increase in structural entropy with temperature.

  8. Counterion condensation in ionic micelles as studied by a combined use of SANS and SAXS

    V K Aswal; P S Goyal; H Amenitsch; S Bernstorff

    2004-08-01

    We report a combined use of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) to the study of counterion condensation in ionic micelles. Small-angle neutron and X-ray scattering measurements have been carried out on two surfactants cetyltrimethylammonium bromide (CTABr) and cetyltrimethylammonium chloride (CTACl), which are similar but having different counterions. SANS measurements show that CTABr surfactant forms much larger micelles than CTACl. This is explained in terms of higher condensation of Br0 counterions than Cl- counterions. SAXS data on these systems suggest that the Br- counterions are condensed around the micelles over smaller thickness than those of Cl- counterions.

  9. Phospholipides bio-sourcés riches en acides gras oméga 3 pour la formulation de liposomes

    Bardeau, Tiphaine

    2015-01-01

    Liposomes, phospholipids vesicles, are colloidal systems used in search and different industrial fields (pharmaceutical, cosmetic, nutrition). Nevertheless their development face lack of phospholipid sources (soya and egg yolk). At the same time, industrial methods to extract phospholipids use organic solvents. In this context, the phospholipid extraction were studied using a green technology from new different sources in order to formulate liposomes. Oil mill and fishery by-products (seed ca...

  10. Evolution of phospholipid contents during the production of quark cheese from buttermilk.

    Ferreiro, T; Martínez, S; Gayoso, L; Rodríguez-Otero, J L

    2016-06-01

    We report the evolution of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) contents during the production of quark cheese from buttermilk by successive ultrafiltration concentration, enrichment with cream, concurrent homogenization and pasteurization, fermentative coagulation, and separation of quark from whey by further ultrafiltration. Buttermilk is richer than milk itself in phospholipids that afford desirable functional and technological properties, and is widely used in dairy products. To investigate how phospholipid content is affected by end-product production processes such as ultrafiltration, homogenization, pasteurization or coagulation, we measured the phospholipids at several stages of each of 5 industrial-scale quark cheese production runs. In each run, 10,000L of buttermilk was concentrated to half volume by ultrafiltration, enriched with cream, homogenized, pasteurized, inoculated with lactic acid bacteria, incubated to coagulation, and once more concentrated to half volume by ultrafiltration. Phospholipid contents were determined by HPLC with evaporative light scattering detection in the starting buttermilk, concentrated buttermilk, ultrafiltrate, cream-enriched concentrated buttermilk (both before and after concurrent homogenization and pasteurization), coagulate, and quark, and also in the rinsings obtained when the ultrafiltration equipment was washed following initial concentration. The average phospholipid content of buttermilk was approximately 5 times that of milk, and the phospholipid content of buttermilk fat 26 to 29 times that of milk fat. Although phospholipids did not cross ultrafiltration membranes, significant losses occurred during ultrafiltration (due to retention on the membranes) and during the homogenization and pasteurization process. During coagulation, however, phospholipid content rose, presumably as a consequence of the proliferation of the

  11. Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem

    R.J.A. Wanders; P. Brites

    2010-01-01

    Ether-phospholipids represent an important subclass of phospholipids in animal cell membranes characterized by the presence of an ether bond at the sn-I position and the enrichment of PUFAs at the sn-2 position. Of the different ether-phospholipids, plasmalogens are the most abundant form and their

  12. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water.

    Ohno, Sayaka; Ishihara, Kazuhiko; Yusa, Shin-Ichi

    2016-04-26

    A random copolymer (p(A/MaU)) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and sodium 11-methacrylamidoundecanate (MaU) was prepared via conventional radical polymerization, which formed a unimer micelle under acidic conditions due to intramolecular hydrophobic interactions between the pendant undecanoic acid groups. Under basic conditions, unimer micelles were opened up to an expanded chain conformation by electrostatic repulsion between the pendant sulfonate and undecanoate anions. A cationic diblock copolymer (P163M99) consisting of poly(3-(methacrylamido)propyl)trimethylammonium chloride (PMAPTAC) and hydrophilic polybetaine, 2-(methacryloyloxy)ethylphosphorylcholine (MPC), blocks was prepared via controlled radical polymerization. Mixing of p(A/MaU) and P163M99 in 0.1 M aqueous NaCl under acidic conditions resulted in the formation of spherical polyion complex (PIC) micelles and vesicles, depending on polymer concentration before mixing. Shapes of the PIC micelles and vesicles changed under basic conditions due to collapse of the charge balance between p(A/MaU) and P163M99. The PIC vesicles can incorporate nonionic hydrophilic guest molecules, and the PIC micelles and vesicles can accept hydrophobic guest molecules in the hydrophobic core formed from p(A/MaU). PMID:27048989

  13. Amino Acids Catalyzed Direct Aldol Reactions in Aqueous Micelles

    PENG Yi-Yuan; WANG Qi; DING Qiu-Ping; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ Since the discovery of its roles as a good small-organic-molecule catalyst in intramolecular aldol reactions, pro line has drawn considerable attention in synthetic chemistry due to its similarity to the type-Ⅰ aldolases. Recently,List and others have reported some new direct asymmetric intermolecular reactions catalyzed by proline, including aldol, Mannich, Michael, and other analogous reactions. Except for two recent examples, [1,2] proline catalyzed aldol reactions in aqueous micelles have not been reported, nor have other amino acids as organocatalysts in directly catalyzing aldol reaction been reported. Herein we wish to present our recent results regarding environmentally be nign direct aldol reactions catalyzed by amino acids including proline, histidine and arginine in aqueous media.

  14. Cooperative catalysis with block copolymer micelles: A combinatorial approach

    Bukhryakov, Konstantin V.

    2015-02-09

    A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.

  15. Structural investigations of sodium caseinate micelles in complex environments

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  16. Structural investigations of sodium caseinate micelles in complex environments

    Huck Iriart, C.; Herrera, M.L.; Candal, R. [Universidad de Buenos Aires, Buenos Aires (Argentina); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Torriani, I. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  17. Negatively cooperative binding of melittin to neutral phospholipid vesicles

    Torrens, Francisco; Castellano, Gloria; Campos, Agustín; Abad, Concepción

    2007-05-01

    The association of basic amphipathic peptides to neutral phospholipid membranes is investigated in terms of binding and partition models. The binding of native and modified melittin to egg-yolk phosphatidylcholine vesicles is studied by steady-state fluorescence spectroscopy. The effect of the ionic strength shows an enhancement of the association as the ionic strength increases. After correction for electrostatic effects by the Gouy-Chapman theory, the melittin binding isotherms could be described by a partition model. In terms of conventional binding mechanisms, which do not take into account electrostatic effects, this would correspond to a negative cooperativity. A plausible way in which the interaction occurs is proposed, based on the calculated Hill coefficient.

  18. Organization and function of anionic phospholipids in bacteria.

    Lin, Ti-Yu; Weibel, Douglas B

    2016-05-01

    In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology. PMID:27026177

  19. Packing properties 1-alkanols and alkanes in a phospholipid membrane

    Westh, Peter

    2006-01-01

    We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states into...... the membrane, Vm(puremem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of Vm(puremem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the...... alkanes and long chain alcohols. On the basis of these observations, previously published information on the structure of the membrane-solute complexes and the free volume properties of (pure) phospholipid membranes, we suggest that two effects dominate the packing properties of hydrophobic solutes in...

  20. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    Nils Hoem

    2012-11-01

    Full Text Available The biological activities of omega-3 fatty acids (n-3 FAs have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs versus ethyl esters or phospholipids (PLs. New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs.

  1. Synthesis of Bioconjugate Sesterterpenoids with Phospholipids and Polyunsaturated Fatty Acids.

    Gil-Mesón, Ana; Roncero, Alejandro M; Tobal, Ignacio E; Basabe, Pilar; Díez, David; Mollinedo, Faustino; Marcos, Isidro S

    2015-01-01

    A series of sesterterpenoid bioconjugates with phospholipids and polyunsaturated fatty acids (PUFAs) have been synthesized for biological activity testing as antiproliferative agents in several cancer cell lines. Different substitution analogues of the original lipidic ether edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) are obtained varying the sesterterpenoid in position 1 or 2 of the glycerol or a phosphocholine or PUFA unit in position 3. Simple bioconjugates of sesterterpenoids and eicosapentaenoic acid (EPA) have been obtained too. All synthetic derivatives were tested against the human tumour cell lines HeLa (cervix) and MCF-7 (breast). Some compounds showed good IC50 (0.3 and 0.2 μM) values against these cell lines. PMID:26729084

  2. Synthesis of Bioconjugate Sesterterpenoids with Phospholipids and Polyunsaturated Fatty Acids

    Ana Gil-Mesón

    2015-12-01

    Full Text Available A series of sesterterpenoid bioconjugates with phospholipids and polyunsaturated fatty acids (PUFAs have been synthesized for biological activity testing as antiproliferative agents in several cancer cell lines. Different substitution analogues of the original lipidic ether edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine are obtained varying the sesterterpenoid in position 1 or 2 of the glycerol or a phosphocholine or PUFA unit in position 3. Simple bioconjugates of sesterterpenoids and eicosapentaenoic acid (EPA have been obtained too. All synthetic derivatives were tested against the human tumour cell lines HeLa (cervix and MCF-7 (breast. Some compounds showed good IC50 (0.3 and 0.2 μM values against these cell lines.

  3. Solid Phospholipid Dispersions for Oral Delivery of Poorly Soluble Drugs

    Fong, Sophia Yui Kau; Martins, Susana M; Brandl, Martin;

    2016-01-01

    , the present study illustrated that the enhancement of CXB solubility was not proportionally translated into enhanced permeability; both parameters were highly dependent on the PL-to-drug ratios as well as the dispersion media (i.e., the presence of 3-mM sodium taurocholate). This study highlights......Celecoxib (CXB) is a Biopharmaceutical Classification System class II drug in which its oral bioavailability is limited by poor aqueous solubility. Although a range of formulations aiming to increase the solubility of CXB have been developed, it is not completely understood, whether (1) an increase...... in CXB solubility leads to a subsequent increase in permeability across intestinal barrier and (2) the presence of bile salts affects the solubility and permeability behavior of CXB formulations. By formulating CXB solid phospholipid (PL) dispersions with various PL-to-drug ratios using freeze drying...

  4. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka;

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  5. Microscopic methods in analysis of submicron phospholipid dispersions

    Płaczek Marcin

    2016-03-01

    Full Text Available Microscopy belongs to the group of tests, used in pharmaceutical technology, that despite the lapse of time and the development of new analytical methods, still remain irreplaceable for the characterization of dispersed drug dosage forms (e.g., suspensions and emulsions. To obtain complete description of a specific drug formulation, such as parenteral colloidal products, a combination of different microscopic techniques is sometimes required. Electron microscopy methods are the most useful ones; however, even such basic methods as optical microscopy may be helpful for determination of some properties of a sample. The publication explicates the most popular microscopical techniques used nowadays for characterization of the morphology of nanoparticles suspended in pharmaceutical formulations; ad vantages and disadvantages of these methods are also discussed. Parenteral submicron formulations containing lecithin or a particular phospholipid were chosen as examples.

  6. Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy

    Leanne Pereira

    2012-01-01

    Full Text Available Autophagy is a highly conserved cellular process occurring during periods of stress to ensure a cell's survival by recycling cytosolic constituents and making products that can be used in energy generation and other essential processes. Three major forms of autophagy exist according to the specific mechanism through which cytoplasmic material is transported to a lysosome. Chaperone-mediated autophagy is a highly selective form of autophagy that delivers specific proteins for lysosomal degradation. Microautophagy is a less selective form of autophagy that occurs through lysosomal membrane invaginations, forming tubes and directly engulfing cytoplasm. Finally, macroautophagy involves formation of new membrane bilayers (autophagosomes that engulf cytosolic material and deliver it to lysosomes. This review provides new insights on the crosstalks between different forms of autophagy and the significance of bilayer-forming phospholipid synthesis in autophagosomal membrane formation.

  7. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    K Ishihara

    2000-01-01

    Full Text Available Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma protein and suppression of denaturation of adsorbed proteins, that is the MPC polymers interact with blood components very mildly. As the molecular structure of the MPC polymer was easily designed by changing the monomer units and their composition, it could be applied to surface modification of artificial organs and biomedical devices for improving blood and tissue compatibility. Thus, the MPC polymers are useful polymer biomaterials for manufacturing high performance artificial organs and biomedical devices to provide safe medical treatments.

  8. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  9. PPAR-β/δ activation promotes phospholipid transfer protein expression.

    Chehaibi, Khouloud; Cedó, Lídia; Metso, Jari; Palomer, Xavier; Santos, David; Quesada, Helena; Naceur Slimane, Mohamed; Wahli, Walter; Julve, Josep; Vázquez-Carrera, Manuel; Jauhiainen, Matti; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2015-03-15

    The peroxisome proliferator-activated receptor (PPAR)-β/δ has emerged as a promising therapeutic target for treating dyslipidemia, including beneficial effects on HDL cholesterol (HDL-C). In the current study, we determined the effects of the PPAR-β/δ agonist GW0742 on HDL composition and the expression of liver HDL-related genes in mice and cultured human cells. The experiments were carried out in C57BL/6 wild-type, LDL receptor (LDLR)-deficient mice and PPAR-β/δ-deficient mice treated with GW0742 (10mg/kg/day) or a vehicle solution for 14 days. GW0742 upregulated liver phospholipid transfer protein (Pltp) gene expression and increased serum PLTP activity in mice. When given to wild-type mice, GW0742 significantly increased serum HDL-C and HDL phospholipids; GW0742 also raised serum potential to generate preβ-HDL formation. The GW0742-mediated effects on liver Pltp expression and serum enzyme activity were completely abolished in PPAR-β/δ-deficient mice. GW0742 also stimulated PLTP mRNA expression in mouse J774 macrophages, differentiated human THP-1 macrophages and human hepatoma Huh7. Collectively, our findings demonstrate a common transcriptional upregulation by GW0742-activated PPAR-β/δ of Pltp expression in cultured cells and in mouse liver resulting in enhanced serum PLTP activity. Our results also indicate that PPAR-β/δ activation may modulate PLTP-mediated preβ-HDL formation and macrophage cholesterol efflux. PMID:25662586

  10. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle

    Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu [Jilin University, College of Life Science (China); Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang, E-mail: sunkx@ytu.edu.cn [Yantai University, School of Pharmacy (China); Li, Youxin, E-mail: liyouxin@jlu.edu.cn [Jilin University, College of Life Science (China)

    2013-10-15

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

  11. The morphology and fabrication of nanostructured micelle by a novel block copolymer with linear–dendritic structure

    We report here a novel approach to fabricate a nanostructured micelle as potential drug carriers and the relationship between the morphological structure and the preparation condition. The polymeric micelle aggregates constructed by self-assembly compose of the poly(ε-caprolactone)/monomethoxy poly(ethylene glycol) linear–dendritic block copolymers. The corresponding copolymers were synthesized by using ring opening polymerization of ε-caprolactone (CL) and a dendritic poly(ether–amide) (DPEA-OH) as an initiator, then coupling with the isocyanate end-capped linear monomethoxy polyethylene glycol. Fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were performed to characterize the copolymer micelles. The critical micelle concentration (CMC) was determined to be 1.623 mg/L. The hydrodynamic radius (Rh) and the polydispersity index (PDI) are influenced by the concentration of the micelle solutions. The multiple morphologies of the micelle aggregates, including spheres, rob-like dendritic structure and vesicles were observed, which the variety depends on the various preparation conditions. The nanostructured micelles based on the linear–dendritic block copolymer possess the strong thermodynamic stability and the power of solubilization of hydrophobic drug molecules. Highlights: ► Novel PCL/mPEG based on dendritic structure hybrid micelles was successful1y fabricated. ► They were self-aggregated as nanoscale micelle in water with various morphologies. ► The spherical micelles can act as new potential hydrophobic drug nanocarriers

  12. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  13. Interaction of 6-methoxyquinoline with anionic sodium dodecylsulfate micelles: Photophysics and rotational relaxation dynamics at different pH

    Varma, Y. Tej; Pant, Debi D.

    2016-04-01

    Interactions of different species of 6-methoxyquinoline (6MQ) with anionic micelles have been studied at different pre-micellar, micellar and post-micellar concentrations using steady state, time resolved fluorescence and fluorescence anisotropy techniques. The sensitivity of fluorescence of 6MQ to change in its local environment was used to probe sodium dodecylsulfate (SDS) micelles. At post-micellar concentrations of SDS, the observed blue shift in the fluorescence spectrum and increase in quantum yield are attributed to the incorporation of solute molecule to micelles. 6MQ has been found to bind to the surface of the anionic micelles instead of penetrating inside the core of micelles. The binding constant (Kb) calculated for 6MQ revealed that the electrostatic forces mediate charged probe-micelle association, whereas, hydrophobic interaction allowed neutral 6MQ to associate with SDS micelles. The charged 6MQ gets inserted deeper into the micelle surface than its neutral form. The fluorescence anisotropy decay of 6MQ in SDS micelles studied at different pH allowed determination of restriction of motion of the fluorophore. The location of the probe molecule in micellar systems is justified by a variety of spectral parameters such as refractive index, dielectric constant, ET(30), average fluorescence decay time, radiative and non-radiative rate constants, and rotational relaxation time. The micro-environment around the fluorophore reveals that the photophysics of 6MQ is very sensitive to the microenvironment of SDS and probe molecules reside at the water-micelle interface.

  14. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG–PLA micelle

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly(d,l-lactide) (PEG–PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from −0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG–PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system

  15. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  16. Use of Magnetic Folate-Dextran-Retinoic Acid Micelles for Dual Targeting of Doxorubicin in Breast Cancer

    J. Varshosaz

    2013-01-01

    Full Text Available Amphiphilic copolymer of folate-conjugated dextran/retinoic acid (FA/DEX-RA was self-assembled into micelles by direct dissolution method. Magnetic iron oxide nanoparticles (MNPs coated with oleic acid (OA were prepared by hydrothermal method and encapsulated within the micelles. Doxorubicin HCl was loaded in the magnetic micelles. The characteristics of the magnetic micelles were determined by Fourier transform infrared (FT-IR spectroscopy, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and vibrating sample magnetometer (VSM. The crystalline state of OA-coated MNPs and their heat capacity were analyzed by X-ray diffraction (XRD and differential scanning calorimetry (DSC methods, respectively. The iron content of magnetic micelles was determined using inductively coupled plasma optical emission spectrometry (ICP-OES. Bovine serum albumin (BSA was used to test the protein binding of magnetic micelles. The cytotoxicity of doxorubicin loaded magnetic micelles was studied on MCF-7 and MDA-MB-468 cells using MTT assay and their quantitative cellular uptake by fluorimetry method. TEM results showed the MNPs in the hydrophobic core of the micelles. TGA results confirmed the presence of OA and FA/DEX-RA copolymer on the surface of MNPs and micelles, respectively. The magnetic micelles showed no significant protein bonding and reduced the IC50 of the drug to about 10 times lower than the free drug.

  17. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  18. Effect of water on the local electric potential of simulated ionic micelles

    Ionic micelles in an aqueous solution containing single-charged counter-ions have been simulated by molecular dynamics. For both cationic and anionic micelles, it has been demonstrated that explicit description of solvent has strong effect on the micelle’s electric field. The sign of the local charge alters in the immediate vicinity of the micellar crown and the electric potential varies nonmonotonically. Two micelle models have been examined: the hybrid model with a rigid hydrocarbon core and the atomistic model. For three molecular models of water (Simple Point Charge model (SPC), Transferable Intermolecular Potential 5- Points (TIP5P) and two-centered S2), the results have been compared with those for the continuum solvent model. The orientational ordering of solvent molecules has strong effect on the local electric field surprisingly far from the micelle surface

  19. Removal of Cr(VI from Aqueous Environments Using Micelle-Clay Adsorption

    Mohannad Qurie

    2013-01-01

    Full Text Available Removal of Cr(VI from aqueous solutions under different conditions was investigated using either clay (montmorillonite or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques.

  20. The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles.

    Gao, Hongjun; Liu, Jinjian; Yang, Cuihong; Cheng, Tangjian; Chu, Liping; Xu, Hongyan; Meng, Aimin; Fan, Saijun; Shi, Linqi; Liu, Jianfeng

    2013-01-01

    Polyethylene glycol (PEG)-ylation is a widely used strategy to fabricate nanocarriers with a long blood circulation time. Further elaboration of the contribution of the surface PEGylation pattern to biodistribution is highly desirable. We fabricated a series of polyion complex (PIC) micelles PEGylated with different ratios (PEG2k and PEG550). The plasma protein adsorption, murine macrophage uptake, and in vivo biodistribution with iodine-125 as the tracer were systematically studied to elucidate the impact of PEGylation patterns on the biodistribution of micelles. We demonstrated that the PEGylated micelles with short hydrophilic PEG chains mixed on the surface were cleared quickly by the reticuloendothelial system (RES), and the single PEG2k PEGylated micelles could efficiently prolong the blood circulation time and increase their deposition in tumor sites. The present study extends the understanding of the PEGylation strategy to further advance the development of ideal nanocarriers for drug delivery and imaging applications. PMID:24235825

  1. Smart polymeric micelles as nanocarriers for oligonucleotides and siRNA delivery.

    Kataoka, Kazunori; Itaka, Keiji; Nishiyama, Nobuhiro; Yamasaki, Yuichi; Oishi, Motoi; Nagasaki, Yukio

    2005-01-01

    The development of in vivo delivery systems for oligonucleotides and siRNA is strongly desired to achieve their clinical applications. Recently, polyplex micelles, which are formed through an electrostatic interaction between nucleic acid compounds (DNA and RNA) and poly(ethylene glycol) (PEG)-polycation block copolymers, have received much attention due to their nanometric-scaled size and excellent biocompatibility. Here, three types of newly engineered block copolymers were developed to construct polyplex micelles useful for oligonucleotides and siRNA delivery: (1) PEG-polycation diblock copolymers possessing diamine side-chain with distinctive pKa for siRNA encapsulation into polyplex micelles with high endosomal escaping ability, (2) Lactosylated PEG-(oligonucleotide or siRNA) conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive PIC micelles, and (3) PEG-poly(methacrylic acid) block copolymer for the construction of organic/inorganic hybrid nanoparticles encapsulating siRNA. PMID:17150611

  2. Escape rate of muonium from micelles - as determined by competition kinetics

    A competition was established for the reaction of muonium atoms (Mu) between nitrate ions in water and benzene or styrene solubilized in micelles. The nitrate was 3.3 - times more efficient at inhibiting muonated free radical formation with benzene than with styrene as the radical-producing solute. Kinetic analysis of this system indicates that Mu emerges from micelles, on average, at least three times during its short (ns) lifetime, these being medium sized micelles carrying on average 3 benzene molecules. So Mu is certainly not trapped, nor even localized. Its escape rate is estimated to be ∼9x108 s-1, which is commensurate with an ordinary diffusion time. The results were obtained by determining the yield of muonated free radicals formed within the micelles using muon-level-crossing-resonance spectroscopy. (orig.)

  3. Ultrasound effects on the assembly of casein micelles in reconstituted skim milk.

    Liu, Zheng; Juliano, Pablo; Williams, Roderick P W; Niere, Julie; Augustin, Mary Ann

    2014-05-01

    Reconstituted skim milks (10 % w/w total solids, pH 6·7-8·0) were ultrasonicated (20, 400 or 1600 kHz at a specific energy input of 286 kJ/kg) at a bulk milk temperature of casein micelle in milk, with greater effects at higher pH and lower frequency. Low frequency ultrasound caused greater disruption of casein micelles causing release of protein from the micellar to the serum phase than high frequency. The released protein re-associated to form aggregates of smaller size but with surface charge similar to the casein micelles in the original milk. Ultrasound may be used as a physical intervention to alter the size of the micelles and the partitioning of caseins between the micellar and serum phases in milk. The altered protein equilibria induced by ultrasound treatment may have potential for the development of milk with novel functionality. PMID:24351847

  4. Effect of substitution on aniline in inducing growth of anionic micelles

    Gunjan Garg; V K Aswal; S K Kulshreshtha; P A Hassan

    2004-08-01

    Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride, -toluidine hydrochloride and -toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions.

  5. Improvement of in vivo efficacy of recombinant human erythropoietin by encapsulation in PEG–PLA micelle

    Shi YN

    2012-12-01

    Full Text Available Yanan Shi,1,2,* Wan Huang,1,* Rongcai Liang,1–3 Kaoxiang Sun,2,3 Fangxi Zhang,2,3 Wanhui Liu,2,3 Youxin Li1–31College of Life Science, Jilin University, Changchun, China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, China; 3School of Pharmacy, Yantai University, Yantai, China*These authors contributed equally to this workAbstract: To improve the pharmacokinetics and stability of recombinant human erythropoietin (rhEPO, rhEPO was successfully formulated into poly(ethylene glycol–poly(d,l-lactide (PEG–PLA di-block copolymeric micelles at diameters ranging from 60 to 200 nm with narrow polydispersity indices (PDIs; PDI < 0.3 and trace amount of protein aggregation. The zeta potential of the spherical micelles was in the range of −3.78 to 4.65 mV and the highest encapsulation efficiency of rhEPO in the PEG–PLA micelles was about 80%. In vitro release profiles indicated that the stability of rhEPO in the micelles was improved significantly and only a trace amount of aggregate was found. Pharmacokinetic studies in rats showed highly enhanced plasma retention time of the rhEPO-loaded PEG-PLA micelles in comparison with the native rhEPO group. Increased hemoglobin concentrations were also found in the rat study. Native polyacrylamide gel electrophoresis results demonstrated that rhEPO was successfully encapsulated into the micelles, which was stable in phosphate buffered saline with different pHs and concentrations of NaCl. Therefore, PEG–PLA micelles can be a potential protein drug delivery system.Keywords: rhEPO, PEG–PLA micelle, in vitro, pharmacokinetics, pharmacodynamics

  6. From micelle to microemulsion: an investigation of structural changes using molecular dynamics

    Amir Amani; Milad Amani

    2015-01-01

    Objective Although a huge number of experimental works may be observed in the literature for microemulsions, modelling reports on these nano-systems are rare. Additionally, no comprehensive work so far has detailed the changes occurring to a micellar droplet when oil molecules are introduced (i.e. obtaining microemulsions from micelles). This work aimed to simulate a micelle and a microemulsion system containing polysorbate 80 - as surfactant - and study the structural changes in the...

  7. Integral physicochemical properties of reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)

    Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.

    2016-08-01

    The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.

  8. Nuclear Magnetic Resonance Structural Studies of Membrane Proteins in Micelles and Bilayers

    Gong, Xiao-Min; Franzin, Carla M.; Thai, Khang; Yu, Jinghua; Marassi, Francesca M.

    2007-01-01

    Nuclear magnetic resonance (NMR) spectroscopy enables determination of membrane protein structures in lipid environments, such as micelles and bilayers. This chapter outlines the steps for membrane-protein structure determination using solution NMR with micelle samples, and solid-state NMR with oriented lipid-bilayer samples. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from γ and CHIF, two membrane pr...

  9. Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release

    2010-01-01

    A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn H40 core,poly(L-lactide) (PLA) inner-shell,and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction.The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR),Fourier transform infrared (FTIR),gel permeation chromatography (GPC),differential scanning calorimeter (DSC),and thermal gravimetric analysis (TGA).Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm.Interestingly,these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT),most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds.As a hydrophobic anticancer model drug,doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles.In vitro release studies revealed that under the reduction-stimulus,the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release.Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells.Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX.All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.

  10. A 502-Base Free-Solution Electrophoretic DNA Sequencing Method Using End-Attached Wormlike Micelles.

    Istivan, Stephen B; Bishop, Daniel K; Jones, Angela L; Grosser, Shane T; Schneider, James W

    2015-11-17

    We demonstrate that the use of wormlike nonionic micelles as drag-tags in end-labeled free-solution electrophoresis ("micelle-ELFSE") provides single-base resolution of Sanger sequencing products up to 502 bases in length, a nearly 2-fold improvement over reported ELFSE separations. "CiEj" running buffers containing 48 mM C12E5, 6 mM C10E5, and 3 M urea (32.5 °C) form wormlike micelles that provide a drag equivalent to an uncharged DNA fragment with a length (α) of 509 bases (effective Rh = 27 nm). Runtime in a 40 cm capillary (30 kV) was 35 min for elution of all products down to the 26-base primer. We also show that smaller Triton X-100 micelles give a read length of 103 bases in a 4 min run, so that a combined analysis of the Sanger products using the two buffers in separate capillaries could be completed in 14 min for the full range of lengths. A van Deemter analysis shows that resolution is limited by diffusion-based peak broadening and wall adsorption. Effects of drag-tag polydispersity are not observed, despite the inherent polydispersity of the wormlike micelles. We ascribe this to a stochastic size-sampling process that occurs as micelle size fluctuates rapidly during the runtime. A theoretical model of the process suggests that fluctuations occur with a time scale less than 10 ms, consistent with the monomer exchange process in nonionic micelles. The CiEj buffer has a low viscosity (2.7 cP) and appears to be semidilute in micelle concentration. The large drag-tag size of the CiEj buffers leads to steric segregation of the DNA and tag for short fragments and attendant mobility shifts. PMID:26455271

  11. Pressure-induced dissociation of casein micelles: size distribution and effect of temperature

    Gebhardt, R.; Doster, W.; U. Kulozik

    2005-01-01

    Pressure-induced dissociation of a turbid solution of casein micelles was studied in situ in static and dynamic light scattering experiments. We show that at high pressure casein micelles decompose into small fragments comparable in size to casein monomers. At intermediate pressure we observe particles measuring 15 to 20 nm in diameter. The stability against pressure dissociation increased with temperature, suggesting enhanced hydrophobic contacts. The pressure transition curves are biphasic,...

  12. Genetic polymorphism of kappa casein and casein micelle size in the Bulgarian Rhodopean cattle breed

    Hristov P.; Neov B.; Sbirkova H.; Teofanova D.; Radoslavov G.; Shivachev B.

    2014-01-01

    The present study aimed to compare the size of casein micelle in cow milk sample in function of kappa casein (CSN3) genetic polymorphism. Sixteen cows from Bulgarian Rhodopean cattle breed were genotyped by PCRRFLP analysis. Milk samples from the three found CSN3 genotypes (AB, AA and BB) were employed for the determination of casein micelles size by Dynamic Light Scattering (DLS). The results showed differences in the size and polydispersity of the casein ...

  13. Purification, characterization and substrate specificity of rabbit lung phospholipid transfer proteins.

    Tsao, F H; Tian, Q; Strickland, M S

    1992-05-01

    Three phospholipid transfer proteins, namely proteins I, II and III, were purified from the rabbit lung cytosolic fraction. The molecular masses of phospholipid transfer proteins I, II and III are 32 kilodaltons (kDa), 22 kDa and 32 kDa, respectively; their isoelectric point values are 6.5, 7.0 and 6.8, respectively. Phospholipid transfer proteins I and III transferred phosphatidylcholine (PC) and phosphatidylinositol (PI) from donor unilamellar liposomes to acceptor multilamellar liposomes; protein II transferred PC but not PI. All the three phospholipid transfer proteins transferred phosphatidylethanolamine poorly and showed no tendency to transfer triolein. The transfer of [14C]PC from unilamellar liposomes to multilamellar liposomes facilitated by each protein was affected differently by the presence of acidic phospholipids in the PC unilamellar liposomes. In an equal molar ratio of acidic phospholipid and PC, phosphatidylglycerol (PG) reduced the activities of proteins I and III by 70% (P = 0.0004 and 0.0032, respectively) whereas PI and phosphatidylserine (PS) had an insignificant effect. In contrast, the protein II activity was stimulated 2-3-times more by either PG (P = 0.0024), PI (P = 0.0006) or PS (P = 0.0038). In addition, protein II transferred dioleoylPC (DOPC) about 2-times more effectively than dipalmitoylPC (DPPC) (P = 0.0002), whereas proteins I and III transferred DPPC 20-40% more effectively than DOPC but this was statistically insignificant. The markedly different substrate specificities of the three lung phospholipid transfer proteins suggest that these proteins may play an important role in sorting intracellular membrane phospholipids, possibly including lung surfactant phospholipids. PMID:1596521

  14. Analysis of the phospholipid profile of metaphase II mouse oocytes undergoing vitrification.

    Jaehun Jung

    Full Text Available Oocyte freezing confers thermal and chemical stress upon the oolemma and various other intracellular structures due to the formation of ice crystals. The lipid profiles of oocytes and embryos are closely associated with both, the degrees of their membrane fluidity, as well as the degree of chilling and freezing injuries that may occur during cryopreservation. In spite of the importance of lipids in the process of cryopreservation, the phospholipid status in oocytes and embryos before and after freezing has not been investigated. In this study, we employed mass spectrometric analysis to examine if vitrification has an effect on the phospholipid profiles of mouse oocytes. Freshly prepared metaphase II mouse oocytes were vitrified using copper grids and stored in liquid nitrogen for 2 weeks. Fresh and vitrified-warmed oocytes were subjected to phospholipid extraction procedure. Mass spectrometric analyses revealed that multiple species of phospholipids are reduced in vitrified-warmed oocytes. LIFT analyses identified 31 underexpressed and 5 overexpressed phospholipids in vitrified mouse oocytes. The intensities of phosphatidylinositol (PI {18∶2/16∶0} [M-H]- and phosphatidylglycerol (PG {14∶0/18∶2} [M-H]- were decreased the most with fold changes of 30.5 and 19.1 in negative ion mode, respectively. Several sphingomyelins (SM including SM {d38∶3} [M+H]+ and SM {d34∶0} [M+K]+ were decreased significantly in positive ion mode. Overall, the declining trend of multiple phospholipids demonstrates that vitrification has a marked effect on phospholipid profiles of oocytes. These results show that the identified phospholipids can be used as potential biomarkers of oocyte undergoing vitrification and will allow for the development of strategies to preserve phospholipids during oocyte cryopreservation.

  15. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men

    Lee, Mi-Hyang; Kwon, Nayeon; Yoon, So Ra

    2016-01-01

    We hypothesized that lower proportion of serum phospholipid docosahexaenoic acid (DHA) is inversely associated with increased cardiovascular risk and vascular function in metabolically healthy men. To elucidate it, we first compared serum phospholipid free fatty acid (FA) compositions and cardiovascular risk parameters between healthy men (n = 499) and male patients with coronary artery disease (CAD, n = 111) (30-69 years) without metabolic syndrome, and then further-analyzed the association of serum phospholipid DHA composition with arterial stiffness expressed by brachial-ankle pulse wave velocity (ba-PWV) in metabolically healthy men. Basic parameters, lipid profiles, fasting glycemic status, adiponectin, high sensitivity C-reactive protein (hs-CRP) and LDL particle size, and serum phospholipid FA compositions were significantly different between the two subject groups. Serum phospholipid DHA was highly correlated with most of long-chain FAs. Metabolically healthy men were subdivided into tertile groups according to serum phospholipid DHA proportion: lower ( 3.235%). Fasting glucose, insulin resistance, hs-CRP and ba-PWVs were significantly higher and adiponectin and LDL particle size were significantly lower in the lower-DHA group than the higher-DHA group after adjusted for confounding factors. In metabolically healthy men, multiple stepwise regression analysis revealed that serum phospholipid DHA mainly contributed to arterial stiffness (β′-coefficients = -0.127, p = 0.006) together with age, systolic blood pressure, triglyceride (r = 0.548, p = 0.023). Lower proportion of serum phospholipid DHA was associated with increased cardiovascular risk and arterial stiffness in metabolically healthy men. It suggests that maintaining higher proportion of serum phospholipid DHA may be beneficial for reducing cardiovascular risk including arterial stiffness in metabolically healthy men. PMID:27482523

  16. Flip-flop of phospholipids in proteoliposomes reconstituted from detergent extract of chloroplast membranes: kinetics and phospholipid specificity.

    Archita Rajasekharan

    Full Text Available Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c Biogenic membrane ATP independent PC flipping activity is protein mediated and (d the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.

  17. Structure, dynamics, and insertion of a chloroplast targeting peptide in mixed micelles.

    Wienk, H L; Wechselberger, R W; Czisch, M; de Kruijff, B

    2000-07-18

    Nuclear-encoded, chloroplast-destined proteins are synthesized with transit sequences that contain all information to get them inside the organelle. Different proteins are imported via a general protein import machinery, but their transit sequences do not share amino acid homology. It has been suggested that interactions between transit sequence and chloroplast envelope membrane lipids give rise to recognizable, structural motifs. In this study a detailed investigation of the structural, dynamical, and topological features of an isolated transit peptide associated with mixed micelles is described. The structure of the preferredoxin transit peptide in these micelles was studied by circular dichroism (CD) and multidimensional NMR techniques. CD experiments indicated that the peptide, which is unstructured in aqueous solution, obtained helical structure in the presence of the micelles. By NMR it is shown that the micelles introduced ill-defined helical structures in the transit peptide. Heteronuclear relaxation experiments showed that the whole peptide backbone is very flexible. The least dynamic segments are two N- and C-terminal helical regions flanking an unstructured proline-rich amino acid stretch. Finally, the insertion of the peptide backbone in the hydrophobic interior of the micelle was investigated by use of hydrophobic spin-labels. The combined data result in a model of the transit peptide structure, backbone dynamics, and insertion upon its interaction with mixed micelles. PMID:10889029

  18. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications. (paper)

  19. Influencing the structure of block copolymer micelles with small molecule additives

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  20. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  1. [Construction of biotin-modified polymeric micelles for pancreatic cancer targeted photodynamic therapy].

    Deng, Chun-yue; Long, Ying-ying; Liu, Sha; Chen, Zhang-bao; Li, Chong

    2015-08-01

    In this study, we explored the feasibility of biotin-mediated modified polymeric micelles for pancreatic cancer targeted photodynamic therapy. Poly (ethylene glycol)-distearoyl phosphatidyl ethanolamine (mPEG2000-DSPE) served as the drug-loaded material, biotin-poly(ethylene glycol)-distearoyl phosphatidyl ethanolamine (Biotin-PEG3400-DSPE) as the functional material and the polymeric micelles were prepared by a thin-film hydration method. The targeting capability of micelles was investigated by cell uptake assay in vitro and fluorescence imaging in vivo and the amounts of Biotin-PEG-DSPE were optimized accordingly. Hypocrellin B (HB), a novel photosensitizer was then encapsulated in biotinylated polymeric micelles and the anti-tumor efficacy was evaluated systemically in vitro and in vivo. The results showed that micelles with 5 mol % Biotin-PEG-DSPE demonstrated the best targeting capability than those with 20 mol % or 0.5 mol % of corresponding materials. This formulation has a small particle size [mean diameter of (36.74 ± 2.16) nm] with a homogeneous distribution and high encapsulation efficiency (80.06 ± 0.19) %. The following pharmacodynamics assays showed that the biotinylated micelles significantly enhanced the cytotoxicity of HB against tumor cells in vitro and inhibited tumor growth in vivo, suggesting a promising potential of this formulation for treatment of pancreatic cancer, especially those poorly permeable, or insensitive to radiotherapy and chemotherapy. PMID:26669006

  2. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo.

    Zheng, Songping; Gao, Xiang; Liu, Xiaoxiao; Yu, Ting; Zheng, Tianying; Wang, Yi; You, Chao

    2016-01-01

    Curcumin (Cur), a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol)-poly(lactide) copolymers (MPEG-PLAs). After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles) exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy. PMID:27354801

  3. Influence of surfactant structure on reverse micelle size and charge for nonpolar electrophoretic inks.

    Parent, Mary E; Yang, Jun; Jeon, Yoocharn; Toney, Michael F; Zhou, Zhang-Lin; Henze, Dick

    2011-10-01

    Electrophoretic inks, which are suspensions of colorant particles that are controllably concentrated and dispersed by applied electric fields, are the leading commercial technology for high-quality reflective displays. Extending the state of the art for high-fidelity color in these displays requires improved understanding and control of the colloidal systems. In these inks, reverse micelles in nonpolar media play key roles in media and particle charging. Here we investigate the effect of surfactant structure on reverse micelle size and charging properties by synthesizing different surfactants with variations in polyamine polar head groups. Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) were used to determine the micelle core plus shell size and micelle hydrodynamic radius, respectively. The results from SAXS agreed with DLS and showed that increasing polyamines in the surfactant head increased the micelle size. The hydrodynamic radius was also calculated on the basis of transient current measurements and agreed well with the DLS results. The transient current technique further determined that increasing polyamines increased the charge stabilization capability of the micelles and that an analogous commercial surfactant OLOA 11000 made for a lower concentration of charge-generating ions in solution. Formulating magenta inks with the various surfactants showed that the absence of amine in the surfactant head was detrimental to particle stabilization and device performance. PMID:21863832

  4. Thermosensitive PNIPAM-b-HTPB block copolymer micelles: molecular architectures and camptothecin drug release.

    Luo, Yan-Ling; Yang, Xiao-Li; Xu, Feng; Chen, Ya-Shao; Zhang, Bin

    2014-02-01

    Two kinds of thermo-sensitive poly(N-isoproplacrylamide) (PNIPAM) block copolymers, AB4 four-armed star multiblock and linear triblock copolymers, were synthesized by ATRP with hydroxyl-terminated polybutadiene (HTPB) as central blocks, and characterization was performed by (1)H NMR, FT-IR and SEC. The multiblock copolymers could spontaneously assemble into more regular spherical core-shell nanoscale micelles than the linear triblock copolymer. The physicochemical properties were detected by a surface tension technique, nano particle analyzer, TEM, DLS and UV-vis measurements. The multiblock copolymer micelles had lower critical micelle concentration than the linear counterpart, TEM size from 100 to 120 nm and the hydrodynamic diameters below 150 nm. The micelles exhibited thermo-dependent size change, with low critical solution temperature about 33-35 °C. The characteristic parameters were affected by the composition ratios, length of PNIPAM blocks and molecular architectures. The camptothecin release demonstrated that the drug release was thermo-responsive, accompanied by the temperature-induced structural changes of the micelles. MTT assays were performed to evaluate the biocompatibility or cytotoxicity of the prepared copolymer micelles. PMID:24184534

  5. Comparison of microstructures of microemulsion and swollen micelle in electrokinetic chromatography.

    Cao, Yuhua; Ni, Xinjiong; Sheng, Jianwei

    2011-05-01

    Recently, 1-butanol modified MEKC was proven to be similar to MEEKC in separation performance. In the present work, typical microemulsion containing 0.8% n-octane/3.3% SDS/6.6% 1-butanol/20 mM borax buffer and corresponding swollen micelle without n-octane were used to compare their microdroplet structures including hydrodynamic radius, electrokinetic potential ζ and charge density at the hydrodynamic shear surface, as well as microenvironment polarity in the interior of the microdroplets. Three kinds of corticosteroids were separated with MEEKC and 1-butanol modified MEKC to assess their separation performances. The experiment results showed that both microstructure and separation performance in microemulsion and in swollen micelle systems were alike, no matter whether oil phase n-octane was present. The environment polarity in the core of swollen micelle was slightly higher than in the microemulsions, and both of them were higher than in n-octane medium. Furthermore, the influences of SDS and 1-butanol concentration on microstructures were measured in details. Increasing the amount of SDS, hydrodynamic radius decreased in microemulsion but increased in swollen micelle. On the contrary, ζ and shear surface charge density changed in the reverse trends. With increment of 1-butanol concentration, the hydrodynamic radius increased dramatically in microemulsions, whereas decreased slightly in swollen micelle. Even though using n-octane as oil core was not a key factor, microemulsions and swollen micelle as pseudostationary phase in EKC should not be exactly the same. PMID:21439571

  6. Influence of Corona Structure on Binding of an Ionic Surfactant in Oppositely Charged Amphiphilic Polyelectrolyte Micelles.

    Delisavva, Foteini; Uchman, Mariusz; Škvarla, Juraj; Woźniak, Edyta; Pavlova, Ewa; Šlouf, Miroslav; Garamus, Vasil M; Procházka, Karel; Štěpánek, Miroslav

    2016-04-26

    Interaction of polystyrene-block-poly(methacrylic acid) micelles (PS-PMAA) with cationic surfactant N-dodecylpyridinium chloride (DPCl) in alkaline aqueous solutions was studied by static and dynamic light scattering, SAXS, cryogenic transmission electron microscopy (cryo-TEM), isothermal titration calorimetry (ITC), and time-resolved fluorescence spectroscopy. ITC and fluorescence measurements show that there are two distinct regimes of surfactant binding in the micellar corona (depending on the DPCl content) caused by different interactions of DPCl with PMAA in the inner and outer parts of the corona. The compensation of the negative charge of the micellar corona by DPCl leads to the aggregation of PS-PMAA micelles, and the micelles form colloidal aggregates at a certain critical surfactant concentration. SAXS shows that the aggregates are formed by individual PS-PMAA micelles with intact cores and collapsed coronas interconnected with surfactant micelles by electrostatic interactions. Unlike polyelectrolyte-surfactant complexes formed by free polyelectrolyte chains, the PMAA/DPCl complex with collapsed corona does not contain surfactant micelles. PMID:27054848

  7. Titration calorimetry of surfactant–drug interactions: Micelle formation and saturation studies

    Highlights: ► Isothermal titration calorimetry can be used to monitor the saturation of micelles with pharmaceutical compounds. ► The number of drug molecules per micelle varies depending on the drug used and the temperature of the calorimeter. ► The change in enthalpy for the saturation of micelles with drugs can be endothermic or exothermic. ► The critical micellar concentration of an anionic surfactant (SDS) does not appear to vary in the presence of drugs. - Abstract: Isothermal titration calorimetry (ITC) was employed to monitor the addition of five model drugs to anionic surfactant based micelles, composed of sodium dodecyl sulfate (SDS), through to the point at which they were saturated with drug. Analysis of the resultant data using this newly developed method has confirmed the suitability of the technique to acquire such data with saturation limits established in all cases. Values for the point at which saturation occurred ranged from 17 molecules of theophylline per micelle at T = 298 K up to 63 molecules of caffeine per micelle at 310 K. Micellar systems can be disrupted by the presence of additional chemicals, such as the drugs used in this study, therefore a separate investigation was undertaken to determine the critical micellar concentration (CMC) for SDS in the presence of each drug at T = 298 K and 310 K using ITC. In the majority of cases, there was no appreciable alteration to the CMC of SDS with drug present.

  8. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system

    Xie YT

    2012-06-01

    Full Text Available Yi-Ting Xie, Yong-Zhong Du, Hong Yuan, Fu-Qiang HuCollege of Pharmaceutical Sciences, Zhejiang University, Hangzhou, ChinaPurpose: Therapy for central nervous system disease is mainly restricted by the blood–brain barrier. A drug-delivery system is an effective approach to overcome this barrier. In this research, the potential of polymeric micelles for brain-targeting drug delivery was studied.Methods: Stearic acid–grafted chitosan (CS-SA was synthesized by hydrophobic modification of chitosan with stearic acid. The physicochemical characteristics of CS-SA micelles were investigated. bEnd.3 cells were chosen as model cells to evaluate the internalization ability and cytotoxicity of CS-SA micelles in vitro. Doxorubicin (DOX, as a model drug, was physically encapsulated in CS-SA micelles. The in vivo brain-targeting ability of CS-SA micelles was qualitatively and quantitatively studied by in vivo imaging and high-performance liquid chromatography analysis, respectively. The therapeutic effect of DOX-loaded micelles in vitro was performed on glioma C6 cells.Results: The critical micelle concentration of CS-SA micelles with 26.9% ± 1.08% amino substitute degree was 65 µg/mL. The diameter and surface potential of synthesized CS-SA micelles in aqueous solution was 22 ± 0.98 nm and 36.4 ± 0.71 mV, respectively. CS-SA micelles presented excellent cellular uptake ability on bEnd.3 cells, the IC50 of which was 237.6 ± 6.61 µg/mL. DOX-loaded micelles exhibited slow drug-release behavior, with a cumulative release up to 72% within 48 hours in vitro. The cytotoxicity of DOX-loaded CS-SA micelles against C6 was 2.664 ± 0.036 µg/mL, compared with 0.181 ± 0.066 µg/mL of DOX • HCl. In vivo imaging results indicated that CS-SA was able to transport rapidly across the blood–brain barrier and into the brain. A maximum DOX distribution in brain of 1.01%/g was observed 15 minutes after administration and maintained above 0.45%/g within 1 hour

  9. Preparation and Evaluation of Poly(Ethylene Glycol)-Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-06-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  10. Adsorption behavior of pH-dependent phytic acid micelles at the copper surface observed by Raman and electrochemistry

    Shen, Shu; Du, Juan; Guo, Xiao-yu; Wen, Ying; Yang, Hai-Feng

    2015-02-01

    As heated at 90 °C, phytic acid (PA) molecules in the solution self-organized to form the PA micelles. The size of PA micelles could be tuned by varying pH of the solutions. The adsorption behavior of the different micelles at the copper surface and their corrosion inhibition mechanisms in 0.5 M H2SO4 solution were studied by using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and surface-enhanced Raman scattering (SERS) spectroscopy. Raman studies showed that the bigger micelles anchoring on the copper surface via P27sbnd O28, P43sbnd O42 and P35sbnd O36 groups, while the smaller PA micelles formed at pH 9 adsorbed at the surface through P35sbnd O36 group. The electrochemical measurements demonstrated that the copper modified with the smaller micelles presented the best inhibition efficiency in 0.5 M H2SO4 solution.

  11. Polymeric Micelles for Delivery of Poorly Soluble Drugs: Preparation and Anticancer Activity In Vitro of Paclitaxel Incorporated into Mixed Micelles Based on Poly(ethylene Glycol)-Lipid Conjugate and Positively Charged Lipids

    Wang, Junping; MONGAYT, DIMITRY; Torchilin, Vladimir P.

    2005-01-01

    Paclitaxel-loaded mixed polymeric micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-PE), solid triglycerides (ST), and cationic Lipofectin® lipids (LL) have been prepared. Micelles with the optimized composition (PEG-PE/ST/LL/paclitaxel = 12/12/2/1 by weight) had an average micelle size of about 100 nm, and zeta-potential of about 26 mV. Micelles were stable and did not release paclitaxel when stored at 4°C in the darkness (just 2.9% of paclitaxel hav...

  12. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  13. Physico-chemical changes in casein micelles of buffalo and cow milks as a function of alkalinisation

    Ahmad, Sarfraz; Piot, Michel; Rousseau, Florence; Grongnet, Jean-François; Gaucheron, Frederic

    2009-01-01

    By modifying the forces (hydrophobic and electrostatic interactions, hydrogen bonding and presence of micellar calcium phosphate) responsible for the structure and the stability of casein micelles, alkalinisation induces a disruption of casein micelles in milk. The objective of this work was to compare the alkalinisation-induced physico-chemical changes of casein micelles of buffalo and cow milks with a special attention to the mineral fraction. The whiteness and viscosity were determined as ...

  14. Study on Osmotic Pressure and Liquid-Liquid Equilibria for Micelle, Colloid and Microemulsion Systems by Yukawa Potential

    FU,Dong(付东); LU,Jiu-Fang(陆九芳); WU,Wei(吴畏); Li,Yi-Gui(李以圭)

    2004-01-01

    An equation of state (EOS) was established to study the osmotic pressure and liquid-liquid equilibria for micelle,colloid and microemulsion systems. The Carnahan-Starling equation was used for the hard sphere repulsion. The Yukawa potential was used to describe both the attractive dispersion and the double-layer repulsion. By using the established EOS, the osmotic pressures for charged colloid, uncharged micelle, uncharged and weakly charged microemuslion, the phase equilibria for uncharged micelle and charged colloid systems were studied.

  15. pH-Sensitive Micelles Based on Double-Hydrophilic Poly(methylacrylic acid)-Poly(ethylene glycol)-Poly(methylacrylic acid) Triblock Copolymer

    Tao, Youhua; Liu, Ren; Liu, Xiaoya; Chen, Mingqing; Yang, Cheng; Ni, Zhongbin

    2009-04-01

    pH-sensitive micelles with hydrophilic core and hydrophilic corona were fabricated by self-assembling of triblock copolymer of poly(methylacrylic acid)-poly(ethylene glycol)-poly(methylacrylic acid) at lower solution pH. Transmission electron microscopy and laser light scattering studies showed micelles were in nano-scale with narrow size distribution. Solution pH value and the micelles concentration strongly influenced the hydrodynamic radius of the spherical micelles (48-310 nm). A possible mechanism for the formation of micelles was proposed. The obtained polymeric micelle should be useful for biomedical materials such as carrier of hydrophilic drug.

  16. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery

    Ao, Lijiao; Wang, Bi; Liu, Peng; Huang, Liang; Yue, Caixia; Gao, Duyang; Wu, Chunlei; Su, Wu

    2014-08-01

    This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content

  17. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which

  18. Interaction between cationic and conventional nonionic surfactants in the mixed micelle and monolayer formed in aqueous medium

    Nabel A. Negm

    2011-01-01

    Full Text Available Mixed micellization and surface properties of cationic and nonionic surfactants dimethyl decyl-, tetradecyl- and hexadecyl phosphineoxide mixtures are studied using conductivity and surface tension measurements. The models of Rubingh, Rosen, and Clint, are used to obtain the interaction parameter, minimum area per molecule, mixed micelle composition, free energies of mixing and activity coefficients. The micellar mole fractions were always higher than ideal values indicating high contributions of cationics in mixed micelles. Activity coefficients were less than unity indicating synergism in micelles. The negative free energies of mixing showed the stability of the surfactants in the mixed micelles.

  19. pH-Responsive Poly(ethylene glycol)/Poly(L-lactide) Supramolecular Micelles Based on Host-Guest Interaction.

    Zhang, Zhe; Lv, Qiang; Gao, Xiaoye; Chen, Li; Cao, Yue; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi

    2015-04-29

    pH-responsive supramolecular amphiphilic micelles based on benzimidazole-terminated poly(ethylene glycol) (PEG-BM) and β-cyclodextrin-modified poly(L-lactide) (CD-PLLA) were developed by exploiting the host-guest interaction between benzimidazole (BM) and β-cyclodextrin (β-CD). The dissociation of the supramolecular micelles was triggered in acidic environments. An antineoplastic drug, doxorubicin (DOX), was loaded into the supramolecular micelles as a model drug. The release of DOX from the supramolecular micelles was clearly accelerated as the pH was reduced from 7.4 to 5.5. The DOX-loaded PEG-BM/CD-PLLA supramolecular micelles displayed an enhanced intracellular drug-release rate in HepG2 cells compared to the pH-insensitive DOX-loaded PEG-b-PLLA counterpart. After intravenous injection into nude mice bearing HepG2 xenografts by the tail vein, the DOX-loaded supramolecular micelles exhibited significantly higher tumor inhibition efficacy and reduced systemic toxicity compared to free DOX. Furthermore, the DOX-loaded supramolecular micelles showed a blood clearance rate markedly lower than that of free DOX and comparable to that of the DOX-loaded PEG-b-PLLA micelles after intravenous injection into rats. Therefore, the pH-responsive PEG-BM/CD-PLLA supramolecular micelles hold potential as a smart nanocarrier for anticancer drug delivery. PMID:25856564

  20. Self-assembled micelles of amphiphilic poly(L-phenylalanine-b-poly(L-serine polypeptides for tumor-targeted delivery

    Zhao ZM

    2014-12-01

    Full Text Available Ziming Zhao,1,2,* Yu Wang,1,2,* Jin Han,1,2 Keli Wang,1 Dan Yang,1,2 Yihua Yang,1,2 Qian Du,1,2 Yuanjian Song,3 Xiaoxing Yin1,2 1Department of Pharmacy, 2Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, 3Department of Basic Medical Sciences, Xuzhou Medical College, Xuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The aim of this work was to design, synthesize, and characterize self-assembled micelles based on polypeptides as a potential antitumor drug carrier. Amphiphilic poly(L-phenylalanine-b-poly(L-serine (PFS polypeptides were obtained through the polymerization of N-carboxyanhydride. As a novel hydrophilic segment, poly(L-serine was utilized to enhance tumor targeting due to a large demand of tumors for serine. PFS could self-assemble into micelles with an average diameter of 110–240 nm and a slightly negative charge. PFS polypeptides adopted random coil in pH 7.4 phosphate-buffered saline and could partly transform to a-helix induced by trifluoroethanol. PFS micelles with a low critical micelle concentration of 4.0 µg mL-1 were stable in pH 5–9 buffers and serum albumin solution. PFS micelles had a loading capacity of 3.8% for coumarin-6 and exhibited a sustained drug release. Coumarin-6 loaded rhodamine B isothiocyanate-labeled PFS micelles were incubated with Huh-7 tumor cells to study the correlation between drugs and carriers during endocytosis. The uptake of drugs was consistent with the micelles, illustrating that the intracellular transport of drugs highly depended on the micelles. PFS micelles diffused in whole cytoplasm while coumarin-6 assumed localized distribution, suggesting that the micelles could release the loaded drugs in particular areas. The internalization mechanism of PFS micelles was involved with clathrin-mediated endocytosis and macropinocytosis. Excess serine inhibited the uptake of PFS micelles, which demonstrated that serine receptors played

  1. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  2. Transporting of a Cell-Sized Phospholipid Vesicle Across Water/Oil Interface

    Hase, M; Hamada, T; Yoshikawa, K; Hase, Masahiko; Yamada, Ayako; Hamada, Tsutomu; Yoshikawa, Kenichi

    2006-01-01

    When a cell-sized water droplet, with a diameter of several tens of micro meter, is placed in oil containing phospholipids, a stable cell-sized vesicle is spontaneously formed as a water-in-oil phospholipid emulsion (W/O CE) with a phospholipid monolayer. We transferred the lipid vesicle thus formed in the oil phase to the water phase across the water/oil interface by micromanipulation, which suggests that the vesicle is transformed from a phospholipid monolayer as W/O CE into a bilayer. The lipid vesicle can then be transported back into the oil phase. This novel experimental procedure may be a useful tool for creating a model cellular system, which, together with a microreactor, is applicable as a micrometer-scale biochemical reaction field.

  3. Transbilayer dynamics of phospholipids in the plasma membrane of the Leishmania genus.

    Marcos Gonzaga dos Santos

    Full Text Available Protozoans of the Leishmania genus are the etiological agents of a wide spectrum of diseases commonly known as leishmaniases. Lipid organization of the plasma membrane of the parasite may mimic the lipid organization of mammalian apoptotic cells and play a role in phagocytosis and parasite survival in the mammal host. Here, we analyzed the phospholipid dynamics in the plasma membrane of both the L. (Leishmania and the L. (Viannia subgenera. We found that the activity and substrate specificity of the inward translocation machinery varied between Leishmania species. The differences in activity of inward phospholipid transport correlated with the different sensitivities of the various species towards the alkyl-phospholipid analogue miltefosine. Furthermore, all species exhibited a phospholipid scramblase activity in their plasma membranes upon stimulation with calcium ionophores. However, binding of annexin V to the parasite surface was only detected for a subpopulation of parasites during the stationary growth phase and only marginally enhanced by scramblase activation.

  4. Effect of oral treatment with pantethine on platelet and plasma phospholipids in IIa hyperlipoproteinemia.

    Prisco, D; Rogasi, P G; Matucci, M; Paniccia, R; Abbate, R; Gensini, G F; Neri Serneri, G G

    1987-03-01

    In a single-blind, crossover, completely randomized study, the effects of oral treatment with pantethine or placebo on fatty acid composition of plasma and platelet phospholipids were investigated in 10 IIa hyperlipoproteinemic patients. A significant decrease of total cholesterol and total phospholipids was observed both in plasma and in platelets after a twenty-eight-day treatment. In plasma, pantethine induced a decrease of the ratio sphingomyelin/phosphatidylcholine. Moreover, a relative increase of n3-polyunsaturated fatty acids both in plasma and in platelet phospholipids and a decrease of arachidonic acid in plasma phospholipids were observed. These results indicate that pantethine can affect plasma and platelet lipid composition with possibly favorable influences on the determinants of cell membrane fluidity. PMID:3551695

  5. The rates of incorporation of inorganic orthophosphate, glycerol, and acetate into phospholipids of rabbit sarcoplasmic reticulum

    The radioactive precursors, 32Psub(i), glycerol-2-3H, and acetate-3H were injected intravenously into male rabbits and the rates of incorporation into phospholipid fractions of the sarcoplasmic reticulum were estimated. Any distinct differences of specific activities among the phospholipid classes were not observed, although sphigomyelin showed a little lower value than that of other phospholipids. 1-O-Alkyl compounds, especially in ethanolamine phosphoglyceride fraction, got high specific activities even in the early stages of the experiment. The specific activities of 1-O-alkenyl compounds were fairly low as compared with those of 1-acyl and 1-O-alkyl compounds throughout the experiments of glycerol-3H and acetate-3H incorporation but reached to the level of 1-acyl compounds in the experiment of 32Psub(i) incorporation. Therefore, it was rather difficult to find the metabolic relationship between plasmalogen and alkyl ether phospholipids. (author)

  6. Forty five years with membrane phospholipids, phospholipases and lipid mediators: A historical perspective.

    Chap, Hugues

    2016-06-01

    Phospholipases play a key role in the metabolism of phospholipids and in cell signaling. They are also a very useful tool to explore phospholipid structure and metabolism as well as membrane organization. They are at the center of this review, covering a period starting in 1971 and focused on a number of subjects in which my colleagues and I have been involved. Those include determination of phospholipid asymmetry in the blood platelet membrane, biosynthesis of lysophosphatidic acid, biochemistry of platelet-activating factor, first attempts to define the role of phosphoinositides in cell signaling, and identification of novel digestive (phospho)lipases such as pancreatic lipase-related protein 2 (PLRP2) or phospholipase B. Besides recalling some of our contributions to those various fields, this review makes an appraisal of the impressive and often unexpected evolution of those various aspects of membrane phospholipids and lipid mediators. It is also the occasion to propose some new working hypotheses. PMID:27059515

  7. Phospholipid liposomes acquire apolipoprotein E in atherogenic plasma and block cholesterol loading of cultured macrophages.

    Williams, K J; Tall, A.R.; Bisgaier, C; Brocia, R

    1987-01-01

    A single infusion of phospholipid liposomes promptly and persistently abolished the ability of hypercholesterolemic rabbit plasma to cause cholesteryl ester loading in cultured macrophages. This phospholipid enrichment of plasma caused moderate stimulation of cellular cholesterol efflux and, unexpectedly, almost complete inhibition of cellular uptake of beta-very low density lipoprotein (beta-VLDL), the major cholesteryl ester-rich particle in hypercholesterolemic rabbit plasma. Cell viabilit...

  8. DNA replication initiation, doubling of rate of phospholipid synthesis, and cell division in Escherichia coli.

    Joseleau-Petit, D; Képès, F; Peutat, L; D'Ari, R; Képès, A

    1987-01-01

    In synchronized culture of Escherichia coli, the specific arrest of phospholipid synthesis (brought about by glycerol starvation in an appropriate mutant) did not affect the rate of ongoing DNA synthesis but prevented the initiation of new rounds. The initiation block did not depend on cell age at the time of glycerol removal, which could be before, during, or after the doubling in the rate of phospholipid synthesis (DROPS) and as little as 10 min before the expected initiation. We conclude t...

  9. Reduction of peritoneal carcinomatosis by intraperitoneal administration of phospholipids in rats

    Otto Jens; Jansen Petra; Lucas Stefan; Schumpelick Volker; Jansen Marc

    2007-01-01

    Abstract Background Intraperitoneal tumor cell attachment after resection of gastrointestinal cancer may lead to a developing of peritoneal carcinosis. Intraabdominal application of phospholipids shows a significant decrease of adhesion formation even in case of rising tumor cell concentration. Methods In experiment A 2*106 colonic tumor cells (DHD/K12/Trb) were injected intraperitonely in female BD-IX-rats. A total of 30 rats were divided into three groups with treatments of phospholipids at...

  10. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    Letts, V A; Henry, S. A.

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. ...

  11. Effect of gentamicin on phospholipid metabolism in cultured rabbit proximal tubular cells

    We examined the hypothesis that the accumulation of phospholipid in cells exposed to gentamicin is due to impaired degradation. Experiments were performed in rabbit proximal tubular cells grown in primary culture. Cells exposed to 10(-3) M gentamicin manifested myeloid body formation and a progressive increase in total phospholipid that by day 6 was 44% higher than that of control cells and reflected increases of phosphatidylinositol of 235%, phosphatidylcholine of 60%, phosphatidylethanolamine of 90%, and phosphatidylserine of 55% above control values. Gentamicin impaired the degradation of these phospholipids. The t1/2 of the phospholipid pool labeled with [3H]myoinositol increased 146% from 1.17 (control) to 2.88 days (gentamicin); the t1/2 of the [3H]choline pool increased 34% from 1.77 to 2.38 days; the t1/2 of the [3H]ethanolamine pool increased 57% from 3.14 to 4.93 days; the t1/2 of the [3H] serine pool increased 37% from 6.30 to 8.63 days. Exposure of cells to gentamicin for 2 days also stimulated increased incorporation of [3H]myoinositol (68%) and [3H]ethanolamine (59%) into phospholipid. The data are consistent with the hypothesis that gentamicin inhibits the activity of lysosomal phospholipases that results in the accumulation of phospholipid within the lysosome in the form of myeloid bodies. Increased phospholipid synthesis may represent a compensatory response to the impaired lysosomal degradation of phospholipid. We postulate that the preferential increase of phosphatidylinositol reflects the capacity of the polycationic gentamicin to interact electrostatically with the anionic phosphoinositides and inhibit their turnover

  12. A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers.

    Dacaranhe, C D; Terao, J

    2001-10-01

    The relationship between the antioxidant effect of acidic phospholipids, phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylserine (PS), on iron-induced lipid peroxidation of phospholipid bilayers and their abilities to bind iron ion was examined in egg yolk phosphatidylcholine large unilamellar vesicles (EYPC LUV). The effect of each acidic phospholipid added to the vesicles at 10 mol% was assessed by measuring phosphatidylcholine hydroperoxides (PC-OOH) and thiobarbituric acid-reactive substances. The addition of dipalmitoyl PS (DPPS) showed a significant inhibitory effect, although the other two acidic phospholipids, dipalmitoyl PA (DPPA) and dipalmitoyl PG (DPPG), did not exert the inhibition. Neither dipalmitoyl PC (DPPC) nor dipalmitoyl phophatidylethanolamine (DPPE) showed any remarkable inhibition on this system. None of the tested phospholipids affected the lipid peroxidation rate remarkably when the vesicles were exposed to a water-soluble radical generator. The iron-binding ability of each phospholipid was estimated on the basis of the amounts of iron recovered in the chloroform/methanol phase after separation of the vesicle solution to water/methanol and chloroform/methanol phases. EYPC LUV containing DPPS, DPPA, and DPPG had higher amounts of bound iron than those containing DPPC and DPPE, indicating that these three acidic phospholipids possess an iron-binding ability at a similar level. Nevertheless, only DPPS suppressed iron-dependent decomposition of PC-OOH significantly. Therefore, it is likely that these three acidic phospholipids possess a significant iron-binding ability, although this ability per se does not warrant them antioxidative activities. The ability to suppress the iron-dependent decomposition of PC-OOH may explain the unique antioxidant activity of PS. PMID:11768154

  13. Serum Phospholipid Fatty Acids and Prostate Cancer Risk: Results From the Prostate Cancer Prevention Trial

    Brasky, Theodore M.; Till, Cathee; White, Emily; Neuhouser, Marian L; Song, Xiaoling; Goodman, Phyllis; Thompson, Ian M; King, Irena B.; Albanes, Demetrius; Kristal, Alan R.

    2011-01-01

    Inflammation may be involved in prostate cancer development and progression. This study examined the associations between inflammation-related phospholipid fatty acids and the 7-year-period prevalence of prostate cancer in a nested case-control analysis of participants, aged 55–84 years, in the Prostate Cancer Prevention Trial during 1994–2003. Cases (n = 1,658) were frequency matched to controls (n = 1,803) on age, treatment, and prostate cancer family history. Phospholipid fatty acids were ...

  14. Effect of gramicidin A on the dipole potential of phospholipid membranes.

    Shapovalov, V L; Kotova, E A; Rokitskaya, T I; Antonenko, Y N

    1999-01-01

    The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin ...

  15. Analysis of phospholipids in microalga Nitzschia closterium by UPLC-Q-TOF-MS

    严小军; 李海英; 徐继林; 周成旭

    2010-01-01

    Precise structural identification of phospholipids in the microalga Nitzschia closterium has been established using ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (UPLC-ESI-Q-TOF-MS) for direct analysis of total lipid extracts.Mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in negative mode.Phospholipid molecular species identification was based on the characteristic product ions and neutral loss yie...

  16. Innovation in the Italian ice cream production: effect of different phospholipid emulsifiers

    Rinaldi, Massimiliano; Dall’Asta, Chiara; Paciulli, Maria; Guizzetti, Stefano; Barbanti, Davide; Chiavaro, Emma

    2013-01-01

    Artisanal Italian ice cream (called gelato) is one of the most appreciated Italian food specialties. Mono- and diglycerides of fatty acids represent the most used emulsifiers for gelato but the demand for “clean label” products containing lower amount or no additives or stabilizers is continuously increasing among consumers. In this work, the impact of three phospholipid emulsifiers (soy, milk and rice phospholipids) was evaluated on physicochemical, thermal and flavour characteristics of a b...

  17. Dependence of micelle size and shape on detergent alkyl chain length and head group.

    Ryan C Oliver

    Full Text Available Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS, micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.

  18. Intrinsic parameters for the structure control of nonionic reverse micelles in styrene: SAXS and rheometry studies.

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Aramaki, Kenji

    2011-05-17

    Shape, size, and internal structure of nonionic reverse micelle in styrene depending on surfactant chain length, concentration, temperature, and water addition have been investigated using a small-angle X-ray scattering (SAXS) technique. The generalized indirect Fourier transformation (GIFT) method has been employed to deduce real-space structural information. The consistency of the GIFT method has been tested by the geometrical model fittings, and the micellar aggregation number (N(agg)) has been determined. It was found that diglycerol monocaprate (C(10)G(2)), diglycerol monolaurate (C(12)G(2)), and diglycerol monomyristate (C(14)G(2)), spontaneously self-assemble into reverse micelles in organic solvent styrene under ambient conditions. The micellar size and the N(agg) decrease with an increase in surfactant chain length, a scenario that could be understood from the modification of the critical packing parameter (cpp). A clear picture of one-dimensional (1-D) micellar growth was observed with an increase in surfactant weight fraction (W(s)) in the C(10)G(2) system, which eventually formed rodlike micelles at W(s) ≥ 15%. On the other hand, micelles shrunk favoring a rod-to-sphere type transition upon heating. Reverse micelles swelled with water, forming a water pool at the micellar core; the size of water-incorporated reverse micelles was much bigger than that of the empty micelles. Model fittings showed that water addition not only increase the micellar size but also increase the N(agg). Zero-shear viscosity was found to decrease with surfactant chain but increase with W(s), supporting the results derived from SAXS. PMID:21488609

  19. CTAB/water/chloroform reverse micelles: a closed or open association model?

    Klíčová, L'ubica; Sebej, Peter; Štacko, Peter; Filippov, Sergey K; Bogomolova, Anna; Padilla, Marc; Klán, Petr

    2012-10-30

    The micellization of cetyltrimethylammonium bromide (CTAB) in chloroform in the presence of water was examined. Three scenarios of the reverse micelle formation, the closed, open and Eicke's association models, were considered in the interpretation of the experimental data. The growth of the aggregates was observed through the changes of NMR signals of associated water, probing the microenvironment of the premicellar aggregates and the interior of reverse micelles. This technique if combined with isothermal titration calorimetry (ITC) revealed that hydrated surfactant premicellar aggregates are already present at ∼6 mM CTAB. NMR, ITC and conductometry were used to determine the critical micelle concentration (cmc) to be ∼40 mM CTAB. It is suggested that the variation of the cmc values reflects the fact that the NMR analysis indicated the beginning of the reverse micelle formation, whereas conductometry and ITC measurements provided the upper limit and an average value of a so-called apparent cmc, respectively. The cmc values were found to be unaffected by the water content. The presence of reverse micelles, the existence of multiple equilibria, and high polydispersity of the samples were evidenced by DOSY NMR spectroscopy. As a result, we validated Eicke's association model, according to which cyclic inverse micelles are formed by a structural reorganization of linear associates within a narrow concentration range, called the apparent cmc. New experimental results have also been gained for micellization of cetyltrimethylammonium chloride (CTAC) in chloroform in the presence of water; a similar mechanism of reverse micelle formation has been suggested. PMID:23072317

  20. Development of casein microgels from cross-linking of casein micelles by genipin.

    Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric

    2014-09-01

    Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of κ-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article. PMID:25117401

  1. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.

    Liou, Jiun-You; Sun, Ya-Sen

    2015-09-28

    We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks. PMID:26251976

  2. Characteristic responses of a phospholipid molecular layer to polyols.

    Nakata, Satoshi; Deguchi, Ayano; Seki, Yota; Furuta, Miyuki; Fukuhara, Koichi; Nishihara, Sadafumi; Inoue, Katsuya; Kumazawa, Noriyuki; Mashiko, Shun; Fujihira, Shota; Goto, Makiko; Denda, Mitsuhiro

    2015-12-01

    Polyols (sugar alcohols) are widely used in foods, pharmaceutical formulations and cosmetics, and therefore it is important to understand their effects on cell membranes and skin. To address this issue, we examined the effect of polyols (1,2-ethanediol (ethylene glycol), 1,3-butanediol, 1,2,3-propanetriol (glycerol), and 1,2,3,4-butanetetraol) on artificial membrane systems (liposomes, monolayers, or dry films) prepared from phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)). 1,2-Ethanediol and 1,3-butanediol had little effect on the size of the DMPC liposomes or the surface pressure (π)-surface area (A) isotherm of DMPC monolayers at an air-water interface, whereas 1,2,3-propanetriol or 1,2,3,4-butanetetraol increased both liposome size and surface pressure. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and differential scanning calorimetry (DSC) were used to evaluate the interaction between DMPC and polyols. These experimental results suggest that the chemical structure of polyol plays an important role in the characteristic interaction between polyol and DMPC. PMID:26454550

  3. Oral absorption of hyaluronic acid and phospholipids complexes in rats

    Si-Ling Huang; Pei-Xue Ling; Tian-Min Zhang

    2007-01-01

    AIM: To prepare a complex of hyaluronic acid (HA) and phospholipids (PL), and study the improvement effect of PL on the oral absorption of HA.METHODS: The complex of HA-PL (named Haplex) was prepared by film dispersion and sonication method, its physico-chemical properties were identified by infrared spectra and differential scanning calorimetry (DSC). The oral absorption of Haplex was studied. Thirty-two healthy rats were divided into 4 groups randomly: (1) a normal saline (NS) control group; (2) an HA group; (3) a mixture group and (4) a Haplex group. After intragastric administration, the concentration of HA in serum was determined.RESULTS: The physico-chemical properties of Haplex were different from HA or PL or their mixture. After Haplex was administered to rats orally, the serum concentration of HA was increased when compared with the mixture or HA control groups from 4 h to 10 h (P < 0.05). The ΔAUCo-12 h of Haplex was also greater than that of the other three groups (P < 0.05).CONCLUSION: The method of film dispersion and sonication can prepare HA and PL complex, and PL can enhance the oral absorption of exogenous HA.

  4. In vivo phospholipid biosynthesis in cotton cotyledons during glyoxysome enlargement

    The surface are of cottonseed glyoxysomes increases about 4 fold within 36 h after imbibition. Membrane phospholipid must become available to glyoxysomes to accommodate expansion. Incubation of cotyledons (18-h-old) in 14C-choline (1 h) resulted in at least 85% recovery of 14C-phosphatidylcholine (PC) in membranes comigrating on sucrose gradients (20-59% w/w) with antimycin A-insensitive cytochrome c reductase (CCR) activity and choline- and ethanolaminephosphotransferase (CPT and EPT) activities (ER at about 24% w/w sucrose). Chase experiments with 3.4 M choline chloride for 2, 12, or 24 h led to increasing proportions of 14C-PC (36% after 24 h) recovery in mitochondria. No transfer of 14C-PC to enlarging glyoxysomes was detected. Incubations in 14C-ethanolamine yielded ER labeling after only 30 min. 14C-PE chased into mitochondria membranes more rapidly than PC (45% after 12 h), and no 14C-PE chased into glyoxysome membranes. Evidence for synthesis of 14C-PC from 14C-PE was found after 12 h chase with 1 M ethanolamine hydrochloride. Our results indicate that ER is the primary site of PC and PE synthesis in vivo and that ER contributes newly synthesized PC and PE to mitochondrial membranes but not to expanding glyoxysomal membranes. This is different from membrane biogenesis of glyoxysomes proliferating in castor bean endosperm

  5. Association of anti-phospholipid antibodies with connective tissue diseases

    Reena Rai

    2015-01-01

    Full Text Available Background: The antiphospholipid antibodies (APLA are directed against phospholipids and their binding proteins and are frequently found in association with connective tissue disorders. Systemic lupus erythematoses (SLE with APLA may cause a diagnostic dilemma as there are several manifestations like haemolytic anemia, thrombocytopenia, neurologic manifestations, leg ulcerations, serositis proteinuria which overlap in both these conditions. We conducted a study to find out the association of antiphospholipid antibodies with connective tissue diseases and compared the clinical and laboratory parameters between antiphoshpolipid antibody positive and antiphoshpolipid antibody negative group. Materials and Methods: This study was carried out in 102 patients diagnosed with connective tissue diseases. APLA testing was done at baseline and for those positive, the test was repeated after 12 weeks. Results: 14.7 % of patients with connective tissue diseases tissue had positive antiphoshpolipid antibodies. Positive antiphoshpolipid antibody was detected in 73.3% of patients with SLE group, 13.3% of patients with mixed connective tissue disease (MCTD and 13.3% of patients with systemic sclerosis. APLA positivity was seen in SLE patients with leg ulcers (87.2%, neurologic manifestation (72.7%, hemolytic anemia (62.3%, thrombocytopenia (72.7%, serositis (27.8% and proteinuria(19.6%. Conclusions: Antiphoshpolipid antibodies should be tested in all patients with connective tissue disease.

  6. Haptoglobin inhibits phospholipid transfer protein activity in hyperlipidemic human plasma

    Leon Carlos G

    2009-07-01

    Full Text Available Abstract Background Haptoglobin is a plasma protein that scavenges haemoglobin during haemolysis. Phospholipid Transfer Protein (PLTP transfers lipids from Low Density Lipoproteins (LDL to High Density Lipoproteins (HDL. PLTP is involved in the pathogenesis of atherosclerosis which causes coronary artery disease, the leading cause of death in North America. It has been shown that Apolipoprotein-A1 (Apo-A1 binds and regulates PLTP activity. Haptoglobin can also bind to Apo-A1, affecting the ability of Apo-A1 to induce enzymatic activities. Thus we hypothesize that haptoglobin inhibits PLTP activity. This work tested the effect of Haptoglobin and Apo-A1 addition on PLTP activity in human plasma samples. The results will contribute to our understanding of the role of haptoglobin on modulating reverse cholesterol transport. Results We analyzed the PLTP activity and Apo-A1 and Haptoglobin content in six hyperlipidemic and six normolipidemic plasmas. We found that Apo-A1 levels are proportional to PLTP activity in hyperlipidemic (R2 = 0.66, p 2 = 0.57, p > 0.05. When the PLTP activity was graphed versus the Hp/Apo-A1 ratio in hyperlipidemic plasma there was a significant correlation (R2 = 0.69, p Conclusion These findings suggest an inhibitory effect of Haptoglobin over PLTP activity in hyperlipidemic plasma that may contribute to the regulation of reverse cholesterol transport.

  7. Essential phospholipids in fatty liver: a scientific update

    Gundermann, Karl-Josef; Gundermann, Simon; Drozdzik, Marek; Mohan Prasad, VG

    2016-01-01

    Aim Although essential phospholipids (EPL) from soybean are often used in membrane-associated disorders and diseases, their high quality of purification and effects on prevalent liver diseases, especially on fatty liver diseases (FLDs) of different origin, are still widely unknown and a matter of continuous active research. The aim of this article is to review, discuss, and summarize the available results of EPL in the treatment of FLD. Methods Database research was carried out on Medline, Embase, Cochrane Library, country-specific journals, and follow-up literature citations for relevant hepatogastroenterological articles published between 1988 and 2014. We searched for and reviewed only those papers that indicated minimum extraction amount of 72% (3-sn-phosphatidyl)choline from soybean as being necessary to treat patients with a considerable amount of 1,2-dilinoleoylphosphatidylcholine as a key component in EPL. Results EPL has a well-established mode of action, therapeutic effectiveness, and lack of toxicity, which ensures clinically relevant efficacy-to-safety ratio. It influences membrane- dependent cellular functions and shows anti-inflammatory, antioxidant, antifibrogenic, anti apoptotic, membrane-protective, and lipid-regulating effects. Due to its positive effects on membrane composition and functions, it accelerates the improvement or normalization of subjective symptoms; pathological, clinical, and biochemical findings; hepatic imaging; and liver histology. It is justified to administer EPL together with other therapeutic measurements in the liver. Conclusion Pharmacological and clinical results confirm the efficacy of EPL in the treatment of FLD. PMID:27217791

  8. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion.

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-01-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the "outer shape" of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789

  9. Determination of phospholipid transfer proteins in rat tissues by immunoassays

    Several quantitative immunoassays have been developed for two phospholipid transfer proteins from rat liver, i.e. the phosphatidylcholine transfer protein and the non-specific lipid transfer protein. The development of a double-antibody radioimmunoassay for the phosphatidylcholine transfer protein is described. The transfer protein was labelled with iodine-125 by the mild glucose oxidase-lactoperoxidase method. Although less than one tyrosine residue per molecule of transfer protein was labelled, only 20% of the labelled transfer protein was immunoprecipitable. This value could be increased to 80% by purifying the labelled protein by affinity chromatography on a column of anti-phosphatidylcholine transfer protein-IgG coupled to Sepharose 4B. The radioimmunoassay was used to determine the levels of phosphatidylcholine transfer protein in homogenates and 105 000 xg supernatants from various rat tissues as well as several Morris hepatomas. An enzyme immunoassay for the non-specific lipid transfer protein is also described. The antiserum that was raised especially by the author was cross-reactive with the non-specific lipid transfer protein present in 105 000 xg supernatants from human, mouse and bovine liver. The non-specific lipid transfer protein lost its immunoreactivity upon labelling with iodine-125 using different labelling techniques. Therefore, a regular radioimmunoassay could not be developed. The results of these different assays were compared. (Auth.)

  10. Primary Structural Characterization of Phospholipid Hydroperoxide Glutathione Peroxidase

    王泽斌; 杨晓东; 赵南明; 刘进元

    2002-01-01

    More than 20 sequences of phospholipid hydroperoxide glutathione peroxidase (PHGPX) from a sequence database were analyzed. The analyses show that the primary structures of most PHGPX proteins have three highly conserved regions forming a catalytic center and have more than 50% amino acid sequence identity in common. However, two PHGPXs from bovine and swine with the same function have very low similarity with typical PHGPXs and do not have the three highly conserved regions. Thus, the PHGPX proteins are divided into two types: those with the three highly conserved regions, designated as PHGPX-I, and the others as PHGPX-II. In general, type I proteins are composed of ca.170 amino acid residues; a few of them have an extra signal peptide sequence at the N-terminal of the protein. The composition of plant and animal PHGPX amino acids is very different, with most plant PHGPXs being weak acidic, while most animal ones are alkaline. Another specific conservative motif is also found in plant PHGPX proteins. System evolution analysis shows that ortholog and paralog evolution models both exist in PHGPXs, with the plant PHGPX and the animal PHGPX diverging exclusively into two branches in PHGPX-I. The information revealed by the evolution tree agrees with the general species evolution process from low to advanced and from simple to complicated.

  11. Incorporation of peptides in phospholipid aggregates using ultrasound.

    Silva, Raquel; Little, Collin; Ferreira, Helena; Cavaco-Paulo, Artur

    2008-09-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LLLLK LLLLK; LLLLL LCLCL LLKAK AK) was made by the thin film hydration method. The LUVs (uni-lamellar vesicles) were obtained by sonication, applying different experimental conditions, such as depth (mm) and power intensity (%). Photon-correlation spectroscopy (PCS) and electronic microscopy (EM) results confirmed that the incorporation of these peptides, with different sequence of amino acids, presented differences on the diameter, zeta-potential of membrane surface and shape of liposomes. The liposomes that included peptide LLLLK LLLLK LLLLK LLLLK present an increased in zeta-potential values after using ultrasound and an "amorphous" aspect. Conversely, the liposomes that incorporated the peptide LLLLL LCLCL LLKAK AK presented a define shape (rod shape) and the potential surface of liposome did not change significantly by the use of ultrasound. PMID:18467154

  12. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-05-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.

  13. [Dietary plant phospholipids as stabilizers of oil solutions of beta-carotene].

    Karagodina, Z V; Lupinovich, V L; Risnik, V V; Levachev, M M

    1995-01-01

    A study of stability of oil solutions beta-carotene to oxidizing damage is carried out. As stabilizers were used dietary plant phospholipids produced by Krasnodar's company ECOTECH in concentrations 5, 10, 20% in a combination with alpha-tocopherol. Oxidizing changes in samples were evaluated by determination of peroxide level ('peroxidation number') and contents diene conjugates. Effect of these antioxidants was studied in experiments with accelerated oxidation at 60 C in darkness during 15 days. Phospholipids entered in a sample acted as antioxidants. Reverse correlation was found between quantity added phospholipids an level of accumulated primary peroxidation products. It was shown that during experimental oxidation together with oxidizing damage of oil the loss of beta-carotene was also occurred: without antioxidants on 68%, with alpha-tocopherol alone on 27%, with phospholipids and alpha-tocopherol on 34%. Phospholipids protect an oil from oxidizing damage not rendering of direct action on safety (-carotene being only as synergists in a combination with alpha-tocopherol. Phospholipids increase thus antioxidant potentiation of a product lying as consider in the basis of antioxidant action of beta-carotene. PMID:7483481

  14. Specific pools of phospholipids are used for lipoprotein secretion by cultured rat hepatocytes

    The role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine (PC) is made both by the CDP-choline pathway and by the methylation of phosphatidyl-ethanolamine (PE), which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanol-amine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [2-3H]ethanolamine or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the culture medium. The specific radioactivities of PC and PE derived from [1-3H]ethanolamine were markedly lower (approximately 1/2 and less than 1/10, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of PC made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of PC and PE were significantly higher in the lipoproteins than in the cells. These data indicate that specific pools of phospholipids are selected on the basis of their routes of biosynthesis, for secretion into lipoproteins

  15. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed

  16. Dietary Polyunsaturated Fatty Acids and Inflammation: The Role of Phospholipid Biosynthesis

    Lorraine M. Sordillo

    2013-10-01

    Full Text Available The composition of fatty acids in the diets of both human and domestic animal species can regulate inflammation through the biosynthesis of potent lipid mediators. The substrates for lipid mediator biosynthesis are derived primarily from membrane phospholipids and reflect dietary fatty acid intake. Inflammation can be exacerbated with intake of certain dietary fatty acids, such as some ω-6 polyunsaturated fatty acids (PUFA, and subsequent incorporation into membrane phospholipids. Inflammation, however, can be resolved with ingestion of other fatty acids, such as ω-3 PUFA. The influence of dietary PUFA on phospholipid composition is influenced by factors that control phospholipid biosynthesis within cellular membranes, such as preferential incorporation of some fatty acids, competition between newly ingested PUFA and fatty acids released from stores such as adipose, and the impacts of carbohydrate metabolism and physiological state. The objective of this review is to explain these factors as potential obstacles to manipulating PUFA composition of tissue phospholipids by specific dietary fatty acids. A better understanding of the factors that influence how dietary fatty acids can be incorporated into phospholipids may lead to nutritional intervention strategies that optimize health.

  17. Influence of molecular packing and phospholipid type on rates of cholesterol exchange

    The rates of [14C]cholesterol transfer from small unilamellar vesicles containing cholesterol dissolved in bilayers of different phospholipids have been determined to examine the influence of phospholipid-cholesterol interactions on the rate of cholesterol desorption from the lipid-water interface. At 370C, for vesicles containing 10 mol % cholesterol, the half-times for exchange are about 1, 13, and 80 h, respectively, for unsaturated PC, saturated PC, and SM. In order to probe how differences in molecular packing in the bilayers cause the rate constants for cholesterol desorption to be in the order unsaturated PC > saturated PC > SM, nuclear magnetic resonance (NMR) and monolayer methods were used to evaluate the cholesterol physical state and interactions with phospholipid. The NMR relaxation parameters for [4-13C] cholesterol reveal no differences in molecular dynamics in the above bilayers. The greater van der Waals interaction in the SM monolayer (or bilayer) compared to PC gives rise to a larger condensation by cholesterol. This is a direct demonstration of the greater interaction of cholesterol with SM compared to PC. An estimate of the van der Waals interactions between cholesterol and these phospholipids has been used to derive a relationship between the ratio of the rate constants for cholesterol desorption and the relative molecular areas (lateral packing density) in two bilayers. This analysis suggests that differences in cholesterol-phospholipid van der Waals interaction energy are an important cause of varying rates of cholesterol exchange from different host phospholipid bilayers

  18. Crystalline free energies of micelles of diblock copolymer solutions

    D'Adamo, Giuseppe; 10.1063/1.3509391

    2012-01-01

    We report a characterization of the relative stability and structural behavior of various micellar crystals of an athermal model of AB-diblock copolymers in solution. We adopt a previously devel- oped coarse-graining representation of the chains which maps each copolymer on a soft dumbbell. Thanks to this strong reduction of degrees of freedom, we are able to investigate large aggregated systems, and for a specific length ratio of the blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the system of micelles. Above the transition, mechanical and thermal properties are found to depend on the number of particles per lattice site in the simulation box, and the application of a recent methodology for multiple occupancy crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary to correctly define the equilibrium state. Within this scheme we have performed free energy calculations at two reduced density {\\rho}/{\\rho}\\ast = 4,5 and for several cubic structures as FCC,BCC,A1...

  19. Different Types of Charged-Inverse Micelles in Nonpolar Media.

    Prasad, Manoj; Strubbe, Filip; Beunis, Filip; Neyts, Kristiaan

    2016-06-14

    Over the last few years, the electrodynamics of charged inverse micelles (CIMs) in nonpolar liquids and the generation mechanism and properties of newly generated CIMs have been studied extensively for the model system of polyisobutylene succinimide in dodecane. However, the newly generated CIMs, which accumulate at the electrodes when a continuous voltage is applied, behave differently compared to the regular CIMs present in equilibrium in the absence of a field. In this work, we use transient current measurements to investigate the behavior of the newly generated CIMs when the field is reduced to zero or reversed. We demonstrate that the newly generated CIMs do not participate in the diffuse double layer near the electrode formed by the regular CIMs but form an interface layer at the electrode surface. A fraction of the newly generated negative CIMs can be released from this interface layer when the field there becomes zero. The findings of this study provide a better understanding of fundamental processes in nonpolar liquids and are relevant for applications such as electronic ink displays and liquid toner printing. PMID:27231768

  20. Ultrafast energy transfer in water-AOT reverse micelles.

    Cringus, Dan; Bakulin, Artem; Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S; Wiersma, Douwe A

    2007-12-27

    A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model system for nanoscopic water droplets surrounded by a soft-matter boundary. Femtosecond nonlinear infrared spectroscopy in the OH-stretching region of H2O fully confirms the core/shell model, in which the entrapped water molecules partition onto two molecular subensembles: a bulk-like water core and a hydration layer near the ionic surfactant headgroups. These two distinct water species display different relaxation kinetics, as they do not exchange vibrational energy. The observed spectrotemporal ultrafast response exhibits a local character, indicating that the spatial confinement influences approximately one molecular layer located near the water-amphiphile boundary. The core of the encapsulated water droplet is similar in its spectroscopic properties to the bulk phase of liquid water, i.e., it does not display any true confinement effects such as droplet-size-dependent vibrational lifetimes or rotational correlation times. Unlike in bulk water, no intermolecular transfer of OH-stretching quanta occurs among the interfacial water molecules or from the hydration shell to the bulk-like core, indicating that the hydrogen bond network near the H2O/AOT interface is strongly disrupted. PMID:18047308