WorldWideScience

Sample records for 7075-t6 aluminum alloy

  1. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved

  2. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    Zhang, Ding-Ni, E-mail: siping4840@126.com [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Shangguan, Qian-Qian [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Xie, Can-Jun [Commercial Aircraft Corporation of China, Ltd., Shanghai 200120 (China); Liu, Fu [Shanghai Aircraft Design and Research Institute of COMAC, Shanghai 201210 (China)

    2015-01-15

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved.

  3. Effect of aging time and temperature on exfoliation corrosion of aluminum alloys 2024-T3 and 7075-T6

    Khoshnaw, F.M.; Gardi, R.H. [Wolfson School of Mechanical and Manufacturing Engineering Loughborough University, Loughborough, LE11 3TU Leicestershire (United Kingdom)

    2007-05-15

    Two types of aluminum alloys, 2024-T3 and 7075-T6, have been selected in this study to investigate the effect of metallurgical aspects on exfoliation corrosion. To determine and evaluate the metallurgical effects of heat treatments on corrosion behaviour of these alloys, G34 ASTM test was selected to investigate the exfoliation corrosion behaviour. The results showed that with increasing the aging time for the aluminum alloy type 2024-T3 the susceptibility to exfoliation corrosion increases, while for type 7075-T6 decreased. These results refer to precipitation of the intermetallic compound phases such as CuAl{sub 2}, and MgZn{sub 2}, in 2024-T3 and 7075-T6 respectively. The amount of these phases increases with increasing the aging time for both alloys. The investigations showed the phases that initiate in 2024-T3 act as anode sites while in 7075-T6 they act as cathode sites. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  4. Statistical analysis of constituent particles in 7075-T6 aluminum alloy

    Harlow, D. G.; Wei, R. P.; Wang, M. Z.

    2006-11-01

    Pitting corrosion is a primary degradation mechanism that affects the durability and integrity of aluminum alloy structures especially in aircraft. The heterogeneity of aluminum alloys is directly responsible for pitting corrosion because about 200 constituent particles per mm2 are on polished surfaces. Corrosion pits commence at surface particles and evolve into severe pits by sustained growth through particle clusters. Severe pits are nuclei for subsequent corrosion fatigue cracking. Thus, heterogeneous clusters of constituent particles are critical to the quality of aluminum alloys subjected to deleterious environments. Models for structural reliability including corrosion fundamentally depend on quantitative descriptions of the spatial statistics of the particles and particle clusters, including their location, size, and density. The primary purpose of this effort is to statistically estimate the distribution functions of the key geometrical properties of the constituent particles in 7075-T6 aluminum alloy and their role in pitting corrosion.

  5. 7075-T6铝合金动态力学试验及本构模型研究%Dynamic tests and constitutive model for 7075-T6 aluminum alloy

    谢灿军; 童明波; 刘富; 李志刚; 郭亚洲; 刘小川

    2014-01-01

    Dynamic tests for 7075-T6 aluminum alloy under quasi-static,medium strain rate and high strain rate were performed by using an electronic universal testing machine a high velocity hydraulic servo-testing machine and a split Hopkinson tensile bar (SHTB)at room temperature.Stress-strain curves under different strain rates were obtained.The experimental results showed that the strain rate hardening effect of 7075-T6 aluminum alloy is obvious;the necking phenomenon of specimens' fracture is more remarkable with increase in strain rate.A Johnson-Cook constitutive model reflecting strain rate hardening effect of 7075-T6 aluminum alloy was fitted.The term of strain rate hardening in Johnson-Cook equation was modified to make the fitted results agree better with the test ones.%分别采用电子万能试验机、高速液压伺服试验机和分离式霍普金森拉杆(SHTB)装置进行了7075-T6铝合金材料在室温下的准静态、中应变率和高应变率动态力学性能试验。获得了该材料不同应变率下的应力-应变曲线,结果显示:7075-T6铝合金具有明显的应变率强化效应;随着应变率的提高,试件断口处颈缩现象越发明显。拟合出了能够反映材料应变硬化效应、应变率强化效应的Johnson-Cook本构方程,对方程中的应变率强化项进行了修正,使拟合结果与试验结果吻合得更好。

  6. Adsorption of BTSE and γ-GPS organosilanes on different microstructural regions of 7075-T6 aluminum alloy

    The adsorption of bis-1,2-(triethoxysilyl)ethane (BTSE) and γ-glycidoxypropyltrimethoxysilane (γ-GPS) on mirror-polished 7075-T6 aluminum alloy was studied with an emphasis on the different microstructural regions of the alloy surface, specifically the alloy matrix and the two main types of second-phase particles, as well as how the adsorption was affected by a heating pre-treatment and by changes in the pH of the γ-GPS solution. Surface characterizations were undertaken with scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). BTSE at its natural pH (4.3) adsorbed at all micro-regions of the air-oxidized surface, while γ-GPS at its natural pH (5.7) was largely ineffective. Adsorption of γ-GPS on all micro-regions was possible after adjusting the solution pH to a lower value (3.2), or by using the solution of natural pH after pre-treating the sample by heating at 200 deg. C for 15 min. TOF-SIMS measurements indicated that direct metal-O-Si covalent bonding occurred at each silane interface formed to the different micro-regions of the alloy surface, with Al-O-Si bonding being predominant in each case

  7. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  8. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    Highlights: • Friction bit joining (FBJ) and weld-bonding (adhesive + FBJ) processes. • FBJ to spot weld high-strength Al alloy to high-strength steel. • Lap shear strength of ∼10 kN for high-strength Al alloy to high-strength steel. • Effective corrosion mitigation by combining FBJ with adhesive. - Abstract: In this work, we have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. The FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints

  9. Numerical simulation of heat transfer in friction stir welding of 7075-T6 aluminum alloy and high carbon steel using arbitrary Lagrangian Eulerian technique

    Esmaily, M. [Islamic Azad University, Karaj (Iran); Shokuhfar, A. [Advanced Materials and Nanotechnology Research Labs., Toosi University of Technology, Tehran (Iran)

    2010-05-15

    There are various simulation methods of processes having severe plastic deformation. Finite Elements Method is used as an appropriate and precise method in the simulation of such processes. This method is used and completed with Eulerian and Lagrangian formulation. In the present work, the combination of these two methods, namely Arbitrary Lagrangian Eulerian (ALE), has been found to be the best way of simulating events involving severe plastic deformation. The purpose of this article is to analyze the heat transfer process in friction stir welding using ANSYS software and compare the obtained data with experimental results. In this research, palates made of 7075-T6 Aluminum alloy and high carbon steel were welded and temperature measurement in the main sections was carried out by an accurate and special method during welding. Heat variation measurement was also carried out based on the time the tool operated. The process of heat transfer in friction stir welding of the selected alloys were then simulated, a comparison between simulation and experimental data shows a reasonable conformity between numerical and experimental results. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Origin of burst-type acoustic emission in unflawed 7075-T6 aluminum

    Tensile tests were used to study the acoustic emission from several 7075-T6 aluminum plates. Specimens from one plate produced a large burst-type emission in addition to the continuous emission. Metallographic and fracture surface studies indicated that the burst-type emission resulted from the brittle fracture of large (20 to 60 μm) primary inclusions in the microstructure

  11. Evaluation of the effect of Ni-P coating on the corrosion resistance of the aluminium 7075 T6 alloy

    Gil, L.

    2008-02-01

    Full Text Available The aluminum alloy 7075-T6 is a structural alloy widely used for aeronautical applications due to its high relationship between mechanical resistance and weight. Depending upon the environmental conditions, many types of corrosion mechanisms such as intergranular, exfoliation, have been found to occur in aircraft structural aluminum alloys. A significant advance in order to improve the behavior of this alloy is related to the application of the autocatalytic Ni-P coating which confers an excellent corrosion resistance coupled with both reduced erosive wear and higher hardness. The purpose of this work was to investigate the effect of the application of a Ni-P coating on the corrosion resistance of an aluminum 7075-T6 alloy. The results obtained indicated that the application of the Ni-P coatings diminishes the susceptibility to pitting and makes the aluminum 7075 T6 alloy immune to the exfoliation corrosion attack.

    La aleación de aluminio 7075-T6 es una aleación estructural ampliamente utilizada para aplicaciones aeronáuticas, debido a su alta relación entre resistencia mecánica y peso. Dependiendo de las condiciones ambientales, algunos mecanismos de corrosion tales como intergranular, exfoliacion, picadura y crevice se ha encontrado que ocurren en estructuras de aviones de aleaciones de aluminio. Un avance siginificativo para mejorar el comportamiento de esta aleación es la aplicación de recubrimientos autocatalíticos de Ni-P, los cuales confieren una excelente resistencia a la corrosión acoplado con una reducción del desgaste erosivo y un aumento de la dureza. El propósito de este trabajo fue investigar el efecto de la aplicación de un recubrimiento de Ni-P sobre la resistencia a la corrosión de una aleación de aluminio 7075-T6. Los resultados obtenidos indican que la aplicación del recubrimiento de Ni-P disminuye la susceptibilidad a la picadura y hace a la aleación de aluminio 7075 T6, prácticamente inmune al ataque

  12. A Study on Surface Modification of Al7075-T6 Alloy against Fretting Fatigue Phenomenon

    E. Mohseni

    2014-01-01

    Full Text Available Aircraft engines, fuselage, automobile parts, and energy saving strategies in general have promoted the interest and research in the field of lightweight materials, typically on alloys based on aluminum. Aluminum alloy itself does not have suitable wear resistance; therefore, it is necessary to enhance surface properties for practical applications, particularly when aluminum is in contact with other parts. Fretting fatigue phenomenon occurs when two surfaces are in contact with each other and one or both parts are subjected to cyclic load. Fretting drastically decreases the fatigue life of materials. Therefore, investigating the fretting fatigue life of materials is an important subject. Applying surface modification methods is anticipated to be a supreme solution to gradually decreasing fretting damage. In this paper, the authors would like to review methods employed so far to diminish the effect of fretting on the fatigue life of Al7075-T6 alloy. The methods include deep rolling, shot peening, laser shock peening, and thin film hard coatings. The surface coatings techniques are comprising physical vapor deposition (PVD, hard anodizing, ion-beam-enhanced deposition (IBED, and nitriding.

  13. Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum

    Florando, J.N., E-mail: florando1@llnl.gov; Margraf, J.D.; Reus, J.F.; Anderson, A.T.; McCallen, R.C.; LeBlanc, M.M.; Stanley, J.R.; Rubenchik, A.M.; Wu, S.S.; Lowdermilk, W.H.

    2015-07-29

    The effect of rapid laser heating on the response of 7075-T6 aluminum has been characterized using 3-D digital image correlation and a series of thermocouples. The experimental results indicate that as the samples are held under a constant load, the heating from the laser profile causes non-uniform temperature and strain fields, and the strain-rate increases dramatically as the sample nears failure. Simulations have been conducted using the LLNL multi-physics code ALE3D, and compared to the experiments. The strength and failure of the material was modeled using the Johnson–Cook strength and damage models. In order to capture the response, a dual-condition criterion was utilized which calibrated one set of parameters to low temperature quasi-static strain rate data, while the other parameter set is calibrated to high temperature high strain rate data. The thermal effects were captured using temperature dependent thermal constants and invoking thermal transport with conduction, convection, and thermal radiation.

  14. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of

  15. Effects of Intermittent Versus Continuous Heating upon the Tensile Properties of 2024-T4, 6061-T6 and 7075-T6 Alloys

    Stickley, G. W.; Anerson, H. L.

    1956-01-01

    In some applications, aluminum alloys are subjected to intermittent heating at elevated temperature. It is generally considered that the effects of such intermittent heating are cumulative, and therefore are the same as if the heating had been continuous for the same total length of time. The object of these tests was to determine the effects of intermittent and continuous heating at 300 and 400 F, for total periods of 100 and 200 hr, upon the tensile properties of 2024-T4 and 6061-T6 alloy rolled-and-drawn rod and 7075-T6 alloy extrusions, at room temperature and at the temperature of heating.

  16. Evaluation of the load-carrying capacity of hard coatings deposited onto a 7075-T6 aluminium alloy

    In the present work, the effect of the thickness of an electroless NiP load-support interlayer coating, on the initiation and development of plastic deformation in a 7075-T6 aluminium alloy substrate coated with a duplex coatings has been investigated. The duplex system has been obtained by means of the deposition of an electroless Ni-11 wt.% P (EN) onto the aluminium alloy substrate, followed by the deposition of a ZrN film (PVD) on top of the EN coating. The duplex systems that were investigated involved two different EN deposits, with thicknesses of 30 and 60 mm, respectively. The coatings were characterized regarding their morphology, thickness and absolute hardness. Indentation tests with spherical ind enters were performed employing 6 mm diameter WC-6Co balls and normal loads of 10,15, 25,50 and 75 N. All the indentations were modeled by means of the Elastic 2.1. code, in order to determine the through-thickness von Misses effective stress profile of the samples and the critical load for the initiation of the plastic deformation of the aluminium alloy substrate. the experimental results have been validate by means of such a theoretical analysis. it has been determined that the duplex system with an EN interlayer of 30 mm does not constitute a satisfactory load-support interlayer, for the load values employed in the tests. However, for the coated system with an EN interlayer of 60 mm, the critical load for the initiation of plastic deformation in the aluminium alloy substrate was found to be∼16N, which indicates that such a load-support interlayer avoids the plastic deformation of the substrate at normal loads less than ∼ 15 N. (Author) 21 refs

  17. Fatigue properties of temperature gradient transient liquid phase diffusion bonded Al7075-T6 alloy%温度梯度瞬时液相扩散连接7075-T6铝合金的疲劳性能

    Seyyed Salman Seyyed AFGHAHI; Aliakbar EKRAMI; Saeed FARAHANY; Amirreza JAHANGIRI

    2015-01-01

    以液态镓为中间层过渡相,研究温度梯度瞬时液相(TGTLP)扩散连接7075-T6铝合金的疲劳性能.疲劳试样在460℃和10 MPa下扩散连接10 min.扩散连接样品在465℃均匀化2h后进行T6热处理.7075-T6铝合金在90 MPa下的疲劳寿命为107循环,而在此应力水平下,扩散连接样品的疲劳寿命为1.2×106循环,为7075铝合金疲劳寿命的10%.采用扫描电镜对7075铝合金和扩散连接样品的疲劳断口进行分析,以确定两种合金的形核位置和裂纹生长阶段.

  18. Impact of M2-Hss Tool Pin Profile in Fsw Welded Joints On Mechanical Properties Of Aa7075-T6 Aluminium Alloy

    Venugopal S

    2014-05-01

    Full Text Available Friction stir, “welding is a solid state joining process and is widely being considered for aluminium alloys. The main advantage of FSW is the material that is being welded undergoes only localized changes. The welding parameter and tool pin profile play a major role in deciding the weld quality. In this work an effort has been made to analyze microstructure of aluminium AA 7075-T6 alloy. Three different tool profiles (Taper Threaded, cylindrical and square have been used to construct the joints in particular rotational speed. Tensile, Impact, micro hardness of mechanical properties of the joints have been evaluated and the formation of FSP zone has been analyzed microscopically. From the investigation it is found that the threaded cylindrical profile produces highly (defined Strength in welds.

  19. Effect of Fatigue Crack on Static Strength: 2014-T6, 2024-T4, 6061-T6, 7075-T6 Open-Hole Monobloc Specimens

    Nordmark, Glenn E.; Eaton, Ian D.

    1957-01-01

    Static tensile test results are presented for specimens of 2014-T6, 2024-T4, 6061-T6, and 7075-T6 aluminum alloy containing fatigue cracks. The results are found to be in good agreement with the results reported for similar tests from other sources. The results indicate that the presence of a fatigue crack reduced the static strength, in all cases, by an amount larger than the corresponding reduction in net area; the 6061-T6 alloy specimens were least susceptible to the crack and the 7075-T6 alloy specimens were most susceptible. It is indicated that a 7075-T6 specimen may develop as little as one-third of the expected static tensile strength when the fatigue crack was consumed only one-fourth of the original area. It was found that the static strength was substantially higher for specimens which had stop holes drilled at the end of the fatigue crack.

  20. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  1. Electrochemical characterisation of aluminium AA7075-T6 and solution heat treated AA7075 using a micro-capillary cell

    Localised corrosion of 7xxx aluminium alloys initiates at cathodic intermetallics containing Cu and Fe due to a strong galvanic coupling with the matrix. In order to study this galvanic coupling, the electrochemical behaviour of AA7075-T6 and solution heat treated AA7075 has been investigated by means of complementary techniques: micro-capillary cell, scanning Kelvin probe force microscopy (SKPFM) and scanning electron microscopy (SEM). Characterisation with the micro-capillary cell showed that the intermetallics cause a more cathodic breakdown potential in the solution heat treated AA7075 compared with the AA7075-T6. This is associated with a higher Volta potential difference between the intermetallics and the matrix in the solution heat treated AA7075, indicating a stronger galvanic coupling for this temper. From these results, it is concluded that the breakdown potential of areas containing the intermetallics is related to the Volta potential difference between the intermetallics and the matrix

  2. Cold spray deposition of a WC-25Co cermet onto Al7075-T6 and carbon steel substrates

    This work focussed on the deposition of wear-resistant and corrosion-resistant WC-25Co cermet powders on carbon steel and aluminium (Al7075-T6) substrates by cold gas spraying (CGS). The unique combination of mechanical, physical and chemical properties of WC-Co cermets has led to their widespread use for the manufacture of wear-resistant parts. X-ray diffraction tests were run on the powder and coatings to determine possible phase changes during the spraying process. The bonding strength of the coatings was measured by adhesion tests (ASTM C633-08). The sliding (ASTM G99-04) and abrasive (ASTM G65-00) wear resistance of the coatings were also studied. Corrosion resistance was determined by electrochemical measurements and salt fog spray tests (ASTM B117-03). CGS achieved thick, dense and hard WC-25Co coatings on both aluminium alloy Al7075-T6 and carbon steel substrates, with excellent tribological and electrochemical properties. We thus conclude that this method is very competitive compared with conventional thermal spraying techniques, giving thick, dense and hard coatings on both aluminium alloy Al7075-T6 and carbon steel substrates, with excellent tribological and electrochemical properties.

  3. Microstructure and Mechanical Behavior of Al 7075-T6 Subjected to Shallow Cryogenic Treatment

    Mohan, K.; Suresh, J. A.; Ramu, Palaniappan; Jayaganthan, R.

    2016-06-01

    The effect of shallow cryogenic treatment (SCT) on the microstructure and mechanical properties of Al7075-T6 is investigated in the present work. The alloy was subjected to shallow CT at -80 °C for 72 h. Mechanical tests such as Vickers hardness test, tensile, and fatigue tests were performed on both native and treated samples. It was observed that the mechanical properties such as hardness, yield strength, and ultimate tensile strength increased by about 30, 17, and 7%, respectively, for the treated sample. The treated alloy was characterized by using the techniques such as optical microscopy, electron back scattered diffraction (EBSD), energy-dispersive x-ray spectroscopy (EDS), and transmission electron microscopy (TEM) to observe the changes in the microstructural features. EBSD results show precipitation, better distribution of second-phase particles, and higher dislocation density in the treated alloy as compared to the untreated alloy. The treatment imparts improved hardness and strength to the alloy due to precipitation hardening and high dislocation density. Fracture morphologies of the treated and the native samples were characterized by using scanning electron microscopy and it was observed that the striations were denser in the treated sample justifying the higher fatigue strength.

  4. Microstructure and Mechanical Behavior of Al 7075-T6 Subjected to Shallow Cryogenic Treatment

    Mohan, K.; Suresh, J. A.; Ramu, Palaniappan; Jayaganthan, R.

    2016-04-01

    The effect of shallow cryogenic treatment (SCT) on the microstructure and mechanical properties of Al7075-T6 is investigated in the present work. The alloy was subjected to shallow CT at -80 °C for 72 h. Mechanical tests such as Vickers hardness test, tensile, and fatigue tests were performed on both native and treated samples. It was observed that the mechanical properties such as hardness, yield strength, and ultimate tensile strength increased by about 30, 17, and 7%, respectively, for the treated sample. The treated alloy was characterized by using the techniques such as optical microscopy, electron back scattered diffraction (EBSD), energy-dispersive x-ray spectroscopy (EDS), and transmission electron microscopy (TEM) to observe the changes in the microstructural features. EBSD results show precipitation, better distribution of second-phase particles, and higher dislocation density in the treated alloy as compared to the untreated alloy. The treatment imparts improved hardness and strength to the alloy due to precipitation hardening and high dislocation density. Fracture morphologies of the treated and the native samples were characterized by using scanning electron microscopy and it was observed that the striations were denser in the treated sample justifying the higher fatigue strength.

  5. Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding

    Gerlich, A.; Avramovic-Cingara, G.; North, T. H.

    2006-09-01

    The factors determining the temperature, heating rate, microstructure, and strain rate in Al 7075-T6 friction stir spot welds are investigated. Stir zone microstructure was examined using a combination of transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) microscopy, while the strain rate during spot welding was calculated by incorporating measured temperatures and the average subgrain dimensions in the Zener-Hollomon relation. The highest temperature during friction stir spot welding (527 °C) was observed in spot welds made using a tool rotational speed of 3000 rpm. The stir zone regions comprised fine-grained, equiaxed, fully recrystallized microstructures. The calculated strain rate in Al 7075-T6 spot welds decreased from 650 to about 20 s-1 when the tool rotational speed increased from 1000 to 3000 rpm. It is suggested that the decrease in strain rate results when tool slippage occurs when the welding parameter settings facilitate transient local melting during the spot welding operation. Transient local melting and tool slippage are produced when the welding parameters produce sufficiently high heating rates and temperatures during spot welding. However, transient local melting and tool slippage is not produced in Al 7075-T6 spot welds made using a rotational speed of 1000 rpm since the peak temperature is always less than 475 °C.

  6. Improved thermal treatment of aluminum alloy 7075

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  7. Evaluación de la capacidad de soporte de carga de recubrimientos duros depositados sobre la aleación de aluminio 7075-T6

    Moreno, E. T.; SANTANA, Y.Y.; Castro, A. C.; Puchi-Cabrera, E. S.; Staia, M.H.

    2007-01-01

    In the present work, the effect of the thickness of an electroless NiP load-support interlayer coating, on the initiation and development of plastic deformation in a 7075-T6 aluminium alloy substrate coated with a duplex coating has been investigated. The duplex system has been obtained by means of the deposition of an electroless Ni-11 wt. % P (EN) onto the aluminium alloy substrate, followed by the deposition of a ZrN film (PVD) on top of the EN coating. The duplex systems that were investi...

  8. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  9. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  10. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. PMID:18257055

  11. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  12. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  13. Microscopic analysis of effect of shot peening on corrosion fatigue behavior of aluminum alloy

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppersses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

  14. Evaluación de la capacidad de soporte de carga de recubrimientos duros depositados sobre la aleación de aluminio 7075-T6

    Moreno, E. T.

    2007-12-01

    Full Text Available In the present work, the effect of the thickness of an electroless NiP load-support interlayer coating, on the initiation and development of plastic deformation in a 7075-T6 aluminium alloy substrate coated with a duplex coating has been investigated. The duplex system has been obtained by means of the deposition of an electroless Ni-11 wt. % P (EN onto the aluminium alloy substrate, followed by the deposition of a ZrN film (PVD on top of the EN coating. The duplex systems that were investigated involved two different EN deposits, with thicknesses of 30 and 60 mm, respectively. The coatings were characterized regarding their morphology, thickness and absolute hardness. Indentation tests with spherical indenters were performed employing 6 mm diameter WC-6Co balls and normal loads of 10, 15, 25, 50 and 75 N. All the indentations were modeled by means of the Elastica 2.1. code, in order to determine the through-thickness von Mises effective stress profile of the samples and the critical load for the initiation of the plastic deformation of the aluminium alloy substrate. The experimental results have been validated by means of such a theoretical analysis. It has been determined that the duplex system with an EN interlayer of 30 mm does not constitute a satisfactory load-support interlayer, for the load values employed in the tests. However, for the coated system with an EN interlayer of 60 mm, the critical load for the initiation of plastic deformation in the aluminium alloy substrate was found to be ~ 16 N, which indicates that such a load-support interlayer avoids the plastic deformation of the substrate at normal loads less than ~ 15 N.

    En el presente trabajo se ha estudiado el efecto del espesor de una intercapa de NiP autocatalítico (EN, empleada como soporte de carga, en el inicio y desarrollo de la deformación plástica de un substrato de la aleación comercial de aluminio 7075-T6 con un recubrimiento dúplex (NiP + ZrN, cuando el

  15. Small-crack effects in high-strength aluminum alloys

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  16. The effect of steady torsion on fatigue crack growth under rotating bending loading on aluminium alloy 7075-T6

    M. da Fonte

    2014-10-01

    Full Text Available Axles and shafts are of prime importance concerning safety in the transportation industry and railway in particular. Design rules for axles and shafts are mainly based on endurance curves for the material used according to the established standards and procedures. Recently, the knowledge of fatigue crack growth under typical loading conditions of axles and shafts with rotating bending and steady torsion is being object of research and industrial studies in order to apply damage tolerance concepts, mainly for maintenance purposes. The effect of a steady torsion on fatigue crack growth under rotating bending is focused in this paper. While axles and shafts in the transportation industry are traditionally designed on steels, the need for weight reduction due to fuel economy and eco-design constraints, lightweight materials must be considered for these applications. In this study, fatigue crack growth on rotating bending axles and shafts with or without an applied steady torsion is presented. Fracture mechanics approaches are used to analyze the results based on Stress Intensity Factors developed for bending and torsion in shafts and show fatigue crack growth retardation when steady torsion is applied. Fractographic observations using SEM are presented and helped to explain the fatigue crack growth retardation observed when steady torsion is applied to rotating bending. Results are compared for the same loading conditions on steels and relevant differences on fatigue crack growth are commented.

  17. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers

    Zhou, H.R. [State Key Laboratory of Environmental Adaption for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510663 (China); Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: lixiaogang99@263.net; Ma, J. [State Key Laboratory of Environmental Adaption for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510663 (China); Dong, C.F. [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Huang, Y.Z. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2009-05-15

    The corrosion behavior of aluminum alloy 7075-T6 dependent of the thin electrolyte layers in 1 M sodium sulfate solution has been investigated using cathodic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The oxygen reduction current is measured to be maximum at -1.1 V by cathodic polarization test when the thickness of the electrolyte layer is 110 {mu}m. The EIS results show that the corrosion rate increases with the increase of the immersing time independent of thickness of the electrolyte layer although 110 {mu}m thick electrolyte layer produces the largest corrosion rate over the immersing time between 0 h and 96 h. However, with the longer immersing time, corrosion rate of the sample in bulk solution becomes higher. This result can be explained that the diffusion of the corrosion product and the metal ions from the electrode in the case of the thicker layer is easier. SEM morphologies reveal that corrosion products on the surface of the samples are distributed unhomogenously, with their amount near edges being more than the center area. In addition, XPS analysis demonstrates that corrosion products are mainly composed of Al(OH){sub 3} and Al{sub 2}(SO{sub 4}){sub 3}.

  18. Dissolution of cerium from cerium-based conversion coatings on Al 7075-T6 in 0.1 M NaCl solutions

    Highlights: ► Dissolution of cerium from cerium-based conversion coatings (CeCCs) on Al 7075-T6. ► Immersion of CeCCs in 0.1 M NaCl showed dissolution only possible at pH ⩽ 2. ► Corrosion protection of CeCCs is not provided by dissolution of cerium species. ► CeCCs corrosion protection mechanism differ from chromate-based conversion coatings. - Abstract: Cerium-based conversion coatings (CeCCs) were immersed in 0.1 M NaCl for ∼500 h over a range of pH (2.0–5.7) to investigate the dissolution of cerium species. Dissolution was detected by UV–vis spectroscopy only in the pH 2 solution. Similar cerium concentrations were detected from the dissolution of as-deposited and phosphate post-treated CeCCs. Solubility diagrams for Ce(OH)3, Ce(OH)4, CeO2, and CePO4 showed that only Ce(OH)3 was soluble in acidic conditions. Although pKsp(CePO4) ≈ pKsp(Ce(OH)3), the dissolution of the post-treated CeCCs was slightly higher than the as-deposited CeCCs. Thus, corrosion protection of CeCCs is not provided solely by dissolution of cerium species.

  19. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate

    Highlights: • LSP can greatly delay crack formation. • The micro-crack growing processes and its fracture are showed clearly. • Surface topographies and crack initiation locations are displayed. - Abstract: A series of contrasting experiments were carried out to examine the effects of laser shock processing (LSP) on fatigue properties of slot in 7075-T6 aluminum alloy plate. Both side surfaces of slot were subjected to LSP. The surface topographies were observed and the residual stresses were tested. The treated and the un-treated specimens were pulled by the fatigue cyclic loading respectively. The fatigue crack propagating processes were recorded, and the fatigue fracture microscopic morphologies were analyzed by scanning electron microscope (SEM). Experimental results and analyses show that LSP induces micro-dent on surface and squeezes the compressive residual stresses into surface layer of specimen. It can remarkably delay the micro-crack formation, and transfer the location of fatigue crack initiation from top surface to sub-surface. The spacing of fatigue striations on the treated specimen fatigue fracture obviously decreases. Therefore, the fatigue life of specimen after LSP treatment significantly increases

  20. [Microbiological corrosion of aluminum alloys].

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  1. Investigating aluminum alloy reinforced by graphene nanoflakes

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  2. Investigating aluminum alloy reinforced by graphene nanoflakes

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs

  3. Hydrogen effects in aluminum alloys

    The permeability of six commercial aluminum alloys to deuterium and tritium was determined by several techniques. Surface films inhibited permeation under most conditions; however, contact with lithium deuteride during the tests minimized the surface effects. Under these conditions phi/sub D2/ = 1.9 x 10-2 exp (--22,400/RT) cc (NTP)atm/sup --1/2/ s-1cm-1. The six alloys were also tested before, during, and after exposure to high pressure hydrogen, and no hydrogen-induced effects on the tensile properties were observed

  4. Aluminum alloy impact sparkling

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  5. Microbial corrosion of aluminum alloy.

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  6. Low-aluminum content iron-aluminum alloys

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  7. Advanced powder metallurgy aluminum alloys and composites

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  8. Materials data handbook, aluminum alloy 6061

    Sessler, J.; Weiss, V.

    1969-01-01

    Comprehensive compilation of technical data on aluminum alloy 6061 is presented in handbook form. The text includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent information required for the design and fabrication of components and equipment utilizing this alloy.

  9. Development of an environmentally benign anticorrosion coating for aluminum alloy using green pigments and organofunctional silanes

    Yin, Zhangzhang

    Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Current protection measurement employs substantial use of chromate and high VOC organics, both of which are identified as environment and health hazards. The approach of this study is to utilize a combination of organofunctional silanes and a compatible inhibitor integrated into high-performance waterborne resins. First, an extensive pigment screening has been done to find replacements for chromates using the testing methodology for fast corrosion inhibition evaluation and pigment. Zinc phosphate and calcium zinc phosphomolybdate were found to have the best overall performance on Al alloys. Some new corrosion inhibitors were synthesized by chemical methods or modified by plasma polymerization for use in the coatings. Low-VOC, chromate-free primers (superprimer) were developed using these pigments with silane and acrylic-epoxy resins. The developed superprimer demonstrated good corrosion inhibition on aluminum substrates. The functions of inhibitor and silane in the coating were investigated. Both silane and inhibitor are critical for the performance of the superprimer. Silane was found to improve the adhesion of the coating to the substrate and also facilitate corrosion prevention. Addition of zinc phosphate to the coating improved the resistance of a scratched area against corrosion. The microstructure of the acrylic-epoxy superprimer coating was studied. SEM/EDAX revealed that the superprimer has a self-assembled stratified double-layer structure which accounts for the strong anti-corrosion performance of the zinc phosphate pigment. Zinc phosphate leaches out from the coating to actively protect the scratched area. The leaching of pigment was confirmed in the ICP-MS analysis and the leaching rate was measured. Coating-metal interface and the scribe of coated panels subjected to corrosion test was studied

  10. Materials data handbook: Aluminum alloy 2219

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  11. Friction Stir Welding of Aluminum Alloys

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  12. Fast LIBS Identification of Aluminum Alloys

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  13. Fast LIBS Identification of Aluminum Alloys

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  14. [The corrosion resistance of aluminum and aluminum-based alloys studied in artificial model media].

    Zhakhangirov, A Zh; Doĭnikov, A I; Aboev, V G; Iankovskaia, T A; Karamnova, V S; Sharipov, S M

    1991-01-01

    Samples of aluminum and its alloys, designed for orthodontic employment, were exposed to 4 media simulating the properties of biologic media. The corrosion resistance of the tested alloys was assessed from the degree of aluminum migration to simulation media solutions, which was measured by the neutron activation technique. Aluminum alloy with magnesium and titanium has shown the best corrosion resistance. PMID:1799002

  15. Corrosion of aluminum alloys as a function of alloy composition

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 3600C and flow tests (approx. 20 ft/sec) in reactor process water at 1300C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 3600C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 3600C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 1500C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 500C

  16. Casting Characteristics of Aluminum Die Casting Alloys

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  17. Galvanic aspects of aluminum sacrificial anode alloys in seawater.

    Cummings, Jon Richard

    2012-01-01

    Galvanic aspects of aluminum sacrificial anode alloys in artificial seawater were investigated. Specifically, two mercury-bearing alloys and one tin-bearing alloy were studied. The polarization behavior of the aluminum sacrificial anode alloys coupled to HY-80 steel is discussed. Current versus time curves were obtained for aluminum/steel galvanic couples immersed in artificial seawater for specific intervals. Scanning elecron microscopy was used to characterize the anode dissolution patt...

  18. Etching Behavior of Aluminum Alloy Extrusions

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  19. Torsional Stability of Aluminum Alloy Seamless Tubing

    Moore, R L; Paul, D A

    1939-01-01

    Torsion tests were made on 51ST aluminum-alloy seamless tubes having diameter-to-thickness ratios of from 77 to 139 and length-to-diameter ratios of from 1 to 60. The torsional strengths developed in the tubes which failed elastically (all tubes having lengths greater than 2 to 6 times the diameter) were in most cases within 10 percent of the value indicated by the theories of Donnel, Timoshenko, and Sturm, assuming a condition of simply supported ends.

  20. Aluminum alloy nanosecond vs femtosecond laser marking

    S Rusu; A Buzaianu; D G Galusca; L Ionel; D Ursescu

    2013-11-01

    Based on the lack of consistent literature publications that analyse the effects of laser marking for traceability on various materials, the present paper proposes a study of the influence of such radiation processing on an aluminum alloy, a vastly used material base within several industry fields. For the novelty impact, femtolaser marking has been carried out, besides the standard commercial nanosecond engraving. All the marks have been analysed using profilometry, overhead and cross-section SEM microscopy, respectively and EDAX measurements.

  1. Deuterium transport and trapping in aluminum alloys

    A simple model of diffusion and evolution of the density of deuterium in metals is presented. A model of the deuterium evolution in the presence of uniform and nonuniform distributions of traps, as well as perfectly reflecting and partially permeable boundary conditions is discussed. Computers are compared with experimental results describe deuterium distribution after fatigue crack growth of 2219 and 7075 aluminum alloys in a D2O water vapor environment and after ion implantation

  2. Roll bonding of 6061 aluminum alloy plates

    The roll bonding process is an important application of the solid state welding . in principle, two or more slabs of the materials to be bonded are placed in contact and welded around the edges. then, this assembled set is heated and rolled until the required thickness is obtained. this process is applied to clad the nuclear fuel, with high strength aluminum alloys during fabrication of plate type nuclear fuel elements for research reactors, or to produce many new constructions which have special uses in industrial applications. in the present work, the steps of the hot roll bonding of 6061 aluminum alloy plates were studies by using both microscopic examination and mechanical test namely singe lap shear strength test. also the effect of reduction degree in thickness, the sequence of hot rolling , surface roughness, degassing opening length and holding time on roll bonding process were studied. the results obtained due to variations in the above parameters are discussed with respect to their effects on the roll bonding of 6061 aluminum alloy plates as well as their effects on the specifications of the fuel plates

  3. Thermal coatings for titanium-aluminum alloys

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  4. The Technological Improvements of Aluminum Alloy Coloring by Electrolysis

    LI Nai-jun

    2004-01-01

    The technological process of coloring golden-tawny on aluminum alloy by electrolysis was improved in this paper. The optimum composition of electrolyte was found, the conditions of deposition and anodic oxidation by electrolysis were studied. The oxidative membrane on aluminum alloy was satisfying, the colored aluminum alloy by electrolysis is uniformity,bright and beautiful, and the coloring by electrolysis is convenient and no pollution.

  5. The in-situ Ti alloying of aluminum alloys and its application in A356 alloys

    2005-01-01

    This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties, The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.

  6. Research progress of aluminum alloy automotive sheet and application technology

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  7. Microstructures and properties of aluminum die casting alloys

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  8. Positron annihilation observations of shot peened aluminium alloys

    Samples of two aluminium alloys, 7075 and 2024, were used to examine the damage caused by surface shot peening. The 7075 alloy was in the T6 condition, which significs solution heat treatment and artificial aging to maximum hardness. The 2024 alloy was in the T3 condition, which signifies solution heat treatment followed by cold work. 2024 - T3 is quite sensitive to positron measurements of damage when compared with 7075 - T6 alloy. The main reason for the intensitivity of the 7075 - T6 to positron measurements is very likely the presence of a fully developed state of precipitation hardening as denoted by the T6 coding. The cold work used in the T3 condition did not bring the 2024 - T3 alloy above the upper limit of detectability for positron trapping prior to peening

  9. Laser perforation of aluminum alloy sheet

    Migliore, Leonard; Nazary, George

    2010-02-01

    Recent advances in the design of gain modules for diode-pumped solid-state lasers have allowed the manufacture of high-powered Q-switched products. The high available pulse energy and good mode quality enable highly efficient harmonic conversion, enabling the generation of several hundred watts of average power at a wavelength of 532nm. Among the applications for which this class of product may be suited is the rapid drilling of small-diameter holes in aluminum sheet. To investigate this application, plates of several aluminum alloys were drilled under a variety of conditions. The drilled plates were sectioned and subjected to analysis by optical metallography. The initial results indicate ways in which the process may be optimized.

  10. An environmentally compliant cerium-based conversion coating for aluminum protection

    Lin, Xuan

    Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.

  11. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  12. Using Neural Networks to Predict the Hardness of Aluminum Alloys

    B. Zahran

    2015-02-01

    Full Text Available Aluminum alloys have gained significant industrial importance being involved in many of the light and heavy industries and especially in aerospace engineering. The mechanical properties of aluminum alloys are defined by a number of principal microstructural features. Conventional mathematical models of these properties are sometimes very complex to be analytically calculated. In this paper, a neural network model is used to predict the correlations between the hardness of aluminum alloys in relation to certain alloying elements. A backpropagation neural network is trained using a thorough dataset. The impact of certain elements is documented and an optimum structure is proposed.

  13. Processing of Aluminum Alloys Containing Displacement Reaction Products

    Stawovy, Michael Thomas

    1998-01-01

    Aluminum and metal-oxide powders were mixed using mechanical alloying. Exothermic displacement reactions could be initiated in the powders either by mechanical alloying alone or by heat treating the mechanically alloyed powders. Exponential relationships developed between the initiation time of the reaction and the mechanical alloying charge ratio. The exponential relationships were the result of changes in the intensity and quantity of collisions occurring during mechanical alloying. Di...

  14. The Role of Particles in Fatigue Crack Propagation of Aluminum Matrix Composites and Casting Aluminum Alloys

    Zhenzhong CHEN; Ping HE; Liqing CHEN

    2007-01-01

    Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high AK region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.

  15. Electrodeposition of magnesium and magnesium/aluminum alloys

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  16. Influence of the particle morphology on the Cold Gas Spray deposition behaviour of titanium on aluminum light alloys

    Highlights: ► Study of the particle–substrate and particle–particle interfaces in the cold spray process. ► Use of irregular feedstock particles whereas normally FIB studies have been undergone for spherical particles. ► Deep Transmission Electron Microscopy characterization of the interfaces and within the particle. -- Abstract: The present work evaluates the deposition behaviour of irregular titanium powder particles impinged by Cold Gas Spraying onto an aluminium 7075-T6 alloy substrate. The influence of their irregular shape on the bonding phenomena, in particle–substrate and particle–particle interfaces are discussed in view of Transmission Electron Microscopy examinations of a Focused Ion Beam lift-out prepared sample. Key aspects will be the jetting-out, the occurrence of oxide layers and grain size refinement. Different structural morphologies could be featured; at the particle–substrate interface, both the aluminium alloy and the titanium side exhibit recrystallization. Titanium particles in intimate contact in small agglomerates during deposition, on the other hand, show grain refinement at their interfaces whereas the original structure is maintained outside those boundaries

  17. Friction Pull Plug Welding in Aluminum Alloys

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  18. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  19. The development of recycle-friendly automotive aluminum alloys

    Das, Subodh K.; Green, J. A. S.; Kaufman, J. Gilbert

    2007-11-01

    The continuing growth of aluminum alloy usage in transportation applications, notably passenger automobiles and minivans, and the demonstrated economic benefits of recycling aluminum-rich vehicles increase the need to seriously consider the desirability of designing recycling-friendly alloys. This article focuses on that aspect of the recycling process for passenger vehicles. The goals are to illustrate the opportunities afforded by identifying and taking full advantage of potential metal streams in guiding the development of new alloys that use those streams. In speculating on several possible aluminum recovery practices and systems that might be used in recycling passenger vehicles, likely compositions are identified and preliminary assessments of their usefulness for direct recycling are made. Specific compositions for possible new recycle-friendly alloys are suggested. In addition, recommendations on how the aluminum enterprise, including industry, academia, and government, can work together to achieve the aggressive but important goals described here are discussed.

  20. Paint-Bonding Improvement for 2219 Aluminum Alloy

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  1. STABILITY OF THE FAST-QUENCHED ALUMINUM ALLOYS MICROSTRUCTURE

    A. S. Kalinichenko; V. A. Kalinichenko; V. S. Niss; S. V. Grigoryev

    2015-01-01

    The conducted researches of continuous stability of microstructures of the fast-quenched tapes from alloys of aluminum and chrome showed that the natural aging accompanied by discharge of stable phases is observed in copper-bearing alloys. There are no changes in microstructure in the chrome-bearing fast-chilled tapes that confirms their high temporary stability.

  2. Age hardening in beryllium-aluminum-silver alloys

    Three different alloys of beryllium-aluminum-silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight percent, Be-47.5Al-2.5Ag, Be-47Al-3Ag, and Be-46Al-4Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which separates from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatic pressing. Samples of hot isostatically pressed material were solution treated at 550 C for 1 h, followed by a water quench. Aging temperatures were 150, 175, 200, and 225 C for times ranging from half an hour to 65 h. Results indicate that peak hardness was reached in 36--40 h at 175 C and 12--16 h at 200 C aging temperature, relatively independent of alloy composition

  3. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    Highlights: • Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation in NaCl electrolyte. • The exposed carbon fibres on the side and front regions are responsible for a high cathodic current density. • The NaCl + CuSO4 electrolyte was used to investigate the cathodic polarization behaviour of the exposed carbon fibres. • Galvanic coupling behaviour between the composite and aluminium alloys (AA7075-T6 and AA1050) was measured in NaCl electrolyte. • The higher galvanic current density measured on AA1050 alloy introduced a higher dissolution rate than the AA7075-T6 alloy. - Abstract: The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO4 electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions

  4. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy

  5. China’s Aluminum Alloy Die Castings Industry has Promising Prospects

    2013-01-01

    <正>Engine aluminum alloy engine block die casting experienced rapid development in recent years. Domestic enterprises introduced large die casting machine automatic production lines, and developed large aluminum alloy die cast-

  6. Low activation R-tokamak with aluminum alloy

    An aluminum alloy system is considered as an alternative of the first phase design of the R-tokamak. The 1-D calculation showed that the radiation level outside the vacuum vessel could be reduced by a factor of 30 about half a month after a D-T shot, when the aluminum alloy system is adopted instead of a stainless steel system. The aluminum system has weak mechanical strength, is highly conductive, and shows overaging effect at a certain low temperature. Accordingly, it is necessary to overcome these points. The highly conductive aluminum case leads to considerable increase in power consumption. Various problems on the toroidal coils, the vacuum system, and the limiter were studied. The optimization of the device parameters was investigated. (Kato, T.)

  7. Characterization of 2024-T3: An aerospace aluminum alloy

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al2CuMg (S-phase) and the CuAl2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  8. Experimental study on activating welding for aluminum alloys

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  9. Comments on process of duplex coatings on aluminum alloys

    Samir H.A.; QIAN Han-cheng(钱翰城); XIA Bo-cai(夏伯才); WU Shi-ming(吴仕明)

    2004-01-01

    Despite the great achievements made in improvement of wear resistance properties of aluminum alloys,their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on aluminum alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.

  10. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  11. Superplasticity in powder metallurgy aluminum alloys and composites

    Superplasticity in powder metallurgy Al alloys and composites has been reviewed through a detailed analysis. The stress-strain curves can be put into 4 categories: classical well-behaved type, continuous strain hardening type, continuous strain softening type and complex type. The origin of these different types of is discussed. The microstructural features of the processed material and the role of strain have been reviewed. The role of increasing misorientation of low angle boundaries to high angle boundaries by lattice dislocation absorption is examined. Threshold stresses have been determined and analyzed. The parametric dependencies for superplastic flow in modified conventional aluminum alloys, mechanically alloyed alloys and Al alloy matrix composites is determined to elucidate the superplastic mechanism at high strain rates. The role of incipient melting has been analyzed. A stress exponent of 2, an activation energy equal to that for grain boundary diffusion and a grain size dependence of 2 generally describes superplastic flow in modified conventional Al alloys and mechanically alloyed alloys. The present results agree well with the predictions of grain boundary sliding models. This suggests that the mechanism of high strain rate superplasticity in the above-mentioned alloys is similar to conventional superplasticity. The shift of optimum superplastic strain rates to higher values is a consequence of microstructural refinement. The parametric dependencies for superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of superplasticity in aluminum alloy matrix composites, however, is different. A true activation energy of 313 kJ/mol best describes the composites having SiC reinforcements. The role of shape of the reinforcement (particle or whisker) and processing history is addressed. The analysis suggests that the mechanism for superplasticity in composites is interface diffusion controlled grain boundary sliding

  12. Electrorefining of aluminum alloy in ionic liquids at low temperatures

    Kamavaram V.; Mantha D.; Reddy R.G.

    2003-01-01

    The electrorefining of aluminum alloy (A360) in ionic liquids at low temperatures has been investigated. The ionic liquid electrolyte was prepared by mixing anhydrous AlCl3 and 1-Butyl-3- methylimidazolium chloride (BMIC) in appropriate proportions. The effect of the cell voltage temperature, and the composition of the electrolyte on the electrorefining process has been studied. The characterization of the deposited aluminum was performed using scanning electron microscopy (SEM) and X-ray dif...

  13. Pitting behavior of 2024 aluminum alloy in nitrate solutions

    Pitting of 2024 aluminum alloy was investigated in chloride-containing nitrate solutions. Potentiostatic and potentiokinetic experiments followed by examination of the sample surface were performed in order to relate the pitting behavior of the alloy to its microstructure. The SEM examination showed that copper-rich particles were preferential sites for pitting. These particles started dissolving during the polarization in nitrate solutions due to the agressivity of nitrate ions toward copper. In the presence of chloride ions, these particles were completely dissolved. Nitrate ions on the other hand appeared to have a very strong inhibitory effect toward pitting in the aluminum matrix. (author)

  14. Forming analysis and application for aluminum-alloy material

    Wei Yuansheng

    2012-01-01

    The increase in car ownership brought about by energy shortages, and environmental crises became more acute. The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency. In addition to that, lightweight body is the key. Aluminum, magnesium alloy as significant materials of lightweight, and the application amount in the car body is a significant upward trend. However, there is high cost of material, with im- mature applied technology and a series of bottleneck problems. All of them affect general application of lightweight mate- rials. This paper focuses on forming process issues for aluminum, magnesium alloy and the solutions to achieve.

  15. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  16. Lead induced intergranular fracture in aluminum alloy AA6262

    De Hosson, JTM

    2003-01-01

    The influence of lead on the fracture behavior of aluminum alloy AA6262 is investigated. Under certain conditions, the mode of fracture changes from transgranular microvoid coalescence to an intergranular mechanism. Three different intergranular fracture mechanisms are observed: liquid metal embritt

  17. Fracture behavior of low-density replicated aluminum alloy foams

    Amsterdam, E.; Goodall, R.; Mortensen, A.; Onck, P. R.; De Hosson, J. Th. M.

    2008-01-01

    Tensile tests have been performed on replicated aluminum alloy foams of relative density between 4.5% and 8%. During the test the electrical resistance was measured with a four-point set-up and the displacements along the gage section were measured using a digital image correlation (DIC) technique.

  18. Effects of high frequency current in welding aluminum alloy 6061

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  19. Study made of ductility limitations of aluminum-silicon alloys

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  20. Testing of 2219-T87 aluminum alloy at 40K

    The tensile and fracture properties of heavy section (1.5 inches thick) 2219-T87 plate aluminum alloy at 40K were determined. Transverse and longitudinal crack growth parameters were measured. Tensile specimens were taken at L, T, and ST orientations and tensile data is tabulated. K/sub Ic/ tests results and fatigue-crack growth data are summarized

  1. Titanium-zirconium-phosphonate hybrid film on 6061 aluminum alloy

    Shuanghong WANG; Lei WANG; Changsheng LIU

    2011-01-01

    Three titanium-zirconium-phosphonate hybrid films were formed on AA6061 aluminum alloy by immersing in fluorotitanic acid and fluorozirconic acid based solution containing different phosphonic acids for protective coatings of aluminium alloy. The corrosion resistance of three hybrid films as the substitute for chromate film were evaluated and compared. The neutral salt spray test was explored,the immersion test was conducted and electrochemical test was also executed. The hybrid films exhibited well-pleasing corrosion resistance and adhesion to epoxy resin paints. It was found out that the hybrid films could efficiently be a substitute for chromate based primer over aluminium alloy.

  2. New all aluminum alloy ultrahigh vacuum system and fittings

    The Al-ICF ALFLAT FLANGE corresponds to the ordinary stainless steel Conflat flange. The Al-ICF ALFLAT FLANGE is made of special aluminum alloy 2219-T87 by forging. It has the highest strength at elevated high temperature among all aluminum alloys as well as superior weldability and stress corrosion cracking resistivity. CrN or TiC coating on the flange surface by ion plating. The CrN or TiC treatment on the surface gave nearly protection against sticking between the knife edge of the flange and the aluminum gasket and surface scratching. Sealing surface of the knife edge for the Helicoflex is finished to a smooth mirror surface by a diamond tool. (author)

  3. System for ultra high vacuum made of aluminum alloys

    We have developed the system for ultra high vacuum made of aluminum alloys for proton and electron synchrotron. This is the first system for ultra high vacuum in which bakable metal seal flange and small diametral bellows of aluminum alloys have been put to practical use. The system consists of the flange protected by a CrN thin film and made of 2219-T87 alloy, the chamber made of 6063-T6 alloy, the aluminum metal gasket of Helico Flex and the bellows made of 5052 alloy. As a result of experiments at the National Laboratory for High Energy Physics (KEK), it had been confirmed that this system shows the special qualities of ultra high vacuum operation, resistance to hard radiation and baking and cooling operations. Up to now, this system has been widely used for the beam lines of the booster synchrotron utilization facility, K1, K2, linac, PI 1 and EP2-B extension of the KEK proton synchrotron. We investigate that this system is applicable to nuclear energy utilization facility and general vacuum apparatus. (author)

  4. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  5. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Jafari, R.; Farzaneh, M.

    2011-01-01

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon®) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a "flower-like" structure in first few minutes of immersion. And as the immersion time lengthened, a "cornflake" structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle (˜164°) and low contact angle hysteresis (˜4°).

  6. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  7. Microstructural and superplastic characteristics of friction stir processed aluminum alloys

    Charit, Indrajit

    Friction stir processing (FSP) is an adapted version of friction stir welding (FSW), which was invented at The Welding Institute (TWI), 1991. It is a promising solid state processing tool for microstructural modification at localized scale. Dynamic recrystallization occurs during FSP resulting in fine grained microstructure. The main goal of this research was to establish microstructure/superplasticity relationships in FSP aluminum alloys. Different aluminum alloys (5083 Al, 2024 Al, and Al-8.9Zn-2.6Mg-0.09Sc) were friction stir processed for investigating the effect of alloy chemistry on resulting superplasticity. Tool rotation rate and traverse speeds were controlled as the prime FSP parameters to produce different microstructures. In another study, lap joints of 7475 Al plates were also studied to explore the possibility of developing FSW/superplastic forming route. Microstructures were evaluated using optical, scanning and transmission electron microscopy, orientation imaging microscopy and differential scanning calorimetry. Mechanical properties were evaluated using tensile testing. FSP 2024 Al (3.9 mum grain size) exhibited an optimum ductility of 525% at a strain rate of 10-2 s-1 and 430°C. Grain boundary sliding mechanism was found to be the dominant mode of deformation in this alloy. In 5083 Al alloy, it was found that changing the process parameters, grain sizes in the range of 3.5--8.5 mum grain size could be obtained. Material processed with colder processing parameters showed a decrease in ductility due to microstructural instability, and followed solute drag dislocation glide mechanism. On the other hand, materials processed with hotter parameter combinations showed mode of deformation related to grain boundary sliding mechanism. FSP of as-cast Al-Zn-Mg-Sc alloy resulted in ultrafine grains (0.68 mum) with attractive combination of high strain rate and low temperature superplasticity. This also demonstrated that superplastic microstructures could be

  8. Hydrogen interactions in aluminum-lithium alloys

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  9. Hot corrosion resistance of nickel-chromium-aluminum alloys

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  10. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  11. Laser treatment of aluminum copper alloys: A mechanical enhancement

    Aluminum-copper alloys are commonly used as structural components for the car and aircraft industry. They combine low density, high strength, high fracture toughness and good machinability. Moreover, the strength and wear-resistance of the surface of alloys are improved by a high power laser beam. In this way the molten surface will be self-quenched by conduction of heat into the bulk. This technique ensures solidification velocities of 0.01--1 m/s. These high solidification velocities have a significant influence on the size and distribution of the morphology. This work concentrates on Al-Cu alloys, in which the Cu content ranges between 0--40 wt.%, and is aimed at describing the mechanical and microstructural properties of these alloys upon variation of the laser scan velocity in the range of 0.0125 to 0.125 m/s

  12. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi]+/[Al2O]+ SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H2 plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization

  13. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  14. Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap

    Sun Zhenqi; Huang Minghui

    2013-01-01

    A new type of aluminum lithium alloy (A1-Li alloy) Al-Li-S-4 was investigated by test in this paper.Alloy plate of 400 mm × 140 mm × 6 mm with single edge notch was made into samples bonded with Ti-6Al-4V alloy (Ti alloy) strap by FM 94 film adhesive after the surface was treated.Fatigue crack growth of samples was investigated under cyclic loading with stress ratio (R) of 0.1 and load amplitude constant.The results show that Al-Li alloy plate bonded with Ti alloy strap could retard fatigue crack propagation.Retardation effect is related with width and thickness of strap.Flaws have an observable effect on crack propagation direction.

  15. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  16. Cracking susceptibility of aluminum alloys during laser welding

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  17. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  18. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  19. High speed twin roll caste for aluminum alloy thin strip

    T. Haga

    2007-09-01

    Full Text Available Purpose: In the present study, effectiveness of a high-speed twin roll caster for recycling aluminum alloy was investigated.Design/methodology/approach: The effects of the high-speed twin roll caster on alleviating the deterioration of mechanical properties by impurities were investigated. Properties of the cast strip were investigated by metalography, a tension test, and a bending test.Findings: A vertical type twin roll caster for strip casting of aluminum alloys was devised. The strip, which was thinner than 3 mm, could be cast at speeds higher than 60 m/min. Features of the twin roll casters are as below. Copper rolls were used and lubricant was not used in order to increase the casting speed. A casting nozzle was used to set the solidification length precisely. Heat transfer between melt and the roll was improved by hydrostatic pressure of the melt. Separating force was very small in order to prevent sticking of the strip to the roll. Low superheat casting was carried out in order to improve microstructure of the strip. In the present study, effectiveness of a high-speed and high-cooling rate twin roll caster of the present study for recycling aluminum alloy was investigated. Fe was added as impurity to 6063 and A356. The roll caster of the present study was useful to decrease the influence of impurity of Fe.Research limitations/implications: A high-speed twin roll caster of vertical type was designed and assembled to cast aluminum alloy thin strip.Originality/value: The results demonstrate that the high-speed twin roll caster can improve the deterioration by impurities.

  20. Experimental Studies of Cold Roll Bonded Aluminum Alloys

    Lauvdal, Steinar

    2011-01-01

    This master’s thesis is based on experimental studies of the parameters influencing cold roll bonding (CRB) of the aluminum alloys AA1200 and AA3103,in the work hardened and annealed condition. The effect on the bond strength from the preparations parameters as degreasing agent, scratch brushing and exposure time for oxide growth is investigated in comparison to former studies. Further the effect of rolling speed and effect from contributing factors from the different testing methods is ...

  1. Linear Anomaly in Welded 2219-T87 Aluminum Alloy

    Jemian, Wartan A.

    1987-01-01

    Study of causes and significance of two types of linear anomalies sometimes appearing in radiographs of welds described in preliminary report. Manifested as light or dark linear features parallel to weld line in radiograph of weld. Contains diagrams and descriptions of phenomena occurring during welding process. Includes microdensitometer traces from x-radiographs of actual welds and from computer simulations based calculation of x-ray transmission through assumed weld structures. Concludes anomalies not unique to 2219-T87 aluminum alloy.

  2. Residual stress profiling of an aluminum alloy by laser ultrasonics

    PAN Yondong; QIAN Menglu; XU Weijiang; M. OURAK

    2004-01-01

    A residual-stress profile along the thickness of an aluminum alloy sheet is determined by laser-ultrasonic technique. Surface acoustic waves are generated by a Nd:YAG pulse laser and detected by a Heterodyne interferometer on a lateral free surface of the sheet. The distribution of residual stress is determined by measuring the relative variation of the wavevelocities at different location of the sample along its thickness. This technique is validated by three different residual stress profiles obtained experimentally.

  3. Residual stress in quenched 7075 aluminum alloy thick plates

    林高用; 张辉; 朱伟; 彭大暑; 梁轩; 周鸿章

    2003-01-01

    The influence of quenching water temperature, pre-stretching amount and aging temperature and times on residual stress in 7075 aluminum thick plate was studied by the measurement of residual stress using drilling hole method. The results indicate that residual stress decreases by 30% with increasing quenching water temperature from 40 ℃ to 80 ℃, 20% with increasing aging temperature from 100 ℃ to 180 ℃,and 20% with increasing aging times from 5 h to 25 h. Also, residual stress decreases to zero with increasing pre-stretching amount to approximately 2%. Hence, residual stress in 7075 aluminum thick plate is reduced by the control of quenching water temperature at 80 ℃ and with pre-stretching amount of about 2%. An optimal aging temperature and time should be systemically investigated to obtain combination of high mechanical performances and lower residual stress for manufacturing of 7075 aluminum alloy thick plates.

  4. Solidification crack susceptibility of aluminum alloy weld metals

    2006-01-01

    The susceptibilities of the three aluminum alloys to solidification crack were studied with trans-varestraint tests and tensile tests at elevated temperature. Their metallurgical characteristics, morphologies of the fractured surface and dynamic cracking behaviors at elevated temperature were analyzed with a series of micro-analysis methods. The results show that dynamic cracking models can be classified into three types. The first model has the healing effect which is called type A. The second is the one with deformation and breaking down of metal bridge, called type B. The last one is with the separation of liquid film along grain boundary, called type C.Moreover, the strain rate has different effects on crack susceptibility of aluminum alloys with different cracking models. ZL101 and 5083 alloys belong to type A and type C cracking model respectively, in which strain rate has greater effect on eutectic healing and plastic deformation of metal bridge. 6082 alloy is type B cracking model in which the strain rate has little effect on the deformation ability of the liquid film.

  5. The characteristics of aluminum-scandium alloys processed by ECAP

    Aluminum-scandium alloys were prepared having different scandium additions of 0.2, 1.0 and 2.0 wt.% and these alloys were processed by equal-channel angular pressing (ECAP) at 473 K. The results show the grain refinement of the aluminum matrix and the morphology of the Al3Sc precipitates depends strongly on the scandium concentration. The tensile properties were evaluated after ECAP by pulling to failure at initial strain rates from 1.0 x 10-3 to 1.0 x 10-1 s-1. The Al-1% Sc alloy exhibited the highest tensile strength of ∼250 MPa at a strain rate of 1.0 x 10-1 s-1. This alloy also exhibited a superior grain refinement of ∼0.4 μm after ECAP where this is attributed to a smaller initial grain size and an optimum volume fraction of dispersed Al3Sc precipitates having both micrometer and nanometer sizes.

  6. In-situ processing of aluminum nitride particle reinforced aluminum alloy composites

    Zheng, Qingjun

    Discontinuously reinforced aluminum alloy composites (DRACs) have potential applications in automotive, electronic packaging, and recreation industries. Conventional processing of DRACs is by incorporation of ceramic particles/whiskers/fibers into matrix alloys. Because of the high cost of ceramic particles, DRACs are expensive. The goal of this work was to develop a low-cost route of AlN-Al DRACs processing through bubbling and reacting nitrogen and ammonia gases with aluminum alloy melt in the temperature range of 1373--1523 K. Thermodynamic analysis of AlN-Al alloy system was performed based on Gibbs energy minimization theory. AlN is stable in aluminum, Al-Mg, Al-Si, Al-Zn, and Al-Li alloys over the whole temperature range for application and processing of DRACs. Experiments were carried out to form AlN by bubbling nitrogen and ammonia gases through aluminum, Al-Mg, and Al-Si alloy melts. Products were characterized with XRD, SEM, and EDX. The results showed that in-situ processing of AlN reinforced DRACs is technically feasible. Significant AlN was synthesized by bubbling deoxidized nitrogen and ammonia gases. When nitrogen gas was used as the nitrogen precursor, the AlN particles formed in-situ are small in size, (interface. In comparison with nitrogen gas, bubbling ammonia led to formation of AlN particles in smaller size (about 2 mum or less) at a significantly higher rate. Ammonia is not stable and dissociated into nitrogen and hydrogen at reaction temperatures. The hydrogen functions as oxygen-getter at the interface and benefits chemisorption of nitrogen, thereby promoting the formation of AlN. The overall process of AlN formation was modeled using two-film model. For nitrogen bubbling gas, the whole process is controlled by chemisorption of nitrogen molecules at the gas bubble - aluminum melt interface. For ammonia precursor, the rate of the overall process is limited by the mass transfer of nitrogen atoms in the liquid boundary layer. The models agree

  7. Hydrogen solubility in aluminum-copper alloys

    Hydrogen solubility(S (10-2 cm3g-1atm-0.5)) in Al-(0-50mass%) Cu alloys were measured by a desorption technique for the thermally gas-charged cylindrical samples which were solidified unidirectionally in the pure nitrogen gas flow (sample ND). The solubility was compared with that in samples melted and cast in vacuum (sample VM) and with that in samples melted in air and cast into a metal mould (sample AM). Since the solubility S (ND) was almost equal to S (VM), samples ND were found to have no voids of gas defects such as porosity and cavity. In the region of α-solid solution (Cuθ) and got to the higher hydrogen solubility in the θ-phase (Sθ), according to the equation S (ND) = Sα (1-fθ) + Sθfθ. S (AM) was greater than S (ND) due to the trapped hydrogen gas in the voids. In the alloy of the eutectic composition (33 mass%Cu) which had little voids, S (33AM) was smaller than S (33ND). This was attributed to anon-equilibrium or suppressed charging of hydrogen due to the trapping of hydrogen in a finer metallic structure of a sample AM. (author)

  8. Electrorefining of aluminum alloy in ionic liquids at low temperatures

    Kamavaram V.

    2003-01-01

    Full Text Available The electrorefining of aluminum alloy (A360 in ionic liquids at low temperatures has been investigated. The ionic liquid electrolyte was prepared by mixing anhydrous AlCl3 and 1-Butyl-3- methylimidazolium chloride (BMIC in appropriate proportions. The effect of the cell voltage temperature, and the composition of the electrolyte on the electrorefining process has been studied. The characterization of the deposited aluminum was performed using scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The influence of experimental parameters such as cell voltage and concentration of AlCl3 in the electrolyte on the deposit morphology was discussed. The composition of the aluminum deposits was analyzed using X-ray fluorescence spectrometer (XRF. Aluminum deposits with purity higher than 99.89 % were obtained. At a cell voltage of 1.0 V vs. Al/Al(III, the energy consumption was about 3 kWh/kg-Al. The main advantage of the process is low energy consumption compared to the existing industrial aluminum refining process.

  9. The stamping behavior of an early-aged 6061 aluminum alloy

    Highlights: → Excellent stamping performance of 6061 aluminum alloy. → Improvement of stamping behavior of 6061 aluminum alloy by early-aging. → Observation of dislocations and precipitates using Weak-Beam Dark-Field technique. -- Abstract: The stamping behavior of 6061 aluminum alloy with various conditions of early-aging is investigated in the present study. The relationship between the stamping performance, microstructure and mechanical property for this alloy is also discussed. Experimental results show that the 6061 aluminum alloy with a 10-30 min. early-aging at 160 oC will exhibit excellent stamping performance. The burnished surface of these treated alloys can reach a quite high value of 47%. Meanwhile, the mechanical strength and impact toughness have important effects on the stamping behavior of 6061 aluminum alloy. The moderate values of mechanical strength and toughness will exhibit an optimal stamping performance.

  10. Enhancement of superplastic formability in a high strength aluminum alloy

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  11. Mechanical properties of hot rolled 2519 aluminum alloy plate

    彭大暑; 陈险峰; 林启权; 张辉

    2003-01-01

    The effects of differences of temper on mechanical properties of T6, T7 and T8 plates of aluminum alloy 2519 were studied. The stress corrosion cracking(SCC) sensitivity was evaluated with parameters such as Kσ and Kδ.Tensile tests were divided into two groups: one was performed on tensile specimens without pre-corrosion, the other was performed on tensile specimens which were pre-corroded in 3.5%NaCl+1%H2O2 solution at 25 ℃.The results show that SCC resistance of alloy 2519 ranks in the order of T8>T7>T6 and the mechanical properties rank in the order of T6>T8>T7. SEM fractographs of the failed specimen show that the SCC sensitivity can be determined by the distribution of the second phase particles and size and the shape of grains in the alloy.

  12. Effects of shot peening on internal friction in CP aluminum and aluminum alloy 6008

    Flejszar, Aneta; Ludian, Tomasz; Mielczarek, Agnieszka; Riehemann, Werner; Wagner, Lothar [Clausthal Univ. of Science and Technology, Inst. of Materials Science and Technology, Clausthal-Zellerfeld (Germany)

    2009-06-15

    The strain-amplitude-dependent damping of bending beams of aluminum alloy 6008 and CP aluminum was measured at room temperature after different heat treatments and after shot peening. Shot peening led to an increase of damping in almost the whole measured amplitude strain range from 10{sup -6} to 10{sup -3} for CP aluminum. Strong ageing effects at room temperature were observed immediately after the shot peening process, namely an increase of the amplitude dependent part and a decrease of the amplitude-independent part of damping. After about 2700 h, ageing of the samples had saturated. For aluminum alloy 6008 much smaller ageing effects were found being due to compensating effects like formation of Cottrell clouds, precipitation of G.P. - zones, and the reduction of foreign atoms in solid solution. The found amplitude-dependent damping can be explained by the reversible movement of dislocations between strong pinning points like, e.g., precipitates and weak pinning points like solid solute atoms as proposed by the dislocation damping theory of Granato and Luecke. Using this model the found ageing effects can be explained by the diffusion of solid solute atoms to the dislocations. (orig.)

  13. A High-Fe Aluminum Matrix Welding Filler Metal for Hardfacing Aluminum-Silicon Alloys

    2003-01-01

    A high-Fe containing aluminum matrix filler metal for hardfacing aluminum-silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as-cast and as-welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al-Si-Fe-Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al-Si-Mg-Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper-eutectic aluminum-silicon alloy with 27% Si and 1% Ni.

  14. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  15. Dilution of molybdenum on aluminum during laser surface alloying

    Highlights: •Laser surface alloying significantly increased the solubility of transition metal. •Laser surface alloying produced dense coating with good metallurgical bonding. •Laser process parameters greatly influenced the evolution of various intermetallics. •Computationally predicted results closely matched with experimental findings. •Ability to generalize present model to other metal-transition metal systems. -- Abstract: A multiphysics based computational model was developed to predict the dilution of molybdenum (Mo) on an aluminum (Al) substrate during the laser surface alloying process. The influence of laser surface alloying processing parameters such as input energy, scanning speed, and overlapping ratio on dilution of Mo in Al was explored via computational model. The computational model, closely predicts the melt pool geometry (width and depth) that subsequently helps in estimating dilution. It was observed that the dilution increases with the increase in laser power, while it decreases with the increase in scanning speed. The phase and microstructural analyses revealed the existence of Al5Mo intermetallic for most of the laser surface alloying processing conditions. However, at higher (3.18 × 107 J/m2) and lower (1.91 × 107 J/m2) laser energy densities, the Al8Mo3 intermetallic was also evolved. These experimental observations validate the model’s predictions and points to its reliability in predicting the expected intermetallics in Al–Mo system for various laser surfacing alloying processing conditions

  16. From 2007 to 2010,China Will Manufacture More Than 10,000 Aluminum Alloy Railcars

    2007-01-01

    <正>The clear advantage of the aluminum alloy rail- cars is the weight reduction.The deadweight of the aluminum alloy railcars usually does not exceed 8.5t each.The 52 motor train units used in the sixth nationwide railway speedup are all made of aluminum alloys except for the train units used in the line between Guangzhou and Shenzhen.It is estimated that in 2010,there are more than 10,000 railcars made of aluminum alloys,which will consume about 105kt alumi- num.

  17. Effect of vapor phase corrosion inhibitor on microbial corrosion of aluminum alloys.

    Yang, S S; Ku, C H; Bor, H J; Lin, Y T

    1996-02-01

    Vapor phase corrosion inhibitors were used to investigate the antimicrobial activities and anticorrosion of aluminum alloy. Aspergillus flavus, A. niger, A. versicolor, Chaetomium globosum and Penicillium funiculosum had moderate to abundant growth on the aluminum alloy AA 1100 at Aw 0.901, while there was less growth at Aw 0.842. High humidity stimulated microbial growth and induced microbial corrosion. Dicyclohexylammonium carbonate had a high inhibitory effect on the growth of test fungi and the microbial corrosion of aluminum alloy, dicyclohexylammonium caprate and dicyclohexylammonium stearate were the next. Aluminum alloy coating with vapor phase corrosion inhibitor could prevent microbial growth and retard microbial corrosion. PMID:10592784

  18. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  19. The Effect of Impurities on the Processing of Aluminum Alloys

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  20. Bearing Strengths of Some Wrought-aluminum Alloys

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  1. Electric pulse treatment of welded joint of aluminum alloy

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  2. Comparison of recrystallization and recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys

    The recrystallization and recrystallization textures in cold-rolled direct chill cast (DC) and continuous cast (CC) AA 5182 aluminum alloys were investigated. The recrystallization behavior of cold-rolled DC and CC AA 5182 aluminum alloys was evaluated by tensile properties. The evolution of recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys was determined by X-ray diffraction. The results showed that the recrystallization temperature of cold-rolled DC AA 5182 aluminum alloy was somewhat lower than that of cold-rolled CC AA 5182 aluminum alloy. The resulting recrystallization textures of cold-rolled AA 5182 aluminum alloy were characterized by the strong R orientation and the cube orientation with strong scattering about the rolling direction towards the Goss orientation. CC AA 5182 aluminum alloy showed slightly weaker recrystallization textures than DC AA 5182 aluminum alloy

  3. Effect of Coolant Water Flow Rate on Aluminum Alloys Corrosion

    Golosov, O.A. [Institute of Nuclear Materials, Zarechny, Sverdlovsk region, 624250 (Russian Federation)

    2011-07-01

    One of the most important factors limiting a life-time of fuel elements in high-flux research reactors are a corrosion rate of fuel cladding material and a formation rate of oxide film. This study presents the results of the corrosion tests with and without irradiation. The aluminum alloys systems Al-Fe-Ni, Al-Fe-Ni-Cu-Mg and Al-Mg-Si-Cu were irradiated in the water flow of a velocity from 1.3 to 14.2m/s at 200 {sup o}C for time within 570 to 2000 hours. (author)

  4. Corrosion fatigue of 2219-T87 aluminum alloy

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  5. Corrosion damage evolution and residual strength of corroded aluminum alloys

    Youhong Zhang; Guozhi Lv; Hui Wang; Bomei Si; Yueliang Cheng

    2008-01-01

    The LY12CZ aluminum alloy specimens were eurroded under the conditions of different test temperatures and exposure durations. After corrosion exposure, fatigue tests were performed. Scanning electron microscopy and optical microscope analyses on corrosion damage were carried out. The definition of surface corrosion damage ratio was provided to describe the extent of surface corrosion damage. On the basis of the measured data sets of the corrosion damage ratio, the probabilistic model of corrosion damage evolution was built. The corrosion damage decreased the fatigue life by a factor of about 1.25 to 2.38 and the prediction method of residual strength of the corroded structure was presented.

  6. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  7. Rheo-diecasting Process for Semi-solid Aluminum Alloys

    2007-01-01

    A novel one-step semisolid processing technique, the rheo-diecasting (RDC) process, was developed, which adapts in situ creation of semisolid metal slurry with fine and spherical solid particles followed by direct shaping of the slurry into a near-net shape component using the existing cold chamber diecasting process. The RDC process was applied to process A356 and A380 aluminum alloys. The resulting microstructures and mechanical properties of RDC products under as-cast and various heat treatment conditions were analyzed. The experimental results show that the RDC samples have an extremely low porosity, a fine and uniform microstructure throughout entire casting, and consequently much improved strength and ductility in the as-cast condition. The strength of RDC A356 alloy can be substantially improved under T5 and T6 heat treatments without loss of ductility.

  8. Material and information flows pertaining to aluminum alloy pipe distribution

    D. Simić

    2013-10-01

    Full Text Available This paper discusses the distribution flow of aluminum (Al alloy pipes, starting with the completion of the manufacturing process and final inspection. The proposed solution considers the use of bar-coded caps produced from recycled polymer materials that are placed on the ends of the tubes in order to achieve protection against potential changes in material properties and preserve the product quality. For the preparation of capped tube bundles for shipment from the manufacturer output storage to the customer input warehouse, a technical solution that enables correct and efficient Al alloy pipe handling is proposed, in terms of safety, security, reliability, financial feasibility and ecological viability, with optimal utilization of transport and storage.

  9. A Rare Earth High-iron Aluminum Alloy Cable Company to Settle in Chongqing

    2014-01-01

    <正>On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with

  10. Contrasting LME in aluminum and nickel alloys, with overtones to SCC

    The susceptibility of Alloys 400, 600, 200 and 800 to liquid metal embrittlement (LME), hydrogen embrittlement and stress corrosion cracking are in that order (most to least). Correlations exist, too, in the cracking mode, intergranular or transgranular. Accordingly, understanding LME and LME tests have potential uses in alloy development and screening. The use of a quick indentation test for LME is described that worked admirably for aluminum alloys but did not work for nickel-base alloys. The problem is that LME is strain rate sensitive in nickel alloys but not in aluminum alloys. This is believed to be a wetting issue

  11. The use of surface modification techniques for the corrosion protection of aluminum and aluminum alloys

    Surface modification techniques such as ion beam assisted deposition (IBAD) and radio frequency plasma enhanced chemical vapor deposition (PECVD) offer a means to produce surfaces with unique and improved properties. This paper reviews the advantages of the IBAD and PECVD processes and discusses the preparation and pitting corrosion behavior of IBAD modified aluminum surfaces and PECVD coatings on a 7075 aluminum alloy. Pitting potential values for the base materials and for the base materials with silicon nitride IBAD, tantalum oxide IBAD, or PECVD diamond-like carbon coatings were determined in deaerated 0.1M NaCl solutions. The thickness of the modified region ranged from 0.01 to 5.0 microm. All three coatings improved the resistance to pit initiation

  12. Single-aging characteristics of 7055 aluminum alloy

    WANG Tao; YIN Zhi-min; SHEN Kai; LI Jie; HUANG ji-wu

    2007-01-01

    The microstructures and properties of 7055 aluminum alloy were studied at different single-aging for up to 48 h using hardness test, tensile test, electrical conductivity measurement, XRD and TEM microstructure analysis. The results show that at the early stage of aging, the hardness and strength of the alloy increase rapidly, the peak hardness and strength are approached after 120 ℃ aging for 4 h, then maintained at a high level for a long time. The suitable single-aging treatment of 7055 alloy is 480 ℃, 1 h solution treatment and water quenching, then aging at 120 ℃ for 24 h. Under those condition, the tensile strength, yield strength, elongation and electrical conductivity of the studied alloy are 513 MPa, 462 MPa, 9.5% and 29%(IACS), respectively. During aging, the solid solution decomposes and precipitation occurs. At the early aging stage of 120 ℃, GP zones form and then grow up gradually with increasing ageing time. η' phase forms after ageing for 4 h and η phase starts to occur after 24 h aging.

  13. Retention and release of tritium in aluminum clad, Al-Li alloys

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6Li(n,α)3He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  14. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  15. Interfacial study of semi-solid aluminum alloy and stainless steel sheathed extrusion

    LIU Hong-wei; GUO Cheng; LIU Xu-feng; SHAO Guang-jie

    2006-01-01

    Using sheathed extrusion technique, the bonding and forming of semi solid aluminum alloy with stainless steel sheath are successfully realized. The relationship between the interfacial shear strength and the solid fraction of semi solid aluminum alloy at different extrusion ratios is analyzed; the interfacial and fracture structure of the sheath material are studied by optical microscopy(OM) and scanning electric microscopy(SEM). The result shows that interfacial shear strength increases with the increase of extrusion ratio, the maximum value of the interfacial shear strength is obtained when solid fraction of aluminum alloy is 30%,solid phase and liquid phase of the semi solid aluminum alloy are bonded with stainless steel by turns along the interface, and the aluminum alloy can not be peeled from the stainless steel completely, which means nicer bonding occurs at the interface.

  16. Flexural-torsional buckling behavior of aluminum alloy beams

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  17. Stress corrosion cracking susceptibility of 7A52 aluminum alloy

    ZHAO Jun-jun; WANG Wei-xin; CAI Zhi-hai; ZHANG Ping

    2006-01-01

    The stress corrosion sensitivity of 7A52 aluminum alloy was investigated in the artificial sea water through slow stain rate test(SSRT). The stress corrosion cracking(SCC) susceptibility was estimated with the loss of elongation and stress corrosion sensitivity index. The results show that the susceptibility of 7A52 aluminum alloy is always high when the strain rate is in the range of 10-5-10-7s-1. It reaches the maximum at the strain rate of 8.7×10-7s-1, and the sensitivity index reaches 0.346. The characteristics of stress corrosion can be observed clearly on the fracture of tensile specimen. The process of SCC is depicted according to the fracture morphology. The SCC initiates at the edge of the specimen. Then the SCC grows rapidly because of the anode dissolving and stress concentration. When the area of specimen cannot support the tensile stress, it ruptures suddenly. The secondary cracks and quasi-cleavage surface can be found on the fracture morphology.susceptibility

  18. and Carbon Fiber Reinforced 2024 Aluminum Alloy Composites

    Kaczmar, Jacek W.; Naplocha, Krzysztof; Morgiel, Jerzy

    2014-08-01

    The microstructure and mechanical properties of 2024 aluminum alloy composite materials strengthened with Al2O3 Saffil fibers or together with addition of carbon fibers were investigated. The fibers were stabilized in the preform with silica binder strengthened by further heat treatment. The preforms with 80-90% porosity were infiltrated by direct squeeze casting method. The microstructure of the as-cast specimens consisted mainly of α-dendrites with intermetallic compounds precipitated at their boundaries. The homogenization treatment of the composite materials substituted silica binder with a mixture of the Θ phase and silicon precipitates distributed in the remnants of SiO2 amorphous phase. Outside of this area at the binder/matrix interface, fine MgO precipitates were also present. At surface of C fibers, a small amount of fine Al3C4 carbides were formed. During pressure infiltration of preforms containing carbon fibers under oxygen carrying atmosphere, C fibers can burn releasing gasses and causing cracks initiated by thermal stress. The examination of tensile and bending strength showed that reinforcing of aluminum matrix with 10-20% fibers improved investigated properties in the entire temperature range. The largest increase in relation to unreinforced alloy was observed for composite materials examined at the temperature of 300 °C. Substituting Al2O3 Saffil fibers with carbon fibers leads to better wear resistance at dry condition with no relevant effect on strength properties.

  19. Investigation of Corrosion Behavior Of 6013 Aluminum Alloys For Artificial Aged Microwave Furnace

    Muzaffer Erdoğan

    2014-01-01

    Full Text Available Low density and high strength aluminum alloys can be achieved today is a type of an alloy. These alloys are more resistant, particularly the aging process is the precipitate formed. In this study, increased strength 6013 aluminum alloy in a microwave furnace yaşlandırarak artificial. Volume samples in a microwave oven aging method and aging has provided a homogeneous way.6013 aluminum alloys, pure argon gas atmosphere in a microwave furnace hardness after being subjected to artificial aging process analysis, the internal structure (optical microscope, SEM, characterization of the studied. Aging of the phases, the presence server in the XRD of the samples was determined by curves. Corrosion of artificial aged samples has been analyzed by the internal structure of the phases present. Depending on the time of artificial aging of aluminum alloy 6013 samples in a microwave furnace in the mechanical properties of the sediment affected the corrosion resistance values.

  20. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  1. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-03-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  2. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  3. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. PMID:26964943

  4. Surface properties of aluminum alloy as material for ultrahigh vacuum

    The characteristics of aluminum alloy (2017 alloy) for the vacuum chambers of TRISTAN were studied. Machining, electric discharge machining and chemical polishing were made successively on the samples of the 2017 alloy. The observation of surface state, the analysis of surface composition and high temperature desorption experiment were performed. The measurement of surface roughness with a probe, the observation with a scanning electron microscope (SEM), and the measurement of surface roughness factor (SRF) were carried out as the study of the surface state. The analysis of surface composition was made by the Auger electron spectrometry. It was found that the surfaces of samples treated by discharge machining were rough and have thick oxide layer. When chemical polishing was applied to these samples, the surfaces became smooth, and the oxide layer became thin. By heating the samples to raise the temperature, the desorption of H2O, CO and CO2 was caused. The amount of desorption was in close relation with the SRF. (Kato, T.)

  5. Corrosion of aluminum alloys in ocean thermal energy conversion seawaters

    Aluminum alloys 5052, 3004, and Alclad 3003 and 3004 were exposed to flowing seawater at 2.44 m/s (8 fps) at the Seacoast Test Facility on Hawaii. One year data for warm surface water and three mouth data for cold water from 600 m depth are reported for free fouling, chlorinated and sponge ball cleaned conditions. All alloys pit in deep seawater, but show no pitting in warm surface water. Uniform corrosion in the warm water is initially rapid, but after 25 to 30 days the rate becomes slower and extrapolated 30 year material losses are in the 125 to 215 μm range. Chlorination at a level of 0.05 ppm for one hour per day has only a minor effect on corrosion rates, while sponge ball cleaning leads to erosion-corrosion of the Alclad surfaces and has no effect on alloy 5052. The need for additional testing in tropical seawater is discussed, as is the need for an improved understanding of the formation of inorganic scale films, their properties, and their effect on corrosion rates and heat transfer

  6. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  7. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle int

  8. Effect of aging on the corrosion of aluminum alloy 6061

    Not only alloying additions may affect the corrosion resistance of aluminum alloys, but also practices that result in a nonuniform microstructure may introduce susceptibility to some forms of corrosion, especially if the microstructural effect is localized. This work was intended to study the effect of aging time at 225, 185 and 140 degree C and the effect of constant aging time ( 24 hrs ) in the temperature range 100 - 450 degree C as well as the influence of the solution ph on the corrosion characteristics of 6061 aluminum alloy, (Al-Mg-Si alloy) containing 0.22 wt% Cu. The investigation was performed by standard immersion corrosion test according to the British Standard BS 11846 method B and by applying potentiodynamic polarization technique in neutral deaerated 0.5 % M NaCl solution as well as in alkaline NaOH solution (ph = 10). The susceptibility to corrosion and the dominant corrosion type was evaluated by examination of transverse cross sections of corroded samples after the immersion test and examination of the corroded surfaces after potentiodynamic polarization using optical microscope. Analysis of the polarization curves was used to determine the effect of different aging parameters on corrosion characteristics such as the corrosion current density I (corr), the corrosion potential E (corr), the cathodic current densities and the passivation behavior.Results of the immersion test showed susceptibility to intergranular corrosion in the under aged tempers while pitting was the dominant corrosion mode for the over aged tempers after aging at 225 and 185 degree C.Analysis of the potentiodynamic polarization curves showed similar dependence of I (corr) and cathodic current densities on the aging treatment in the neutral 0.5 %M NaCl solution and in the alkaline NaOH solution. It was observed that E(corr) values in the NaCl solution were shifted in the more noble direction for the specimens aged before peak aging while it decreased again with aging time for

  9. Standard guide for conducting exfoliation corrosion tests in aluminum alloys

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure

    LIU Gang; WANG Li-liang; YUAN Shi-jian; WANG Zhong-ren

    2006-01-01

    In order to investigate the influence of hydrostatic pressure on compression limit of the ring, numerical simulation and experimental research were carried out. The effect of hydrostatic pressure on the deformation of aluminum alloy 7075 ring was obtained by numerical simulation. The die set for compressing ring under high hydrostatic pressure was designed and manufactured. Experimental results show that the compression limit increases linearly as the hydrostatic pressure increases in a certain range. At 100 MPa the maximum compressive strain is increased by 32.42%. At strain limit, the cracks initiate from the corner of the outer wall to the middle of the inner wall along the direction of the maximum shear stress.

  11. Amorphous coatings deposited on aluminum alloy by plasma electrolytic oxidation

    GUAN Yong-jun; XIA Yuan

    2005-01-01

    Amorphous [Al-Si-O] coatings were deposited on aluminum alloy by plasma electrolytic oxidation (PEO). The process parameters, composition, micrograph, and mechanical property of PEO amorphous coatings were investigated. It is found that the growth rate of PEO coatings reaches 4.44 μm/min if the current density is 0.9 mA/mm2. XRD results show that the PEO coatings are amorphous in the current density range of 0.3 - 0.9mA/mm2. EDS results show that the coatings are composed of O, Si and Al elements. SEM results show that the coatings are porous. Nano indentation results show that the hardness of the coatings is about 3 - 4 times of that of the substrate, while the elastic modulus is about the same with the substrate. Furthermore, a formation mechanism of amorphous PEO coatings was proposed.

  12. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  13. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  14. Microstructure and properties of vacuum counter-pressure cast aluminum alloy

    YAN Qing-song

    2006-05-01

    Full Text Available The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum counter-pressure cast aluminum alloy are improved significantly.

  15. Effects of zincate treatment on adhesion of electroless Ni-P coating onto various aluminum alloys

    Makoto HINO; Koji MURAKAMI; Yutaka MITOOKA; Ken MURAOKA; Teruto KANADANI

    2009-01-01

    The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined. Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element. The zinc deposits in the 2nd zincate treatment became thinly uniform, and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element. XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid. This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.

  16. Kinetic characterization and of recrystallization of the aluminum alloy 6063 after S work hardening treatment

    The aluminum 6063 alloy possesses a great industrial interest, presenting characteristics that justify its frequent use, when compared to the other aluminum alloys: the precipitation hardening and high cold work capacity. These alloys present high ductility, that allows their use in operations with high deformation degrees, as the cold work. The objective of this work is to show comparative analysis of the hardness Vickers of the commercial aluminum 6063 alloy, after cold work with different area reduction degree and thermal treatment. Considering the frequent utilization aluminium 6063 alloy, this work studies the characterization and recrystallization of this alloy, after the plastic deformation in different area reduction degrees, thermal treatment and convenient treatment times - Thermo mechanic Treatments. (author)

  17. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  18. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  19. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    Atef Korchef; Abdelkrim Kahoul

    2013-01-01

    A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP). The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared wit...

  20. In-plane anisotropy of 1545 aluminum alloy sheet

    PENG Yong-yi; YIN Zhi-min; YANG Jin; DU Yu-xuan

    2005-01-01

    The microstructures and the tensile mechanical properties in the rolling plane of 1545 aluminum alloy sheet at different orientations with respect to the rolling direction were studied by means of tensile test,X-ray diffractometer(XRD),optical microscope and transmission electron microscope.The in-plane anisotropy of tensile mechanical properties was calculated and the inverse pole figures of the rolling plane,transversal section and longitudinal section were obtained by Harris method.The results show that the 1545 Al alloy sheet has remarkable in-plane anisotropy of mechanical properties and the main texture component is{110}texture.On the basis of the model that regards the sheet containing only{110}texture as a monocrystal,the relationship of in-plane anisotropy and the anisotropy of crystallography was analyzed.The study shows that it is the combined effects of the anisotropy of crystallography and microstructures that cause the in-plane anisotropy of mechanical properties,but the main cause is the crystallographic texture.

  1. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements. PMID:24655476

  2. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-14

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10{sup −5}–7.2 × 10{sup −3}, which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10{sup 21} m{sup −3}–2.6 × 10{sup 22} m{sup −3}. - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured.

  3. Some properties of aluminum-uranium alloys in the cast, rolled and annealed conditions

    The metallographic and hardness changes associated with the rolling and subsequent. annealing of aluminum alloys containing up to 30-wt.% uranium have been described. The alloys possessed good rolling properties. However the richer alloys were unusual in that after an initial reduction,, further cold rolling caused softening. In the alloy range examined, increasing uranium contents caused reduced preferred orientation. Qualitative explanations have been proposed to account for the observations on roll softening and preferred orientation. Heat-treating and ageing experiments confirmed that the solid solubility of uranium in aluminum is negligible. (author)

  4. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  5. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated

  6. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  7. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior

    Feng, Libang; Yan, Zhongna; Qiang, Xiaohu; Liu, Yanhua; Wang, Yanping

    2016-03-01

    Superhydrophobic surface with excellent corrosion resistance was prepared on aluminum alloy via boiling water treatment and surface modification with stearic acid. Results suggested that the micro- and nanoscale hierarchical structure along with the hydrophobic chemical composition surface confers the aluminum alloy surface with good superhydrophobicity, and the water contact angle and the water sliding angle can reach 156.6° and 3°, respectively. The corrosion resistance of the superhydrophobic aluminum alloy was first characterized by potentiodynamic polarization, and then the long-term corrosion resistance was investigated by immersing the sample in NaCl solution for 90 days. The surface wettability, morphology, and composition before and after immersion were examined, and results showed that the superhydrophobic aluminum alloy surface possessed good corrosion resistance under the experimental conditions, which is favorable for its practical application as an engineering material in seawater corrosion conditions. Finally, the mechanism of the superhydrophobicity and excellent corrosion resistance is deduced.

  8. Computational Modeling aided Near Net Shape Manufacturing for Aluminum Alloys Project

    National Aeronautics and Space Administration — This program will focus on developing and validating computational models for near-net shape processing of aluminum alloys. Computational models will be developed...

  9. Fracture toughness and mechanical properties of aluminum alloys for research reactors

    Aluminum alloys have been used as the structural material of the research reactor or because of their good properties for corrosion resistance and machinability as well as high neutron economy. In order to respond to the needs to maintain the aged core structure and to utilize for the high performance research reactor, irradiation test of aluminum alloys were initiated to provide the data base on the toughness and strength of aluminum alloys aged under research reactor condition. This report describes the results of tensile test, hardness test, Charpy impact test and fracture toughness test on A5052-O and A6061-T6 aluminum alloys under the unirradiated condition. From those tests, it was found that base metal of A5052-O has the highest toughness, welded joints of A5052-O and A6061-T6 is equivalent and have medium toughness, and base metal of A6061-T651 has very low toughness. (author)

  10. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures Project

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products ? Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  11. Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy

    The evolution of recrystallization textures in cold rolled AA 5182 aluminum alloy was investigated by X-ray diffraction. The transformation kinetics of recrystallization textures during isothermal annealing was quantified by using an Avrami type equation

  12. Quantification of recrystallization texture evolution in cold rolled AA 5182 aluminum alloy

    Liu, W.C.; Zhai, T.; Man, C.-S.; Morris, J.G

    2003-09-15

    The evolution of recrystallization textures in cold rolled AA 5182 aluminum alloy was investigated by X-ray diffraction. The transformation kinetics of recrystallization textures during isothermal annealing was quantified by using an Avrami type equation.

  13. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  14. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance. PMID:17898459

  15. Corrosion Damage of Aluminum Alloy in Unsymmetric Uimethyl Hydrazine and Dinitrogen Tetroxide Liquid Propellant

    Zhang Youhong

    2016-01-01

    Full Text Available The high strength aluminum alloy double cantilever beam (DCB specimens were corroded under the conditions of different liquid propellant environment. After the stress corrosion exposure, the scanning electron microscopy and energy-dispersal analyses on corrosion damage were carried out. The corrosion damage sensitivity and the stress corrosion character of the LD10 high strength aluminum alloy in N2O4, UDMH and 3.5% NaCl corrosion solution were analyzed.

  16. Microstructure and properties of vacuum counter-pressure cast aluminum alloy

    YAN Qing-song; Yu, Huan; WEI Bo-kang

    2006-01-01

    The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum co...

  17. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  18. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  19. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  20. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  1. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  2. The Electrical and Mechanical Properties of Porous Anodic 6061-T6 Aluminum Alloy Oxide Film

    Tsung-Chieh Cheng; Chu-Chiang Chou

    2015-01-01

    The properties of the growth of the 6061-T6 aluminum alloy oxide were studied using sulfuric acid anodization. The parameters for the manufacturing process include electrolyte categories, electrolyte concentration, and operating voltages. The results showed that the aluminum oxides obtained by anodization process are mainly amorphous structure and the anodic current density is an important factor affecting the rate of response for oxygen and aluminum ions in barrier. In this experiment, polis...

  3. Cryogenic properties of aluminum and aluminum alloys (citations from the NTIS data base). Report for 1964--Mar 1976

    Citations of Federally-funded research include studies on the cryogenic properties of aluminum and its alloys used in superconducting machinery, magnets, space technology and nuclear reactors. Electrical properties, fatigue, deformation and welds are included. (This updated bibliography contains 88 abstracts, 18 of which are new entries to the previous edition.)

  4. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy

    Long He; Ye-Fa Tan; Xiao-Long Wang; Qi-Feng Jing; Xiang Hong

    2015-01-01

    To improve the wear resistance of aluminum alloy frictional parts,TiB2 particles reinforced Ni-base alloy composite coatings were prepared on aluminum alloy 7005 by laser cladding.The microstructure and tribological properties of the composite coatings were investigated.The results show that the composite coating contains the phases of NiAl,Ni3Al,Al3Ni2,TiB2,TiB,TiC,CrB,and Cr23C6.Its microhardness is HV0.5 855.8,which is 15.4 % higher than that of the Ni-base alloy coating and is 6.7 times as high as that of the aluminum alloy.The friction coefficients of the composite coatings are reduced by 6.8 %-21.6 % and 13.2 %-32.4 % compared with those of the Ni-base alloy coatings and the aluminum alloys,while the wear losses are 27.4 %-43.2 % less than those of the Ni-base alloy coatings and are only 16.5 %-32.7 % of those of the aluminum alloys at different loads.At the light loads ranging from 3 to 6 N,the calculated maximum contact stress is smaller than the elastic limit contact stress.The wear mechanism of the composite coatings is micro-cutting wear,but changes into multi-plastic deformation wear at 9 N due to the higher calculated maximum contact stress than the elastic limit contact stress.As the loads increase to 12 N,the calculated flash temperature rises to 332.1 ℃.The composite coating experiences multi-plastic deformation wear,micro-brittle fracture wear,and oxidative wear.

  5. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  6. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  7. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly

  8. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  9. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic

  10. Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    Mile B. Djurdjević

    2013-01-01

    Full Text Available The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influence of any alloying element on the liquidus temperature of an aluminum and/or magnesium alloy can be translated into the equivalent influence of a reference element. Silicon as a reference element has been chosen for aluminum alloys and aluminum for magnesium alloys. The sum of the equivalent concentrations for other elements, when added to the influence of the actual reference element is used to calculate the liquidus temperature of the alloy. The calculated liquidus temperatures for wide ranges of alloy chemical compositions show a good correlation with corresponding measured liquidus temperatures.

  11. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    Atef Korchef

    2013-01-01

    Full Text Available A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP. The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared with those of the nonpressed alloy. ECAP leads to an intensive grain refinement accompanied by an increased dislocation density. All electrochemical tests confirm that corrosion resistance of the alloy remarkably diminished with increasing the ECAP number of passes. This is presumably due to the breakdown of the α-AlFeSi after ECAP leading to higher number of galvanic cells and enhanced dissolution of the aluminum matrix.

  12. Heat treatment of Aluminum bronze, alloyed with Iron and Nickel, investigation on the structure and hardness

    Full text: The present study describes the changes after the heat treatment on the microstructure and hardness of copper-aluminum alloys, additionally alloyed with Fe and Ni. The influence of these elements provokes changes in the microstructure of the alloys, which is largely determined by its presence in the composition and by the different heat treatment regimes. Investigations were made in the case that the content of the additional alloying elements is fixed on 3%. Data will be obtained for changes in the structure and hardness of the specimens as a result of the heat treatment, as these characteristics are changed in the cases of alloying with Fe and Ni. key words: Copper-aluminum alloys, heat treatment, microstructure

  13. Roping in 6111 aluminum alloys with various iron contents

    Jin, H. [Novelis Global Technology Centre, Novelis Inc., P.O. Box 8400, Kingston, Ont., K7L 5L9 (Canada)]. E-mail: haiou.jin@novelis.com; Lloyd, D.J. [Novelis Global Technology Centre, Novelis Inc., P.O. Box 8400, Kingston, Ont., K7L 5L9 (Canada)

    2005-08-25

    The development of surface roughness and roping after straining and its correlation with grain size and texture were investigated in AA6111 aluminum alloys with various Fe contents, using optical microscopy, scanning electron microscopy (SEM), electron back scatter diffraction (EBSD) in SEM, X-ray diffraction, and 3D non-contact profilometry. It has been demonstrated that the spatial distribution of texture components is a critical factor for roping. When the {l_brace}0 0 1{r_brace}<1 0 0> (cube) and {l_brace}0 1 1{r_brace}<1 0 0> (Goss) texture components are banded along the rolling direction (RD) and alternately distributed in the transverse direction (TD), intensive roping develops when the sheet is stretched in the TD regardless of grain size. During rolling the cube and Goss are metastable orientations in AA6111 and form cube and Goss bands along the RD. These bands are the preferred nucleation sites for recrystallization, resulting in the banded structure being retained in the final solutionised sheet. Increasing the Fe content leads to a finer grain size and lower strain induced surface roughness, but roping is insensitive to the Fe content and simply dependent on the degree of cold rolling prior to solutionising.

  14. Rheological behavior of continuous roll casting process of aluminum alloy

    ZHAN Li-hua; ZHONG Jue; LI Xiao-qian; HUANG Ming-hui

    2005-01-01

    The rheological behavior of aluminum alloy and its influencing factors in physical simulation of continuous roll casting process were studied by using a Gleeble-1500 thermal-mechanical simulation tester with a set of special clamp system. The relationships between the flow stress and the strain rate in the deformation process of simulating roll casting experiment were obtained. The results show that four different characteristic stages exist in the temperature range of the whole rheological process. The first occurs when the temperature is higher than 600℃, which belongs to the creep deformation stage; the second occurs when the temperature lies in the range of 500-600℃, and it can be regarded as the high temperature and low stress level deformation stage; the third occurs when the temperature decreases to the range of 300-500℃, it is considered to be the middle stress level deformation stage; the last occurs when the temperature is less than 300℃ and the strain rate is less than 1.00 s -1, it belongs to middle stress level deformation stage. But when the strain rate is larger than 1.00 s -1, it belongs to the high stress level deformation stage. And the relative constitutive models suitable for the four different stages of continuous roll casting process were established through multivariate linear regression analysis of the experimental data.

  15. Roping in 6111 aluminum alloys with various iron contents

    The development of surface roughness and roping after straining and its correlation with grain size and texture were investigated in AA6111 aluminum alloys with various Fe contents, using optical microscopy, scanning electron microscopy (SEM), electron back scatter diffraction (EBSD) in SEM, X-ray diffraction, and 3D non-contact profilometry. It has been demonstrated that the spatial distribution of texture components is a critical factor for roping. When the {0 0 1} (cube) and {0 1 1} (Goss) texture components are banded along the rolling direction (RD) and alternately distributed in the transverse direction (TD), intensive roping develops when the sheet is stretched in the TD regardless of grain size. During rolling the cube and Goss are metastable orientations in AA6111 and form cube and Goss bands along the RD. These bands are the preferred nucleation sites for recrystallization, resulting in the banded structure being retained in the final solutionised sheet. Increasing the Fe content leads to a finer grain size and lower strain induced surface roughness, but roping is insensitive to the Fe content and simply dependent on the degree of cold rolling prior to solutionising

  16. Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219

    Brice, Craig A.; Dennis, Noah

    2015-05-01

    Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.

  17. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  18. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  19. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel

    Nazari, K.A. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Shabestari, S.G. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of)], E-mail: shabestari@iust.ac.ir

    2009-06-10

    The morphology and growth kinetics of intermetallic compounds that are formed in the interface of H13 tool steel and A380 molten aluminum has been investigated through immersion experiments. The effect of addition of micro alloying elements to the melt on the formation and thickness of intermetallic layer was also studied. Microstructural investigation showed that three intermetallic layers formed through the liquid-solid reaction during immersion of steel samples in the liquid aluminum at a temperature of 680 deg. C for the duration time of 2 min to 2.5 h. These intermetallic compounds are Al{sub 8}Fe{sub 2}Si, Al{sub 5}FeSi and Al{sub 12}Fe{sub 5}Si. The effect of nitride coating of the surface of H13 steel on the growth of intermetallic phases has also been studied. Micro alloying elements such as strontium and titanium have been used in the melt and their effects on the morphology of intermetallic compound and their growth rate have been investigated by the immersion experiments at the temperature of 680 deg. C for the time of 0.5-2.5 h. The results showed that two layers of Al{sub 8}Fe{sub 2}Si and Al{sub 5}FeSi formed at the interface and Al{sub 12}Fe{sub 5}Si layer was not observed. Nitride coating decreased the overall thickness of the intermetallic layer about 50% after immersion time of 0.5 h. Addition of micro alloying elements such as Sr (0.05 wt%) and Ti (0.2 wt%) to the melt decreased the total thickness of the intermetallic layer about 31% after immersion of steel for 0.5 h in the melt. Both nitride coating and addition of strontium (0.05 wt%) and titanium (0.2 wt%) micro alloying elements to the melt had the most influence on decreasing the overall thickness of the intermetallic layer. The thickness of the intermetallic layer decreased about 60% after immersion of steel for 2.5 h in the aluminum melt. The experimental results clearly indicate the beneficial effect of strontium on the kinetics of the formation and growth of the intermetallic layers.

  20. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel

    The morphology and growth kinetics of intermetallic compounds that are formed in the interface of H13 tool steel and A380 molten aluminum has been investigated through immersion experiments. The effect of addition of micro alloying elements to the melt on the formation and thickness of intermetallic layer was also studied. Microstructural investigation showed that three intermetallic layers formed through the liquid-solid reaction during immersion of steel samples in the liquid aluminum at a temperature of 680 deg. C for the duration time of 2 min to 2.5 h. These intermetallic compounds are Al8Fe2Si, Al5FeSi and Al12Fe5Si. The effect of nitride coating of the surface of H13 steel on the growth of intermetallic phases has also been studied. Micro alloying elements such as strontium and titanium have been used in the melt and their effects on the morphology of intermetallic compound and their growth rate have been investigated by the immersion experiments at the temperature of 680 deg. C for the time of 0.5-2.5 h. The results showed that two layers of Al8Fe2Si and Al5FeSi formed at the interface and Al12Fe5Si layer was not observed. Nitride coating decreased the overall thickness of the intermetallic layer about 50% after immersion time of 0.5 h. Addition of micro alloying elements such as Sr (0.05 wt%) and Ti (0.2 wt%) to the melt decreased the total thickness of the intermetallic layer about 31% after immersion of steel for 0.5 h in the melt. Both nitride coating and addition of strontium (0.05 wt%) and titanium (0.2 wt%) micro alloying elements to the melt had the most influence on decreasing the overall thickness of the intermetallic layer. The thickness of the intermetallic layer decreased about 60% after immersion of steel for 2.5 h in the aluminum melt. The experimental results clearly indicate the beneficial effect of strontium on the kinetics of the formation and growth of the intermetallic layers.

  1. Effect of Zr addition on fracture toughness of 2048 high strength aluminum alloy

    The effect of replacing grain refining element Mn by Zr on fracture toughness of 2048 aluminum alloys was investigated. Fracture toughness changed by Zr replacement was analyed as follows. 1. Quantity of large inclusions gave a primary effect on fracture toughness when grain size and material strength level were kept constant. 2. Dispersoids of Mn compounds were rod shape and 1.0μm in length, while those of Zr compound, Al3Zr were spherical and 0.1μm in diameter. Dispersoids of Zr compounds, Al3Zr were better than those of Mn compounds for improving fracture toughness. 3. Experimentally proved the effects of dispersoids change on fracture toughness of aluminum alloy 2048 when other metallurgical factors -grain size, inclusion, strength level- were kept constant. Zr bearing modified 2048 aluminum aiioy showed 5% improvement in yield strength and 50% in toughness compared with those of Mn bearing conventional 2048 aluminum alloy. (Author)

  2. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  3. Influence of Shot Peening on Failure of an Aluminum Alloy Exposed to Aggressive Aqueous Environments

    Lv, Shengli; Cu, You; Zhang, Wei; Tong, Xiaoyan; Srivatsan, T. S.; Gao, Xiaosheng

    2013-06-01

    Pre-corrosion damage tests were performed on the high strength aluminum alloy (Al-Zn-Mg-Cu) that was subject to shot peening surface treatment. The tests were performed for different time levels and compared one-on-one with the performance and characteristics of the non-shot-peened alloy. The residual stress induced by the shot peening surface treatment for two different intensity levels was measured using the method of incremental drilling of holes. Based on an observation of morphology of corrosion experienced by the aluminum alloy the depth of corrosion was measured using a laser displacement sensor. The surface of the aluminum alloy that was shot peened revealed an overall better resistance to pitting while concurrently revealing evidence of partial degradation. The depth of degradation is related to the residual stress that is induced in the aluminum alloy sample by the shot peening treatment. The key mechanisms that control damage during corrosion of the shot-peened aluminum alloy can be divided into the distinct stages of (a) initial occurrence of uniform corrosion followed by (b) the generation of degradation, and (c) culminating in the initiation of pitting once the depth of degradation reaches a certain level.

  4. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    Hamilton, M.L.; Edwards, D.J. [Pacific Northwest Laboratory, Richland, WA (United States); Toloczko, M.B. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  5. The investigation on the stratification phenomenon of aluminum rear alloyed layer in silicon solar cells

    Highlights: • A stratification phenomenon of Al rear alloyed layer in solar cells is found. • The stratification phenomenon is related to the formula of the paste. • From the analyses, the stratification phenomenon is redundant and deleterious. • The highest cell's efficiency without stratification phenomenon is close to 20%. - Abstract: A stratification phenomenon of aluminum rear alloyed layer was found in the study of aluminum rear emitter N-type solar cells. It is related to the composition of the paste. The outer aluminum alloyed layer can be called as aluminum doped emitter, and it gives the contribution to the junction formation. The inner layer is only the Al/Si mixed layer. The aluminum atoms in this layer are not bonded with silicon atoms. This inner layer will ruin the quality of the rear junction. The shunt resistance, reverse current density and the junction electric leakage value are getting worse when the thickness of the inner layer increases. The thickness of the inner Al/Si mixed layer increases with the increasing of firing temperature, while the depth of the aluminum doped emitter almost does not change. From the analyses, the inner Al/Si mixed layer is redundant and deleterious. Only a single deep aluminum doped rear emitter is needed for N-type solar cells. The highest power conversion efficiency of 19.93% for aluminum rear emitter N-type cells without the stratification phenomenon has been obtained

  6. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    Takashi Harumoto; Yohei Tamura; Takashi Ishiguro

    2015-01-01

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabri...

  7. Aluminum base alloy powder metallurgy process and product

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  8. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy

    Chen, Pengwan; Feng, Jianrui; Zhou, Qiang; An, Erfeng; Li, Jingbo; Yuan, Yuan; Ou, Sanli

    2016-07-01

    The undesirable properties of magnesium alloys include easy embrittlement, low oxidation resistance, and difficulty in welding with other materials. Their application in industry is, therefore, restricted. In this paper, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique. The influences of the welding parameters on the weld quality were investigated. The surface morphology and microstructure near the weld interface were examined by optical microscopy, scanning electron microscopy (equipped with energy-dispersive x-ray spectroscopy), and transmission electron microscopy. The experimental results demonstrated the typical wavy bonding interface. In addition, elemental diffusion with a thickness of approximately 3 μm occurred near the bonding interface. The two plates were joined together well at the atomic scale. Nanograins with a size of approximately 5 nm were observed in the diffusion layer. The microhardness and shear strength were measured to evaluate the mechanical properties, which confirmed that a high quality of bonding was acquired.

  9. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy

    Chen, Pengwan; Feng, Jianrui; Zhou, Qiang; An, Erfeng; Li, Jingbo; Yuan, Yuan; Ou, Sanli

    2016-06-01

    The undesirable properties of magnesium alloys include easy embrittlement, low oxidation resistance, and difficulty in welding with other materials. Their application in industry is, therefore, restricted. In this paper, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique. The influences of the welding parameters on the weld quality were investigated. The surface morphology and microstructure near the weld interface were examined by optical microscopy, scanning electron microscopy (equipped with energy-dispersive x-ray spectroscopy), and transmission electron microscopy. The experimental results demonstrated the typical wavy bonding interface. In addition, elemental diffusion with a thickness of approximately 3 μm occurred near the bonding interface. The two plates were joined together well at the atomic scale. Nanograins with a size of approximately 5 nm were observed in the diffusion layer. The microhardness and shear strength were measured to evaluate the mechanical properties, which confirmed that a high quality of bonding was acquired.

  10. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    Bochkareva, Anna; Lunev, Aleksey; Barannikova, Svetlana; Gorbatenko, Vadim; Shlyakhova, Galina; Zuev, Lev

    2015-10-01

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  11. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h

  12. Impurity control and corrosion resistance of magnesium-aluminum alloy

    Liu, M. [GM China Lab; Song, GuangLing [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  13. Optimization of Squeeze Casting for Aluminum Alloy Parts

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important

  14. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility

    Rodrigues Luiz Erlon A.

    2003-01-01

    Full Text Available Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very toxic and, when absorbed, plasma values as small as 1.65 to 21.55 mg/dl can cause severe lesions to the nervous system, kidneys, and bone marrow. Because mitochondria are extremely sensitive to minimal variation of cellular physiology, the direct relationship between the mitocondrial respiratory chain and cell lesions has been used as a sensitive parameter to evaluate cellular aggression by external agents. This work consisted in the polarographic study of mitochondrial respiratory metabolism of livers and kidneys of rabbits with femoral implants of titanium or copper/aluminum alloy screws. The experimental results obtained did not show physiological modifications of hepatic or renal mitochondria isolated from animals of the three experimental groups, which indicate good biocompatibility of copper/aluminum alloys and suggest their odontological use.

  15. Study on shear resistance of aluminum alloy I-section members

    Zhen DONG; Qilin ZHANG

    2008-01-01

    The design method for the shear resistance of aluminum alloy I-section members is presented, taking into consideration of the post-buckling strength of webs and the restraint effect of flanges, and the practical design formulas are proposed. The deflection of aluminum alloy I-section members under concentrated load is simulated by using the finite element method, and several design theories are discussed. The relation of shear resistance to the maximum web displacement reflects that the web of aluminum alloy I-section member is under fewer shears buckling force, while the whole member has higher shear resistance. However, the traditional design method is not able to give the real shear resistance of aluminum alloy I-section members. The proposed design formulas for the shear resistance of aluminum alloy I-section members is used to calculate accurately the post-buckling resistance of webs and the shear resistance contribution of flanges. The results are in a great agreement with the test data of Hamoodi M J, Burr C A, Evans H R and the results from Eurocode9 formulas.

  16. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    Zhang, H. S.; Yan, M.; Wang, H. Y.; Shen, L. T.; Dai, L. H.

    2016-04-01

    A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  17. Determination of dynamic shear strength of 2024 aluminum alloy under shock compression

    H. S. Zhang

    2016-04-01

    Full Text Available A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa, the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.

  18. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion. PMID:10496152

  19. The Effects of Corrosive Media on Fatigue Performance of Structural Aluminum Alloys

    Huihui Yang

    2016-07-01

    Full Text Available The effects of corrosive media on rotating bending fatigue lives (the cyclic numbers from 104 to 108 of different aluminum alloys were investigated, which involved the corrosion fatigue lives of five kinds of aluminum alloys in air, at 3.5 wt. % and 5.0 wt. % NaCl aqueous solutions. Experimental results indicate that corrosive media have different harmful influences on fatigue lives of different aluminum alloys, in which the differences of corrosion fatigue lives depend strongly on the plastic property (such as the elongation parameter of aluminum alloys and whether to exist with and without fracture mode II. The other various influence factors (such as the dropping corrosive liquid rate, the loading style, and the nondimensionalization of strength of corrosion fatigue lives in three media were also discussed in detail by using the typical cases. Furthermore, fracture morphologies and characteristics of samples, which showed the different fatigue cracking behaviors of aluminum alloys in three media, were investigated by scanning electron microscopy (SEM in this paper.

  20. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  1. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes

    A set of oxide coatings was formed on the surface of an Al alloy (wt%: Fe, 0.24; Si, 1.16; Cu, 0.05-0.2; Zn, 0.1; Al, residual) by means of various oxidation processes. The hydrogen permeability through the aluminum alloy and its coating materials was determined by a vapor phase permeation technique at temperatures ranging from 400 to 500 C using high-purity H2 (99.9999%) gas with an upstream hydrogen pressure of 104-105 Pa. The experimental results show that the hydrogen permeability through aluminum oxide coating is 100-2000 times lower than that through the aluminum alloy substrate. This means that the aluminum oxide is a significant hydrogen permeation barrier. A high hydrogen permeation resistance was observed in an oxide layer prefilmed in 200 C water, while an anodized aluminum oxide film had a less obstructive effect, possibly caused by the porous structure of the anodic oxide. The hydrogen permeability through films of aluminum oxide was not a simple function of the aluminum-oxide phase configuration. (orig.)

  2. Effect of homogenization and alloying elements on hot deformation behaviour of 1XXX series aluminum alloys

    Shakiba, Mohammad

    containing various Mn (0.1 and 0.2 wt%) and Cu (0.05, 0.18 and 0.31 wt%) contents was also investigated. It was found that both manganese and copper in solid solution have a significant influence on the hot workability of dilute Al-Fe-Si alloys. On a wt% basis, Mn exhibits a stronger strengthening effect compared to Cu. The activation energies for deformation were calculated from experimental data for all the alloys investigated. With a 0.2 wt% Mn addition, the activation energy increased from 161 and 176 kJ/mol for low-Fe (0.1wt%) and high-Fe (0.5wt%) base alloys to 181 and 192 kJ/mol, respectively. The addition of Cu up to 0.31 wt% only slightly increased the activation energy of low-Fe base alloy from 161 to 166 kJ/mol. Solute diffusion acted as the deformation rate controlling mechanism in these dilute alloys. Mn containing alloys have higher flow stress and higher activation energy due to the considerably lower diffusion rate of Mn in aluminum compared to Cu containing alloys. An addition of Mn and Cu also retarded the dynamic recovery and resulted in a decrease in the subgrain size and mean misorientation angle of the grain boundaries. In addition, based on hot compression tests, an artificial neural network model was developed to predict the high temperature flow behavior of Al-0.12Fe-0.1Si-Cu alloys as a function of chemical composition (with Cu contents of 0.002-0.31wt%) and process parameters. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study to predict the flow behavior of Al-0.12Fe-0.1Si alloy with various levels of Cu addition (0.002-0.31wt%) at different deformation conditions. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using various standard statistical parameters. An excellent agreement between experimental and predicted results was obtained. Sensitivity

  3. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  4. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

    Aluminum and magnesium are two highly important lightweight metals used in automotive applications to reduce vehicle weight. Crystallographic texture engineering through a combination of intelligent processing and alloying is a powerful and effective tool to obtain superior aluminum and magnesium alloys with optimized strength and ductility for automotive applications. In the present article the basic mechanisms of texture formation of aluminum and magnesium alloys during wrought processing are described and the major aspects and differences in deformation and recrystallization mechanisms are discussed. In addition to the crystal structure, the resulting properties can vary significantly, depending on the alloy composition and processing conditions, which can cause drastic texture and microstructure changes. The elementary mechanisms of plastic deformation and recrystallization comprising nucleation and growth and their orientation dependence, either within the homogeneously formed microstructure or due to inhomogeneous deformation, are described along with their impact on texture formation, and the resulting forming behavior. The typical face-centered cubic and hexagonal close-packed rolling and recrystallization textures, and related mechanical anisotropy and forming conditions are analyzed and compared for standard aluminum and magnesium alloys. New aspects for their modification and advanced strategies of alloy design and microstructure to improve material properties are derived

  5. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  6. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  7. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl3. The FeAl3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm-2 in a 20-30 mass% HNO3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl3 free particles are examined in a 0.1 kmol/m3 NaCl solution. It is found that aluminum with free FeAl3 particles shows higher corrosion resistance than aluminum with FeAl3 particles

  8. Environmental behavior and stress corrosion characteristics of nano/sub-micron E950 aluminum alloy

    Aghion, Eli; Guinguis, Inbar [Department of Materials Engineering, Ben-Gurion University of the Negev Beer-Sheva (Israel)

    2009-11-15

    The corrosion performance and stress corrosion resistance of E950 Aluminum alloy with nano/sub-micron structure were evaluated in 3.5% NaCl solution. The results obtained indicated that the corrosion and stress corrosion resistance of E950 alloy were relatively reduced compared to that of the conventional coarse-grained alloy (Al-4.65%Mg). In particular, the inherently improved ultimate tensile strength of E950 alloy was significantly decreased under stress corrosion conditions. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. 铝及铝合金先进焊接技术%Advanced Welding Technology of Aluminum and Aluminum Alloy

    杨芙; 吕文桂; 张文明

    2012-01-01

    The weldability of aluminum and aluminum alloy and the causes and solutions of welding defects, such as porosity, hot cracks, etc., were analyzed. The research and application of several advanced welding technology for aluminum and aluminum alloy, such as laser welding, electron beam welding, variable polarity plasma arc welding, friction stir welding, etc., were discussed. The development status and tendency for the next few years welding were simply analyzed.%分析了铝及铝合金的焊接性及其在焊接过程中易出缺陷(气孔、热裂纹等)的原因和解决措施;探讨了铝及铝合金的几种先进焊接工艺(激光焊、电子束焊、变极性等离子电弧焊、搅拌摩擦焊等)的研究现状及其应用;分析了铝及铝合金焊接技术的发展状况以及未来几年的前景.

  10. Welding phenomena of aluminum-copper alloy in electron beam welding

    Nogi, K.; Sumi, Y.; Aoki, Y.; Yamamoto, T.; Fujii, H. [Osaka Univ., Ibaraki (Japan). Joining and Welding Res. Inst.

    2000-07-01

    Electron beam welding of an aluminum-copper alloy (2219) was performed using a small-sized electron beam welding apparatus under microgravity and in a high vacuum. The effect of gravity on various welding phenomena and the effect of the aluminum oxide film on the formation of bubbles were investigated. A much flatter weld bead is formed in the microgravity environment than in the terrestrial environment. When an aluminum alloy is exposed to atomic oxygen, the thickness of the aluminum oxide film increases and porosity after welding also increases. It is thought that the porosity is formed by the Al{sub 2}O gas through the reaction between Al{sub 2}O{sub 3} and Al. (orig.)

  11. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  12. Improvements of welding characteristics of aluminum alloys with YAG laser and TIG arc hybrid system

    Fujinaga, Shigeki; Ohashi, Ryoji; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    In high power YAG laser welding of steels, a rectangularly modulated beam with high peak power is usually used to get deep penetration. On the other hand, many spatters and solidification cracks are generated when some aluminum alloys are welded with a rectangularly modulated beam because of its high heat conductivity, high reflectivity, low surface tension, large contraction, wide solidification temperature range, etc. Therefore, a properly modulated beam or a continuous beam is usually used in aluminum alloy welding, although the penetration depth is shallow. In this research, sinusoidal wave or rectangularly modulated wave of YAG laser combined with TIG arc was tried to improve the weldability of A6061 aluminum alloy. As a result, when TIG arc was superimposed behind the YAG laser beam, deeply penetrated weld beads with good surface appearances were produced without spatter losses and cracks.

  13. Experimental study of corrosion behavior for burnished aluminum alloy by EWF, EBSD, EIS and Raman spectra

    The effect of burnish process on 2024 aluminum alloy was studied by electron work function and electron backscattered diffraction (EBSD). Moreover, the corrosion resistance of thin passive films formed on 2024 aluminum alloy in borate buffer solutions was studied by the electrochemical impedance spectroscopy (EIS), the Mott–Schottky plots and the galvanostatic techniques. The composition of passive films was analyzed by Raman spectra. The results obtained indicated that the impedance increased due to burnish and this was attributed to decreased electron work function and higher current efficiency in the burnished aluminum alloy which led to thicker passive films. It was further supported by Raman spectra experiment. Moreover, the donor and acceptor concentration of passive films and their the semiconductor type have changed due to burnish.

  14. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  15. Investigation of Stress Corrosion Cracking Initiation of 7A52 Aluminum Alloy

    LI Qi; ZHAO Junjun; ZHANG Ping

    2012-01-01

    The stress corrosion cracking(SCC) behaviour of 7A52 aluminum alloy in air and in 3.5%NaCl solution was researched by slow strain rate test(SSRT) and SEM-EDS.The SCC susceptibility was estimated with the loss of the reduction in area.The experimental results indicate that the SCC susceptibility of 7A52 aluminum alloy in 3.5% chloride solution is the highest at strain rate of 1 × 10-6 s-1.The lowest one is under the condition of 1 × 10-5 s-1.Stress concentration and anode dissolving around Al-Fe-Mn intermetallics initiate micropores which will result in microcracks.The existence of intermetallics in the microstructure may play an important role in understanding the SCC initiation mechanisms of 7A52 aluminum alloy.

  16. Experimental study of corrosion behavior for burnished aluminum alloy by EWF, EBSD, EIS and Raman spectra

    Jinlong, Lv, E-mail: ljlhit@126.com [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China); Hongyun, Luo, E-mail: luo7128@163.com [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China); Jinpeng, Xie [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing, 100191 (China)

    2013-05-15

    The effect of burnish process on 2024 aluminum alloy was studied by electron work function and electron backscattered diffraction (EBSD). Moreover, the corrosion resistance of thin passive films formed on 2024 aluminum alloy in borate buffer solutions was studied by the electrochemical impedance spectroscopy (EIS), the Mott–Schottky plots and the galvanostatic techniques. The composition of passive films was analyzed by Raman spectra. The results obtained indicated that the impedance increased due to burnish and this was attributed to decreased electron work function and higher current efficiency in the burnished aluminum alloy which led to thicker passive films. It was further supported by Raman spectra experiment. Moreover, the donor and acceptor concentration of passive films and their the semiconductor type have changed due to burnish.

  17. Development of technology of complex aluminum-silicon-chrome alloy with utilization of off grade raw materials

    A. Mekhtiev; Ye. Shabanov; А. Issagulov; S. Baissanov; А. Baissanov; D. Issagulova

    2015-01-01

    Experimental studies on obtaining a complex aluminum-silicon-chrome alloy (FASCh) from Karaganda high-ash coals and high-carbon ferrochromefines were carried out. A method for smelting low-carbon ferrochrome using aluminum-silicon-chrome alloy as a reductant is suggested.

  18. Effect of Heat Treatment on the In-Plane Anisotropy of As-Rolled 7050 Aluminum Alloy

    Huie Hu

    2016-04-01

    Full Text Available Tensile tests were conducted on both as-quenched and over-aged 7050 aluminum alloy to investigate the effect of heat treatment on the in-plane anisotropy of as-rolled 7050 aluminum alloy. The results showed that the tensile direction has limited effect on mechanical properties of the as-quenched 7050 aluminum alloy. The in-plane anisotropy factors (IPA factor of tensile strength, yield strength, and elongation in as-rolled 7050 aluminum alloy fluctuate in the vicinity of 5%. The anisotropy of the as-quenched 7050 aluminum alloy is mainly affected by the texture according to single crystal analysis based on the Schmid factor method. Besides, the IPA factor of the elongation in the over-aged 7050 aluminum alloy reaches 11.6%, illustrating that the anisotropy of the over-aged 7050 aluminum alloy is more prominent than that of the as-quenched. The occurrence of the anisotropy in the over-aged 7050 aluminum alloy is mainly attributed to the microstructures. which are characterized by visible precipitate free zones (PFZs and coarse precipitates in (subgrain boundaries.

  19. Galvanic compatibility of corrosion protective coatings with AA7075 aluminum alloy

    Lodhi, Z.F.; Hamer, W.J. [Netherlands Institute for Metals Research (NIMR), Mekelweg 2, 2628 CD Delft (Netherlands); Mol, J.M.C.; Wit, J.H.W. de [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Terryn, H. [Netherlands Institute for Metals Research (NIMR), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Metallurgy, Electrochemistry and Materials Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium)

    2008-04-15

    The galvanic compatibility of aerospace aluminum alloy AA7075 with cadmium (Cd), zinc (Zn), and zinc-cobalt-iron (Zn-Co-Fe, 32-37%Co and 1%Fe) alloys was investigated. A comparison of open circuit potential [OCP vs. saturated calomel electrode (SCE)] measurements in 0.6 mM NaCl showed that all coatings would act anodically to AA7075 with an exception of Zn-Co-Fe (37%Co + 1%Fe) alloy which was electropositive to AA7075. During the zero resistance ammetry (ZRA) measurement in 0.6 M NaCl electrolyte the coupled OCP and current density were measured during 7 days of immersion and both Zn and Cd acted anodic and thus sacrificial to AA7075. Galvanic coupling of AA7075 with (37%Co + 1%Fe) Zn-Co-Fe alloy resulted in the consequent dissolution of the AA7075 aluminum alloy. In contrast, Zn-Co-Fe (32%Co + 1%Fe) alloy was found to be anodic to AA7075 during the first 26 h of immersion but after dezincification and cobalt enrichment at the surface became cathodic to the AA7075 aluminum alloy. During coupling with Zn, some pitting was also observed on AA7075. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source

  1. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  2. Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys

    2002-01-01

    The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloyswas studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuouscasting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equippedwith energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influencedsegregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of aproper frequency. Electromagnetic frequency plays a significant role in solute redistribution; Iow frequency is moreefficient for promoting solution of alloying elements.

  3. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  4. Influence of Density on Compressive Properties and Energy Absorption of Foamed Aluminum Alloy

    WEI Peng; LIU Lin

    2007-01-01

    The foamed aluminum alloys with different densities were fabricated by melt foaming technique. The compressive properties and energy absorption of the foamed aluminum alloy with different densities were analyzed. The results reveal that the compressive stress-strain curves follow the typical behavior of cellular foams with three deformation stages. Under the same strain, the energy absorption capability decreases with the decrease of density. However, with increasing the strain, the energy absorption efficiency of foamed metal increases initially and then decreases. The lower the density, the longer the plateau region, within the range of high strain, the energy absorption efficiency is always high.

  5. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  6. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  7. Degradation assesment of aluminum alloy 6061-T6 using ultrasonic attenuation measurements

    Ultrasonic methods are widely used to degradation assesment. Remaining life cycle of metal can be estimated by ultrasonic parameters because ultrasonic velocity and attenuation are affected by change of material properties with accumulated fatigue in the metal. Therefore, in this study, we will estimate overall change of material properties by 2D C scan image. Fatigued aluminum alloy 6061-T6 samples from 0 to 85% were prepared for evaluating fatigue life cycle. Also, degraded image of materials using attenuation is proposed to estimate degree of material degradation for determining degraded area of fatigued samples. Finally, we will predicts process pf degradation with measured attenuation of fatigued aluminum alloy 6061-T6 samples

  8. Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams

    2002-01-01

    The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizeshave been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimentalresults showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic,plateau and densification. The dynamic compressive strength of foams is affected not only by the relative densitybut also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size aremore sensitive to the strain rate than foams with lower relative density or larger cell size.

  9. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  10. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  11. Cryogenic properties of aluminum and aluminum alloys. 1964-March 1980 (citations from the NTIS Date Base). Report for 1964-March 1980

    Citations of Federally-funded research include studies on the cryogenic properties of aluminum and its alloys used in superconducting machinery, magnets, space technology, and nuclear reactors. Electrical properties, fatigue, deformation, and welds are included

  12. ARTIFICIAL NEURAL NETWORK MODEL OF CONSTITUTIVE RELATIONSHIP FOR 2A70 ALUMINUM ALLOY

    F. Liu; D.B. Shan; Y. Lu; Y.Y. Yang

    2005-01-01

    The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.

  13. A Parametric Analysis of CO2 Laser Heat Absorption Profile of 5083 Aluminum Alloy

    JOSEPH .I. ACHEBO

    2010-06-01

    Full Text Available Aluminum alloys are amongst the most difficult everyday metals that can be welded using the laser welding process. For this reason, high power density lasers are needed to weld these alloys because they require higher thermal diffusivity to form a key hole than would be needed for other metals such as steel. This means that more heat wouldhave to be applied while welding aluminum alloys than would be needed to weld steel to achieve a satisfactory coupling effect. The heat input generated from laser welding is affected by the absorptivity coefficient, the welding speed and the time spent. Once the optimum heat input is attained, it is expected to create less heat distortion, its energy is more concentrated within the weld area and deep weld penetration is achieved. Determining optimum values of welding parameters would lead to acceptable weld quality. In this study, the heat absorption profile of a CO2 laser welding of 5083 aluminum alloy was investigated using the models proposed by Bramson in 1968 and Okon et al in 2002. The 4mm thick aluminum alloy investigated was as received from the vendors. The calculated laser beam absorptivity coefficient, irradiance and boiling temperature were 0.12, 2.3 x 106 Wcm-2 and 2482oC respectively. These calculated values compared well with reported values in other literature.

  14. Quantitative analysis of impurities in aluminum alloys by laser-induced breakdown spectroscopy without internal calibration

    LI Hong-kun; LIU Ming; CHEN Zhi-jiang; LI Run-hua

    2008-01-01

    To develop a fast and sensitive alloy elemental analysis method, a laser-induced breakdown spectroscopy(LIBS) system was established and used to carry out quantitative analysis of impurities in aluminum alloys in air at atmospheric pressure. A digital storage oscilloscope was used as signal recording instrument, instead of traditional gate integrator or Boxcar averager, to reduce the cost of the whole system. Linear calibration curves in the concentration range of 4×10-5-10-2 are built for Mg, Cr, Mn, Cu and Zn using absolute line intensity without internal calibrations. Limits of detection for these five elements in aluminum alloy are determined to be (2-90)×10-6. It is demonstrated that LIBS can provide quantitative trace elemental analysis in alloys even without internal calibration. This approach is easy to use in metallurgy industries and relative research fields.

  15. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  16. Evaluation of Aluminum Alloy 2050-T84 Microstructure Mechanical Properties at Ambient and Cryogenic Temperatures

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable the designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320 F. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  17. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  18. A method to study the history of a double oxide film defect in liquid aluminum alloys

    Raiszadeh, R.; Griffiths, W. D.

    2006-12-01

    Entrained double oxide films have been held responsible for reductions in mechanical properties in aluminum casting alloys. However, their behavior in the liquid metal, once formed, has not been studied directly. It has been proposed that the atmosphere entrapped in the double oxide film defect will continue to react with the liquid metal surrounding it, perhaps leading to its elimination as a significant defect. A silicon-nitride rod with a hole in one end was plunged into liquid aluminum to hold a known volume of air in contact with the liquid metal at a constant temperature. The change in the air volume with time was recorded by real-time X-ray radiography to determine the reaction rates of the trapped atmosphere with the liquid aluminum, creating a model for the behavior of an entrained double oxide film defect. The results from this experiment showed that first oxygen, and then nitrogen, was consumed by the aluminum alloy, to form aluminum oxide and aluminum nitride, respectively. The effect of adding different elements to the liquid aluminum and the effect of different hydrogen contents were also studied.

  19. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    Zhongyu Cui; Xiaogang Li; Huan Zhang; Kui Xiao; Chaofang Dong; Zhiyong Liu; Liwei Wang

    2015-01-01

    Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular ...

  20. A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys

    M. E. Kassner; P. Geantil; Li, X

    2011-01-01

    The purpose of this study is to investigate the quench sensitivity of the mechanical properties of 6061 and 6069 aluminum alloys. The relationship between mechanical properties and quench delay time at various temperatures between 200–500°C was determined. It was concluded that the 6069-T6 was somewhat more quench sensitive than 6061, which may be consistent with the composition difference. This study also provides increased data on the quench sensitivity of the traditional alloy, 6061-T6.

  1. EBSD characterization of deformation in high strain rate application aluminum alloys

    Kozmel, Thomas; Vural, Murat; Tin, Sammy

    2014-01-01

    Advances in materials characterization tools and techniques are contributing to an improved physics based understanding pertaining to the characteristic behavior of engineering alloys. Aluminum alloys, such as 2139, 2519, 5083, and 7039 are commonly used for lightweight armor applications where resistance to high strain rate deformation is paramount. Failure of these materials is often attributed to the onset of shear band formation. This study was aimed at complimenting the constituent predi...

  2. Calculation of Liquidus Temperature for Aluminum and Magnesium Alloys Applying Method of Equivalency

    Mile B. Djurdjević; Srećko Manasijević; Zoran Odanović; Natalija Dolić

    2013-01-01

    The purpose of this paper is to develop a mathematical equation, which will be able to accurately predict the liquidus temperature of various aluminum and magnesium cast alloys on the basis of their known chemical compositions. An accurate knowledge of liquidus temperature permits a researcher to predict a variety of physical parameters pertaining to a given alloy. The analytical expressions presented in this paper are based on the “method of equivalency.” According to this concept, the influ...

  3. TESTING OF ALUMINUM-SILICON ALLOYS MECHANICAL PROPERTIES ON SEPARATELY CASTED SPECIMENS

    Krushenko, G.

    2010-01-01

    The mechanical properties of aluminum alloys before casting into moulds were determined on separately casted control specimens casted in horizontal or vertical forms. A comparison of the mechanical properties (tensile strength t, elongation 8, hardness HB) of 12-mm-diameter individually casted of AK7ch alloy control specimens and its density in the solid state (p) showed that it is necessary to use specimens casted in a horizontal mold for evaluation of castings quality. It was estimated that...

  4. Dynamic process of angular distortion between aluminum and titanium alloys with TIG welding

    WANG Rui; LIANG Zhen-xin; ZHANG Jian-xun

    2008-01-01

    The dynamic process of welding angular distortion in the overlaying welding of 5A12 aluminum alloy and BT20 titanium alloy was investigated. Information of dynamic distortion was got via self-made welding dynamic measuring system. Research results show that the characteristics of dynamic distortions at various positions of the plate edge parallel to the weld of 5A12 and BT20 alloy are different. Comparison between 5A12 and BT20 alloy shows that transverse shrinkage and downward longitudinal bending are main factors influencing the dynamic angular distortion processes of 5A12 and BT20 alloy under welding heat input of 0.32 kJ/mm. The angular distortion of 5A12 alloy is completely inversed with welding heat input increasing to 0.4 kJ/mm, and the position of weld center and buckling distortion become the primary factors.

  5. Grain Refining Performance of SHS Al-50TiC Master Alloys for Commercially Pure Aluminum

    2002-01-01

    An Al-50wt%TiC composite was directly synthesized by self-propagating high-temperature synthesis (SHS) technology,and then was used as a grain refining master alloy for commercially pure aluminum.The microstructure and grain refining performance of the synthesized master alloy were emphatically investigated.The SHS master alloy only contained submicron TiC particles except for Al matrix.Moreover,TiC particles were relatively free of agglomeration. Grain refining tests show that adding only 0.1 wt% of the master alloys to the aluminum melt could transform the structure of the solidified samples from coarse columnar grains to fine equiaxed grains (average grain size 120μm),and that this grain refining effectiveness could be maintained for almost 1.5h at 1003K. Therefore,it is concluded that the SHS master alloy is an effective grain refiner for aluminum and its alloys, and that it is highly resistant to the grain refining fading encountered with most grain refiners.

  6. Development and Processing Improvement of Aerospace Aluminum Alloys

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  7. Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound.

    Li, Fang; Xiang, Dan; Qin, Yexian; Pond, Robert B; Slusarski, Kyle

    2011-07-01

    Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT. PMID:21232777

  8. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020

    Santosh Kumar; T K G Namboodhiri

    2011-04-01

    AA7020 Al–Mg–Zn, a medium strength aluminium alloy, is used in welded structures in military and aerospace applications. As it may be subjected to extremes of environmental exposures, including high pressure liquid hydrogen, it could suffer hydrogen embrittlement. Hydrogen susceptibility of alloy AA7020 was evaluated by slow strain-rate tensile testing, and delayed failure testing of hydrogen-charged specimens of air-cooled, duplexaged, and water-quenched duplex agedmaterials. The resistance to hydrogen embrittlement of the alloy was found to be in the order of air-cooled duplex aged alloy > as-received (T6 condition) > water quenched duplex aged material.

  9. Thermal stress-relief treatments for 2219 aluminum alloy are evaluated

    1966-01-01

    Evaluation of three thermal stress relief treatments for 2219 aluminum alloy in terms of their effect on residual stress, mechanical properties, and stress corrosion resistance. The treatments are post aging and stress relieving fullscale and subscale parts formed in the aged T81 condition, and aging subscale parts formed in the unaged T31 condition.

  10. Quench sensitivity of hot extruded 6061-T6 and 6069-T6 aluminum alloys

    Bergsma, S C; Kassner, M E; Li, X; Rosen, R S

    2000-08-08

    The purpose of this study is to investigate the quench sensitivity of mechanical properties of hot extruded 6061 and 6069 aluminum alloys. The relationship between mechanical properties and quench delzty time at various temperatures between 200-500 C was determined. It was concluded that the 6069-T6 was somewhat more quench sensitive than 6061, which may be consistent with the composition difference.

  11. Texture evolution of continuous cast and direct chill cast AA 3003 aluminum alloys during cold rolling

    The texture evolution of continuous cast (CC) and direct chill cast (DC) AA 3003 aluminum alloys during cold rolling was investigated by X-ray diffraction. The relationship between texture volume fractions and rolling true strain was described quantitatively by mathematical formulae. The effect of processing method (CC vs. DC) on texture evolution was determined

  12. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  13. THE INVESTIGATION ON THE RHEOLOGICAL BEHAVIOR OF SEMI-SOLID ALUMINUM ALLOY DURING DIE CASTING

    X.J. Yang; J. Lin

    2002-01-01

    Under the condition of die casting and reheating temperature of 570-580° C, the Rhe-ological behavior of semi-solid aluminum alloy (A356) is pseudoplasticity at the shearrate of 2×10s-1×104 s-1, and also shows dilatancy at the rate over 106s-1.

  14. Strain hardening and damage in 6xxx series aluminum alloy friction stir welds

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno; Pardoen, Thomas; Tvergaard, Viggo

    A friction stir weld in 6005A-T6 aluminum alloy has been prepared and analyzed by micro-hardness measurements, tensile testing and scanning electron microscopy (SEM). The locations of the various weld zones were determined by micro-hardness indentation measurements. The flow behavior of the vario...

  15. Influences on Burr Size During Face-Milling of Aluminum Alloys and Cast Iron

    Shefelbine, Wendy; Dornfeld, David

    2004-01-01

    The Exit Order Sequence (EOS) theory discussed by previous LMA students predicts the size of burrs formed during face milling. Other influences are tool geometry, coolant use, and material properties in aluminum silicon alloys and cast iron. Used, worn tools also increase the size of the burr. The effect of speed and feed are also discussed, particularly with regards to cast iron.

  16. Industrial capability to chem-mill aluminum alloy 2219 in T-37 and T-87

    Milewski, C., Jr.; Chen, K. C. S.

    1979-01-01

    Procedures and chemical baths were developed for chem-milling aluminum alloy 2219. Using a series of sample etchings, it was found that good etching results could be obtained by using 'white plastic for porcelain repair (toluol, xylol, and petroleum distillates)' on top of cellosolve acetate as resist coatings and ferric chloride as on etchant.

  17. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys

    The recrystallization microstructure and texture of cold-rolled continuous cast AA 5083 and 5182 aluminum alloys with and without prior heat treatment were investigated by optical microscopy, X-ray diffraction and TEM. The results obtained were discussed with regard to the effect of Zener-particle pinning

  18. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys

    Li, J. [Department of Civil and Environmental Engineering, Beijing Jiaotong University (China); Liu, W.C. [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States); Zhai, T. [Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington, KY 40506 (United States)]. E-mail: tzhai@engr.uky.edu; Kenik, E.A. [Metals and Ceramics Division, Oak Ridge National Laboratory, 100 Bethel Valley Road, Building 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831-6064 (United States)

    2005-02-15

    The recrystallization microstructure and texture of cold-rolled continuous cast AA 5083 and 5182 aluminum alloys with and without prior heat treatment were investigated by optical microscopy, X-ray diffraction and TEM. The results obtained were discussed with regard to the effect of Zener-particle pinning.

  19. Microstructure and Strain Fatigue Dislocation Structure of 7075-RRA Aluminum Alloy

    2001-01-01

    The microstructure and the strain fatigue dislocation substructure of 7075-RRA (Retrogression and Reaging) aluminum alloy have been studied by using transmission electron microscopy. From these, a competitive mechanism of cyclic microscopic softening/hardening is put forward to explain the relation between macroscopic cyclic stability behavior and microscopic substructure.

  20. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  1. DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy

    Manping Liu; Zhenjie Wu; Rui Yang; Jiangtao Wei; Yingda Yu; Pål C. Skaret; Hans J. Roven

    2015-01-01

    In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment (SST) were comparatively analyzed using differential scanning calorimetry (DSC). Dynamic aging was performed in the SST alloy through equal channel angular pressing (ECAP) at different temperatures of room temperature, 110, 170, 191 and 300 °C. For comparison, static artificial aging was conducted in the SST alloy at 191 °C with two aging times of 4 and 10 h. Th...

  2. Laser Shock Peening of Aluminum Alloy 7050 for Fatigue Life Improvement

    Qian; Ming; Lian; Ying; Zou; Shikun; Gong; Shuili

    2007-01-01

    The effects of laser shock peening (LSP) on improving fatigue life of aluminum alloy 7050 are investigated.Surface hardness is increased corresponding to a high dislocation density induced by LSP.The X-ray diffraction stress measurement shows that LSP results in prominent increase of surface compressive stress,quasi-symmetrically distributed in the laser peened region.The fatigue life of the alloy 7050 in rivet fastener hole structure is notably improved owing to LSP.The sequence of LSP and fastener hole preparation also influence the fatigue cycle life of the alloy.

  3. Effect of high-temperature pre-precipitation on microstructure and properties of 7055 aluminum alloy

    陈康华; 黄兰萍

    2003-01-01

    The near-solvus pre-precipitation following higher temperature solution treatment was performed on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transmission electron microscopy results show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the sequent age. The stress corrosion cracking resistance of aged 7055 alloys could be improved with non-deteriorated strength and plasticity via the pre-precipitation.

  4. A microstructural study of flash welded and aged 6061 and 6013 aluminum alloys

    Extruded, flash welded and artificially aged 6061 and 6013 aluminum alloys were analyzed with the use of techniques such as transmission electron microscopy (TEM) imaging, selected area electron diffraction (SAD) and X-ray energy-dispersive spectroscopy (EDS) in order to identify the precipitates present in both alloys. Vickers microindentation hardness measurements were performed at different distances from the weld interface. The results show a small decrease in hardness near the 6013 alloy weld interface. On the other hand, there is an important hardness drop near the 6061 weld interface. This drop can be explained by a lack of fine structural precipitation during the aging treatment in the 6061 weld interface zone

  5. Plasma immersion ion implantation and deposition hybrid process on aluminum and titanium alloy

    Because of their variety excellent properties, aluminum and titanium alloy are widely used in aerospace, airplane, ship manufacture, energy source and chemical engineering. However, both of them show a low wear resistance. In our research, plasma immersion ion implantation and deposition was utilized to improve their wear resistance. The method of ion implantation + transition layer deposition + wear resistance layer deposition was applied on these alloys. And by employing the wear testing method, the influences of the structure and thickness of the transition layer on wear resistance were obtained. The experimental results reveal that the wear resistance of these alloys can be improved significantly by optimizing the processing window. (authors)

  6. Aluminum Alloy Semisolid Strip Casting Using an Unequal Diameter Twin Roll Caster

    Haga, T.; Sakaguchi, H; H. Inui; H. Watari; S. Kumai

    2005-01-01

    Purpose: A Purpose of the present study was to break through the disadvantage of the twin roll caster for aluminum alloy. They were slow casting speed and limitation of alloy. For example, the casting speed was slower than 5 m/min, and casting of hypereutectic Al-Si alloy was difficult. In order to break through the disadvantages, semisolid casting using an unequal diameter twin roll caster was tested its ability.Design/methodology/approach: The specification of the unequal diameter twin roll...

  7. Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate

    In order to reveal the possible occurrence of deformation twins in coarse-grained aluminum/aluminum alloy at normal experimental conditions, a 5A02-O aluminum alloy with coarse grains was compressed quasi-statically to various plastic strains at ambient temperature, followed by high-resolution transmission electron analysis. The results revealed some long streaks produced by the thin plate-like structure with 2 atomic planes thick in the specimen undergoing a large strain, while under a relatively small plastic strain, the striped characteristics disappeared. The fast Fourier transform and theoretical analysis have shown that these long streaks are nanotwins, derived from the overlapping of stacking fault ribbons formed by Shockley partial dislocation on adjacent slip planes, which are triggered by the large plastic strain

  8. Deformation nanotwins in coarse-grained aluminum alloy at ambient temperature and low strain rate

    Xu, Zhu; Li, Ning, E-mail: hslining@mail.hust.edu.cn; Jiang, Huawen; Liu, Lin

    2015-01-05

    In order to reveal the possible occurrence of deformation twins in coarse-grained aluminum/aluminum alloy at normal experimental conditions, a 5A02-O aluminum alloy with coarse grains was compressed quasi-statically to various plastic strains at ambient temperature, followed by high-resolution transmission electron analysis. The results revealed some long streaks produced by the thin plate-like structure with 2 atomic planes thick in the specimen undergoing a large strain, while under a relatively small plastic strain, the striped characteristics disappeared. The fast Fourier transform and theoretical analysis have shown that these long streaks are nanotwins, derived from the overlapping of stacking fault ribbons formed by Shockley partial dislocation on adjacent slip planes, which are triggered by the large plastic strain.

  9. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  10. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: ► Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. ► Superhydrophobic surfaces with a high water contact angle of 162° and a low rolling angle of 2° were obtained. ► The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low

  11. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Liu Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Luo Yuting; Sun Linyu [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-01-01

    Graphical abstract: The hydrophobic surface on aluminum alloy fabricated by anodizing and polymeric coating. Highlights: Black-Right-Pointing-Pointer Anodizing and polymeric coating were used to prepare a superhydrophobic surface on aluminum alloy. Black-Right-Pointing-Pointer Superhydrophobic surfaces with a high water contact angle of 162 Degree-Sign and a low rolling angle of 2 Degree-Sign were obtained. Black-Right-Pointing-Pointer The method is facile, and the materials are inexpensive, and is expected to be used widely. - Abstract: We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162 Degree-Sign and the sliding angle of 2 Degree-Sign was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed

  12. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  13. Effect of Microstructure on Thermal Expansion Coefficient of 7A09 Aluminum Alloy

    Hongzhi Ji; Lin Yuan; Debin Shan

    2011-01-01

    The relationship between microstructure evolution and coefficient of thermal expansion (CTE) of 7A09 aluminum alloy was investigated in this paper. Differential scanning calorimetry (DSC) was combined with transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) to investigate microstructure evolution taking place in 7A09 aluminum alloy during heating and cooling process. The corresponding CTE curves of the 7A0g alloy were recorded by thermal dilatometer. Results indicated that GPII zones and Ur phase were main precipitates in the highest strength tempered (T6) 7A09 alloy. The r/phase was the main participate in 7A09 alloy during the cooling process. The nonlinear dependency existed between CTE and temperature in both changing temperature processes. During the heating process, obvious additional contraction of alloy volume was directly caused by phase transition, such as dissolution of η' phase, transition from η' to η phase and dissolution of η phase. The additional contraction could slow down the increase of CTE greatly and be expressed in the nonlinearity of CTE curve. Volume and energy changes of alloy system influenced the variation trend of CTE directly, which was caused by the precipitation of U phase during the cooling process. These effects were revealed by the corresponding nonlinear change of CTE.

  14. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  15. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  16. Hydrogenation of deformable aluminum alloy semiproducts during water quenching and artificial aging

    Antipin, V. P.; Tul'Pakova, R. V.

    2007-10-01

    The surface layers of rods made of magnesium-containing aluminum alloys are shown to undergo strong hydrogenation during water quenching. Hydrogenation is detected during vacuum heating after artificial aging (D16 alloy) or long-term storage (V95, AK4-1ch alloys). Very high hydrogen concentrations in the surface layers of semiproducts that appear in regions with a minimum cooling rate during quenching are likely to cause bubble formation on the surface of the heat-treated semiproducts. Compared to the V95 alloy, hydrogen dissolved in the AK4-1ch alloy rods behaves differently during air annealing. Specifically, hydrogen is rapidly absorbed by the degassed rods and is slowly extracted from the saturated rods. This behavior is most likely to be caused by hydrogen-ion entrapment by FeNiAl9 intermetallic particles.

  17. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  18. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    Krasnikov, V.S., E-mail: vas.krasnikov@gmail.com [Department of Physics, South-Ural State University, Lenina av., 76, Chelyabinsk 454080 (Russian Federation); Department of Physics, Chelyabinsk State University, Br. Kashirinykh str., 129, Chelyabinsk 454001 (Russian Federation); Mayer, A.E., E-mail: mayer@csu.ru [Department of Physics, Chelyabinsk State University, Br. Kashirinykh str., 129, Chelyabinsk 454001 (Russian Federation)

    2014-12-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion.

  19. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  20. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered

  1. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  2. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  3. Effect of Yb additions on microstructures and properties of 7A60 aluminum alloy

    FANG Hua-chan; CHEN Kang-hua; ZHANG Zhuo; ZHU Chang-jun

    2008-01-01

    Al-Zn-Mg-Cu-Zr alloys containing Yb were prepared by cast metallurgy. Effect of 0.30% Yb additions on the microstructure and properties of 7A60 aluminum alloys with T6 and T77 aging treatments was investigated by TEM, optical microscopy, hardness and electric conductivity measurement, tensile test and stress corrosion cracking test. The results show that the Yb additions to high strength Al-Zn-Mg-Cu-Zr aluminum alloys can produce fine coherent dispersoids. Those dispersoids can strongly pin dislocation and subgrain boundaries, which can significantly retard the recrystallization by inhibiting the nucleation of recrystallization and the growth of subgrains and keeping low-angle subgrain boundaries. Yb additions can obviously enhance the resistance to stress corrosion cracking and the fracture toughness property, and mildly increase the strength and ductility with T6 and T77 treatments.

  4. AMINO-TRIS-(METHYLENEPHOSPHONIC ACID) LAYERS ADSORPTION ON AA6061 ALUMINUM ALLOY

    S.H.Wang; C.S.Liu; F.J.Shan; G.C.Qi

    2008-01-01

    The amino-tri-(methylenephosphonic acid) layers were adsorbed on the surface of AA6061 aluminum alloy for improving the lacquer adhesion and corrosion inhibition as a substitute for chromate coatings. The surface structure and characteristic of the amino-tri-(methylenephosphonic acid) layers on AA6061 aluminum alloy were investigated by means of PiPS and ATR-FTIR analysis. The analyzed results showed that the amino-tri-(methylenephosphonic acid) adsorption layers adsorb on the surface of aluminium alloy via acid-base interaction in a bi-dentate conformation. After the amino-tri-(methylenephosphonic acid) layers were coated with epoxy resin, the layers showed good adhesive strength and favorable corrosion resistance in contrast to chromate coatings.

  5. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  6. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  7. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  8. Semi-solid extrusion of aluminum alloy ZL116

    Zhao Dazhi; Lu Guimin; Cui Jianzhong

    2008-01-01

    The semi-solid forward-extruding feasibility of reheated ZL116 alloy cast by the near-liquidus semicontinuous casting process was studied by analyzing the microstructures and properties of forward-extruded bars.The results show that the microstructure of the ZL116 alloy billets cast by near-liquidus semi-continuous casting is mainly made up of homogeneous,fine global-or rosette-shaped grains.The microstructure of the billets,reheated and held at 575℃,contains stable and net-spherical grains which are suitable for semi-solid thixoformina.The semi-solid forward-extruded bars of the ZL116 alloy billet are facially smooth.microstructurally fine and homogeneous.Therefore the feasibility of semi-solid foFward-extrusion of ZL116 alloy is thus excellent.

  9. Strengthening-toughening of 7xxx series high strength aluminum alloys by heat treatment

    陈康华; 黄兰萍

    2003-01-01

    The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower temperature can enable complete dissolution of the constituent particles in 7055 alloy without overheating by subsequent high temperature solution treatment. This in turn increased the tensile strength and fracture toughness of 7055 alloy to 805 MPa and 41.5 MPa*m1/2 respectively, with approximately 9% tensile elongation. The near-solvus pre-precipitation following after high temperature solution treatment was also studied on 7055 aluminum alloy. The effect of the pre-precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transimission electron microscopy observation show that the near-solvus pre-precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the subsequent ageing. The stress corrosion cracking resistance of aged 7055 alloy can be improved via the pre-precipitation with non-deteriorated strength and plasticity.

  10. Study of corrosion protection of the composite fdms on A356 aluminum alloy

    SUN Huanhuan; WANG Hui; MENG Fanling

    2011-01-01

    Composite films were fabricated on A356 aluminum alloy by combined anodizing and rare earth deposition.The corrosion protection effect and corrosion behavior of the composite films in 3.5% NaC1 solution were studied by electrochemical impedance spectroscopy (EIS).SEM observation indicated that the rare earth Ce film completely sealed the porous structure of the anodic film,and the composite films composed of anodic film and Ce film were compact and integrated.According to the characteristics of EIS,the EIS plots of the composite films at different immersion times were simulated using the equivalent circuits of Rsol(QceRce)(QaRa),Rsol(QceRce)(QpRp)(QbRb) and Rsol(QpRp)(QbRb) models,respectively.The test results showed that the Ce film at the outer layer of the composite films had good protection effect at the initial stage of the immersion corrosion.It effectively helped the anodie film at the inner layer to prevent chloride irons from penetrating the aluminum alloy matrix.After 18 days,the Ce film lost its anticorrosive property,and the anodic film took the leading role of the corrosion protection.When the corrosion time was up to 42 days,the aluminum matrix was not corroded yet.Thus,the higher protection degree of the composite films for A356 aluminum alloy was attributed to the synergism effects of anodic film and rare earth Ce film.

  11. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-01

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. PMID:27289269

  12. The effect of different aluminum alloy surface compositions on barrier anodic film formation

    The authors have grown barrier anodic coatings on samples of aluminum alloy with different elemental surface compositions. In one series of experiments, they characterized the surface composition present on 6061 aluminum alloy samples after different chemical treatments including a detergent-water and methyl-ethyl ketone solvent clean, a 50% nitric acid-water etch, and a concentrated nitric acid-ammonium bifluoride etch. They anodized samples which were prepared similarly to those analyzed to evaluate the practical effects of the three different surface compositions. The anodization voltage rise time to 950V at constant current was used as a figure of merit. The solvent cleaned and the 50% nitric acid etched samples required, respectively, 113% and 41% more time to reach 950V than the concentrated nitric acidammonium bifloride etched samples. In a second series of experiments, they alternately anodized groups of either 6061 or 1100 (commercially pure) aluminum alloy, observed rise times to 950V, and measured chloride ion concentrations in the electrolyte. Longer rise times and higher chloride ion concentrations were observed for the 1100 samples. It was observed that the chloride ion concentration fell from initially high levels when 6061 samples were anodized. The results of both series of experiments augment the results of other investigators, who report that the surface species initially present on aluminum have a significant effect on anodic film formation

  13. Evaluation of interfacial microstructures in dissimilar joints of aluminum alloys to steel using nanoindentation technique

    The characteristics of interfacial microstructures with additional elements in dissimilar 6000 system aluminum/steel joints were basically evaluated using tensile test, EPMA, TEM and nanoindentation. For Si (and Cu)-added alloy (S1 and SC), EPMA analysis showed that Si (and Cu) was enrichment in the reaction layers, which were formed during diffusion bonding. SAED pattern clarified that the reaction compounds at the interface changed from AlFe intermetalic compounds to AlFeSi intermetalic compounds by Si addition. Nanoindentation technique was successfully applied to the interfacial microstructures to understand directly the nanoscopic mechanical properties in the interfacial microstructures. The hardness and Young's modulus of Al3Fe intermetalic compounds was lower than those of Al2Fe5 intermetalic compounds. Moreover, the hardness and Young's modulus of AlFeSi(Cu) compounds were lower than those of Al3Fe, indicating that the crystal system changed from orthorhombic structure to cubic structure. Joint strength of SC/steel joints was higher than that of the aluminum alloy with no additional element (Base)/ steel joint, indicating that interfacial microstructure was modified by the addition of Si and Cu to the 6000 system aluminum alloy. These results suggest that the nanoscopic mechanical properties at the interface microstructures affect greatly the macroscopic deformation behavior of the aluminum /steel dissimilar joints.

  14. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  15. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  16. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  17. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    Raghavan Srinivasan (PI); Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  18. Self-adjusting dynamic characteristics of pulsed MIG welding for aluminum alloys

    包晔峰; 周昀; 吴毅雄; 楼松年

    2004-01-01

    Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losing of alloy elements with lower melting and steam point by controlling pulse current and pulse time. Because of the special physic properties of aluminum alloys, there are different requirements for pulsed MIG welding between starting arc short circuit and drop transfer short circuit, pulse period and base period. In order to satisfy the need of aluminum alloys MIG welding, self-adjusting dynamic characteristics are designed to output different dynamic characteristics in different welding startes. The self-adjusting dynamic characteristics of pulsed MIG welding are achieved through a short circuit controller and a dynamic electronic inductor. The welding machine(AL-MIG 350) with self-adjusting dynamic characteristics has a high rate of successfully starting arc up to 96%, and the short circuit time during transfer is less than 1 ms, in the mean time, the arc is stiffness, spatter is low and weld appearance is good.

  19. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Pinkerton, G.W.

    1993-12-31

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  20. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  1. Effects of electromagnetic stirring on microstructures of solidified aluminum alloys

    时海芳; 张伟强

    2003-01-01

    Al-20%Cu, Al-33%Cu and Al-7%Si alloys were solidified with electromagnetic stirring(EMS). The fluid flow induced by electromagnetic stirring leads to the increases of the lamellar spacing of Al-CuAl2 and Al-Si eutectics and the secondary dendritic arm spacing. Rod-like eutectic structure plus pro-eutectic α(Al) are observed in Al-Cu eutectic alloy when the agitating voltage is increased over 130 V, and in the hypoeutectic alloys, globular grains of proeutectic α(Al) grains may form when the magnetic field is strong enough. The Si flakes in the Al-Si eutectic are also coarsened by applying forced flow during solidification, which is always related to the depression of their branching in the growth by the forced convection.

  2. Corrosion of LY12 aluminum alloy in sodium chloride solution

    程英亮; 张昭; 曹发和; 李劲风; 张鉴清; 王建明; 曹楚南

    2003-01-01

    The corrosion behavior of LY12 alloy in sodium chloride solution and its electrochemical noise were reported. The development of the micro-pits on the alloy surface was monitored by scanning electron microscopy, scanning tunneling microscopy, and electrochemical noise method. All the measurements show that the corrosion of LY12 alloy can be divided into two stages: a very reactive initial stage and a relative constant stable stage. The initial stage is corresponded to the adsorption of Cl ions and its reaction with the oxide film and the dissolution of Mg containing particles. The stable stage is corresponded to the development of the micro-pits by the galvanic attack formed by Al-Fe-Cu-Mn containing particles and the matrix. The initial stage lasts about 2-3 h while the stable stage dominates the whole corrosion process.

  3. Joint properties of friction welded 6061 aluminum alloy/YSZ–alumina composite at low rotational speed

    Highlights: • Joint properties of FW for 6061 Al alloy/alumina–YSZ composite were clarified. • Different technique analyses with varying speeds were used in the experiment. • The microstructure, microhardness and bending strength of the joint were evaluated. • The results showed that joint was able to be friction welded in the low speed. • The low speed gave maximum bending strength and lower microhardness values. - Abstract: In this study, a ceramic composite of alumina–yttria stabilized zirconia (YSZ) was friction welded to 6061 aluminum alloy. Alumina rods containing 25 wt.% YSZ were formed using slip casting and subsequently sintered at 1600 °C to form a solid body. The 6061 aluminum alloy sample was cut and polished, and then subjected to friction welding experiments. Both rods were 16 mm in diameter. The results of this study showed that the alumina–25 wt.% YSZ composite was able to be friction welded to 6061 aluminum alloy at a lower rotational speed of 630 rpm compared with high rotational speeds. The friction force was maintained at 5 KN for a frictional time of 30 s. Optical Microscopy (OM) and Field Emission Scanning Electron Microscope (FESEM) were used to analyze the microstructure of the products, particularly at the interface of the joints. The joints were also examined with EDX line and area (energy dispersive X-ray) in order to determine the phases formed during the low speed welding. The mechanical properties including bending strength and Vickers microhardness were measured. The experimental results indicated that the mechanical strength of friction welded alumina–25 wt.% YSZ composite/6061 aluminum alloy components were obviously affected by joining in the low rotational speed (630 rpm), having higher strength as compared to higher rotational speed

  4. Study of corrosion of aluminum alloys of nuclear purity in ordinary water: Part two

    Pešić Milan P.; Maksin Tatjana N.; Jordanov Gabrijela; Dobrijević Rajko; Iđaković Zoja E.

    2005-01-01

    Since 2002, the effects of corrosion on aluminum alloys of nuclear purity in ordinary water of the spent fuel storage pool of the RA re search reactor at VINČA Institute of Nuclear Sciences have been examined in the frame work of the International Atomic Energy Agency Coordinated Research Project "Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water". Coupons were ex posed to the pool water for a period of six months to six years. The second part of this study comprises extensive r...

  5. Eddy Current Defectoscope for Monitoring the Duralumin and Aluminum-Magnesium Alloys

    Dmitriev, S.; Dmitrieva, L.; Malikov, V.; Sagalakov, A.

    2016-02-01

    The system developed is based on an eddy-current transducer of the transformer type, and is capable of inspecting plates made of duralumin and aluminum-magnesium alloys for defects. The measurement system supports absolute and differential control modes. The system was tested on a number of duralumin and aluminum-magnesium plates with internal flaws located as deep as 5 mm under the surface. The article provides data that demonstrates a link between the response time and the presence of defects in similar structures at a signal frequency of 1000 Hz.

  6. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  7. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Yang Wang; Xiao Wei Liu; Hai Feng Zhang; Zhi Ping Zhou

    2014-01-01

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstr...

  8. Casting defects in low-pressure die-cast aluminum alloy wheels

    Zhang, B.; Cockcroft, S. L.; Maijer, D. M.; Zhu, J. D.; Phillion, A. B.

    2005-11-01

    Defects in automotive aluminum alloy casting continue to challenge metallurgists and production engineers as greater emphasis is placed on product quality and production cost. A range of casting-related defects found in low-pressure die-cast aluminum wheels were examined metallographically in samples taken from several industrial wheel-casting facilities. The defects examined include macro- and micro- porosity, entrained oxide films, and exogenous oxide inclusions. Particular emphasis is placed on the impact of these defects with respect to the three main casting-related criteria by which automotive wheel quality are judged: wheel cosmetics, air-tightness, and wheel mechanical performance.

  9. Effect of Surface Pretreatment on Adhesive Properties of Aluminum Alloys

    Jinsheng ZHANG; Xuhui ZHAO; Yu ZUO; Jinping XIONG; Xiaofeng ZHANG

    2008-01-01

    The lap-shear strength and durability of adhesive bonded AI alloy joints with different pretreatments were studied by the lap-shear test and wedge test. The results indicate that the maximum lap-shear strength and durability of the bonding joints pretreated by different processes are influenced by the grade of abrasive papers and can be obviously improved by phosphoric acid anodizing. Alkali etching can obviously improve the durability of bonding joints although it slightly influences the maximum lap-shear strength. The process which is composed of grit-finishing, acetone degreasing, alkali etching and phosphoric acid anodizing, provides a better adhesive bonding property of AI alloy.

  10. POROSITY DEVELOPMENT DURING HEAT TREATMENT OF ALUMINUM-LITHIUM ALLOYS

    Papazian, J.; J. Wagner; Rooney, W.

    1987-01-01

    The development of a sub-surface layer of porosity during heat treatment has been studied in a variety of Al-Li alloys. Pure binary Al-Li alloys and three commercial materials were heat treated in air, vacuum and hydrogen for various lengths of time. Subsequent metallographic sectioning and polishing revealed the presence of a band of pores in the near-surface region extending approximately 300 µm into the sample after a 16 h heat treatment. This band of porosity is thought to arise from a Ki...

  11. Technical parameters in electromagnetic continuous casting of aluminum alloy

    李玉梅; 张兴国; 贾非; 姚山; 金俊泽

    2003-01-01

    The temperature field of aluminum ingot during electromagnetic continuous casting was calculated by the numerical method, and the effects of cooling water strength, position of the cooling water holes and pouring temperature as well as induction heat on casting speed, were studied. The results show that among the technical parameters the distance from the position of the cooling water holes to the bottom of the mold is the most important factor, whose change from 20mm to 15mm and from 15mm to 10mm causes the setting rate increasing respectively by 0.14mm/s and 0.3mm/s.The calculated results also agree with the experiment well. The simulation program can be used to determine technical parameters of electromagnetic casting of aluminum ingot effectively.

  12. Influence of melting and filtration processes on the structure and mechanical properties of aluminum alloys

    M. Dudyk

    2008-10-01

    Full Text Available In the article are presented the results of the study on the applied upgrading processes such as refining, modification and filtration of thenear eutectics alloy EN AC- 44000, AlSi11, (AK11, cast into the chill. The upgrading processes applied to the said alloy caused, incomparison to the alloy which was not upgraded, significant differences in the shape of the crystallization curves, obtained in the graphicrecord of the ATD-AED method. It was demonstrated the existence of connections between the thermal and electric phenomena duringsolidification and crystallization of the studied silumin. The obtained results of the metallographic analysis showed the occurrence of theimpurities within the alloy structure in the form of porosity and oxides following the metallurgical processing (in pig sows. The primarystudies on microstructure of the cast ceramic filters have demonstrated the purposefulness of introduction of the filtration process to thetechnology of aluminum alloys manufacturing. The microstructures of the filters cast with the studied alloys illustrate the extent anddeployment of the impurities retained (in the filter during the process of samples casting for measurement of the mechanical strengthproperties. On the example of the near eutectics alloy AK11, it has been demonstrated, that in comparison to the refined alloy there isa possibility to obtain significant improvement of mechanical properties, and especially elongation A5 and impact strength KCV.

  13. Density and solidification feeding model of vacuum counter-pressure cast aluminum alloy under grade-pressuring conditions

    Qing-song Yan

    2016-03-01

    Full Text Available The density of vacuum counter-pressure cast aluminum alloy samples under grade-pressuring condition was studied. The effect of grade pressure difference and time on the density of aluminum alloys was discussed, and the solidification feeding model under grade-pressuring condition was established. The results indicate the grade-pressured solidification feeding ability of vacuum counter-pressure casting mainly depends on grade pressure difference and time. With the increase of grade pressure difference, the density of all the aluminum alloy samples increases, and the trend of change in density from the pouring gate to the top location is first decreasing gradually and then increasing. In addition, in obtaining the maximum density, the optimal grade-pressuring time is different for samples with different wall thicknesses, and the solidification time when the solid volume fraction of aluminum alloy reaches about 0.65 appears to be the optimal beginning time for grade-pressuring.

  14. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  15. Effect of age condition on fatigue properties of 2E12 aluminum alloy

    YAN Liang; DU Feng-shan; DAI Sheng-long; YANG Shou-jie

    2010-01-01

    The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM)and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP)resistance in T3condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR)decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.

  16. Effects of Solid-Liquid Mixing on Microstructure of Semi-Solid A356 Aluminum Alloy

    Guo, H. M.; Wang, L. J.; Wang, Q.; Yang, X. J.

    2014-08-01

    The desired starting material for semi-solid processing is the semi-solid slurry in which the solid phase is present as fine and globular particles. A modified solid-liquid mixing (SLM) is reported wherein semi-solid slurry can be produced by mixing a solid alloy block into a liquid alloy, and mechanical vibration is utilized to enhance the mixing. Effects such as liquid alloy temperature, mass ratio, and mixing intensity on the microstructure and the cooling curves during SLM were evaluated. 2D and 3D microstructure analysis of treated A356 aluminum alloy shows that microstructure can be refined significantly with a considerable morphology change in primary Al phase. It is critical that the temperature of mixture after mixing is lower than its liquidus temperature to obtain a valid SLM process. Specially, mixing intensity is identified as a primary factor for a favorable microstructure of semi-solid slurry.

  17. Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloy

    This paper focused on the interactive effect of cerium (Ce) addition and aluminum (Al) content in magnesium alloy on ignition point and oxidation resistance. Ce content played an important role in improving the oxidation resistance of Mg alloy. Ignition point ascended with increasing Ce content. 0.25 wt% Ce content in Mg alloys could greatly improve tightness of the oxide film of Mg alloys. However, when Ce content in the alloy exceeded its solid solubility, ignition point descended. Furthermore, Al content in the alloy also influenced the ignition point. The higher the Al content was, the lower the ignition point

  18. Neutron diffraction studies of welds of aerospace aluminum alloys

    Martukanitz, R.P.; Howell, P.R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Payzant, E.A.; Spooner, S.; Hubbard, C.R. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Neutron diffraction and electron microscopy were done on residual stress in various regions comprising variable polarity plasma arc welds of alloys 2219 (Al-6.3Cu) and 2195 (Al-4.0Cu-1.0Li-0.5Mg-0.5Ag). Results indicate that lattice parameter changes in the various weld regions may be attributed to residual stresses generated during welding, as well as local changes in microstructure. Distribution of longitudinal and transverse stress of welded panels shows peaks of tension and compression, respectively, within the HAZ and corroborate earlier theoretical results. Position of these peaks are related to position of minimum strength within the HAZ, and the magnitude of these peaks are a fraction of the local yield strength in this region. Weldments of alloy 2195-T8 exhibited higher peak residual stress than alloy 2219-T87. Comparison of neutron diffraction and microstructural analysis indicate decreased lattice parameters associated with the solid solution of the near HAZ; this results in decreased apparent tensile residual stress within this region and may significantly alter interpretation of residual stress measurements of these alloys. Considerable relaxation of residual stress occurs during removal of specimens from welded panels and was used to aid in differentiating changes in lattice parameters attributed to residual stress from welding and modifications in microstructure.

  19. Comparison of thermodynamic databases for 3xx and 6xxx aluminum alloys

    Ravi, C.; Wolverton, C.

    2005-08-01

    Computational thermodynamics, or Calculation of Phase Diagram (CALPHAD) methods have proven useful in applications to modeling a variety of alloy properties. However, the methods are only as accurate as the thermodynamic databases they use, and two commercial thermodynamic databases exist for aluminum alloys: Thermotech and Computherm. In order to provide a critical comparison of these databases, we used both the databases to calculate equilibrium solid-state phase fractions and phase diagram isothermal sections of several industrial aluminum alloys: a 319-type and 356 cast alloys, as well as the wrought alloys 6022 and 6111. All of these alloys may be generically described as being based on the Al-Mg-Si-Cu quaternary with other additions such as Fe, Mn, and Zn. Although many of the results are consistent between the two databases, several qualitative and quantitative differences were observed. Many of these differences are found to be due to the intermetallic compounds involving Fe, Mn, Cr, and Zn. On the other hand, thermodynamics involving only phases from the Al-Mg-Si-Cu quaternary show good agreement between the databases, although some small differences still exist, particularly involving the quaternary Q phase. To understand and assess these differences, formation enthalpies and reaction energies from the databases were compared against density functional first-principles energetics. These comparisons indicate possible avenues for future improvements of Al-alloy thermodynamic databases. Finally, we demonstrate an interesting correlation between the calculated phase fractions and the measured yield strengths across this wide family of 3xx cast and 6xxx wrought alloys.

  20. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory. PMID:18075217

  1. Density and solidification feeding model of vacuum counter-pressure cast aluminum alloy under grade-pressuring conditions

    Qing-song Yan; Huan Yu; Gang Lu

    2016-01-01

    The density of vacuum counter-pressure cast aluminum alloy samples under grade-pressuring condition was studied. The effect of grade pressure difference and time on the density of aluminum alloys was discussed, and the solidification feeding model under grade-pressuring condition was established. The results indicate the grade-pressured solidification feeding ability of vacuum counter-pressure casting mainly depends on grade pressure difference and time. With the increase of grade pressure di...

  2. Temperature Dependence of Density and Thermal Expansion of Wrought Aluminum Alloys 7041, 7075 and 7095 by Gamma Ray Attenuation Method

    Nallacheruvu Gopi Krishna; Ammiraju Sowbhagya Madhusudhan Rao; Kalvala Gopal Kishan Rao; Kethireddy Narender

    2013-01-01

      The gamma quanta attenuation studies have been carried out to determine mass attenuation coefficients of 7041, 7075 and 7095 wrought aluminum alloys. The temperature dependence of linear attenuation coefficient, density and thermal expansion of these wrought aluminum alloys in the temperature range 300 K - 850 K have been reported. The measurements were done by using a gamma ray densitometer designed and fabricated in our laboratory. The data on variation of density and linear thermal expa...

  3. Study of the localized corrosion of over-aged aeronautical 2024 aluminum alloy. Kelvin probe Force Microscopy (KFM) application

    Radutoiu, Nicoleta; Lacroix, Loïc; Alexis, Joël; Abrudeanu, Marioara; Petit, Jacques-Alain

    2012-01-01

    The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The presence of coarse interm...

  4. Application of Kelvin probe Force Microscopy (KFM) to evidence localized corrosion of over-aged aeronautical 2024 aluminum alloy

    Radutoiu, Nicoleta; Alexis, Joël; Lacroix, Loïc; Abrudeanu, Marioara; Petit, Jacques-Alain

    2013-01-01

    The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The presence of coarse interm...

  5. Experimental investigation of emissivity of aluminum alloys and application of multispectral radiation thermometry

    Experiments were first conducted to measure the emissivity values of a variety of aluminum alloys at 600, 700, and 800 K. The effects of wavelength, temperature, alloy composition, and heating time on emissivity were investigated. Multispectral radiation thermometry (MRT) with linear emissivity models (LEM) and log-linear emissivity models (LLE) were then applied to predict surface temperature. Parametric influences of wavelength number, heating time and order of emissivity models were examined. Results show that the spectral emissivity decreases with increasing wavelength and increases with increasing temperature. A stronger alloy effect is evident at higher temperature. The spectral emissivity reaches steady state after the first hour heating due to the surface oxidation becoming fully-developed. Half of the temperature predictions by MRT emissivity models provide the absolute temperature error under 10% and quarter of the results are under 5%. Increasing the order of emissivity model and increasing the number of wavelengths cannot improve temperature measurement accuracy. Overall, LLE models show higher accuracy than LEM models. The first-order and second-order LLE models and the first-order LEM model give good results most frequently and provide the best compensation for different alloys, the number of wavelengths, and temperatures. - Highlights: → Emissivity behaviors of aluminum alloys were investigated experimentally. → Multispectral radiation thermometry (MRT) were examined. → Three MRT emissivity models perform well on temperature prediction.

  6. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  7. Part A - low-aluminum-content iron-aluminum alloys. Part B - commercial-scale melting and processing of FAPY alloy

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J. [Hoskins Manufacturing Co., Hamburg, MI (United States)

    1996-06-01

    The FAPY is a Fe-16 at. % Al alloy of nominal composition. The aluminum content of the alloy is such that it remains single phase ({alpha}) without the formation of an ordered phase (DO{sub 3}). The alloy has good oxidation resistance at temperatures up to 1000{degrees}C and has shown significantly superior performance as heating elements as compared to the commonly used nickel-based alloy, Nichrome. Although wire for the heating elements has been fabricated from small (15-1b) laboratory heats, for its commercial applications, the wire needs to be producible from large (1200 to 1500-1b) air-melted heats. The purpose of this study was to produce commercial size heats and investigate their mechanical properties and microstructure in the as-cast, hot-worked, and cold-worked conditions. The results of this study are expected to provide: (1) insight into processing steps for large heats into wire under commercial conditions, and (2) the mechanical properties data on commercial size heats in various product forms.

  8. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  9. Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment

    Zhongyu Cui

    2015-01-01

    Full Text Available Atmospheric corrosion behavior of 2A12 aluminum alloy exposed to a tropical marine environment for 4 years was investigated. Weight loss of 2A12 alloy in the log-log coordinates can be well fitted with two linear segments, attributing to the evolution of the corrosion products. EIS results indicate that the corrosion product layer formed on the specimens exposed for 12 months or longer presents a good barrier effect. Corrosion morphology changes from pitting corrosion to severe intergranular corrosion with the extension of exposure time, resulting in the reduction of the mechanical properties.

  10. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  11. Unique microstructure and property of a 2024 aluminum alloy subjected to upsetting extrusion multiple processing

    LI Xiaoqiang; LI Yuanyuan; CHEN Weiping; LONG Yan; HU Lianxi; WANG Erde

    2004-01-01

    The microstructure and hardness of a 2024 aluminum alloy subjected to multi-pass upsetting extrusion at ambient temperature were studied. Experimental results indicated that with the number of upsetting extrusion passes increasing, the grains of the alloy are gradually refined and the hardness increases correspondingly. After ten passes of upsetting extrusion processing, the grain size decreases to less than 200 nm in diameter and the sample maintains its original shape, while the hardness is double owing to equal-axial ultrafine grains and work hardening effect caused by large plastic deformation.

  12. Optimization of the super lateral energy in laser surface alloying of aluminum

    An aluminum substrate has been alloyed with an iron and copper mixture by a laser induced plasma technique. The nanosecond pulse duration and the high plasma temperature expose the interacting materials to decalescent and recalescent regions, contributing to the formation of new chemical composites such as AlFeCu, AlFe, AlCu and CuFe. The microstructure of the alloyed surface is observed to be heterogeneous, with no crack formation and with few pores. The hardness of the laser treated surface is 103 HV, seven times harder than that of the substrate (15 HV) at a corresponding super lateral energy of 5282 mJ cm−2. (letter)

  13. XPS study of cerium conversion coating on the anodized 2024 aluminum alloy

    Cerium-rich conversion coating was deposited on anodized aluminum alloy 2024 in a solution containing Ce(NO3)3. X-ray photoelectron spectroscopy (XPS) was used as the analysis method. The composition of the Ce conversion coating deposited on the anodized 2024 alloy was investigated using this method. It was revealed that the coating predominately consisted of three-valent state cerium compound. Some of the CeIII was oxidized to CeIV in the outer layer coating

  14. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  15. Fabrication And Mechanical Properties Of A Nanostructured Complex Aluminum Alloy By Three-Layer Stack Accumulative Roll-Bonding

    Lee S.-H.

    2015-06-01

    Full Text Available A multi-layered complex aluminum alloy was successfully fabricated by three-layer stack accumulative roll bonding(ARB process. The ARB using AA1050 and AA5052 alloy sheets was performed up to 7 cycles at ambient temperature without lubrication. The specimen processed by the ARB showed a multi-layer aluminum alloy sheet in which two aluminum alloys are alternately stacked. The grain size of the specimen decreased with the number of ARB cycles, became about 350nm in diameter after 7cycles. The tensile strength increased with the number of ARB cycles, after 6c it reached 281MPa which is about twice higher than that of the starting material. The microstructures and mechanical properties of a three-layer AA1050/AA5052 alloy fabricated by the ARB were compared to those of the conventional ARB-processed material.

  16. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  17. Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method

    Zhang, Zheng [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Yang, Yinfei, E-mail: yyfgoat@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Li, Liang [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Bo; Tian, Hui [Xi’an Aircraft Industrial (Group) Co. Ltd., Xi’an 710000 (China)

    2015-09-17

    The cold-compression stress relief process has been used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings. However, this method does not completely relieve the stress. Longitudinal residual stresses in 7050-T7452 aluminum alloy forging were measured with contour method. The measuring procedure of the contour method including specimen cutting under clamps with a wire electrical discharge machine, contour measurement of the cut surface with a laser scanner, careful data processing and elastic finite element analysis was introduced in detail. In addition, multiple cuts were used to map cross sectional stress at different cut surfaces. Finally, the longitudinal residual stress throughout the cut plane was mapped, and through thickness longitudinal stress profiles were also analyzed. Investigated results suggest that spatial variation of stress distribution can be attributed to the non-uniform plastic deformation of the cold-compression stress relief process. The overall reduction of peak stress magnitudes is approximately 43–79%.

  18. Moiré method analysis for tensile strain field of 2024 aluminum alloy welded joint

    徐文立; 魏艳红; 刘雪松; 方洪渊; 赵敏; 田锡唐

    2003-01-01

    Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position-welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.

  19. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  20. Evaluation of residual stress relief of aluminum alloy 7050 by using crack compliance method

    王秋成; 柯映林; 邢鸿燕; 翁泽宇; 杨芳儿

    2003-01-01

    High strength aluminum alloys of 7xxx series have unacceptable levels of quenching residual stresses from solution heat treatment. The residual stress not only results in machining distortion and dimensional instability, but also increases the possibility of stress corrosion cracks. Therefore, it is necessary to reduce the residual stress to an acceptable level. The crack compliance method was adopted to study the influences of various stress relief methods on residual stress patterns in 7050 aluminum alloy. The results show that 90% residual stress can be eliminated by the cold stretching(Tx51) method. And a lower level of residual stress can be achieved by the uphill quenching(Tx53) method or the cold compression(Tx52). However, there is a very steep residual stress gradient normal to exterior surfaces.

  1. Effect of polymer coatings on fatigue strength of aluminum alloy 2024 box beams

    Nordmark, G. E.; Kelsey, R. A.

    1972-01-01

    Previous investigators have shown that polymer coatings raise the fatigue strength of metals tested in air to about the same level as that of uncoated specimens tested in vacuum. The results are given of tests to determine if a polymer coating would improve the fatigue strength of built-up aluminum alloy members simulating aircraft construction. Aluminum alloy 2024-T4 riveted box beams were subjected to constant amplitude fatigue tests in air as well as in salt water fog. The coating did not improve the fatigue strength of beams tested in either environment. This is believed to result from the fact that most failures originated at rivet holes, which were isolated from both the coating and the environment.

  2. Contact corrosion of aluminum and its alloys in aqueous environment of nuclear facilities

    The paper presents processes occurring during contact corrosion of structural materials of nuclear facilities, namely aluminium, its alloy SAV-1 with zirconium alloy E110 and stainless steel Cr18ni10ti. The results of electrochemical and autoclave testing of examined contact pairs showed that in all cases the anode is aluminum (or SAV-1), which oxidizes more intensively in comparison with E110 and Cr18ni10ti. During of aluminum and SAV-1 oxidation in an aqueous environment, corrosion products dissolve in the corrosion environment. Pre- oxidation of cathode material (E110) to oxide film thickness 1-1.5 microns virtually eliminates galvanic corrosion component of SAV-1 in the contact pair with E110, which is confirmed by the measurement results of corrosion current density and other indicators characterizing the reliability of the elements and safety of the entire facility

  3. Specific Energy Absorbed Study Of Aluminum (2024-351T Tubes Alloy Under Lateral Crush

    Ayad Arab Ghaidan

    2013-04-01

    Full Text Available This paper aims to find SEA (Specific Energy Absorber for lateral crushing (statically behavior for Aluminum (2024-T351 alloy with difference lengths (10, 20, and 30 mm. An experimental, finite element simulation, and theoretical models present to find force-deformation curves and then find SEA for difference lengths. Experimental results more agreements with finite elements simulation and theoretical when length of tubes is increase for load deformation curve, because when the length increases the plastic region increase with initial plastic collapse load (Pc. The experimental, ANSYS simulation and theoretical results have plotted and it has seen that the theory also underestimates the ANSYS results because in theoretical model, is customary to assume that the material is perfectly plastic, therefore, the finite element simulation might predict the experimental results better than the theoretical one. The results show that light density Aluminum alloy is suitable for SEA.

  4. Diffusion-controlled wear of steel friction stir welding tools used on aluminum alloys

    Tarasov, S. Yu.; Kalashnikova, T. A.; Kalashnikov, K. N.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.

    2015-10-01

    The worn surfaces of steel instruments used for friction stir welding on AMg5M aluminum alloy have been examined. An adhesion transfer layer resulted on the steel tool surface from welding the aluminum-magnesium alloy. Diffusion between this layer and steel base metal resulted in formation of an intermetallic Fe-Al layer (IMC). The hardness of the IMC has been measured using a nanohardness tester. It was found that the IMC layers maximum hardness changed from 998 to 1698 HV. The continuous IMC layers may serve as a wear-resistant coating, however, the IMC were also found in the shape of spikes directed into the tool's body, which created conditions for wear particle formation by fracture.

  5. Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

    YANG Fuliang; GAN Weiping; CHEN Zhaoke

    2007-01-01

    Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space- flight industry. Al-30Si and Al-40Si are fabricated with air- atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expan- sion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high- silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductiv- ity varies between 104-140W/(m.K); with the extrusion temperature, thermal expansion coefficient also increases but within 13 × 10-6 (at 100℃) and hermeticity of the material is high to 10-9 order of magnitude.

  6. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  7. The intermetallic bonding between a ring carrier and aluminum piston alloy

    This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist) in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of al fin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond) between the ring carrier and aluminum piston alloy. (Author)

  8. An Innovative Two-Stage Reheating Process for Wrought Aluminum Alloy During Thixoforming

    Wang, JiaoJiao; Brabazon, D.; Phillion, A. B.; Lu, GuiMin

    2015-09-01

    An innovative two-stage reheating process has been developed to improve the thixotropic behavior of semi-solid wrought aluminum alloy during thixoforming. The variation of the microstructural evolution mechanisms with temperature and holding time during a traditional process and two-stage reheating process are presented in this paper. A preferred semi-solid microstructure with spherical-like grains surrounded by a uniform liquid film was obtained in the two-stage reheating process. The semi-solid microstructure obtained via this two-stage reheating process had a number of features beneficial for semi-solid metal processing, including smaller equivalent diameters, a higher degree of sphericity, a lower coarsening rate constant of solid grains and a reduced amount of entrapped liquid compared with that produced by the traditional reheating process. These results indicate that the two-stage reheating process is a promising method for manufacturing wrought aluminum alloy during thixoforming.

  9. Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method

    The cold-compression stress relief process has been used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings. However, this method does not completely relieve the stress. Longitudinal residual stresses in 7050-T7452 aluminum alloy forging were measured with contour method. The measuring procedure of the contour method including specimen cutting under clamps with a wire electrical discharge machine, contour measurement of the cut surface with a laser scanner, careful data processing and elastic finite element analysis was introduced in detail. In addition, multiple cuts were used to map cross sectional stress at different cut surfaces. Finally, the longitudinal residual stress throughout the cut plane was mapped, and through thickness longitudinal stress profiles were also analyzed. Investigated results suggest that spatial variation of stress distribution can be attributed to the non-uniform plastic deformation of the cold-compression stress relief process. The overall reduction of peak stress magnitudes is approximately 43–79%

  10. Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy

    CUI Shihai; HAN Jianmin; LI Weijing; KANG Suk-Bong; LEE Jung-Moo

    2006-01-01

    Thick and hard ceramic coatings were fabricated on A356 aluminum alloy by using plasma electrolytic oxidation(PEO) technique.The microstructure and phase composition of the PEO coatings were examined by using SEM and XRD method.It is found that the PEO coatings are mainly composed of crystalline α-Al2O3 and mullite.The dry sliding wear test of PEO coatings were carried out on a ring-on-ring wear machine.Results shows that there is hardly no wear loss of polished PEO coatings while the wear rate of uncoated aluminum alloy is 4.3×10-5 mm3·(N·m)-1 at a speed of 0.52 m·s-1 and a load of 40 N.

  11. The intermetallic bonding between a ring carrier and aluminum piston alloy

    Manasijevie, S.; Dolie, N.; Djurdjevic, M.; Misic, N.; Davitkov, N.

    2015-07-01

    This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist) in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of al fin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond) between the ring carrier and aluminum piston alloy. (Author)

  12. Preparation of Scandium-Bearing Master Alloys by Aluminum-Magnesium Thermoreduction

    姜锋; 白兰; 尹志民

    2002-01-01

    The new preparation method of scandium-bearing master alloys, in which scandium oxide was fluorinated by reaction with NH4HF2 and then reduced by aluminum-magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum-magnesium was used as the reductive agent, the all-recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al3Sc, so the reduction progress is sustained and the recovery of Sc is increased.

  13. Characterization of grain microstructure development in the aluminum alloy EN AW-6060 during extrusion

    The purpose of this work is the experimental investigation and statistical characterization of the grain microstructure and its development in aluminum alloys during hot extrusion. To this end, electron backscatter diffraction (EBSD) data are utilized. Based on this data, properties like the grain morphology, mean grain size, or mean grain misorientation, can be derived with the help of data analysis and processing methods. In the current work, these are applied to the investigation and quantitative determination of the microstructural development in the aluminum alloy EN AW-6060 along a path in the center of a partly extruded billet. With increasing deformation, it is observed that the mean grain size continually decreases due to dynamic recrystallization (CRX). As expected, grain alignment along the extrusion direction tends toward with increasing deformation, and misorientation tends to decrease.

  14. Nondestructive characterization of corrosion protective coatings on aluminum alloy substrates

    Hoffmann, J.; Sathish, S.; Khobaib, M.; Meyendorf, N.; Netzelmann, U.; Matikas, T.E.

    2000-07-01

    This paper describes the initial phase of the development of a nondestructive, multisensor approach for detecting, quantifying and monitoring degradation of organic coatings applied to aluminum surfaces. Descriptions of the purposes and chemical compositions of layered coatings used on aircraft structures are provided. The discussion then concentrates on ultrasonic thickness measurements. One is the well-established pulse/echo scanning acoustic microscopy and, as a proposed alternative, continuous acoustic waves measurements with a probe in contract to the sample. Advantages and disadvantages of the two methods and their potential as in field applications are discussed.

  15. Fatigue Crack Initiation and Propagation of Aluminum Alloy Bearings

    CHENG Xian-Hua; MA Yan-Yan

    2004-01-01

    Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated and are taken as the basis for theoretically simulating the bearing fatigue process. It is found that the calculated results are in good accordance with the experimental results, which provides a feasible way for investigation of fatigue crack propagation process in the bearing.

  16. Thixo forging process of wrought aluminum alloy fabricated by rotational helical shape stirrer

    The manufacture of rheology materials from wrought and casting aluminum alloys using controlling solid fraction and crystal grain is demonstrated in this paper. The equipment to form the rheology material was designed so that shear force and applied pressure could be carefully and simultaneously applied using a mechanical stirrer. The problems caused by using this method with the thixo forging process were studied by investigating the mechanical properties of a sample that had a controlled solid fraction of 45-50 %

  17. Residual stress analysis of 7075 aluminum alloy after vacuum electron beam welding

    Chen Furong; Xie Ruijun; Guo Guifang

    2007-01-01

    The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress; the residual stress in thickness direction is very small.

  18. Ultrasonic detection of ductile-to-brittle transitions in free-cutting aluminum alloys

    Nejezchlebová, J.; Seiner, Hanuš; Ševčík, Martin; Landa, Michal; Karlík, M.

    2015-01-01

    Roč. 69, January 2015 (2015), s. 40-47. ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : aluminum alloys * laser ultrasound * ductile-to-brittle * elastic constants * resonant ultrasound spectroscopy Subject RIV: BI - Acoustics Impact factor: 2.225, year: 2014 http://www.sciencedirect.com/science/article/pii/S0963869514001200

  19. NBS: Nondestructive evaluation of nonuniformities in 2219 aluminum alloy plate: Relationship to processing

    Swartzendruber, L.; Boettinger, W.; Ives, L.; Coriell, S.; Ballard, D.; Laughlin, D.; Clough, R.; Biancanieilo, F.; Blau, P.; Cahn, J.

    1980-01-01

    The compositional homogeneity, microstructure, hardness, electrical conductivity and mechanical properties of 2219 aluminum alloy plates are influenced by the process variables during casting, rolling and thermomechanical treatment. The details of these relationships wre investigated for correctly processed 2219 plate as well as for deviations caused by improper quenching after solution heat treatment. Primary emphasis was been placed on the reliability of eddy current electrical conductivity and hardness as NDE tools to detect variations in mechanical properties.

  20. A potentiostatic study of the corrosion behavior of anodized and nonanodized aluminum alloy.

    White, K C; Svare, C W; Taylor, T D

    1985-06-01

    The clinical implication of this study is that some improvement in the corrosion resistance of denture bases made with aluminum alloy D-214 may be obtained by anodization. However, since this study does not exactly duplicate an oral environment or take into consideration the variation in oral environments, it cannot be assumed that the additional corrosion resistance would be discernible in a particular patient. PMID:3859652

  1. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  2. Rapid precision casting for complex thin-walled aluminum alloy parts

    Xuanpu DONG; Naiyu HUANG; Zitian FAN

    2004-01-01

    Based on Vacuum Differential Pressure Casting (VDPC) precision forming technology and the Selective Laser Sintering (SLS) Rapid Prototyping (RP) technology, a rapid manufacturing method called Rapid Precision Casting (RPC) process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but a...

  3. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Behzad Binesh; Mehrdad Aghaie-Khafri

    2016-01-01

    Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA) process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). During the isothermal heating, intermetallic p...

  4. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  5. Study of cavitation and failure mechanisms of a superplastic 5083 aluminum alloy

    Boydon, Juanito F.

    2003-01-01

    Superplastic forming of AA5083 is an economical way to create components of complex shape while retaining the high strength and stiffness-to-weight ratios associated with aluminum alloys. However, failure of the material due to formation and linkage of cavities during superplastic deformation poses a major obstacle in effective industrial employment of this technology. Deformed samples of AA5083 were analyzed by various techniques after superplastic deformation under uniaxial tension, biaxial...

  6. Determination of design allowable properties. Fracture of 2219-T87 aluminum alloy

    Engstrom, W. L.

    1972-01-01

    A literature survey was conducted to provide a comprehensive report of available valid data on tensile properties, fracture toughness, fatigue crack propagation, and sustained load behavior of 2219-T87 aluminum alloy base metal and weldments, as applicable to manned spacecraft tankage. Most of the data found were from tests conducted at room temperature, -320 F and -423 F. Data are presented in graphical and tabular form, and areas in which data are lacking are established.

  7. Characterization of microstructures induced in the workpiece of aluminum alloy by excimer laser micromachining

    Wu Ye [Shenzhen Key Lab of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 (China); Li, Irene Ling, E-mail: liling@szu.edu.cn [Shenzhen Key Lab of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 (China); Fu Ling; Zhai Jianpang; Ruan Shuangchen [Shenzhen Key Lab of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2009-09-15

    Excimer laser emitting at 248 nm is applied to produce microstructures on the surface of aluminum alloy. The surface morphology shows that hotspots and thermal fluidic structures both come to light. Two possible mechanisms of hotspots formation are proposed: near-field diffraction and interference, and extremely fast rapid thermal annealing. And for the formation of thermal fluidic pattern structure, a thin film model is applied.

  8. Electrodeposition of Ni-Cr alloy on aluminum substrate

    2006-01-01

    Ni-Cr alloys with mass fraction of 1.4%-23.9 %Cr, 76.1%-98.6 % Ni, and hardness of 70.5-80.5HR were electrodeposited on aluminium substrate from the trivalent chromium sulphate-chloride solution using citric acid as complexing agent. The aluminium was pretreated by means of degreasing and eroding, polishing and twice chemicai immersion of zinc. The effects of electrodeposition parameters such as current density, temperature, pH value and bath concentration on the composition and hardness of deposits were investigated. The results show that the Cr content increases with the increase of current density and the decrease of temperature, and that it increases with the increase of pH value to a maximum and then decreases. The increase of Cr content leads to the increase of hardness of the Ni-Cr layers. The deposits with high Cr content are of good corrosion resistance. Good adherence of Ni-Cr deposits to aluminium substrate is obtained. The Ni-Cr alloys are the Ni-Cr solid solution with fcc crystalline structure. The Ni-Cr alloy deposits are fine, bright and smooth and compact.

  9. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  10. The effect of mechanical surface and heat treatments on the erosion resistance of 6061 aluminum alloy

    Salik, J.; Buckley, D.; Brainard, W. A.

    1981-01-01

    The effects of both mechanical surface treatments and heat treatments on the erosion resistance of 6061 aluminum alloy were studied in order to gain a better understanding of material properties which affect erosion behavior. It was found that mechanical surface treatments have little or no effect on the erosion resistance. This is due to the formation by particle impact of a work-hardened surface layer, independent of the initial surface condition. The erosion resistance of aluminum single crystals was found to be independent of orientation, which is due to destruction of the surface microstructure and formation of a polycrystalline surface layer by the particle impact as observed by X-ray diffraction. Although on solution treatment of annealed aluminum 6061 the increase in hardness is accompanied by an increase in erosion resistance, precipitation treatment (which causes a further increase in hardness) results in a slightly lower erosion resistance.

  11. Characterization of Atmospheric Corrosion of 2A12 Aluminum Alloy in Tropical Marine Environment

    Li, T.; Li, X. G.; Dong, C. F.; Cheng, Y. F.

    2010-06-01

    In this work, corrosion product formed on 2A12 aluminum (Al) alloy after 3 months of natural exposure in South China Sea atmosphere was characterized by various surface analysis techniques, including scanning electron microscopy, energy-dispersive x-ray analysis, x-ray photoelectron spectroscopy, and x-ray diffraction. The atmospheric corrosion mechanism of Al alloy in marine environment was derived. Results demonstrated that Al alloy specimen experiences serious general corrosion and pitting corrosion. Al and O are enriched in the product film, and Ca and Cl are also found in the film and corrosion pits in Al alloy substrate. The main component compounds existing in the film include Al2O3, Al(OH)3, and AlOOH while AlCl3 and CaCO3 are also identified. Al alloy encounters corrosion under tropical marine atmosphere. Although somewhat protective, the formed surface film on Al alloy specimen is attacked by chloride ions, resulting in significant pitting corrosion of Al alloy.

  12. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    Highlights: • Al4W intermetallic phase was formed after laser surface alloying. • Potential–time measurements show the stable behavior after laser surface alloying. • Cyclic polarization indicates increase in corrosion resistance after laser surface alloying. - Abstract: A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21–32 J/mm2 the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al4W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential–time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47–70 kΩ cm2) with the increase in the laser energy density

  13. Production of Magnesium and Aluminum-Magnesium Alloys from Recycled Secondary Aluminum Scrap Melts

    Gesing, Adam J.; Das, Subodh K.; Loutfy, Raouf O.

    2016-02-01

    An experimental proof of concept was demonstrated for a patent-pending and trademark-pending RE12™ process for extracting a desired amount of Mg from recycled scrap secondary Al melts. Mg was extracted by electrorefining, producing a Mg product suitable as a Mg alloying hardener additive to primary-grade Al alloys. This efficient electrorefining process operates at high current efficiency, high Mg recovery and low energy consumption. The Mg electrorefining product can meet all the impurity specifications with subsequent melt treatment for removing alkali contaminants. All technical results obtained in the RE12™ project indicate that the electrorefining process for extraction of Mg from Al melt is technically feasible. A techno-economic analysis indicates high potential profitability for applications in Al foundry alloys as well as beverage—can and automotive—sheet alloys. The combination of technical feasibility and potential market profitability completes a successful proof of concept. This economical, environmentally-friendly and chlorine-free RE12™ process could be disruptive and transformational for the Mg production industry by enabling the recycling of 30,000 tonnes of primary-quality Mg annually.

  14. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  15. Stress measurement of silicon carbide particulate reinforced aluminum alloy by time-of-flight neutron diffraction

    The loading stresses in a monolithic aluminum alloy and an aluminum alloy reinforced with silicon carbide particles were measured by time-of-flight neutron diffraction method. Under uniaxial loading, the longitudinal and transverse strains were measured by high resolution powder diffractometer, Sirius, at KENS. The elastic constants measured by the neutron diffraction method were compared with the values predicted by analytical models. The intensity of A1200 diffraction was high enough to determine the lattice strain the both longitudinal and transverse directions. The elastic constants agreed well with the predicted values. For the composite, the loading stresses in each constituent phase of the aluminum alloy and the silicon carbide particles were measured. Diffractions from SiC102, SiC110 and A1200 were suitable for determination of lattice strains. The measured strains were compared with the values predicted by the inclusion models. When the diffraction intensity is sufficiently high, the measured elastic constants are close to the predicted values. The macro stress calculated by the rule of mixture agreed very well with applied stress. (author)

  16. Thixoforming of an ECAPed Aluminum A356 Alloy: Microstructure Evolution, Rheological Behavior, and Mechanical Properties

    Campo, Kaio Niitsu; Zoqui, Eugênio José

    2016-04-01

    Thixoforming depends upon three aspects: (a) solid to liquid transformation; (b) size and morphology of the remaining solid phase in the semisolid state, and (c) the effect of both input factors on rheology of the semisolid slurry. The aluminum A356 alloy presents an ideal solid to liquid transformation, but the solidification process generates coarse aluminum dendrites surrounded by eutectic. In this regard, Equal Channel Angular Pressing (ECAP) has great potential as a method for manufacturing thixotropic raw material due to its grain refining effect. Therefore, the microstructure evolution and rheological behavior in the semisolid state of an ECAPed aluminum A356 alloy were investigated. Samples were heated up to 853 K (580 °C) and held for 0, 30, 60, 90, 210, and 600 seconds at this temperature. The isothermal heat treatment caused the globularization of the solid phase without any significant microstructure coarsening. Compression tests were carried out at the same temperature and holding times using an instrumented mechanical press. Apparent viscosities values close to 250 Pa s were obtained, revealing the exceptional rheological behavior of the produced samples. The thixoformed material also presented good mechanical properties, with high yield and ultimate tensile strength values (YS = 110/122 MPa, UTS = 173/202), and good ductility (E = 6.9/7.5 pct). These results indicate that the production of the A356 alloy via the ECAP process increases its thixoformability.

  17. Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys

    The hot bands of direct chill cast (DC) and strip cast (SC) AA 5182 aluminum alloys were annealed at 454 deg. C for 3 h, and then cold rolled to different reductions. The ODFs of the cold rolled samples were determined by X-ray diffraction in order to compare the texture evolution of DC and SC AA 5182 aluminum alloys during rolling. The texture volume fractions were computed by a new method, in which the Euler space representing all possible crystallographic orientations in rolling was subdivided into the cube, r-cube, Goss, r-Goss, β fiber, and random orientation regions based on the slip pattern combined with the characteristics of microstructure and texture. Empirical formulae of the texture volume fractions and true strain were constructed to predict the texture of cold rolled DC and SC AA 5182 aluminum alloys. The results show that the processing method (DC vs. SC) strongly affects the texture after annealing at 454 deg. C and the texture evolution during the subsequent rolling

  18. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    ZHANG Shenglin

    2009-01-01

    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  19. Corrosion and wear mechanisms of aluminum alloys surface reinforced by multicharged N-implantation

    Thibault, S., E-mail: simon.thibault@ensicaen.fr [ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen (France); Hug, E. [Laboratoire de Cristallographie et Sciences des Matériaux, ENSICAEN, Université de Caen, CNRS, 6 Bd Maréchal Juin, 14050 Caen (France)

    2014-08-15

    Highlights: • We performed multi-charged nitrogen implantation of aluminum alloys. • Fluence dependence of wear and corrosion resistance is investigated. • Strengthening and damaging mechanisms are identified with nanoindentation and SEM. • Optimized fluence depends on initial microstructure and the application targeted. • Stress relaxation is necessary to improve wear resistance. - Abstract: Samples of Al-1050 and of Al-2024 aluminum alloys were implanted by means of nitrogen multicharged ion beam provided by an ECR source. Wear and corrosion tests were performed in order to qualify and quantify the surface enhancement created by implantation. The tests performed, respectively, using ball-on-disk set up and linear polarization technique, combined with SEM observations and correlated with microstructural study already published, made possible the identification of damaging mechanisms of nitrogen implanted aluminum surface. The study underlines the importance which has to be given to the implanted fluence and to the initial microstructure, if a consistent surface improvement is targeted. It is demonstrated in this work that the improvement of wear resistance is strongly linked to the intrinsic properties of the nitride protective layer and not to the initial microstructure which only affects optimum fluence. Corrosion tests reveal inverse tendency. The alloy composition is, in this case, of importance, contrarily to implanted fluencies which do not affect the results. This study also shows that if nitrogen implantation is good for surface resistance, a pit (corrosion) or a crack (wear) of implanted surface causes more damage than corrosion or wear of untreated surface.

  20. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  1. The influence of Ti and Sr alloying elements on electrochemical properties of aluminum sacrificial anodes

    Saremi, M.; Sina, H.; Keyvani, A.; Emamy, M. [Metallurgy and Materials Department, University of Tehran, P.O. Box 11365/4563, Tehran (Iran)

    2004-07-01

    Aluminum sacrificial anodes are widely used in cathodic protection of alloys in seawater. The interesting properties due to low specific weight, low electrode potential and high current capacity are often hindered by the presence of a passive oxide film which causes several difficulties in their practical application. In this investigation, the electrochemical behavior of Al- 5Zn-0.02In sacrificial anode is studied in 3 wt. % sodium chloride solution. The experiments focused on the influence of Ti and Sr as alloying elements on electrochemical behavior of aluminum sacrificial anode. Ti and Sr are used in different concentrations from 0.03 to 0.1 wt.% 0.01 to 0.05 wt.%, respectively. NACE efficiency and polarization tests are used in this case. It is shown that by using 0.03 wt.% Ti and 0.01 wt.% Sr as the alloying elements to investigate the anodic behavior of the anodes, homogeneous microstructures are obtained which results in improvement of electrochemical properties of aluminum sacrificial anode such as current capacity and anode efficiency. (authors)

  2. Processing map of as-cast 7075 aluminum alloy for hot working

    Guo Lianggang a; Yang Shuang a; Yang He a; Zhang Jun b

    2015-01-01

    The true stress–strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300–500 ?C and strain rates of 0.01–10 s?1. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Mate-rial Model (DMM) of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425–465 ?C and the strain rates at 0.01–1 s?1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.

  3. Strengthening technology and mechanism for semi-solid die casting of aluminum alloy

    张恒华; 许珞萍; 邵光杰; 余忠土

    2003-01-01

    Combined with theoretical evaluation,an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail,then,the semi-solid die castings and liquid die castings were heat treated with the optimized process.The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings,especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 Mpa and the elongation more than 10%,and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings.The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2 Si)and formation of GP Zone.

  4. Processing map of as-cast 7075 aluminum alloy for hot working

    Guo Lianggang

    2015-12-01

    Full Text Available The true stress–strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300–500 °C and strain rates of 0.01–10 s−1. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Material Model (DMM of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425–465 °C and the strain rates at 0.01–1 s−1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.

  5. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy

    The effect of different Wire electrical discharge machining (WEDM) process parameters on the damping behavior of A356.2 aluminum alloy is investigated. In the present investigation pulse on time (TON), pulse off time (TOFF) and peak current (IP) which are considered to be the most significant process parameters from the previous studies are varied using one factor at a time approach, to study the effect on damping behavior of A356.2 aluminum alloy. Damping experiments are performed on a dynamic mechanical analyzer (DMA 8000) at constant strain under dual cantilever mode over a frequency range of 1–100 Hz at room temperature. The scanning electron microscope was used for characterization of the wire EDMed samples. Experimental results reveal that the damping behavior greatly depends on the wire EDM process parameters. The related mechanisms are presented. - Highlights: • Damping capacity increase with the increase in frequency. • Increasing pulse on time increases the damping capacity of aluminum alloy. • The damping capacity was found to decrease with the increase in pulse off time. • No significant change in damping capacity was noticed with varied peak current. • The formation of white layer plays an important role in the damping behavior

  6. Perforation of thin aluminum alloy plates by blunt projectiles: An experimental and numerical investigation

    Reducing the armor weight has become a research focus in terms of armored material. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thickness 7A04 aluminum alloy plates at a velocity of 90∼170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. The validity of numerical simulations was verified by comparing with the experimental results. Detailed analysis of the failure modes and characters of the targets were carried out to reveal the target damage mechanism combined with the numerical simulation.

  7. Effects of Forging Process Parameters on Microstructure Evolution of Aluminum Alloy 7050

    The objective of this work is to investigate the behavior of microstructure evolution of aluminum alloy 7050 under the condition of different forging process parameters by means of combining materials physical model with finite element code. For the purpose of establishing constitutive equation and physical model of microstructure evolution, the isothermal compression test were performed by machine Gleeble 1500 on the condition of temperatures ranging from 250 deg. C to 450 deg. C and constant strain rates of 0.01s-1, 0.1s-1, 1s-1 and 10s-1. The behaviors of microstructure evolutions of aluminum alloy 7050 under difference process parameters were studied by metallographic observations. The experiment results showed that recrystallization during forming process occurred at the critical strain and the volume fraction of recrystallization changed with the temperature and strain rate. According to the results of isothermal compression test, a constitutive equation and an empirical model of DRX were obtained. A finite element code DEFORM 3D was used to analyze the influence of different forging process parameters on the behavior of microstructure evolution in details. The present model and simulation method can be served as a useful tool to predict and control the properties and shape of aluminum alloy 7050 components during forging

  8. Residual Strength of Stiffened LY12CZ Aluminum Alloy Panels with Widespread Fatigue Damage

    Li Zhong; Ge Sen; Lu Guozhi; Chen Li; Ding Huiliang

    2008-01-01

    Experimental and analytical investigations on the residual strength of the stiffened LY12CZ aluminum alloy panels with widespread fatigue damage (WFD) are conducted. Nine stiffened LY12CZ aluminum alloy panels with three different types of damage are tested for residual strength. Each specimen is pre-cracked at rivet holes by saw cuts and subjected to a monotonically increasing tensile load until failure is occurred and the failure load is recorded. The stress intensity factors at the tips of the lead crack and the adjacent WFD cracks of the stiffened aluminum alloy panels are calculated by compounding approach and finite element method (FEM) respectively. The residual strength of the stiffened panels with WFD is evaluated by the engineering method with plastic zone linkup criterion and the FEM with apparent fracture toughness criterion respectively. The predicted residual strength agrees well with the experiment results. It indicates that in engineering practice these methods can be used for residual strength evaluation with the acceptable accuracy. It can be seen from this research that WFD can significantly reduce the residual strength and the critical crack length of the stiffened panels with WFD. The effect of WFD crack length on residual strength is also studied.

  9. Experimental investigation on hot forming–quenching integrated process of 6A02 aluminum alloy sheet

    As important light-weight structure material, aluminum alloy has been widely used in automotive and aerospace industries, in which the manufacturing of parts with high strength and good dimensional accuracy has been the main task. In this paper, special device was developed to investigate the hot forming–quenching integrated process of cold-rolled 6A02 aluminum alloy sheet. Strengthening effect was reflected by Vickers hardness measuring and uniaxial tensile test. Microstructure examination was conducted to clarify the strengthening mechanism by scanning electron microscope (SEM), transmission electron microscopy(TEM) and electron backscattering diffraction (EBSD). Results show that Vickers hardness increases with solution time (<50 min) increase, and improves significantly after artificial aging. The faster the cooling rate, the greater the strengthening effect. The Vickers hardness of formed part can increase to 106.5 HV from 73 HV in cold-rolled condition or 40 HV in heated condition in hot forming–quenching integrated process (solution treatment at 520 °C/50 min, cooling by 50 °C/s, being aged at 160 °C/10 h). The corresponding tensile strength and yield strength are 315.6 MPa and 253.6 MPa, respectively. The strengthening phase is underaged dispersal GP zone with about 5 nm in size. The heat-treatable aluminum alloy sheet in rolled condition can be used directly in hot forming–quenching integrated process without any prophase heat treatment

  10. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy

    Prasad, Dora Siva, E-mail: dorasivaprasad@gmail.com [Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India); Shoba, Chintada [Dept of Industrial Engineering, GITAM University, Visakhapatnam, 530045 (India); Varma, Kalidindi Rahul [Dept of Mechanical Engineering, RAGHU College of Engineering, Visakhapatnam (India); Khurshid, Abdul [M.Tech (CAD/CAM), Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India)

    2015-10-15

    The effect of different Wire electrical discharge machining (WEDM) process parameters on the damping behavior of A356.2 aluminum alloy is investigated. In the present investigation pulse on time (T{sub ON}), pulse off time (T{sub OFF}) and peak current (IP) which are considered to be the most significant process parameters from the previous studies are varied using one factor at a time approach, to study the effect on damping behavior of A356.2 aluminum alloy. Damping experiments are performed on a dynamic mechanical analyzer (DMA 8000) at constant strain under dual cantilever mode over a frequency range of 1–100 Hz at room temperature. The scanning electron microscope was used for characterization of the wire EDMed samples. Experimental results reveal that the damping behavior greatly depends on the wire EDM process parameters. The related mechanisms are presented. - Highlights: • Damping capacity increase with the increase in frequency. • Increasing pulse on time increases the damping capacity of aluminum alloy. • The damping capacity was found to decrease with the increase in pulse off time. • No significant change in damping capacity was noticed with varied peak current. • The formation of white layer plays an important role in the damping behavior.

  11. Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys

    Bai, Q. L.; Li, Y.; Li, H. X.; Du, Q.; Zhang, J. S.; Zhuang, L. Z.

    2016-08-01

    During the production of high-strength 7××× aluminum alloys, hot tearing has set up serious obstacles for attaining a sound billet/slab. In this research, some typical 7××× alloys were studied using constrained rod casting together with the measurement of thermal contraction and load development in the freezing range, aiming at investigating their hot tearing susceptibility. The results showed that the hot tearing susceptibility of an alloy depends not only on the thermal contraction in freezing range, which can decide the accumulated thermal strain during solidification, but also on the amount of nonequilibrium eutectics, which can effectively accommodate the thermally induced deformation. Our investigations reveal that Zn content has very profound effect on hot tearing susceptibility. The Zn/Mg ratio of the alloys also plays a remarkable role though it is not as pronounced as Zn content. The effect of Zn/Mg ratio is mainly associated with the amount of nonequilibrium eutectics. Grain refinement will considerably reduce the hot tearing susceptibility. However, excessive addition of grain refiner may promote hot tearing susceptibility of semi-solid alloy due to deteriorated permeability which is very likely to be caused by the heavy grain refinement and the formation of more intermetallic phases.

  12. Effect of bariun on the refinement of primary aluminum and eutectics in a hypoeutectic Al-Si alloy

    LI Wei; FAN Hongyuan; ZHANG Xianju; SHEN Baoluo

    2003-01-01

    The effect of barium on the refinement of primary aluminum and on the modification of eutectics in a hypoeutectic aluminm-silicon alloy was investigated. The results indicate that barium not only modifies the eutectic silicon but also refines the primary aluminum and there is a relationship between the retained barium and the second spacing of primary aluminum. Experiments of barium-treated commercial Al-Si hypoeutectic alloy show that barium is a better modifier than sodium when there is a longer holding time.

  13. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  14. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    Chirita, G.; Stefanescu, I.; Soares, D.; Cruz, D.; Silva, F. S.

    2008-02-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting).

  15. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys

    Zhang, L.; Eskin, D.G.; Katgerman, L.

    2011-01-01

    Ultrasonic melt treatment (UST) is known to induce grain refining in aluminum alloys. Previous studies have clearly shown that in Al–Zr–Ti alloys, the primary Al3Zr intermetallics were dramatically refined by cavitation-assisted fragmentation, and a good refinement effect was achieved. In this artic

  16. Preparation and characterization of aluminum based alloy - mica composites

    In this work, six pallets each of 2.0 cm dia and 0.5 cm thickness were prepared by powder metallurgy; half of them also contained 1% mica-powder to form a composite. Inclusion of mica resulted in a decreased density and an increased porosity of the sample. Brinell hardness was found to be 21% less for the composite than for the pure alloy. Micro-graphs of different areas of the sample show uniform distribution of mica particles and avoids around them. (author)

  17. Mold Materials For Permanent Molding of Aluminum Alloys

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  18. Welding of aluminum alloys through thermite like reactions in Al–CuO–Ni system

    Highlights: ► Combustion synthesis reactions were utilized for welding of aluminum alloys. ► A composite joint reinforced by different intermetallic compounds was obtained. ► Using metal oxides as a part of raw materials makes the welding process economical. ► Furthermore, this process introduces new applications for thermite reactions. - Abstract: In this work, first, a metastable composite powder of “14Al–3CuO–Ni” with a decreased ignition temperature was obtained via Arrested Reactive Milling (ARM), then this exothermic blend was used for welding of 1100 Aluminum alloy. The reactive media and the weld zones were investigated using scanning electron microscope. X-ray diffraction experiment and morphological investigations accompanied with the EDS analyses were carried out in order to evaluate the reactions’ products. Vickers microhardness profile across the joint and the shear strength of the joints were determined. The weld zone thickness in each of the parent alloys was measured to be 750 μm, approximately. Results showed that different reactions occurring during the process lead to the in situ formation of different intermetallic compounds such as Al3Ni2 and Al7Cu4Ni as well as Al2O3 nanoparticles at the interface. Thus, this area has the maximum hardness (80–90 VHN) and the minimum hardness of 35 VHN belongs to the parent alloys. The mean shear strength of the obtained joints was 27 MPa.

  19. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  20. Some Corrosion Characteristics of Aged Aluminum Alloy 6061 in Neutral and Alkaline Solutions

    The composition and microstructure of the alloy as well as the corrosive nature of the environment play an important role in modifying the corrosion resistance of aluminum alloys. This work was intended to study the influence of the solution ph on the corrosion characteristics of 6061 aluminum alloy, (Al-Mg-Si alloy containing 0.22 wt % Cu) after aging at 225, 185 and 140 degree degree C for different periods of time. The investigation was performed by applying potentiodynamic polarization technique in neutral deaerated 0.5 % M NaCl solution as well as in alkaline NaOH solution (ph 10). Analysis of the potentiodynamic polarization curves showed similar dependence of Icorr and cathodic current densities on the aging treatment in both solutions. It was found that Ecorr values in the NaCl solution were shifted in the more noble direction while in the NaOH solution they were shifted in the more active direction compared to the solution treated condition. The magnitude of the noble or active shift in Ecorr increased with aging time for the under aged specimens and decreased towards Ecorr of the solution treated condition for the overaged specimens in both solutions. The Icorr values were higher in the alkaline solution for the same aging treatment

  1. Aluminum alloy production for the reinforcement of the CMS conductor

    Sequeira-Lopes-Tavares, S; Campi, D; Curé, B; Horváth, I L; Riboni, P; Sgobba, Stefano; Smith, R P

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the Large Hadron Collider (LHC) project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. To reinforce the high-purity (99.998%) Al-stabilized conductor of the magnet against the magnetic loadings experienced during operation at 4.2 K, two continuous sections of Al-alloy (AA) reinforcement are Electron Beam (EB) welded to it. The reinforcements have a section of 24*18 mm and are produced in continuous 2.55 km lengths. The alloy EN AW-6082 has been selected for the reinforcement due to its excellent extrudability, high strength in the precipitation hardened states, high toughness and strength at cryogenic temperature and good EB weldability. Each of the continuous lengths of the reinforcement is extruded billet on billet and press quenched on-line from the extrusion temperature in an industrial extrusion plant. In order to insure the ready EB welda...

  2. Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips

    Tokarski, Tomasz

    2016-06-01

    The direct production of aluminum from bauxite ores is known to be a very energetic-intensive operation compared to other metallurgical processes. Due to energy issues and the rapid increase in aluminum demand, new kinds of aluminum production processes are required. Aluminum waste recycling, which has an advantage of lowering the cost of electric power consumption, is considered to be an alternative route for material manufacturing. In this work, the way of reusing aluminum EN-AC 44000 alloy scraps by hot extrusion was presented. Metal chips of different sizes and morphology were cold compacted into billet form and then hot extruded. Mechanical properties investigations combined with microstructure observations were performed. Mechanical anisotropy behavior of material was evaluated on the base of tensile test experiments performed on samples machined at 0°, 45°, and 90°, respectively, to the extrusion direction. It was found that the initial size of the chips has an influence on the mechanical properties of the received profiles. Samples produced from fine chips revealed higher tensile strength in comparison to larger chips, which can be attributed to a refined microstructure containing fine, hard Si particles and Fe-rich intermetallic phases. Finally, it was found that anisotropic behavior of chip-based profiles is similar to conventionally cast and extruded materials which prove good bonding quality between chips.

  3. Thermomechanical treatment of 2124 PM aluminum alloys with low and high dispersoid levels

    Sarkar, B.; Lisagor, W. B.

    1986-01-01

    The effects of thermomechanical treatment (TMT) on the mechanical properties and metallurgical structure of 2124 powder metallurgy aluminum alloys prepared from rapidly solidified powders were investigated. The alloys were prepared by using a standard canning/vacuum degassing/hot consolidation/extrusion sequence. Two compositions, with manganese contents of 0.5 and 1.5 percent, were investigated to examine the effects of low and high dispersoid levels. The results indicate that significant improvements in strength can be accomplished through TMT for this PM alloy system with little loss in toughness. The increase in strength observed is attributed to the presence of much finer, more homogeneous S-prime precipitation than that observed without TMT. Rolling deformation at room temperature resulted in some tendency for nonuniform (planar) deformation and resulted in slightly lower notch strength values. The lower notch strengths observed in the higher manganese composition were attributed to the coarser, more dense dispersoids observed in this material.

  4. Improvement on the Corrosion Resistance of AZ91D Magnesium Alloy by Aluminum Diffusion Coating

    Hongwei HUO; Ying LI; Fuhui WANG

    2007-01-01

    By combination of magnetron sputtering deposition and vacuum annealing, an aluminum diffusion coating was prepared on the substrate of AZ91D alloy to improve its corrosion resistance. The microstructure and composition of the diffusion coating was investigated by scanning electron microscopy and X-ray diffraction. The diffusion coating was mainly comprised of β phase-Al12Mg17. The continuous immersion test in 3.5 wt pct neutral NaCl solution indicated that the specimen with diffusion coating had better corrosion resistance compared with the bare AZ91D alloy specimen. The potentiodynamic polarization measurement indicated that the diffusion coating could function as an effectively protective layer to reduce the corrosion rate of AZ91D alloy when exposed to 3.5 wt pct NaCl solution.

  5. Stress corrosion cracking resistance of aluminum alloy 7000 series after two-step aging

    Jegdić Bore V.

    2015-01-01

    Full Text Available The effect of one step-and a new (short two-step aging on the resistance to stress corrosion cracking of an aluminum alloy 7000 series was investigated, using slow strain rate test and fracture mechanics method. Aging level in the tested alloy was evaluated by means of scanning electron microscopy and measurements of electrical resistivity. It was shown that the alloy after the new two-step aging is significantly more resistant to stress corrosion cracking. Values of tensile properties and fracture toughness are similar for both thermal states. Processes that take place at the crack tip have been considered. The effect of the testing solution temperature on the crack growth rate on the plateau was determined. Two values of the apparent activation energy were obtained. These values correspond to different processes that control crack growth rate on the plateau at higher and lower temperatures. [Projekat Ministarstva nauke Republike Srbije, br. TR 34028 i br. TR 34016

  6. The Effect of Aluminum Content on the Microstructure and Cavitation Wear of Feal Intermetallic Alloys

    Jasionowski Robert

    2014-03-01

    Full Text Available Intermetallic-based alloys (so called intermetallics of the Fe-Al binary system are modern construction materials, which in recent decades have found application in many branches of the power, chemical and automotive industries. High resistance of FeAl based alloys to cavitational erosion results first of all from their high hardness in the as-cast state, large compressive stresses in the material, as well as homogeneous structure. In the present paper, the effect of aluminum content on the microstructure, texture and strain implemented upon cavitation wear of FeAl intermetallic alloys, have been analyzed by field emission gun scanning electron microscopy (FEG SEM and electron backscatter diffraction (EBSD analysis. Obtained results of structural characterization indicates that with increasing aluminium content effects of orientation randomization (weakening of //ND casting texture, grain refinement and rising of mechanical strenght (and so cavitational resistance take place.

  7. Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys

    The effects of erbium (Er) modification on the microstructure and mechanical properties of A356 aluminum alloys were investigated using optical microscope, X-ray diffraction, scanning electronic microscope and mechanical testing. Experimental results show that additions of Er refined the α-Al grains and eutectic Si phases in its as-cast state; the addition of 0.3 wt% of Er has the best effects on them. The Fe-containing Al3Er phases were introduced by the modifications; by a T6 treatment, the eutectic Si phases were further sphereodized; the large Al3Er and β-Al5FeSi phases were changed into fine particles and short rods; which enhanced the hardness of the alloys. The highest strength and elongation were obtained for the 0.3 wt% of Er-modified and T6-treated A356 alloy

  8. VAMAS tests of structural materials on aluminum alloy and composite material at cryogenic temperatures

    Ogata, T. [National Research Institute for Metals, Tsukuba, Ibaraki (Japan); Evans, D. [Rutherford Appleton Lab., Chilton (United Kingdom)

    1997-06-01

    A Technical Working Area 17, cryogenic structural materials, has been organized in the Versailles Project on Advanced Materials and Standards (VAMAS) to promote the prestandardization program on material properties tests of glass fiber reinforced polymer (GFRP) composite materials and alloys at liquid helium temperature. A series of international interlaboratory comparisons of both tensile and fracture toughness tests for aluminum alloy 2219 and compression and shear tests for composite material G-10CR were performed. Nine research institutes from seven nations have participated in this project. The results prove that there are few problems in cryogenic tensile tests for alloy materials. In compression and shear tests, the amount of data scatter was identified and further experiments are planned. This paper presents the program details and interim results of round robin tests.

  9. VAMAS tests of structural materials on aluminum alloy and composite material at cryogenic temperatures

    A Technical Working Area 17, cryogenic structural materials, has been organized in the Versailles Project on Advanced Materials and Standards (VAMAS) to promote the prestandardization program on material properties tests of glass fiber reinforced polymer (GFRP) composite materials and alloys at liquid helium temperature. A series of international interlaboratory comparisons of both tensile and fracture toughness tests for aluminum alloy 2219 and compression and shear tests for composite material G-10CR were performed. Nine research institutes from seven nations have participated in this project. The results prove that there are few problems in cryogenic tensile tests for alloy materials. In compression and shear tests, the amount of data scatter was identified and further experiments are planned. This paper presents the program details and interim results of round robin tests

  10. Hot deformation behavior and microstructural evolution of Ag-containing 2519 aluminum alloy

    The hot deformation behaviors of Ag-containing 2519 aluminum alloy were studied by isothermal compression at 300-500 oC with strain rates from 0.01 s-1 to 10 s-1. The microstructural evolution of the alloy was investigated using Polyvar-MET optical microscope and Tecnai G2 20 transmission electron microscope (TEM). It has been shown that the flow stress of the alloy increases with increasing the strain rate and decreasing the deformation temperature. When the strain rate is lower than 10 s-1, the flow stress increases with increasing strain until the stress reached the peak value, after which the flow stress remains almost constant. This result indicates that dynamic recovery happens during deformation. When the strain rate is 10 s-1 and the temperature is higher than 300 oC, serrated flow behavior is generally observed with the stress decreasing with increasing strain, a typical phenomenon of dynamic recrystallization.

  11. Numerical simulation for mold-filling of thin-walled aluminum alloy castings in traveling magnetic field

    Wu, Shiping; Bangsheng LI; Guo, Jingjie

    2004-01-01

    The numeical simulation for mold-filling of thin-walled aluminum alloy castins in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testiied the filling state of alloy in traveling m...

  12. Lateral extrusion of tailor welded aluminum alloy pipes with a lost core of low temperature melting alloy

    Ohashi, T.; Liu, G.

    2009-01-01

    Purpose: In this paper, the authors employ tailor welded aluminum alloy pipes for lateral extrusion process with a lost core to perform a hollow light-weight-part.Design/methodology/approach: The pipe is welded longitudinally by YAG-laser. “The lateral extrusion process with a lost core (LELC)” consists of lateral extrusion of pipes with a soluble solid core, called the “lost core”, which serves as a plastic mandrel. The process proceeds as follows. First, the pipe cavity is filled with the l...

  13. Impression creep properties of a semi-solid processed magnesium-aluminum alloy containing calcium and rare earth elements

    The creep properties of a thixoformed magnesium-aluminum alloy containing calcium and rare earth elements were studied under shear modulus-normalized stresses ranging from 0.0225 to 0.035 at temperatures of 150-212 oC using the impression creep technique. Analysis of the creep mechanism based on a power-law equation indicated that pipe diffusion-controlled dislocation climb is the dominant mechanism during creep. The alloy has a better creep resistance than high-pressure die-cast magnesium-aluminum alloy.

  14. The effect warming time of mechanical properties and structural phase aluminum alloy nickel

    Ferrous aluminum alloys as fuel cladding will experience the process of heat treatment above the recrystallization temperature. Temperature and time of heat treatment will affect the nature of the metal. Heating time allows will affect change in mechanical properties, thermal and structure of the metal phase. This study aims to determine the effect of time of heat treatment on mechanical properties and phase metal alloys. Testing the mechanical properties of materials, especially violence done by the method of Vickers. Observation of microstructural changes made by metallographic-optical and phase structure were analyzed Based on the x-ray diffraction patterns Elemental analysis phase alloy compounds made by EDS-SEM. Test results show the nature of violence AlFeNiMg alloy by heating at 500°C with a warm-up time 1 hour, 2 hours and 3 hours respectively decreased range 94.4 HV, 87.6 HV and 85.1 HV. The nature of violence AlFeNi alloy showed a decrease in line with the longer heating time. Metallographic-optical observations show the microstructural changes with increasing heating time. Microstructure shows the longer the heating time trend equi axial shaped grain structure of growing and the results showed a trend analyst diffraction pattern formation and phase θ α phase (FeAl3) in the alloy. (author)

  15. Effect of aluminum on microstructure and property of Cu–Ni–Si alloys

    The effect of aluminum on the microstructure and properties of Cu–Ni–Si alloys has been investigated using hardness test, electrical conductivity measurement, optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Compared with Cu–Ni–Si alloy, Cu–Ni–Si–Al alloy had finer grains. After homogenization treatment at 940 °C for 4 h, hot rolling by 80% at 850 °C, solution treatment at 970 °C for 4 h, cold rolling by 50% and ageing treatment at 450 °C for 60 min, properties better than Cu–Ni–Si alloy have been obtained in Cu–Ni–Si–Al alloy: hardness was 343 HV, electrical conductivity was 28.1% IACS, tensile strength was 1080 MPa, yield strength was 985 MPa, elongation percentage was 3.1% and stress relaxation rate was 9.83% (as tested at 150 °C and loading for 100 h). β-Ni3Si and δ-Ni2Si formed during the ageing process and the crystal orientation relationship between matrix and precipitates was : (02-bar 2-bar )Cu (01-bar 1-bar )β (010)δ, [100]Cu [100]β [001]δ; (111-bar )Cu (111-bar )β (02-bar 1)δ, [112]Cu [112]β [012]δ. Addition of Al promoted the precipitation, and effectively enhanced the anti-stress relaxation property. Quasi-cleavage fracture with shallow dimples appeared in designed Cu–Ni–Si–(Al) alloy

  16. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy

    Highlights: • Copper addtion increases the recrystallization volume fraction of 7XXX alloys. • The number of precipitated phases rises with the addition of copper. • Strength and elongation can be enhanced by copper. • Copper additon plays a key role in turning quasi-cleavage fracture to dimple fracture. - Abstract: The effect of copper content on tensile properties and microstructure of 7XXX series aluminum alloys at 90% deformation is investigated by tensile test, optical microscopy, scanning electronic microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that higher Cu-containing alloy would precipitate more quantity of second-phase particles in rolling process at 420 °C, which facilitates the process of recrystallization during solution treatment. With the increase of copper content from 0 to 1.6 wt.%, the density of ç′ phase and the degree of recrystallization increase, meanwhile the strength and plasticity of Al–Zn–Mg–Cu alloy are improved in T6 heat treatment. In addition, the tensile fracture of Cu-free alloy belongs to quasi-cleavage fracture, while the tensile fracture of Cu-containing alloy is dimple fracture and the number of dimples increases with the increasing of copper content

  17. EXPERIMENTAL INVESTIGATION ON ELECTRICAL DISCHARGE MACHINING OF TITANIUM ALLOY USING COPPER, BRASS AND ALUMINUM ELECTRODES

    S. DHANABALAN

    2015-01-01

    Full Text Available In the present study, an evaluation has been done on Material Removal Rate (MRR, Surface Roughness (SR and Electrode Wear Rate (EWR during Electrical Discharge Machining (EDM of titanium alloy using copper, brass and aluminum electrodes. Analyzing previous work in this field, it is found that electrode wear and material removal rate increases with an increase current. It is also found that the electrode wear ratio increases with an increase in current. The higher wear ratio is found during machining of titanium alloy using a brass electrode. An attempt has been made to correlate the thermal conductivity and melting point of electrode with the MRR and electrode wear. The MRR is found to be high while machining titanium alloy using brass electrode. During machining of titanium alloy using copper electrodes, a comparatively smaller quantity of heat is absorbed by the work material due to low thermal conductivity. Due to the above reason, the MRR becomes very low. Duringmachining of titanium alloy using aluminium electrodes, the material removal rate and electrode wear rate are only average value while machining of titanium alloy using brass and copper electrodes.

  18. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  19. Characteristics of radioactivities induced in aluminum alloys and the effects due to those major and minor components

    In order to search the usefulness of aluminum alloys as a material for an accelerator and its surrounding apparatus, the characteristics of radioactivities induced in several aluminum alloys (AA 1230, AA 2219, JIS 5052, AA 6063 and AA 7079) and stainless steel (SUS 304) irradiated for a long time with high energy bremsstrahlung have been studied fundamentally and compared with each other. After the concentrations of major alloying elements and impurities in the above samples were determined by means of photon-activation, proton-activation and emission spectrochemical analyses, they were irradiated with 30 and 200 MeV bremsstrahlung. As the results, it was proved that the intensities of radioactivities induced in the aluminum alloys are greatly affected by those major and minor components, but are remarkably lower than that in the stainless steel. (author)

  20. Corrosion and corrosion fatigue of airframe aluminum alloys

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  1. Pre-review study of the aluminum/alumina master alloy made through pressure infiltration

    Highlights: • Wetting of the Al2O3 with melt was studied with respect on Al2O3 treatment condition. • Master-alloy with high amount of Al2O3 for subsequent MMC preparation was prepared. • Correlation between parameters of GPI and structure of master-alloy was revealed. • Quality of the interface between aluminum and alumina is tight and consistent. • Particle dissolution within melt was sufficient only after mechanical stirring. - Abstract: The work is focused to prepare Al based master-alloy pellet with 50 vol.% of Al2O3 for subsequent manufacturing of aluminum matrix composites with desired amount of reinforcement (5–20%). Since master-alloy is manufactured via pressure infiltration and proper interface between particles and melt is required for uniform particle distribution within the melt, fundamental correlation between parameters of pressure infiltration and quality of the Al/Al2O3 interface is revealed in this study. Standard observation techniques as 3-D computed tomography (CT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) are used for structural characterization. Drop test was used to estimate effect of time, temperature, annealing of Al2O3 and its type on the wettability of Al2O3 with Al. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to study changes within the Al2O3 prior infiltration. Stir casting was used to prepare the final composite and dynamical mechanical analysis (DMA) was used to estimate the Young’s modulus of as-cast composite. The proper infiltration parameters was defined in this work and it were shown that the infiltration temperature and pressure have direct correlation on the interface between particle and aluminum

  2. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy

    The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions. Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the

  3. Treatment of CFRP by IAR method and its effect on the fracture behavior of adhesive bonded CFRP/aluminum composites

    It was shown in the previous studies that adhesive shear strength of carbon fiber reinforced plastics (CFRP) to aluminum composites could be improved by the surface treatment of CFRP using Ar+ ion irradiation. In the present work, the effect of CFRP treatment by Ar+ ion irradiation on the fracture behavior of CFRP/aluminum joint was studied. The aluminum used was 7075-T6 and the CFRP used was multi-directional graphite/epoxy composites whose stacking sequence was [0 deg. /±45 deg. /0 deg. ]3s. The surface of CFRP was treated using Ar+ ion irradiation in an oxygen environment. The Ar+ ion dose used was 1x1016 ions cm-2. Fracture toughness of CFRP/aluminum joint was determined from cracked lap shear specimens using work factor approach. Then, the fracture toughness of ion beam-treated CFRP/aluminum joint was compared with that of untreated CFRP/aluminum joint. The results showed that the fracture toughness of ion beam-treated CFRP/aluminum case was about 72% higher than that of untreated CFRP/aluminum case. X-ray photoelectron spectrometer analysis showed that intensity of hydrophilic bonds, C-O (carbonyl group) and O-C-O (carboxyl group) was increased by the Ar+ ion-irradiation in an oxygen environment. Scanning electron microscope examination showed that cohesive failure occurred for ion beam-treated CFRP/aluminum joint while adhesive failure occurred for untreated CFRP/aluminum joint

  4. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  5. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy

    A new method has been developed for separation and purification of fission 99Mo from neutron activated uranium–aluminum alloy. Alkali dissolution of the irradiated target (100 mg) results in aluminum along with 99Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of 99Mo was carried out using anion exchange method. The radiochemical yield of fission 99Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. - Highlights: • 99Mo separation, purification method developed from neutron activation of 100 g U–Al alloy. • Uranium, fission, activation product decontamination by alkali dissolution of activated target. • Purification by Al(OH)3, AgI/AgIO3, Mo-α-benzoin oxime precipitation and anion exchange. • Very high decontamination factors for alpha activity obtained. • Final 99Mo product (recovery >80%) complied with international pharmacopoeia standards

  6. Microstructure of Nitrided Aluminum Alloys Using an Electron-Beam-Excited-Plasma (EBEP)

    L. Liu; A. Yamamoto; T. Hishida; H. Shoyama; T. Hara; T. Hara

    2004-01-01

    Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP)technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates,aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some Al2O3 particles on the surface of the nitrided AA5052 and AA5083. The AIN layers were formed on the substrates with the thickness of 4.5 μ m for AA5052 and 0.5 μ m for AA5083. A relatively uniform nitrided surface layer composed of AIN can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and AIN layer were smaller than that near the surface. On the surface of AIN layer, the concentration of nitrogen was high and in the middle of AIN layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform AIN layer was not formed as the reason for the high nitriding temperature.

  7. Impact and residual fatigue behavior of ARALL and AS6/5245 composite material

    Johnson, W. S.

    1989-01-01

    The impact sensitivity of aramide fiber-reinforced aluminum laminates (ARALL) was investigated by testing two types of ARALL (7075 aluminum prestrained and 2024 aluminum not prestrained), via static indentation, and the results were compared to those of sheet aluminum alloys 7075-T6 and 2024-T3 and to a state of the art composite AS6/5245. It was found that the impact resistance of the two ARALL samples was inferior to that of monolithic sheet aluminum samples, although the ARALL material made with 2024-T3 aluminum was superior to that made with 7075-T6 aluminum. The impact damage resistance of ARALL materials was at least equal to that of AS6/5245, and the AS6/5245 had higher residual tension-tension fatigue strength after impact than the ARALL samples. It was also found that the prestraining of the ARALL reduced the fatigue growth of impact damage.

  8. Divorced eutectic in a HPDC magnesium-aluminum alloy

    The morphology of the eutectic in a thin-wall high pressure die cast (HPDC) U-shape AM60 magnesium box was investigated by light microscope, SEM, TEM and EPMA. The extremely fast cooling rate taking place in the solidification process produces a highly segregated zone near the boundaries of small grains and a fine distribution of β particles, which is typical of a completely divorced eutectic. It was shown that the segregated zone is coherent with the primary α-Mg grain core even if the increased aluminium content produces a deformation of the hexagonal crystal lattice, which was estimated through diffraction patterns (SADP). The variation of the alloying elements content through the grain boundaries was shown by means of EPMA line scanning. The β particle composition was quantitatively investigated and the results show that, in comparison with the equilibrium phase diagram, the non-equilibrium phase boundary of the Mg17Al12 region is moved some percent towards the lower aluminium content, at the high cooling rate that occurs in high pressure die castings. The cubic structure of the β phase was revealed by diffraction pattern. The presence of small Al-Mn particles both inside the grain and in the boundary region was also put in evidence by TEM

  9. Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach

    Jiang, Chao

    Heat-treatable aluminum alloys have been widely used in the automobile and aerospace industries as structural materials due to their light weight and high strength. To study the age-hardening process in heat-treatable aluminum alloys, the Gibbs energies of the strengthening metastable phases, e.g. theta ' and theta″, are critical. However, those data are not included in the existing thermodynamic databases for aluminum alloys due to the semi-empirical nature of the CALPHAD approach. In the present study, the thermodynamics of the Al-Cu system, the pivotal age-hardening system, is remodeled using a combined CALPHAD and first-principles approach. The formation enthalpies and vibrational formation entropies of the stable and metastable phases in the Al-Cu system are provided by first-principles calculations. Special Quasirandom Structures (SQS's) are applied to model the substitutionally random fee and bee alloys. SQS's for binary bee alloys are developed and tested in the present study. Finally, a self-consistent thermodynamic description of the Al-Cu system including the two metastable theta″ and theta' phases is obtained. During welding of heat-treatable aluminum alloys, a detrimental phenomenon called constitutional liquation, i.e. the local eutectic melting of second-phase particles in a matrix at temperatures above the eutectic temperature but below the solidus of the alloy, may occur in the heat-affected zone (HAZ). In the present study, diffusion code DICTRA coupled with realistic thermodynamic and kinetic databases is used to simulate the constitutional liquation in the model Al-Cu system. The simulated results are in quantitative agreement with experiments. The critical heating rate to avoid constitutional liquation is also determined through computer simulations. Besides the heat-treatable aluminum alloys, intermetallic compounds based on transition metal aluminides, e.g. NiAl and FeAl, are also promising candidates for the next-generation of high

  10. Aluminum Alloy Semisolid Strip Casting Using an Unequal Diameter Twin Roll Caster

    T. Haga

    2005-12-01

    Full Text Available Purpose: A Purpose of the present study was to break through the disadvantage of the twin roll caster for aluminum alloy. They were slow casting speed and limitation of alloy. For example, the casting speed was slower than 5 m/min, and casting of hypereutectic Al-Si alloy was difficult. In order to break through the disadvantages, semisolid casting using an unequal diameter twin roll caster was tested its ability.Design/methodology/approach: The specification of the unequal diameter twin roll caster is as below. The diameter of the upper roll was 250 mm, and that of the lower roll was 1000 mm. The width of the roll was 100 mm. The semisolid slurry was made by a cooling slope.Findings: The microstructure of the strip became very fine. Especially, primary and eutectic Si became very fine. This was the effect of rapid solidification. As the result, the ductility of Al-16%Si was improved.Research limitations/implications: 6111 aluminum alloy strip was cast at speeds of 5, 10 and 20 m/min. This caster could cast the strip at the speeds higher than the conventional twin roll caster. Start of casting was very easy. The hypereutectic Al-16%Si alloy, which has wide freezing zone, could be cast in to the strip by the unequal diameter twin roll caster. This was the effect of the cooling of the strip on the lower roll.Originality/value: The roll cast Al-16mass%Si strip had good ductility, and could be cold rolled. Annealed 0.5 mm thick Al-16mass%Si could be bent at radius of 0.75mm.

  11. Positron annihilation study of aluminum, titanium, and iron alloys surface after shot peening

    Shot peening influence on alloys based on iron, aluminum, and titanium was studied using positron annihilation lifetime spectroscopy (PALS) and residual stress measurements. The PALS spectra were analyzed assuming two lifetime components. While the residual stresses change in a similar way in all the samples, the PALS results show an opposite tendency of a component relative intensities change with the time of shot peening for the Ti alloy as compared to steel or the Al alloy. A comparison between the depth profiles of positron implantation and the residual stress distribution reveals that the positron range covers a whole depth where residual stress is observed only in the Ti alloy. Based on this observation, the evolution of the defect concentration is presumed, consisting in migration of large defects away from the surface, while only smaller ones remain close to the surface. Furthermore, the positron lifetime distribution in the Al alloy was determined using the MELT program. The results showed that the initial single, wide distribution of lifetime splits into two narrower ones with increasing shot peening time. (orig.)

  12. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  13. Prediction of 2A70 aluminum alloy flow stress based on BP artificial neural network

    刘芳; 单德彬; 吕炎; 杨玉英

    2004-01-01

    The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble - 1500 thermal simulator over 360 ~480°C with strain rates in the range of 0.01 ~ 1 s- 1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ± 3% for the sampled data while it was less than ± 6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress.

  14. Inhibitive Action of Ferrous Gluconate on Aluminum Alloy in Saline Environment

    Patricia Abimbola Idowu Popoola

    2013-01-01

    Full Text Available The corrosion of aluminum in saline environment in the presence of ferrous gluconate was studied using weight loss and linear polarization methods. The corrosion rates were studied in different concentrations of ferrous gluconate 0.5, 1.0, 1.5, and 2.0 g/mL at 28°C. Experimental results revealed that ferrous gluconate in saline environment reduced the corrosion rate of aluminum alloy at the different concentrations studied. The minimum inhibition efficiency was obtained at 1.5 g/mL concentration of inhibitor while the optimum inhibition efficiency was achieved with 1.0 g/mL inhibitor concentration. The results showed that adsorption of ferrous gluconate on the aluminium alloy surface fits Langmuir adsorption isotherm. The potentiodynamic polarization results showed that ferrous gluconate is a mixed type inhibitor. Ferrous gluconate acted as an effective inhibitor for aluminium alloy within the temperature and concentration range studied. The data obtained from weight loss and potentiodynamic polarization methods were in good agreement.

  15. Analysis of behaviour to corrosion of the welding in aluminum alloys

    The special properties of aluminum alloys (lightweight, high electro-conductivity and high heat conductivity, corrosion resistance, low neutron absorption, good mechanical resistance and good toughness at low temperature, good jointing, etc.) cause their utilization in a large manner in many domains: airplane engineering, naval building, alimentary industry, agriculture, etc. Another domain is the nuclear one, in which aluminum alloys are used as coating materials, and structure. For Institute of Nuclear Research Pitesti and Cernavoda NPP have been performed welding assemblies with high complexity. The destruction of the protective oxide layer was determined, first of all, by external factors, such as: temperature, environment Ph and composition, flow rate of the contrast solution and thermo-mechanical treatments. Realization of welded joints is inevitably accompanied by the production of residual stress and strains. That and the stress and strains from thermo-mechanical treatments, is responsible for the destruction of the protective oxide layer or/and the materials structure. This document have a target the ways of reducing the influence to the destruction of the protective oxide layer in aluminium alloys welding. (authors)

  16. Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding

    The study of the interface of ceramic/metal alloy friction welded components is essential for understanding of the quality of bonding between two dissimilar materials. In the present study, optical and electron microscopy as well as four-point bending strength and microhardness measurements were used to evaluate the quality of bonding of alumina and 6061 aluminum alloy joints produced by friction welding. The joints were also examined with EDX (energy dispersive X-ray) in order to determine the phases formed during welding. The bonded alumina-6061 aluminum samples were produced by varying the rotational speed but keeping constant the friction pressure and friction time. The experimental results showed that the effect of rotation speed and degree of deformation appears to be high on the 6061 Al alloy than on the alumina part. It is discovered that the weld interface formed included three different regions: unaffected zone (UZ), deformed zone (DZ), as well as transformed and recrystallized fully deformed zone (FPDZ). Therefore, when rotational speed increases, the thickness of full plastic deformed zone (FPDZ) at the interface increases as a result of more mass discarded from the welding interface. It was also observed that rotational speed of 2500 rpm can produce a very good joint and microhardness with good microstructure as compared to the other experimental rotational speeds.

  17. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  18. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian

    2015-01-01

    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  19. Influence of hydrogen content on the behavior of grain refinement in hypereutectic aluminum-silicon alloy

    Lina Hu; Xiufang Bian; Youfeng Duan

    2004-01-01

    Dissolved hydrogen is harmful to mechanical properties of refined hypereutectic aluminum-silicon alloys. In the present work, by using a stepped-form mold and the hydrogen-detecting instrument HYSCAN Ⅱ, the relationship between the initial hydrogen content in the melt and the refinement effect on the casting of hypereutectic aluminum-silicon alloy was investigated. The experimental results show that the cooling rate, the hydrogen content and the grain refinement effect are three interactive factors. When the hydrogen content is above 0.20 mL/100 g and the cooling rate is lower than that in 50 mm-thick step, hydrogen dissolved in the alloy melt influences the grain refinement effect. With increasing the cooling rate, the critical hydrogen content increases too. It is expected that much hydrogen in the melt make the net interfacial energy larger than or equal to zero, resulting in the shielding of the particles AlP during solidification and that the critical gas content is closely related to the critical radius of embryo bubbles.

  20. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157o. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159o by coating PP-g-MAH, while the CA was only 141o by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro–nano concave–convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro–nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  1. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    BALASUBRAMANIAN.K

    2011-01-01

    Full Text Available The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot cracking. In this work, an attempt is made to reduce the hot cracking and to refine the fusion zone grains in welding of aluminum alloys through vibratory treatment. The material used for the investigation is AA7075 aluminum alloy, which is highly prone for hot cracking. Vibratory treatment was carried out in the frequency range of 100Hz to 2050Hz. Weldments made with and without vibratory treatment were compared using weld cracking tests and other characterization tests like micro structural analysis, hardness measurements. Test results show that by applying vibratory treatment, hot cracking can be largely controlled in arc welding.

  2. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    Liu, Wenyong, E-mail: lwy@iccas.ac.cn [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Sun, Linyu; Luo, Yuting [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wu, Ruomei, E-mail: cailiaodian2004@126.com [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Jiang, Haiyun [College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Chen, Yi; Zeng, Guangsheng; Liu, Yuejun [Key Laboratory of Advanced Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou 412007 (China); College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007 (China)

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157{sup o}. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159{sup o} by coating PP-g-MAH, while the CA was only 141{sup o} by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro–nano concave–convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro–nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  3. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  4. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface. PMID:23755692

  5. Finite Element Modeling of Roll Wear during Cold Asymmetric Sheet Rolling of Aluminum Alloy 5083

    Pesin A.

    2015-01-01

    Full Text Available Since the main purpose of asymmetrical rolling is to impose high shear strains on the sheet, in order to obtain ultrafine grain structure, the friction between the rolls and the sheet has to be kept relatively high. This means that asymmetric rolling is performed with dry rolls. The paper presents a numerical analysis of the roll wear during asymmetric cold rolling of 5083 aluminum alloy. The finite element simulation was used to calculate the amount of roll wear by Usui’s equation. FEM simulations were carried out with using software DEFORM 2D. The influence of the friction coefficient on the roll wear and the material flow was discussed. The sliding velocity, interface pressure and temperature were used to calculate the roll wear. The results of simulation can be used to optimize the asymmetric rolling process to improve surface quality of aluminum sheets.

  6. The effect of corrosion on the fatigue life of aluminum alloys

    Dalla, P. T.; Tragazikis, I. K.; Exarchos, D. A.; Matikas, T. E.

    2016-04-01

    The corrosion behavior of metallic structures is an important factor of material performance. In case of aluminum matrix composites corrosion occurs via electrochemical reactions at the interface between the metallic matrix and the reinforcement. The corrosion rate is determined by equilibrium between two opposing electrochemical reactions, the anodic and the cathodic. When these two reactions are in equilibrium, the flow of electrons from each reaction type is balanced, and no net electron flow occurs. In the present study, aluminum alloy tensile-shape samples are immersed in NaCl solution with an objective to study the effect of the controlled pitting corrosion in a specific area. The rest of the material is completely sealed. In order to investigate the effect of pitting corrosion on the material performance, the specimens were subjected to cyclic loading. The effect of corrosion on the fatigue life was assessed using two complimentary nondestructive methods, infrared thermography and acoustic emission.

  7. Study of corrosion of aluminum alloys of nuclear purity in ordinary water: Part two

    Pešić Milan P.

    2005-01-01

    Full Text Available Since 2002, the effects of corrosion on aluminum alloys of nuclear purity in ordinary water of the spent fuel storage pool of the RA re search reactor at VINČA Institute of Nuclear Sciences have been examined in the frame work of the International Atomic Energy Agency Coordinated Research Project "Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water". Coupons were ex posed to the pool water for a period of six months to six years. The second part of this study comprises extensive results obtained by detailed visual and microscopic examinations of the surfaces of the coupons and represents an integral part of the first report on the topic, previously presented in this journal.

  8. A technology to improve formability for aluminum alloy thin-wall corrugated sheet component hydroforming

    Lang Lihui

    2015-01-01

    Full Text Available The explosively forming projectile (EFP had been traditional adopted for the aluminum thin-walled corrugated sheet, whose deformation range is large but the formability is poor, and this process usually has problems of poor surface quality, long manufacturing cycle and high cost. The active hydroforming process was suggested to solve these issues during EFP. A new technology named as blank bulging by turning the upside down active hydroforming technology was proposed to overcome difficulties in non-uniform thickness distribution and cracking failure of corrugated sheet during the conventional hydroforming process. Both numerical simulations and experiments were conducted for this new technology. The result show that the deformation capacity of aluminum alloys can be improved effectively, and the more uniform distribution of wall thickness was obtained by this new method. It is conducted that the new method is universal for thin-walled, shallow drawing parts with complex section.

  9. Spectrochemical analysis of aluminum and its alloys, and S. A. P

    Three different techniques have been employed for the spectrochemical analysis of aluminum, aluminum alloys, and S.A.P. :1) Point to plane with condensed spark and direct reading spectrometry; from the study on the instantaneous spectral-line intensities a long pre integration time has been established. 1) Powdered samples technique with direct current arc and also direct reading spectrometry; samples are transformed into Al2O3 and mixed with graphite powder (1:1). A complete study on the different elements in aluminium oxide, aluminium sulfate and their mixtures with graphite, has been carried out. 3) Carrier distillation method with photographic recording for very low concentrations of boron and cadmium in S. A.P. (Author) 10 refs

  10. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  11. Recrystallization Phenomena During Friction Stir Processing of Hypereutectic Aluminum-Silicon Alloy

    Rao, A. G.; Ravi, K. R.; Ramakrishnarao, B.; Deshmukh, V. P.; Sharma, A.; Prabhu, N.; Kashyap, B. P.

    2013-03-01

    Microstructural evolution and related dynamic recrystallization phenomena were investigated in overlapping multipass friction stir processing (FSP) of hypereutectic Al-30 pct Si alloy. FSP resulted in the elimination of porosities along with the refinement of primary silicon particles and alpha aluminum grains. These alpha aluminum grains predominantly exhibit high angle boundaries with various degrees of recovered substructure and dislocation densities. The substructure and grain formation during FSP take place primarily by annihilation and reorganization of dislocations in the grain interior and at low angle grain boundary. During multipass overlap FSP, small second phase particles were observed to form, which are accountable for pinning the grain boundaries and thus restricting their growth. During the multipass overlap FSP, the microstructure undergoes continuous dynamic recrystallization by formation of the subgrain boundary and subgrain growth to the grain structure comprising of mostly high angle grain boundaries.

  12. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    Rajamure, Ravi Shanker; Vora, Hitesh D.; Srinivasan, S.G.; Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu

    2015-02-15

    Highlights: • Al{sub 4}W intermetallic phase was formed after laser surface alloying. • Potential–time measurements show the stable behavior after laser surface alloying. • Cyclic polarization indicates increase in corrosion resistance after laser surface alloying. - Abstract: A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21–32 J/mm{sup 2} the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al{sub 4}W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential–time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47–70 kΩ cm{sup 2}) with the increase in the laser energy density.

  13. Effect of pre-treatment on recrystallization and recrystallization textures of cold rolled CC AA 5182 aluminum alloy

    The effect of pre-treatment on recrystallization and recrystallization textures of cold rolled continuous cast (CC) AA 5182 aluminum alloy as well as on the earing behavior was investigated. The progress of recrystallization was tracked by means of measurements of tensile properties. The texture of cold rolled and annealed samples was determined by X-ray diffraction. The results show that the recrystallization temperature of cold rolled CC AA 5182 aluminum alloy without pre-treatment is about 24 deg. C higher than that of the alloy with pre-treatment. The recrystallization textures of cold rolled CC AA 5182 aluminum alloy are characterized by the R, cube and Goss orientations. The recrystallization textures of cold rolled CC AA 5182 aluminum alloy without pre-treatment exhibit stronger cube and Goss components and a weaker R component than those of the alloy with pre-treatment. The deformed and recovered samples without pre-treatment possess a significantly higher 45 deg. earing than the samples with pre-treatment, while the recrystallized samples without pre-treatment possess a slightly lower 45 deg. earing than the samples with pre-treatment

  14. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems

    Tang, Zhi; Gao, Michael C.; Diao, Haoyan; Yang, Tengfei; Liu, Junpeng; Zuo, Tingting; Zhang, Yong; Lu, Zhaoping; Cheng, Yongqiang; Zhang, Yanwen; Dahmen, Karin A.; Liaw, Peter K.; Egami, Takeshi

    2013-12-01

    The crystal lattice type is one of the dominant factors for controlling the mechanical behavior of high-entropy alloys (HEAs). For example, the yield strength at room temperature varies from 300 MPa for the face-centered-cubic (fcc) structured alloys, such as the CoCrCuFeNiTi x system, to about 3,000 MPa for the body-centered-cubic (bcc) structured alloys, such as the AlCoCrFeNiTi x system. The values of Vickers hardness range from 100 to 900, depending on lattice types and microstructures. As in conventional alloys with one or two principal elements, the addition of minor alloying elements to HEAs can further alter their mechanical properties, such as strength, plasticity, hardness, etc. Excessive alloying may even result in the change of lattice types of HEAs. In this report, we first review alloying effects on lattice types and properties of HEAs in five Al-containing HEA systems: Al x CoCrCuFeNi, Al x CoCrFeNi, Al x CrFe1.5MnNi0.5, Al x CoCrFeNiTi, and Al x CrCuFeNi2. It is found that Al acts as a strong bcc stabilizer, and its addition enhances the strength of the alloy at the cost of reduced ductility. The origins of such effects are then qualitatively discussed from the viewpoints of lattice-strain energies and electronic bonds. Quantification of the interaction between Al and 3 d transition metals in fcc, bcc, and intermetallic compounds is illustrated in the thermodynamic modeling using the CALculation of PHAse Diagram method.

  15. Fracture mechanisms assessment of a multilayer material with high strength and excellent impact toughness based on the aerospace Al 7075 alloy

    An aluminium multilayer laminate has been processed by hot rolling. It is constituted by 19 alternated layers of high-strength aluminium alloy (Al 7075-T6, 82 % vol) and thinner pure aluminium layers (Al 1050-H24, 18 % vol). The microstructure of the constituent alloys and the composition gradient across the interfaces has been characterized. The multilayer laminate and the as-received aluminium alloys have been tested at room temperature by Vickers microhardness, three-point bend test and impact Charpy test. The outstanding improvement in damage tolerance, which is 18 times higher than that for the as-received Al 7075 alloy, is due to both intrinsic and extrinsic fracture mechanisms operating in the multilayer laminate during mechanical testing. (Author) 19 refs.

  16. An initial study on welding procedure using tandem MIG welding of high strength aluminum alloy

    林三宝; 刚铁; 杨春利; 崔洪波

    2004-01-01

    The high-speed camera system and data acquisition system of welding parameters were created in tandem MIG welding of high strength aluminum alloy. The experiments were carried out in order to obtain the photos of droplet transfer under different welding parameters in pulsed mode. The droplet transfer mode of "one pulse one droplet" becomes the preferred selection during welding process because of its stable procedure and sound weld form. The parameter ranges for corresponding transfer mode were experimentally achieved, among which the stable droplet transfer mode of "one pulse one droplet" can be realized. These efforts brave the way for control weld heat input and weld formation in the future.

  17. Simulation of precipitation in an aluminum scandium alloy using kinetic Monte Carlo and DBSCAN algorithms

    Moura, Alfredo de; Esteves, António

    2013-01-01

    The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a kinetic Monte Carlo (kMC) method. The kMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the kMC simulation, the density-based clustering with noise (DBSCAN) method was employed. kMC and DBSCAN algorithms were implemented in the C language. The undertaken simulations were conducted in the SeARCH cluster at the U...

  18. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  19. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO3)3 and La(NO3)3 solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  20. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction

    Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The cap model with constraint factors was implemented into a finite element program(ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the cap model with constraint factors were good