WorldWideScience

Sample records for 7-mev energy range

  1. Ranging energy optimization for robust sensor positioning

    Wang, T.; Leus, G.; Neirynck, D.; Shu, F.; Huang, L.

    2009-01-01

    We address ranging energy optimization for an unsynchronized localization system, which features robust sensor positioning, in the sense that specific accuracy requirements are fulfilled within a prescribed service area. Optimization problems related to the ranging energy of a sensor and beacons are

  2. Electret dosemeter response to electrons with energy of 3 Mev, 7 Mev, 11 Mev

    The preliminary results obtained when electret ionization chambers are irradiated with electron of 3, 7, 11 Mev, from 12 mevatron accelerators using a external cop of polyethylene and nylon are presented. (C.G.C.)

  3. Energy dependence of polymer gels in the orthovoltage energy range

    Yvonne Roed

    2014-03-01

    Full Text Available Purpose: Ortho-voltage energies are often used for treatment of patients’ superficial lesions, and also for small- animal irradiations. Polymer-Gel dosimeters such as MAGAT (Methacrylic acid Gel and THPC are finding increasing use for 3-dimensional verification of radiation doses in a given treatment geometry. For mega-voltage beams, energy dependence of MAGAT has been quoted as nearly energy-independent. In the kilo-voltage range, there is hardly any literature to shade light on its energy dependence.Methods: MAGAT was used to measure depth-dose for 250 kVp beam. Comparison with ion-chamber data showed a discrepancy increasing significantly with depth. An over-response as much as 25% was observed at a depth of 6 cm.Results and Conclusion: Investigation concluded that 6 cm water in the beam resulted in a half-value-layer (HVL change from 1.05 to 1.32 mm Cu. This amounts to an effective-energy change from 81.3 to 89.5 keV. Response measurements of MAGAT at these two energies explained the observed discrepancy in depth-dose measurements. Dose-calibration curves of MAGAT for (i 250 kVp beam, and (ii 250 kVp beam through 6 cm of water column are presented showing significant energy dependence.-------------------Cite this article as: Roed Y, Tailor R, Pinksy L, Ibbott G. Energy dependence of polymer gels in the orthovoltage energy range. Int J Cancer Ther Oncol 2014; 2(2:020232. DOI: 10.14319/ijcto.0202.32 

  4. A novel method to determine the FOCAL energy range

    Dongqing Zhang; Xiangzhao Wang; Weijie Shi

    2005-01-01

    Determination of the energy range is an important precondition of focus calibration using alignment procedure (FOCAL) test. A new method to determine the energy range of FOCAL off-lined is presented in this paper. Independent of the lithographic tool, the method is time-saving and effective. The influences of some process factors, e.g. resist thickness, post exposure bake (PEB) temperature, PEB time and development time, on the energy range of FOCAL are analyzed.

  5. Energy-range relations for hadrons in nuclear matter

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  6. Periodic discrete energy for long-range potentials

    Hardin, D. P.; Saff, E. B.; Simanek, B.

    2014-12-01

    We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

  7. VARIABLE RANGE ENERGY EFFICIENT LOCATION AIDED ROUTING FOR MANET

    Nivedita N. Joshi

    2011-07-01

    Full Text Available A Mobile Ad-Hoc Network (MANET is a temporary, infrastructure-less and distributed network having mobile nodes. MANET has limited resources like bandwidth and energy. Due to limited battery power nodes die out early and affect the network lifetime. To make network energy efficient, we have modified position based Location Aided Routing (LAR1 for energy conservation in MANET. The proposed protocol is known as Variable Range Energy aware Location Aided Routing (ELAR1-VAR. The proposed scheme controls the transmission power of a node according to the distance between the nodes. It also includes energy information on route request packet and selects the energy efficient path to route data packets. The comparative analysis of proposed scheme and LAR1 is done by using the QualNet simulator. ELAR1-VAR protocol improves the network lifetime by reducing energy consumption by 20% for dense and mobile network while maintaining the packet delivery ratio above 90%.

  8. The low-energy ion range in DNA.

    Yu, L D; Kamwanna, T; Brown, I G

    2009-08-21

    In fundamental studies of low-energy ion irradiation effects on DNA, calculation of the low-energy ion range, an important basic physical parameter, is often necessary. However, up to now a unified model and approach for range calculation is still lacking, and reported data are quite divergent and thus unreliable. Here we describe an approach for calculation of the ion range, using a simplified mean-pseudoatom model of the DNA target. Based on ion stopping theory, for the case of low-energy (cube-root energy dependence of the stopping (E(1/3)). Calculation formulas of the ion range in DNA are obtained and presented to unify the relevant calculations. The upper limits of the ion energy as a function of the atomic number of the bombarding ion species are proposed for the low-energy case to hold. Comparison of the results of this approach with the results of some widely used computer simulation codes and with results reported by other groups indicates that the approach described here provides convincing and dependable results. PMID:19652287

  9. Integral range, energy, residual range, and linear energy transfer distributions for Californium fission fragments in microelectronics materials

    This report discusses the advantages and limitations of using Cf-252 radiation sources for single event testing of microelectronics for space environments. Integral distributions for the range, energy, residual range, and linear energy transfer of Cf-252 fission fragments in absorber and microelectronic materials have been calculated. Techniques are suggested for determining when single event testing using Cf-252 is appropriate; also, techniques are given for estimating the saturation cross section and thresh old linear energy transfer from test data. 10 refs., 25 figs., 2 tabs

  10. Excitation energies along a range-separated adiabatic connection

    Rebolini, Elisa; Teale, Andrew M; Helgaker, Trygve; Savin, Andreas

    2014-01-01

    We present a study of the variation of total energies and excitationenergies along a range-separated adiabatic connection. This connectionlinks the non-interacting Kohn-Sham electronic system to the physicalinteracting system by progressively switching on theelectron-electron interactions whilst simultaneously adjusting aone-electron effective potential so as to keep the ground-statedensity constant. The interactions are introduced in arange-dependent manner, first introducing predominantly long-range,and then all-range, interactions as the physical system is approached,as opposed to the conventional adiabatic connection where theinteractions are introduced by globally scaling the standard Coulomb interaction.Reference data are reported for the He and Be atoms and the H2molecule, obtained by calculating the short-range effective potentialat the full configuration-interaction level using Lieb'sLegendre-transform approach. As the strength of the electron-electroninteractions increases, the excitation energies, ...

  11. Long range energy transfer in graphene hybrid structures

    Gonçalves, Hugo; Bernardo, César; Moura, Cacilda; Ferreira, R. A. S.; André, P. S.; Stauber, Tobias; Belsley, Michael; Schellenberg, Peter

    2016-08-01

    In this work we quantify the distance dependence for the extraction of energy from excited chromophores by a single layer graphene flake over a large separation range. To this end hybrid structures were prepared, consisting of a thin (2 nm) layer of a polymer matrix doped with a well chosen strongly fluorescent organic molecule, followed by an un-doped spacer layer of well-defined thicknesses made of the same polymer material and an underlying single layer of pristine, undoped graphene. The coupling strength is assessed through the variation of the fluorescence decay kinetics as a function of distance between the graphene and the excited chromophore molecules. Non-radiative energy transfer to the graphene was observed at distances of up to 60 nm a range much greater than typical energy transfer distances observed in molecular systems.

  12. Renewable Energy Opportunities at White Sands Missile Range, New Mexico

    Chvala, William D.; Solana, Amy E.; States, Jennifer C.; Warwick, William M.; Weimar, Mark R.; Dixon, Douglas R.

    2008-09-01

    The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

  13. Carbon and energy balances for a range of biofuels options

    Elsayed, M.A.; Matthews, R.; Mortimer, N.D.

    2003-03-01

    This is the final report of a project to produce a set of baseline energy and carbon balances for a range of electricity, heat and transport fuel production systems based on biomass feedstocks. A list of 18 important biofuel technologies in the UK was selected for study of their energy and carbon balances in a consistent approach. Existing studies on these biofuel options were reviewed and their main features identified in terms of energy input, greenhouse gas emissions (carbon dioxide, methane, nitrous oxide and total), transparency and relevance. Flow charts were produced to represent the key stages of the production of biomass and its conversion to biofuels. Outputs from the study included primary energy input per delivered energy output, carbon dioxide outputs per delivered energy output, methane output per delivered energy output, nitrous oxide output per delivered energy output and total greenhouse gas requirements. The net calorific value of the biofuel is given where relevant. Biofuels studied included: biodiesel from oilseed rape and recycled vegetable oil; combined heat and power (CHP) by combustion of wood chip from forestry residues; CHP by gasification of wood chip from short rotation coppice; electricity from the combustion of miscanthus, straw, wood chip from forestry residues and wood chip from short rotation coppice; electricity from gasification of wood chip from forestry residues and wood chip from short rotation coppice; electricity by pyrolysis of wood chip from forestry residues and wood chip from short rotation coppice; ethanol from lignocellulosics, sugar beet and wheat; heat (small scale) from combustion of wood chip from forestry residues and wood chip from short rotation coppice; and rapeseed oil from oilseed rape.

  14. Sampling the low-energy range of EEDF

    Dahl, Dominik A.; Franck, Christian M.

    2011-10-01

    Electron swarms are investigated by the classical Pulsed Townsend Method in mixtures of N2/CO2 with controlled traces of SF6. The electron swarms are released from a back- illuminated photocathode by 1.5 ns FWHM laser pulses and drift in the homogeneous field of Rogowski electrodes. From an analysis of displacement currents the coefficient of electron attachment to gas molecules η is obtained. The pronounced s-wave attachment of SF6 acts on the electron swarm energy distribution (EEDF) by reducing the number of electrons in the energy range below 0.2 eV. It will be investigated if, vice versa, the observed η can be used as a measure for the EEDF in the range below 0.2 eV. The effect of the N2/CO2 mixing ratio on η will be measured and put in relation to the difference between N2 and CO2 concerning their elastic and inelastic cross sections. The goal is to provide data about that range of the EEDF which are not accessible by optical emission spectroscopy or by Langmuir probes.

  15. Quantum conductance of carbon nanotubes in a wide energy range

    Zhang, Yong, E-mail: yzhang@njtech.edu.cn

    2015-01-01

    The differential conductance of armchair and zigzag carbon nanotubes (CNTs) in a wide energy range has been numerically calculated by using the tight-binding model and the Green’s function method. The effects of the contact coupling between CNTs and electrodes on conductance have been explored. The ballistic conductance is proportional to the band numbers and has a ladder-like feature. As the increase of the contact coupling, the conductance oscillations appear and they are robust against the coupling. More importantly, on the first step of the conductance ladder, the armchair CNTs have two quasi-periodic conductance oscillations, i.e. a rapid conductance oscillation superimposed on a slow fluctuation background; while the zigzag CNTs have only one conductance oscillation. But on the second conductance step, all CNTs have two quasi-periodic conductance oscillations. The physical origin of the conductance oscillations has been revealed.

  16. Passively-switched energy harvester for increased operational range

    This paper presents modeling and experimental validation of a new type of vibrational energy harvester that passively switches between two dynamical modes of operation to expand the range of driving frequencies and accelerations over which the harvester effectively extracts power. In both modes, a driving beam with a low resonant frequency couples into ambient vibrations and transfers their energy to a generating beam that has a higher resonant frequency. The generating beam converts the mechanical power into electrical power. In coupled-motion mode, the driving beam bounces off the generating beam. In plucked mode, the driving beam deflects the generating beam until the driving beam passes from above the generating beam to below it or vice versa. Analytical system models are implemented numerically in the time domain for driving frequencies of 3 Hz to 27 Hz and accelerations from 0.1 g to 2.6 g, and both system dynamics and output power are predicted. A corresponding switched-dynamics harvester is tested experimentally, and its voltage, power, and dynamics are recorded. In both models and experiments, coupled-motion harvesting is observed at lower accelerations, whereas plucked harvesting and/or mixed mode harvesting are observed at higher accelerations. As expected, plucked harvesting outputs greater power than coupled-motion harvesting in both simulations and experiments. The predicted (1.8 mW) and measured (1.56 mW) maximum average power levels are similar under measured conditions at 0.5 g. When the system switches to dynamics that are characteristic of higher frequencies, the difference between predicted and measured power levels is more pronounced due to non-ideal mechanical interaction between the beams’ tips. Despite the beams’ non-ideal interactions, switched-dynamics operation increases the harvester’s operating range. (paper)

  17. Scaling relations, virial theorem and energy densities for long-range and short-range density functionals

    Toulouse, Julien; Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    International audience Decomposition of the Coulomb electron- electron interaction into a long-range and a short-range part is described within the framework of density functional theory, deriving some scaling relations and the corresponding virial theorem. We study the behavior of the local density approximation in the high-density limit for the long-range and the short-range functionals by carrying out a detailed analysis of the correlation energy of a uniform electron gas interacting vi...

  18. Application of long range energy alternative planning (LEAP) model for Thailand energy outlook 2030 : reference case

    Charusiri, W.; Eua-arporn, B.; Ubonwat, J. [Chulalongkorn Univ., Bangkok (Thailand). Energy Research Inst.

    2008-07-01

    In 2004, the total energy consumption in Thailand increased 8.8 per cent, from 47,806 to 60,260 ktoe. Long-range Energy Alternatives Planning (LEAP) is an accounting tool that simulates future energy scenarios. According to a Business As Usual (BAU) case, the overall energy demand in Thailand is estimated to increase from 61,262 to 254,200 ktoe between 2004 and 2030. Commercial energy consumption, which comprises petroleum products, natural gas, coal and its products, and electricity, increased by 9.0 per cent in Thailand in 2004, and new and renewable energy increased by 7.8 per cent. Nearly 60 per cent of the total commercial energy supply in Thailand was imported and increased for a fifth year in a row. The changes in energy consumption can be attributed to population growth and increase in economic activity and development. 10 refs., 5 tabs., 14 figs.

  19. Application of long range energy alternative planning (LEAP) model for Thailand energy outlook 2030 : reference case

    In 2004, the total energy consumption in Thailand increased 8.8 per cent, from 47,806 to 60,260 ktoe. Long-range Energy Alternatives Planning (LEAP) is an accounting tool that simulates future energy scenarios. According to a Business As Usual (BAU) case, the overall energy demand in Thailand is estimated to increase from 61,262 to 254,200 ktoe between 2004 and 2030. Commercial energy consumption, which comprises petroleum products, natural gas, coal and its products, and electricity, increased by 9.0 per cent in Thailand in 2004, and new and renewable energy increased by 7.8 per cent. Nearly 60 per cent of the total commercial energy supply in Thailand was imported and increased for a fifth year in a row. The changes in energy consumption can be attributed to population growth and increase in economic activity and development. 10 refs., 5 tabs., 14 figs

  20. Energy spectra of primary cosmic radiation in the 1013-1016 eV energy range

    Investigations of the primary cosmic radiation energy spectrum in the 1013-1016 eV energy range are performed using the Tien Shan complex device designed for the investigation of extensive air showers. On the basis of the analysis of experimental data, a conclusion is drawn that at present the energy spectrum of all particles is investigated for sure within the energy range up to (1-5)x1014 eV. In the framework of traditional models of hadron interaction and above experimental data on primary composition of cosmic rays at 1015-1016 eV energies, the energy spectrum of all primary particles in the first approximation is described with the power function of F (> E0) approximately Esub(0)sup(-#betta#sub(E)) with the power of #betta#sub(Esub(1))=1.63-1.68 at E0 15 eV and with #betta#sub(Esub(2))=2.0-2.1 in the 5x1015-5x1017 eV energy range

  1. Long-range energy level interaction in small metallic particles

    Beenakker, C. W. J.; Jalabert, R. A.; Pichard, J. -L.

    1993-01-01

    We consider the energy level statistics of non-interacting electrons which diffuse in a $ d $-dimensional disordered metallic conductor of characteristic Thouless energy $ E_c. $ We assume that the level distribution can be written as the Gibbs distribution of a classical one-dimensional gas of fictitious particles with a pairwise additive interaction potential $ f(\\varepsilon ). $ We show that the interaction which is consistent with the known correlation function of pairs of energy levels i...

  2. Long range forecasting of the demand for electrical energy

    Case study using Aoki method for forecasting the following magnitudes as a function of time: 1) annual energy generation; 2) annual peak demand; 3) seasonal variation of peak demand and 4) seasonal load duration curves. (HP)

  3. Wide Temperature Range Hybrid Energy Storage Device Project

    National Aeronautics and Space Administration — This proposal concerns the fabrication of a hybrid battery capacitor (HBC) using Eltron's knowledge gained in battery and capacitor research. Energy storage systems...

  4. FEL based photon collider of TeV energy range

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 1011 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  5. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts

    Austin Brown, Brittany Repac, Jeff Gonder

    2013-07-15

    Self-driving or “autonomous” vehicles (AVs) have leapt from science fiction into the forefront of transportation technology news. The technology is likely still years away from widespread commercial adoption, but the recent progress makes it worth considering the potential national impacts of widespread implementation. This poster makes an initial assessment of the energy impacts of AV adoptionon a per-vehicle basis and on total personal vehicle fuel use. While AVs offer numerous potential advantages in energy use, there are significant factors that could decrease or even eliminate the energy benefits under some circumstances. This analysis attempts to describe, quantify, and combine many of the possible effects. The nature and magnitude of these effects remain highly uncertain. This set of effects is very unlikely to be exhaustive, but this analysis approach can serve as a base for future estimates.

  6. Green Codes: Energy-Efficient Short-Range Communication

    Grover, Pulkit

    2008-01-01

    A green code attempts to minimize the total energy per-bit required to communicate across a noisy channel. The classical information-theoretic approach neglects the energy expended in processing the data at the encoder and the decoder and only minimizes the energy required for transmissions. Since there is no cost associated with using more degrees of freedom, the traditionally optimal strategy is to communicate at rate zero. In this work, we use our recently proposed model for the power consumed by iterative message passing. Using generalized sphere-packing bounds on the decoding power, we find lower bounds on the total energy consumed in the transmissions and the decoding, allowing for freedom in the choice of the rate. We show that contrary to the classical intuition, the rate for green codes is bounded away from zero for any given error probability. In fact, as the desired bit-error probability goes to zero, the optimizing rate for our bounds converges to 1.

  7. Pulsed power inductive energy storage in the microsecond range

    During the past five years Maxwell has developed a series of inductive energy storage (IES) pulsed power generators; ACE 1, ACE 2, ACE 3, and ACE 4, to drive electron-beam loads. They are all based on a plasma opening switch (POS) contained in a single vacuum envelope operating at conduction times of around one microsecond. They all employ fast capacitor bank technology to match this conduction time without intermediate power conditioning. Oil or air filled transmission lines transfer capacitor bank energy to a vacuum section where the final pulse compression is accomplished. Development of the ACE series is described, emphasizing capacitor bank and the opening switch technology for delivering high voltage, multimegampere pulses to electron beam loads

  8. GEOLOGIC FRAMEWORK FOR GEOTHERMAL ENERGY IN THE CASCADE RANGE.

    Duffield, W.A.

    1983-01-01

    Quaternary volcanoes of the Cascade Range form a 1200-km-long belt from northern California to southwest British Columbia and lie above the subduction zone formed as the Juan de Fuca plate is consumed beneath North America. Volcanoes throughout this belt may have been active during Quaternary time, and many have erupted within Holocene time. Thermal springs are few and inconspicuous. Surface expression of hydrothermal systems possibly is masked by infiltration of abundant rainwater and snowmelt. Several geologic and geophysical features suggest that the Oregon and California parts of the Cascades are characterized by moderate east-west crustal extension, tectonic regime conducive to relatively widespread volcanism and to the formation of normal fault zones of potentially high permeability. Refs.

  9. Computation and measurement of differential ranges of low-energy alpha particles in matter

    The stopping power formula of Bethe is discussed and is used to compute differential ranges of low-energy alpha particles in air, argon, aluminium and copper. A single radioactive source containing three active elements is used in experiments to measure the differential ranges in these materials. Finally a range-energy relationship for the alpha particles in air is deduced. (author)

  10. Theoretical aspects of energy range relations, stopping power and energy straggling of protons

    Ulmer, W.

    2007-07-01

    The Bragg-Kleeman rule RCSDA=AE0p provides a connection between the initial energy E0 of a proton and the range RCSDA in a medium, if the continuous-slowing-down approximation (CSDA) is assumed. The rule results from a generalized (nonrelativistic) Langevin equation; its integration also yields information on the residual energy E(z) or dE(z)/dz of a proton at position z. A relativistic extension of the generalized Langevin equation leads to the formula RCSDA=A(E0+E02/2Mc2)p. Since the initial energy E0 of therapeutic protons satisfies E0≪2Mc2, relativistic contributions can be treated as correction terms. Besides this phenomenological aspect, a complete integration of Bethe-Bloch equation (BBE) is presented, which provides the determination of RCSDA, E(z), dE(z)/dz and works without any empirical parameters. The results of these different methods are compared with Monte Carlo calculations (GEANT4). Since the energy transfer from proton to the environmental atomic electrons regarded in the CSDA-framework has to account for local fluctuations, an analysis of the Gaussian convolution and the Landau-Vavilov distribution function is performed on the basis of quantum-statistical mechanics. The Landau tail can be described as a Hermite polynomial correction of a Gaussian convolution.

  11. Transcript of the proceedings of the first Albuquerque informal range/energy workshop

    An informal workshop was held to discuss aspects of the calculation of range and energy deposition distributions which are of interest in ion implantation experiments. Topics covered include: problems encountered in using published range and energy deposition tabulations; some limitations in the solutions of range/energy transport equations; the effect of the scattering cross section on straggle; Monte Carlo calculations of ranges and straggling; damage studies in aluminum; simulation of heavy-ion irradiation of gold using MARLOWE; and MARLOWE calculations of range distribution parameters - dependence on input data and calculational model

  12. Long-Range Plasmon Assisted Energy Transfer Between Two Fluorescent Emitters

    Bouchet, D; Carminati, R; De Wilde, Y; Krachmalnicoff, V

    2016-01-01

    We demonstrate plasmon assisted energy transfer between two fluorophores located at distances up to $7\\; \\mu$m on the top of a thin silver film. Thanks to the strong confinement and large propagation length of surface plasmon polaritons, the range of the energy transfer is almost two orders of magnitude larger than the values reported in the literature so far. The parameters driving the energy transfer range are thoroughly characterized and are in very good agreement with theoretically expected values. This work shows the potential of plasmonic structures for efficient long-range energy transfer and opens rich perspectives for the study of collective emission phenomena.

  13. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard; Fromager, E.

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead o...

  14. Analytical estimates of the nuclear reaction yields in the ultralow energy range

    Simple analytical expressions for estimation of yields from reactions between light nuclei in the ultralow collision energy range are given. It is shown that even in the case of total absorption targets and a large spread of incident beam energies these expressions can be factorized and define, in natural manner, the concepts of effective target thickness and the range of particle collision energies in the entrance channel that in turn define the yield of reaction products

  15. Analytical Energy Gradients in Range-Separated Hybrid Density Functional Theory with Random Phase Approximation

    Mussard, Bastien; Ángyán, János G

    2015-01-01

    Analytical forces have been derived in the Lagrangian framework for several random phase approximation (RPA) correlated total energy methods based on the range separated hybrid (RSH) approach, which combines a short-range density functional approximation for the short-range exchange-correlation energy with a Hartree-Fock-type long-range exchange and RPA long-range correlation. The RPA correlation energy has been expressed as a ring coupled cluster doubles (rCCD) theory. The resulting analytical gradients have been implemented and tested for geometry optimization of simple molecules and intermolecular charge transfer complexes, where intermolecular interactions are expected to have a non-negligible effect even on geometrical parameters of the monomers.

  16. Pair creation energy and Fano factor of silicon in the energy range of soft X-rays

    The pair creation energy and the Fano factor of silicon are examined experimentally in the energy range of soft X-rays. Both quantities are shown to be a function of the energy of the absorbed radiation and of the detector temperature. For the pair creation energy our experimental data are in accordance with theory. The observed behaviour of the Fano factor cannot be explained by existing models. (orig.)

  17. Energy loss of muons in the energy range 1-10000 GeV

    A summary is given of the most recent formulae for the cross-sections contributing to the energy loss of muons in matter, notably due to electro-magnetic interactions (ionization, bremsstrahlung and electron-pair production) and nuclear interactions. Computed energy losses dE/dx are tabulated for muons with energy between 1 GeV and 10,000 GeV in a number of materials commonly used in high-energy physics experiments. In comparison with earlier tables, these show deviations that grow with energy and amount to several per cent at 200 GeV muon energy. (orig.)

  18. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  19. Long-ranged forces and energy non-conservation in (1+1)-dimensions

    Rubakov, V. A.

    1997-01-01

    We consider whether local and causal non-conservation of energy may occur in generally covariant theories with long-ranged fields (analogs of Newton's gravity) whose source is energy--momentum. We find that such a possibility exists in (1+1) dimensions.

  20. Mid-range adiabatic wireless energy transfer via a mediator coil

    Rangelov, Andon A.; Vitanov, Nikolay V.

    2012-01-01

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies three resonances are created: emitter-mediator (EM), mediator-receiver (MR) and emitter-receiver (ER). If the frequency sweeps are adiabatic and such that the ER resonance precedes the MR resonance, the energy flows sequentially along the chain emitter-mediator-receiver. If the MR resonance precedes the ER resonance, then the energy flows directly fro...

  1. Mechanism of Long-Range Penetration of Low-Energy Ions in Botanic Samples

    刘峰; 王宇钢; 薛建明; 王思学; 杜广华; 颜莎; 赵渭江

    2002-01-01

    We present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100keV Ar+ ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60μm thick kidney bean slices with the probability of about 1.0 × 10-5. The energy spectrum of 1 MeV He+ ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples.

  2. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    Cornaton, Yann; Jensen, Hans Jørgen Aa; Fromager, Emmanuel

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] and relies on a long-range interacting wavefunction instead of the non-interacting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy expression when expanded in perturbation theory. In contrast to usual RSDH functionals, RSDHf describes the coupling between long- and short-range correlations as an orbital-dependent contribution. Calculations on the first four noble-gas dimers show that this coupling has a significant effect on the potential energy curves in the equilibrium region, improving the accurac...

  3. Energy-efficient algorithm for sensor networks with non-uniform maximum transmission range.

    Yu, Yimin; Song, Chao; Liu, Ming; Gong, Haigang

    2011-01-01

    In wireless sensor networks (WSNs), the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas), the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT), which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms. PMID:22163950

  4. Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

    Yimin Yu

    2011-06-01

    Full Text Available In wireless sensor networks (WSNs, the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas, the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT, which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms.

  5. Range-separated density-functional theory for molecular excitation energies

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  6. Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking

    Logue, Jennifer M; Singer, Brett

    2014-06-01

    Range hood use during residential cooking is essential to maintaining good indoor air quality. However, widespread use will impact the energy demand of the U.S. housing stock. This paper describes a modeling study to determine site energy, source energy, and consumer costs for comprehensive range hood use. To estimate the energy impacts for all 113 million homes in the U.S., we extrapolated from the simulation of a representative weighted sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey database. A physics-based simulation model that considered fan energy, energy to condition additional incoming air, and the effect on home heating and cooling due to exhausting the heat from cooking was applied to each home. Hoods performing at a level common to hoods currently in U.S. homes would require 19?33 TWh [69?120 PJ] of site energy, 31?53 TWh [110-190 PJ] of source energy; and would cost consumers $1.2?2.1 billion (U.S.$2010) annually in the U.S. housing stock. The average household would spend less than $15 annually. Reducing required airflow, e.g. with designs that promote better pollutant capture has more energy saving potential, on average, than improving fan efficiency.

  7. Guidance Law Design for Terminal Area Energy Management of Reusable Launch Vehicle by Energy-to-Range Ratio

    Wen Jiang; Zhaohua Yang

    2014-01-01

    A new guidance scheme that utilizes a trajectory planning algorithm by energy-to-range ratio has been developed under the circumstance of surplus energy for the terminal area energy management phase of a reusable launch vehicle. The trajectory planning scheme estimates the reference flight profile by piecing together several flight phases that are defined by a set of geometric parameters. Guidance commands are readily available once the best reference trajectory is determined. The trajectory ...

  8. Geographical and temporal differences in electric vehicle range due to cabin conditioning energy consumption

    Kambly, Kiran; Bradley, Thomas H.

    2015-02-01

    Electric vehicles (EVs) are vehicles that are propelled by electric motors powered by rechargeable battery. They are generally asserted to have GHG emissions, driveability and life cycle cost benefits over conventional vehicles. Despite this, EVs face significant challenges due to their limited on-board energy storage capacity. In addition to providing energy for traction, the energy storage device operates HVAC systems for cabin conditioning. This results in reduced driving range. The factors such as local ambient temperature, local solar radiation, local humidity, duration and thermal soak have been identified to affect the cabin conditions. In this paper, the development of a detailed system-level approach to HVAC energy consumption in EVs as a function of transient environmental parameters is described. The resulting vehicle thermal comfort model is used to address several questions such as 1) How does day to day environmental conditions affect EV range? 2) How does frequency of EV range change geographically? 3) How does trip start time affect EV range? 4) Under what conditions does cabin preconditioning assist in increasing the EV range? 5) What percentage increase in EV range can be expected due to cabin preconditioning at a given location?

  9. Determination of the energy of cosmic ray nuclei in the range above 1 TeV

    Rapoport, I D; Shestoperov, V Y

    2002-01-01

    A new method of measuring the energy of particles in the range above 1 TeV is proposed. This method is based on registration of the specific energy absorption in the maximum of hadron showers generated by these particles in dense matter. The method allows to increase the accuracies of the energy measurement by thin ionization calorimeters in cosmic ray studies at high altitudes. The available accuracies of energy measurements are considered for protons and He nuclei. The comparison of simulation results and data of the experiment onboard the satellite Kosmos-1713 is presented

  10. Energy dependence of some neutron dosimeter sensitivities in the 1 ev up to 4 kev energy range

    The sensitivities of DN-A-1 device and SNM-14 slow neutron counter with a combined moderator in the 1 eV up to 4 keV energy range has been experimentally determined. The IBR-30 reactor served as a neutron source, spectral distribution was performed by the time-of-flight method. The sensitivity constancy of a long counter in the 1 eV up to 4 keV energy range has been experimentally shown. The obtained sensitivity values and other data available could be used in determining energy dependencies of the device sensitivity in essential neutron energy range. It permits to evaluate their errors when using as dosimeters in radiation fields of nuclear physics installations

  11. Harnessing Big-Data for Estimating the Energy Consumption and Driving Range of Electric Vehicles

    Fetene, Gebeyehu Manie; Prato, Carlo Giacomo; Kaplan, Sigal; MABIT, Stefan Lindhard; Jensen, Anders Fjendbo

    2016-01-01

    This study analyses the driving range and investigates the factors affecting the energy consumption rate of fully-battery electric vehicles under real-world driving patterns accounting for weather condition, drivers’ characteristics, and road characteristics. Four data sources are used: (i) up to six months driving pattern data collected from 741 drivers, (ii) drivers’ characteristics; (iii) road characteristics; (iv) weather data. We found that the real-world driving range of BEVs is highly ...

  12. Long-range correlation energy calculated from coupled atomic response functions

    Ambrosetti, Alberto; DiStasio, Robert A; Tkatchenko, Alexandre

    2013-01-01

    An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the co...

  13. Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review

    Trenchard, Hugh

    2016-01-01

    Energy saving mechanisms are ubiquitous in nature. Aerodynamic and hydrodynamic drafting, vortice uplift, Bernoulli suction, thermoregulatory coupling, path following, physical hooks, synchronization, and cooperation are only some of the better-known examples. While drafting mechanisms also appear in non-biological systems such as sedimentation and particle vortices, the broad spectrum of these mechanisms appears more diversely in biological systems including bacteria, spermatozoa, various aquatic species, birds, land animals, semi-fluid dwellers like turtle hatchlings, as well as human systems. We present the thermodynamic framework for energy saving mechanisms, and we review evidence in favor of the variation range hypothesis. This hypothesis posits that, as an evolutionary process, the variation range between strongest and weakest group members converges on the equivalent energy saving quantity that is generated by the energy saving mechanism. We also review self-organized structures that emerge due to ene...

  14. Combined production of free-range pigs and energy crops – animal behaviour and crop damages

    Horsted, Klaus; Kongsted, Anne Grete; Jørgensen, Uffe;

    2012-01-01

    Intensive free-range pig production on open grasslands has disadvantages in that it creates nutrient hotspots and little opportunity for pigs to seek shelter from the sun. Combining a perennial energy crop and pig production might benefit the environment and animal welfare because perennial energy...... crops like willow (Salix sp.) and Miscanthus offer the pigs protection from the sun while reducing nutrient leaching from pig excrements due to their deep rooting system. The objectives of this study were to evaluate how season and stocking density of pigs in a free-range system with zones of willow...

  15. Harnessing Big-Data for Estimating the Energy Consumption and Driving Range of Electric Vehicles

    Fetene, Gebeyehu Manie; Prato, Carlo Giacomo; Kaplan, Sigal;

    This study analyses the driving range and investigates the factors affecting the energy consumption rate of fully-battery electric vehicles under real-world driving patterns accounting for weather condition, drivers’ characteristics, and road characteristics. Four data sources are used: (i) up to...... six months driving pattern data collected from 741 drivers, (ii) drivers’ characteristics; (iii) road characteristics; (iv) weather data. We found that the real-world driving range of BEVs is highly sensitive to driving pattern and weather variables. The most important determinants of energy...

  16. Energy System Expectations for Nuclear in the 21. Century: A Plausible Range

    This paper outlines a range of scenarios describing what the world's energy system might look like in the middle of the century, and what nuclear energy's most profitable role might be. The starting point is the 40 non-greenhouse-gas-mitigation scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC, 2000). Given their international authorship and comprehensive review by governments and scientific experts, the SRES scenarios are the state of the art in long-term energy scenarios. However, they do not present the underlying energy system structures in enough detail for specific energy technology and infrastructure analyses. This paper therefore describes initial steps within INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles of the International Atomic Energy Agency) to translate the SRES results into a range of possible nuclear energy technology requirements for mid-century. The paper summarizes the four SRES scenarios that will be used in INPRO and the reasons for their selection. It provides illustrative examples of the sort of additional detail that is being developed about the overall energy system implied by each scenario, and about specific scenario features particularly relevant to nuclear energy. As recommended in SRES, the selected scenarios cover all four SRES 'story-line families'. The energy system translations being developed in INPRO are intended to indicate how energy services may be provided in mid-century and to delineate likely technology and infrastructure implications. They will indicate answers to questions like the following. The list is illustrative, not comprehensive. - What kind of nuclear power plants will best fit the mid-century energy system? - What energy forms and other products and services provided by nuclear reactors will best fit the mid-century energy system? - What would be their market shares? - How difficult will it be to site new nuclear

  17. N(+)-N long-range interaction energies and resonance charge exchange

    Stallcop, J. R.; Partridge, H.

    1985-01-01

    The aerothermodynamic studies of proposed space missions require atmospheric charge-transfer data. N2(+) eigenstate energies are calculated with use of the complete-active-space self-consistent-field method with an extended Gaussian basis set. The N(+)-N charge-exchange cross section, determined from these energies, agrees with merged-beam measurements. This contradicts the previous theoretical conclusion. A simple physical description of the long-range interaction is presented and should expedite future charge-transfer studies.

  18. Study on the energy dependence of spin-spin correlation in the range of diproton resonances

    Coefficients of polarization correlation Csub(NN) (90 deg) at 9 values of energy in the 550-950 MeV range with absolute error less than 0.05 are measured on the beams on JINR and LINP synchrocyclotrons. Csub(NN) values at the angles of 41 deg, 69 deg, 77 deg (T=550, 610, 630 MeV) and 50 deg at other energies have been obtained. The measurement results are presented together with predictions of the Arndt phase analysis and two variants of the Hoshizaki analysis conducted before and after publishing the results of the given experiment. Energy dependence of Csub(NN) (50 deg) does not reveal noticeable peculiarities and it well agrees with all the variants of the analysis. The considered total data do not substantiate certain conclusions on resonance character in pp interaction in the investigated energy range. The structure observed in respect to Csub(NN) (90 deg, p) is the consequence of different energy dependence of amplitudes of triplet and singlet scattering and it may be interpreted as a testify to presence of resonance or as a consequence of threshold phenomena in inelastic channels in the 550-750 MeV energy range

  19. Note on isotopic effects in range calculations of high-energy ion beams

    A simple analytical model that allows the calculation of the percent-level differences of the average ranges of isotopic ion beams slowing down in solid targets is extended to energies in the MeV region and to investigate isotopic effects due to small variations in the mass of the target species. The various contributions to the range in terms of ion stopping, both nuclear and electronic, and angular scattering, can be investigated separately. The model agrees with available experimental data, and predictions are made for a range of cases of interest. (orig.)

  20. Mid-range adiabatic wireless energy transfer via a mediator coil

    Rangelov, Andon A

    2012-01-01

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies three resonances are created: emitter-mediator (EM), mediator-receiver (MR) and emitter-receiver (ER). If the frequency sweeps are adiabatic and such that the ER resonance precedes the MR resonance, the energy flows sequentially along the chain emitter-mediator-receiver. If the MR resonance precedes the ER resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust to noise, resonant constraints and external interferences.

  1. Finite range effective interactions and temperature dependence of nuclear symmetry energy

    The temperature dependence of nuclear symmetry energy has become a subject of current research interest because of its role in the studies of isoscaling analyses of Heavy Ion reactions and the formation mechanism of neutron stars particularly the properties of proto neutron stars (PNS). While the temperature dependence of the kinetic part of the nuclear symmetry energy is well understood, the temperature dependence of its interaction part is not yet known to a satisfactory extent. In the present work, we have investigated the temperature dependence of nuclear symmetry energy using some finite range effective interactions proposed in some earlier works

  2. An extension of detectable energy-range of SXES spectrometer for electron microscopes

    Soft X-ray emission spectroscopy (SXES) instrument for electron microscopes of EPMA/TEM with an energy range of 50-3800 eV has designed and constructed. For extend the lowest and the highest detection energy, an Au-coated new grating (50-200 eV) and a new multilayer-structure of W/B4C coated one (1500-4000 eV) were designed and manufactured. Energy resolutions were 0.2 eV for Mg-L and 27 eV for Te-Lα. Software for elemental and/or electronic structure (chemical) mappings is also developed. (author)

  3. Mid-range adiabatic wireless energy transfer via a mediator coil

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.

  4. Daily energy expenditure in free-ranging Gopher Tortoises (Gopherus polyphemus)

    Jodice, PGR; Epperson, DM; Visser, GH

    2006-01-01

    Studies of ecological energetics in chelonians are rare. Here, we report the first measurements of daily energy expenditure (DEE) and water influx rates (WIRS) in free-ranging adult Gopher Tortoises (Gopherus polyphemus). We used the doubly labeled water (DLW) method to measure DEE in six adult tort

  5. Range and energy loss rate of 118 MeV 28Si in some polymers

    In the present work, range and energy loss rate of 28Si in four dielectric track detectors viz: Makrofol-KG (MFKG), Makrofol-G (MFG), Triafol-BN (TBN) and LR-115 (cellulose nitrate) have been measured. To calculate these parameters, a curve fitting method was proved to be very useful and easier with more accuracy. (author)

  6. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs

  7. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    Esposito, M.; Anaxagoras, T.; Evans, P. M.; Green, S.; Manolopoulos, S.; Nieto-Camero, J.; Parker, D. J.; Poludniowski, G.; Price, T.; Waltham, C.; Allinson, N. M.

    2015-06-01

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  8. Low-Energy Parameters of Neutron-Neutron Interaction in the Effective-Range Approximation

    Babenko, V A

    2016-01-01

    The effect of the mass difference between the charged and neutral pions on the low-energy parameters of nucleon-nucleon interaction in the $^{1}S_{0}$ spin-singlet state is studied in the effective-range approximation. On the basis of experimental values of the singlet parameters of neutron-proton scattering and the experimental value of the virtual-state energy for the neutron-neutron system in the $^{1}S_{0}$ state, the following values were obtained for the neutron-neutron scattering length and effective range: $a_{nn}=-16.59(117)$fm and $r_{nn}=2.83(11)$fm. The calculated neutron-neutron scattering length $a_{nn}$ is in good agreement with one of the two well known and differing experimental values of this quantity, and the calculated effective range $r_{nn}$ is also in good agreement with present-day experimental results.

  9. Study of the elliptic flow and their energy dependence over pseudorapidity range at FAIR energies

    The major goal of high energy heavy ion collision experiments is to create extremely hot and dense matter with partons as its fundamental components called the Quark Gluon Plasma (QGP). The various observables have been studied, both in experiments, and in model calculations, so as to unravel the properties of the dense hot matter created in the collisions. Of particular interest is the elliptic flow which is considered as one of the most important signatures of the formation of QGP as it is sensitive to the very early stage of the collision. It has its origin in the initial spatial asymmetry of the system, which is then transformed into the momentum anisotropy of the particles. In this work we have studied the transverse momentum dependence of elliptic flow v2 at 25 A GeV by the AMPT model with the default and the string melting versions and then the energy dependence of elliptic flow with the pseudorapidity is studied

  10. Elastic and total cross sections for simple biomolecules in the intermediate energy range

    Gupta, Dhanoj; Naghma, Rahla; Antony, Bobby, E-mail: bka.ism@gmail.com [Atomic and Molecular Physics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad 826004, JH (India)

    2015-09-15

    The elastic and total cross sections for formaldehyde, acetaldehyde, acetone, 2-butanone and formamide are calculated using the spherical complex optical potential formalism in the intermediate energy range from 50 eV to 10 keV. These cross sections find application to various fields like radiation damage and biological sciences. The present results are compared with the available experimental and theoretical data and are found to give excellent agreement. The elastic cross sections reported for most of the targets in the present energy range are done for the first time. The energy dependence of the contribution of ionization and elastic cross section with respect to the total cross section and the correlation of total cross section with polarizability of the molecules are also studied.

  11. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  12. Energy Aware Routing Scheme for Mobile Ad Hoc Network Using Variable Range Transmission

    Pinki Nayak

    2012-08-01

    Full Text Available A Mobile Ad hoc Network is a collection of mobile n odes that dynamically forms networks temporarily without the need for any pre-existing infrastructur e. Today, one of the main issues in MANETs is the development of energy efficient protocols due to li mited bandwidth and battery life. The nodes in MANETs operate by a battery source which has limite d energy reservoir. Power failure of a node affects the node’s ability to forward packets on behalf of others, thus reducing the network lifetime. The conventional MANET routing protocols s. a. DSR and AODV use common transmission range for transfer of data and does not consider energy statu s of nodes. This paper discusses a new energy aware routing (EAR scheme which uses variable transmissi on range. The protocol has been incorporated along with the route discovery procedure of AODV as a cas e study. Both the protocols are simulated using Network Simulator-2 and comparisons are made to ana lyze their performance based on energy consumption, network lifetime and number of alive n odes metrics for different network scenarios. The results show that EAR makes effective node energy u tilization.

  13. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  14. A dressing of zero-range potentials and electron-molecule scattering problem at low energies

    Leble, S B

    2002-01-01

    A dressing of a nonspherical potential, which includes $n$ zero range potentials, is considered. The dressing technique is used to improve ZRP model. Concepts of the partial waves and partial phases for non-spherical potential are used in order to perform Darboux transformation. The problem of scattering on the regular $\\hbox{X}_n$ and $\\hbox{YX}_n$ structures is studied. The possibilities of dressed ZRP are illustrated by model calculation of the low-energy electron-Silane ($\\hbox{SiH}_4$) scattering. The results are discussed. Key words: multiple scattering, silane, zero range potential.

  15. The relationship between professional operatic soprano voice and high range spectral energy

    Barnes, Jennifer J.; Davis, Pamela; Oates, Jennifer; Chapman, Janice

    2004-07-01

    Operatic sopranos need to be audible over an orchestra yet they are not considered to possess a singer's formant. As in other voice types, some singers are more successful than others at being heard and so this work investigated the frequency range of the singer's formant between 2000 and 4000 Hz to consider the question of extra energy in this range. Such energy would give an advantage over an orchestra, so the aims were to ascertain what levels of excess energy there might be and look at any relationship between extra energy levels and performance level. The voices of six operatic sopranos (national and international standard) were recorded performing vowel and song tasks and subsequently analyzed acoustically. Measures taken from vowel data were compared with song task data to assess the consistency of the approaches. Comparisons were also made with regard to two conditions of intended projection (maximal and comfortable), two song tasks (anthem and aria), two recording environments (studio and anechoic room), and between subjects. Ranking the singers from highest energy result to lowest showed the consistency of the results from both vowel and song methods and correlated reasonably well with the performance level of the subjects. The use of formant tuning is considered and examined.

  16. The energy range of drift effects in the solar modulation of cosmic ray electrons

    Nndanganeni, Rendani R.; Potgieter, Marius S.

    2016-08-01

    A comprehensive three-dimensional modulation model is used to study the energy range of drift effects in the solar modulation of cosmic ray (galactic) electrons. Drift effects are defined as the difference between modulated spectra at a given position in the heliosphere computed for the two solar magnetic polarity cycles. The process of curvature, gradient and current sheet drifts in the heliosphere, together with convection, adiabatic energy losses and diffusion have profound effects on electron modulation. However, several reports indicated that the so-called weak-scattering drifts caused an overestimation of drift effects. It is illustrated that drift effects can be reduced in two ways, explicitly and implicitly; both influence the energy range where these effects are present but the implicit approach is more subtle to recognize and understand. A new very local interstellar spectrum for electrons is used. Electrons are most suitable for this type of study because they experience far less adiabatic energy losses than protons so that they respond directly with changes of the diffusion coefficients down to very low kinetic energy, E ∼ 1 MeV. In general, taking several modulation considerations into account, drift effects for electrons at the Earth are getting increasingly larger from above ∼10 MeV, with a maximum effect around 100 MeV, then gradually subsides to become less significant above ∼10 GeV.

  17. Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: A review.

    Trenchard, Hugh; Perc, Matjaž

    2016-09-01

    Energy saving mechanisms are ubiquitous in nature. Aerodynamic and hydrodynamic drafting, vortice uplift, Bernoulli suction, thermoregulatory coupling, path following, physical hooks, synchronization, and cooperation are only some of the better-known examples. While drafting mechanisms also appear in non-biological systems such as sedimentation and particle vortices, the broad spectrum of these mechanisms appears more diversely in biological systems that include bacteria, spermatozoa, various aquatic species, birds, land animals, semi-fluid dwellers like turtle hatchlings, as well as human systems. We present the thermodynamic framework for energy saving mechanisms, and we review evidence in favor of the variation range hypothesis. This hypothesis posits that, as an evolutionary process, the variation range between strongest and weakest group members converges on the equivalent energy saving quantity that is generated by the energy saving mechanism. We also review self-organized structures that emerge due to energy saving mechanisms, including convective processes that can be observed in many systems over both short and long time scales, as well as high collective output processes in which a form of collective position locking occurs. PMID:27288936

  18. Degrees of locality of energy transfer in the inertial range. [Kolmogoroff notion in turbulence theory

    Zhou, YE

    1993-01-01

    Measured raw transfer interactions from which local energy transfer is argued to result are summed in a way that directly indicates the scale disparity (s) of contributions to the net energy flux across the spectrum. It is found that the dependence upon s closely follows the s exp -4/3 form predicted by classical arguments. As a result, it is concluded that direct numerical simulation measurements lend support to the classical Kolmogorov phenomenology of local interactions and local transfer in an inertial range.

  19. Photon interaction measurements of certain compounds in the energy range 30-660 keV

    The total photon interaction cross sections at six energies in the energy range 30-660 keV are determined in ten compounds, (NaNO3, KNO3, Sr(NO3)2, NaCl, SrCl2-2H2), NaClO3, (NH4)SO4, MgSO4) using a NaI(Tl) scintillation spectrometer in a good geometry setup. Analysis of the experimental data in terms of cross sections and effective atomic numbers is presented

  20. Physics of reflective optics for the soft gamma-ray photon energy range

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina;

    2013-01-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the...... transport simulations to quantitatively determine that incoherent scattering takes place in the mirrors but it does not affect the performance at the Bragg angles of operation. Our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and...

  1. AGN Observations in the GeV/TeV Energy Range with the MAGIC Telescope

    Wagner, Robert

    2008-01-01

    MAGIC currently is the largest imaging atmospheric Cerenkov telescope world-wide. Since 2004, gamma-ray emission from several active galactic nuclei in the GeV/TeV energy range has been detected, some of which were newly discovered as very-high energy gamma-ray sources. The gamma-rays are assumed to originate from particle acceleration processes in the AGN jets. We give an overview of the AGN observed and detected by MAGIC, discuss spectral and temporal properties of these and show physics im...

  2. A geometrical approach to computing free energy landscapes from short-ranged potentials

    Holmes-Cerfon, Miranda; Brenner, Michael P

    2012-01-01

    Particles interacting with short-ranged potentials have attracted increasing interest, partly for their ability to model mesoscale systems such as colloids interacting via DNA or depletion. We consider the free energy landscape of such systems as the range of the potential goes to zero. In this limit, the landscape is entirely defined by geometrical manifolds, plus a single control parameter. These manifolds are fundamental objects that do not depend on the details of the interaction potential, and provide the starting point from which any quantity characterizing the system -- equilibrium or non-equilibrium -- can be computed for arbitrary potentials. To consider dynamical quantities we compute the asymptotic limit of the Fokker-Planck equation, and show that it becomes restricted to the low-dimensional manifolds connected by "sticky" boundary conditions. To illustrate our theory, we compute the low-dimensional manifolds for n<=8 identical particles, providing a complete description of the lowest-energy pa...

  3. Validation of capture yield calculations in the Resolved Resonance Energy Range with CONRAD code

    Litaize, Olivier; Archier, Pascal; Becker, Bjorn; Schillebeeckx, Peter; Kopecky, Stefan

    2013-03-01

    This paper deals with the validation of the multiple scattering corrections developed in the CONRAD code for the capture yield calculations in the Resolved Resonance energy Range (RRR). In order to calculate the capture yields, analytic and stochastic calculation schemes implemented in CONRAD are described and compared with the analysis code SAMMY/SAMSMC. The results are in excellent agreement for a variety of samples. We concentrate the discussion here on 238U, 197Au and 55Mn.

  4. Validation of capture yield calculations in the Resolved Resonance Energy Range with CONRAD code

    Schillebeeckx Peter

    2013-03-01

    Full Text Available This paper deals with the validation of the multiple scattering corrections developed in the CONRAD code for the capture yield calculations in the Resolved Resonance energy Range (RRR. In order to calculate the capture yields, analytic and stochastic calculation schemes implemented in CONRAD are described and compared with the analysis code SAMMY/SAMSMC. The results are in excellent agreement for a variety of samples. We concentrate the discussion here on 238U, 197Au and 55Mn.

  5. Daily energy expenditure in free-ranging Gopher Tortoises (Gopherus polyphemus)

    Jodice, P.G.R.; Epperson, D.M.; Visser, G.H.

    2006-01-01

    Studies of ecological energetics in chelonians are rare. Here, we report the first measurements of daily energy expenditure (DEE) and water influx rates (WIRs) in free-ranging adult Gopher Tortoises (Gopherus polyphemus). We used the doubly labeled water (DLW) method to measure DEE in six adult tortoises during the non-breeding season in south-central Mississippi, USA. Tortoise DEE ranged from 76.7-187.5 kj/day and WIR ranged from 30.6-93.1 ml H2O/day. Daily energy expenditure did not differ between the sexes, but DEE was positively related to body mass. Water influx rates varied with the interaction of sex and body mass. We used a log/log regression model to assess the allometric relationship between DEE and body mass for Gopher Tortoises, Desert Tortoises (Gopherus agassizii), and Box Turtles (Terrapene carolina), the only chelonians for which DEE has been measured. The slope of this allometric model (0.626) was less than that previously calculated for herbivorous reptiles (0.813), suggesting that chelonians may expend energy at a slower rate per unit of body mass compared to other herbivorous reptiles. We used retrospective power analyses and data from the DLW isotope analyses to develop guidelines for sample sizes and duration of measurement intervals, respectively, for larger-scale energetic studies in this species. ?? 2006 by the American Society of Ichthyologists and Herpetologists.

  6. Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer.

    de Torres, Juan; Ferrand, Patrick; Colas des Francs, Gérard; Wenger, Jérôme

    2016-04-26

    The development of quantum plasmonic circuitry requires efficient coupling between quantum emitters and plasmonic waveguides. A major experimental challenge is to simultaneously maximize the surface plasmon propagation length, the coupling efficiency into the plasmonic mode, and the Purcell factor. Addressing this challenge is also the key to enabling long-range energy transfer between quantum nanoemitters. Here, we use a dual-beam scanning confocal microscope to carefully investigate the interactions between fluorescent nanoparticles and surface plasmons on single-crystalline silver nanowires. By exciting the fluorescent nanoparticles via nanowire surface plasmons, we maximize the light-matter interactions and reach coupling efficiencies up to 44% together with 24× lifetime reduction and 4.1 μm propagation lengths. This improved optical performance enables the demonstration of long-range plasmon-mediated fluorescence energy transfer between two nanoparticles separated by micrometer distance. Our results provide guidelines toward practical realizations of efficient long-range fluorescence energy transfer for integrated plasmonics and quantum nano-optics. PMID:27019008

  7. Research on simulation system with the wide range and high-precision laser energy characteristics

    Dong, Ke-yan; Lou, Yan; He, Jing-yi; Tong, Shou-feng; Jiang, Hui-lin

    2012-10-01

    The Hardware-in-the-loop(HWIL) simulation test is one of the important parts for the development and performance testing of semi-active laser-guided weapons. In order to obtain accurate results, the confidence level of the target environment should be provided for a high-seeker during the HWIL simulation test of semi-active laser-guided weapons, and one of the important simulation parameters is the laser energy characteristic. In this paper, based on the semi-active laser-guided weapon guidance principles, an important parameter of simulation of confidence which affects energy characteristics in performance test of HWIL simulation was analyzed. According to the principle of receiving the same energy by using HWIL simulation and in practical application, HWIL energy characteristics simulation systems with the crystal absorption structure was designed. And on this basis, the problems of optimal design of the optical system were also analyzed. The measured results show that the dynamic attenuation range of the system energy is greater than 50dB, the dynamic attenuation stability is less than 5%, and the maximum energy changing rate driven by the servo motor is greater than 20dB/s.

  8. Dissociative photoionization of N2 in the 24-32 eV photon energy range

    Dissociative photoionization of N2 is studied with synchrotron radiation in the 24-32 eV photon energy range. Branching ratios between the different dissociation limits are measured from coincidence time of flight ion spectra threshold photoelectron-photoion coincidence recorded for state-selected N2+ parent ions. In this energy range, N2+ molecular ions are observed to dissociate only towards the three lowest dissociation limits. Dissociations towards the second and third ones, which correspond to the formation of N+(1D) and N(2D) metastable states, respectively, occur right from their thermochemical onsets. From the second dissociation limit energy up to the third one, the N+(1D) + N(4S)/N+(3P) + N(4S) branching ratio is almost constant and equal to 0.6:0.4, except at the energy of the C 2 Σu+ (v = 12) state, where this branching ratio is found to be equal to 0.5:0.5. From the third dissociation limit onset, N2+ ions fragment only towards this limit. Possible dissociation mechanisms are discussed, involving a spin-orbit coupling between doublet and quartet states of N2+ to produce N+(1D) + N(4S) and a direct dissociation to produce N+(3P) + N(2D). No dissociation towards the other limits has been observed, in particular to produce the N+(1S), N+(5S) and N(2P) metastable states

  9. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  10. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al+ ion

    In the present work, we report the photoionization cross sections of the Al+ ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s21S and exited states 3s3p1,3P, 3s3d1,3D and 3s4s1,3S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al+ ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s21S and 3s3p3P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation

  11. Frontier applications of rf superconductivity for high energy physics in the TeV range

    The authors present understanding of the fundamental nature of matter is embodied in the standard theory. This theory views all matter as composed of families of quarks and leptons with their interactions mediated by the family of force-carrying particles. Progress in particle accelerators has been a vital element in bringing about this level of understanding. Although the standard theory is successful in relating a wide range of phenomena, it raises deeper questions about the basic nature of matter and energy. Among these are: why are the masses of the various elementary particles and the strengths of the basic forces what they are? It is expected that over the next decade a new generation of accelerators spanning the 100 Gev mass range will shed light on some of these questions. These accelerators, will provide the means to thoroughly explore the energy regime corresponding to the mass scale of the weak interactions to reveal intimate details of the force carrying particles, the weak bosons, Z0 and W+-. Superconducting rf technology will feature in a major way in the electron storage rings. Current theoretical ideas predict that to make further progress towards a more fundamental theory of matter, it will be necessary to penetrate the TeV energy regime. At this scale a whole new range of phenomena will manifest the nature of the symmetry breaking mechanism that must be responsible for the differences they observe in the familiar weak and electromagnetic forces. History has shown that unexpected discoveries made in a new energy regime have proven to be the main engine of progress. The experimental challenge to accelerator designers and builders is clear. 11 references, 3 figures, 1 table

  12. Calculations of the response of shielded detectors to gamma rays at MeV-range energies

    Nuclear instruments designed to detect gamma rays at energies from 0.1 to 10 MeV respond primarily to the electrons produced by gamma-ray scattering and absorption in either the instrument itself or in the surrounding materials. Although tabulated attenuation coefficients are very useful for estimating macroscopic quantities such as bulk energy depositions, such quantities are averages over several different phenomena at the microscopic level. For detectors with active elements that are thin compared with an electron range, the competing effects of inscattering and outscattering result in complicated responses, as evidenced by the strong energy dependence of the resulting pulse-height spectra. Thus, for some applications the macroscopic averages are entirely sufficient, but for others a full microscopic analysis is needed. The author first reviews the literature on the responses of several types of detectors to gamma rays at energies below 10 MeV, and then they use a series of simple Monte Carlo calculations to illustrate the important physics issues. These simple calculations are followed by thorough studies of the energy and angle responses of two proposed instruments, including their responses to instantaneous pulses of large numbers of simultaneous incident photons

  13. Calculations of the response of shielded detectors to gamma rays at MeV-range energies

    R. C. Byrd

    2000-03-01

    Nuclear instruments designed to detect gamma rays at energies from 0.1 to 10 MeV respond primarily to the electrons produced by gamma-ray scattering and absorption in either the instrument itself or in the surrounding materials. Although tabulated attenuation coefficients are very useful for estimating macroscopic quantities such as bulk energy depositions, such quantities are averages over several different phenomena at the microscopic level. For detectors with active elements that are thin compared with an electron range, the competing effects of inscattering and outscattering result in complicated responses, as evidenced by the strong energy dependence of the resulting pulse-height spectra. Thus, for some applications the macroscopic averages are entirely sufficient, but for others a full microscopic analysis is needed. The author first reviews the literature on the responses of several types of detectors to gamma rays at energies below 10 MeV, and then they use a series of simple Monte Carlo calculations to illustrate the important physics issues. These simple calculations are followed by thorough studies of the energy and angle responses of two proposed instruments, including their responses to instantaneous pulses of large numbers of simultaneous incident photons.

  14. Investigation of the sup 9 sup 3 Nb neutron cross-sections in resonance energy range

    Grigoriev, Y V; Faikov-Stanchik, H; Ilchev, G; Kim, G N; Kitaev, V Ya; Mezentseva, Z V; Panteleev, T; Sinitsa, V V; Zhuravlev, B V

    2001-01-01

    The results of gamma-ray multiplicity spectra and transmission measurements for sup 9 sup 3 Nb in energy range 21.5 eV-100 keV are presented. Gamma spectra from 1 to 7 multiplicity were measured on the 501 m and 121 m flight paths of the IBR-30 using a 16-section scintillation detector with a NaI(Tl) crystals of a total volume of 36 l and a 16-section liquid scintillation detector of a total volume of 80 l for metallic samples of 50, 80 mm in diameter and 1, 1.5 mm thickness with 100% sup 9 sup 3 Nb. Besides, the total and scattering cross-section of sup 9 sup 3 Nb were measured by means batteries of B-10 and He-3 counters on the 124 m, 504 m and 1006 m flight paths of the IBR-30. Spectra of multiplicity distribution were obtained for resolved resonances in the energy region E=30-6000 eV and for energy groups in the energy region E=21.5 eV- 100 keV. They were used for determination of the average multiplicity, resonance parameters and capture cross-section in energy groups and for low-laying resonances of sup...

  15. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion

    In some energy harvesting systems, the maximum displacement of the seismic mass is limited due to the physical constraints of the device. This is especially the case where energy is harvested from a vibration source with large oscillation amplitude (e.g., marine environment). For the design of inertial systems, the maximum permissible displacement of the mass is a limiting condition. In this paper the maximum output power and the corresponding efficiency of linear and rotational electromagnetic energy harvesting systems with a constrained range of motion are investigated. A unified form of output power and efficiency is presented to compare the performance of constrained linear and rotational systems. It is found that rotational energy harvesting systems have a greater capability in transferring energy to the load resistance than linear directly coupled systems, due to the presence of an extra design variable, namely the ball screw lead. Also, in this paper it is shown that for a defined environmental condition and a given proof mass with constrained throw, the amount of power delivered to the electrical load by a rotational system can be higher than the amount delivered by a linear system. The criterion that guarantees this favourable design has been obtained. (paper)

  16. Energy-dispersive phase plate for magnetic circular dichroism experiments in the X-ray range

    A 220 diamond phase plate was combined with an energy-dispersive absorption spectrometer to convert linearly polarized X-rays into circularly polarized photons and to detect circular magnetic X-ray dichroism (CMXD) from ferromagnetic samples. In these experiments, carried out at LURE, the energy-dispersive spectrometer was equipped with a bent Si (311) polychromator and vertically collimating slits accepting essentially a linearly polarized incident beam. The quarter-wave plate was operated in the Bragg geometry but well outside the range of quasi total reflection, with the consequence that the forward-diffracted beam was circularly polarized with a polarization rate approaching 80% over the whole energy bandpass of the polychromator. CMXD spectra of GdFe2 and GdCo2 intermetallic compounds were recorded at ca 7.2 keV near the Gd LIII absorption edge: they are essentially identical to the spectra commonly recorded with elliptically polarized X-ray photons collected out of the orbit plane of the storage ring. It is suggested that the energy-dispersive phase plate will be very useful to detect CMXD spectra with energy-dispersive spectrometers exploiting the well collimated linearly polarized emission of standard undulators installed on the storage rings of the third generation. (orig.)

  17. The photofragmentation of naphthalene and azulene monocations in the energy range 7 22 eV

    Jochims, H. W.; Rasekh, H.; Rühl, E.; Baumgärtel, H.; Leach, S.

    1992-12-01

    Photoion mass spectrometry was used to study the fragmentation of naphthalene and azulene monocations over the excitation energy range 7-22 eV. Fifteen fragmentation processes in naphthalene and twelve in azulene have been examined in detail. The photoionization mass spectra at 20.58 eV are quasi-identical for the two isomers. This, and the constant value of the difference between the fragment appearance energies (AE) for naphthalene and azulene, equal to the difference in the heats of formations of the neutral parents, suggest that identical products are formed. The unimolecular dissociations fall mainly into (i) a "low energy" group, (AE 18 eV). The reactions in (i) have in common the bicyclic precursor C 10H +8 ion 18 which decays via rupture of one ring. The group (ii) reactions involve rupture of both rings to give an open chain precursor, the 1,6-bis-ethinyl-hexatriene radical cation 20. Thermodynamic and mechanistic arguments are given to propose specific reaction pathways and product structures. Two general schemes rationalize the low-energy and high-energy ionic decompositions.

  18. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  19. Long-range correlation studies at the SPS energies in MC model with string fusion

    Kovalenko, Vladimir

    2015-01-01

    Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated th...

  20. Long-range energy transport in single supramolecular nanofibres at room temperature

    Haedler, Andreas T.; Kreger, Klaus; Issac, Abey; Wittmann, Bernd; Kivala, Milan; Hammer, Natalie; Köhler, Jürgen; Schmidt, Hans-Werner; Hildner, Richard

    2015-07-01

    Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

  1. Photoproduction in the Energy Range 70-200 GeV

    2002-01-01

    This experiment continues the photoproduction studies of WA4 and WA57 up to the higher energies made available by the upgrading of the West Hall. An electron beam of energy 200 GeV is used to produce tagged photons in the range 65-180 GeV; The photon beam is incident on a 60 cm liquid hydrogen target in the Omega Spectrometer. A Ring Image Cherenkov detector provides pion/kaon separation up to 150 GeV/c. The Transition Radiation Detector extends the charged pion identification to the momentum range from about 80 GeV/c upwards. The large lead/liquid scintillator calorimeter built by the WA70 collaboration and the new lead/scintillating fibre det (Plug) are used for the detection of the $\\gamma$ rays produced by the interactions of the primary photons in the hydrogen target. \\\\ \\\\ The aim is to make a survey of photoproduction reactions up to photon energies of 200 GeV. The large aperture of the Omega Spectrometer will particularly enable study of fragmentation of the photon to states of high mass, up to @C 9 G...

  2. Modified effective range analysis of low energy electron and positron scattering on CO{sub 2}

    Idziaszek, Z [Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02668 Warszawa (Poland); Karwasz, G P [Instytut Fizyki, Uniwersytet Mikolaja Kopernika, Torun (Poland); Brusa, R S [Dipartimento di Fisica, Universita degli Studi di Trento, 38050 Trento (Italy)], E-mail: zbyszek@cft.edu.pl

    2008-05-15

    Analytical solutions for the modified effective range problem have been applied to positron and electron scattering on carbon dioxide in the low (below 10 eV) energy range. For positrons, the solution with three partial waves reproduces very well experimental results up to the positronium formation threshold; the s-wave contribution rises in the limit of zero energy and the p-wave contribution reaches a very broad maximum at about 0.5 eV. For electron scattering, the present solution shows a sharp rise of the s-wave contribution in the limit of zero energy, explained by earlier calculations as a virtual negative ion state. The p-wave shows a resonant structure at about 5 eV corresponding to an experimentally well known {sup 2}II{sub u} shape resonance. An additional maximum in the p-wave contribution is observed at about 1-2 eV. The latter feature would explain resonant-like scattering observed recently in high-resolution vibrational excitation measurements.

  3. Annealing of implanted silicon by low-energy electrons within seconds range

    A possibility of utilizing low-energy electron flux for annealing phosphorus-implanted-silicon crystals in the seconds exposure range is shown experimentally. The exposure duration was 10 s at the electron current density on sample varying within the range of 0.5-0.8 A/cm2. The perfection of the silicon crystal structure was studied with implanted and annealed samples by the method of Retherford back scattering of 2 MeV helium ions under channeling conditions. Profiles of mobile current carriers in doped layers of annealed samples were measured by the method of differential resistance. It is shown that the pulse electron annealing provides better restoration of silicon crystal structure distorted by implantation as compared to a reference isothermal annealing

  4. Implants of aluminum in the 50-120 MeV energy range into silicon

    Al ions in the 50-120 MeV energy range were implanted in Si substrates for fluences varying between 1 x 1014 and 3.5 x 1015 /cm2. The electrical and chemical Al distributions were obtained by spreading resistance profilometry and secondary ion mass spectroscopy and the two principal moments, Rp and ΔRp, were measured. On low resistivity samples, ρ = 0.01 Ω cm, the disorder profile induced by the 100 MeV Al implant was determined from the electrical measurement of the inactivated bulk dopant (boron) distribution. The diffusion coefficient of Al implanted into floating-zone silicon was extracted from the electrical profiles after thermal treatments in the 1000-1290degC temperature range with the result D = 7.4 exp[-3.42(eV)/kT](cm2/s). (orig.)

  5. Implants of aluminum in the 50-120 MeV energy range into silicon

    La Ferla, A.; Torrisi, L.; Galvagno, G.; Rimini, E. (Dipt. di Fisica, Univ. di Catania (Italy)); Ciavola, G. (Lab. Nazionale del Sud, INFN, Catania (Italy)); Carnera, A.; Gasparotto, A. (Dipt. di Fisica, Univ. di Padova (Italy))

    1993-01-01

    Al ions in the 50-120 MeV energy range were implanted in Si substrates for fluences varying between 1 x 10[sup 14] and 3.5 x 10[sup 15] /cm[sup 2]. The electrical and chemical Al distributions were obtained by spreading resistance profilometry and secondary ion mass spectroscopy and the two principal moments, R[sub p] and [Delta]R[sub p], were measured. On low resistivity samples, [rho] = 0.01 [Omega] cm, the disorder profile induced by the 100 MeV Al implant was determined from the electrical measurement of the inactivated bulk dopant (boron) distribution. The diffusion coefficient of Al implanted into floating-zone silicon was extracted from the electrical profiles after thermal treatments in the 1000-1290degC temperature range with the result D = 7.4 exp[-3.42(eV)/kT](cm[sup 2]/s). (orig.).

  6. Implants of aluminum in the 50-120 MeV energy range into silicon

    La Ferla, A.; Torrisi, L.; Galvagno, G.; Rimini, E.; Ciavola, G.; Carnera, A.; Gasparotto, A.

    1993-01-01

    Al ions in the 50-120 MeV energy range were implanted in Si substrates for fluences varying between 1 × 10 14 and 3.5 × 10 15/cm 2. The electrical and chemical Al distributions were obtained by spreading resistance profilometry and secondary ion mass spectroscopy and the two principal moments, Rp and ΔRp, were measured. On low resistivity samples, τ = 0.01 Ω cm, the disorder profile induced by the 100 MeV Al implant was determined from the electrical measurement of the inactivated bulk dopant (boron) distribution. The diffusion coefficient of Al implanted into floating-zone silicon was extracted from the electrical profiles after thermal treatments in the 1000-1290°C temperature range with the result D = 7.4 exp[ {-3.42( eV) }/{kT}] {( cm2}/{s) }.

  7. High energy resolution electron beam spectrometer in the MeV range

    Two electron spectrometers have been developed for the characterisation of scintillating counters with MeV range electrons. These spectrometers offer a monoenergetic electron beam ranging from 0.4 to 1.8 MeV with an energy resolution (FWHM) of 1.0 ± 0.2% at 1 MeV and a linearity better than 2%. The transverse profile of the beams consists of a typical 3.0 mm Gaussian width. These electron beams can automatically scan surfaces up to 60 × 200 cm2 in 1 mm increments. They have been used in the calorimeter module development for the SuperNEMO experiment

  8. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2015-11-15

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  9. True coincidence summing corrections for an extended energy range HPGe detector

    Venegas-Argumedo, Y. [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico); M.S. Student at CIMAV (Mexico); Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico)

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  10. True coincidence summing corrections for an extended energy range HPGe detector

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  11. Long range correlations in stochastic transport with energy and momentum conservation

    Kundu, Anupam; Hirschberg, Ori; Mukamel, David

    2016-03-01

    We consider a simple one-dimensional stochastic model of heat transport which locally conserves both energy and momentum and which is coupled to heat reservoirs with different temperatures at its two ends. The steady state is analyzed and the model is found to obey the Fourier law with finite heat conductivity. In the infinite length limit, the steady state is described locally by an equilibrium Gibbs state. However finite size corrections to this local equilibrium state are present. We analyze these finite size corrections by calculating the on-site fluctuations of the momentum and the two point correlation of the momentum and energy. These correlations are long ranged and have scaling forms which are computed explicitly. We also introduce a multi-lane variant of the model in which correlations vanish in the steady state. The deviation from local equilibrium in this model as expressed in terms of the on-site momentum fluctuations is calculated in the large length limit.

  12. Cross sections for elastic electron scattering by tetramethylsilane in the intermediate-energy range

    Sugohara, R. T. [Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Lee, M.-T.; Iga, I. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Souza, G. L. C. de [Instituto de Ciencias Exatas e Tecnologia, UFAM, 69100-000 Itacoatiara, AM (Brazil); Homem, M. G. P. [Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil)

    2011-12-15

    Organosilicon compounds are of current interest due to the numerous applications of these species in industries. Some of these applications require the knowledge of electron collision cross sections, which are scarce for such compounds. In this work, we report absolute values of differential, integral, and momentum-transfer cross sections for elastic electron scattering by tetramethylsilane (TMS) measured in the 100-1000 eV energy range. The relative-flow technique is used to normalize our data. In addition, the independent-atom-model (IAM) and the additivity rule (AR), widely used to model electron collisions with light hydrocarbons, are also applied for e{sup -}-TMS interaction. The comparison of our measured results of cross sections and the calculated data shows good agreement, particularly near the higher-end of incident energies.

  13. Isomeric ratio analysis in (γ, n) and (γ, p) reactions at giant-resonance energy range

    The isomeric ratios are investigated in simple photonuclear reactions at maximum energies of the Bremsstrahlung photons of 20-40 MeV for the targets in the mass range 90-180 a.m.u. The measurement results are compared with the estimates in the framework of the statistical model of the compound nucleus de-excitation. The calculations were performed without free parameters, taking into account the character of the photonuclear reactions induced by Bremsstrahlung photons, and some details of the nuclear transitions of the residual nuclear states. Within experimental errors, the calculation results are in agreement with the experimental data

  14. Isomeric ratio analysis in (gamma, n) and (gamma, p) reactions at giant-resonance energy range

    Demekhina, N A; Karapetyan, G S

    2002-01-01

    The isomeric ratios are investigated in simple photonuclear reactions at maximum energies of the Bremsstrahlung photons of 20-40 MeV for the targets in the mass range 90-180 a.m.u. The measurement results are compared with the estimates in the framework of the statistical model of the compound nucleus de-excitation. The calculations were performed without free parameters, taking into account the character of the photonuclear reactions induced by Bremsstrahlung photons, and some details of the nuclear transitions of the residual nuclear states. Within experimental errors, the calculation results are in agreement with the experimental data

  15. Potential for substitution of geothermal energy at domestic defense installations and White Sands Missile Range

    Bakewell, C.A.; Renner, J.L.

    1982-01-01

    Geothermal resources that might provide substitute energy at any of 76 defense installations are identified and evaluated. The geologic characteristics and related economics of potential geothermal resources located at or near the 76 installations were estimated. The geologic assessment identified 18 installations with possible geothermal resources and 4 Atlantic Coastal Plain resource configurations that represented the alternatives available to East Coast bases. These 18 locations and 4 resource configurations, together with 2 possible resources at the White Sands Missile Range and a potential resource at Kings Bay, Georgia, were examined to determine the relative economics of substituting potential geothermal energy for part or all of the existing oil, gas, and electrical energy usage. Four of the military installations - Mountain Home, Norton, Hawthorne, and Sierra - appear to be co-located with possible geothermal resources which, if present, might provide substitute energy at or below current market prices for oil. Six additional locations - Ellsworth, Luke, Williams, Bliss, Fallon, and Twentynine Palms - could become economically attractive under certain conditions. No geothermal resource was found to be economically competitive with natural gas at current controlled prices. Generation of electric power at the locations studied is estimated to be uneconomic at present.

  16. Range-energy relation, range straggling and response function of CsI(Tl), BGO and GSO(Ce) scintillators for light ions

    Avdeichikov, V; Jakobsson, B; Rodin, A M; Ter-Akopian, G M

    2000-01-01

    Range-energy relations and range straggling of sup 1 sup , sup 2 sup , sup 3 H and sup 4 sup , sup 6 He isotopes with the energy approx 50A MeV are measured for the CsI(Tl), BGO and GSO(Ce) scintillators with an accuracy better than 0.2% and 5%, respectively. The Si-Sci/PD telescope was exposed to secondary beams from the mass separator ACCULINNA. The experimental technique is based on the registration of the 'jump' in the amplitude of the photodiode signal for ions passing through the scintillation crystal. Light response of the scintillators for ions 1<=Z<=4 is measured in energy range (5-50)A MeV, the results are in good agreement with calculations based on Birks model. The energy loss straggling for particles with DELTA E/E=0.01-0.50 and mass up to A=10 in 286 mu m DELTA E silicon detector is studied and compared with theoretical prescriptions. The results allow a precise absolute calibration of the scintillation crystal and to optimize the particle identification by the DELTA E-E(Sci/PD) method.

  17. EVA space suit proton and electron threshold energy measurements by XCT and range shifting

    Moyers, M.F. [Department of Radiation Medicine, Loma Linda University, 11234 Anderson St., Loma Linda, California 92354 (United States)]. E-mail: MFMoyers@adelphia.net; Saganti, P.B. [Space Radiation Health Project, NASA-Johnson Space Center, 2101 NASA Road 1, Houston, Texas 77058 (United States); Department of Physics and NASA-Center for Applied Radiation Research, Prairie View A and M University, Prairie View, Texas 77446 (United States); Nelson, G.A. [Department of Radiation Medicine, Loma Linda University, 11234 Anderson St., Loma Linda, California 92354 (United States)

    2006-10-15

    Construction of the International Space Station (ISS) will require more than 1000 h of extravehicular activity (EVA). Outside of the ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines and mitigation of risks requires the determination of the minimum energy of electrons and protons that penetrate the astronaut EVA suits at various locations. Measurements of the water equivalent thickness of both United States (US) and Russian EVA suits were obtained by performing X-ray computed tomography (XCT) scans. Selected regions of interest of the suits were further evaluated using a 'differential range shift' technique. This technique involved measuring thickness ionization curves for 6 MeV electron and 155 MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was re-established. The difference in thickness between the 50% thicknesses was then used with standard range tables to determine the threshold energy for penetration. This paper provides a detailed description of the experimental arrangement and the obtained results.

  18. EVA space suit proton and electron threshold energy measurements by XCT and range shifting

    Construction of the International Space Station (ISS) will require more than 1000 h of extravehicular activity (EVA). Outside of the ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines and mitigation of risks requires the determination of the minimum energy of electrons and protons that penetrate the astronaut EVA suits at various locations. Measurements of the water equivalent thickness of both United States (US) and Russian EVA suits were obtained by performing X-ray computed tomography (XCT) scans. Selected regions of interest of the suits were further evaluated using a 'differential range shift' technique. This technique involved measuring thickness ionization curves for 6 MeV electron and 155 MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was re-established. The difference in thickness between the 50% thicknesses was then used with standard range tables to determine the threshold energy for penetration. This paper provides a detailed description of the experimental arrangement and the obtained results

  19. GENEVE: a Monte Carlo generator for neutrino interactions in the intermediate energy range

    GENEVE is a MonteCarlo code developed during the last few years inside the ICARUS Collaboration. It describes neutrino interactions on nuclear target in the 'intermediate energy range' and therefore is well suited for simulation of atmospheric neutrino scattering. We provide here few indications about the models adopted for the simulation of quasi-elastic interactions and of scattering processes proceeding via nucleon resonances excitation and decay. The code has been tested with comparisons with available data and an overall agreement turns out to be achieved. A gradual upgrade of the code is indeed necessary, according to many indications, reviewed during this Workshop, from more recent theoretical developments and experimental hints. More in general, the definitive assessment of a canonical Monte Carlo code for neutrino physics (in the intermediate energy range) has been identified as one of the most urgent task for a fully comprehensive understanding of the neutrino oscillation phenomenon. We believe that the only way to proceed relies on the forthcoming results of present and future generations of experiments, performed with best suited, available technologies, aiming to precise neutrino cross section measurements

  20. A dosimetry technique of high-energy x-ray in MGy range

    Possibility of a dosimetry method for high-energy bremsstrahlung radiation in the range up to MGy and higher by activation of a detector from indium via the 115In (gamma,gamma') 115mIn reaction with determination of absorbed dose on specific activity of the 115mIn isomer is investigated. To study such an approach, a method based on joint irradiation of a stack of thin targets is offered. Each target includes the foils from indium and molybdenum of natural isotopic composition, and also a standard dosimeter in the form of a plate from PMMA. Preliminary study of indium activation (with due regard to known data on the reaction cross section), detector thermal stability, yield of the reference reactions 92Mo(gamma,2n)90Mo and 100Mo(gamma,n)99Mo as well as absorbed dose in PMMA, was conducted by means of computer simulation. The measurement of specific activity of 115mIn, 90Mo and 99Mo was carried out jointly with the absorbed dose of in PMMA using the Harwell Red 4034 dosimeters. Sensitivity of the method against end-point energy of X-Ray in the range 8 to 71 MeV has been established

  1. Range prediction for tissue mixtures based on dual-energy CT

    Möhler, Christian; Wohlfahrt, Patrick; Richter, Christian; Greilich, Steffen

    2016-06-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient’s CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV u‑1 and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is suggested for arbitrary mixtures of human body tissues.

  2. Range prediction for tissue mixtures based on dual-energy CT

    Möhler, Christian; Richter, Christian; Greilich, Steffen

    2016-01-01

    The use of dual-energy CT (DECT) potentially decreases range uncertainties in proton and ion therapy treatment planning via determination of the involved physical target quantities. For eventual clinical application, the correct treatment of tissue mixtures and heterogeneities is an essential feature, as they naturally occur within a patient's CT. Here, we present how existing methods for DECT-based ion-range prediction can be modified in order to incorporate proper mixing behavior on several structural levels. Our approach is based on the factorization of the stopping-power ratio into the relative electron density and the relative stopping number. The latter is confined for tissue between about 0.95 and 1.02 at a therapeutic beam energy of 200 MeV/u and depends on the I-value. We show that convenient mixing and averaging properties arise by relating the relative stopping number to the relative cross section obtained by DECT. From this, a maximum uncertainty of the stopping-power ratio prediction below 1% is ...

  3. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  4. The Old New Frontier: Studying the CERN-SPS Energy Range with NA61/SHINE

    Szuba Marek

    2014-04-01

    Full Text Available With the Large Hadron Collider entering its third year of granting us insight into the highest collision energies to date, one should nevertheless keep in mind the unexplored physics potential of lower energies. A prime example here is the NA61/SHINE experiment at the CERN Super Proton Synchrotron. Using its large-acceptance hadronic spectrometer, SHINE aims to accomplish a number of physics goals: measuring spectra of identified hadrons in hadron-nucleus collisions to provide reference for accelerator neutrino experiments and cosmic-ray observatories, investigating particle properties in the large transverse-momentum range for hadron+hadron and hadron+nucleus collisions for studying the nuclear modification factor at SPS energies, and measuring hadronic observables in a particularly interesting region of the phase diagram of strongly-interacting matter to study the onset of deconfinement and search for the critical point of stronglyinteracting matter with nucleus-nucleus collisions. This contribution shall summarise results obtained so far by NA61/SHINE, as well as present the current status and plans of its experimental programme.

  5. Calorimeter for detection of hadrons in the energy range 10-100 GeV

    The calorimeter for hadron detection in the energy range 10-100 GeV is described. It is used at CERN in the experiment NA58 (COMPASS) designed to study the nucleon structure and charmed particle spectroscopy. The calorimeter consists of 480 modules (15 x 15 cm in cross section, interaction length 4.8) assembled in matrix 4.2 x 3 m with a central hole of 1.2 x 0.6 m. The energy resolutions of the calorimeter for hadrons (σπ) and electrons (σe) as well as coordinate resolution (σx,y) have been determined in the test beams to be (σπ(E))/E = (59.4 ± 2.9)/√E O+(7.6 ± 0.4), (σe(E))/E = (24.6 ± 0.7)/√E O+ (0.7 ± 0.4), σx,y = (14 ± 2) mm, respectively. The average ratio, characterizing the amplitude responses of the calorimeter to electrons and pions, has been measured to be e/π = 1.2 ± 0.1. The calorimeter is used to measure hadron energy and as an element of the COMPASS trigger system. The calorimeter has been working stably during the long COMPASS runs with characteristics close to those determined in the test beams. (author)

  6. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  7. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  8. Range-Energy Relations for Heavy Charged Particles in Gases Using the Double-Gridded Ionization Chamber

    The application of the double-gridded pulse ionization chamber to measuring the range-energy relations for alpha particles, protons, and heavy recoils is discussed. Range-energy values for recoil protons and alpha particles in a gas mixture of Argon plus 10% Methane are presented to confirm the method. The chamber described has been designed primarily for the measurement of proton ranges in a tissue equivalent gas mixture of CO2 , CH4 and N, and for fast neutron spectroscopy. (author)

  9. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  10. Hadronization Scheme Dependence of Long-Range Azimuthal Harmonics in High Energy p+A Reactions

    Esposito, Angelo

    2015-01-01

    We compare the distortion effects of three popular final state hadronization schemes that modify the initial-state gluon azimuthal harmonic correlations in high energy p+A collisions. The three models considered are (1) LPH: local parton-hadron duality, (2) CPR: collinear parton-hadron resonance independent fragmenation, and (3) LUND: color string hadronization. Strong initial-state multi-gluon azimuthal correlations are generated using the non-abelian beam jet bremsstrahlung GLVB model, assuming a saturation scale Qsat = 2 GeV. Long-range final hadron pair elliptic and triangular harmonics are compared based on the three hadronization schemes. Our analysis shows that the hadron level harmonics are strongly hadronization scheme dependent in the low pT < 3 GeV domain.

  11. The study of the photon structure function at the ILC energy range

    Krupa, B; Zawiejski, L

    2015-01-01

    At the future $e^{+}e^{-}$ linear collider ILC/CLIC it will be able to measure the photon structure functions in a wider range of kinematic variables x and $Q^{2}$ in comparison to the previous results of experiments at LEP. The classical way to measure the photon structure functions is the study of $e^{+}e^{-} \\rightarrow e^{+}e^{-} {\\gamma}{\\gamma} \\rightarrow e^{+}e^{-}$ X process, where X is the leptonic or hadronic final state. For the study of the QED and hadronic photon structure functions the simulations of two-photon processes were performed at the ILC center-of-mass energy equal to 500 GeV using the PYTHIA and the ILCSoft package. The analysis used information related to the forward detectors, tracking detectors and calorimeters which are parts of the ILD detector concept.

  12. Hadronization scheme dependence of long-range azimuthal harmonics in high energy p + A reactions

    Esposito, Angelo; Gyulassy, Miklos

    2015-07-01

    We compare the distortion effects of three popular final-state hadronization schemes. We show how hadronization modifies the initial-state gluon correlations in high energy p + A collisions. The three models considered are (1) LPH: local parton-hadron duality, (2) CPR: collinear parton-hadron resonance independent fragmentation, and (3) LUND: color string hadronization. The strong initial-state azimuthal asymmetries are generated using the GLVB model for non-abelian gluon bremsstrahlung, assuming a saturation scale Qsat = 2 GeV. Long-range elliptic and triangular harmonics for the final hadron pairs are compared based on the three hadronization schemes. Our analysis shows that the process of hadronization causes major distortions of the partonic azimuthal harmonics for transverse momenta at least up to pT = 3 GeV. In particular, they appear to be greatly reduced for pT < 1 ÷ 2 GeV.

  13. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  14. Signal summing at energy output from superdimensional 3 cm-range resonators

    Results of experiments on summing signals from two synchronously operating resonance SHF compressors of 3 cm range with superdimensional resonators and energy output through interference switches are presented. The experiments were conducted in two compressors with cylindrical copper resonators 90 mm in diameter and 210 mm long. The resonators operated at frequency of 9.42 GHz on vibration type H01(12) and they had intrinsic quality factor of ∼ 105. Circuits of summation in a waveguide T-piece and three-decibel slot hybrid junction were considered. Amplification factor of ∼ 11 dB for summary signals was attained at the signal duration of ∼ 30 ns by level 0.5, peak power of ∼ 1 MW and the system efficiency of ∼ 30 %

  15. Calculation of multisphere neutron spectrometer response functions in energy range up to 20 MeV

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, 'bare' detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10-8 - 20 MeV

  16. 10 CFR Appendix I to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Conventional Ranges, Conventional...

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... 430—Uniform Test Method for Measuring the Energy Consumption of Conventional Ranges, Conventional...,” Publication 705-1988 and Amendment 2—1993. (See 10 CFR 430.22) 1.6Normal nonoperating temperature means...

  17. A portable and wide energy range semiconductor-based neutron spectrometer

    Hoshor, C. B.; Oakes, T. M.; Myers, E. R.; Rogers, B. J.; Currie, J. E.; Young, S. M.; Crow, J. A.; Scott, P. R.; Miller, W. H.; Bellinger, S. L.; Sobering, T. J.; Fronk, R. G.; Shultis, J. K.; McGregor, D. S.; Caruso, A. N.

    2015-12-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation-either bare or obscured by neutron moderating and/or absorbing material(s)-in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  18. Characterization of a fiber-optic-coupled radioluminescent detector for application in the mammography energy range.

    Benevides, Luis A; Huston, Alan L; Justus, Brian L; Falkenstein, Paul; Brateman, Libby F; Hintenlang, David E

    2007-06-01

    Fiber-optic-coupled radioluminescent (FOC) dosimeters are members of a new family of dosimeters that are finding increased clinical applications. This study provides the first characterization of a Cu doped quartz FOC dosimeter at diagnostic energies, specifically across the range of x-ray energies and intensities used in mammographies. We characterize the calibration factors, linearity, angular dependence, and reproducibility of the FOC dosimeters. The sensitive element of each dosimeter was coupled to a photon counting photomultiplier module via 1 m long optical fibers. A computer controlled interface permitted real-time monitoring of the dosimeter output and rapid data acquisition. The axial-angular responses for all dosimeter models show nearly uniform response without any marked decrease in sensitivity. However, the normal-to-axial angular response showed a marked decrease in sensitivity of about 0 degrees C and 180 degrees C. In most clinical applications, appropriate dosimeter positioning can minimize the contributions of the varying normal-to-axial response. The FOC dosimeters having the greatest sensitive length provided the greatest sensitivity, with greatest to lowest sensitivity observed for 4.0, 1.9, 1.6, and 1.1 mm length sensitive elements. The average sensitivity of the dosimeters varies linearly with sensitive volume (R2=95%) and as a function of tube potential and target/filter combinations, generally exhibiting an increased sensitivity for higher energies. The dosimeter sensitivity as a function of tube potential had an average increase of 4.72 +/- 2.04% for dosimeter models and three target-filter combinations tested (Mo/Mo, Mo/Rh, and Rh/Rh) over a range of 25-31 kVp. All dosimeter models exhibited a linear response (R2 > or = 0.997) to exposure for all target-filter combinations, tube potentials, and tube current-time product stations evaluated and demonstrated reproducibility within 2%. All of the dosimeters examined in this study provided a

  19. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory

    Stoyanova, Alexandrina; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-01-01

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully-interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-f...

  20. Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model

    Kemausuor, Francis; Nygaard, Ivan; Mackenzie, Gordon A.

    2015-01-01

    As Ghana's economy grows, the choice of future energy paths and policies in the coming years will have a significant influence on its energy security. A Renewable Energy Act approved in 2011 seeks to encourage the influx of renewable energy sources in Ghana's energy mix. The new legal framework c...

  1. Home in the heat: dramatic seasonal variation in home range of desert golden eagles informs management for renewable energy development

    Braham, Melissa; Miller, Tricia A.; Duerr, Adam E.; Lanzone, Michael; Fesnock, Amy; LaPre, Larry; Driscoll, Daniel; Katzner, Todd Eli

    2015-01-01

    Renewable energy is expanding quickly with sometimes dramatic impacts to species and ecosystems. To understand the degree to which sensitive species may be impacted by renewable energy projects, it is informative to know how much space individuals use and how that space may overlap with planned development. We used global positioning system–global system for mobile communications (GPS-GSM) telemetry to measure year-round movements of golden eagles (Aquila chrysaetos) from the Mojave Desert of California, USA. We estimated monthly space use with adaptive local convex hulls to identify the temporal and spatial scales at which eagles may encounter renewable energy projects in the Desert Renewable Energy Conservation Plan area. Mean size of home ranges was lowest and least variable from November through January and greatest in February–March and May–August. These monthly home range patterns coincided with seasonal variation in breeding ecology, habitat associations, and temperature. The expanded home ranges in hot summer months included movements to cooler, prey-dense, mountainous areas characterized by forest, grasslands, and scrublands. Breeding-season home ranges (October–May) included more lowland semi-desert and rock vegetation. Overlap of eagle home ranges and focus areas for renewable energy development was greatest when eagle home ranges were smallest, during the breeding season. Golden eagles in the Mojave Desert used more space and a wider range of habitat types than expected and renewable energy projects could affect a larger section of the regional population than was previously thought.

  2. Short-range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction

    Toulouse, Julien; Savin, Andreas; Flad, Heinz-Juergen

    2006-01-01

    We calculate the short-range exchange-correlation energy of the uniform electron gas with two modified electron-electron interactions. While the short-range exchange functionals are calculated analytically, coupled-cluster and Fermi hypernetted-chain calculations are carried out for the correlation energy and the results are fitted to an analytical parametrization. These data enable us to construct the local density approximation corresponding to these modified interactions.

  3. Study of the Low-Energy Characteristics of Neutron-Neutron Scattering in the Effective-Range Approximation

    Babenko, V. A.; Petrov, N. M.

    2016-01-01

    The influence of the mass difference between the charged and neutral pions on the low-energy characteristics of nucleon-nucleon interaction in the $^{1}S_{0}$ spin-singlet state is studied within the framework of the effective-range approximation. By making use of the experimental singlet neutron-proton scattering parameters and the experimental value of neutron-neutron virtual-state energy, the following values were obtained for the neutron-neutron scattering length and effective range: $a_{...

  4. Absolute calibration of neutron detectors in the 10--30 MeV energy range

    A central problem in fast neutron research is that of finding the absolute efficiency of neutron detectors. Using the associated particle method for this purpose, we have designed a chamber to count He particles from the D(d,n)3He or the T(d,n)4He reaction in coincidence with neutron events. The reactions take place in deuterium or tritium gas and a ΔE solid state counter at 800, 650, or 430 to the 2-10 MeV deuteron beam direction detects the He particles with 100 percent efficiency. To reduce background we allow the deuterons to pass out of the gas chamber through a Ni window and stop the beam approximately 150 cm from the counters. With the D(d,n)3He reaction we have obtained approximately 2 percent efficiency calibration of the central portion of a liquid scintillator in the 9-10 MeV energy range. With the T(d,n) reaction this calibration can be extended to approximately 27 MeV and the efficiency can be mapped out as a function of position in the scintillator

  5. Inelastic processes in K^(+)- He collisions in energy range 0.7 - 10 keV

    Lomsadze, R A; Kezerashvili, R Ya; Mosulishvili, N O; Phaneuf, R

    2013-01-01

    Absolute cross sections for charge exchange, ionization, stripping and excitation in K^(+) - He collisions were measured in the ion energy range 0.7 - 10 keV. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. The increase of the excitation probability of inelastic channels with the angle of scattering is revealed. An exceptionally highly excited state of He is observed and a peculiarity for the excitation function of the resonance line is explained. The intensity ratio for the excitation of the K II \\lambda = 60.1 nm and \\lambda = 61.2 nm lines is 5:1 which indicates the high probability for excitation of the singlet resonance level $^{1}$P$_{1}$ compared to the triplet level $^{3}$P$_{1}$. The similarity of the population of the 4p state of the potassium ion and atom as well as the anomalously small values of the excitation cross sections are explained.

  6. The effect of x-ray summing in calibration of extended energy range GE detectors

    Klemola, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2002-04-01

    Gamma spectrometric analyses of low-level samples are usually performed using close measuring geometry. In this measuring set-up the effect of the true coincidence summing (TCS) has to be taken into account. The detection of true coincidence sum pulse is possible when a nuclide emits two or more cascading photons within the resolving time of a spectrometer. The magnitude of summing depends strongly on the total and full energy peak efficiencies of the detector and on the decay scheme of the nuclide. In addition to summing of gamma rays, other radiation, especially X-rays, can be in true coincidence with the gamma rays. X-rays in cascade with gamma rays can originate from electron capture, positron decay, or internal conversion. The summing effects with most of the X-rays can be ignored for the p-type Ge detectors having thick dead layer. On the contrary, the detectors with a thin entrance window, e.g. n-type detectors and new extended range p-type detectors, can experience severe summing of X-rays and gamma rays. (au)

  7. X-ray experiments for Space applications in intermediate energy range

    Yadav, Vipin K; Nandi, Anuj; Palit, Sourav

    2009-01-01

    X-ray experiments in the intermediate energy range (1-50 keV) are carried out at the Indian Centre for Space Physics (ICSP), Kolkata for space application. The purpose is to carry out developmental studies of space instruments to observe energetic phenomena from compact objects (black hole and compact stars) and active stars and their testing and evaluation. The testing/evaluation setup primarily consists of an X-ray generator, various X-ray imaging masks, an X-ray imager (CMOS) and an X-ray spectrometer (Si-PIN photo-diode). The X-ray generator (Mo target) operates in 1-50 kV anode voltage, and 1-30 mA beam current. A 45 feet long shielded collimator is used to collimate the beam which leads to the detector chamber having a 30 arc-sec angular diameter. Two types of imaging masks are used - conventional Coded Aperture Masks (CAM) and Tungsten Fresnel half-period zone-plates (ZPs) having angular resolutions of a few tens of arc-sec. The Moire fringe pattern produced by the composite shadows of two ZPs is inver...

  8. The effect of x-ray summing in calibration of extended energy range GE detectors

    Gamma spectrometric analyses of low-level samples are usually performed using close measuring geometry. In this measuring set-up the effect of the true coincidence summing (TCS) has to be taken into account. The detection of true coincidence sum pulse is possible when a nuclide emits two or more cascading photons within the resolving time of a spectrometer. The magnitude of summing depends strongly on the total and full energy peak efficiencies of the detector and on the decay scheme of the nuclide. In addition to summing of gamma rays, other radiation, especially X-rays, can be in true coincidence with the gamma rays. X-rays in cascade with gamma rays can originate from electron capture, positron decay, or internal conversion. The summing effects with most of the X-rays can be ignored for the p-type Ge detectors having thick dead layer. On the contrary, the detectors with a thin entrance window, e.g. n-type detectors and new extended range p-type detectors, can experience severe summing of X-rays and gamma rays. (au)

  9. An improved energy-range relationship for high-energy electron beams based on multiple accurate experimental and Monte Carlo data sets

    A theoretically based analytical energy-range relationship has been developed and calibrated against well established experimental and Monte Carlo calculated energy-range data. Only published experimental data with a clear statement of accuracy and method of evaluation have been used. Besides published experimental range data for different uniform media, new accurate experimental data on the practical range of high-energy electron beams in water for the energy range 10-50 MeV from accurately calibrated racetrack microtrons have been used. Largely due to the simultaneous pooling of accurate experimental and Monte Carlo data for different materials, the fit has resulted in an increased accuracy of the resultant energy-range relationship, particularly at high energies. Up to date Monte Carlo data from the latest versions of the codes ITS3 and EGS4 for absorbers of atomic numbers between four and 92 (Be, C, H2O, PMMA, Al, Cu, Ag, Pb and U) and incident electron energies between 1 and 100 MeV have been used as a complement where experimental data are sparse or missing. The standard deviation of the experimental data relative to the new relation is slightly larger than that of the Monte Carlo data. This is partly due to the fact that theoretically based stopping and scattering cross-sections are used both to account for the material dependence of the analytical energy-range formula and to calculate ranges with the Monte Carlo programs. For water the deviation from the traditional energy-range relation of ICRU Report 35 is only 0.5% at 20 MeV but as high as - 2.2% at 50 MeV. An improved method for divergence and ionization correction in high-energy electron beams has also been developed to enable use of a wider range of experimental results. (Author)

  10. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  11. Ranges of Iodine and Bromine Isotopes Produced in the Interaction of High-Energy Protons with Uranium

    Conventional range experiments using a thick uranium foil together with aluminium catchers and monitors are carried out at the two CERN accelerators with 0.55-GeV and 18.2-GeV protons. Iodine (or bromine) is chemically isolated and separated in the CERN radioisotope separator. This gives carrier-free samples containing essentially only one pure radioactive isotope. The chemical yield is determined also. The analysis of the data gives directly the range for each isotope in uranium. All iodine isotopes have the same range at 0.55-GeV proton energy, i.e. they are all produced in a fission process. It was known previously that neutron-rich iodine isotopes have about the same range whether the proton energy is above or below I GeV, and that neutron-deficient iodine isotopes show a drastic decrease of about one half when the proton energy increases above 1 GeV. It is shown that this decrease in range occurs rather suddenly, giving a step-function in the range - versus - iodine isotopic mass curve. The neutron-deficient isotopes having a decreased range above 1-GeV proton energy are the same as those for which a strong increase in their excitation function above 1 GeV has been observed. Bromine isotopes show essentially the same range behaviour. The strong increase in the production of neutron.-deficient isotopes is again observed at high bombarding energies. The discussion will concentrate on these neutron-deficient isotopes. They are produced essentially only above 1 GeV and have at the higher combarding energy only about one half the range of normal fission products, indicating that they are produced by a process other than fission. These findings will be discussed in the light of ''spallation'' and ''fragmentation'' models, both terms being redefined. (author)

  12. Differential measurements on Ne*(2p 53s 3P 0.2)-Ne collisions in the hyperthermal energy range

    Feron, P.; Perales, F.; Decomps, B.; Robert, J.; Reinhardt, J.; Baudon, J.; Haberland, H.

    1989-08-01

    Differential cross sections for collisions of metastable neon atoms with ground state neon atoms have been measured in the energy range 0.247-0.551 eV in a crossed nozzle beam experiment using heating and seeding techniques. At large angle, the cross sections exhibit a rainbow feature due to a hump in the 0 u- and 1 u potentials. The present data are in good agreement with calculations based on potential energy curves deduced from previous experiments at thermal energy.

  13. Neutron production in the energy range 7 to 12 MeV using a gas-target

    A gas-target for operation at a tandem-accelerator is described. Using the DD-reaction, an energy range of neutrons between 7 and 12 MeV can be realised. Construction and operation are described in detail. For neutron energies below 9 MeV the neutron source is almost monoenergetic; above this energy the deuteron break-up limits the monoenergetic behaviour. (author)

  14. Range effects of the Coulombic forces on structures, thermodynamic properties and potential energy landscapes: (KCl)32 and related systems

    Graphical abstract: The caloric curve (T vs. E), heat capacity (C) (per ion), and relative rms fluctuation in the interatomic distances (δ) of the 64-atom binary cluster for three different sets of values of the (γ, B) shielding parameters (0.000, 1.000), (0.350, 5.230), and (0.500, 9.723) (see the text for details). As the range of the Coulomb part of the interaction potential becomes shorter, the energy of the most preferred structure of the cluster decreases, and the structure itself changes from rocksalt cubic, which is the native form of (KCl)32, through an amorphous, to a hollow cage type. The energy segment in which the heat capacity is negative narrows and eventually vanishes. Highlights: ► Effects of the range of Coulombic interactions on structures of binary systems. ► Effects of the range of Coulombic interactions on dynamics of binary systems. ► Effects of the range of Coulombic interactions on energy landscapes. ► We explain changes in structures and dynamics through changes in energy landscapes. - Abstract: By introducing two shielding parameters into the Coulombic part of the Coulomb plus Born–Mayer potential originally developed for (KCl)n systems, we study the effects of the range of the Coulombic interactions on the structures, thermodynamic properties and the potential energy landscapes of binary ionically bonded systems as illustrated by the case of n = 32. Our calculations show that shortening of the Coulomb interaction range leads to a decrease in the energy of the most stable structure, and the structure itself changes from the rocksalt cubic to a hollow cage type. The energy range, in which the heat capacity exhibits a negative value, gradually narrows and eventually disappears. The number of stationary points on the potential energy surface increases, and their energies get spread over a larger interval. The extent of the Coulombic interaction also affects the energy difference (gap) between the most stable structure and the

  15. WATER SPOTTERS: Water, energy, isotopes and experiential learning in the Colorado Front Range

    Noone, D. C.; Berkelhammer, M. B.; Raudzens Bailey, A.; Buhr, S. M.; Smith, L. K.

    2011-12-01

    Providing students with tangible examples of the two-way interaction between human society and the climate system is a pressing challenge. Water is at the core of many issues in environmental change from local to global scales. In climate research, there are significant uncertainties in the role water plays in the climate system. "Water" can also act as a central theme that provides opportunities for science education at all levels. WATER SPOTTERS takes advantage of the prominent agricultural landscape of the region, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. The centerpiece of this project is a 300m tower that is fully implemented with gas sampling lines and micrometeorological equipment to study the energy and water budgets of the region. Middle Schools that surround this site, many of which exist in visual contact with the tall tower, are provided with meteorological stations, which provide rainfall rates, temperature, humidity and radiation data. In coordination with the St Vrain Valley School District MESA (Math Engineering Science Achievement) program, students collect rain water samples that are analyzed and used as a core component of the research goals. The students use the weather stations as a way to directly explore their local climatology and provide data that is needed in research. We present an overview of the curriculum goals and associated physical infrastructure designed for middle school students in the Colorado Front Range to explore their local water cycle using water isotopes. The fixed infrastructure at the schools and tall tower are supplemented by mobile instruments such as an automated precipitation collector and snowflake photography system, which both fulfill science needs and provide

  16. The effects of electron binding energy corrections on Monte Carlo models in the diagnostic x-ray energy range

    Full text: The effects of incorporating electron binding energy corrections for incoherent scatter (BEC) into Monte Carlo models of X-ray transport in the diagnostic energy range have been examined. The inclusion of BEC can significantly increase computing overhead both in terms of data storage and execution time. In a modern PC application, data storage is unlikely to be a significant problem. However, execution time is a major consideration when assessing the relative usefulness of Monte Carlo systems. If the effectiveness of including BEC is barely more than equivocal, as is the case in some of the studies reported here, then a decision to include them requires consideration of the photon energy being modelled and the data being sought. This work seeks to clarify the real significance of inclusion of BEC by examining their effects without the confounding influence of coherent scattering effects. A Monte Carlo computer code has been developed to study a variety of X-ray transport phenomena. Models of radiation dose deposition in a semi-infinite medium, a similar model in tissue using a realistic source spectrum and diverging beam geometry, a simulation of pencil beam bone densitometry measurements, models of barrier penetration by X-rays and models of the angular distribution of scattered radiation have been undertaken. Results of previous studies have been confirmed. Models of radiation dose deposition for 10 keV, 30 keV and 100 keV photons have shown that inclusion of BEC has only a small effect upon values of total depth dose. Differences are of the same order of magnitude as the standard deviation of the results. A larger effect was noted for the values of dose due to scattered photons. This effect reached a maximum of 7% at 30 keV. Similar results were obtained from a model using a realistic source spectrum and diverging beam geometry. In the simulation of bone densitometry measurements the effects are significant (i.e. of the order of 10%). The angular

  17. Finite Range Effects in Energies and Recombination Rates of Three Identical Bosons

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.;

    2013-01-01

    We investigate finite-range effects in systems with three identical bosons. We calculate recombination rates and bound state spectra using two different finite-range models that have been used recently to describe the physics of cold atomic gases near Feshbach resonances where the scattering length...... is large. The models are built on contact potentials which take into account finite range effects; one is a two-channel model and the other is an effective range expansion model implemented through the boundary condition on the three-body wave function when two of the particles are at the same point...... at negative scattering length for creation of a bound trimer moves to higher or lower values depending on the sign of the effective range compared to the location of the threshold for the single-parameter zero-range model. Large effective ranges, corresponding to narrow resonances, are needed for the...

  18. Gamma Ray Buildup Factor for Finite Media in Energy Range (4-10) MeV for Al and Pb

    A computer program based on Monte Carlo method had been designed and written in visual basic computer language and utilized for simulating the classic problem of gamma ray beam incident on finite plane slabs of absorbing materials.The source geometry adopted in this program is plane normal source. Dose buildup factor of gamma photons in the absence and presence pair production effect have been calculated in the energy range (4-10) MeV for Aluminum and Lead up to 5 mean free path thickness.Dose buildup factor in the presence of pair production is higher than dose buildup factor in the absence of pair production effect.The deviation between the values of dose buildup factor in the presence and absence pair production is increased when the energy is increased within the studied energy range because the cross section for pair production is increased within the studied energy range

  19. Nonlinear ionization of many-electron systems over a broad photon-energy range

    Karamatskou, Antonia

    2015-11-15

    Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two

  20. Nonlinear ionization of many-electron systems over a broad photon-energy range

    Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two

  1. Low-energy modes and medium-range correlated motions in Pd79Ge21 alloy glass

    It is well known that there are excess modes over the sound wave in low energy region below about 10 meV in glass materials, which do not exist in corresponding crystalline materials. We examined the low energy modes in a Pd79Ge21 alloys glass by means of inelastic neutron scattering. Measurements were performed on the crystal analyzer type time-of-flight spectrometer LAM-40 with PG(002) and Ge(311) analyzer mirror, which is installed at KENS. The dynamic structure factor S(Q,ω) was obtained over the wide momentum range from 0.5 to 5.2A-1. The measured S(Q,ω)'s have almost same momentum (Q) dependence at each energy (ℎω) in the energy range from 2.0 to 8.0 meV. In the energy region below 3 meV, we found a small shoulder peak at Q = 1.7A-1 in the momentum dependence of S(Q,ω). It corresponds to a prepeak in S(Q). Therefore it is concluded that the low energy modes in Pd79Ge21 alloy glass is mainly contributed from medium-range correlated motions in the cluster consisting of a few chemical short-range structure units of Pd6Ge trigonal prism. (author)

  2. The calculation of mean energy for electron beam in the energy range of radio therapy in light media

    A Gaussian distribution for electron energy is deduced by Fokker-Planck approximation to the Boltzmann equation for high-energy electrons penetrating in multi-constituents media, then a recursion-iteration algorithm for the mean energy calculation of high-energy electron beam is obtained after introducing the modified CSDA mean energy and using Yang's multiple scattering theory. Some calculational results of this algorithm are also given in the article, and compared with corresponding data of Monte Carlo simulations and experimental measurements. The comparison shows that the algorithm can precisely predict the mean energy of high-energy electron beam penetrating in light media. Furthermore, two common formulae for electron beam mean energy calculation in radiotherapy dose algorithms. i.e., the Harder formula and Brahme formula, are discussed, and a more accurate semi-empirical formula is recommended as well

  3. Analysis of Long-range Clean Energy Investment Scenarios forEritrea, East Africa

    Van Buskirk, Robert D.

    2004-05-07

    We discuss energy efficiency and renewable energy investments in Eritrea from the strategic long-term economic perspective of meeting Eritrea's sustainable development goals and reducing greenhouse gas emissions. Energy efficiency and renewable energy are potentially important contributors to national productive capital accumulation, enhancement of the environment, expansion of energy services, increases in household standard of living, and improvements in health. In this study we develop a spreadsheet model for calculating some of the national benefits and costs of different levels of investment in energy efficiency and renewable energy. We then present the results of the model in terms of investment demand and investment scenario curves. These curves express the contribution that efficiency and renewable energy projects can make in terms of reduced energy sector operating expenses, and reduced carbon emissions. We provide demand and supply curves that show the rate of return, the cost of carbon emissions reductions vs. supply, and the evolution of the marginal carbon emissions per dollar of GDP for different investment levels and different fuel-type subsectors.

  4. Search for Long-Range Correlations in Relativistic Heavy-Ion Collisions at SPS Energies

    Long-range correlations are searched for by analysing the experimental data on 16O-AgBr and 32S-AgBr collisions at 200 A GeV/c and the results are compared with the predictions of a multi phase transport (AMPT) model. The findings reveal that the observed forward-backward (F-B) multiplicity correlations are mainly of short range in nature. The range of F-B correlations are observed to extend with increasing projectile mass. The observed extended range of F-B correlations might be due to overall multiplicity fluctuations arising because of nuclear geometry. The findings are not sufficient for making any definite conclusions regarding the presence of long-range correlations

  5. Preliminary Performance Evaluation of MEMS-based Piezoelectric Energy Harvesters in Extended Temperature Range

    Xu, R.; Borregaard, L.M.; Lei, A.;

    2012-01-01

    In this work a batch of MEMS-based vibration energy harvesters consisting of a silicon/PZT thick film ntilever with integrated proof mass is characterized. The purpose of a vibration energy harvester is to convert low grade vibrations to useful electrical power. Optimally, the natural frequency o...

  6. Nuclear correlation and finite interaction-range effects in high-energy $(e,e'p)$ nuclear transparency

    Seki, Ryoichi; Shoppa, T. D.; Kohama, Akihisa; Yazaki, Koichi

    1995-01-01

    Nuclear transparency is calculated for high-energy, semi-inclusive $(e,e'p)$ reactions, by accounting for all orders of Glauber multiple-scattering and by using realistic finite-range $p N$ interaction and (dynamically and statistically) correlated nuclear wave functions. The nuclear correlation effect is reduced due to the $p N$ finite-range effect. The net effect is small, and depends sensitively on details of the nuclear correlations in finite nuclei, which are poorly known at present.

  7. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    The importance of the long-range Lifshitz-van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters' circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. copyright 1998 The American Physical Society

  8. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    Mussard, Bastien, E-mail: bastien.mussard@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Reinhardt, Peter; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Ángyán, János G. [CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandoeuvre-lés-Nancy (France); CRM2, Institut Jean Barriol, CNRS, F-54506 Vandoevre-lés-Nancy (France)

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  9. Investigation of single event upset subject to protons of intermediate energy range

    Takami, Y.; Shiraishi, F. (Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy); Goka, T.; Shimano, Y. (Tsukuba Space Center, NASDA, 2-1-1, Sengen, Tsukuba, Ibaragi 305 (JP)); Sekiguchi, M.; Shida, K. (Inst. for Nuclear Energy, Univ. of Tokyo, 3-2-1 Midoricho, Tanashi, Tokyo 188 (JP)); Kishida, N.; Kadotani, H. (Century Research Center Corp., Tokyo (Japan)); Kikuchi, T. (NEC Corp., 4035 Ikebecho, Midoriku, Yokohama, Kanagawa 226 (JP)); Hoshino, N. (Toshiba Corp., Kawasaki (Japan)); Murakami, S. (Fujitsu Labs. Ltd., Kawasaki, Kanagawa (Japan)); Anayama, H.; Morio, A. (Reliability Center for Electonic Components of Japan, 3-4-13 Nihonbashi, Chuoku, Tokyo 103 (JP))

    1990-12-01

    Nuclear reaction models to reproduce p + Si nuclear reactions precisely in the incident proton energy region of below 50 MeV were investigated, and a computer code based on exciton models was developed. Si irradiation experiments in the intermediate energy region were performed to measure energy deposit by p + Si nuclear reactions, with two totally depleted Si detectors in face-to-face arrangement. Coincident signals were analyzed by a two dimensional pulse height analyzer. This method is shown to be effective in discriminating signals of contaminating particles.

  10. Positron and electron backscattering from elemental solids in the 1-10 keV energy range

    Electron and positron backscattering coefficients are analytically calculated for a number of selected atomic targets in the energy range 1-10 keV and for incident angles between 0 deg. and 80 deg. The dependence of the backscattering coefficient on the material, on the projectile primary energy and on the incidence angle has been examined and discussed. Our results are found to be in better agreement with experiment than earlier Monte Carlo simulations

  11. UV/IR Mixing In Non-Fermi Liquids: Higher-Loop Corrections In Different Energy Ranges

    Mandal, Ipsita

    2016-01-01

    We revisit the Ising-nematic quantum critical point with an $m$-dimensional Fermi surface by applying a dimensional regularization scheme. We compute the contribution from two-loop and three-loop diagrams in the intermediate energy range controlled by a crossover scale. We find that for $m=2 $, the corrections continue to be one-loop exact for both the infrared and intermediate energy regimes.

  12. Calculation of strong and weak interactions in TDA1 and RangDP52 by the kernel energy method

    HUANG, LULU; Massa, Lou; Karle, Isabella; Karle, Jerome

    2009-01-01

    Using the Kernel Energy Method we apply ab initio quantum mechanics to study the relative importance of weak and strong interactions (including hydrogen bonds) in the crystal structures of the title compounds TDA1 and RangDP52. Perhaps contrary to widespread belief, in these compounds the weak interaction energies, because of their large number and cooperativity, can be significant to the binding energetics of the crystal, and thus also to its other properties.

  13. Effective atomic number of human enamel and dentin within a photo energy range from 10 to 200 KeV

    The Z and μ/p were determined regarding the total and partial photon interactions within the biological materials of human enamel and dentin, within the low photon energy range from 10 to 200 keV, which is of medical interest in terms of radiology. The mass attenuation coefficients were calculated by means of WinXCOM. The Z for total and partial photon interactions in the biological materials of human enamel and dentin have been determined within a radiological low photon energy range from 10 to 200 keV. The total Z values presented a similar behavior in both the enamel and dentin. The Z values decreased 23% in the enamel and by 32% in the dentin in direct proportion to the increase energy levels. The Z for all partial processes increased slightly and in direct proportion to the increase in energy levels. The value for photoelectric interaction proved to be the highest, whereas the value for incoherent scattering was the lowest. The total Z becomes a contribution due these three partial processes at any energy level. The value of the Z is quite sensitive to the weight fractions of the elements and the applied interpolation method. Concerning the importance of Z values to medical dosimetry, it is expected that the new data regarding Z values presented here in will be useful, particularly as regards the energy range of interest. (author)

  14. Electron inelastic interactions in bioorganic compounds in the energy range of 20 10000 eV

    Tan, Z.; Xia, Y.; Liu, X.; Zhao, M.; Ji, Y.; Li, F.; Huang, B.

    2005-09-01

    Systematic calculations of stopping powers (SPs) and mean free paths (MFPs) for 10 bioorganic compounds have been performed for electrons with energies lower than 10 keV, based on dielectric response theory and Penn’s statistical approximation. The exchange effect is also taken into account in the calculations. An empirical approach to obtain an optical energy loss function is presented for those organic compounds without available optical data. Using this method, the calculated values of the optical energy loss function are in good agreement with experimental data. Comparisons of SP and MFP values derived in this study with other published values are presented. Using the described model, the calculated mean ionization potentials agree well with the predictions from Bragg’s rule and the calculated SPs have also been compared with the Bethe Bloch results at an energy of 10 keV.

  15. Energy dissipation of nanoconfined hydration layer: Long-range hydration on the hydrophilic solid surface

    Kim, Bongsu; Kwon, Soyoung; Mun, Hyosik; An, Sangmin; Jhe, Wonho

    2014-01-01

    The hydration water layer (HWL), a ubiquitous form of water on the hydrophilic surfaces, exhibits anomalous characteristics different from bulk water and plays an important role in interfacial interactions. Despite extensive studies on the mechanical properties of HWL, one still lacks holistic understanding of its energy dissipation, which is critical to characterization of viscoelastic materials as well as identification of nanoscale dissipation processes. Here we address energy dissipation ...

  16. The Old New Frontier: Studying the CERN-SPS Energy Range with NA61/SHINE

    Szuba Marek

    2012-01-01

    With the Large Hadron Collider entering its third year of granting us insight into the highest collision energies to date, one should nevertheless keep in mind the unexplored physics potential of lower energies. A prime example here is the NA61/SHINE experiment at the CERN Super Proton Synchrotron. Using its large-acceptance hadronic spectrometer, SHINE aims to accomplish a number of physics goals: measuring spectra of identified hadrons in hadron-nucleus collisions to provide reference for a...

  17. Equation of state for tungsten over a wide range of densities and internal energies

    Khishchenko, Konstantin V.

    2015-01-01

    A caloric model, which describes the pressure--density--internal-energy relationship in a broad region of condensed-phase states, is applied for tungsten. As distinct from previously known caloric equations of state for this material, a new form of the cold-compression curve at $T = 0$~K is used. Thermodynamic characteristics along the cold curve and shock Hugoniots are calculated for the metal and compared with some theoretical results and experimental data available at high energy densities.

  18. Daily energy expenditures of free-ranging Common Loon (Gavia immer) chicks

    Fournier, F.; Karasov, W.H.; Meyer, M.W.; Kenow, K.P.

    2002-01-01

    We measured the daily energy expenditure of free-living Common Loon (Gavia immer) chicks using doubly labeled water (DLW). Average body mass of chicks during the DLW measures were 425, 1,052, and 1,963 g for 10 day-old (n = 5), 21 day-old (n = 6), and 35 day-old (n = 6) chicks, respectively, and their mean daily energy expenditures (DEE) were 686 kJ day-1, 768 kJ day-1, and 1,935 kJ day-1, respectively. Variation in DEE was not due solely to variation in body mass, but age was also a significant factor independent of body mass. Energy deposited in new tissue was calculated from age-dependent tissue energy contents and measured gains in body mass, which were 51, 54, and 33 g day-1 from the youngest to oldest chicks. Metabolizable energy (the sum of DEE and tissue energy) was used to estimate feeding rates of loon chicks and their exposure to mercury in the fish they consume. We calculated that loon chicks in Wisconsin consumed between 162 and 383 g wet mass of fish per day (depending on age), corresponding to intakes of mercury of 16-192 ??g day-1.

  19. Deformation Effect on the Center-of-Mass Correction Energy in Nuclei Ranging from Oxygen to Calcium

    ZHAO Peng-Wei; SUN Bao-Yuan; MENG Jie

    2009-01-01

    The microscopic c.m. correction energies for nuclei ranging from oxygen to calcium are systematically calculated by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1. The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.

  20. Analysis of long-range clean energy investment scenarios for Eritrea, East Africa

    We discuss energy efficiency and renewable energy (EE/RE) investments in Eritrea from the strategic long-term economic perspective of meeting Eritrea's sustainable development goals and reducing greenhouse gas emissions. EE/RE are potentially important contributors to national productive capital accumulation, enhancement of the environment, expansion of energy services, increases in household standard of living, and improvements in health. In this study, we develop a spreadsheet model for calculating some of the national benefits and costs of different levels of investment in EE/RE. We then present the results of the model in terms of investment demand and investment scenario curves. These curves express the contribution that efficiency and renewable energy projects can make in terms of reduced energy sector operating expenses, and reduced carbon emissions. We provide demand and supply curves that show the rate of return, the cost of carbon emissions reductions vs. supply, and the evolution of the marginal carbon emissions per dollar of GDP for different investment levels and different fuel-type subsectors

  1. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    Mclean, Thomas D [Los Alamos National Laboratory; Justus, Alan L [Los Alamos National Laboratory; Gadd, S Milan [Los Alamos National Laboratory; Olsher, Richard H [RP-2; Devine, Robert T [RP-2

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  2. A satellite-borne ion mass spectrometer for the energy range 0 to 16 keV

    The Ion Composition Experiment (ICE) on GEOS represents the first comprehensive attempt to measure the positive ion composition at high altitudes in the magnetosphere. Due to the heterogeneous nature of the magnetospheric plasma a novel mass spectrometer has been developed to cover the mass per charge range from 1H+ to beyond 138Ba+ and the energy per charge range from 0 to 16 keV/e. The ICE consists primarily of a cylindrical electrostatic analyzer followed by a curved analyzer incorporating crossed magnetic and electric fields. This combination has limited angular and energy focussing properties, but it maintains a mass resolution of about 4 over a wide range in energy and mass, sufficient for the objectives of measuring plasmas of both solar and terrestrial origin. High sensitivity and low background should allow measurements of rarer ion constituents, such as 3He2+ and 16O6+, down to flux levels of 10-2 ions (cm2 sec ster eV)-1. The unusually large mass range offers the possibility of identifying Li+ or Ba+ tracer ions which may be injected into the magnetosphere by active experiments. A sophisticated electronics combined with powerful ground computer and telecommand systems allow for very efficient scanning of the mass-energy space. Based on survey measurements a variety of special modes can be commanded, either manually or automatically by means of the ground station computer. (Auth.)

  3. Scaling and charge ratio in the energy range 1-10 TeV

    The purpose of the investigation was to study the spectra of generation of neutral and charged pions in the upper atmosphere in order to establish the scaling behaviour of the multiple birth of particles at primary particle energies above the acceleration energies. The study of the spectrum gamma-quanta in the atmosphere and the muon spectrum at the sea level made it possible to adjust the pion generation spectrum. In experiments with emulsion chambers the spectra of gamma-quanta and electrons at different zenith angles at two levels in the atmosphere (225 and 700 gxcm-2) and the muon spectrum at the sea level were determined. The obtained data on pion birth in the atmosphere pointed to the conservation of scale and charge invariance in pion birth at nucleon energies of 1012-1014 eV

  4. Reaction cross sections for protons in the energy range 220-570 MeV

    Renberg, P U; Measday, D F; Pepin, M; Serre, Claude; Schwaller, P

    1972-01-01

    Proton reaction cross sections have been measured for targets of natural isotopic abundance of the following elements and compounds: He, Be, C, Al, Fe, Cu, Ge, Sn, Pb, H/sub 2/O, B/sub 4/C and NaI. Data for proton energies between 220 and 570 MeV have been obtained with two types of transmission-counter assembly. The total errors are of the order of +or-3%. A slight increase of the reaction cross sections with energy is observed for most of the elements studied. The results interpreted in terms of the semi-classical theory of reaction cross section as function of energy clearly demonstrate the onset of pion- production above 250 MeV. (32 refs).

  5. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    Mussard, Bastien; Angyan, Janos; Toulouse, Julien

    2015-01-01

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Sz-abo and Ostlund [A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. {\\'A}ngy{\\'a}n, J. Chem. Phys. 135, 084119 (2011)], this works confirms...

  6. Nuclear stopping for heavy-ion induced reactions in the Fermi energy range: from 1-Body to 2-Body dissipation

    In this study, we are looking at the global energy dissipation achieved in heavy-ion induced reactions in the Fermi energy domain. We are using the large experimental dataset available in this energy range for symmetric systems recorded with the 4π array INDRA. We are looking at central collisions, i.e. collisions corresponding to the maximal overlap and thus leading to the maximal dissipation. We have extracted information concerning the stopping encountered in such collisions and have related it to the nucleon mean free path and cross section in the nuclear medium. We have found a minimal stopping around incident energy E = 30*A MeV connected to the crossover between 1-Body to 2-Body dissipation regime. For the latter, we have estimated the nucleon mean free path in the nuclear medium from the degree of stopping achieved in central collisions. The mean free path decreases from λNN ∼ 10 fm at E/A = 30 MeV to λNN = 5 fm at E/A = 100 MeV. These values are in agreement with recent theoretical findings using microscopic approaches. The large value relative to the nuclear size (λNN > R) around the Fermi energy suggests that full thermalization is not achieved in such central collisions. In-medium effects, namely Pauli blocking and high-order correlations, have also been evaluated and are found to be large in the Fermi energy range; it is clear that this energy/density dependence of the nucleon-nucleon cross section has to be properly taken into account in any microscopic transport model used in the Fermi energy range

  7. Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler

    Recently plug-in hybrid electric vehicles (PHEVs) are emerging as one of the promising alternative to improve the sustainability of transportation energy and air quality especially in urban areas. The all-electric range in PHEV design plays a significant role in sizing of battery pack and cost. This paper presents the evaluation of battery energy and power requirements for a plug-in hybrid electric two-wheeler for different all-electric ranges. An analytical vehicle model and MATLAB simulation analysis has been discussed. The MATLAB simulation results estimate the impact of driving cycle and all-electric range on energy capacity, additional mass and initial cost of lead-acid, nickel-metal hydride and lithium-ion batteries. This paper also focuses on influence of cycle life on annual cost of battery pack and recommended suitable battery pack for implementing in plug-in hybrid electric two-wheelers. -- Research highlights: → Evaluates the battery energy and power requirements for a plug-in hybrid electric two-wheeler. → Simulation results reveal that the IDC demand more energy and cost of battery compared to ECE R40. → If cycle life is considered, the annual cost of Ni-MH battery pack is lower than lead-acid and Li-ion.

  8. Extension of the α particle energy range in polycarbonate using multiple step chemical and/or electrochemical etching

    For ten years polycarbonate has been widely used for the detection of α particles in radon dosimetry. Compared with CR-39 material, the detectable α energy range of about 0.5 to 3 MeV is, however, small after using a chemical pre-etching and electrochemical etching. In order to extend the α energy range the authors investigated: (a) a step-wise combination of chemical and ECE etching, and (b) a two-step ECE technique at low and high frequency. The results of this study show that α particle tracks can be revealed ranging from 0.5 to 5 MeV. For the two-step ECE technique a constant α registration efficiency has been found. (author)

  9. Design of a polarised light beamline in the energy range of 30-4000 eV

    Chaudhari, S M; Phase, D M; Dasannacharya, B A

    2003-01-01

    This article describes the design of a possible polarised light beamline for magnetic circular dichroism and photoemission experiments on a bending magnet source of 2.5 GeV storage ring, Indus-2. It will have an energy range of 30-4000 eV and will deliver circular as well as linearly polarised light to perform absorption and photoemission experiments covering relevant L and M edges of most of the elements. The beamline optics consists of a vertically moveable aperture for polarisation selection. It has three spherical gratings and a double crystal monochromator necessary for energy selection in low and high-energy ranges respectively. Corresponding pre- and post-mirror optics, which is common for both the monochromators is the highlight of this design. Detailed ray-tracing calculations, which were carried out to evaluate and optimise the performance of the proposed beamline, are presented in this article.

  10. Pseudopotential calculations of photoionization of atoms in the x-ray photon energy range and FEL beam monitor development

    A pseudopotential model for calculation of atomic processes under interaction with hard x-ray photons is applied to calculation of Krypton photoionization cross sections by photons with energy in the 20–25 keV range. These cross sections, as well as the mean charge of the resulting ions calculated using the Monte Carlo simulation scheme, are in good agreement with the other theoretical calculations and with the experiment. The obtained results open the doors for new techniques in the design of gas-monitor detectors to control the intensity, coordinates and energy of x-ray free-electron laser (XFEL) beams in the hard x-ray photon energy range. First, Monte Carlo simulations of a scintillation detector application for gas-monitors have been performed. (letter)

  11. Terminological dictionary of electrical power industry in range of generation, transmission and distribution of electric energy

    The dictionary contains about 5000 terms about conventional and nuclear power plants, energy sources, transmission lines, automation, power systems, environment protection, statistics etc. Each term is given with definition and its equivalents in English, French, German and Russian. Indexes of Polish, English, French, German and Russian terms are provided at the back of dictionary. (A.S.)

  12. Simulation of wire-compensation of long range beam beam interaction in high energy accelerators

    Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)

  13. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  14. CN molecule collisions with H+ at a wide range of astrophysical energies

    Sultanova, Madina R.; Guster, Dennis

    2012-01-01

    We analyze the quantum-mechanical rotational excitation/de-excitation spectrum and cross sections of CN molecules during low and high-energy collisions with protons, H+. The problem is of significant importance in astrophysics of the early Universe, specifically connected with the problems of cosmic microwave background (CMB) radiation. A quantum-mechanical close-coupling method is applied in this work. The cyanide molecule (CN) is treated as a rigid rotor, i.e. the distance between the carbo...

  15. Energy Analysis of Road Accidents Based on Close-Range Photogrammetry

    Alejandro Morales

    2015-11-01

    Full Text Available This paper presents an efficient and low-cost approach for energy analysis of road accidents using images obtained using consumer-grade digital cameras and smartphones. The developed method could be used by security forces in order to improve the qualitative and quantitative analysis of traffic accidents. This role of the security forces is crucial to settle arguments; consequently, the remote and non-invasive collection of accident related data before the scene is modified proves to be essential. These data, taken in situ, are the basis to perform the necessary calculations, basically the energy analysis of the road accident, for the corresponding expert reports and the reconstruction of the accident itself, especially in those accidents with important damages and consequences. Therefore, the method presented in this paper provides the security forces with an accurate, three-dimensional, and scaled reconstruction of a road accident, so that it may be considered as a support tool for the energy analysis. This method has been validated and tested with a real crash scene simulated by the local police in the Academy of Public Safety of Extremadura, Spain.

  16. Energy dependence of muon charge ratio for incident momentum range < 1 GeV/c

    Full text: The charge ratio of the atmospheric muons is a quantity sensitive to hadronic interactions of cosmic rays and to the influence of the geomagnetic field. Experimental information is of current interest for tuning models used for the calculation of atmospheric neutrino fluxes. We are performing measurements of the charge ratio based on the observation of the lifetime of the muons stopped in the absorber layers (aluminum support) of the detector WILLI, mounted in a rotatable frame and installed at IFIN-HH Bucharest (vertical geomagnetic cut-off rigidity of 5.6 GV). Our method to determine the muon charge ratio by measuring the lifetime of muons stopped in the matter, overcomes the uncertainties appearing in measurements based on magnetic spectrometers, which are affected by systematic effects at low muon energies, due to problems in the particle and trajectory identification. The results obtained with the rotatable WILLI detector, inclined at 45 angle (i.e. a mean zenith angle of detected muons of 35 angle), relevant to the atmospheric neutrino anomaly, show a pronounced east-west effect. The energy dependence of the muon charge ratio indicates an increasing asymmetry of the muon charge ratio with decreasing incident energy. (author)

  17. Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer.

    Kushida, Soh; Braam, Daniel; Dao, Thang Duy; Saito, Hitoshi; Shibasaki, Kosuke; Ishii, Satoshi; Nagao, Tadaaki; Saeki, Akinori; Kuwabara, Junpei; Kanbara, Takaki; Kijima, Masashi; Lorke, Axel; Yamamoto, Yohei

    2016-05-24

    Highly luminescent π-conjugated polymeric microspheres were fabricated through self-assembly of energy-donating and energy-accepting polymers and their blends. To avoid macroscopic phase separation, the nucleation time and growth rate of each polymer in the solution were properly adjusted. Photoluminescence (PL) studies showed that efficient donor-to-acceptor energy transfer takes place inside the microspheres, revealing that two polymers are well-blended in the microspheres. Focused laser irradiation of a single microsphere excites whispering gallery modes (WGMs), where PL generated inside the sphere is confined and resonates. The wavelengths of the PL lines are finely tuned by changing the blending ratio, accompanying the systematic yellow-to-red color change. Furthermore, when several microspheres are coupled linearly, the confined PL propagates the microspheres through the contact point, and a cascade-like process converts the PL color while maintaining the WGM characteristics. The self-assembly strategy for the formation of polymeric nano- to microstructures with highly miscible polymer blends will be advantageous for optoelectronic and photonic device applications. PMID:27135760

  18. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 times 1014 cm-2) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs

  19. Acceleration of atomic clusters in the MeV energy range by the 1 MV Tandetron accelerator

    Atomic clusters of Bn, Cn, Aln, Sin and Cun can be accelerated in the MeV energy range by using the 1 MV Tandetron accelerator at the University of Tsukuba. The negative cluster ions are generated by a Cesium sputtering ion source and extracted by the energy of 20 keV. The charge exchange from negative to positive cluster ion is achieved by collision with stripper gas in a gas cell at the high voltage terminal. It is necessary to accelerate cluster ions as the same energy ratio (MeV/atom) for the interaction experiment between cluster ions and the target. The terminal voltage of the 1 MV Tandetron accelerator is possible to be varied from 0.1 to 1.0 MV. We select the accelerating energy to 0.24 MeV/atom for small cluster ions (n ≤ 8). Experimental results obtained with accelerating Cn cluster ions are reported. (author)

  20. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  1. Remainder estimates for the Long Range Behavior of the van der Waals interaction energy

    Anapolitanos, Ioannis

    2013-01-01

    The van der Waals-London's law, for a collection of atoms at large separation, states that their interaction energy is pairwise attractive and decays proportionally to one over their distance to the sixth. The first rigorous result in this direction was obtained by Lieb and Thirring [LT], by proving an upper bound which confirms this law. Recently the van der Waals-London's law was proven under some assumptions by I.M. Sigal and the author [AS]. Following the strategy of [AS] and reworking th...

  2. The NUCLEON space experiment for direct high energy cosmic rays investigation in TeV–PeV energy range

    Atkin, E. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Bulatov, V.; Dorokhov, V. [SDB Automatika, Ekaterinburg 620075 (Russian Federation); Gorbunov, N. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Filippov, S. [SDB Automatika, Ekaterinburg 620075 (Russian Federation); Grebenyuk, V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Karmanov, D.; Kovalev, I.; Kudryashov, I.; Merkin, M.; Pakhomov, A.; Podorozhny, D. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Polkov, D. [SDB Automatika, Ekaterinburg 620075 (Russian Federation); Porokhovoy, S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Shumikhin, V. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Sveshnikova, L. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Tkachenko, A.; Tkachev, L. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Turundaevskiy, A., E-mail: torn@front.ru [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Vasiliev, O. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); and others

    2015-01-11

    The NUCLEON satellite experiment is designed to investigate directly, above the atmosphere, the energy spectra of cosmic-ray nuclei and the chemical composition from 100 GeV to 1000 TeV as well as the cosmic-ray electron spectrum from 20 GeV to 3 TeV. NUCLEON is planned to be launched in 2014. This mission is aimed at clarifying the essential details of cosmic-ray origin in this energy interval: number and types of sources, identification of actual nearby sources, and the investigation of the mechanisms responsible for the knee. Specific features of the NUCLEON instrument are relatively small thickness and small weight. A special method of energy determination by the silicon tracker was developed for this case. In this paper we describe a design of the instrument and the results of accelerator beam tests in terms of charge and energy resolution. The overall evidences of the capability of the apparatus to achieve the declared aims are also presented.

  3. Elastic and rotational excitation cross-sections for electron-water collisions in the low- and intermediate-energy ranges

    We present a theoretical study on electron-H2O collisions in the low- and intermediate-energy ranges. More specifically, we report calculated elastic differential, integral and momentum transfer cross-sections as well as rotational excitation cross-sections in the (2-500)-eV range. In our calculations, an optical potential is used to represent the electron-molecule interaction. The Schwinger variational method combined with the distorted-wave approximation is used to solve the scattering equations. The comparison of our calculated results with other theoretical and/or experimental data available in the literature is very encouraging. (authors)

  4. Development and characterization of real-time wide-energy range personal neutron dosimeter

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated 252Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to γ-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and γ-ray dose equivalents simultaneously by installing γ-ray silicon sensor. (author)

  5. Long-range effect and self-organization processes induced by low-energy ion irradiation in solids

    The modification of materials subjected to the bombardment with low-energy ions was investigated. The increase of dislocation density in metal samples was observed up to a depth of 10 mm from the irradiated surface. It is described as a long-range effect. The low-energy ion irradiation leads to the change of physical and mechanical properties of irradiated materials. This is, actually, a bulk modification. To explain this modification of materials the authors suggest a hypothesis based on the idea of nonlinear oscillation excitations in crystals, which leads to active self-organizing processes in the ion subsystem

  6. Evaluation of 242Pu data for the incident neutron energy range 5-20 MeV

    Models, procedures and parameters are presented for the calculation of neutron cross sections, the neutron angular distributions and the neutron energy distributions of 242Pu in the energy range 5-20 MeV. The interaction takes place through direct interaction and compound nucleus mechanism. For heavy deformed nucleus the direct interaction was treated with the coupled channel process, using the ECIS code. For the compound nucleus mechanism, a statistical treatment was used for fission, neutron elastic and inelastic scattering, radiative capture, (n,2n), (n,3n), (n,4n) cross section calculations, using the GNASH code. (R.P.)

  7. Performance analysis and experimental verification of mid-range wireless energy transfer through non-resonant magnetic coupling

    Peng, Liang; Wang, Jingyu; Zhejiang University, Hangzhou, China, L.;

    2011-01-01

    In this paper, the efficiency analysis of a mid-range wireless energy transfer system is performed through non-resonant magnetic coupling. It is shown that the self-resistance of the coils and the mutual inductance are critical in achieving a high efficiency, which is indicated by our theoretical...... and show that careful design of the de-tuned system can intrinsically minimize the power dissipated in the source part. Our non-resonant scheme presented in this paper allows flexible design and fabrication of a wireless energy transfer systems with transfer distance being several times of the coils...

  8. Neutron cross-sections for 55Mn in the energy range from 0.2 to 22 MeV

    RAHMAN, Abul Khaer Mohammad Rezaur

    2012-01-01

    Neutron total and differential elastic scattering cross-sections for 55Mn nucleus was calculated from different global spherical optical potential (SOP) sets for different neutron energies ranging from 0.2 MeV to 22 MeV using the well known computer program SCAT-2 on an IBM PC-AT. In addition, the angular distributions of elastically scattered neutrons at different neutron energies were calculated. The results were compared with those of the experimental data obtained from the EXFOR d...

  9. Performance of Geant4 in simulating semiconductor particle detector response in the energy range below 1 MeV

    Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range between 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to β particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data

  10. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator

  11. Observation of short range three-particle correlations in e+e- annihilations at LEP energies

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Barão, F; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myagkov, A; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; Van Eldik, J; Van der Velde, C; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S

    1995-01-01

    \\def\\tpc{three-particle correlation} \\def\\twopc{two-particle correlation} Measurements are presented of short range three-particle correlations in e^+ e^- annihilations at LEP using data collected by the DELPHI detector. %The jet structure is studied using three-particle correlation functions. At small values of the four-momentum difference, strong three-particle correlations are observed for like-sign (+++ and ---) and for unlike-sign (++- and +--) pion combinations which are not a consequence of two-particle correlations. A possible explanation of the observed effects in like-sign combinations is the existence of higher order Bose-Einstein interference, which significantly changes the particle distributions in jets.

  12. CN molecule collisions with H+ at a wide range of astrophysical energies

    Sultanova, Madina R

    2012-01-01

    We analyze the quantum-mechanical rotational excitation/de-excitation spectrum and cross sections of CN molecules during low and high-energy collisions with protons, H+. The problem is of significant importance in astrophysics of the early Universe, specifically connected with the problems of cosmic microwave background (CMB) radiation. A quantum-mechanical close-coupling method is applied in this work. The cyanide molecule (CN) is treated as a rigid rotor, i.e. the distance between the carbon and nitrogen atoms is fixed at an average equilibrium value. The new results of the excitation/de-excitation cross-sections and corresponding thermal rate coefficients are compared with the results of few previous calculations performed on the basis of few approximate semiclassical frameworks. The interaction potential between CN and H+ is taken in the following form: proton induced polarization potential + proton-dipole potential + proton-quadrupole potential.

  13. CO2. Separation, storage, use. Holistic assessment in the range of energy sector and industry

    The technology for CO2 capture and storage (CCS) and CO2 usage (CCR) is illuminated in this reference book comprehensively and from different perspectives. Experts from research and industry present the CCS and CCR technology based on the scientific and technical foundations and describe the state-of-the-art. They compare energy balances for different techniques and discuss legal, economic and socio-political aspects. In scenario analyzes they demonstrate the future contribution of the technologies and present the views of the different stakeholder groups. The authors claim to inform value-free. They disclose the criteria for the assessment of individual perspectives. An important work on a current and controversial discussed technology.

  14. Multi-mode wide range subsynchronous resonance stabilization using superconducting magnetic energy storage unit

    Rabbani, M.G.; Devotta, J.B.X.; Elangovan, S. [National University of Singapore (Singapore). Dept. of Electrical Engineering

    1999-01-01

    This paper presents a novel strategy to stabilize the torsional oscillations due to subsynchronous resonance (SSR) of a capacitor compensated power system through control of firing angles of superconducting magnetic energy storage (SMES) unit. The control strategy of SMES is based on artificial neural network (ANN). The gain of the controller is generated on-line depending on the operating conditions and the type of the disturbance. The proposed method of control of SMES for power system stabilization has been tested on the IEEE first benchmark model for subsynchronous resonance studies. Dynamic simulations are performed using the non-linear system model. It has been found that the SMES unit is very effective to eliminate the slowly growing transients resulting from the unstable modes. (author)

  15. Optical model analysis of p + 6He scattering over a wide range of energy

    Optical model analysis of proton elastic scattering from 6He has been carried out for eight sets of elastic scattering data at energies of 24.5, 25.0, 36.2, 38.3, 40.9, 41.6, 71.0 and 82.3 MeV/nucleon, respectively. The vector analyzing power and differential cross section for the elastic scattering of 6He nucleus from polarized protons at 71 MeV have been analyzed in the framework of the optical model potential. The data are, first, analyzed in terms of phenomenological potentials using the Woods-Saxon form for the real and imaginary parts supplemented by a spin-orbit potential of Thomas form. The analysis has been then performed using microscopic single folded complex potentials.

  16. Limitations for Measuring the Low-Energy Range of the Electron Spectrum by Probes

    J'' ≡ ∂2J/∂V2 (J = probe current, V = probe voltage) has four components: J''er, J''ea, J''ir, and J''ia (e = electron, i = ion, r = repulsion, a = attraction). For ''ideal'' probes in ''ideal'', collisionless, ambi-Maxwellian plasmas, J''er = Aere-V/Ue (V ≥ 0 e-repelling, Ue = kTe/e); J''er = 0 for V er is J''ia which is ''ill behaved'' and hence is an unavoidable limitation for measuring J''er which yields the e-spectrum. (However, J''ea → 0 and J''ia → 0 for λD/rp → ∞; λD = Debye length, rp = radius of spherical probe.) In practice, for i-energy « e-energy ''secondary effects'' (SE) in ''ordinary'' probes make J''ia undetectable. The small planar guard-sleeve (G) probe (PGP) with VG = VS (VS = space potential) is least affected by the usual SE's and hence seems to yield traces of J''ia, even in Hg plasmas with their small Ji's; VG = VS makes J'' extremal and thus indicates the space potential point in J(V). The real JPGP can be expressed as the sum of ideal contributions, shifted from a most probable position along the V-axis and weighted by a Gaussian with a certain half-width (fluctuations in Vg and/or inhomogeneous work function?). The J''s and J's for a PGP, for a spherical and a hemispherical GP, and for a cylindrical probe in Hg plasmas are compared. (author)

  17. The MAGIC telescope project for gamma ray astronomy in the 15 to 300 GeV energy range

    In gamma ray astronomy the energy range between 15 and 300 GeV is up to now inaccessible for both satellite borne γ detectors and ground based air Cherenkov telescopes. It is expected that in this energy range the universe is highly transparent and sources such as active galactic nuclei at red shifts of up to ∝2.8 can be observed. The detection of gamma ray bursts would allow one to place a limit on their distance. A short description of a project to build a new, high sensitivity, 17 m, air Cherenkov telescope, dubbed the MAGIC telescope, and an overview of its physics potential will be given. The telescope is based upon a 17 m decommissioned solar concentrator. (orig.)

  18. A phenomenological model to study the energy discrimination potential of GEM detectors in the X-ray range

    Causa, F., E-mail: federica.causa@enea.it; Pacella, D.; Romano, A.; Claps, G.; Gabellieri, L.

    2015-11-01

    An empirical model is presented to study the operational characteristics of GEM detectors in the X-ray range and, in particular, its energy discrimination potential. Physical processes are modelled from a macroscopic point of view, to provide a simple but effective simulation tool. Experimental data from monochromatic and combined, two-line fluorescence sources, are used to validate the model and provide realistic estimates of the empirical parameters used in the description. The model is instrumental in understanding the role of threshold, gain and operational conditions to achieve energy-discriminating response. Appropriate choices of gas mixtures, threshold and gain will permit to best utilise this new functionality of the GEM to improve the efficiency of image detectors in applications ranging from in-situ imaging in harsh environments, such as tokamaks, to composite materials analysis and medical imaging of tissues.

  19. Characterisation of a detector based on microchannel plates for electrons in the energy range 10-20 keV

    Moldovan, G. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxon OX1 3PH (United Kingdom)], E-mail: grigore.moldovan@materials.ox.ac.uk; Matheson, J.; Derbyshire, G. [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Kirkland, A. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxon OX1 3PH (United Kingdom)

    2008-11-11

    As part of a feasibility study into the use of novel electron detectors for an X-ray photoelectron emission microscope (XPEEM), we have characterised a detector based on microchannel plates (MCPs), a phosphor screen and a CCD camera. For XPEEM, an imaging detector is required for electrons in the energy range 10-20 keV. This type of detector is a standard fitment on commercial instruments and we have studied its performance in some detail in order to provide a baseline against which to evaluate future detector technologies. We present detective quantum efficiency (DQE), noise power spectrum (NPS) and modulation transfer function (MTF) measurements of a commercial detector, in the energy range of interest, as a function of the detector bias voltage.

  20. Collision Cross Sections for O + Ar(+) Collisions in the Energy Range 0.03-500 eV.

    Sycheva, A A; Balint-Kurti, G G; Palov, A P

    2016-07-14

    The interatomic potentials of the a(2)Π and b(2)Π states of the OAr(+) molecule are calculated using the relativistic complete-active space Hartree-Fock method followed by a multireference configuration interaction calculation with an aug-cc-pwCVNZ-DK basis sets where N is 4 and 5. The calculations were followed by an extrapolation to the complete basis set limit. An avoided crossing between the two potential energy curves is found at an internuclear separation of 5.75 bohr (3.04 Å). As the transition probability between the curves is negligible in the relative collision energy range 0.03-500 eV of interest here, collisions on the lower adiabatic a(2)Π potential may be treated without reference to the upper state. For low energies and orbital angular momentum quantum numbers, the one-dimensional radial Schrödinger equation is solved numerically using a Numerov algorithm method to determine the phase shift. The semiclassical JWKB approximation was employed for relative energies greater than 5 eV and orbital angular quantum numbers higher than 500. Differential, integral, transport (diffusion), and viscosity cross sections for elastic collisions of oxygen atoms with argon ions are calculated for the first time for the range of relative collision energies studied. The calculated cross sections are expected to be of utility in the fields of nanotechnology and arc welding. The combination of an Ar(+)((2)P) ion and a O((3)P) atom gives rise to a total of 12 different molecular electronic states that are all coupled by spin-orbit interactions. Potential energy curves for all 12 states are computed at the complete active space self-consistent field (CASSCF) level and scattering calculations performed. The results are compared with those obtained using just the lowest potential energy curve. PMID:26741565

  1. Compton scattering from 12C using tagged photons in the energy range 65 - 115 MeV

    Myers, L S; Preston, M F; Anderson, M D; Annand, J R M; Boselli, M; Briscoe, W J; Brudvik, J; Capone, J I; Feldman, G; Fissum, K G; Hansen, K; Henshaw, S S; Isaksson, L; Jebali, R; Kovash, M A; Lewis, K; Lundin, M; MacGregor, I J D; Middleton, D G; Mittelberger, D E; Murray, M; Nathan, A M; Nutbeam, S; O'Rielly, G V; Schröder, B; Seitz, B; Stave, S C; Weller, H R

    2014-01-01

    Elastic scattering of photons from 12C has been investigated using quasi-monoenergetic tagged photons with energies in the range 65 - 115 MeV at laboratory angles of 60 deg, 120 deg, and 150 deg at the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden. A phenomenological model was employed to provide an estimate of the sensitivity of the 12C(g,g)12C cross section to the bound-nucleon polarizabilities.

  2. DM2 results on e+e- annihilation into multihadrons in the 1350-2400 MeV energy range

    We present preliminary results on the study of e+e- annihilation into π+π-π+π-, π+π-π0π0, π+π-π0, π+π-π+π-π0, K+K-π+π- and Ks0K±π-+ in the 1350-2400 MeV energy range. Data have been collected with the DM2 detector at DCI, the Orsay colliding ring, and refer to about 2 pb-1 integrated luminosity

  3. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  4. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  5. Surface ionization mass spectrometry of drugs in the thermal and hyperthermal energy range -- a comparative study

    Dagan, Shai; Amirav, Aviv; Fujü, Toshihiro

    1995-12-01

    Thermal and hyperthermal surface ionization (SI) mass spectra of nicotine, caffeine and lidocaine were obtained using a rhenium oxide surface. Thermal surface ionization was studied on an oxidized surface positioned inside an electron impact ion source, while hyperthermal surface ionization (HSI) was obtained upon seeding the compounds into a hydrogen or helium supersonic molecular beam that scattered from the rhenium oxide surface. Both HSI and SI provide rich, informative and complementary mass spectral information. The results indicate that SI follows thermal dissociation processes on the surface prior to the desorption of the ion, while in HSI no thermal equilibrium is established and the ionization process is impulsive, followed by mostly unimolecular ion dissociation. HSI mass spectra are similar to electron impact mass spectra in the fragment ion masses, but the observed relative intensities are different. HSI is a softer ionization method compared to SI, and enables the degree of ion fragmentation to be tuned so that it can be minimized to a low level at low molecular kinetic energy. In SI, limited control over the degree of fragmentation is possible through the surface temperature. The analytical mass spectrometric applications of SI and HSI are briefly mentioned.

  6. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  7. Characterisation of a counting imaging detector for electron detection in the energy range 10-20 keV

    Moldovan, G., E-mail: grigore.moldovan@materials.ox.ac.uk [University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom); Sikharulidze, I. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, 2300RA Leiden (Netherlands); Matheson, J.; Derbyshire, G. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Kirkland, A.I. [University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom); Abrahams, J.P. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, 2300RA Leiden (Netherlands)

    2012-07-21

    As part of a feasibility study into the use of novel electron detector for X-ray photoelectron emission microscopes (XPEEM) and related methods, we have characterised the imaging performance of a counting Medipix 2 readout chip bump bonded to a Silicon diode array sensor and directly exposed to electrons in the energy range 10-20 keV. Detective Quantum Efficiency (DQE), Modulation Transfer Function (MTF) and Noise Power Spectra (NPS) are presented, demonstrating very good performance for the case of electrons with an energy of 20 keV. Significant reductions in DQE are observed for electrons with energy of 15 keV and less, down to levels of 20% for electrons of 10 keV.

  8. Model Predictive Speed and Headway Control with Energy Optimization for a Series Hybrid Vehicle with Range Extender

    Lu Liting

    2015-01-01

    Full Text Available In this paper, a model predictive speed and headway control (MPSHC with multi-input and multi-output (MIMO is developed for a series hybrid vehicle with range extender (BEVx. The MPSHC calculates the optimal solutions of the efficient driving strategy and the efficient power supply, with the vehicle longitudinal dynamics and battery dynamics. It takes the driver’s demand, the legal speed limit, the driving behavior of the preceding object vehicle, the topography and the state of charge (SoC into account. The energy consumption as the objective is minimized in the predictive horizon. The simulation results show that the proposed MPSHC algorithm has a good energy saving potential, compared with the conventional Adaptive Cruise Control (ACC and the simple energy supply strategy.

  9. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    Sjue, S. K. L., E-mail: sjue@lanl.gov; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  10. Measurements of the charge exchange and dissociation cross-sections of the H2+ ion in a wide energy range

    The dissociation, ionisation, and charge exchange cross-sections of molecular hydrogen ions H2+ passing through various gases, have been measured as a function of the energy of the ions. The energy range studied was from 25 to 250 keV. The reaction products, analysed by a magnetic field according to their e/m ratio, are collected on scintillation detectors. Two methods have made it possible to separate the various reactions leading to the formation of particles having the same e/m ratio. The first separates the particles according to their energy, the other selects those arriving simultaneously on two different detectors. The results show a large variation in the charge exchange cross-section with the energy of the H2+ ions. The variations in the dissociation and ionisation cross-sections are less pronounced. For a given energy, the values of the cross-sections increase with the atomic weight of the target particles. These measurements have been extended to the case of H2+ ions passing through a target of charged particles. Preliminary results show an increase in the cross-sections as compared to the preceding case. Finally the scattering of the reaction products has been studied; this scattering is due to the fact that the molecules formed during a reaction are in an unstable state and the nuclei or atoms diverge from each other. (author)

  11. Short- and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    Muraoka, K.; Wagner, F.; Yamagata, Y.; Donné, A. J. H.

    2016-01-01

    The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power—if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged

  12. Short- and long-range energy strategies for Japan and the world after the Fukushima nuclear accident

    The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power—if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged

  13. Analysis of transmission properties of plastic scintillating fiber linear array in low X-ray energy range

    Background: Plastic scintillating fiber is a common imaging detector in the field of industrial CT and Digital Radiography (DR) imaging. Because of lack of detailed theoretical guidance and experiment data, the practical works are still going on to perfect detector design and optimization. Purpose: The purpose is to track the interaction of incident particle with scintillating fiber, obtain the fiber transmission properties of the incident particles with different energies and intensities, and provide theoretical basis for optimization design of imaging detector. Methods: We studied the fundamental information transmission character of the plastic scintillating fiber (PSF) linear array, which is an imaging detector for industrial purpose in some X-rays energy range. Results: By using Monte Carlo simulation method, we analyzed the responses of the PSF array under various low energies and luminosities of X-rays, and evaluated the Signal to Noise Ratio (SNR), Detector Quantum Efficiency (DQE) and Detector Efficiency (DE), which described the image quality of the PSF array detector. Conclusions: From the simulation results, we obtained the following three conclusions: (1) If the incident photons are of low energy and high intensity, the DQE of PSF and the obtained contrast of image would be better. (2) The DE of scintillating fiber generally goes down with the increment of incident energy, except in the middle energy region (about 60 keV) where DE goes up with the energy increment due to the influence of the μen value of the scintillating fiber material. (3) Because DE of scintillating fiber is low and the output visible photon number is small, which is fixed by the fiber characteristics itself, image intensifier must be added to detector system to enhance the image signal when scintillating fiber is used for image detector. (authors)

  14. Measurement of Fission Cross-Sections for Neutrons of Energies in the Range 40-500 keV

    Measurements have been made of the fission cross-section of U233, U234 , U236, Np237, Pu239 and Pu241 at several neutron energies between 40 keV and 500 keV. Measurements in this energy range are of importance in reactor calculations especially in fast dilute systems where the neutron flux is high in the 10- 100-keV energy range. Recent measurements at this laboratory of the U235 fission cross-section gave absolute values slightly lower than previous data. The present series of measurements are made relative to the new values of the U235 fission cross-section using back-to-back ionization chambers. The fissile foils were assayed by α-assay, direct weighing and coulometry. Good agreement was obtained between these assays. The fission measurements have an estimated accuracy of between 1 % and.2% and,combined with the, error on the U235 fission cross-section,give a final error of about 3% in the fission cross-sections. The present results together with those of previous measurements are given, and the corrections for fission- fragment absorption, backgrounds and scattering are discussed. (author)

  15. Change of primary cosmic radiation nuclear composition in the energy range 10^{15} - 10^{17} eV

    Barnaveli, A T; Chubenko, A P; Eristavi, N A; Khaldeeva, I V; Nesterova, N M; Verbetsky, Yu G; Verbetsky, Yu.G.

    2002-01-01

    The dependence E_h (N_e) of Extensive Air Shower (EAS) hadronic component energy flux on the number N_e of particles in EAS is investigated in the primary energy range of the order of 10^{15} - 10^{17} eV. The work was aimed at checking the existence of irregularities of E_h (N_e)/N_e behavior at these energies in several independent experiments. The investigation is carried out using large statistical material obtained at different configurations of experimental apparatus and under different triggering conditions. The existence of irregularities of E_h (N_e)/N_e behavior in the region Ne > 2*10^6 is confirmed. These irregularities have the character of sharp deeps and are located near the same values of N_e regardless of the experimental material and selection conditions used. So, at recent stage of research the existence of these irregularities of E_h (N_e)/N_e behavior in the range of N_e > 2*10^6 may be regarded as reliably established. This fact supports our earlier conclusion on the existence of primary...

  16. Conformers of Kojic Acid and Their Near-IR-Induced Conversions: Long-Range Intramolecular Vibrational Energy Transfer.

    Halasa, Anna; Reva, Igor; Lapinski, Leszek; Rostkowska, Hanna; Fausto, Rui; Nowak, Maciej J

    2016-05-01

    Conformational transformations were investigated for molecules of kojic acid trapped in low-temperature argon and nitrogen matrixes. Two conformers, differing from each other by 120° rotation of the hydroxymethyl (-CH2OH) moiety, were found to be populated in freshly deposited matrixes, prior to any irradiation. Matrixes containing isolated monomers of kojic acid were irradiated with narrowband, tunable near-infrared (near-IR) laser light. Excitations at wavenumbers corresponding to the overtone of the stretching vibration of the OH bond of the hydroxymethyl group led to conversion of one of the observed conformers into another. The direction of this conformational transformation depended on the wavenumber (within the 7126-7115 cm(-1) range) used for irradiation. The same conformational photoconversion was also observed to occur upon narrowband irradiation at much lower wavenumbers (from the 6468-6447 cm(-1) range). Near-IR light from this range selectively excites overtone vibrations of the OH group directly attached to the heterocyclic ring. Such an observation provides a convincing evidence of a long-range vibrational energy transfer from the initially excited OH group (directly attached to the ring) to the remote hydroxymethyl fragment which changes its orientation. Structural changes, occurring in matrix-isolated molecules of kojic acid upon near-IR excitation, were monitored by FTIR spectroscopy. PMID:27070389

  17. Defect formation energies and homogeneity ranges of rock salt-, pyrite-, chalcopyrite- and molybdenite-type compound semiconductors

    Fiechter, S. [Hahn-Meitner-Institut, Glienicker Strasse 100, Berlin D-14109 (Germany)

    2004-07-01

    Employing the generalisation of Van Vechten's cavity model, formation energies of neutral point defects in pyrites (FeS{sub 2}, RuS{sub 2}), chalcopyrites (II-IV-V{sub 2} and I-III-VI{sub 2}) as well as molybdenites (MoS{sub 2}, WS{sub 2}) have been estimated. As input parameters the fundamental band gaps, work functions, electron affinities, surface energies, coordination numbers, covalent or ionic radii and unit cell parameters were used. The values calculated for tetrahedrally and octahedrally coordinated compounds agreed well with measured values. The data obtained can be used to calculate point defect concentrations and homogeneity ranges as a function of partial pressure and temperature. Introducing charged vacancies, the conductivity type can be predicted.

  18. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    The accurate determination of the ambient dose equivalent in the mixed neutron–photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an “in-field” calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H⁎(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  19. Emulsion chamber observations of primary cosmic-ray electrons in the energy range 30-1000 GeV

    Nishimura, J.; Fujii, M.; Taira, T.; Aizu, E.; Hiraiwa, H.; Kobayashi, T.; Niu, K.; Ohta, I.; Golden, R. L.; Koss, T. A.

    1980-01-01

    The results of a series of emulsion exposures, beginning in Japan in 1968 and continued in the U.S. since 1975, which have yielded a total balloon-altitude exposure of 98,700 sq m sr s, are presented. The data are discussed in terms of several models of cosmic-ray propagation. Interpreted in terms of the energy-dependent leaky-box model, the spectrum results suggest a galactic electron residence time of 1.0(+2.0, -0.5) x 10 to the 7th yr, which is consistent with results from Be-10 observations. Finally, the possibility that departures from smooth power law behavior in the spectrum due to individual nearby sources will be observable in the energy range above 1 TeV is discussed.

  20. Mass Attenuation Coefficients of Binderless and Polylactic Acid Added Oil Palm Trunk Particleboard in the Diagnostic Energy Range

    Mohana Baskaran

    2015-01-01

    Full Text Available Two types of oil palm trunk particleboards namely binderless and polylactic acid (PLA added board were manufactured with a target density of 1.0 g/cm3. The mass attenuation coefficients of the binderless and PLA added particleboards were determined by using X-ray fluorescence (XRF photons emanating from high purity metal plates. The energies of the XRF emitted from those metal plates were in the range of 16.59 keV– 25.26 keV. The experimental values of the mass attenuation coefficients of the binderless particleboards and the XCOM calculated values for water are comparable. These results suggest that binderless particleboards have the potential to be a phantom material at diagnostic photon energies.

  1. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  2. The examinations of fatigue durability in the range of low cycle number of 13HMF steel used for energy pipes

    The paper deals with the fatigue tests in the range of low number of cycles, for the materials used in energy pipelines. The tests are performed both for the initial and after the long-term operating period. The paper presents the evaluation of fatigue durability of 13HMF steel at room temperature and 550oC on the basis of the performed metallurgical studies 'the degree of depletion' of the material after operating period has been determined according to the adapted quality for criteria for structure class evaluation. (author)

  3. A calculation on n-D scattering cross sections in the energy range 0 to 20 MeV

    A calculation on n-D scattering cross sections with phase shift analysis is carried out in the neutron energy range of 0 to 20 MeV. An optimum set of parameters are obtained by fitting the experimental data which include total, (n,2n) and differential cross section of n-D scattering. The comparisons were made between this calculated results and previous works. It was showed that the obtained differential elastic cross sections are in good agreement with the experimental values

  4. Calibration of an UTW Si(Li) detector in the 0.28-22.1 keV energy range

    Uzonyi, I; Borbely-Kiss, I; Kiss, A Z

    2003-01-01

    The application of such detectors in the sub-keV region has been quite limited supposedly due to the lack of well-established calibration methods and the difficulties associated with their operation. The aim of this study has been twofold: first to check the applicability of the (micro)PIXE method for efficiency measurement of an UTW detector in the C K-Ag K subalpha energy region using thick targets, allowing a simple and low-cost solution for this problem; second: to test the new version of the PIXEKLM program down to the sub-keV range. (R.P.)

  5. U.S. Department of Energy NESHAP Annual Report for CY 2014 Sandia National Laboratories Tonopah Test Range

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  6. Measurement of neutron capture cross section of 75As in the energy range from 29 to 1100 keV

    The cross sections for the 75As(n,γ)76As reaction were measured relatively to that of 197Au in neutron energy range from 29 to 1100 keV, using the activation technique. Neutrons were produced via the 7Li(p,n)7Be and T(p,n)3He reactions with a 2.5 MV Van de Graaff accelerator at Sichuan University. The activities after irradiation were measured with a calibrated high resolution HPGe detector. The errors of the measurements are 6.7%-7.8%. The experiment results were compared with existing data

  7. Characterisation of a TES-Based X-ray Microcalorimeter in the Energy Range from 150 to 1800 eV Using an Adiabatic Demagnetisation Refrigerator

    Gottardi, Luciano; Takei, Yoh; van der Kuur, Jan; de Korte, Piet A. J.; Hoevers, Henk F.C.; Boersma, Dirk; Bruijn, Marcel; Mels, Wim; Ridder, Marcel L.; Takken, Dick; van Weers, Henk

    2016-01-01

    We characterised a TES-based X-ray microcalorimeter in an adiabatic demagnetisation refrigerator (ADR) using synchrotron radiation. The detector response and energy resolution was measured at the beam-line in the PTB radiometry laboratory at the electron storage ring BESSY II in the range from 200 to 1800 eV. We present and discuss the results of the energy resolution measurements as a function of energy, beam intensity and detector working point. The measured energy resolution ranges between...

  8. HESS J1427-608: an unusual hard unbroken $\\gamma-$ray spectrum in a very wide energy range

    Guo, Xiao-Lei; Liao, Neng-Hui; Yuan, Qiang; Gao, Wei-Hong; Fan, Yi-Zhong; Liu, Si-Ming

    2016-01-01

    We report the detection of a GeV $\\gamma$-ray source which is likely associated with the unidentified very-high-energy (VHE) $\\gamma$-ray source HESS J1427-608 with the Pass 8 data recorded by the Fermi Large Area Telescope. The photon spectrum of this source is best described by a power-law with an index of $1.85\\pm0.17$ in the energy range of $3-500$ GeV, and the measured flux connects smoothly with that of HESS J1427-608 at a few hundred GeV. This source shows no significant extended morphology and time variation. The broadband GeV-TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427-608 may be a PeV particle accelerator. We discuss possible nature of HESS J1427-608 according to the multi-wavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multi-wavelength data from radio to ...

  9. The Cosmic Ray p+He energy spectrum in the 3-3000 TeV energy range measured by ARGO-YBJ

    Mari, S M

    2015-01-01

    The ARGO-YBJ experiment is a full coverage air shower detector operated at the Yangbajing International Cosmic Ray Observatory. The detector has been in stable data taking in its full configuration since November 2007 to February 2013. The high altitude and the high segmentation and spacetime resolution offer the possibility to explore the cosmic ray energy spectrum in a very wide range, from a few TeV up to the PeV region. The high segmentation allows a detailed measurement of the lateral distribution, which can be used in order to discriminate showers produced by light and heavy elements. In this work we present the measurement of the cosmic ray light component spectrum in the energy range 3-3000 TeV. The analysis has been carried out by using a two-dimensional unfolding method based on the Bayes' theorem.

  10. The Cosmic Ray p+He energy spectrum in the 3-3000 TeV energy range measured by ARGO-YBJ

    Mari, S. M.; Montini, P.

    2016-07-01

    The ARGO-YBJ experiment is a full coverage air shower detector operated at the Yangbajing International Cosmic Ray Observatory. The detector has been in stable data taking in its full configuration since November 2007 to February 2013. The high altitude and the high segmentation and spacetime resolution offer the possibility to explore the cosmic ray energy spectrum in a very wide range, from a few TeV up to the PeV region. The high segmentation allows a detailed measurement of the lateral distribution, which can be used in order to discriminate showers produced by light and heavy elements. In this work we present the measurement of the cosmic ray light component spectrum in the energy range 3-3000 TeV. The analysis has been carried out by using a two-dimensional unfolding method based on the Bayes' theorem.

  11. SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning

    Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). The dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path

  12. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    Kovalenko, V. N.; Vechernin, V. V. [Saint Petersburg State University (Russian Federation)

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.

  13. Long-Range Energy Transfer and Singlet-Exciton Migration in Working Organic Light-Emitting Diodes

    Ingram, Grayson L.; Nguyen, Carmen; Lu, Zheng-Hong

    2016-06-01

    Rapid industrialization of organic light-emitting devices for flat-panel displays and solid-state lighting makes a deep understanding of device physics more desirable than ever. Developing reliable experimental techniques to measure fundamental physical properties such as exciton diffusion lengths is a vital part of developing device physics. In this paper, we present a study of exciton diffusion and long-range energy transfer in working organic light-emitting devices, and a study of the interplay between these two tangled processes through both experimental probes and simulations. With the inclusion of multiple factors including long-range energy transfer, exciton boundary conditions, and the finite width of the exciton generation zone, we quantify exciton migration based on emission characteristics from rubrene sensing layers placed in working organic light-emitting devices. This comprehensive analysis is found to be essential to accurately measuring exciton diffusion length, and in the present case the measured singlet-exciton diffusion length in the archetype material 4' -bis(carbazol-9-yl)biphenyl is 4.3 ±0.3 nm with a corresponding diffusivity of (2.6 ±0.3 )×10-4 cm2/s .

  14. Home on the range: workers and wildlife tread warily between astronomical underground flows of energy and live shells

    On a 2,600 square kilometres parcel of grassland that was once home to 300 species of dinosaurs, three Canadian entities, the military, the Alberta Energy Company and a community of rare and endangered animals provide an example of peaceful co-existence. For eight months of the year the Alberta Energy Company shares the land with Canadian and British military units; all shallow wells have been placed underground so the military can hold annual live-fire exercises. Gas reservoirs exists beneath 57 square kilometres of the range lying at 1,000 metres depth at 4,540 pounds of pressure, which can be increased to 2,050 pounds. The surface of the Suffield range belongs to the federal government, the mineral rights are held by the Province of Alberta, and proghorn antelopes, apparently unconcerned, graze on the ground as if the land belonged to them. They, and the golden eagles that nest in the banks of the South Saskatchewan River appear to be surviving the activities of their two giant co-habitants relatively well

  15. A-periodic multilayer development for attosecond pulses in the 300-500 eV photon energy range

    Guggenmos, Alexander; Hofstetter, Michael; Kleineberg, Ulf [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Rauhut, Roman [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2011-07-01

    The development of ultrafast X-ray pulses in the sub-femtosecond time regime is a cutting edge technology for studying electron dynamics in atoms, molecules or solid surfaces/nanostructures by means of pump/probe electron spectroscopy. XUV elements as multilayer mirrors and thin metal filters are used to filter and shape attosecond bursts from high harmonic radiation. One near future goal is to extend the current technology to higher photon energies, reaching the water window range around 300-500 eV, where the in-vitro investigation of bio-materials on ultra-short time scales becomes possible. Following the ideas of nowadays experimental setups, both the spectral and the temporal resolution can be determined and guided by means of periodic and a-periodic multilayer mirrors, allowing for spectral and temporal soft X-ray pulse shaping. We will present first investigations of periodic and a-periodic multilayer XUV optics in that energy range of 300-400 eV and discuss their applications for filtering single attosecond pulses from High Harmonic radiation. Simulations and optimizations of various binary and ternary multilayer material systems as well as first experimental results achieved by Ion Beam Deposition and in-situ ellipsometry of the deposited nanolayers are demonstrated.

  16. A-periodic multilayer development for attosecond pulses in the 300-500 eV photon energy range

    The development of ultrafast X-ray pulses in the sub-femtosecond time regime is a cutting edge technology for studying electron dynamics in atoms, molecules or solid surfaces/nanostructures by means of pump/probe electron spectroscopy. XUV elements as multilayer mirrors and thin metal filters are used to filter and shape attosecond bursts from high harmonic radiation. One near future goal is to extend the current technology to higher photon energies, reaching the water window range around 300-500 eV, where the in-vitro investigation of bio-materials on ultra-short time scales becomes possible. Following the ideas of nowadays experimental setups, both the spectral and the temporal resolution can be determined and guided by means of periodic and a-periodic multilayer mirrors, allowing for spectral and temporal soft X-ray pulse shaping. We will present first investigations of periodic and a-periodic multilayer XUV optics in that energy range of 300-400 eV and discuss their applications for filtering single attosecond pulses from High Harmonic radiation. Simulations and optimizations of various binary and ternary multilayer material systems as well as first experimental results achieved by Ion Beam Deposition and in-situ ellipsometry of the deposited nanolayers are demonstrated.

  17. Stopping power of palladium for protons in the energy range 0.300–3.100 MeV

    Miranda, P.A., E-mail: pjmirand@gmail.com; Sepúlveda, A.; Morales, J.R.; Rodriguez, T.; Burgos, E.; Fernández, H.

    2014-01-01

    The stopping power of palladium for protons has been measured using the transmission method with an overall uncertainty of around 5% over the energy range E{sub p}=(0.300–3.100) MeV. These stopping power data are then compared to stopping power values calculated by the SRIM-2010 code and to those derived from a model based on the dielectric formalism. Subsequently, and within the framework of the modified Bethe–Bloch theory, this stopping power data were used for extracting Pd target mean excitation and ionization potential, (I = 468 ± 5 eV), and Barkas effect parameter, (b = 1.51 ± 0.06). A good agreement is found between the obtained results and values reported in literature. It is worth mentioning that these are the first reported results for protons on palladium over this energy range, which is often used in IBA applications, such as Rutherford Backscattering Spectrometry (RBS) and Proton Induced X-ray Emission (PIXE)

  18. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data

  19. Study of unfolding methods for X-ray spectra obtained with CDTE detectors in the mammography energy range

    Quality control parameters for an X-ray tube strongly depend on the accurate knowledge of the primary spectrum, but it is difficult to obtain it experimentally by direct measurements. Indirect spectrometry techniques such as Compton scattering can be used in X-ray spectrum assessment avoiding the pile-up effect in detectors. However, an unfolding method is required for this kind of measurements. In previous works, a methodology to assess primary X-ray spectra in the diagnostic energy range by means of the Compton scattering technique has been analysed. This methodology included a Monte Carlo simulation model, using the MCNP5 code, of the actual experimental set-up providing a Pulse Height Distribution (PHD) for a given primary spectrum. It reproduced the interaction of photons and electrons with the Compton spectrometer and with a High Purity Germanium detector. In this work, a CdTe detector is proposed instead of the HP Germanium. CdTe detector does not require a liquid nitrogen cooling system, but its resolution is poor for the same energy range and its efficiency comes down for energies greater than 55 keV being 70% at 90 keV. In despite of these disadvantages, CdTe detector has been considered due to its low cost and easy handling and portability. The model can provide a PHD and a Response Matrix, for different X-ray spectra, taken from the IPEM 78 catalogue. The primary spectrum can be estimated applying the MTSVD (Modified Truncated Singular Value Decomposition) and the Tikhonov unfolding method. Both unfolding methods cause some loss of information on the reconstructed primary spectra. In this paper, a comparison of the ability to obtain primary spectra using both MTSVD and Tikhonov unfolding methods has been done. As well a sensitivity analysis in order to test the proposed unfolding methods when they are applied to PHDs obtained with the MCNP model has been developed. A variation on parameters such as target materials and voltages over the mammography

  20. Two-electron R-matrix approach to calculations of potential-energy curves of long-range Rydberg molecules

    Tarana, Michal; Čurík, Roman

    2016-05-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. The method is based on a two-electron R-matrix approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via a multichannel version of the Coulomb Green's function. This approach is applied to a study of Rydberg states of Rb2 for internuclear separations R from 40 to 320 bohrs and energies corresponding to n from 7 to 30. We report bound states associated with the low-lying 3Po resonance and with the virtual state of the rubidium atom that turn into ion-pair-like bound states in the Coulomb potential of the atomic Rydberg core. The results are compared with previous calculations based on single-electron models employing a zero-range contact-potential and short-range modele potential. Czech Science Foundation (Project No. P208/14-15989P).

  1. High-accuracy determination of the relative full energy peak efficiency curve of a coaxial HPGe detector in the energy range 700-1300 keV

    A method for the high-accuracy determination of the relative full energy peak efficiency is established. Radionuclides that emit at least two gamma-ray lines for which the relative intensity can be found (from the decay scheme) to much better than ±0.1% were used as calibration standards. Specifically, the 889 and 1120 keV lines of 46Sc, the 983 and 1312 keV lines of 48Sc, the 1173 and 1332 keV lines of 60Co, and the 702 and 871 keV lines of 94Nb were implemented. The high-accuracy calibration was taken to extend from the lowest line of 94Nb at 702 keV to the highest line of 60Co at 1332 keV. An analytical expression, based on linear least-squares fitting, was developed to describe the behavior of the relative efficiency curve in that energy range. As a result, the ability of predicting relative full energy peak efficiencies to within ±0.1% (over most of the energy range) was demonstrated. The presented method is applicable in any measurement that requires the minimum calibration bias in the determination of reaction rate ratios. Applications in neutron activation analysis (NAA) and in nuclear reactor dosimetry represent examples of such situations. (orig.)

  2. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    Borges, Volnei; Vilhena, Marco Tullio, E-mail: borges@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Fernandes, Julio Cesar Lombaldo, E-mail: julio.lombaldo@ufrgs.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada

    2011-07-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS{sub N} method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS{sub N} nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  3. Energy dependence of some neutron detector sensitivity in the energy range from 17 keV up to 1 MeV

    The results of experimental determination of sensitivity of neutron detectors used as dosimeters in the energy range from 17 keV to 1 MeV are presented. The measurements were performed in the EhG-2.5 accelerator. Monoenergetic neutrons were produced in the T (p, n)3He reaction at different proton energies. The detectors were placed at angles from 30 deg to 120 deg to proton beam direction. The detector sensitivity was evaluated by comparison of their values with those of the OVC-3M standard neutron counter. The obtained results could be used for determining energy dependences of sensitivities of detectors under study and for evaluating the errors of measurements of neutron doses in the radiation fields behind nuclear-physical installation shielding

  4. Correlation between blister skin thickness, the maximum in the damage-energy distribution, and projected ranges of He+ ions in metals: V

    In these experiments a systematic study of the correlation of the skin thickness measured directly by scanning electron microscopy with both the calculated projected-range values and the maximum in the damage-energy distribution has been conducted for a broad helium-ion energy range (100 keV-1000 keV in polycrystalline vanadium. (Auth.)

  5. Energy transport in the three coupled α-polypeptide chains of collagen molecule with long-range interactions effect.

    Mvogo, Alain; Ben-Bolie, G H; Kofané, T C

    2015-06-01

    The dynamics of three coupled α-polypeptide chains of a collagen molecule is investigated with the influence of power-law long-range exciton-exciton interactions. The continuum limit of the discrete equations reveal that the collagen dynamics is governed by a set of three coupled nonlinear Schrödinger equations, whose dispersive coefficient depends on the LRI parameter r. We construct the analytic symmetric and asymmetric (antisymmetric) soliton solutions, which match with the structural features of collagen related with the acupuncture channels. These solutions are used as initial conditions for the numerical simulations of the discrete equations, which reveal a coherent transport of energy in the molecule for r > 3. The results also indicate that the width of the solitons is a decreasing function of r, which help to stabilize the solitons propagating in the molecule. To confirm further the efficiency of energy transport in the molecule, the modulational instability of the system is performed and the numerical simulations show that the energy can flow from one polypeptide chain to another in the form of nonlinear waves. PMID:26117109

  6. Differential cross section measurement of elastic scattering 12C(p,p)12C in the astrophysical range of energy

    Full text: The fulfillment of planned works on measurements of differential cross sections of elastic scattering of protons on nuclear 12C at the energy region of 350†1050 keV suggests the preparation of thin self - supporting carbon target. The self - supporting target is necessary in order to perform investigations in the total angular range. In the future last data will be used in order to determine optical potentials and scattering phases for this nuclear in the energy range of astrophysical interest. There was prepared target layer of the 12C with natural composition of carbon and of thickness of 17.4 μg/cm2. The spraying was conducted in the vacuum evaporation installation (VUP - 4) by an electron bombardment method. Carbon was sprayed on a glass plate with previously deposited of layer salt. After a heating during 12 hours at the temperature of 150 oC the film of carbon was floated from glass plate and self - supporting target has been picked up on the specially prepared target frame. In order to determine thickness of target there was used the resonance chamber, installed in the protons channel of the accelerator RAC - 2 - 1 (INP NNC RK), with the help of which there was measured energy loss of the protons beam during the passage through target, disposed in the central chamber. For this purpose there was used the reaction 27Al(p,γ)28Si with narrow resonance with ER = 992 keV and with detection of gamma-quanta with Eγ = 1779 keV. On shift of the resonance ER=992 keV in the reaction 27Al(p,γ)28Si, which takes place owing to protons energy loss in the thickness of carbon film, and using table values of brake quantities S(Ep)[MeV·cm2/g] [1], there was determined thickness of this fine film. Such the method allows to determine thicknesses of films in the interval of (10 † 100) mcg/cm2 with the accuracy of not worse than 5%. In the present work there were carried out measurements of angular distributions of cross sections of the elastic scattering 12C

  7. Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning

    Forecasting of electricity demand has assumed a lot of importance to provide sustainable solutions to the electricity problems. LEAP has been used to forecast electricity demand for the target year 2030, for the state of Maharashtra (India). Holt’s exponential smoothing method has been used to arrive at suitable growth rates. Probable projections have been generated using uniform gross domestic product (GDP) growth rate and different values of elasticity of demands. Three scenarios have been generated which include Business as Usual (BAU), Energy Conservation (EC) and Renewable Energy (REN). Subsequent analysis on the basis of energy, environmental influence and cost has been done. In the target year 2030, the projected electricity demand for BAU and REN has increased by 107.3 per cent over the base year 2012 and EC electricity demand has grown by 54.3 per cent. The estimated values of green house gas (GHG) for BAU and EC, in the year 2030, are 245.2 per cent and 152.4 per cent more than the base year and for REN it is 46.2 per cent less. Sensitivity analysis has been performed to study the effect on the total cost of scenarios. Policy implications in view of the results obtained are also discussed. - Highlights: • Forecasted electricity scenarios by Long Range Energy Alternatives Planning (LEAP). • Critically analyzed the demand and supply prior to 2012 for a period of six years. • Used Holt’s exponential smoothing method ARIMA (0,1,1) for finding growth rates. • Devised suitable LEAP model for the generated scenarios. • Discussed policy implications for the generated scenarios

  8. Energy response of GR-200A thermoluminescence dosemeters to 60Co and to monoenergetic synchrotron radiation in the energy range 28-40 keV.

    Emiro, F; Di Lillo, F; Mettivier, G; Fedon, C; Longo, R; Tromba, G; Russo, P

    2016-01-01

    The response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated (60)Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to (60)Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility. PMID:25737582

  9. Biofouling community composition across a range of environmental conditions and geographical locations suitable for floating marine renewable energy generation.

    Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J

    2016-03-01

    Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria. PMID:26900732

  10. Particle Production in Hadron - Nuclear Matter in the Energy Range Between 50-GeV - 150-GeV

    Braune, Kersten

    1980-01-01

    In an experiment at the CERN SPS the particle production in hadron-nucleus collisions in an energy range between 50 and 150 GeV was studied. The detector detects charged particles and separates them into two groups: fast particles, mainly produced pions, and slow particles, mainly recoil protons from the nucleus, whereby the boundary lies at a velocity v/c = 0.7. Multiplicity and angular respectively pseudo-rapidity distributions were measured. From the data analysis resulted that the slow particles are a measure for the number of collisions of the projectile in the nucleus. The properties of the fast particle were studied in dependence on . Thereby it was shown that at a description of the measured results using the variable the dependence on the projectile and on the mass number A of the target are extensively eliminated.

  11. Adiabatic potential-energy curves of long-range Rydberg molecules: Two-electron R -matrix approach

    Tarana, Michal; Čurík, Roman

    2016-01-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. Only diatomic molecules are considered. The method is based on a two-electron R -matrix approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via a multichannel version of the Coulomb Green's function. This approach is put into a test by its application to a study of Rydberg states of the hydrogen molecule for internuclear distances R from 20 to 400 bohrs and energies corresponding to n from 3 to 22. The results are compared with previous quantum chemical calculations (lower quantum numbers n ) and computations based on contact-potential models (higher quantum numbers n ).

  12. Activation cross sections of deuteron induced reactions on niobium in the 30-50 MeV energy range

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A. V.

    2016-04-01

    Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of 93Nb(d,x)93m,90Mo, 92m,91m,90Nb, 89,88Zr and 88,87m,87gY in the energy range of 30-50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  13. Adiabatic potential energy curves of long-range Rydberg molecules: Two-electron R-matrix approach

    Tarana, Michal

    2016-01-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. Only diatomic molecules are considered. The method is based on a two-electron \\rmath approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via multichannel version of the Coulomb Green's function. This approach is put into a test by its application to a study of Rydberg states of the hydrogen molecule for internuclear distances $R$ from 20 to 400 bohrs and energies corresponding to $n$ from 3 to 22. The results are compared with previous quantum chemical calculations (lower quantum numbers $n$) and computations based on contact potential models (higher quantum numbers $n$).

  14. Stopping power of palladium for protons in the energy range 0.300-3.100 MeV

    Miranda, P. A.; Sepúlveda, A.; Morales, J. R.; Rodriguez, T.; Burgos, E.; Fernández, H.

    2014-01-01

    The stopping power of palladium for protons has been measured using the transmission method with an overall uncertainty of around 5% over the energy range Ep=(0.300-3.100) MeV. These stopping power data are then compared to stopping power values calculated by the SRIM-2010 code and to those derived from a model based on the dielectric formalism. Subsequently, and within the framework of the modified Bethe-Bloch theory, this stopping power data were used for extracting Pd target mean excitation and ionization potential, (I = 468 ± 5 eV), and Barkas effect parameter, (b = 1.51 ± 0.06). A good agreement is found between the obtained results and values reported in literature.

  15. Report of the subpanel on long-range planning for the US High-Energy-Physics Program of the High-Energy-Physics Advisory Panel

    The US High Energy Program remains strong, but it faces vigorous competition from other regions of the world. To maintain its vitality and preeminence over the next decade it requires the following major ingredients: (1) strong exploitation of existing facilities; (2) the expeditious completion of construction projects which will expand these facilities over the next few years; (3) the construction of a substantial new facility to be ready for research by the end of the 1980's; and (4) the vigorous pursuit of a wide range of advanced accelerator R and D programs in preparation for the design and construction of a higher energy accelerator which would probably be initiated near the end of this decade. The Subpanel has considered how best to accomplish these goals under two different budgetary assumptions; namely, average yearly support levels of $440M DOE, $35M NSF, and $395M DOE, $34M NSF (FY 1982 dollars). It has also considered the impact of a yet lower support level of $360M DOE and $32M NSF. A description of facilities in high energy physics is given, and facility recommendations and long range plans are discussed. Recommendations for international collaboration are included

  16. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  17. Simulation of electron tracks in the energy range of 0.01 to 10 keV in water vapour

    The primary aim of this study was to develop a numerical program for simulating electron traces in steam for the energy range of 0.01 to 10 keV, and to prove the quality of the simulation by comparing calculations with measurements from current literature. Moreover, the application range of the program was to be shown by means of practical examples. The task could be performed by applying the Platzman method for analyzing experimental data with respect to their necessary consistency with established theoretical knowledge. The differential oscillator strength distribution, major differential ionization cross-sections and cross-sections for excitation and elastic collision were derived. By comparing major integral factors (e.g., W value (Co80)) with calculated results, it was possible to determine, e.g., the secondary electron cross-sections with the help of consistency tests. These derived activation cross-sections were used as the core of a Monte Carlo calculation programme (MOCA 87) for simulating electron trace structures which were evaluated in such a way that various calculation values could be compared critically with values obtained experimentally (e.g., for yields, depth and radial dose curves, micro-dosimetric distribution). On the whole, the programme exhibited sufficient consistency. (orig./HP)

  18. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N(γ) ∼ γ–p with γ1 2, especially for a finite high-energy limit, γ2, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> η2 with parameter η = γ2/γ1. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, αν, for the high-frequency range ν >> ν2 (with ν2 the synchrotron frequency corresponding to γ2). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  19. Comparison of Physical Therapy with Energy Healing for Improving Range of Motion in Subjects with Restricted Shoulder Mobility

    Ann Linda Baldwin

    2013-01-01

    Full Text Available Two forms of energy healing, Reconnective Healing (RH and Reiki, which involve light or no touch, were tested for efficacy against physical therapy (PT for increasing limited range of motion (ROM of arm elevation in the scapular plane. Participants were assigned to one of 5 groups: PT, Reiki, RH, Sham Healing, or no treatment. Except for no treatment, participants were blinded as to grouping. Range of Motion, self-reported pain, and heart rate variability (HRV were assessed before and after a 10-minute session. On average, for PT, Reiki, RH, Sham Healing, and no treatment, respectively, ROM increased by 12°, 20°, 26°, 0.6°, and 3° and pain score decreased by 11.5%, 10.1%, 23.9%, 15.4%, and 0%. Physical therapy, Reiki, and RH were more effective than Sham Healing for increasing ROM (PT: , ; Reiki: , ; RH: , . It is possible that this improvement was not mediated by myofascial release because the subjects’ HRV did not change, suggesting no significant increase in vagal activity. Sham treatment significantly reduced pain compared to no treatment (, and was just as effective as PT, Reiki, and RH. It is the authors’ opinion that the accompanying pain relief is a placebo effect.

  20. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range

    Condeles, J. F.; Mulato, M.

    2016-02-01

    Lead iodide polycrystalline films have been deposited on corning glass substrates using solution evaporation in oven. Films 6 μm-thick were obtained with full coverage of the substrates as verified by scanning electron microscopy. Some pin-holes were observable. X-ray diffraction revealed a crystalline structure corresponding to the 4 H-PbI2 polytype formation. Polarized Raman scattering experiments indicated a lamellar structure. Anisotropy was also investigated using depolarization ratio calculations. The optical and electrical properties of the samples were investigated using photoluminescence and dark conductivity as a function of temperature, respectively. Activation energies of 0.10 up to 0.89 eV were related to two main electrical transport mechanisms. Films were also exposed to X-ray irradiation in the mammography X-ray energy range. The detector produced was also exposed to X-ray from 5 mR up to 1450 mR. A linear response was observed as a function of dose with a slope of 0.52 nA/mm2 per mR.

  1. On the complex structure of the optical spectra of a tetragonal calomel single crystal in a wide energy range

    Sobolev, V. V., E-mail: sobolev@uni.udm.ru [Udmurt State University (Russian Federation); Sobolev, V. Val. [Izhevsk State Technical University (Russian Federation); Anisimov, D. V. [Udmurt State University (Russian Federation)

    2016-01-15

    The spectral complex of optical functions of the calomel Hg{sub 2}Cl{sub 2} single crystal is determined in the range 0–20 eV at 300 K in unpolarized light. The spectra of the imaginary part of the permittivity ε{sub 2}(E), the bulk–Imε{sup –1} and the surface–Im(1 + ε){sup –1} electron energy losses are decomposed into elementary bands. Their main parameters, including energies and oscillator strengths of the transition bands are determined. Calculations are performed on the basis of the experimental reflectance spectrum of the crystal cleavage. Computer programs based on Kramers–Kronig relations, analytical formulas, and the advanced parameterfree method of combined Argand diagrams are used. The main features of the spectral set of optical functions and the parameters of expansion band components ε{sub 2}(E),–Imε{sup –1}, and–Im(1 + ε){sup –1} are determined.

  2. The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province

    Armstrong, Richard L.

    It is now just over a decade since OPEC escalated the price of oil and triggered a flurry of alternate energy research and changing energy consumption practices. One scientific impact of that historical economic turning point was the launching of geothermal exploration programs of unprecedented intensity that focused on Cenozoic volcanic rocks and active, as well as fossil, geothermal systems. The good science that was already being done on such rocks and systems was both accelerated and diluted by government-funded research and energy industry exploration efforts. After the initial flood of detailed reports, gray literature, and documents interred in company files, we are observing the appearance of syntheses of just what happened and what progress was achieved during the geothermal boom (which has now wilted to the quiet development of a few most promising sites). Recent examples of geothermal synthesis literature include the book Geothermal Systems by L. Rybach and L.J. Muffler (John Wiley, New York, 1981), publications like Oregon Department of Geology and Mineral Industries Paper 15 by G.R. Priest et al. (1983) entitled “Geology and geothermal resources of central Oregon Cascade range,” and informative maps like the U.S. Geological Survey series summarizing late Cenozoic volcanic rock distribution and age (R.G. Luedke and R.L. Smith, maps 1-1091 A to D, 1979 to 1982), and state and regional geothermal resources maps (NOAA National Geophysical Data Center, 1977-1982). The book under review here is part of this second literature wave, a useful primary reference, collection of syntheses, and literature guide but certainly not unique.

  3. Modeling an aggressive energy-efficiency scenario in long-range load forecasting for electric power transmission planning

    Highlights: • Improved representation of end-use energy efficiency is needed for load forecasting. • An emergent application is long-range electric power transmission planning. • A “hybrid” econometric-technology forecasting approach incorporates efficiency. • A high efficiency scenario was created for Western U.S. transmission planning. • Significant load-growth reductions from increased end-use efficiency are possible. - Abstract: Improving the representation of end-use energy efficiency, and of the effects of policies and programs to promote it, is an emergent priority for electricity load forecasting models and methods. This paper describes a “hybrid” load forecasting approach combining econometric and technological elements that is designed to meet this need, in a novel application to long-run electric power transmission planning in the western United States. A twenty-year load forecast incorporating significant increases in energy-efficiency programs and policies across multiple locations was developed in order to assess the potential of efficiency to reduce load growth and requirements for expanded transmission capacity. Load forecasting and transmission planning background is summarized, the theoretical and empirical aspects of the hybrid methodology described, and the assumptions, structure, data development, and results of the aggressive efficiency scenario are presented. The analysis shows that substantial electricity savings are possible in this scenario in most residential and commercial end-uses, and in the industrial sector, with magnitudes depending upon the specific end-use as well as upon the geographic location of the utility or other entity providing the electricity

  4. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  5. Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approach.

    Sun, Haitao; Ryno, Sean; Zhong, Cheng; Ravva, Mahesh Kumar; Sun, Zhenrong; Körzdörfer, Thomas; Brédas, Jean-Luc

    2016-06-14

    We propose a new methodology for the first-principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a nonempirical, optimally tuned range-separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values, as well as with the results of many-body perturbation theory within the GW approximation at a fraction of the computational costs. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to-crystal phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials. PMID:27183355

  6. Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)–Tuned Range-Separated Density Functional Approach

    Sun, Haitao

    2016-05-16

    We propose a new methodology for the first-principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a non-empirical, optimally tuned range-separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values as well as with the results of many-body perturbation theory within the GW approximation at a fraction of the computational costs. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to-crystal-phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials.

  7. Energy responses of the LiF series TL pellets to high-energy photons in the energy range from 1.25 to 21 MV

    The energy responses for the KLT-300(LiF:Mg,Cu,Na,Si, Korea), GR-200(LiF:Mg,Cu,P (China)) and MCP-N(LiF:Mg,Cu,P (Poland)) thermoluminescence(TL) pellets were studied for a photon radiation with energies from 1.25 MeV(60Co) to 21 MV (Microtron) to verify the usefulness of the calibration for the radiotherapy beams. The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) have performed thermoluminescence dosimetry (TLD) audits to verify the calibration of the beams by TL powder, but TL pellets were used in this study because the element correction factor (ECF), defined as the factor to correct the variations that all TL dosemeters cannot be manufactured to have exactly the same TL efficiency, for each TL pellet could be accurately derived and be handled conveniently when compared with the powder. Also several works for the energy response of the TLDs were done for the low-energy photon beams up to 60Co, but they will be extended in this experiment to the high photon energies (up to 20 MV), which are widely used in the therapy level of a radiation. The PTW 30006 ionisation chamber was calibrated by the Korea primary standards to establish the air-kerma rates and the TL pellets were irradiated in a specially designed waterproof pellet holder in a water phantom (30 x 30 x 30 cm3) just like the IAEA postal audits programme. This result was compared with that of another type of phantom [10 (W) x 10 (L) x 10 (H) cm3 PMMA Perspex phantom for the 60Co and 6 MV photon, and 10 x 10 x 20 (H) cm3 for the 10 and 21 MV photon] for its convenient use and easy handling and installation in a hospital. The results show that the differences of the responses for the water phantom and PMMA Perspex phantom were negligible, which is contrary to the general conception that a big difference would be expected. For an application of these results to verify the therapy beams, an appropriate energy correction factor should be applied to the energies and phantom

  8. Fission fragment mass, kinetic energy and angular distribution for 235U(n,f) in the neutron energy range from thermal to 6 MeV

    A double Frisch gridded ionization chamber has been used for the measurements. For both fission fragments the mass, kinetic energy and emission angle is found. Data have been measured at different neutron energies, Esub(n), ranging from thermal to 6.0 MeV in steps of 0.5 MeV. The measured angular anisotropies will be shown. A fit, based on statistical theory, to earlier measurements of negative anisotropies for Esub(n)<=0.2 MeV will be discussed.The measured total kinetic energy averaged over all fragment masses, TKE-bar(Esub(n)), shows a sudden decrease at Esub(n)approx. 4.5 MeV in agreement with earlier measurements. This sudden decrease can not be explained by the measured change in the mass distribution. The present data of TKE-bar(Esub(n)) as function of mass-split reveal that TKE-bar(Esub(n)) decreases with Esub(n) for mass splits around the 104/132 split as predicted by calculations of B.D. Wilkins et al. It is also seen that TKE-bar(Esub(n)) increases with Esub(n) for the symmetric and the extreme asymmetric fissions. The very structured mass distribution from approximately cold fragmentation will be presented. (author)

  9. Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20–20,000 eV

    Systematic calculations of the stopping powers (SP) and inelastic mean free paths (IMFP) for 20–20,000 eV electrons in a group of 10 important scintillators have been carried out. The calculations are based on the dielectric model including the Born–Ochkur exchange correction and the optical energy loss functions (OELFs) are empirically evaluated because of the lack of available experimental optical data for the scintillators under consideration. The evaluated OELFs are examined by both the f-sum rule and the calculation of mean ionization potential. The SP and IMFP data presented here are the first results for the 10 scintillators over the energy range of 20–20,000 eV, and are of key importance for the investigation of liquid scintillation counting. - Highlights: ► Scintillators are important materials used in liquid scintillation counting (LSC). ► Stopping power (SP) and inelastic mean free path (IMFP) are important for LSC. ► SPs and IMFPs for electrons of 20 eV–20 keV in 10 scintillators systematically calculated. ► Dielectric model used and optical energy loss function empirically evaluated. ► SP and IMFP data presented here are the first results for the 10 scintillators.

  10. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60?C to 60?C Project

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating...

  11. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  12. Search for galactic sources and bursts of x radiation in the 40-290 keV energy range with a spectrometer of the Kosmos-428 satellite

    Stationary sources and bursts of X-radiation in the 40-290 keV energy range have been found in the cetus constellation as a result of observations carried out with a spectrometer of the ''Kosmos-3428'' satellite

  13. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  14. An overview on incomplete fusion reaction dynamics at energy range ∼ 3-8 MeV/A

    Ali, Rahbar, E-mail: rahbarali1@rediffmail.com [Department of Physics, G. F. (P. G.) College, Shahjahanpur-242001 (India); Singh, D. [Centre for Applied Physics, Central University of Jharkhand, Ranchi-825202 (India); Ansari, M. Afzal [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India); Kumar, Rakesh; Muralithar, S.; Golda, K. S.; Singh, R. P.; Bhowmik, R. K. [Inter University Accelerator Centre, New Delhi-110067 (India); Rashid, M. H.; Guin, R.; Das, S. K. [Variable Energy Cyclotron Centre, Kolkata-700064 (India)

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in α-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ∼165MeV) and {sup 16}O+{sup 156}Gd (E ∼ 72, 82 and 93MeV) systems, have been measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ∼ 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.

  15. Simultaneous solution of Kompaneets equation and radiative transfer equation in the photon energy range 1-125 keV

    Radiative transfer equation in plane parallel geometry and Kompaneets equation is solved simultaneously to obtain theoretical spectrum of 1-125 keV photon energy range. Diffuse radiation field are calculated using time-independent radiative transfer equation in plane parallel geometry, which is developed using discrete space theory (DST) of radiative transfer in a homogeneous medium for different optical depths. We assumed free-free emission and absorption and emission due to electron gas to be operating in the medium. The three terms n, n2 and (∂n/∂xk) where n is photon phase density and xk=(hν/kTe), in Kompaneets equation and those due to free-free emission are utilized to calculate the change in the photon phase density in a hot electron gas. Two types of incident radiation are considered: (1) isotropic radiation with the modified black body radiation IMB and (2) anisotropic radiation which is angle dependent. The emergent radiation at τ=0 and reflected radiation τ=τmax are calculated by using the diffuse radiation from the medium. The emergent and reflected radiation contain the free-free emission and emission from the hot electron gas. Kompaneets equation gives the changes in photon phase densities in different types of media. Although the initial spectrum is angle dependent, the Kompaneets equation gives a spectrum which is angle independent after several Compton scattering times.

  16. Precise Measurement of the $\\bar{p}p$ Total Cross-Section in the ISR Energy Range

    2002-01-01

    The major aim of this experiment is the precise measurement of the antiproton-proton total cross-section in the ISR energy range, using the total-rate method. The proton-proton total cross-section is remeasured with the same method and the same apparatus, and a precision of 0.5\\% is expected for both cross-sections. The total-rate method consists in the simultaneous measurement of the total interaction rate and the ISR luminosity. This is done with a set of scintillation-counter hodoscopes covering over 99.99\\% of the solid angle, which are sensitive to over 95\\% of all interactions. In addition to these detectors, small-angle drift-tube hodoscopes are used to measure the differential elastic cross-section as a function of the momentum transfert t. The total cross-section can be measured independently by extrapolating this differential cross-section to the forward direction and invoking the optical theorem. A study of the general features of charged-particle production is performed using finely divided scinti...

  17. Standard molar Gibbs free energy of formation of PbO(s) over a wide temperature range from EMF measurements

    The EMF of the following galvanic cells, Kanthal,Re,Pb,PbO vertical bar CSZ vertical bar O2 (1 atm.),Pt (Cell(I)) Kanthal,Re,Pb,PbO vertical bar CSZ vertical bar O2(1 atm.),RuO2,Pt (Cell(II)) were measured as a function of temperature. With O2 (1 atm.), RuO2 as the reference electrode, measurements were possible at low temperatures close to the melting point of Pb. Standard Gibbs energy of formation, ΔfG0m was calculated from the emf measurements made over a wide range of temperature (612-1111 K) and is given by the expression: ΔfG0m±0.10 kJ=-218.98+0.09963T. A third law treatment of the data yielded a value of -218.08 ± 0.07 kJ mol-1 for the enthalpy of formation of PbO(s) at 298.15 K, ΔfH0m which is in excellent agreement with second law estimate of -218.07 ± 0.07 kJ mol-1

  18. Characterisation of a TES-Based X-ray Microcalorimeter in the Energy Range from 150 to 1800 eV Using an Adiabatic Demagnetisation Refrigerator

    Gottardi, Luciano; van der Kuur, Jan; de Korte, Piet A J; Hoevers, Henk F C; Boersma, Dirk; Bruijn, Marcel; Mels, Wim; Ridder, Marcel L; Takken, Dick; van Weers, Henk

    2016-01-01

    We characterised a TES-based X-ray microcalorimeter in an adiabatic demagnetisation refrigerator (ADR) using synchrotron radiation. The detector response and energy resolution was measured at the beam-line in the PTB radiometry laboratory at the electron storage ring BESSY II in the range from 200 to 1800 eV. We present and discuss the results of the energy resolution measurements as a function of energy, beam intensity and detector working point. The measured energy resolution ranges between 1.5 to 2.1 eV in the investigated energy range and is weakly dependent on the detector set point. A first analysis shows a count-rate capability, without considerable loss of performance, of about 500 counts per second.

  19. Evolution of long-range and short-range order in La0.67Ca0.33MnO3- during solid-state transformation using high-energy ball milling

    A novel processing scheme has been developed that allows for the single step processing of nanostructured complex oxides. This approach involves the high energy ball-milling (HEBM) of binary oxide precursors to form pure phase complex oxides at low-temperatures. Using this technique we have prepared La0.67Ca0.33MnO3-δ and studied the evolution of short range and long-range order, using EXAFS and XRD respectively, as a function of milling time during the solid state transformation. Transport properties of the milled perovskites are also discussed. (au)

  20. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  1. Calculation of SF6-/SF6 and Cl-/CFCl3 electron attachment cross sections in the energy range 0-100 meV

    Chutjian, A.

    1982-01-01

    Electron attachment cross sections for the processes SF6-/SF6 and Cl-/CFCl3 are calculated in a local theory using a model in which diatomic-like potential energy curves for the normal modes are constructed from available spectroscopic data. Thermally populated vibrational and rotational levels are included. Good agreement is found with experimental cross sections in the energy range 5-100 meV for a particular choice of potential energy curve parameters.

  2. Neutron spectra in the energy range from 10-8 to hundreds of MeV measurement in hard scattered radiation fields

    The technique of neutron spectra unfolding in wide energy range from 10-8 to hundreds of MeV on the base of multisphere Bonner's detector and plastic scintillator spectrometer ridings has been described. This technique is intended for neutron spectra measurements in fields of mixed scattered radiation behind accelerators shielding and neutron component of cosmic background. The expressions of neutron maximum equivalent and ambient doses in wide energy range and neutron fluences of energy above 20 MeV are presented. 13 refs.; 5 figs

  3. Tables of range and stopping power of chemical elements for charged particles of energy 0.5 to 500 MeV

    The range, energy loss, and differential of rate of energy loss were tabulated for 5 incident particles or ions (proton, deuteron, triton, helium-3 and helium-4) and for 37 target materials (H, He, Li, Be, B, C, N, O, F, Ne, Na, Al, Si, Cl, Ca, V, Fe, Ni, Cu, Ge, Br, Y, Zr, Mo, Rh, Ag, Cd, Sn, I, Cs, Nd, Gd, Er, Ta, Au, Pb, U) The incident energy range covered is from 0.05 to 500 MeV. An erratum report is added: 74 pages from 223 to 296 of the initial report have to be replaced by the pages contained in the erratum report

  4. The expansive phase of magnetospheric substorms 2. The response at synchronous altitude of particles of different energy ranges

    Several previous studies have shown that there are variations in the energetic particle populations at synchronous orbit during periods of substorm activity; however, in these investigations the precise location of the satellite with respect to the longitudinal regime experiencing expansion phase activity has been unknown. In this paper, data from the Lockheed particle detectors on ATS 5 in synchronous orbit and from the meridian line of magnetometers operated by the University of Alberta are correlated for periods of substorm activity where the position of the satellite with respect to the expansion phase regime is known. It is found that changes in the nature of the energetic particle signatures at ATS 5 are correlated with changes in the auroral electrojet structure during the development of the substorm expansive phase. In particular, it is found that marked increases in the fluxes of the energetic particles showing no dispersion among the energy channels occur only when the satellite is on field lines which map to the poleward border of the substorm-intensified westward electrojet. It is further found that when the satellite is on field lines which penetrate the heart of the substorm westward electrojet, one only observes steady high fluxes of energetic particles, and there are no sharp well-defined changes in fluxes associated with continuing impulsive intensifications of the electrojet at its poleward border. It is concluded that the substorm disturbance typically begins at a given latitude and propagates poleward steps and that energetic electron enhancements are observed at ATS 5 when the poleward border of the electrojet intensifies in the latitude range of the ATS field line foot. This fact permits the mapping of field lines in the geographic equatorial plane to the earth's surface at specific instants during the substorm expansion phase

  5. Ellipsometry and energy characterization of the electron impact polymerization in the range 0-20 eV

    Zyn, V. I.

    2016-05-01

    The electron impact polymerization of adsorbed vapors of a hydrocarbon vacuum oil with molecular mass 450 Da (C32H66) has been studied in-situ in the range 0-20 eV using ellipsometry and a servo system with the Kelvin's vibrating probe. This allowed registering at the same time the two energy-dependent characteristics (spectra) of the process: the film growth rate and the electrical potential of the irradiated surface. The first spectrum has two resonance maxima near 2.5 and 9.5 eV while the surface potential has only one weak extremum near 9.5 eV. The first growth rate peak at 2.5 eV was connected with a creation of radicals through a resonant process of the dissociative electron attachment and beginning polymerization. The peaks at 9.5 eV in both the spectra mean accelerating polymerization and decreasing surface charge owing to simultaneous birth of highly active radicals and free electrons. The single resonant process controlling both the processes simultaneously is the dissociative attachment of an electron to an anti-bonding molecular orbital, almost the same as at the 2.5 eV but differing by deeper decomposition of the transient anion, among the products of which are now not the radicals only but also free electrons. The kinetic curves obtained in pulsed regimes of the electron bombardment were qualitatively identical for different precursors and were used for calculations of cross sections of these processes.

  6. Electron-impact rotationally elastic total cross sections for H2CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    This paper reports computational results of the total cross sections for electron impact on H2CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  7. Weak energy dependence of EBT gafchromic film dose response in the 50 kVp-10 MVp X-ray range

    Butson, Martin J [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China) and Department of Medical Physics, Illawarra Cancer Care Centre, Crown St, Wollongong, N.S.W 2500 (Australia)]. E-mail: butsonm@iahs.nsw.gov.au; Cheung Tsang [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Yu, Peter K.N. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China)

    2006-01-01

    The energy dependence of the dose response of EBT Gafchromic film is assessed over a broad energy range, from superficial to megavoltage X-rays. The film is auto-developing and sensitive, it provides accurate dose assessment of low doses (about 1-2 Gy) used in radiotherapy. The energy dependence of the response of EBT film was found to be very weak: the variations do not exceed 10% over the range from 50 kVp to 10 MVp X-rays. By contrast, variations of the response of Gafchromic HS film are as big as 30% over the same range, and variations of the response of Radiographic film exceed one order of magnitude. This weak dependence provides significantly higher accuracy of dose measurements under conditions of varying spectral quality of X-ray beams, which are common in radiation therapy.

  8. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50 MeV

    Tárkányi, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2016-01-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40 MeV up to 50 MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides $^{113,110}$Sn, $^{116m,115m,114m,113m,111,110g,109}$In and $^{115}$Cd are reported in the 37-50 MeV energy range, for production of $^{110}$Sn and $^{110g,109}$In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS1.6 nuclear model code as listed in the on-line library TENDL-2014.

  9. Calorimetry for dose measurement at electron accelerators in the 80-120 keV energy range

    Helt-Hansen, J.; Miller, A.; Duane, S.;

    2005-01-01

    Calorimeters for dose measurement at low-energy electron accelerator energies (80-120 keV) are described. Three calorimeters with different characteristics were designed and their dose response and measurement uncertainties were characterized. The heated air between the beam exit window and the c...

  10. The Fano factor in gaseous xenon: A Monte Carlo calculation for X-rays in the 0.1 to 25 keV energy range

    A calculation of the Fano factor for gaseous xenon is carried out using a detailed Monte Carlo simulation of the absorption of X-rays in the 0.1 to 25 keV energy range. This factor is found to be energy dependent with values ranging from 0.17 to 0.32 and has sharp increases near the xenon absorption edges. An interpretation of the calculated results is made in terms of the relative importance of photoelectron and Auger/Coster-Kronig cascading electron processes. (orig.)

  11. Nuclear stopping for heavy-ion induced reactions in the Fermi energy range : from 1-Body to 2-Body dissipation

    Lopez O.

    2014-03-01

    Full Text Available We study the stopping in heavy-ion induced reactions around the Fermi energy in central collisions. The stopping is minimal around the Fermi energy and corresponds to the crossover between the Mean-Field and the nucleonic regimes. This is attributed to the change in the energy dissipation going from 1-body (Mean-Field to 2-body (nucleonnucleon collisions dissipation. For this latter, a connection to in-medium transport properties of nuclear matter is proposed and comprehensive values of the nucleon mean free path and nucleon-nucleon cross section are extracted.

  12. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Zeyu Chen; Weiguo Liu; Ying Yang; Weiqiang Chen

    2015-01-01

    The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs). An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several onlin...

  13. Comparison of Martian meteorites with earth composition: Study of effective atomic numbers in the energy range 1 keV-100 GeV

    Ün, Adem; Han, Ibrahim; Ün, Mümine

    2016-04-01

    Effective atomic (Zeff) and electron numbers (Neff) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Zeff and Neff for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  14. Search for galactic sources of X-ray bursts with scintillation spectrometers of the Kosmos-856 satellite in the energy range of 20-320 keV

    Search for galactic sources of X-pay bursts with a scintillation spectrometer of ''Kosmos-856'' satellite has given a negative result. During 21 hours of observations with two independent detectors not one burst of X-rays with the energy flux P 2x10-7 erg/cm2 has been found in the energy range 20-320 keV and duration 10s. This result disagrees with the data obtained with the ''Kosmos-428'' satellite

  15. How many times again will we examine the energy-income nexus using a limited range of traditional econometric tools?

    During the last three decades, following closely the developments in econometric theory, energy and environmental economists have empirically examined the energy-income nexus for different countries and time periods. However, today, in spite of the growing interest in this area, the state of knowledge is still controversial and unsettled. This viewpoint paper attempts to highlight some of the issues related to the existing literature on the long-run relationship and causality between energy consumption and economic growth. In particular, it discusses how it is difficult to make policy recommendations on the basis of inconsistent and conflicting results in the published literature on the subject. In order to do so, the paper first illustrates the increasing trend in the number of studies published in this area providing also a brief comparison of the conventional methods used to estimate the energy-income nexus. It then deals with new directions and different viewpoints on the same issue

  16. Photoion mass spectrometry of five amino acids in the 6-22 eV photon energy range

    Jochims, Hans-Werner; Schwell, Martin; Chotin, Jean-Louis; Clemino, Monique; Dulieu, Francois; Baumgaertel, Helmut; Leach, Sydney

    2004-03-08

    A photoionization mass spectrometry study in the 6-22 eV photon energy region of five amino acids, glycine-h{sub 5} and its -d{sub 5} isotopologue, {alpha}-alanine, {beta}-alanine, {alpha}-aminoisobutyric acid and {alpha}-valine, revealed VUV-induced degradation pathways of these important biological molecules. The fragmentation patterns, ionization energies and ion appearance energies are reported, many for the first time, and are compared with results of electron impact and other studies. Assignment of ion peaks and determination of fragment ion formation channels were assisted by mass spectral data on deuterated isotopologues of the three proteinaceous amino acids studied. Thermochemical data, coupled with the observed ion appearance energies, was also useful in clarifying dissociative photoionization pathways. Ion pair formation appears to occur in certain low energy dissociation processes. Isomeric interconversion between {alpha}-alanine and {beta}-alanine cations does not occur up to 20 eV excitation energy. Some astrophysical implications concerning the prospects for amino acid observation and survival in the interstellar medium and in meteorites are briefly discussed.

  17. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-01

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. PMID:22131287

  18. Comparison of the air-kerma standards of the NPL and the BIPM in the low and medium-energy X-ray ranges

    The air-kerma standards of the NPL and the BIPM have been compared in the low- and medium-energy x-ray ranges. The results for the low-energy comparison show the standards to be in agreement at the level of one standard uncertainty. At medium energies a slight trend with radiation quality is evident, with agreement at the level of one standard uncertainty for 100 kV rising to over two standard uncertainties for 250 kV. In relation to previous comparisons, the good stability of the standards over a period of twenty years is demonstrated. (authors)

  19. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  20. Model independent limits on ΛQCD from e+e- annihilation in the energy range from 14 to 46 GeV

    Multihadronic events measured with the CELLO detector in the energy range 14 to 46 GeV have been analyzed in terms of thrust, jet masses and the asymmetry of the energy-energy correlation. The data have been compared with 2nd order QCD calculations. From a study of the general properties of fragmentation effects, model-independent limits on ΛQCD and αs have been found to be 79 MeV QCD s < 0.169 (at √s=35 GeV). The dependence of these results on the renormalization scheme is discussed. (orig.)

  1. On scaling breakdown and the ways of modification of the elementary act model in the range of ultra-high energy

    Breaking of scale invariance of hadron interactions in the ultrahigh energy range has been considered. Presented are the results of calculations of the number of muons with the energy above 10 GeV with the number of electrons Nsub(e)=103-107 and of the number of hadrons with the energy above 1 TeV with the number of electrons Nsub(e)=105-107 in extensive air showers (EAS). The experimental data on the muon and hadron components of EAS have been shown to contradict the scale invariance model in an assumption that EAS are produced by primary protons

  2. Change of relative Gibbs energy of martensite and austenite alloys of Fe-Ni system in the pre-martensite temperature range

    Chemical potentials of the components of quenched Fe-Ni alloys (28.7-32.7 at. % Ni) with martensite and austenite structures have been found with the Touch Instant Electromotive Force method. Differences between Gibbs energies of martensite and austenite phases have been calculated in the temperature range of 253-315 K which characterize the relative thermodynamic stability of these metastable phases. By means of interpolation the temperatures were determined when Gibbs energies of alloys with both types of structures are the same. Non-chemical contribution into Gibbs energy of martensite transformation has been evaluated

  3. Mass attenuation coefficients of Martian meteorites and Earth composition in the energy range 1 keV-100 GeV

    Ün, M.; Han, E. Narmanli; Ün, A.

    2016-04-01

    Mass attenuation coefficients for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV. The values of mass attenuation coefficients (µ/ρ) of the samples were calculated the WINXCOM program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.

  4. Comparison of the air-kerma standards of the ENEA-INMRI and the BIPM in the medium-energy X-ray range

    An indirect comparison has been made between the air erma standards of the ENEA-INMRI and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement within the stated uncertainty, although there is evidence of a trend in the results at different radiation qualities. (authors)

  5. Comparison of the air-kerma standards of the PTB and the BIPM in the medium-energy X-ray range

    An indirect comparison has been made between the air erma standards of the PTB and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement at the level of the stated standard uncertainty, although the result for the 100 kV radiation quality differs significantly from that for the other qualities. (authors)

  6. A study of e+e- annihilation in the 1400-2250 MeV energy range with the magnetic detector DM2 at DCI

    We present here the results obtained with the magnetic detector DM2 on the Orsay e+e- colliding beams DCI for 1400 -1 over the whole energy range. Cross sections are given for e+e- annihilation into pantip, π+π-π0, π+π-π+π- and K+K-

  7. Fusion and in-complete fusion studies in 16O + 181Ta system in the energy range ∼ 4.7 - 6.2 MeV/A

    In the present work, to understand the complete and incomplete fusion reaction dynamics, the excitation function studies have been done for several reactions induced by 16O7+ ions on 181Ta target in the energy range ∼ 4.7 - 6.2 MeV/A, using gamma-ray spectrometry

  8. Fusion and transfer cross sections of He-3 induced reaction on Pt and Au in energy range 10-24.5 MeV

    Skobelev, N. K.; Penionzhkevich, Y. E.; Voskoboynik, E. I.; Kroha, Václav; Burjan, Václav; Hons, Zdeněk; Mrázek, Jaromír; Piskoř, Štěpán; Šimečková, Eva; Kugler, Andrej

    2014-01-01

    Roč. 11, č. 2 (2014), s. 114-120. ISSN 1547-4771 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : cross section * energy range * Coulomb barrier Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  9. Study of the mechanisms in heavy ion reactions in the energy range of 20 to 100 MeV/u

    The evolution in heavy ion reactions, for energies higher than 20 MeV/u, is investigated. The experimental results of the Xe + Ag and Xe + Au interactions, at 23.7 and 27 MeV/u, are presented. Inclusive interactions and coincidence measurements are carried out. A mechanism to explain the inclusive interactions results is proposed. It is based on a high energy mechanism, in which the mean field created by the nucleons is taken into account. A model describing the evolution of inelastic interactions towards multiple-fragmentation, in high energy reactions, is provided. The multiple-fragmentation percentage, at the end of the reaction, is obtained by means of a percolation model combined with a hydrodynamic model

  10. Monte Carlo simulations of dd reaction parameters study at ultra-low energy range using plasma hall accelerator and deuterized targets

    This paper presents results of the application Monte Carlo method to analyze data from the interaction of deuteron beams with metallic targets saturated with deuterium. The SRIM software was used to generate energy spectrum of ions passing the target. These spectra were used to calculate the neutron yields from dd reactions in energy range 7–12 keV of incident deuteron beams. The calculated outputs were compared with the experimental data for the determination of the electron screening potential for dd reactions. The calculations were performed using two different values of the beam energy spread (FWHM) equal 1% and 16%. It was shown that plasma beams with a relatively high spread (16%) were almost as good a tool as the traditional accelerator with mono-energy beam related to the study of the reaction within an ultra-low energy region. (author)

  11. Yakutsk array radio emission registration results in the energy range of 3*10^16-5*10^18 eV

    Petrov, I; Petrov, Z; Kozlov, V; Pravdin, M

    2013-01-01

    This paper presents the set of measurements of ultra-high energy air shower radio emission at frequency 32 MHz in period of 2008-2012. The showers are selected by geomagnetic and azimuth angles and then by the energy in three intervals: 3*10^16 3*10^17 eV, 3*10^17 6*10^17 eV and 6*10^17 5*10^18 eV. In each energy interval average lateral distribution function using mathematically averaged data from antennas with di?fferent directions are plotted. In the paper, using experimental data the dependence of radio signal averaged amplitude from geomagnetic angle, the shower axis distance and the energy are determined. Depth of maximum of cosmic ray showers Xmax for the given energy range is evaluated. The evaluation is made according QGSJET model calculations and average lateral distribution function shape.

  12. Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-07-01

    First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.

  13. Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm

    Renaud, C. C.; Selvas-Aguilar, R. J.; Nilsson, J; Turner, P.W.; Grudinin, A. B.

    1999-01-01

    We describe a compact Q-switched diode pumped double-clad ytterbium-doped fiber laser. The fiber laser was bidirectionally pumped by two laser diodes (2 W of output power each) via:two side-injecting pump-couplers. We used a large multimode core of 15 mu m diameter to increase the laser gain volume and thus to achieve higher pulse energy. Experimentally this laser produced pulses with energy up to 170 mu J with a peak power of 2 kW (at a low repetition rate of 500 Hz) and was tunable from 106...

  14. Evaluation of the effective range parameters and the analysis of neutron-proton scattering data in the low-energy region

    Singlet low-energy parameters of neutron-proton scattering are calculated on the basis of approximating the singlet effective-range function k cot δs by polynomials with the help of the latest experimental data on phase shifts of np-scattering from the SAID nucleon-nucleon database (data of the GWU group). Low-energy neutron-proton scattering parameters for the experimental data from the SAID database differ markedly from the analogous results obtained for data of the Nijmegen group. Obtained effective range parameters corresponding to the experimental data from the SAID database lead to an extremely well description of experimental total cross section of neutron-proton scattering, which is in contrast to the set of the effective range parameters of the Nijmegen group.

  15. Simple parametrization of photon mass energy absorption coefficients of H-, C-, N- and O-based samples of biological interest in the energy range 200–1500 keV

    V Manjunathaguru; T K Umesh

    2009-02-01

    In this paper, we provide polynomial coefficients and a semi-empirical relation using which one can derive photon mass energy absorption coefficient of any H-, C-, N-, O-based sample of biological interest containing any other elements in the atomic number range 2–40 and energy range 200–1500 keV. More interestingly, it has been observed in the present work that in this energy range, both the mass attenuation coefficients and the mass energy absorption coefficients for such samples vary only with respect to energy. Hence it was possible to represent the photon interaction properties of such samples by a mean value of these coefficients. By an independent study of the variation of the mean mass attenuation coefficient as well as mass energy absorption coefficient with energy, two simple semi-empirical relations for the photon mass energy absorption coefficients and one relation for the mass attenuation coefficient have been obtained in the energy range 200–1500 keV. It is felt that these semi-empirical relations can be very handy and convenient in biomedical and other applications. One possible significant conclusion based on the results of the present work is that in the energy region 200–1500 keV, the photon interaction characteristics of any H-, C-, N-, O-based sample of biological interest which may or may not contain any other elements in the atomic number range 2–40 can be represented by a sample-independent (single) but energy-dependent mass attenuation coefficient and mass energy absorption coefficient.

  16. Efficiency calibration of scintillation detectors in the neutron energy range 1.5-25 MeV by the associated particle technique

    The associated particle technique, with a gas target, has been used to measure the absolute central neutron detection efficiency of two scintillators, (NE213 and NE102A) with an uncertainty of less than +- 2%, over the energy range 1.5-25 MeV. A commercial n/γ discrimination system was used with NE213. Efficiencies for various discrimination levels were determined simultaneously by two parameter computer storage. The average efficiency of each detector was measured by scanning the neutron cone across the front face. The measurements have been compared with two Monte Carlo efficiency programs (Stanton's and 05S), without artificially fitting any parameters. When the discrimination level (in terms of proton energy) is determined from the measured light output relationship, very good agreement (to about 3%) is obtained between the measurements and the predictions. The agreement of a simple analytical expression is also found to be good over the energy range where n-p scattering dominates. (orig.)

  17. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  18. An improved long counter for neutron fluence measurement with a flat response over a wide energy range from 1 keV to 15 MeV

    A new long counter has been developed with a flat energy response over a wide range from 1 keV to 15 MeV. It consists of five 3He proportional counter tubes and a number of carefully designed polyethylene moderators. The structure of this detector was determined by careful Monte Carlo simulations. The calculated results show that the efficiency of this counter is uniform from 1 keV neutron energy to 15 MeV. Calibration was performed on an Am–Be source and the accelerator-produced monoenergetic D–D and D–T neutron sources. Fluctuation of the response curve is less than 10% over this energy range

  19. Adiabatic potential-energy curves of long-range Rydberg molecules: Two-electron R -matrix approach

    Tarana, Michal; Čurík, Roman

    2016-01-01

    Roč. 93, č. 1 (2016), 012515. ISSN 0556-2791 R&D Projects: GA ČR(CZ) GP14-15989P Institutional support: RVO:61388955 Keywords : adiabatic-potential-energy curves * Rydberg molecules * theoretical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  20. Investigation of multilayer X-ray optics for 6 keV to 20 keV energy range

    Oberta, Peter; Platonov, Y.; Flechsig, U.

    2012-01-01

    Roč. 19, č. 5 (2012), s. 675-681. ISSN 0909-0495 Institutional research plan: CEZ:AV0Z10100522 Keywords : X-ray optics * multilayer * energy resolution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.186, year: 2012 http://journals.iucr.org/s/issues/2012/05/00/issconts.html

  1. Evaluation of 242Pu data for the incident neutron energy range 0.1 - 6 MeV

    This report presents the models and the procedures used for the calculation of the quantities required by Files 3, 4 and 5 of ENDF-6 for 242Pu. These quantities are the integrated cross sections for the total, fission, scattering and gamma-capture reactions and the angular and energy distributions of the scattered neutrons for the incident neutron energies 0.01/6 MeV. The direct mechanism was treated with the coupled-channel method using a deformed optical potential defined by a set of actinide region parameters established by the authors. For the compound nucleus calculations, a new HRTW version of the statistical model extended to describe the fission at subbarrier energies was used. To describe the continuous part of the transition states spectrum, analytical expressions have been established. The energy distributions of the scattered neutrons have been calculated with an author's version of the Los Alamos model. The agreement of the calculations with the existing experimental data is good. (author)

  2. Accurate transport simulation of electron tracks in the energy range 1 keV-4 MeV

    Cobut, V. E-mail: vincent.cobut@chim.u-cergy.fr; Cirioni, L.; Patau, J.P

    2004-01-01

    Multipurpose electron transport simulation codes are widely used in the fields of radiation protection and dosimetry. Broadly based on multiple scattering theories and continuous energy loss stopping powers with some mechanism taking straggling into account, they give reliable answers to many problems. However they may be unsuitable in some specific situations. In fact, many of them are not able to accurately describe particle transport through very thin slabs and/or in high atomic number materials, or also when knowledge of high-resolution depth dose distributions is required. To circumvent these deficiencies, we developed a Monte Carlo code simulating each interaction along electron tracks. Gas phase elastic cross sections are corrected to take into account solid state effects. Inelastic interactions are described within the framework of the Martinez et al. [J. Appl. Phys. 67 (1990) 2955] theory intended to deal with energy deposition in both condensed insulators and conductors. The model described in this paper is validated for some materials as aluminium and silicon, encountered in spectrometric and dosimetric devices. Comparisons with experimental, theoretical and other simulation results are made for angular distributions and energy spectra of transmitted electrons through slabs of different thicknesses and for depth energy distributions in semi-infinite media. These comparisons are quite satisfactory.

  3. Free energy of formation of U3O7 in the temperature range 25 to 400/degree/C

    A temperature dependent expression for the free energy of formation of U3O7 from its constitutive elements is obtained utilizing basic thermodynamic data gathered from the literature. Similar expressions for the enthalpy and entropy of formation are also obtained. 11 refs., 6 tabs

  4. Spectrometric investigations in the 10-8-10-5eV energy range by cold neutron spectrometer

    The work dwells on the study of interaction of very cold neutrons (VCN) with U, 235U, Pb, SiO2, SiBx (x=0.0006), Pd, PdHx (x=0; 0.008; 0.105; 0.26; 0.32; 0.51; 0.71). The main processes of VCN interaction with a substance in condensed state are as follows: nuclear capture, inelastic phonon scattering, elastic scattering on nuclear potential fluctuations, as well as noncoherent scattering on hydrogen in case of PdHx. Dependences of total cross sections of interaction σt(V) or Σt(V) were measured by neutron transmission through the sample in VCN spectrometer in the range of rates Vt ∼ 1/V by means of extrapolation to thermal range at V=2200m/s the σt2200 cross section was determined, as compared with table data on nuclear capture σc

  5. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  6. Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV

    The linear and mass attenuation coefficients of different types of soil, sand, building materials and heavy beach mineral samples from the Chittagong and Cox's Bazar area of Bangladesh were measured using a high-resolution HPGe detector and the γ-ray energies 276.1, 302.8, 356.0, 383.8, 661.6 and 1173.2 and 1332.5 keV emitted from point sources of 133Ba, 137Cs and 60Co, respectively. The linear attenuation coefficients show a linear relationship with the corresponding densities of the samples studied. The variations of the mass attenuation coefficient with γ-ray energy were exponential in nature. The measured mass attenuation coefficient values were compared with measurements made in other countries for similar kinds of materials. The values are in good agreement with each other in most cases

  7. Spectrometric investigations by using gravitational neutron spectrometer in the energy range from 10-4-10-8 eV

    The process of ultracold neutrons interaction (UCN) (10-8 eV-4 eV) with a number of solid polycrystallic samples: Cu, Cu-65, W, Mo, Ti, V, Be, Ta, Nb, Pd, is studied. The measurements are carried out using a gravitational neutron spectrometer. The neutron energy is determined according to the times of flight through a 6-meter vertical neutron guide. The spectrometer energy resolution is 16%. The installation gives the possibility to conduct measurements with samples both at room temperature and at liquid nitrogen temperature. The dependence of the total and inelastic cross sections of interaction of UCN with substance is studied. The total effective neutron interaction cross sections (σsub(t), epsilonsub(t)) with studied substances are determined according to neutron transmission through the sample. The basic contribution into σsub(t), epsilonsub(t) is introduced by the neutron capture processes, their inelastic phonon scattering and fluctuation scattering on medium inhomogeneities (defects)

  8. Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV.

    Alam, M N; Miah, M M; Chowdhury, M I; Kamal, M; Ghose, S; Rahman, R

    2001-06-01

    The linear and mass attenuation coefficients of different types of soil, sand, building materials and heavy beach mineral samples from the Chittagong and Cox's Bazar area of Bangladesh were measured using a high-resolution HPGe detector and the gamma-ray energies 276.1, 302.8, 356.0, 383.8, 661.6 and 1173.2 and 1332.5 keV emitted from point sources of 133Ba, 137Cs and 60Co, respectively. The linear attenuation coefficients show a linear relationship with the corresponding densities of the samples studied. The variations of the mass attenuation coefficient with gamma-ray energy were exponential in nature. The measured mass attenuation coefficient values were compared with measurements made in other countries for similar kinds of materials. The values are in good agreement with each other in most cases. PMID:11300413

  9. Underwater Ranging

    S. P. Gaba

    1984-01-01

    Full Text Available The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  10. Hydrogen from Regenerative Energy Power Sources: pressurized alkaline electrolyser with high efficiency and wide operating range (“RESelyser”).

    Reissner, R.; Schiller, G.; Guelzow, E.; Alvarez Gallego, Y.; Doyen, W.; Funke, A.; Fawcus, P.; Vaes, J.; Bowen, J R

    2013-01-01

    The project RESelyser develops high pressure, highly efficient, low cost alkaline water electrolyzers that can be integrated with renewable energy power sources (RES) using an advanced membrane concept, highly efficient electrodes and a new cell design. A new separator membrane with internal electrolyte circulation and an adapted design of the cell to improve mass transfer, especially gas evacuation is investigated and demonstrated. Intermittent and varying load operation with RES is addre...

  11. Ionic fragmentation of the isoprene molecule in the VUV energy range (12 to 310 eV)

    Bernini, R.B., E-mail: rafael.bernini@ifrj.edu.br [Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), 25050-100 Duque de Caxias, RJ (Brazil); Coutinho, L.H. [Instituto de Física, Universidade Federal do Rio De Janeiro (UFRJ), 21941-972 Rio de Janeiro, RJ (Brazil); Nunez, C.V. [Laboratório de Bioprospecção e Biotecnologia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia (INPA), 69060-001 Manaus, AM (Brazil); Castilho, R.B. de [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM (Brazil); Souza, G.G.B. de [Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ (Brazil)

    2015-07-15

    Highlights: • Ionic fragmentation of isoprene following valence-shell and C 1s excitation. • Experimental observation of single and double ionization processes. • Large increase in fragmentation following core excitation. • Similar dissociation pattern bellow (270 eV) and above (310 eV) core edge. • Stable molecular ion observed at all photon energies. - Abstract: Isoprene, C{sub 5}H{sub 8}, is a biogenic volatile compound emitted from plants and animals, playing an important role in atmospheric chemistry. In this work, we have studied the ionic fragmentation of the isoprene molecule induced by high energy photons (synchrotron radiation), both at the valence (12.0, 14.0, 16.0, 18.0, and 21.0 eV) and carbon 1s edge (270 and 310 eV, respectively, below and above edge) energies. The ionic fragments were mass-analyzed using a Wiley–McLaren time-of-flight spectrometer (TOF) and single (PEPICO) and double ionization coincidence (PEPIPICO) spectra were obtained. As expected, the fragmentation degree increases with increasing energy. Below and above the carbon 1s edge, the fragmentation patterns are quite similar, and basically the same fragments are observed as compared to the spectra following valence-shell ionization. Stable doubly-charged ions were not observed. A PEPIPICO spectrum has shown that the main dissociation route for doubly-ionized species corresponds to the [CH{sub 3}]{sup +}/[C{sub 4}H{sub 2–5}]{sup +} ion pair. Intense fragmentation of the isoprene molecule has been observed following valence shell and core electron ionization. The observance of basically the same fragments when moving from valence to inner-shell suggests that basically the same fragmentation routes are present in both cases. All doubly (or multiply)-charged cations are unstable, at least on a microsecond scale.

  12. Studies on the attenuation coefficients of some egyptian materials In the energy range 81-1332.5 KeV

    The linear and mass attenuation coefficients for different types of soil, sand and some building material samples at Inshas site in Egypt were investigated. The measurements were performed using gamma rays spectrometer consists of hyper pure germanium (HPGe) detector. The attenuation coefficients values were determined at the y-rays energies 81.0, 276.4, 302.8, 356.0 and 383.9 KeV of l33Ba, 661.7 KeV of 137Cs and 1173.4 and 1332.5 KeV of 60Co. The tested samples were dried, sieved to different particle sizes. The effect of cement to sand ratio on the attenuation coefficient values was studied. The results obtained showed that there was no specific relation between the mass attenuation coefficients and samples densities, but there was exponential decay relation between the mass attenuation coefficients and the gamma rays energy. There were variations of the values of the mass attenuation coefficients with the γ-rays energy. The obtained values for mass attenuation coefficients were compared with other values in different countries. These values agreed with some values and differed with others, because there are differences in the elemental components of each sample

  13. Definition by modelling, optimization and characterization of a neutron spectrometry system based on Bonner spheres extended to the high-energy range

    This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range

  14. Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    Vonta, N; Loveland, W D; Kwon, Y K; Tshoo, K; Jeong, S C; Veselsky, M; Bonasera, A; Botvina, A

    2016-01-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range of...

  15. Guided-ion beam measurements of Ar+ + Ar symmetric charge-transfer cross sections at ion energies ranging from 0.2 to 300 eV

    Guided-ion beam (GIB) measurements of the Ar+ + Ar symmetric charge-transfer (SCT) system are presented for ion energies ranging from 0.2 to 300 eV. Two methods are applied to distinguish primary and secondary ions: (i) based on isotopic-labeling, (ii) based on significant laboratory velocity differences. The absolute cross sections measured with these methods are in excellent agreement at energies above 1 eV. The experimental results are compared with semi-classical calculations performed with various published Ar2+ potentials. The calculations including spin-orbit effects lie within 10% of the isotope-selected and attenuation measurements at all investigated ion energies. The present results lie significantly above the simple Rapp and Francis model. Important errors in the latter approach are pointed out and a correct one-electron model is proposed. First measurements of the differential cross section at 0.5 eV collision energy are briefly mentioned. (orig.)

  16. Derivation of upward muon energy spectra in the TeV range produced by neutrinos from 3C273 AGN and diffuse atmospheric sources

    The neutrino-induced upward muon energy spectrum on Earth at the TeV energy range emitted by the point source 3C273 AGN has been calculated using the AGN-emitted neutrino spectrum of Szabo and Protheroe and the result has been compared with that expected from background neutrinos. The QCD-based model of Berezinsky et al. has been fairly employed to estimate the muon contribution due to the charge current interactions in rock. The diffuse neutrino-induced upward muon energy spectrum from AGN sources has also been estimated and compared with the expected results from the spectra of prompt neutrinos and atmospheric backgrounds. It is found that the upward muon fluxes generated by AGN neutrinos are dominating the Universe beyond 10 TeV muon energy

  17. Derivation of upward muon energy spectra in the TeV range produced by neutrinos from 3C273 AGN and diffuse atmospheric sources

    Bhattacharyya, D.P. [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Theoretical Physics

    1998-01-01

    The neutrino-induced upward muon energy spectrum on Earth at the TeV energy range emitted by the point source 3C273 AGN has been calculated using the AGN-emitted neutrino spectrum of Szabo and Protheroe and the result has been compared with that expected from background neutrinos. The QCD-based model of Berezinsky et al. has been fairly employed to estimate the muon contribution due to the charge current interactions in rock. The diffuse neutrino-induced upward muon energy spectrum from AGN sources has also been estimated and compared with the expected results from the spectra of prompt neutrinos and atmospheric backgrounds. It is found that the upward muon fluxes generated by AGN neutrinos are dominating the Universe beyond 10 TeV muon energy.

  18. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  19. Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps

    Le Harzic, R. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany) and Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France)]. E-mail: leharzic@jenlab.de; Breitling, D. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Weikert, M. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Sommer, S. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Foehl, C. [Forschungsgesellschaft fuer Strahlwerkzeuge mbH (FGSW), Nobelstrasse 15, 70569 Stuttgart (Germany); Valette, S. [Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France); Donnet, C. [Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France); Audouard, E. [Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France); Dausinger, F. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2005-08-15

    Micromachining of steel, Cu and Al is studied. Ablation depths per pulse are deduced for laser pulse durations between 100 fs and 5 ps for fluences in the range of 150 mJ cm{sup -2} to 20 J cm{sup -2}. The evolution of ablation rates allows to evidence a low and a high fluence regime. Ablation thresholds and penetration depths are deduced as functions of pulse duration. While in the low fluence regime the penetration depth is close to the theoretical optical penetration depth, at higher fluences the effective heat penetration depth is 10-20 times bigger with also higher ablation thresholds. Even in the femtosecond range thermal ablation processes occur and reduce quality, accuracy and efficiency of micromachining. Additionally, the latter are influenced by strong beam distortions due to nonlinear interaction between the radiation and the atmospheric gas. In the case of steel and Cu, the pulse duration seems not to affect microprocessing, but it is demonstrated to play a role for Al for pulses between 1 and 5 ps.

  20. Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps

    Micromachining of steel, Cu and Al is studied. Ablation depths per pulse are deduced for laser pulse durations between 100 fs and 5 ps for fluences in the range of 150 mJ cm-2 to 20 J cm-2. The evolution of ablation rates allows to evidence a low and a high fluence regime. Ablation thresholds and penetration depths are deduced as functions of pulse duration. While in the low fluence regime the penetration depth is close to the theoretical optical penetration depth, at higher fluences the effective heat penetration depth is 10-20 times bigger with also higher ablation thresholds. Even in the femtosecond range thermal ablation processes occur and reduce quality, accuracy and efficiency of micromachining. Additionally, the latter are influenced by strong beam distortions due to nonlinear interaction between the radiation and the atmospheric gas. In the case of steel and Cu, the pulse duration seems not to affect microprocessing, but it is demonstrated to play a role for Al for pulses between 1 and 5 ps

  1. An experimental study of a non-eutectic mixture of KNO3 and NaNO3 with a melting range for thermal energy storage

    Thermal energy storage is a key technology for reduced cost solar thermal power generation. This high-temperature application requires storage operation above 100 °C. Possible options are sensible, latent and thermochemical heat storages. A combination of sensible and latent heat storage seems a promising option for thermal energy storage with an increased specific heat capacity. Salt mixtures with a melting range as opposed to a melting point combine the effects of both latent and sensible heat storage. These provide the possibility of utilizing not only latent but in addition sensible heat during the melting and solidification process. The present paper focuses on a binary mixture of 30 wt.% potassium nitrate (KNO3) and 70 wt.% sodium nitrate (NaNO3). The measurement systems include a differential scanning calorimeter, a melting point apparatus, a custom-built adiabatic calorimeter and a lab-scale storage unit. The sample masses ranged from about 20 mg to 156 kg. Tests with the lab-scale storage unit indicate that salt mixtures with a melting range may be successfully utilized in large-scale applications. -- Highlights: • Enhanced capacities are possible by using anhydrous salt mixtures in the melting range. • As a suitable binary salt mixture was sodium nitrate and potassium nitrate identified. • A distribution of the enthalpy of fusion within the melting range was determined. • Cyclic stabilities of the selected salt mixture were measured. • The effect of dimension on the cyclic stability was examined in various test rigs

  2. Observations of the scatter-free solar-flare electrons in the energy range 20-1000 keV

    Wang, J. R.; Fisk, L. A.; Lin, R. P.

    1971-01-01

    Observations of the scatter-free electron events from solar active region McMath No. 8905 are presented. The measurements were made on Explorer 33 satellite. The data show that more than 80% of the electrons from these events undergo no or little scattering and that these electrons travel only approximately 1.5 a.u. between the sun and the earth. The duration of these events cannot be accounted fully by velocity dispersion alone. It is suggested that these electrons could be continuously injected into interplanetary medium for a time interval of approximately 2 to 3 minutes. Energy spectra of these electrons are discussed.

  3. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  4. Study on absolute sensitivity of X-ray electron-optical converter in the energy range of 7-20 keV

    Absolute spectral sensitivity of X-ray electron-optical converter (XREOC) with the beryllium window and a microchannel plate as a converting and amplifying element for the 7-20 keV X-ray range, was measured. Measurements were performed in the VEhPP-3M storage ring synchrotron radiation channel. It is shown that in the energy range indicated the ratio of photon number in the blue spectrum region at the XREOC outlet to the number of X-ray quanta at the inlet grows from 1200 up to 2200 photons per a quantum. Sensitivity change over the XREOC operating field is investigated

  5. Fermi Bubble as a Source of Cosmic Rays in the Energy Range > 10E15 eV

    Cheng, K S; Dogiel, V A; Ko, C M; Ip, W H; Wang, Y

    2011-01-01

    Fermi-LAT has recently discovered two giant gamma-ray-bubbles which extend in the North and South of the Galactic center with diameter and height of the order of $H\\sim 10$ kpc. We suggest that periodic star capture processes by the galactic supermassive black hole, Sgr A$^*$, with a capture rate $\\tau_{cap}^{-1}\\sim 3\\times 10^{-5}$ yr$^{-1}$ and energy release $W\\sim 3\\times 10^{52}$ erg per capture can produce hot plasma injecting into the Galactic halo at a wind velocity $u\\sim 10^8$ cm/s. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the Bubble are re-accelerated when they interact with these shocks. We show that for energy larger than $E > 10^{15}$ eV, acceleration process can be better described by the stochastic second order Fermi acceleration. We propose that hadronic CRs within the "knee" of the observed CR spectrum are produced by Galactic supernova remnants (SNRs) distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble pr...

  6. Measurement of the efficiency of gold transmission gratings in the 100 to 5000 eV photon energy range

    Three x-ray spectrometers, each with a transmission grating dispersion element, are routinely used at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. Our goal is to make these measurements within an accuracy of ±10%. We periodically characterize the efficiency of the gratings used in the spectrometers by using an electron-impact soft x-ray source, a monochromator, grazing-incidence mirrors, thin filters, and an x-ray charge-coupled device (CCD) detector. We measure the transmission efficiency of the gratings at many photon energies for several grating orders. For each grating, we calculate efficiency as a function of photon energy using published optical constants of gold and multiple-slit Fraunhofer diffraction theory and fit the calculation to the measurements using the physical parameters of the grating as variables. This article describes the measurement apparatus and calibration techniques, discusses the grating efficiency calculation and fitting procedure, and presents recent results

  7. Measurement of attenuation cross-sections of some fatty acids in the energy range 122–1330 keV

    GAIKWAD D K; PAWAR P P

    2016-07-01

    The mass attenuation coefficients $(\\mu m)$ have been measured for undecylic acid (C$_{11}$H$_{22}$O$_2$), lauric acid (C$_{12}$H$_{24}$O$_2$), tridecylic acid (C$_{13}$H$_{26}$O$_2$), myristic acid (C$_{14}$H$_{28}$O$_2$), pentadecylic acid (C$_{15}$H$_{30}$O$_2$) andpalmitic acid (C$_{16}$H$_{32}$O$_2$) using $^{57}$Co, $^{133}$Ba, $^{137}$Cs, $^{60}$Co and $^{22}$Na emitted γ radiation with energies 122, 356,511, 662, 1170, 1275 and 1330 keV, respectively. The accurate values of the effective atomic number (Zeff), atomic cross-section $(\\sigma t,)$, electronic cross-section $(\\sigma e)$ and the effective electron density (Neff) have great significance in radiation protection and dosimetry. These quantities were obtained by utilizing experimentally measured values of mass attenuation coefficients $(\\mu m)$. A NaI(Tl) scintillation detector with 8.2% (at 662 keV) resolution was used for detecting of attenuated γ -photons. The variation in Zeff and Neff of fatty acids with energy is discussed. The experimental and theoretical results are in good agreement within 2% deviation.

  8. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (12A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 12A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH3, NH2, NH3, CO, HCCO and NH2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  9. Experimental SF6/-//SF6 and Cl/-//CFC13 electron-attachment cross sections in the energy range 0-200 meV

    Chutjian, A.

    1981-01-01

    Experimental cross sections for the electron-attachment processes for SF6(-)/SF6 and Cl(-)/CFl3 are reported in the energy range 0-200 meV by normalizing each attachment line shape to measurement of a thermal rate coefficient. When the same ion states are detected, good agreement is found between present values, for which a monoenergetic electron source is used, and swarm-unfolded results. The present data constitute a new limit for cross sections reported at high resolution at the lowest electron energy.

  10. Measurement of secondary neutrons and gamma rays produced by neutron bombardment of water over the incident energy range 1 to 20 MeV

    The spectra of secondary neutrons and gamma rays produced by neutron bombardment of a thick (approx. 1 mean free path) sample of water have been measured as a function of the incident neutron energy over the range 1 to 20 MeV. Data were taken for angles of 900 and 1400. A linac (ORELA) was used as a neutron source with a 47-m flight path. Incident energy was determined by time-of-flight, while secondary spectra were determined by pulse-height unfolding techniques. The results of the measurements are presented in forms suitable for comparison to calculations based on the evaluated data files. (6 figures, 9 tables) (auth)

  11. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    Mirzoeva, I. K., E-mail: colombo2006@mail.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  12. To calculating the gamma radiation interaction coefficients by an interpolation method in the 0.02-2 MeV energy range

    Interpolation formula earlier used for determining linear coefficients of gamma radiation attenuation in a substance is applied for determining mass coefficients of attenuation without regard for coherent scattering and mass coefficients of interaction due to incoherent scattering on bound electrons as well as mass coefficients of energy absorption. It is concluded that approximation error for 0.02-2 MeV energy range doesn't exceed 1.5 % except for several points for which the difference constitutes 2.5-3 %

  13. Long-range rapidity correlations in high energy AA collisions in Monte Carlo model with string fusion

    Kovalenko, Vladimir

    2014-01-01

    The magnitude of long-range correlations between observables in two separated rapidity windows, proposed as a signature of the string fusion and percolation phenomenon, is studied in the framework of non-Glauber Monte Carlo string-parton model, based on the picture of elementary collisions of color dipoles. The predictions, obtained with and without string fusion, demonstrate effects of color string fusion on the observables in Pb-Pb collisions at the LHC: decrease of n-n correlation coefficient with centrality and negative pt-n correlations, if the sufficiently effective centrality estimator is applied. In general case it is shown that the values of n-n and pt-n correlation coefficients strongly depend on the method of collision centrality fixation. In contrast, the predictions obtained for pt-pt correlation have almost no effect of centrality determination method and the corresponding experimental data would produce the strong limitation on the transverse radius of a string.

  14. Neutron elastic scattering cross-sections measurement on carbon and fluorine in epithermal energy range using PEREN platform

    Molten Salt Reactor (MSR) based on Th/U cycle is one of the new generation concepts for nuclear energy production. A typical MSR is a graphite-moderated core with liquid fuel (7LiF +ThF4 + UF4). Many numerical studies based on Monte-Carlo codes are currently carried out but the validity of these numerical result relies on the precise knowledge of neutron cross sections used such as elastic scattering on carbon (σC), fluorine (σF) and lithium 7 (σLi). The goal of this work is to obtain σC and σF between 1 eV and 100 keV. Such measurements have been performed at the Laboratoire de Physique Subatomique et de Cosmologie (LPSC) de Grenoble on the experimental platform PEREN using slowing-down time spectrometers (C and CF2) associated to a pulsed neutron generator (GENEPI). Capture rates are obtained for reference materials (Au, Ag, Mo and In) using YAP scintillator coupled to a photo-multiplier. Very precise simulations (MCNP code) of the experimental setup have been performed and comparison with experiments has led to the determination of σC and σF with accuracies of 1% and 2% respectively. These results show a small discrepancy to evaluated nuclear data file (ENDF). Measures of total cross-sections σC and σF at higher energy (200 - 600 keV) were also carried out at Centre des Etudes Nucleaires de Bordeaux using a transmission method. Mono-energetic neutrons were produced by protons accelerated by a Van de Graaff accelerator on a LiF target and transmitted neutrons are counted in a proportional hydrogen gaseous detector. Discrepancies of 5% and 9% for σC and σF respectively with ENDF have been shown. (author)

  15. Study of the process $e^+e^-\\to\\omega\\eta\\pi^0$ in the energy range $\\sqrt{s} <2$ GeV with the SND detector

    Achasov, M N; Barnyakov, A Yu; Beloborodov, K I; Berdyugin, A V; Berkaev, D E; Bogdanchikov, A G; Botov, A A; Dimova, T V; Druzhinin, V P; Golubev, V B; Kardapoltsev, L V; Kharlamov, A G; Koop, I A; Korol, A A; Kovrizhin, D P; Koshuba, S V; Kupich, A S; Lysenko, A P; Melnikova, N A; Martin, K A; Pakhtusova, E V; Obrazovsky, A E; Perevedentsev, E A; Rogovsky, Yu A; Serednyakov, S I; Silagadze, Z K; Shatunov, Yu M; Shatunov, P Yu; Shtol, D A; Skrinsky, A N; Surin, I K; Tikhonov, Yu A; Usov, Yu V; Vasiljev, A V; Zemlyansky, I M

    2016-01-01

    The process $e^+e^-\\to\\omega\\eta\\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\\to\\omega\\eta\\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \\to \\omega\\eta\\pi^0$ is found to be $\\omega a_0(980)$.

  16. Lateral distribution of Cherenkov light in extensive air showers at high mountain altitude produced by different primary particles in wide energy range

    Mishev, A

    2005-01-01

    The general aim of this work is to obtain the lateral distribution of atmospheric Cherenkov light in extensive air showers produced by different primary particles precisely by. protons, Helium, Iron, Oxygen, Carbon, Nitrogen, Calcium, Silicon and gamma quanta in wide energy range at high mountain observation level of Chacaltaya cosmic ray station. The simulations are divided generally in two energy ranges 10GeV-10 TeV and 10 TeV-10 PeV. One large detector has been used for simulations, the aim being to reduce the statistical fluctuations of the obtained characteristics. The shape of the obtained lateral distributions of Cherenkov light in extensive air showers is discussed and the scientific potential for solution of different problems as well.

  17. Measurement of Neutron Activation Cross Sections on Mo isotopes in the Energy Range from 7 MeV to 15 MeV

    Semkova Valentina; Nolte Ralf

    2014-01-01

    An experimental study of the 92Mo(n,p)92Nbm, 92Mo(n,α)89Zr, 95Mo(n,p)95Nbm, 95Mo(n,p)95Nb, 96Mo(n,p)96Nb, 97Mo(n,p)97Nb, 98Mo(n,p)98Nbm, 98Mo(n,a)95Zr, 100Mo(n,α) 97Zr, and 92Mo(n,2n)99Mo activation reaction cross sections were carried out in the 7-15 MeV energy range at the CV28 compact cyclotron at Physikalisch-Technische Bundesanstalt, Braunschweig. The PTB TOF spectrometer with a D(d,n) source is well suited for this difficult energy range were significant correction for non-monoenergetic...

  18. A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20-10000 eV.

    Tan, Zhenyu; Xia, Yueyuan; Liu, Xiangdong; Zhao, Mingwen; Zhang, Liming

    2009-04-01

    A new calculation of the stopping powers (SP) and inelastic mean free paths (IMFP) for electrons in toluene at energies below 10 keV has been presented. The calculation is based on the dielectric model and on an empirical evaluation approach of optical energy loss function (OELF). The reliability for the evaluated OELFs of several hydrocarbons with available experimental optical data has been systematically checked. For toluene, using the empirical OELF, the evaluated mean ionization potential, is compared with that given by Bragg's rule, and the calculated SP at 10 keV is also compared with the Bethe-Bloch prediction. The present results for SP and IMFP provide an alternative basic data for the study on the energy deposition of low-energy electrons transport through toluene, and also show that the method used in this work may be a good one for evaluating the SP and IMFP for hydrocarbons. PMID:19138526

  19. Curves for the response of a Ge(Li) detector to gamma rays in the energy range up to 11 MeV

    Kopecký, J.; Ratyński, W.; Warming, Inge Elisabeth

    1967-01-01

    The response function of a Ge(Li) coaxial detector with a sensitive volume of 17 cm3 for gamma rays of energies ranging from 2.23 to 10.83 MeV has been determined. The measurements were carried out with an experimental set-up using the neutron beam from the DR 3 reactor ar Risö and the (n, γ...

  20. Toward the completion of measurement of absorption spectra of 20 amino acids and 5 bases of nuclear acids over wide energy range

    Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation we accumulated absorption spectra of amino acids and bases of nuclear acids. Now we will be able to complete the measurement for all 20 amino acids and all 5 bases of nuclear acids within one year. Here we report mainly about basic techniques to obtain precise data. (author)

  1. Comparison of the air-kerma standards of the VNIIM and the BIPM in the low-energy X-ray range

    An indirect comparison has been made between the air erma standards of the VNIIM and the BIPM in the low-energy x-ray range. The results show the standards to be in agreement at the level of one to two standard uncertainties. The trend in the results at different radiation qualities is explained in terms of the photon-scatter correction applied to the VNIIM standard. (authors)

  2. High-resolution threshold photoelectron and photoion spectroscopy of molecular nitrogen in the 15.0–52.7 eV photon energy range

    Graphical abstract: - Highlights: • High-resolution threshold photoelectron spectrum of N2 over the photon energy range 15.0–52.7 eV. • High-resolution photoion spectrum of N2 over the photon energy range 15.0–28.0 eV. • Spectroscopic constants for electronic states of N2+ from analyses of vibrational data. • Vibrational assignment of electronic states of N2+. • Rydberg state assignment for series converging on N2+ states. - Abstract: We have performed an extensive study of the threshold photoelectron spectrum of N2 over the valence ionization region 15.0–28.0 eV under high-resolution conditions. In addition, we measured the high-resolution photoion spectrum of N2 over the same photon energy range. These complimentary views of ionization in molecular systems provide different perspectives of the mechanism for the production of both ions and threshold electrons. The studies are presented in the context of our current understanding of the relationship between: (i) the autoionization of neutral Rydberg states and direct photoionization to (ii) the production of electrons and the ionic states of nitrogen at threshold. In both cases (ions and threshold electrons) we have found a considerable amount of new information on the vibrational states of a number of neutral and ionic electronic states. The inner valence ionization region of nitrogen was also investigated using threshold photoelectron spectroscopy over the photon energy range (27.7–52.7 eV) and is presented from the perspective of the formation of mixed-configuration ionic satellite states and the possibility of the involvement of ionic Rydberg states converging on the double ionization of nitrogen

  3. Oxygen and argon plasma effect in stainless steels and graphite in the ion energy range of 10-100 eV

    Experimental data on the effect of accelerated plasma flow of oxygen and argon in the near-threshold ion energy range on the possible materials of the thermonuclear reactor first wall (stainless steel and graphite) are presented. The oxygen ion sputtering coefficient are higher for graphite and lower for steel in comparison with argon ion. Effect on graphite of molecular accelerated oxygen ions is accompanied by their dissociation

  4. Measurements of the ratio fo 239Pu and 235U fission cross sections in the 0.024-7.4 MeV neutron energy range

    Aimed at improving the accuracy of available nuclear data 239Pu-to-235U fission cross section ratios were measured in a broad range of neutron energies. The measurements were taken in electrostatic accelerators with the Li(p,n)-,T(p,n)- and D(d,n) reactions used as neutron sources. The fission fragments were registered by a twin ionization chamber. The measured energy dependence curve of the fission cross section ratios was calibrated by means of an auxiliary technique employing glass detectors. The quantity ratio of the fissioning nuclei in 239Pu- and 235U layers was determined by two independent methods: from the alpha-activity in the layers and by taking measurements in the reactor thermal column. The total errors in the measured results makes up 1.4 to 1.5% for the most portion of the investigated neutron energy range, while rowing up to 1.7 to 2% in the range below 100 keV

  5. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    Xu, Yanping, E-mail: yx2132@cumc.columbia.edu; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n){sup 3}He and D(d,n){sup 3}He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the {sup 9}Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  6. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  7. Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila

    Transportation contributes to resource depletion and has other negative impacts on the environment. The present study presents models of energy demand and environmental emissions for the land transportation sector in Metro Manila, Philippines from 2010 to 2040 using the “Long Range Energy Alternatives Planning (LEAP)” tool. The study projected energy demand and CO2, CO, HC, NOx and PM10 emissions for Business-As-Usual (BAU) and alternative scenarios and compared the results while aiming to determine optimal transportation policies to reduce energy demand and emissions. The results indicated that the adoption of EURO 4 emission standards provides the greatest reduction in energy use at 10.8%, while the best cases for the various gas emissions were split among different options. In addition, a combination of all of the alternatives is expected to lower energy use by 27.8% and to reduce CO2, CO, HC, NOx and PM10 by 30.3%, 60.3%, 59.0%, 48.2% and 66.4%, respectively. The analytical framework employed herein could be applied to other cities to evaluate and prioritize strategies to reduce future energy requirements and emissions. - Highlights: • End use demand and impacts of road transportation are alarming. • Implementing a combination of the scenarios decreases energy demand by 27.8%. • Imposing Euro IV emission standards might reduce pollutants by up to 53.7%. • The best cases for various emissions are achieved by different options. • This model is useful for analyzing energy trajectories and mitigation options

  8. Performance of an air-cooled steam condenser for a waste-to-energy plant over its whole operating range

    Research highlights: → Performance of ACSC are strongly affected by environmental conditions. → A mathematical model was developed for predicting performance of ACSC. → The relation between the air temperature and the maximum heat rate was achieved. -- Abstract: In this work the behaviour of an air-cooled steam condenser (ACSC), installed in a waste-to-energy heat recovery plant, has been analysed under various environmental conditions. The analysis has been carried out by using a mathematical model developed by the authors. For an ACSC, the bottom heat sink is represented by the environmental air, hence the fluctuations of the environmental air temperature undoubtedly affect the performance of the device. Because of the constancy of the temperature on the condensing steam side, the mathematical model is based on the direct application of LMTD (log-mean temperature difference) method. It provides the relation between the air temperature and the volumetric air flow rate, and the main cycle operating parameters. An analysis of the on-site electrical demand has been also performed, which shows that a net benefit is achievable by increasing the air-cooled steam condenser units from six to eight.

  9. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV-1 MeV

    Sareen, R. A.; Urban, W.; Barnett, A. R.; Varley, B. J.

    1995-06-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168Er(α,2n)170Yb reaction at Eα=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV.

  10. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV--1 MeV

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168Er(α,2n)170Yb reaction at Eα=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV. copyright 1995 American Institute of Physics

  11. Electron stopping power and mean free path in organic compounds over the energy range of 20-10,000 eV

    Tan, Zhenyu; Xia, Yueyuan; Zhao, Mingwen; Liu, Xiangdong; Li, Feng; Huang, Boda; Ji, Yanju

    2004-07-01

    An empirical method to obtain optical energy loss functions is presented for a large number of organic compounds, for which optical data are not available, on the basis of structure feature analysis of the existed optical energy loss functions for certain organic compounds. The optical energy loss functions obtained by using this method are in good agreement with the experimental data. Based on the Penn's statistical model, a set of systematic expressions have been given for the calculation of the stopping powers and mean free paths of electrons penetrating into the organic compounds in the energy range of E⩽10 keV. Detailed comparison of the calculated data with other theoretical results is presented. The stopping powers and mean free paths for a group of important polymers, without available optical data, have been calculated. In the calculations, three different cases have been considered, i.e. exchange correction not being considered, Ashley exchange correction being involved, and Born-Ochkur exchange correction being included. The results indicate that for these compounds the calculated stopping powers agree well with those obtained by using Bethe-Bloch theory at high-energy limit E=10 keV, as expected for a stopping power theory that should be converged to Bethe-Bloch theory at high energies.

  12. Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20-20,000 eV.

    Tan, Zhenyu; Xia, Yueyuan; Zhao, Mingwen; Liu, Xiangdong

    2006-07-01

    Systematic calculations of stopping power (SPs) and inelastic mean free path (IMFP) values for 20-20,000 eV electrons in a group of 15 amino acids and a simple protein have been performed. The calculations are based on the dielectric response model and take into account the exchange effect between the incident electron and target electrons. The optical energy-loss functions for the 15 investigated amino acids and the protein are evaluated by using an empirical approach, because of the lack of experimental optical data. For all the considered materials, the calculated mean ionization potentials are in good agreement with those given by Bragg's rule, and the evaluated SP values at 20 keV converge well to the Bethe-Bloch predictions. The data shown represent the first results of SP and IMFP, for these 15 amino acids and the protein in the energy range below 20 keV, and might be useful for studies of various radiation effects in these materials. In addition, the average energy deposited by inelastic scattering of the electrons on this group of 15 amino acids, on the protein, on Formvar and on DNA, respectively, has been estimated for energies below 20 keV. The dependences of the average energy deposition on the electron energy are given. These results are important for any detailed studies of radiation-induced inactivation of proteins and the DNA. PMID:16733724

  13. Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions in both the droplet and broken replica symmetry regions

    Aspelmeier, T.; Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.

    2016-08-01

    The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.

  14. Real-time measurement of low-energy-range neutron spectra on board the space shuttle STS-89 (S/MM-8)

    We have developed a real-time, Bonner Ball-type (neutron energy range is from thermal to 15 MeV) neutron spectral measurement system (Bonner Ball Neutron Detector (BBND)) for use on board the International Space Station (ISS). From measurements taken inside STS-89 (S/MM-8), we successfully distinguished neutrons from protons and other particles in a mixed radiation field; a task hitherto considered difficult. Although the experimental period was short, only 3.5 days (January 24-27, 1998), we were able to obtain energy spectral data and the Earth's neutron dose-equivalent map for the ISS orbital conditions (altitude 400 km, orbit inclination angle 51.6 deg.). A method for calculating the neutron energy spectrum and compensating for the particle interaction with the sensors is also described in detail

  15. Differential and integral electron scattering cross sections from tetrahydrofuran (THF) over a wide energy range: 1-10 000 eV*

    Fuss, Martina C.; Sanz, Ana G.; Blanco, Francisco; Limão-Vieira, Paulo; Brunger, Michael J.; García, Gustavo

    2014-06-01

    Total, integral inelastic and integral and differential elastic cross sections have been calculated with the screening-corrected additivity rule (SCAR) method based on the independent atom model (IAM) for electron scattering from tetrahydrofuran (THF). Since the permanent dipole moment of THF enhances rotational excitation particularly at low energies and for small angles, an estimate of the rotational excitation cross section was also computed by assuming the interaction with a free electric dipole as an independent, additional process. Our theoretical results compare very favourably to the existing experimental data. Finally, a self-consistent set of integral and differential interaction CSs for the incident energy range 1 eV-10 keV is established for use in our low energy particle track simulation (LEPTS). All cross section data are supplied numerically in tabulated form.

  16. Development of a 3He/Xe gas scintillation counter to measure the 3He(n,p)T cross section in the intermediate energy range

    A 3He/Xe gas scintillation counter has been developed for measuring the neutron energy range from thermal to 3 MeV. Great effort was concentrated on improving the detector design to optimize light production and collection to improve the energy resolution which is primarily controlled by photon statistics. The detectors were tested using a 238Pu alpha-particle source, a thermal neutron beam from the NBS reactor, and the white-neutron spectrum from the NBS linac. The detector measures an energy resolution of 17 % (FWHM) for the 3He(n,p)T reaction at 2.0 MeV which is sufficient for cross section measurement. (author)

  17. Development of a 3He/Xe gas scintillation counter to measure the 3He(n,p)T cross section in the intermediate energy range

    A 3He/Xe gas scintillation counter has been developed for measuring the neutron energy range from thermal to 3 MeV. Great effort was concentrated on improving the detector design to optimize light production and collection to improve the energy resolution which is primarily controlled by photon statistics. The detectors were tested using a 238Pu alpha-particle source, a thermal neutron beam from the NBS reactor, and the white-neutron spectrum from the NBS linac. The detector measures an energy resolution of 17% (FWHM) for the 3He(n,p)T reaction at 2.0 MeV which is sufficient for cross section measurement. 12 refs., 8 figs

  18. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    The recoil proton polarization of the reaction γp → π0p were measured at a C.M. angle of 1000 for incident photon energies between 451 and 1106 MeV, and at an angle of 1300 for energies from 400 MeV to 1142 MeV. One photon decayed from a π0-meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A3 can be estimated to be small at 1000. (author)

  19. On the differentiability of depth distribution function of deposited energy, momentum and ion range--a reply to Dr L. G. Glazov

    张竹林

    2002-01-01

    Based on the translational invariance of a medium, a new theorem has been proposed and proved rigorously: the depth distributions of the deposited energy, momentum and ion range must be infinitely differentiable functions in amorphous or polycrystalline infinite targets by ion bombardment, if these functions exist. The origin of the "discontinuity",derived by Dr Glazov in 1995 in J. Phys.: Condens. Matter 7 6365, has been analysed in detail. For the power cross section, neglecting electronic stopping, the linear transport equations determining the depth distribution functions of the deposited energy and momentum (by taking the threshold energy into account) have been solved asymptotically. An important formula derived by Dr Glazov has been confirmed and generalized. The results agree with the new theorem.

  20. Calculation of energy deposited and stopping range through deuterium ignition beam and dynamical studies on the energy gain in D-3He mixtures

    Hosseinimotlagh, S. N.; Jahedi, M.; Kianafraz, S.; Ghaderi, Sakineh

    2015-01-01

    The fast ignition approach to ICF consists in first compressing the fuel to high density by a suitable driver and then creating the hot spot required for ignition by means of a second external pulse. If the ignition beam is composed of deuterons, an additional energy is delivered to the target with increased energy gain. Therefore ,in this innovative suggestion ,we consider deuterium  beams for fast ignition in D+3He mixture and solve the dynamical  balance equations under the available  physi...

  1. Impact of the end of range damage from low energy Ge preamorphizing implants on the thermal stability of shallow boron profiles

    A fundamental understanding of the effect of scaling amorphous layers on the thermal stability of active concentrations is required for the formation of ultrashallow junctions. A study on the influence of boron on the evolution of the end of range defects for samples containing shallow amorphous layers formed by low energy germanium implants is conducted. Czochralski grown (100) silicon wafers are preamorphized with 1x1015 cm-2, 10 keV Ge+ and subsequently implanted with 1x1015 cm-2, 1 keV B+ such that high boron levels are attained in the end of range region. A sequence of anneals are performed at 750 deg. C, under nitrogen ambient for times ranging from 1 s to 6 h and the end of range defect evolution is imaged via plan-view transmission electron microscopy (TEM). Defect analyses are conducted utilizing quantitative TEM which indicates substantial differences in the defect evolution for samples with boron in the end of range. The extended defects observed are very unstable and undergo a fast dissolution. In contrast, stable defects are observed in the experimental control in which the evolution follows an Ostwald ripening behavior. Secondary ion mass spectroscopy analyses confirm the ephemeral nature of the defects observed and also demonstrates drastic reductions in interstitial supersaturation. In addition, uphill-type diffusion is observed to occur for a short time frame, which emphasizes a transient interstitial supersaturation. Correlation of this data with sheet resistance and active dose measurements conducted on a Hall measurement system strongly indicates the formation of boron interstitial clusters. The high boron concentrations and supersaturation levels attained at the anneal temperature enables the cluster formation. An estimate of the boron concentrations trapped in the clusters is determined from the active dose obtained from the Hall measurements and indicates concentrations much higher than those available in the end of range. This suggests an

  2. R-matrix analysis of 235U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    This document describes a new R-matrix analysis of 235U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235U is present

  3. R-matrix analysis of {sup 235}U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of {sup 235}U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which {sup 235}U is present.

  4. THE DEVELOPMENT OF A SUPER-STABLE DATUM POINT FOR MONITORING THE ENERGY SCALE OF ELECTRON SPECTROMETERS IN THE ENERGY RANGE UP TO 20 keV

    Vénos, Drahoslav; Zbořil, Miroslav; Kašpar, Jaromír; Dragoun, Otokar; Bonn, J.; Kovalík, Alojz; Lebeda, Ondřej; Lebedev, N. A.; Ryšavý, Miloš; Schlosser, K.; Špalek, Antonín; Weinheimer, C.

    2010-01-01

    Roč. 53, č. 3 (2010), s. 305-312. ISSN 0543-1972 R&D Projects: GA ČR GA202/06/0002; GA MŠk LA318; GA MŠk LC07050; GA MŠk LA08002 Institutional research plan: CEZ:AV0Z10480505 Keywords : nuclear transition energy * conversion electrons * electron spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.154, year: 2010

  5. Phase-resolved energy spectra of the Crab pulsar in the range of 50-400 GeV measured with the MAGIC telescopes

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Cea Del Pozo, E.; de Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; Hirotani, K.

    2012-04-01

    We use 73 h of stereoscopic data taken with the MAGIC telescopes to investigate the very high-energy (VHE) gamma-ray emission of the Crab pulsar. Our data show a highly significant pulsed signal in the energy range from 50 to 400 GeV in both the main pulse (P1) and the interpulse (P2) phase regions. We provide the widest spectra to date of the VHE components of both peaks, and these spectra extend to the energy range of satellite-borne observatories. The good resolution and background rejection of the stereoscopic MAGIC system allows us to cross-check the correctness of each spectral point of the pulsar by comparison with the corresponding (strong and well-known) Crab nebula flux. The spectra of both P1 and P2 are compatible with power laws with photon indices of 4.0 ± 0.8 (P1) and 3.42 ± 0.26 (P2), respectively, and the ratio P1/P2 between the photon counts of the two pulses is 0.54 ± 0.12. The VHE emission can be understood as an additional component produced by the inverse Compton scattering of secondary and tertiary e± pairs on IR-UV photons.

  6. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  7. A Correlation Potential Method for Electron Scattering Total Cross Section Calculations on Several Diatomic and Polyatomic Molecules over Energy Range 10 ~ 5000 eV

    LIU Yu-Fang; SHI De-Heng; SUN Jin-Feng; ZHU Zun-Lue; YANG Xiang-Dong

    2005-01-01

    A complex optical model potential correlated by the concept of bonded atom, which considers the overlapping effect of electron clouds between two atoms in a molecule, is firstly employed to calculate the total cross sections for electron scattering on several molecules (NH3, H2O, CH4, CO, N2, O2, and C2H4) over the energy range 10 ~ 5000 eV using the additivity rule model at Hartree-Fock level. The difference between the bonded atom and the free one in states is that the overlapping effect of electron clouds of bonded atoms in a molecule is considered. The quantitative total cross sections are compared with the experimental data and with the other calculations wherever available and good agreement is obtained over the energy range 10 ~ 5000 eV. It is shown that the correlated calculations are much closer to the available experimental data than the uncorrelated ones at lower energies, especially below 500 eV. Therefore,considering the overlapping effect of electron clouds in the complex optical model potential could be helpful for the better accuracy of the total cross section calculations of electron scattering from molecules.

  8. Neutron Radiative Capture Cross Section of 232Th in the Energy Range from 0.06 to 2 MeV

    The neutron capture cross section of 232Th has been measured relative to σ(n, γ) for 197Au and σ(n,f) for 235U in the energy range from 60 keV to 2 MeV. Neutrons were produced by the 7Li(p,n) and T(p,n) reactions at the 4-MV Van de Graaff Accelerator of CEN Bordeaux-Gradignan. The activation technique was used, and the cross section was measured relative to the 197Au(n,γ) standard cross section up to 1 MeV. The characteristic gamma lines of the product nuclei 233Pa and 198Au were measured with a 40% high-purity germanium detector. Above this energy, the reaction 235U(n,f) was also used as a second standard, and the fission fragments were detected with a photovoltaic cell. The results, after applying the appropriate corrections, indicate that the cross sections are close to the JENDL-3 database values up to 800 keV and over 1.4 MeV. For energies in the intermediate range, our values are slightly lower than those from all the libraries

  9. Neutron radiative capture cross-section of 232Th in the energy range from 0.06 to 2 MeV

    Neutron capture cross-section of 232Th have been measured relative to σ(n,γ) for 197Au and σ(n,f) for 235U in the energy range from 60 keV to 2 MeV. Neutrons were produced by the 7Li(p,n) and T(p,n) reactions at the 4 MV Van de Graaff Accelerator of CEN/Bordeaux. The activation technique was used and the cross-section was measured relative to the 197Au(n,γ) standard cross-section up to 1 MeV. Above this energy, the reaction 235U(n,f) was also used as a second standard and the fission fragments were detected with a photovoltaic cell. The results after applying the appropriate corrections indicate that the cross-sections are close to the JENDL-3 database values up to 800 keV and over 1.4 MeV. For energies in the intermediate range, values are slightly lower to the ones from all the libraries. (author)

  10. A transportable source of gamma rays with discrete energies and wide range for calibration and on-site testing of gamma-ray detectors

    Granja, Carlos; Slavicek, Tomas; Kroupa, Martin; Owens, Alan; Pospisil, Stanislav; Janout, Zdenek; Kralik, Miloslav; Solc, Jaroslav; Valach, Ondrej

    2015-01-01

    We describe a compact and transportable wide energy range, gamma-ray station for the calibration of gamma-ray sensitive devices. The station was specifically designed for the on-site testing and calibration of gamma-ray sensitive spacecraft payloads, intended for space flight on the BepiColombo and SoIar Orbiter missions of the European Space Agency. The source is intended to serve as a calibrated reference for post test center qualification of integrated payload instruments and for preflight evaluation of scientific radiation sensors. Discrete gamma rays in the energy range 100 keV-9 MeV are produced in the station with reasonable intensity using a radionuclide neutron source and 100 l of distilled water with 22 kg salt dissolved. The gamma-rays generated contain many discrete lines conveniently evenly distributed over the entire energy range. The neutron and gamma-ray fields have been simulated by Monte Carlo calculations. Results of the numerical calculations are given in the form of neutron and gamma-ray spectra as well as dose equivalent rate. The dose rate was also determined directly by dedicated dosemetric measurements. The gamma-ray field produced in the station was characterized using a conventional HPGe detector. The application of the station is demonstrated by measurements taken with a flight-qualified LaBr3:Ce scintillation detector. Gamma-ray spectra acquired by both detectors are presented. The minimum measuring times for calibration of the flight-version detector, was between 2 and 10 min (up to 6.2 MeV) and 20-30 min (up to 8 MeV), when the detector was placed at a distance 2-5 m from the station.

  11. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    Klepser, Stefan

    2008-06-24

    IceTop is a km{sup 2} scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.10{sup 11} m{sup 2} s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of

  12. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    IceTop is a km2 scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.1011 m2 s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of the mixed

  13. Dose distribution in water for monoenergetic photon point sources in the energy range of interest in brachytherapy: Monte Carlo simulations with PENELOPE and GEANT4

    Almansa, J F; Anguiano, M; Guerrero, R; Lallena, A M; Al-Dweri, Feras M.O.; Almansa, Julio F.; Guerrero, Rafael

    2006-01-01

    Monte Carlo calculations using the codes PENELOPE and GEANT4 have been performed to characterize the dosimetric properties of monoenergetic photon point sources in water. The dose rate in water has been calculated for energies of interest in brachytherapy, ranging between 10 keV and 2 MeV. A comparison of the results obtained using the two codes with the available data calculated with other Monte Carlo codes is carried out. A chi2-like statistical test is proposed for these comparisons. PENELOPE and GEANT4 show a reasonable agreement for all energies analyzed and distances to the source larger than 1 cm. Significant differences are found at distances from the source up to 1 cm. A similar situation occurs between PENELOPE and EGS4.

  14. High-energy sub-nanosecond optical pulse generation with a semiconductor laser diode for pulsed TOF laser ranging utilizing the single photon detection approach

    Huikari, Jaakko; Avrutin, Eugene; Ryvkin, Boris; Kostamovaara, Juha

    2016-06-01

    Bulk and quantum well laser diodes with a large equivalent spot size of d a /Γ a ≈ 3 µm and stripe width/cavity length of 30 µm/3 mm were realized and tested. They achieved a pulse energy and pulse length of the order of ~1 nJ and ~100 ps, respectively, with a peak pulse current of 6-8 A and a current pulse width of 1 ns. The 2D characteristics of the optical output power versus wavelength and time were also analyzed with a monochromator/streak camera set-up. The far-field characteristics were studied with respect to the time-homogeneity and energy distribution. The feasibility of a laser diode with a large equivalent spot size in single photon detection based laser ranging was demonstrated to a non-cooperative target at a distance of a few tens of meters.

  15. Differential cross sections of elastic electron scattering from CH4, CF4 and SF6 in the energy range 100-700eV

    Ma Er-Jun; Ma Yu-Gang; Cai Xiang-Zhou; Fang De-Qing; Shen Wen-Qing; Tian Wen-Dong

    2007-01-01

    We investigate the differential cross sections (DCS) of elastic electron scattering from CH4, CF4 and SF6 at six impact energies in a range of 100-700eV by employing the independent atom model (IAM) together with the relativistic partial waves. The atom is present in an optical potential which is complex, spherically symmetric, and energy dependent. The optical potential of the atom is the sum of the direct static, dynamic polarization, local exchange and modified absorption potentials. The results obtained by using a modified absorption potential show significant improvements on the unmodified absorption potential results. The present results are generally in good agreement with experimental data available. In addition, the present results indicate that the structure of molecule manifests the observable effects on electron-molecule scattering.

  16. Measurement of (n,2n) reaction cross-sections on isotopes of zinc, germanium and scandium in neutron energy range 13.82-14.7 MeV

    The cross-sections for the reactions 64Zn(n,2n)63Zn, 76Ge (n,2n)75m+gGe and 45Sc(n,2n)44mSc were measured in the energy range 13.82-14.71 MeV. The activation technique was used in combination with high resolution HPGe detector gamma-ray spectroscopy. Neutrons were produced via D-T reaction at J-25 neutron generator of the Institute of Nuclear Science and Technology, AERE, Dhaka, Bangladesh. The neutron flux at each energy was determined using monitor reaction 27Al(n, α)24Na. The nuclear model calculations using the computer codes SINCROS-II and EXIFON were undertaken to describe the excitation functions of the investigated reactions. (author)

  17. Measurement of the U-236(n, f) cross section in the neutron energy range from 0.5 eV up to 25 keV

    Wagemans, Cyrillus; De Smet, Liesbeth; Vermote, Sofie; Heyse, Jan

    2008-01-01

    The U-236(n,f) cross section has been measured in the energy range from 0.5 eV to 25 keV at the Geel Electron Linear Accelerator neutron time-of-flight facility of the Institute for Reference Materials and Measurements in Geel, Belgium. A highly enriched U-236 sample was mounted back-to-back with a B-10 sample in the center of a Frisch-gridded ionization chamber, hence realizing a 2 pi detection geometry. A U-235(n,f) cross-section control measurement was performed in the same experimental co...

  18. The investigation of neutron cross section with the energy range from 1 to 50 MeV for some near-spherical nuclei

    In this paper, we calculated the total and reaction cross sections of elastic scattering and pickup reactions of neutron with incident energies from 1 to 50 MeV for four near-spherical nuclei, which the mass number range from 48 to 208. In our calculation, the optical model potential (OMP) and Born approximations are used to describe the direct interactions between neutron and these nuclei, parameters for OMP and properties of the nuclei are taken from RIPL-3. Our results are compared with experimental and evaluated data from TENDL. (author)

  19. Measurement and analysis of excitation functions in 16O + 103Rh system in the excitation energy range ≅ 2-4 MeV/A

    In the present work, excitation functions for seven evaporation residues (ERs) produced via complete fusion and incomplete fusion processes in 16O + 103Rh system have been measured in the energy range ≅ 47-85 MeV, using recoil catcher technique followed by off-line gamma-ray spectrometry. Comparison of the experimental data with statistical model based computer code PACE 2 revealed dominance of incomplete fusion in reactions involving alpha-emission channels. To the best of our knowledge these reactions are being reported for the first time

  20. R-matrix analysis of the 241Pu neutron cross sections in the energy range thermal to 300 eV

    The report is a description of the analysis of the 241Pu neutron cross sections in the resolved resonance region at Oak Ridge National Laboratory (ORNL) using the multilevel-multichannel Reich-Moore code SAMMY. The resonance parameters were obtained in the energy range 0 to 300 eV. The table of the resonance parameters is given with some statistical properties of the parameters. Tabulated and graphical comparison between the experimental data and the calculated cross sections are given. The results are available in ENDF/B-V format and will be proposed for the evaluated data library JEF2 and ENDF/B-VI. 28 refs., 15 figs., 16 tabs

  1. Facilities and techniques for x-ray diagnostic calibration in the 100-eV to 100-keV energy range

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well

  2. Hauser-Feshbach calculations of neutron-induced reaction cross sections for 52Cr in 6-20 MeV neutron energy range

    Calculations of cross sections of neutron induced reactions for 52Cr in 6-20 MeV energy range have been performed using Hauser-Feshbach code developed by the author. The calculations include cross sections of (n,n'), (n.np), (n,2n), (n,p), (n,pn), (n,pγ), (n,α), (n,αγ) and (n, αn) reactions induced in 52Cr. The calculations have been compared with measurements and evaluations. (author). 30 refs, 11 figs, 2 tabs

  3. Differential cross sections for γγ->panti p in the C.M. energy range from 2.0 to 3.1 GeV

    Exclusive production of proton-antiproton pairs by two photon scattering at c.m. energies between 2.0 GeV and 3.1 GeV has been measured with the TASSO detector at the e+e- storage ring PETRA. The angular distribution is flat within the accepted c.m. angular range vertical strokecosTHETAsup(*)vertical strokeγγ)xB(etasub(c)->panti p)<0.32 keV (95% c.l.) is found. (orig.)

  4. A transportable source of gamma rays with discrete energies and wide range for calibration and on-site testing of gamma-ray detectors

    We describe a compact and transportable wide energy range, gamma-ray station for the calibration of gamma-ray sensitive devices. The station was specifically designed for the on-site testing and calibration of gamma-ray sensitive spacecraft payloads, intended for space flight on the BepiColombo and SoIar Orbiter missions of the European Space Agency. The source is intended to serve as a calibrated reference for post test center qualification of integrated payload instruments and for preflight evaluation of scientific radiation sensors. Discrete gamma rays in the energy range 100 keV–9 MeV are produced in the station with reasonable intensity using a radionuclide neutron source and 100 l of distilled water with 22 kg salt dissolved. The gamma-rays generated contain many discrete lines conveniently evenly distributed over the entire energy range. The neutron and gamma-ray fields have been simulated by Monte Carlo calculations. Results of the numerical calculations are given in the form of neutron and gamma-ray spectra as well as dose equivalent rate. The dose rate was also determined directly by dedicated dosemetric measurements. The gamma-ray field produced in the station was characterized using a conventional HPGe detector. The application of the station is demonstrated by measurements taken with a flight-qualified LaBr3:Ce scintillation detector. Gamma-ray spectra acquired by both detectors are presented. The minimum measuring times for calibration of the flight-version detector, was between 2 and 10 min (up to 6.2 MeV) and 20–30 min (up to 8 MeV), when the detector was placed at a distance 2–5 m from the station. - Highlights: • Transportable station of mono-energetic gamma rays has been built. • Produced neutron and gamma ray field simulated by Monte Carlo calculations. • Discrete gamma rays produced in wide energy range up to 9 MeV. • Produced gamma ray spectra measured by HPGe and scintillating LaBr3Ce detectors. • Demonstration of application

  5. Charge state distributions and charge-changing cross sections of heavy ions in the energy range up to 10 MeV/u

    Charge state distributions and charge-changing cross sections have been measured for heavy ions with atomic numbers between 18 and 92, in charge states from +9 to +68, and at energies in the range from 0.2 to 10 MeV/u using various gaseous and solid target materials. The experimental cross sections are compared with the theory of Bohr and Lindhard. The accuracy of predictions by means of known empirical formulae for average equilibrium charge states is briefly discussed. (author)

  6. Measurements of the reaction e+e- → μ+μ- at center-of-mass energies in the range 6.2--7.4 GeV

    Measurements of the cross section for the muon-pair-annihilation reaction e+e- → μ+μ-, relative to Bhabha scattering at 40, are reported at center-of-mass energies in the range 6.2--7.4 GeV. These measurements provide a fundamental test of quantum electrodynamics (QED) for timelike values of the invariant four-momentum transfer q2 as high as 54.8 (GeV/c)2, which in this reaction is carried by the photon propagator. The results are in agreement with predictions of QED

  7. Mechanisms of Franck-Condon breakdown over a broad energy range in the valence photoionization of N{sub 2} and CO

    Lopez-Dominguez, J.A. [Department of Chemistry, Texas A and M University, College Station, TX 77843-3255 (United States); Hardy, David; Das, Aloke; Poliakoff, E.D. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Aguilar, Alex [Advanced Light Source, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Lucchese, Robert R., E-mail: lucchese@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, TX 77843-3255 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We measured the vibrational branching ratios for the photoionization of N{sub 2} and CO. Black-Right-Pointing-Pointer We computed the corresponding branching ratios for the X and B ion states. Black-Right-Pointing-Pointer The logarithmic derivative of the cross section was used in the comparison. Black-Right-Pointing-Pointer Non-Franck-Condon effects were seen due to Cooper minima. Black-Right-Pointing-Pointer The Cooper minima were related to Cohen-Fano interference effects. -- Abstract: The molecular photoionization of N{sub 2} leading to the 3{sigma}{sub g}{sup -1}, 2{sigma}{sub u}{sup -1} ion states and CO leading to the valence isoelectronic 5{sigma}{sup -1}, 4{sigma}{sup -1} ion states has been studied using both theory and experiment. Vibrational branching ratios have been obtained in the 15-200 eV photoelectron energy range. The analysis of the branching ratios for these processes shows a breakdown in the Franck-Condon approximation in the range of energies studied. Some of the deviations at lower energies are well documented as due to shape resonances, and in such cases we found good agreement between the present work and previous experimental and theoretical investigations of these photoionization channels. For both N{sub 2} and CO ionization, we also found that the partial wave cross sections have an interference pattern similar to a Young-type interference, which are related to molecular Cooper minima. Such features were also seen to induce non-Franck-Condon effects in the vibrational branching ratios at higher energies. The comparison of theory and experiment was facilitated by the introduction of an electronic factor (F) that is the logarithmic derivative of the cross section with respect to bond length and which could be directly related to the branching ratios.

  8. The energy-spectrum of light primaries in the range from 10^{16.6} to 10^{18.2} eV

    Schoo, S; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Curcio, C; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Fuchs, B; Fuhrmann, D; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschlaeger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, D; Wochele, J

    2013-01-01

    Data of the Grande extension of the KASCADE experiment allows us to study extensive air showers induced by primary cosmic rays with energies above 10^{16} eV. The energy of an event is estimated in terms of the number of charged particles (Nch ) and the number of muons (N{\\mu} ) measured at an altitude of 110 m a.s.l. While a combination of the two numbers is used for the energy, the ratio defines the primary mass (group). The spectrum of the combined light and medium mass components, recently measured with KASCADE-Grande, was found to be compatible with both a single power-law and a broken power-law in the energy range between 10^{16.3} and 10^{18} eV. In this contribution we will present the investigation of possible structures in the spectrum of light primaries with increased statistics both from a larger data set including more recent measurements and by using a larger fiducial area than in the previous study. With the better statistical accuracy and with optimized selection criteria for enhancing light p...

  9. Study of n-γ discrimination in low energy range (above 40 keVee) by charge comparison method with a BC501A liquid scintillation detector

    A VME-based experiment system for n-γ discrimination using the charge comparison method was established. A data acquisition program for controlling the programmable modules and processing data online via VME64X bus was developed through the use of LabVIEW. The two-dimensional (2D) scatter plots of the charge in the slow component vs. the total charge from 241Am-Be and 252Cf neutron sources are presented. The 2D scatter plots of the energy vs. the ratio of the charge in the slow component to the total charge of the pulses are also presented. The quality of n-γ discrimination was checked by the figure-of-merit, and the results showed good performance of n-γ discrimination at the low energy range. Neutrons and γ-rays were separated above 50 keVee (electron-equivalent energy). The quality of n-γ discrimination has been improved compared with others' results at five energies (150, 250, 350, 450, 550 keVee). (authors)

  10. Study of n-{\\gamma} discrimination in low energy range (above 40 keVee) by charge comparison method with a BC501A liquid scintillation detector

    Chen, Yonghao; Zhang, Xiaodong; Lei, Jiarong; An, Li; Shao, Jianxiong; Zheng, Pu; Wang, Xinhua; Zhu, Chuanxin; He, Tie; Yang, Jian

    2013-01-01

    A VME-based experiment system for n-{\\gamma} discrimination using the charge comparison method was established. A data acquisition program for controlling the programmable modules and processing data online via VME64X bus was developed through the use of LabVIEW. The two-dimensional (2D) scatter plots of the charge in the slow component vs. the total charge of recorded pulses from Am-Be and Cf neutron sources were presented. The 2D scatter plots of the energy vs. the ratio of the charge in the slow component to the total charge of the pulses were presented at the meantime. The quality of n-{\\gamma} discrimination was checked by the figure-of-merit, and the results showed good performance of n-{\\gamma} discrimination at low energy range. Neutrons and {\\gamma}-rays were separated above 50 keVee (electron-equivalent energy). The quality of n-{\\gamma} discrimination have been improved compared with others' results at 5 energies (150, 250, 350, 450, 550 keVee).

  11. Angular and energy distribution of Sn ion debris ejected from a laser-produced plasma source, for laser power densities in the range suitable for extreme ultraviolet lithography

    In this paper, experimental results are presented for the spatial and energy distributions of charge-discriminated Sn ions ejected from laser-produced plasmas. The plasmas were formed on solid, planar Sn targets, irradiated with a Nd:YAG laser. Ions were investigated using a calibrated electrostatic sector analyzer, scanning an energy-to-charge ratio range of 0.22 to 2.2 keV/e for emission angles between 20 and 80 degrees relative to target normal. Results were obtained for three laser power densities, in the region suitable for inducing significant extreme ultraviolet emission, of the order 1.5-8.1 x 1011 W/cm2. The fully differentiated data were found to be well characterized by Gaussian fits, which allowed trends in the emission profiles to be readily quantified. Ions of set energy and charge were observed to possess a preferential angle of emission, the superposition of which yields a physical basis for the total angular emission observed previously and in this work. The experimental results obtained have been related to physical processes within the plasma that influence the energy and angle of ejection of ions from laser produced plasmas.

  12. Simulation of Neutron Production in Selected Targets by Proton and Deuteron Beam in Energy Range from 10 MeV to 75 MeV

    Initial inter-comparison study of simulation of neutron production by beam of protons and deuterons in different target materials, in energy range from 10 MeV to 75 MeV, is shown in the paper. An idealised cylindrical (diameter = height = 2.5 cm) target is bombarded, along the central axis, perpendicularly at target base, by an infinite thin particle beam. Simulation is carried out for the target surrounded by void, i.e., the 'return effect' from surrounding materials in a real system is not encountered. The study is carried out using Monte Carlo based computer codes for intermediate and high-energy nucleon transport: LCS, ver.2.7 (LANL, USA) and SHIELD (INR, Russia). Yield (total number of neutrons in 4 , per incident particle) and spectrum of neutrons escaping the target surfaces are determined for different targets made from 208Pb/Pb, 238U/U, 184W/W, Be and 7Li. Maximum neutron yield, near 30%, is calculated for proton beam energy of 75 MeV bombarding 238U/U target, shaped as mentioned above. Generally, neutron yield for deuteron beam is less than neutron yield for proton beam of the same energy for targets made from high-Z nuclides. The opposite conclusion is derived for targets made from low-Z nuclides. (author)

  13. Electron-transfer reactions of fast Xe/sup n/+ ions with Xe in the energy range 15 keV to 1.6 MeV

    Electron-transfer cross sections for the reactions of Xe/sup n/+ (n = 1--4) with Xe atoms have been determined as a function of projectile-ion kinetic energy in the range 15 keV--1.6 MeV. For Xe/sup n/+ (n = 2, 3, 4), cross sections for sequential transfer of two or more electrons in single-ion--atom collisions have been obtained. These cross sections decrease with increasing number of electrons transferred. The observed insensitivity of cross sections to projectile kinetic energy in the range investigated follows the condition that the linear velocity of the ion is less than the orbital velocity of a valence electron in the slow-moving target atom. Attenuation cross sections for reactions of Xe/sup n/+ (n = 2, 3, 4) follow approximately a Z2/sub direct-sum/ charge dependence. A simple classical model based on Coulomb forces yields cross sections with a reasonable fit to the experimental data

  14. Sensitivity measurements of a microchannel plate intensified x-ray detector in the 100 - 1500 eV photon energy range (abstract)

    Microchannel plate intensified (MPI) x-ray detectors are commonly used for imaging and spectral measurements in the 100 - 1500 eV photon energy range. Using a laser-produced plasma x-ray source, we measured the integrated detector response versus incident x-ray intensity and the relative efficiency versus photon energy of a MPI x-ray detector. Two identical 2000 lines/mm transmission grating spectrometers simultaneously record broadband plasma source emission from a tantalum target. The relative efficiency was determined by comparing the spectrum recorded with an absolutely calibrated x-ray CCD reference detector on one spectrometer to the spectrum recorded with a MPI x-ray detector on the other spectrometer. The integrated detector response versus incident x-ray intensity was measured by simultaneously illuminating the CCD reference detector and the MPI detector with step-wedge-filtered magnesium plasma emission. The aluminum step wedge x-ray filters pass the 1s - 2p emission lines of H-like Mg at 1470 eV and the 1s2 - 1s2p emission lines of He-like Mg at 1350 eV, and provide a four order of magnitude range in incident intensity on the detectors.copyright 1999 American Institute of Physics

  15. The (3He, tf) as a surrogate reaction to determine (n, f) cross sections in the 10-20 MeV energy range

    The surrogate reaction 238U(3He, tf) is used to determine the 237Np(n, f) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting ∼761 μg/cm2 metallic 238U foil was bombarded with a 42 MeV 3He2+ beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS) consisted of two 140 μm and one 1000 μm Micron S2 type silicon detectors. The 237Np(n, f) cross sections, determined indirectly, were compared with the 237Np(n, f) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the (3He, tf) reaction as a surrogate to extract (n, f) cross sections in the 10-20 MeV equivalent neutron energy range is found to be suitable.

  16. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in ∼ 10 GeV energy range

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p2)/σtot, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p2 d2σ/dpdΩ = C exp (-Bp2), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section ρ = f/σtot is also described by exponential A0 exp (-A1p2), where p becomes independent of energy at initial particle energies ≥ 1.5 GeV for C nucleus and ≥ 5 GeV for the heaviest of the investigated Pb nuclei

  17. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin

  18. Broadening alpha registration energy range of 250 μm polycarbonate detectors by a single 50 Hz–HV ECE method

    Our recent studies on efficient detection of nitrogen and helium ions in a plasma focus device and alpha particles in 1 mm thick polycarbonate track detectors (PCTD) by 50 Hz–HV ECE method in PEW (potassium hydroxide, ethanol, water mixture) solution at 26 °C for 10 h proved having promising results. In order to further study the characteristics of the method and extend the applications, studies were performed by using 250 μm PCTDs by 50 Hz–HV method instead of commonly applied 2 kHz–800 V or similar conditions. Alpha detection efficiency, mean track diameter, detection energy range, lower and upper registration energy thresholds and track shapes as well as background track density and diameters were studied by varying field conditions, ECE durations and alpha energies. The efficiency, meantrack diameter and background in general increased as high voltage and ECE duration increased. The optimum ECE conditions were determined to be 50 Hz–2 kV in PEW solution at 26 °C for 2–3 h. The 50 Hz–2 kV method provides some unique characteristics compared to 2 kHz–800 V in terms of having a higher efficiency in a broader efficient registration energy range ∼300 keV to ∼4.5 MeV, smaller track diameters and thus capability to detect higher fluencies of charged particle at the cost of a relatively higher background. Further research is in progress on alpha registration studies. - Highlights: • Alpha particle tracks were studied in 250 μm PC applying 50 Hz–HV ECE method. • Efficiency and diameter were determined versus field conditions, duration and energy. • Efficiency, diameter and background density increase as HV and ECE duration increase. • Alphas of ∼300 keV to ∼4.5 MeV were detected with efficiency up to ∼70% at the Bragg peak. • Some characteristics of 50 Hz–2 kV and 2 kHz–800 V methods are compared

  19. Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high momentum nucleons induced by short-range correlations

    Cai, Bao-Jun

    2016-01-01

    Using an experimentally constrained single-nucleon momentum distribution for cold nuclear matter in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy $E_{\\rm{sym}}(\\rho)$. Firstly, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC (Short-range correlation)-induced high momentum nucleons, while it is significantly under predicted by the traditional RMF model using a step function for the single-nucleon momentum distribution as in a free Fermi gas (FFG). Secondly, consistent with earlier findings within non-relativistic models, the kinetic symmetry energy of quasi-nucleons is found to have a negative value of $E^{\\rm{kin}}_{\\rm{sym}}(\\rho_0)=-16.94\\pm13.66\\,\\rm{MeV}$ which is dramatically different fr...

  20. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    Schwell, Martin

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  1. Interactions of Cosmic Rays in the primary energy range (0.1-1 PeV studied by the ARGO-YBJ Experiment

    Surdo A.

    2013-06-01

    Full Text Available The ARGO-YBJ detector layout, features and location offer a unique possibility for a detailed study of several characteristics of the hadronic component of the cosmic ray flux in an energy range hardly accessed by direct measurements. The proton-air cross section has already been measured by ARGO-YBJ in an energy region up to ~ 100 TeV where the primary cosmic ray composition is sufficiently well known for that measure to be unbiased. The analog readout of the RPC signals now provides new tools to measure the lateral distribution of particle density (LDF as close as a few meters from the core and to investigate with unprecedented resolution the shower time structure. This allows to extend the hadronic interaction and mass composition studies up to ~PeV energies in the laboratory rest frame. Moreover, it is shown that the LDF of detected showers can be properly described, even very close to the shower axis, by a NKG-like function, whose shape parameter is clearly related to the shower age and can be used for studying the mass composition of cosmic rays.

  2. High accuracy measurement of the $^{235}$U(n,f) reaction cross-section in the 10-30 keV neutron energy range

    The analysis of the neutron flux of n_TOF (in EAR1) revealed an anomaly in the 10-30 keV neutron energy range. While the flux extracted on the basis of the $^{6}$Li(n,t)$^{4}$He and $^{10}$B(n,$\\alpha$)$^{7}$Li reactions mostly agreed with each other and with the results of FLUKA simulations of the neutron beam, the one based on the $^{235}$U(n,f) reaction was found to be systematically lower, independently of the detection system used. A possible explanation is that the $^{235}$U(n,f) crosssection in that energy region, where in principle should be known with an uncertainty of 1%, may be systematically overestimated. Such a finding, which has a negligible influence on thermal reactors, would be important for future fast critical or subcritical reactors. Furthermore, its interest is more general, since the $^{235}$U(n,f) reaction is often used at that energy to determine the neutron flux, or as reference in measurements of fission cross section of other actinides. We propose to perform a high-accuracy, high-r...

  3. Spectrum and mass composition of cosmic rays in the energy range 1015–1018 eV derived from the Yakutsk array data

    Sabourov A.

    2013-06-01

    Full Text Available A spectrum of cosmic rays within energy range 1015 − 3 × 1017 eV was derived from the data of the small Cherenkov setup, which is a part of the Yakutsk complex EAS array. In this, work a new series of observation is covered. These observations lasted from 2000 till 2010 and resulted in increased number of registered events within interval 1016–1018 eV, which in turn made it possible to reproduce cosmic ray spectrum in this energy domain with better precision. A sign of a thin structure is observed in the shape of the spectrum. It could be related to the escape of heavy nuclei from our Galaxy. Cosmic ray mass composition was obtained for the energy region 1016–1018 eV. A joint analysis of spectrum and mass composition of cosmic rays was performed. Obtained results are considered in the context of theoretical computations that were performed with the use of hypothesis of galactic and meta-galactic origin of cosmic rays.

  4. Primary proton and helium spectra at energy range from 50 TeV to 1015 eV observed with the new Tibet AS core detector array

    Huang Jing

    2013-06-01

    Full Text Available A new EAS hybrid experiment has been designed by constructing a YAC (Yangbajing Air shower Core detector array inside the existing Tibet-III air shower array. The first step of YAC, called “YAC-I” has been successfully carried out in 2009–2010 together with Tibet-III air-shower array. YAC-II has also been operated from 2011. Preliminary results of YAC-I and performance of YAC-II are presented in this paper. The primary proton and helium spectra at energy range from50 TeV to 1015 eV derived from YAC-I data based on QGSJET2 and SIBYLL2.1 are reported. The obtained P+He spectrum is smoothly connected with directobservation data below 100 TeV and also with our previously reported results at higher energies within statistical error s. Based on these results and the sharp kneeof all-particle energy spectrum observed by our experiment, the possible origin of the sharp knee is discussed. See the published papers.

  5. Elastic and inelastic scattering of 9,11 Li + Si at backward angles in the energy range (9.5 - 25) AMeV

    Recently, an inclusive fusion experiment of 9,11 Li projectiles with Si targets, in the energy range (9.5 - 25) AMeV has been performed at Riken Ring Cyclotron-Japan using, for the detection of the fusion products, an ionization chamber, MUSIC, built in NIPNE-HH, Bucharest. In this experiment, the contribution of elastic and inelastic scattering, at forward detection angles is eliminated through the experimental set-up. For a clear investigation of the fusion process, the estimation of elastic and inelastic scattering at backward angles, between 80 angle - 180 angle was considered necessary. This estimation was made by the coupled channels computer code ECIS. ECIS is an iterative method, the first iteration of this procedure being DWBA. In the analysis of elastic and inelastic scattering of 9,11 Li projectile on Si target we assumed that the incident 9 Li and 11 Li waves are diffracted by an optical potential with an Woods-Saxon geometry. The adopted optical potential is given. For the depth of the real and imaginary volume terms we used values dependent on projectile energy and target mass number. These values have been chosen in good agreement with a semi-microscopic model with a double-folding potential. The set of optical parameters selected for the system 9,11 Li (13 AMeV) + Si is given. The presence of neutron halo of 11 Li nucleus was taken into account by using adjusted values for the parameters rR and aR. The 28 Si nucleus is considered a rigid rotor, including the couplings involving the ground state and a first to excited states. The quadrupole deformation parameter was β2 = - 0.24. The results for the scattering of 11 Li projectile on Si target at 13 AMeV energy are given with the parameters Rmatch, I and Jmax taken from the Monte Carlo simulations with PACE code. We found that the contribution of elastic and inelastic scattering for background angles, between 80 angle - 180 angle is under 2%. The contribution of a inelastic scattering taken into

  6. A study of proton breakup from exotic nuclei through various reaction mechanisms in 40 A - 80 AMeV energy range

    We have studied the single proton breakup from weakly bound exotic nuclei due to several reaction mechanisms separately and their total and the interference effects, in order to clarify quantitatively which mechanism would dominate the measured observables. We have considered: first, the recoil effect of the core-target Coulomb potential which we distinguish from the direct proton-target Coulomb potential, and secondly the nuclear breakup, which consists of stripping and diffraction. Thus, we have calculated the absolute values of breakup cross sections and parallel momentum distributions (LMD) for 8B and 17F projectiles on a light and a heavy target in a range of intermediate incident energies (40 A-80 A MeV) for each reaction mechanism. Furthermore the interference among the two Coulomb effects and nuclear diffraction has been studied in detail. The calculation of the direct and recoil Coulomb effects separately and of their interference is the new and most relevant aspect of this work. (authors)

  7. Charge state distributions of oxygen and carbon in the energy range 1 to 300 keV/e observed with AMPTE/CCE in the magnetosphere

    Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer (CHEM) onboard the AMPTE/CCE space-craft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (48), and quiet to moderately disturbed days (Kp< or =4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere

  8. Forward recoil range distribution (FRRD) measurements in 16O + 156Gd system at ∼ 72, 82 and 93 MeV energies

    Incomplete fusion (ICF) reaction dynamics has been a subject of increasing interest in the last two decades. It has been observed that above the Coulomb barrier ICF process is the dominant one. In the ICF reaction mechanism, a part of the projectile fuses with target nucleus and remaining part of the projectile (projectile like fragments) moves in the forward direction as a spectator, which lead to transfer of partial linear momentum from the projectile to the target nucleus. The main objective of the present work is the measurement of forward recoil range distributions (RRDs) to understand the degree of linear momentum transfer from projectile 16O to target 156Gd, at different projectile energies, E ∼ 72, 82 and 93 MeV

  9. Elastic recoil cross section determination of deuterium by helium-4 ions at 30° with the energy range of 2.6-7.4 MeV

    Han, Zhibin; Hao, Wanli; Wang, Chunjie; Shi, Liqun

    2016-05-01

    The elastic recoil cross section for D(4He, D) 4He was determined at a recoil angle of 30° over an incident helium energy range from 2.6 to 7.4 MeV. A thin solid target Ta/TiDx/Si used for cross section measurement was prepared by direct current magnetron sputtering, and it was so stable to ion beam bombardment that nearly no deuterium loss (less than 0.2%) exists over the whole experiment. A relative determination method is adopted in this measurement. It can avoid the error from the beam dose and the solid angle of the detectors and it is also free to direct measurement of D content in the film. The total uncertainty in the cross section determination is less than 5%.

  10. Forward-to-backward asymmetry of the (γ,n) reaction in the energy range 20-30 MeV

    The forward-to-backward asymmetry of neutrons emitted in the (γ,n) reactions on /sup nat/Pb and /sup nat/Cd targets was measured for photons in the range of 20 to 30 MeV, where the isovector quadrupole giant resonance is expected to lie. The asymmetry was observed to increase from small values (≅0.2) to large ones (≅0.6 and 0.8) for /sup nat/Cd and /sup nat/Pb, respectively. This phenomenon is interpreted as the interference between E1 and E2 amplitudes. From an analysis of the asymmetry the excitation energies of the E2 isovector resonances were estimated to be 23.5 +- 1.5 and 26.5 +- 1.5 MeV for the Pb and Cd nuclei, respectively. The E2 isovector resonances are found to be considerably wider than the E1 resonances. 36 refs., 15 figs., 4 tabs

  11. Violent collisions between Ar and Ag in the energy range 30-60 MeV per nucleon: persistence of deeply inelastic collisions and temperature limits

    The dynamics of violent collisions for the 40Ar + natAg system is studied between 27 and 57 MeV per nucleon. The dominance of binary dissipative collisions, accompanied by an increasing abundance of pre-equilibrium emission for central collisions, is demonstrated over the whole bombarding energy range studied. The experimentally observed correlation between the emission angle of the light partner and the damping of the relative motion yields information on the in-medium nucleon-nucleon section. Finally, for the most violent collisions, a saturation of the temperature for the heavy partner is observed at a value of about 7 MeV. At the same time, this saturation is also observed in the multiplicities for evaporated light charged particles. (authors)

  12. Analysis of the Nb(n,xn) and Bi(n,xn) reaction in the 5-27 MeV incident neutron energy range

    Results of a detailed study of the generation of neutron emission spectra, taking into account the contribution of the pre-equilibrium decay and direct reaction mechanisms to the formation of the compound nucleus are presented. Main consideration is given to the determination of the nuclear level density in the neutron inelastic scattering channel which is the primary contributor to the shape of the soft part of neutron emission spectra. A good description of the experimentally observed spectra over the whole energy range was obtained. The level density parameters which were determined are in good agreement with those taken from well known systematics in the case of Nb, but not in the case of Bi. (author). 29 refs, 12 figs, 2 tab

  13. A fully microscopic model analysis of the elastic and inelastic scattering of protons from 12C and for energies in the range 200 to 800 MeV

    Medium modified effective two nucleon interactions are defined for protons incident upon 12C with energies in the range 200 to 800 MeV. Those effective interactions have been folded with the ground state density to specify nonlocal optical potentials that were then used to analyse the elastic scattering differential cross sections and analysing powers. A select set of isoscalar and isovector, positive and negative parity, inelastic proton scattering transitions have also been analysed using the same (microscopic) optical models to define the distorted wave functions needed in Distorted Wave Approximation calculations of the associated differential cross sections and analysing powers. All results are compared with ones found using the Love-Franey effective interactions. The nuclear structure relating to these transitions was chosen from (0+2) ℎω and (1+3)ℎω shell model calculations of the positive and negative parity spectra of 12C respectively. 21 refs., 12 figs

  14. Scintillation spectrometers of the Kosmos-856 and Kosmos-914 satellites for studies of galactic x-rays in the energy range of 20-320 keV

    Scintillation spectrometers used in the studies of space hard X-rays in the energy range of 20-300 keV on the ''Kosmos-856'' and ''Kosmos-914'' satellites are described. A combined scintillation detector, consisting of NaI(Tl) (the height is 10 mm) and CsI(Tl) (the height is 35 mm), has been used in each of the spectrometers. The diameter of each scintillating crystal is 80 mm. A crystal of NaI(Tl) is used as a spectotrometric crystal. A crystal of CsI(Tl) is used as an active shield for the NaI(Tl) crystal To exclude recording of charged particles the detector is surrounded with a plastic scintillator. The use of a combined scintillation detector allowed to decrease the background considerably and thus to increase significantly the sensitivity of the instrument in comparison with the similar spectrometer which was used in the ''Kosmos-428'' satellite

  15. Response function of a superheated drop neutron monitor with lead shell in the thermal to 400-MeV energy range.

    Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko

    2011-07-01

    Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range. PMID:21493607

  16. Measurements of the reaction e+e- → γγ at center-of-mass energies in the range 6.2--7.4 GeV

    Measurements of the cross section for the pair-annihilation reaction e+e- → γγ at angles close to 90degree, relative to Bhabha scattering at 4degree, are reported at center-of-mass energies in the range 6.2--7.4 GeV. These measurements provide a fundamental test of quantum electrodynamics (QED) for spacelike values of the invariant four-momentum transfer q2 as high at -40 (GeV/c)2, which in this reaction is carried by the lepton propagator. A principal feature of the detection apparatus is the use of large NaI(Tl) total-absorption spectrometers. The results are in agreement with the predictions of QED

  17. Separation of gamma and proton initiated air showers in the energy range 1 TeV-10 PeV at several observatory depths

    The Cherenkov light generated by an extensive air shower carries fundamental information on the primary particle. In particular, the radial distribution of Cherenkov light at ground level can be used for the separation of gamma-ray and proton showers. In this paper, the capability of several gamma/proton separation methods in the energy range 1 TeV-10 PeV at several observation levels ranging from 600 g cm-2 up to sea level are analysed by means of a Monte Carlo simulation. The relation between physical parameters of the shower (e.g. shower maximum depth and electron number at the shower maximum) and the features of the radial distribution of Cherenkov light is studied in detail. First we study the light-electron-slope (LES) method which is based on the measure of the shower size Ne and the slope of the radial distribution of Cherenkov light ρc(r) at a distance lower than the hump position. In contrast, two methods relying on the slope of ρc(r) beyond the hump are studied; the only-light method which relies in the simultaneous determination of the ρc(r) slope both before and beyond the hump and the outer LES method which is based on the measure of Ne and the ρc(r) slope beyond the hump. The latter is proposed for the first time in this paper. The dependence of the capabilities of these methods on primary energy and observation altitude is discussed. (author)

  18. Excitation functions of some neutron threshold reactions on 89Y in the energy range of 7.8 to 14.7 MeV

    Excitation functions were measured for 89Y(n,2n)88Y, 89Y(n,p)89Sr and 89Y(n,α)86Rb reactions from their respective thresholds up to 14.7 MeV using the activation technique. Quasi-monoenergetic neutrons in the energy range of 7.8 to 13.3 MeV were produced via the 2H(d,n)3He reaction on a D2 gas target at the Juelich compact cyclotron (CV 28), and monoenergetic neutrons in the range of 13.8 to 14.7 MeV using the D-T neutron generator at Debrecen. For characterization of 88Y and 86Rb, high-resolution γ-ray spectrometry was applied. The latter product was also separated radiochemically and characterized by low-level β- counting; the results obtained using the two counting methods were generally in good agreement. The product 89Sr is a pure β- emitter: its activity was exclusively assayed via radiochemical separation and β- counting. Our results agree with the literature values on the (n,2n) reaction and provide the first consistent set of data on the (n,p) and (n,α) reactions near their thresholds. Statistical model calculations incorporating precompound effects were performed on the three excitation functions under consideration. The experimental and theoretical results were found to be in good agreement. Some systematic trends in the excitation functions in this mass region are discussed. (orig.)

  19. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation

  20. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  1. Ion emission in solids bombarded with Aun+ (n = 1 - 9) clusters accelerated within the 0.15 - 1.25 MeV energy range

    This experimental work is devoted to the study of the ion emission in solids at the impact of gold clusters of energies within 0.15 to 1.25 MeV range. The physics of ion-solid collisions and the theoretical models of sputtering of solids under ion bombardment are presented in the first chapter. The chapter no. 2 deals with the description of the experimental setup. The study of a gold target allowed to evidence the role of the size and energy of the clusters in determining the emission intensity and the mass distribution of the ions. The 4. chapter gives results from the study of cesium iodide in which the intense emission of CsI clusters could be investigated quantitatively due to multiplicity measurements. Finally, the chapter no. 5 was devoted to the study of a biologic molecule, the phenylalanine, and of a pesticide molecule, chlorosulfuron. This work evidenced the importance of clusters for surface analyses by mass spectrometry

  2. Accurate Prediction of Essential Fundamental Properties for Semiconductors Used in Solar-Energy Conversion Devices from Range-Separated Hybrid Density Functional Theory

    Harb, Moussab

    2016-01-05

    An essential issue in developing new semiconductors for photovoltaics devices is to design materials with appropriate fundamental parameters related to the light absorption, photogenerated exciton dissociation and charge carrier diffusion. These phenomena are governed by intrinsic properties of the semiconductor like the bandgap, the dielectric constant, the charge carrier effective masses, and the exciton binding energy. We present here the results of a systematic theoretical study on the fundamental properties of a series of selected semiconductors widely used in inorganic photovoltaic and dye-sensitized solar cells such as Si, Ge, CdS, CdSe, CdTe, and GaAs. These intrinsic properties were computed in the framework of the density functional theory (DFT) along with the standard PBE and the range-separated hybrid (HSE06) exchange-correlation functionals. Our calculations clearly show that the computed values using HSE06 reproduce with high accuracy the experimental data. The evaluation and accurate prediction of these key properties using HSE06 open nice perspectives for in silico design of new suitable candidate materials for solar energy conversion applications.

  3. Inelastic processes in Na$^{+}-$Ne, Ar and Ne$^{+},$ Ar$^{+}-$Na collisions in energy range $0.5-14$ keV

    Lomsadze, R A; Kezerashvili, R Ya

    2015-01-01

    Absolute cross sections for charge-exchange, ionization and excitation in Na$% ^{+}-$Ne and Na$^{+}-$Ar collisions were measured in the ion energy range $% 0.5-10$ keV using a refined version of a capacitor method, and collision and optical spectroscopy methods simultaneously in the same experimental set-up. Ionization cross sections for Ne$^{+}-$Na and Ar$^{+}-$Na collisions are measured at the energies of $2-14$ keV using a crossed-beam spectroscopy method. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. For the charge-exchange process in Na$^{+}$ $-$Ar collisions two nonadiabatic regions are revealed and mechanisms responsible for these regions are explained. Structural peculiarity on the excitation function for the resonance lines of argon atoms in Na$^{+}$ $-$Ar collisions are observed and the possible mechanisms of this phenomenon are explored. The measured ionization cross sections for Na$^{+}-$Ne and Ne$^{+}-$Na collisi...

  4. Energy ranges and pitch angles of outer radiation belt electrons depleted by an intense dayside hydrogen band EMIC wave event on February 23, 2014

    Engebretson, M. J.; Posch, J. L.; Huang, C. L.; Kanekal, S. G.; Fok, M. C. H.; Rodger, C. J.; Smith, C. W.; Spence, H. E.; Baker, D. N.; Kletzing, C.; Wygant, J. R.

    2015-12-01

    Although most studies of the effect of EMIC waves on relativistic electrons have focused on wave events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of an intense, long-duration hydrogen band EMIC wave event on February 23, 2014 that was stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) that included triggered emissions appeared for over 4 hours at both Van Allen Probes while these spacecraft were outside the plasmapause, in a region with densities ~5-20 cm-3, as they passed near apogee from late morning through local noon. Observations of radiation belt electrons by the REPT and MagEIS instruments on these spacecraft showed that these waves caused significant depletions of more field-aligned electrons at ultrarelativistic energies from 5.2 MeV down to ~2 MeV, and some depletions at energies down to below 1 MeV as well.

  5. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry.

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim; Månsson, Erik P; Sankari, Anna; Sorensen, Stacey L

    2015-09-21

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C-C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C-C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the "gateway states" for molecules with this orientation. PMID:26395707

  6. Application of PWO crystals for detection of low-activity gamma- radiation in the energy range above 3 MeV

    Drobychev, G Yu; Fedorov, A A; Khruschinsky, A A; Korjik, M V; Lecoq, P; Missevitch, O V

    2005-01-01

    Lead tungstate PbWO4 (PWO) scintillator was developed during the R&D project initiated in a frame of preparation of experiments in high- energy physics to be carried out at new generation of colliders like LHC (CERN, Geneva, Switzerland). Compared to other promising fast and dense scintillators, PWO is an optimal compromise to make a very compact detector with good performance and the best price/performance ratio. Moreover, the results of PWO development carried out by the INP team together with collaborators show that scintillation parameters of PWO crystals can be further modified, which significantly extends opportunities of PWO application. One such field where an application of PWO scintillator can be very advantageous is a detection of low-activity gamma-radiation in the energy range above 3 MeV. Application of heavy scintillator allows to decrease a detector volume and therefore to reduce background. According to our preliminary estimations, PWO scintillation crystal will allow to reach significant...

  7. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    Saito, T.; Takagi, F. [Tohoku Univ., Sendai (Japan)

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  8. Energy dependence of relative abundances and periods of separate groups of delayed neutrons at neutron induced fission of 239Pu in a range of neutrons energies 0.37 - 5 MeV

    The fundamental role of delayed neutrons in behavior, control and safety of reactors is well known today. Delayed neutron data are of great interest not only for reactor physics but also for nuclear fission physics and astrophysics. The purpose of the present work was the measurement of energy dependence of delayed neutrons (DN) group parameters at fission of nuclei 239Pu in a range of energies of primary neutrons from 0.37 up to 5 MeV. The measurements were executed on installation designed on the basis of the electrostatic accelerator of KG - 2.5 SSC RF IPPE. The data are obtained in 6-group representation. It is shown, that there is a significant energy dependence of DN group parameters in a range of primary neutrons energies from thermal meanings up to 5 MeV, which is expressed in reduction of the average half-life of nuclei of the DN precursors on 10 %. The data, received in the present work, can be used at creation of a set of group constants for reactors with an intermediate spectrum of neutrons. (authors)

  9. The measurement of neutron differential scattering cross sections for 12C, 14N and 16O in the energy range 20-26 Mev

    The Ohio University Beam Swinger provides a high resolution, low back-ground time-of-flight facility for the measurement of elastic and inelastic neutron scattering. It has been used to obtain a comprehensive set of differential scattering cross sections for 12C, 14N, 16O and 40Ca between 18 and 26 MeV. The elastic cross sections can be used directly to obtain partial kerma factors and, combined with the known total cross sections, provide accurate values for the reaction cross sections. Angular distributions have been measured for inelastic scattering from all the nuclear levels that cannot decay by particle emission thus providing (by subtraction) a limit on the sum of all charged-particle producing reactions. The integrated cross sections for inelastic scattering from some particle-unstable states in 12C are in excellent agreement with the cross sections for three-body breakup obtained by Antolkovic et al. The differential data have been used, together with higher energy proton scattering data to produce energy-dependent optical model parameters for each of these nuclei in the energy range 20-60 MeV. It has been found that the elastic differential cross sections at theta > 1000 for 12C, 14N and 16O cannot be well described by a spherical optical model. Explicit consideration of coupled-channel effects, and in the case of 12C, deformation of the ground state, improves the agreement between calculation and experiment. Heavy ion recoil kerma factors and reaction cross sections have been obtained for each element and compared with previous calculations and measurements

  10. Influence of the PMMA slab and ISO water phantom in calibrating personal dosimeter in the energy range of 36-662 keV

    Personnel dosimeter calibration for the determination of operational quantities used in individual monitoring requires placement on a phantom that provides a reasonable approximation to the backscatter properties of the part of the body on which it is worn. The personal dose equivalent Hp(d) is defined in the human body which is not a measurable quantity. The reference International Commission on Radiation Units and Measurements (ICRU) tissue is not readily available; hence a phantom of alternative must be used for calibration. The well recognized polymethylmethacrylate (PMMA) slab phantom of size 30x30x15 cm3 are still being used in calibrating personal dosimeters. The International Organization for Standardization (ISO)-4037(3) has proposed another phantom of the same size as ICRU, which is named as ISO water phantom. In the present study, calibrated X-ray fields are characterized for National Institute of Advanced Industrial Science and Technology (AIST) middle beam spectrum series by which the influence of these proposed phantoms has been studied by the thermoluminescence dosimetry (TLD) technique. Discrepancies of responses within 8% have been observed at lower energies up to 42 keV. There is a very good agreement in responses is observed for ISO water slab and PMMA slab phantom for photon energies above 42 keV. Experimentally obtained correction factors for AIST radiation qualities of M50 and M60 for PMMA slab to ISO water phantom is proposed. Measured backscatter factor results from PMMA to ISO water-filled phantoms over the photon energy range 36 to 662 keV are reported. This shows that the new ISO water phantom is a better substitute of ICRU tissue phantom than the PMMA slab. (author)

  11. Space-resolved extreme ultraviolet spectroscopy free of high-energy neutral particle noise in wavelength range of 10–130 Å on the large helical device

    A flat-field space-resolved extreme ultraviolet (EUV) spectrometer system working in wavelength range of 10–130 Å has been constructed in the Large Helical Device (LHD) for profile measurements of bremsstrahlung continuum and line emissions of heavy impurities in the central column of plasmas, which are aimed at studies on Zeff and impurity transport, respectively. Until now, a large amount of spike noise caused by neutral particles with high energies (≤180 keV) originating in neutral beam injection has been observed in EUV spectroscopy on LHD. The new system has been developed with an aim to delete such a spike noise from the signal by installing a thin filter which can block the high-energy neutral particles entering the EUV spectrometer. Three filters of 11 μm thick beryllium (Be), 3.3 μm thick polypropylene (PP), and 0.5 μm thick polyethylene terephthalate (PET: polyester) have been examined to eliminate the spike noise. Although the 11 μm Be and 3.3 μm PP filters can fully delete the spike noise in wavelength range of λ ≤ 20 Å, the signal intensity is also reduced. The 0.5 μm PET filter, on the other hand, can maintain sufficient signal intensity for the measurement and the spike noise remained in the signal is acceptable. As a result, the bremsstrahlung profile is successfully measured without noise at 20 Å even in low-density discharges, e.g., 2.9 × 1013 cm−3, when the 0.5 μm PET filter is used. The iron n = 3–2 Lα transition array consisting of FeXVII to FeXXIV is also excellently observed with their radial profiles in wavelength range of 10–18 Å. Each transition in the Lα array can be accurately identified with its radial profile. As a typical example of the method a spectral line at 17.62 Å is identified as FeXVIII transition. Results on absolute intensity calibration of the spectrometer system, pulse height and noise count analyses of the spike noise between holographic and ruled gratings and wavelength response of the used

  12. Towards the study of 2H(p, γ)3He reaction in the Big Bang Nucleosynthesis energy range in LUNA

    Kochanek, Izabela

    2016-04-01

    The Big Bang Nucleosynthesis began a few minutes after the Big Bang, when the Universe was sufficiently cold to allow deuterium nuclei to survive photo-disintegration. The total amount of deuterium produced in the Universe during the first minutes depends on the cosmological parameters (like the energy density in baryons, Ω bh 2, and the effective neutrino number, Neff ) and on the nuclear cross sections of the relevant reactions. The main source of uncertainty in the deuterium estimation comes from the 2H(p, γ)3He cross section. Measurements of Cosmic Microwave Background (CMB) anisotropies obtained by the Planck satellite are in very good agreement with the theoretical predictions of the minimal ΛCDM cosmological model, significantly reducing the uncertainty on its parameters. The Planck data allows to indirectly deduce with very high precision the abundances of primodial nuclides, such as the primodial deuterium fraction 2H/H = (2.65 ± 0.07) .10-5 (68% C.L.). The astrophysical observations in damped Lyman-a systems at high redshifts provide a second high accuracy measurement of the primodial abundance of deuterium 2H/H = (2.53 ± 0.04) · 10-5 (68% C.L.). The present experimental status on the astrophysical S-factor of the 2H(p, γ)3He reaction in the BBN energy range, gives a systematic uncertainties of 9%. Also the difference between ab-initio calculations and experimental values of S12 is at the level of 10%. In order to clarify the actual scenario, a measurement of 2H(p, γ)3He cross section with a precision of a few percent in the 70-400 keV energy range is planned at LUNA in 2016. A feasibility test of the measurement has been performed in October 2014, giving the preliminary results on the cross section. The experimental setup for the test and final measurement campaign will be presented.

  13. Experimental determination of sensitivity of DN-A-1 dosimeter and 6LiJ(Eu) scintillation detector in sphere polyethylene moderators in the 30 keV neutron energy range

    DH-A-1 dosimeter and 6LiJ(Eu) detector, located in the center of polyethylene spheres with various diameters, were calibrated by means of neutrons with the energy of about 30 keV. The data on the detectors responses enable one to determine the shape of responses as a function of neutron energy more definitely at the energy range from some keV to some tens of keV. For DN-A-1 dosimeter response at neutrons and at neutrons in the energy range of about 30 keV the agreement is better than the uncertainties of measurements (about 20%)

  14. Full Monte Carlo and measurement-based overall performance assessment of improved clinical implementation of eMC algorithm with emphasis on lower energy range.

    Ojala, Jarkko; Kapanen, Mika; Hyödynmaa, Simo

    2016-06-01

    New version 13.6.23 of the electron Monte Carlo (eMC) algorithm in Varian Eclipse™ treatment planning system has a model for 4MeV electron beam and some general improvements for dose calculation. This study provides the first overall accuracy assessment of this algorithm against full Monte Carlo (MC) simulations for electron beams from 4MeV to 16MeV with most emphasis on the lower energy range. Beams in a homogeneous water phantom and clinical treatment plans were investigated including measurements in the water phantom. Two different material sets were used with full MC: (1) the one applied in the eMC algorithm and (2) the one included in the Eclipse™ for other algorithms. The results of clinical treatment plans were also compared to those of the older eMC version 11.0.31. In the water phantom the dose differences against the full MC were mostly less than 3% with distance-to-agreement (DTA) values within 2mm. Larger discrepancies were obtained in build-up regions, at depths near the maximum electron ranges and with small apertures. For the clinical treatment plans the overall dose differences were mostly within 3% or 2mm with the first material set. Larger differences were observed for a large 4MeV beam entering curved patient surface with extended SSD and also in regions of large dose gradients. Still the DTA values were within 3mm. The discrepancies between the eMC and the full MC were generally larger for the second material set. The version 11.0.31 performed always inferiorly, when compared to the 13.6.23. PMID:27189311

  15. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective. PMID:24299972

  16. Developing a Compton polarimeter to measure polarization of hard x-rays in the 50-300 keV energy range

    Legere, Jason; Bloser, Peter L.; Macri, John R.; McConnell, Mark L.; Narita, Tomohiko; Ryan, James M.

    2005-08-01

    This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat-panel multi-anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field-of-view, at the same time offering the ability to be close-packed with multiple modules in order to reduce deadspace. We plan to present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources.

  17. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  18. Casimir force, excess free energy and C-function in O(n) systems with long-range interactions in the n → ∞ limit

    We present exact results on the behavior of the thermodynamic Casimir force and the excess free energy and the C-function in the framework of the d-dimensional spherical model with a power law long-range interaction decaying at large distances r as r-d-σ, where σ c, as well as for T > Tc and T c. The universal finite-size scaling function governing the behavior of the force in the critical region is derived and its asymptotics are investigated. While in the critical and under -d -d-, critical region the force is of the order of L-d , for T > Tc it decays as L-dσ , where L is the thickness of the film. We consider both the case of a finite system that has no phase transition of its own, when d - σ when one observes a dimensional crossover from d to a d - 1 dimensional critical behavior. The behavior of the force along the phase coexistence line for a magnetic field H = 0 and T c. is also derived. We have proven analytically that the excess free energy is always negative ad monotonically increasing function of T and H, while the C-function is always non-negative and monotonically decreasing function of T and H. For the Casimir force we have demonstrated that for any σ > it is everywhere negative, i.e. an attraction between the surfaces bounding the system is to be observed. At T = Tc the force is an increasing function of T for σ > 1 and a decreasing one for σ c is always achieved at some H ≠ 0 . (author)

  19. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. PMID:22425189

  20. Experimental and theoretical determinations of the absolute ionization cross section of alkali metals by electron impact in the energy range from 100 to 2000 eV

    The absolute electron impact ionization cross sections for the alkali metals in the energy range between 100 eV and 2000 eV were measured by the non-modulated crossed beam technique. The neutral beam of alkali atoms is produced by a Knudsen cell and crossed at right angles with the electron beam. The ions formed are collected on a plate and their intensity determined with a D.C. amplifier. The neutral beam is condensed on a cold trap cooled with liquid nitrogen, this temperature being much lower than that required to obtain total condensation. The amount of metal deposited is measured by the isotopic dilution technique and by atomic absorption, and the density of the atoms in the neutral beam is calculated. The total absolute ionization cross sections can then be determined. All possible errors have been carefully analyzed and their magnitudes estimated. The absolute ionization cross section for Li at an energy of 500 eV is: QLi = 0,358 x 10-16 cm2. This value is half of that obtained by Mac Farland and Kinney. The partial ionization cross sections for the singly and multiply charged ions is determined with a mass spectrometer attached to this apparatus. For the singly charged ions, the variation of the cross section with the energy of the ionizing electrons is in agreement with the optically allowed transition law: Q = A log BE/E. From the variation of Q with E, the squared matrix elements of the transition moment (|Mi|)2 are determined for all the elements studied. New calculations of the ionization cross section of Li and Na were performed in the framework of the Born-Bethe approximation as modified by Gaudin and Botter to take into account collisions with large momentum variation of the incident electron. Hartree-Fock type wave functions for the ground state atom (tabulated by Clementi) were used. The calculated values are in good agreement with our experimental results and with the former theoretical results calculated by various methods. This work also

  1. Measurement of the cross-section of the process e+e- → π+π- at the CMD-2 detector in the 370-520 MeV energy range

    The cross sections of the process e+e- → π+π- have been measured in the c.m. energy range 370-520 MeV. The systematic error of measurements is 0.7%. The electromagnetic radius of pion is calculated in the vector dominant model by means of all CMD-2 detector data about pion form factor. The cross section of muon production is measured in the energy range of this experiment

  2. Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Biasotto, Massimo; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Soares, Mara Senghi; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-01-01

    Measurements of two-particle angular correlations between an identified strange hadron (${\\rm K}^0_{\\rm S}$ or $\\Lambda$/$\\overline{\\Lambda}$) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb$^{-1}$, were collected at a nucleon-nucleon center-of-mass energy ($\\sqrt{s_{NN}}$) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at $\\sqrt{s_{NN}}$ = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order ($v_2$) and third-order ($v_3$) anisotropy harmonics of ${\\rm K}^0_{\\rm S}$ and $\\Lambda$/$\\overline{\\Lambda}$ particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb event...

  3. Geohydrology of the High Energy Laser System Test Facility site, White Sands Missile Range, Tularosa Basin, south-central New Mexico

    Basabilvazo, G.T.; Nickerson, E.L.; Myers, R.G.

    1994-01-01

    The Yesum-HoHoman and Gypsum land (hummocky) soils at the High Energy Laser System Test Facility (HELSTF) represent wind deposits from recently desiccated lacustrine deposits and deposits from the ancestral Lake Otero. The upper 15-20 feet of the subsurface consists of varved gypsiferous clay and silt. Below these surfidai deposits the lithology consists of interbedded clay units, silty-clay units, and fine- to medium-grained quartz arenite units in continuous and discontinuous horizons. Clay horizons can cause perched water above the water table. Analyses of selected clay samples indicate that clay units are composed chiefly of kaolinire and mixed-layer illite/ smectite. The main aquifer is representative of a leaky-confined aquifer. Estimated aquifer properties are: transmissivity (T) = 780 feet squared per day, storage coefficient (S) = 3.1 x 10-3, and hydraulic conductivity (K) = 6.0 feet per day. Ground water flows south and southwest; the estimated hydraulic gradient is 5.3 feet per mile. Analyses of water samples indicate that ground water at the HELSTF site is brackish to slightly saline at the top of the main aquifer. Dissolved-solids concentration near the top of the main aquifer ranges from 5,940 to 11,800 milligrams per liter. Predominant ions are sodium and sulfate. At 815 feet below land surface, the largest dissolved-solids concentration measured is 111,000 milligrams per liter, which indicates increasing salinity with depth. Predominant ions are sodium and chloride.

  4. Charge state distributions of oxygen and carbon in the energy range 1 to 300 keV/e observed with AMPTE/CCE in the magnetosphere

    Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.

    1985-01-01

    Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer onboard the AMPTE/CCE spacecraft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (4-6, 6-8, and greater than 8), and quiet to moderately disturbed days (Kp less than or equal to 4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere.

  5. Developing a Compton Polarimeter to Measure Polarization of Hard X-Rays in the 50-300 keV Energy Range

    Legere, J S; Macri, J R; McConnell, M L; Narita, T; Ryan, J M

    2005-01-01

    This paper discusses the latest progress in the development of GRAPE (Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead, to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high-Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high-Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern fo...

  6. Proposed experiments to detect keV range sterile neutrinos using energy-momentum reconstruction of beta decay or K-capture events

    Smith, Peter F

    2016-01-01

    Sterile neutrinos in the keV mass range may constitute the galactic dark matter. Various proposed direct detection and laboratory searches are reviewed. The most promising method in the near future is complete energy-momentum reconstruction of individual beta-decay or K-capture events, using atoms suspended in a magneto-optical trap. A survey of suitable isotopes is presented, together with the measurement precision required in a typical experimental configuration. It is concluded that among the most promising are the K-capture isotopes 131Cs, which requires measurement of an X-ray and several Auger electrons in addition to the atomic recoil, and 7Be which has only a single decay product but needs development work to achieve a trapped source. A number of background effects are discussed. It is concluded that sterile neutrinos with masses down to the 5-10 keV region would be detectable, together with relative couplings down to the level 10-10-10-11 in a 1-2 year running time.

  7. Measurement of U-235 absolute alpha value in the neutron energy range from 0.1 to 30 keV

    In order to measure the neutron-physical constants with high accuracy and to investigate ways of formation and decay of excited nuclei a method has been developed at the I.V. Kurchatov AEI, based on the gamma-quanta and neutrons multiplicity spectrometry. During 1974-1978 there have been constructed a number of multisectional 4π-detectors which have demonstrated great possibilities for this method. A detector permitting the required accuracy of measurements of neutron cross sections and their ratios has been chosen and designed on the basis of these works. The detector with 4π-geometry has 46 sections and was based on naI(Tl) crystals with the total volume of the scintillator of approx. 100 1. The detector was used at the 26-m station. The results of U-235 absolute alpha value measurements are presented. The measurements are carried out over the energy range from 0.1 to 30 keV with the high accuracy - better than 5%. The equipment parameters and measurement conditions are listed

  8. Differential cross section measurement of the elastic neutron-deuteron-scattering in the energy range 2.5-30 MeV

    The differential cross-section of the elastic D(n, n)D scattering has been measured in the energy range 2.5-30 MeV. A pulsed 'white' neutron beam from deuterons (Esub(d) approx. equal to 48 MeV) on natural uranium was collimated by bulk metal shielding in a approx. equal to 60 m long vacuum tube in the THETAsub(LAB) = O0-direction. The collimated neutrons were scattered from a partially and a totally deuterated scintillator. The mixed scatterer of hydrogen, deuterium and carbon provided the absolute calibration of the (n, d)-cross-section by the well-known (n, p)-cross-section. The scattered neutrons were detected by two detectors at 14 laboratory angles. Five parameters for each event were measured in coincidence, so that background reduction could be done. Additional contributions from multiple-scattering were determined by Monte-Carlo calculations. Twenty angular distributions were obtained with uncertainties between 2 and 6%. Some significant deviations from older measurements and from exact 3-body-calculations were found. Much importance was attached to the determination of the properties of the neutron-detectors, especially of the so-called 'black-detector'. (orig.)

  9. Prompt emission from GRB 150915A in the GeV energy range detected at ground by the New-Tupi detector

    Augusto, C R A; de Oliveira, M N; Nepomuceno, A A; Kopenkin, V; Sinzi, T

    2016-01-01

    Since 2014, a new detector (New-Tupi) consisting of four plastic scintillators ($150 \\times 75 \\times 5 cm^3$) placed in pairs and located in Niteroi, Rio de Janeiro, Brazil, has been used for the search of transient solar events and photomuons from gamma-ray bursts (GRBs). On September 15, 2015, at 21:18:24 UT, the Swift Burst Alert Telescope (BAT) triggered and located GRB 150915A (trigger 655721). The GRB light curve shows a weak complex structure of long duration $T_{90}=164.7 \\pm 49.7 $ sec, and a fluence in the 15-150 keV band of $8.0 \\pm 1.8 \\times 10^{-7}erg/cm^2$. GRB 150915A was fortuitously located in the field of view of the New-Tupi detector, and a search for prompt emission in the GeV energy range is presented here. The analysis was made using the "scaler" or "single-particle" technique. The New-Tupi detector registered a muon excess peak of 6.1s duration with a signal significance $6.9\\sigma$, the signal was within the T90 duration of the Swift BAT GRB, with an estimated fluence $4.8 \\times 10^...

  10. The dynamic range of LZ

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  11. The dynamic range of LZ

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines

  12. Back to the range

    1977-01-01

    It is now over 100 years since the ''discovery'' of the livestock-supporting properties of the vegetation on what had been considered worthless, unclaimed land. And the 1.2 billion acres of range in the United States--more than half of the country's land mass--is currently being discovered all over again--this time to be a major, underutilized resource in the struggle to erase the world's food deficits and, at the same time, conserve energy and other resources. Agronomists and range scientists are developing energy data which suggest that, if consumer habits and tastes and the habits and practices to which the industry is geared are adaptable, beef can continue to provide the major portion of U.S. protein needs without draining grain supplies from the hungry abroad. The key to their strategy is obtaining greater productivity from the range. This generally appears to offer the advantage of reducing man-made energy inputs per pound of beef sharply below those required by the alternative: grain feeding. The strategy may entail changes, however, in the whole beef system--from the preferred slaughter size of an animal to the preferred marbling pattern in a roast. Such changes may be dictated by costs.

  13. Energy and structural properties of N -boson clusters attached to three-body Efimov states: Two-body zero-range interactions and the role of the three-body regulator

    Yan, Yangqian; Blume, D.

    2015-09-01

    The low-energy spectrum of N -boson clusters with pairwise zero-range interactions is believed to be governed by a three-body parameter. We study the ground state of N -boson clusters with infinite two-body s -wave scattering length by performing ab initio Monte Carlo simulations. To prevent Thomas collapse, different finite-range three-body regulators are used. The energy and structural properties for the three-body Hamiltonian with two-body zero-range interactions and three-body regulator are in much better agreement with the "ideal zero-range Efimov theory" results than those for Hamiltonian with two-body finite-range interactions. For larger clusters we find that the ground-state energy and structural properties of the Hamiltonian with two-body zero-range interactions and finite-range three-body regulators are not universally determined by the three-body parameter, i.e., dependencies on the specific form of the three-body regulator are observed. For comparison, we consider Hamiltonian with two-body van der Waals interactions and no three-body regulator. For the interactions considered, the ground-state energy of the N -body clusters is—if scaled by the three-body ground-state energy—fairly universal, i.e., the dependence on the short-range details of the two-body van der Waals potentials is small. Our results are compared with those in the literature.

  14. Investigation and realization at the Saclay linear accelerator of a line from a tagged photon beam bremsstrahlung in a wide energy range: Application to the measurement of the total cross section of the photofission (γ, f) of uranium 238

    A monochromatic tagged photon facility is described. The source is produced by tagging the photons from a continuous bremsstrahlung spectrum resulting from a monoenergetic electron beam traversing a thin target. A magnetic spectrometer is used to detect and measure the energy of the tagged electrons associated with the tagged photons. Tagging system characteristics include: 16 adjacent paths; a tagged energy range equal to 20% to 80% of the energy of the electrons of the incident beam; a constant relative resolution of the tagged energy bands equal to ±4%. The acquisition system is described and an example of the use of the system (measurement of the total cross section of photofission of U238 between 20 and 120 MeV) is shown. Tests show that the system can cover a range of monochromatic photon energy from 12 to 176 MeV, divided into 32 energy bands, with only two adjustements to the accelerator

  15. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    , linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy...

  16. Method for determining maximum mileage range of electric vehicle, involves determining moment at which state of change of battery tends to zero following evolution of energy state of vehicle along trajectory

    Granato, Giovanni; Zidani, Hasnaa; Aouchiche, K.

    2013-01-01

    The method involves selecting a trajectory ranging between a starting point and a destination place. An initial energy state of the vehicle is evaluated. A strategy of energy consumption along the selected trajectory is applied by a controller based on optimized use of an auxiliary internal combustion engine and battery so as to support overall length of running distance. A moment at which a state of change of the battery tends to zero is determined following the evolution of energy state of ...

  17. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H0, H2+ and H3+ projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H2+ and H3+ polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  18. Neutron Total Cross Sections of 235U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    The average 235U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV

  19. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  20. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.