WorldWideScience

Sample records for 6li mas nmr

  1. 6Li MAS NMR Study of Lithium Insertion into Hydrothermally Prepared Li-Ti-O Spinel

    Krtil, Petr; Dědeček, Jiří; Kostlánová, Tereza; Brus, Jiří

    2004-01-01

    Roč. 7, č. 7 (2004), A163-A166. ISSN 1099-0062 R&D Projects: GA ČR GA203/03/0823 Institutional research plan: CEZ:AV0Z4040901 Keywords : lithium insertion * spinel * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.271, year: 2004

  2. Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite

    Nielsen, Ulla Gro; Paik, Younkee; Julmis, Keinia;

    2005-01-01

    system representing an ideal model system for NMR studies. 6Li resonances with large hyperfine shifts (approximately 145 ppm) were observed above the goethite point of zero charge, providing clear evidence for the presence of Li-O-Fe connectivities, and thus the formation of an inner sphere Li+ complex...... on the goethite surface. Even larger Li hyperfine shifts (289 ppm) were observed for Li+-exchanged goethite, which contains lithium ions in the tunnels of the goethite structure, confirming the Li assignment of the 145 ppm Li resonance to the surface sites. Udgivelsesdato: 2005-Oct-6...

  3. Structural biology applications of solid state MAS DNP NMR

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  4. 31P Solid-state MAS NMR spectra

    The structures of the silicoaluminiophosphates MCM-1 and MCM9 were characterized by 27Al and 31P MAS NMR. The structural identity of MCM-1 and its silicon-free homologue AlPO4-H3 is demonstrated. The presence of a structural mixture in MCM-9 is confirmed. 31P MAS NMR spectra of MCM-9 could be interpreted as a superposition of spectra of VPI-5, AlPO4-H3 and SAPO-11 phases. (author). 12 refs.; 3 figs.; 1 tab

  5. A General Protocol for Temperature Calibration of MAS NMR Probes at Arbitrary Spinning Speeds

    Guan, Xudong; Stark, Ruth E.

    2010-01-01

    A protocol using 207Pb NMR of solid lead nitrate was developed to determine the temperature of magic-angle spinning (MAS) NMR probes over a range of nominal set temperatures and spinning speeds. Using BioMAS and fastMAS probes with typical sample spinning rates of 8 and 35 kHz, respectively, empirical equations were devised to predict the respective sample temperatures. These procedures provide a straightforward recipe for temperature calibration of any MAS probe.

  6. Magic-angle-spinning NMR (MAS-NMR) spectroscopy and the structure of zeolites

    After outlining the chemical features and properties which make zeolites such an important group of catalysts and sorbents, the article explains how high-resolution solid-state NMR with magic-angle spinning reveals numerous new insights into their structure. 29Si-MAS-NMR readily and quantitatively identifies five distinct Si(OAl)sub(n)(OSi)sub(4-n) structural groups in zeolitic frameworks (n=0,1,...4), corresponding to the first tetrahedral coordination shell of a silicon atom. Many catalytic and other chemical properties of zeolites are governed by the short-range Si, Al order, the nature of which is greatly clarified by 29Si-MAS-NMR. (orig./EF)

  7. 1H MAS, 13C CP/MAS, and 2H NMR spectra studies of piperidinium p-chlorobenzoate

    Anomalous H/D isotope effects were detected in the 1H MAS NMR spectra of piperidinium p-chlorobenzoate (C5H10NH 2+⋅ ClC6H4COO − ) upon deuterium substitution of hydrogen atoms which form two kinds of N-H⋯O H-bonds in the crystal; in contrast to these spectra, only slight chemical shifts were recorded in 13C CP/MAS NMR spectra. 2H NMR spectrum of the deuterated sample show quadrupole coupling constants of 148 and 108 kHz, and reveal that there are a few motions contributing to the electric-field modulation of the 2H nucleus. The 1H MAS NMR spectra of piperidinium p-chlrobenzoate-d16 (C5D10ND 2+⋅ ClC6D4COO − ) and -d14 (C5D10NH 2+⋅ ClC6D4COO − ) revealed that the change in the envelope is caused by chemical shifts of each signal upon deuteration. Calculations based on the density-functional-theory showed that the N-H distance along the crystallographic a-axis mainly contributes to the anomalous isotope effects on 1H MAS NMR envelopes.

  8. Sealed rotors for in situ high temperature high pressure MAS NMR

    Hu, Jian Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Mary Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Zhenchao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Souchang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vjunov, Aleksei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Hui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camaioni, Donald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peden, Charles H. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization, a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.

  9. {sup 29}Si MAS NMR for the zeolite Y - gallium oxide system; {sup 29}Si mas NMR dla ukladu fojazyt-tlenek galu

    Sulikowski, B.; Derewinski, M. [Inst. Katalizy i Fizykochemii Powierzchni, Polska Akademia Nauk, Cracow (Poland); Olejniczak, Z.; Segnowski, S. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    Wide-pore zeolites modified by gallium oxide has been prepared for catalytic use. Its physico-chemical and catalytic properties have been studied. The structure changes of the catalyst have been investigated by means of MAS NMR spectroscopy. Spectra of {sup 29}Si has been described and discussed. 11 refs, 4 figs, 2 tabs.

  10. A software framework for analysing solid-state MAS NMR data

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Higman, Victoria A. [University of Oxford, Department of Biochemistry (United Kingdom); Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie, Department of Structural Biology (Germany); Laue, Ernest D., E-mail: e.d.laue@bioc.cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2011-12-15

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  11. A software framework for analysing solid-state MAS NMR data.

    Stevens, Tim J; Fogh, Rasmus H; Boucher, Wayne; Higman, Victoria A; Eisenmenger, Frank; Bardiaux, Benjamin; van Rossum, Barth-Jan; Oschkinat, Hartmut; Laue, Ernest D

    2011-12-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data. PMID:21953355

  12. A software framework for analysing solid-state MAS NMR data

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  13. Cp-MAS solid state NMR of secondary metabolites from northeastern Brazil plants

    Aiming to learn more about the 13 C NMR of secondary metabolites in the solid state, as well as to make use of the Cp-MAS probe available in the CENAUREMN (Northeastern Center for Application and Use od NMR) laboratory, an analysis has been performed on the the following six classes of secondary metabolites: diterpenes, coumarins, alkaloids, flavonoids and purines

  14. Natural Abundance 17O, 6Li NMR and Molecular Modeling Studies of the Solvation Structures of Lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane Liquid Electrolytes

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Jiguang; Hu, Jian Z.

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes in an effort to solve this puzzle. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results. These results provide more insight on the fundamental mechanism on the very high CE of Li deposition in these electrolytes, especially at high current density conditions.

  15. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites.

    He, Hongping; Guo, Jiugao; Zhu, Jianxi; Yuan, Peng; Hu, Cheng

    2004-04-01

    Mullites synthesized from four kaolinites with different random defect densities have been studied by 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) and X-ray diffraction (XRD). All these mullites show the same XRD pattern. However, 29Si and 27Al MAS NMR spectra reveal that the mullites derived from kaolinites with high defect densities, have a sillimanite-type Al/Si ordering scheme and are low in silica, whereas those mullites derived from kaolinites with low defect densities, consist of both sillimanite- and mullite-type Al/Si ordering schemes and are rich in silica. PMID:15084323

  16. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures

    Matsuki, Yoh; Idehara, Toshitaka; Fukazawa, Jun; Fujiwara, Toshimichi

    2016-03-01

    Sensitivity enhancement of MAS NMR using dynamic nuclear polarization (DNP) is gaining importance at moderate fields (B0 90 K) with potential applications in chemistry and material sciences. However, considering the ever-increasing size and complexity of the systems to be studied, it is crucial to establish DNP under higher field conditions, where the spectral resolution and the basic NMR sensitivity tend to improve. In this perspective, we overview our recent efforts on hardware developments, specifically targeted on improving DNP MAS NMR at high fields. It includes the development of gyrotrons that enable continuous frequency tuning and rapid frequency modulation for our 395 GHz-600 MHz and 460 GHz-700 MHz DNP NMR spectrometers. The latter 700 MHz system involves two gyrotrons and a quasi-optical transmission system that combines two independent sub-millimeter waves into a single dichromic wave. We also describe two cryogenic MAS NMR probe systems operating, respectively, at T ∼100 K and ∼30 K. The latter system utilizes a novel closed-loop helium recirculation mechanism, achieving cryogenic MAS without consuming any cryogen. These instruments altogether should promote high-field DNP toward more efficient, reliable and affordable technology. Some experimental DNP results obtained with these instruments are presented.

  17. A solid state MAS NMR study of the thermal reactions in alkali-leached aluminosilicates

    The thermal transformations of aluminosilicate minerals such as kaolinite (Al2Si2O5(OH)4) are of importance for the production of both clay-based ceramics and high-technology ceramics such as sialons. Solid-state MAS NMR can provide information about the intermediate stages in the formation of mullite (Al6Si2O13). These intermediates, which are only poorly crystalline and less amenable to XRD study, may include poorly crystalline mullite, a cubic spinel similar to γ-Al2O3 but which has been suggested to contain Si, and other amorphous aluminosilicate phases of variable composition. Since the 29Si and 27Al MAS NMR spectra of all these phases are expected to contain resonances broadly in the same spectral area, unambiguous differentiation of these phases has not so far proved possible by this technique. The work reported here was suggested by the possibility of selective alkali extraction of some of the more silica-rich phases using techniques developed by Chakravorty and Ghosh, which was hoped to reveal the MAS NMR features of the less-leachable phases. NMR study of the leached products after subsequent thermal treatment also provided useful information about the leaching reactions themselves. Copyright (1999) Australasian Ceramic Society

  18. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  19. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  20. (11)B MAS NMR and First-Principles Study of the [OBO3] Pyramids in Borates.

    Zhou, Bing; Sun, Wei; Zhao, Biao-Chun; Mi, Jin-Xiao; Laskowski, Robert; Terskikh, Victor; Zhang, Xi; Yang, Lingyun; Botis, Sanda M; Sherriff, Barbara L; Pan, Yuanming

    2016-03-01

    Borates are built from the [Bϕ3] planar triangles and the [Bϕ4] tetrahedral groups, where ϕ denotes O or OH. However, the [Bϕ4] groups in some borates are highly distorted to include three normal B-O bonds and one anomalously long B-O bond and, therefore, are best described as the [OBO3] pyramids. Four synthetic borates of the boracite-type structures (Mg3B7O13Br, Cu3B7O13Br, Zn3B7O13Cl, and Mg3B7O13Cl) containing a range of [OBO3] pyramids were investigated by multifield (7.05, 14.1, and 21.1 T) (11)B magic-angle spinning nuclear magnetic resonance (MAS NMR), triple quantum (3Q) MAS NMR experiments, as well as density functional theory calculations. The high-resolution (11)B MAS NMR spectra supported by theoretical predictions show that the [OBO3] pyramids are characterized by isotropic chemical shifts δiso((11)B) from 1.4(1) to 4.9(1) ppm and nuclear quadrupole parameters CQ((11)B) up to 1.3(1) MHz, both significantly different from those of the [BO4] and [BO3] groups in borates. These δiso((11)B) and CQ((11)B) values indicate that the [OBO3] pyramids represent an intermediate state between the [BO4] tetrahedra and [BO3] triangles and demonstrate that the (11)B NMR parameters of four-coordinate boron oxyanions are sensitive to local structural environments. The orientation of the calculated unique electronic field gradient tensor element Vzz of the [OBO3] pyramids is aligned approximately along the direction of the anomalously long B-O bond, corresponding to B-2pz with the lowest electron density. PMID:26914372

  1. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna;

    2008-01-01

    Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR......) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration to the...

  2. 31P MAS-NMR of human erythrocytes: independence of cell volume from angular velocity.

    Kuchel, P W; Bubb, W A; Ramadan, S; Chapman, B E; Philp, D J; Coen, M; Gready, J E; Harvey, P J; McLean, A J; Hook, J

    2004-09-01

    31P magic angle spinning NMR (MAS-NMR) spectra were obtained from suspensions of human red blood cells (RBCs) that contained the cell-volume-sensitive probe molecule, dimethyl methylphosphonate (DMMP). A mathematical representation of the spectral-peak shape, including the separation and width-at-half-height in the 31P NMR spectra, as a function of rotor speed, enabled us to explore the extent to which a change in cell volume would be reflected in the spectra if it occurred. We concluded that a fractional volume change in excess of 3% would have been detected by our experiments. Thus, the experiments indicated that the mean cell volume did not change by this amount even at the highest spinning rate of 7 kHz. The mean cell volume and intracellular 31P line-width were independent of the packing density of the cells and of the initial cell volume. The relationship of these conclusions to other non-NMR studies of pressure effects on cells is noted. PMID:15334588

  3. Raman and 31P MAS NMR spectroscopic studies of lead phosphate glasses containing thorium oxide

    (PbO)0.5(P2O5)0.5 glasses in which part of the PbO/ P2O5 was replaced by ThO2 up to 10 mol% have been prepared by conventional melt quench method and characterized by Raman and 31P MAS NMR spectroscopic studies. Raman studies of these samples clearly revealed the existence of PO4 structural units having two non bridging oxygen atoms attached to phosphorus (PO22-). The 31P MAS NMR studies indicated the presence of two types of phosphorus structural units in both PbO -P2O5 and PbO-P2O5-ThO2 glasses, namely Q2 and Q1 (PO4 structural units with 2 and 1 bridging oxygen atoms respectively). Increase in the concentration of ThO2 at the expense of both PbO/P2O5 has been found to result in the increased amount of Q1 structural units of phosphorus, indicating that ThO2 acts as only a network modifier. ThO2 has been found to form the glassy phase with PbO-P2O5 system only up to 10 mol%. (author)

  4. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  5. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13C line widths and <0.5 ppm 15N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  6. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    Eddy, Matthew T. [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay [Massachusetts Institute of Technology, Department of Chemistry (United States); Wagner, Gerhard [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Pintacuda, Guido; Emsley, Lyndon [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Griffin, Robert G., E-mail: rgg@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-04-15

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for {sup 13}C line widths and <0.5 ppm {sup 15}N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the

  7. Relation Between Acid and Catalytic Properties of Chlorinated Gamma-Alumina. a 31p Mas Nmr and Ftir Investigation

    Guillaume D.

    1999-07-01

    Full Text Available In this paper, we have studied the effect of chlorine on the surface properties of gamma-alumina, especially on their acid properties. The use of FTIR spectroscopy and 31P MAS NMR of adsorbed trimethylphosphine allows to propose a chlorination mechanism. To correlate the surface properties of these chlorinated gamma-alumina with their catalytic properties, we have used a model reaction, the cracking of n-heptane under reforming conditions. The analysis of the correlation between acid properties determined by 31P MAS NMR and the catalytic results (in terms of activities and selectivities allows to identify which sites are involved in the cracking reaction.

  8. Study of Surface Modification Mechanism of Calcined Kaolin by MAS NMR

    杨晓杰; 邓飞皇; 张蓓

    2002-01-01

    The 29Si and 27Al in modified and unmodified calcined kaolin were res earched and compared by using MAS NMR. The result shows that the chemical shift of -106×10-6 of 29Si almost keeps unchanged after being modifie d, but 27Al cha nges obviously. The chemical shift of 5.44×10-6 and 65.69×10-6 of 27Al are sep arately shifted to 3.8×10-6-4.4×10-6 and 54.6×10-6-59.9×1 0-6 after being mod ified. And the chemical modification of kaolin is completed by linking with Al o n the surface of it.

  9. 1H MAS NMR spectra of hy- droxyl species on diatomite surface

    2001-01-01

    High spinning speed 1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) was used to detect surface hydroxyl groups of diatomite, which include isolated hydroxyl groups and hydrogen-bonded hydroxyl groups, and water adsorbed on diatomite surface that include pore water and hydrogen-bonded water. The corresponding proton chemical shifts of above species are ca. 2.0, 6.0-7.1, 4.9 and 3.0 respectively. Accompanied by thermal treatment temperature ascending, the pore water and hydrogen-bonded water are desorbed successively. As a result, the relative intensities of the peaks assigned to protons of isolat-ed hydroxyl groups and hydrogen-bonded hydroxyl groups increase gradually and reach their maxima at 1000℃. After 1100℃ calcination, the hydroxyl groups that classified to strongly hydrogen-bonded ones and the isolated hydroxyl groups condense basically. But some weakly hydrogen-bonded hydroxyl groups may still persist in the micropores.

  10. The structural environments of cations adsorbed onto clays: A 133CsMAS NMR spectroscopic study

    Chapter One investigates the local structural environment of adsorbed cations on the mineral hectorite using 133Ca Variable-Temperature Magic-Angle-Spinning Nuclear Magnetic Resonance (VT-MAS NMR) spectroscopy. The results show that Cs on hectorite occurs in several distinctly different chemical environments, and that motional averaging of Ca between some of these sites occurs above ∼-40 degree C if water is present in the interlayer. Above ∼-10 degree C, spectra for slurries of hectorite in CsCl solutions yield two peaks, one due to Cs in solution, and the other due to Cs motionally-averaged on the clay. Below ∼-60 degree C, motional averaging of the adsorbed Cs slows sufficiently to allow resolution of two peaks representing different Cs-environments on the clay. The Stern-Gouy model is employed to explain these peaks and assign one to Cs in the Stern layer (relatively tightly bound to the basal oxygens), and the other to Cs in the Gouy diffuse layer. Between ∼-60 and ∼-10 degree C peaks for these two sites and a motionally-averaged peak are present. Cs-exchanged hectorite dehydrated at 500 degree C yields peaks for two different sites on the clay, interpreted to be highly coordinated site (probably 12), and a less coordinated site (possibly 9), both in the interlayer. Chapter II discusses 133Cs MAS NMR results for a number of other Cs-exchanged clays and the relationship of chemical and structural parameters to the 133Cs chemical shift. Increased rotational distortions of the basal oxygen sheet, total layer charge and tetrahedral Al3+ for Si4+ substitution correlate with increased deshielding of the 133Cs chemical shifts for both hydrated slurry and anhydrous samples. Correlations for the slurries are poorer because of the distances between the clay silicate and the CO in solution

  11. Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins

    Linser, Rasmus; Chevelkov, Veniamin; Diehl, Anne; Reif, Bernd

    2007-12-01

    Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D 2O:H 2O = 9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken α-spectrin as a model system. The labeling scheme allows to record proton detected 1H, 15N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the 1H T1 for the bulk H N magnetization is reduced from 4.4 s to 0.3 s if the Cu-edta concentration is increased from 0 mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.

  12. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy.

    Larsen, Flemming H; Byg, Inge; Damager, Iben; Diaz, Jerome; Engelsen, Søren B; Ulvskov, Peter

    2011-05-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed. PMID:21462966

  13. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Urbanová, Martina; Brus, Jiří; Šeděnková, Ivana; Policianová, Olivia; Kobera, Libor

    2013-01-01

    Roč. 100, 1 January (2013), s. 59-66. ISSN 1386-1425 R&D Projects: GA ČR GPP106/11/P426; GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : solid-state NMR * factor analysis * 19F MAS NMR Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.129, year: 2013

  14. Investigations of Li-containing SiCN(O) ceramics via 7Li MAS NMR.

    Gumann, Sina; Nestle, Nikolaus; Liebau-Kunzmann, Verena; Riedel, Ralf

    2007-04-01

    Lithium-containing silicon (oxy)carbonitride ceramics (SiCN(O):Li) were synthesized via precursor-to-ceramic-transformation of Li-containing (poly)silazanes. The precursors were obtained by lithiation of 2,4,6-trimethyl-2,4,6-trivinylcyclotrisilazane with n-butyllithium and by reaction of a commercial poly(organosilazane) VL20 with metallic lithium. The annealing treatment was carried out at temperatures between 200 and 1400 degrees C in argon (DeltaT=200 degrees C) and yielded Li-containing silicon (oxy)carbonitride. X-ray powder diffraction revealed that the resulting SiCN(O):Li ceramics were basically amorphous up to temperatures of 1000 degrees C and formed LiSi(2)N(3), graphite and silicon carbide as crystalline phases at higher temperatures. (7)Li MAS NMR spectroscopy was carried out to investigate the structure of the Li-containing phases and to study the reaction path of metallic Li with polysilazane. Based on the NMR spectra, there is almost no difference found in the chemical shift of the SiCN(O):Li ceramics obtained at different temperatures. Accordingly, Li is assigned to be mainly coordinated to N and O present as contaminant element. Relaxation time measurements showed that the most mobile Li(+) species seems to be present in the product obtained in the pyrolysis temperature range between 600 and 1000 degrees C. PMID:17418540

  15. Comparison of the 1H NMR analysis of solids by the CRAMPS and MAS-only techniques

    Dec, Steven F.; Bronnimann, Charles E.; Wind, Robert A.; Maciel, Gary E.

    1H NMR spectra are reported on eight representative solid samples, including pure powdered crystalline samples, synthetic organic polymers, a silica gel, HY zeolite, and a lignite. Spectra were obtained by the following three approaches: (1) single pulse on a static sample, (2) CRAMPS, and (3) single pulse with magic-angle spinning (MAS-only). The MAS-only results were obtained as a function of MAS speed. Although the MAS-only technique is capable of achieving a significant degree of line narrowing, even with modest MAS speeds, MAS-only spectra of the general quality of the apparently undistorted high-resolution 1H spectra obtained by the CRAMPS technique are not obtained at the highest MAS speeds examined (21 kHz for a polymethylmethacrylate sample), unless the 1H- 1H dipolar interactions in the sample are rather weak, as with silica gel or a zeolite. Thus, caution should be exercised in interpreting 1H MAS-only spectra, especially if CRAMPS results are not available as a calibration.

  16. New perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations

    Brus, Jiří; Urbanová, Martina; Šeděnková, Ivana; Brusová, H.

    2011-01-01

    Roč. 409, 1/2 (2011), s. 62-74. ISSN 0378-5173 R&D Projects: GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Keywords : 19F MAS NMR * factor analysis * polymorphism Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.350, year: 2011

  17. Reaction Mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 Systems for Reversible Hydrogen Storage. Part 2: Solid-State NMR Studies

    Choi, Young Joon; Lu, Jun; Sohn, Hong Yong; Fang, Zhigang Zak; Kim, Chul; Bowman, Robert C.; Hwang, Son-Jong

    2011-09-01

    In Part 1, the promising hydrogen storage properties of the combined systems of Li3AlH6/LiBH4 and Al/LiBH4, exhibiting the favorable formation of AlB2 during dehydrogenation, were presented based on TGA and XRD analyses. The present Part 2 describes the characterization of the intermediate and final products of the dehydrogenation and rehydrogenation of the above systems by multinuclear solid state NMR characterization. This work has also verified that the presence of Al resulted in the re-formation of LiBH4 occurring at a much lower temperature and H2 pressure, under which conditions the dehydrogenation product from LiBH4 alone does not show any degree of rehydrogenation. NMR studies mainly identified various reaction intermediates for LiBH4 dehydrogenation/rehydrogenation reactions. Unlike the XRD studies, the AlB2 formation in particular could not be unambiguously confirmed by NMR. 27Al NMR showed that aluminum was mainly involved in various Li-Al alloy formations. The catalytic role of Al in the LiBH4 hydrogen storage reactivity could be achieved by a reversible cycle of Al + LiH ↔ LiAl + 1/2H2 reaction.

  18. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  19. Structural nature of 7Li and 11B sites in the nonlinear optical material LiB3O5 using static NMR and MAS NMR

    The structural nature of the nonlinear optical properties of LiB3O5 is analyzed using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR. The 3-coordinated trigonal [B(1) and B(2)] and 4-coordinated tetragonal [B(3)] sites are distinguished using the spectrum and the spin-lattice relaxation time in rotating frame T1ρ, which was obtained from the 11B MAS NMR. Moreover, the T1 and T1ρ values for 7Li and 11B are compared, and the activation energies were obtained. The T1ρ values of the boron nuclei in LiB3O5 show no significant changes. These results may be closely related to the largest second-order nonlinear optical coefficient. - Highlights: • The structural nature of the nonlinear optical properties of LiB3O5. • Single-crystal NMR and MAS NMR. • The 3-coordnated trigonal and 4-coordinated tetragonal. • The spin-lattice relaxation time in rotating frame T1ρ

  20. Rapid identification of osmolytes in tropical microalgae and cyanobacteria by (1)H HR-MAS NMR spectroscopy.

    Zea Obando, Claudia; Linossier, Isabelle; Kervarec, Nelly; Zubia, Mayalen; Turquet, Jean; Faÿ, Fabienne; Rehel, Karine

    2016-06-01

    In this study, we report the chemical characterization of 47 tropical microalgae and cyanobacteria by HR-MAS. The generated data confirm the interest of HR-MAS as a rapid screening technique with the major advantage of its easiness. The sample is used as powder of freeze-dried microalgae without any extraction process before acquisition. The spectral fingerprints of strains are then tested as variables for a chemotaxonomy study to discriminate cyanobacteria and dinoflagellates. The individual factor map generated by PCA analysis succeeds in separating the two groups, essentially thanks to the presence of specific carbohydrates. Furthermore, more resolved signals enable to identify many osmolytes. More precisely the characteristics δ of 2-O-alpha-D-glucosylglycerol (GG) are observed in all 21 h-MAS spectra of tropical cyanobacteria. After specific extraction, complementary analysis by 1D and 2D-NMR spectroscopies validates the identification of this osmolyte. PMID:27130130

  1. X-ray and MAS NMR characterization of the thermal transformation of Li(Na)-Y zeolite to lithium aluminosilicates

    The high temperature thermal transformation of Li-exchanged Na-Y zeolite has been investigated by X-ray diffraction and /sup 29/Si MAS NMR studies. At 7000C, the zeolite was transformed into an amorphous phase and upon further heating to 8000C, formation of lithium aluminosilicate with high-quartz structure, in addition to an amorphous phase, was noted. When heated above 9000C, the high-quartz structure was transformed into a β-spodumene related solid solution. X-ray and MAS NMR studies indicate the β-spodumene solid solution formed has the composition close to (Li/sub 0.23/Na/sub 0.06/)A iota /sub 0.29/Si/sub 0.71/O/sub 2/, which is in agreement with chemical analysis

  2. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  3. 1H MAS NMR characterization of hydrogen over silica-supported rhodium catalyst

    2001-01-01

    Hydrogen species in both SiO2 and Rh/SiO2 catalysts pretreated indifferent atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of 1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ~7.0, 3.8-4.0, 2.0 and 1.5-1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2 lattice, respectively. Besides the above signals, both upfield signal at ~-110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ~-110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be b hydrogen and in a unique form of "delocalized hydrogen". It was presumed that the b hydrogen had an upfield shift of ca. -20- -50, though its 1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the b hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.

  4. Pion electroproduction from 6Li

    The pion electroproduction cross section from 6Li is calculated assuming the 6He nucleus is detected. The wave functions used in this calculation are those which gave the best agreement with the 6Li(γ, π+)6He data. The electroproduction experiment will provide a useful check of these wave functions. (Auth.)

  5. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    Lithium zinc silicate glasses of composition (mol%): 17.5Li2O-(72-x)SiO2-xZnO-5.1Na2O-1.3P2O5-4.1B2O3, 5.5≤x≤17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. 29Si and 31P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q2, Q3 and Q4 sites are identified from 29Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q3 and Q4 resonances for low ZnO content indicates the occurrence of phase separation. From 31P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q0) and pyro-phosphate (Q1) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li2Si2O5), lithium zinc ortho-silicate (Li3Zn0.5SiO4), tridymite (SiO2) and cristobalite (SiO2) were identified as major silicate crystalline phases. Using 29Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, 31P spectra unambiguously revealed the presence of crystalline Li3PO4 and (Na,Li)3PO4 in the glass-ceramics. - Graphical abstract: 29Si and 31P MAS-NMR analyses were carried out on multi-component Li2O-SiO2-ZnO-Na2O-P2O5-B2O3 glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases

  6. Temperature {sup 1}H, {sup 13}C, {sup 15}N NMR and CP/MAS {sup 15}N NMR spectra of benzotriazole derivatives - prototropic tautomerism; Widma temperaturowe {sup 1}H, {sup 13}C, {sup 15}N NMR oraz CP/MAS {sup 15}N NMR pochodnych benzotriazolu - tautomeria prototropowa

    Wiench, J.W.; Stefaniak, L. [Inst. Chemii Organicznej, Polska Akademia Nauk, Warsaw (Poland)

    1994-12-31

    The prototropic tautomerism in benzotriazole derivatives solutions has been investigated in different temperatures by means of {sup 1}H, {sup 13}C and {sup 15}N NMR and {sup 15}N CP/MAS NMR spectra. The ratio of different tautomeric forms and kinetics of proton exchange have been measured for the systems studied on the base of observed spectroscopic factors. 5 refs, 2 figs, 3 tabs.

  7. Contribution to the study of 6Li + 6Li et 6Li + 9Be reactions

    This research thesis reports measurements of coincidence between γ rays and particles charged in 6Li + 6Li and 6Li + 9Be reactions. These measurements have been repeated with some technical improvements which are described: discrimination between protons and alphas of 7Li* + 4He + p, simultaneous recording of fortuitous coincidences, assessment of the proportion of charged particles at a final state beyond the detection threshold. 'alpha-alpha' coincidences of the 6Li + 6Li → 3α reaction have also been recorded in conditions which better suited the rough study of the middle of the Dalitz diagram than the precise study of the burst into two energetic alphas. Some information have been obtained from 'alpha-p' coincidences of 7Li* + 4He + p and 7Li* + 4He + p. For these measurements, a multi-parametric installation has been developed for the recording of angular correlations at several simultaneous angles

  8. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Cozar, O. [Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania and National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch (Romania); Filip, C.; Tripon, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Cioica, N.; Coţa, C.; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch, RO-400458 Cluj-Napoca (Romania)

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  9. Determination of the structural changes by Raman and 13C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and 13C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra

  10. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    Carmelo Corsaro

    2015-01-01

    Full Text Available NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.

  11. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  12. 27Al Magic Angle Spinning–Nuclear Magnetic Resonance (MAS-NMR) Analyses Applied to Historical Mortars

    Hanzlíček, Tomáš; Perná, Ivana; Brus, Jiří

    2013-01-01

    Roč. 7, č. 2 (2013), s. 153-164. ISSN 1558-3058 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : mortars * magic angle spinning –nuclear magnetic resonance (MAS-NMR) in solid state * alumina-silicates Subject RIV: DM - Solid Waste and Recycling Impact factor: 0.714, year: 2013 http://www.tandfonline.com/doi/abs/10.1080/15583058.2011.624253

  13. CaCl2-Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29Si MAS NMR

    Qinfei Li; Yong Ge; Guoqing Geng; Sungchul Bae; Monteiro, Paulo J. M.

    2015-01-01

    The effect of calcium chloride (CaCl2) on tricalcium silicate (C3S) hydration was investigated by scanning transmission X-ray microscopy (STXM) with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra and 29Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system. The Ca L3,2-edge NEXAFS spectra obtained by examining C3S hydration in the presence of CaCl2 showed that this accelerator does not change the coordination...

  14. 2D 23Na-23Na DQ/MAS NMR spectroscopy: interface induced clustering and immobilization of sodium ions in nanostructured aluminosilicates

    Kobera, Libor; Urbanová, Martina; Brus, Jiří

    International Society of Magnetic Resonance, 2015. P 112. [Alpine Conference on Solid-State NMR /9./. 13.09.2015-17.09.2015, Chamonix Mont-Blanc] R&D Projects: GA ČR(CZ) GA13-24155S Institutional support: RVO:61389013 Keywords : MAS NMR * geopolymers * zeolites Subject RIV: JN - Civil Engineering

  15. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1 mm microcoil MAS NMR probehead

    Yamauchi, Kazuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1 mg and therefore we used a home-built 1 mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed. © 2010 Elsevier Inc. All rights reserved.

  16. Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy

    Agarwal, Vipin; Reif, Bernd

    2008-09-01

    NMR studies involving perdeuterated proteins focus in general on exchangeable amide protons. However, non-exchangeable sites contain as well a small amount of protons as the employed precursors for protein biosynthesis are not completely proton depleted. The degree of methyl group protonation is in the order of 9% for CD 2H using >97% deuterium enriched glucose. We show in this manuscript that this small amount of residual protonation is sufficient to perform 2D and 3D MAS solid-state NMR experiments. In particular, we suggest a HCCH-TOBSY type experiment which we successfully employ to assign the methyl resonances in aliphatic side chains in a perdeuterated sample of the SH3 domain of chicken α-spectrin.

  17. Sealed rotors for in situ high temperature high pressure MAS NMR.

    Hu, Jian Zhi; Hu, Mary Y; Zhao, Zhenchao; Xu, Suochang; Vjunov, Aleksei; Shi, Hui; Camaioni, Donald M; Peden, Charles H F; Lercher, Johannes A

    2015-09-11

    Here we present the design of reusable and perfectly sealed all-zirconia MAS rotors. The rotors are used to study AlPO4-5 molecular sieve crystallization under hydrothermal conditions, high temperature high pressure cyclohexanol dehydration reaction, and low temperature metabolomics of intact biological tissue. PMID:26171928

  18. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  19. Structural characteristics of marine sedimentary humic acids by CP/MAS sup(13)C NMR spectroscopy

    Sardessai, S.; Wahidullah, S.

    Humic acids from sediments of different depositional environments have been studied by solid-state sup(13)C NMR and the results compared with the traditional wet chemical analysis. Results obtained are well in agreement with the previous literature...

  20. Deformation Effects in 6Li

    The asymptotic D - to S -state ratio η for the 6Li> bound-state overlap is determined from measurements of the tensor analyzing powers for (6Li,d ) reactions on medium-heavy targets. The reactions are described by the distorted-wave Born approximation assuming a direct α -particle transfer reaction mechanism. The calculations provide good agreement with cross section and vector analyzing power data. A best fit to the tensor analyzing power data results in a new value of η=+0.0003±0.0009 , much smaller than previous experimental and theoretical determinations. copyright 1998 The American Physical Society

  1. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  2. Polydisperse methyl β-cyclodextrin-epichlorohydrin polymers: variable contact time (13)C CP-MAS solid-state NMR characterization.

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio; Mele, Andrea

    2015-01-01

    The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state (13)C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  3. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  4. Combined high-field 13C CP MAS NMR and low-field NMR relaxation measurements on post mortem porcine muscles.

    Bertram, Hanne Christine; Jakobsen, Hans Jørgen; Andersen, Henrik Jørgen

    2004-05-19

    Changes in postmortem muscle characteristics are investigated in muscles from eight pigs exposed to different combinations of preslaughter stress (exercise on treadmill) and stunning method (CO(2) vs electrical stunning). Solid-state (13)C cross-polarization (CP) magic-angle spinning (MAS) NMR experiments are carried out on a total of 16 rapidly frozen M. longissimus muscle biopsies taken in vivo the day before slaughter and at 45 min postmortem. Simultaneously, low-field NMR T(2) relaxation time measurements are carried out on samples from M. longissimus. Glycogen and lactate are estimated from the (13)C CP MAS spectra, and correlations of r = 0.89 and r = 0.70, respectively, to subsequent biochemical determinations using partial least squares regression (PLSR) are established. Moreover, PLSR reveals that, besides the 72 ppm signal (carbons in glycogen), a signal around 38 ppm, which increases concomitantly with lactate, is also significantly correlated to changes in glycogen/lactate. With the assumption that the 38 ppm signal reflects CH(2) in phosphocreatine/creatine, altered mobility of creatine as a result of dephosphorylation is indicated. Finally, PLSR on the 45 min (13)C CP MAS spectra also reveals correlation (r = 0.54) to the slowest relaxing T(2) population (50 min postmortem), known to reflect extra-myofibrillar water. Subsequently, evaluation of the loading plot in the PLSR analysis reveals that the correlation exclusively is associated to the 52 ppm resonance intensity. With the assumption that this resonance reflects methyl groups in choline/phosphatidyl choline, the intensity changes in the 52 ppm resonance imply alterations in membrane properties. Accordingly, the data indicate a relationship between membrane properties and the amount of water being expelled from muscle cells postmortem, which supports the hypothesis that disruption of membranes is implicated in the postmortem mobilization of muscle water. PMID:15137869

  5. Application of (119)Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural (119)Sn Isotope Abundance.

    Kolyagin, Yury G; Yakimov, Alexander V; Tolborg, Søren; Vennestrøm, Peter N R; Ivanova, Irina I

    2016-04-01

    (119)Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5-40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of magnitude in the case of dehydrated Sn-BEA samples as compared to conventional methods. In the latter case, the reconstruction of the quantitative spectrum without the loss of sensitivity is shown to be possible. The method proposed allows obtaining (119)Sn MAS NMR spectra with improved resolution for Sn-BEA zeolites with natural (119)Sn isotope abundance using conventional MAS NMR equipment. PMID:26978430

  6. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR Spectroscopic-Based Metabonomic Approach

    2006-01-01

    High resolution magic angle spinning (MAS)-1 H nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(NO3)3. Male Wistar rats were liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce(NO3)3 were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce(NO3)3 on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS 1H NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.

  7. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset

    Ashbrook, Sharon E.; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, χ, equals cos-1(1/ 3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to ±1° via coherence transfer between the two different satellite transitions ST +( mI=+3/2↔+1/2) and ST -( mI=-1/2↔-3/2) midway through the t1 period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na ( I=3/2), 87Rb ( I=3/2), 27Al ( I=5/2), and 59Co ( I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less " t1 noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions, such as third

  8. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alit...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  9. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  10. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid. PMID:10563925

  11. Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra

    Rossum, Barth-Jan van; Castellani, Federica [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Pauli, Jutta [BAM (Germany); Rehbein, Kristina [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Hollander, J.; Groot, Huub J.M. de [BAM (Germany); Oschkinat, Hartmut [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)], E-mail: Oschkinat@fmp-berlin.de

    2003-03-15

    In this paper, we present a strategy for the {sup 1}H{sup N} resonance assignment in solid-state magic-angle spinning (MAS) NMR, using the {alpha}-spectrin SH3 domain as an example. A novel 3D triple resonance experiment is presented that yields intraresidue H{sup N}-N-C{sup {alpha}} correlations, which was essential for the proton assignment. For the observable residues, 52 out of the 54 amide proton resonances were assigned from 2D ({sup 1}H-{sup 15}N) and 3D ({sup 1}H-{sup 15}N-{sup 13}C) heteronuclear correlation spectra. It is demonstrated that proton-driven spin diffusion (PDSD) experiments recorded with long mixing times (4 s) are helpful for confirming the assignment of the protein backbone {sup 15}N resonances and as an aid in the amide proton assignment.

  12. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  13. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  14. Coal structure at reactive sites by sup 1 H- sup 13 C- sup 19 F double cross polarization (DCP)/MAS sup 13 C NMR spectroscopy

    Hagaman, E.W.; Woody, M.C. (Oak Ridge National Lab., TN (USA))

    1989-01-01

    The solid state NMR technique, {sup 1}H-{sup 13}C-{sup 31}P double cross polarization (DCP)/MAS {sup 13}C-NMR spectroscopy, uses the direct dipolar interaction between {sup 13}C-{sup 31}P spin pairs in organophosphorus substances to identify the subset of carbons within a spherical volume element of 0.4 nm radius centered on the {sup 31}P atom. In combination with chemical manipulation of coals designed to introduce phosphorus containing functionality into the organic matrix, the NMR experiment becomes a method to examine selectively the carbon bonding network at the reactive sites in the coal. This approach generates a statistical structure description of the coal at the reaction centers in contrast to bulk carbon characterization using conventional {sup 1}H-{sup 13}C CP/MAS {sup 13}C NMR spectroscopy. 3 refs.

  15. Application of High-Resolution 1H MAS NMR Spectroscopy to the Analysis of Intact Bones from Mice Exposed to Gamma Radiation

    Zhang, QiBin; Hu, Jian Zhi; Rommereim, Donald N.; Murphy, Mark K; Phipps, Richard P.; HUSO, DAVID L.; Dicello, John F

    2009-01-01

    Herein we demonstrate that high-resolution magic angle spinning (MAS) 1H NMR can be used to profile the pathology of bone marrow rapidly and with minimal sample preparation. The spectral resolution obtained allows several metabolites to be analyzed quantitatively. The level of NMR-detectable metabolites in the epiphysis + metaphysis sections of mouse femur were significantly higher than that observed in the diaphysis of the same femur. The major metabolite damage to bone marrow resulting from...

  16. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β− decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO4 based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO4 monazite is solved. • In PuPO4 plutonium is strictly trivalent. • The presence of a minute amount of AmIII is highlighted. • We propose PuPO4 as a potential reference material for spectroscopic and microscopic studies

  17. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    Popa, Karin [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Martel, Laura [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Martin, Philippe M. [CEA, DEN, DEC/SESC, F-13108 Saint Paul Lez Durance Cedex (France); Prieur, Damien [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Solari, Pier L. [Synchrotron SOLEIL, 91190 Saint-Aubin (France); Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany)

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  18. Quality of spelt pasta enriched with eggs and identification of eggs using 13C MAS NMR spectroscopy

    Filipović Jelena S.

    2015-01-01

    Full Text Available This paper deals with the characteristics of spelt pasta enriched with eggs. Eggs were added to spelt farina in the quantity of 0, 124 or 248 g/kg (equivalent to 0, 3 or 6 eggs, respectively. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Relatively low coefficients of variation have been obtained for each applied assay (1.25-12.42%, which confirmed the high accuracy measurements and statistically significant results. Standard score analysis is applied for accessing the contribution of eggs content to spelt pasta quality. Maximum scores regarding quality (0.89 and chemical characteristics (0.70, have been obtained for 6 eggs spelt pasta formulation. It is also shown that the presence of eggs in pasta can be clearly confirmed by 13C MAS NMR spectroscopy. Simultaneous increase in area of peak positioned at 29.5 and 176 ppm is directly associated with the increase in the content of added eggs in the corresponding samples. Pertinent data point at positive contribution of eggs to the spelt pasta and also that NMR spectrum can be used in the egg quantity control. [Projekat Ministarstva nauke Republike Srbije, br. TRI 46005 i br. TR 31029

  19. Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins

    Linser, Rasmus; Fink, Uwe; Reif, Bernd

    2008-07-01

    Assignment of proteins in MAS (magic angle spinning) solid-state NMR relies so far on correlations among heteronuclei. This strategy is based on well dispersed resonances in the 15N dimension. In many complex cases like membrane proteins or amyloid fibrils, an additional frequency dimension is desirable in order to spread the amide resonances. We show here that proton detected HNCO, HNCA, and HNCACB type experiments can successfully be implemented in the solid-state. Coherences are sufficiently long lived to allow pulse schemes of a duration greater than 70 ms before incrementation of the first indirect dimension. The achieved resolution is comparable to the resolution obtained in solution-state NMR experiments. We demonstrate the experiments using a triply labeled sample of the SH3 domain of chicken α-spectrin, which was re-crystallized in H 2O/D 2O using a ratio of 1/9. We employ paramagnetic relaxation enhancement (PRE) using EDTA chelated Cu II to enable rapid data acquisition.

  20. Application of 119Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural 119Sn Isotope Abundance

    G. Kolyagin, Yury; V. Yakimo, Alexander; Tolborg, Søren;

    2016-01-01

    119Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5–40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of...

  1. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A 2H-2 and 7Li solid-state MAS NMR study

    Nielsen, Ulla Gro; Grey, Clare P.; Paik, Jonkim

    2008-01-01

    2H and 7LiMAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepiclocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, e...

  2. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  3. CP-MAS 207Pb with 19F decoupling NMR spectroscopy: medium range investigation in fluoride materials.

    Bureau, B; Silly, G; Buzaré, J Y

    1999-11-01

    The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions. PMID:10670899

  4. N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms.

    Janssen, Geertje J; Roy, Esha; Matysik, Jörg; Alia, A

    2012-02-01

    In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) measurements provides direct excess to the heart of large photosynthetic complexes (A. Diller, Alia, E. Roy, P. Gast, H.J. van Gorkom, J. Zaanen, H.J.M. de Groot, C. Glaubitz, J. Matysik, Photosynth. Res. 84, 303-308, 2005; Alia, E. Roy, P. Gast, H.J. van Gorkom, H.J.M. de Groot, G. Jeschke, J. Matysik, J. Am. Chem. Soc. 126, 12819-12826, 2004). By combining the dramatic signal increase obtained from the solid-state photo-CIDNP effect with (15)N isotope labeling of PSI, we were able to map the electron spin density in the active cofactors of PSI and study primary charge separation at atomic level. We compare data obtained from two different PSI proteins, one from spinach (Spinacia oleracea) and other from the aquatic plant duckweed (Spirodella oligorrhiza). Results demonstrate a large flexibility of the PSI in terms of its electronic architecture while their electronic ground states are strictly conserved. PMID:22303078

  5. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  6. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR

  7. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  8. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions

    13C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed 13C MAS or 13C(1H) CP/MAS NMR spectra (9.4 T or 14.1 T) for 13C in natural abundance. The variation in the 13C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in 13C MAS NMR spectra. However, it is shown that by combining 13C MAS and 13C(1H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends 29Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in 27Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •13C chemical shift anisotropies for inorganic carbonates from 13C MAS NMR. •Narrow 13C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by 13C MAS and 13C(1H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase

  9. Nanoscopic yttrium oxide fluorides: non-aqueous fluorolytic sol-gel synthesis and structural insights by 19F and 89Y MAS NMR.

    Scholz, G; Dreger, M; Bertram, R; Kemnitz, E

    2015-08-14

    Nanoscopic yttrium acetate fluorides Y(CH(3)COO)(3-z)F(z) and yttrium oxide fluorides YO(3-z)/(2)F(z )were prepared with tunable Y/F molar ratios via the fluorolytic sol-gel route. All samples were characterized by X-ray diffraction, elemental analysis and thermal analysis. In addition, local structures of all samples were studied by (19)F MAS, (19)F-(89)Y CP MAS and (1)H-(89)Y CP MAS NMR spectroscopy and the respective chemical shifts are given. For both classes of compounds, only the fluorination using one equivalent of F (z = 1) leads to defined, well crystalline matrices: yttrium acetate fluoride Y(CH(3)COO)(2)F and r-YOF. PMID:26133504

  10. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  11. Hydrogen-bond interactions in organically-modified polysiloxane networks studied by 1D and 2D CRAMPS and double-quantum 1H MAS NMR

    Brus, Jiří; Dybal, Jiří

    2002-01-01

    Roč. 35, č. 27 (2002), s. 10038-10047. ISSN 0024-9297 R&D Projects: GA ČR GA203/98/P290; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : Hydrogen bonding * polysiloxane * 1H MAS NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.751, year: 2002

  12. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO2 adsorption performance. Highlights: ► Location of extraframework Sr2+ or Ba2+ cations was estimated by means of 1H and 23Na MAS NMR. ► Level of Sr2+ or Ba2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr2+ and Ba2+ ion exchanged SAPOs are outstanding CO2 adsorbents.

  13. Ease of delignification assesment of wood from different Eucalyptus species by pyrolysis (TMAH)-GC/MS and CP/MAS 13C-NMR spectrometry

    González-Vila, Francisco Javier; Almendros Martín, Gonzalo; Río Andrade, José Carlos del; Martín Martínez, Francisco; Gutiérrez Suárez, Ana; Romero Sánchez, Juan

    1999-01-01

    Flash-pyrolysis in the presence of tetramethylammonium hydroxide (TMAH) of woods from different species of Eucalyptus yields series of guaiacyl-type (G) and syringyl-type (S) units in slightly but characteristically different relative proportions. Such differences have been used to suggest a fine and appropriate index of the ease of delignification of the different Eucalyptus species when pulped by the Kraft process. The pyrolytic data were in agreement with those obtained from CP/MAS 13C-NMR...

  14. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy

    Akbey, Umit; Lange, Sascha; Trent Franks, W.; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; Rossum, Barth-Jan van; Reif, Bernd; Oschkinat, Hartmut, E-mail: oschkinat@fmp-berlin.d [Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)

    2010-01-15

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D{sub 2}O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both {sup 1}H and {sup 15}N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for {sup 1}H-{sup 15}N correlations in dipolar coupling based experiments for H{sub 2}O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based {sup 1}H-{sup 15}N correlation experiments yield a nearly constant SNR for samples prepared with {<=}30% H{sub 2}O. Samples in which more H{sub 2}O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in {sup 1}H T{sub 1} in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H{sub 2}O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H{sub 2}O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible {sup 1}H,{sup 1}H interactions increases. At low levels of deuteration ({>=}60% H{sub 2}O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken {alpha}-spectrin SH3 domain.

  15. Sensitivity enhancement in natural-abundance solid-state 33S MAS NMR spectroscopy employing adiabatic inversion pulses to the satellite transitions

    Hansen, Michael Ryan; Brorson, Michael; Bildsøe, Henrik; Skibsted, Jørgen; Jakobsen, Hans J.

    2008-02-01

    The WURST (wideband uniform rate smooth truncation) and hyperbolic secant (HS) pulse elements have each been employed as pairs of inversion pulses to induce population transfer (PT) between the four energy levels in natural abundance solid-state 33S (spin I = 3/2) MAS NMR, thereby leading to a significant gain in intensity for the central transition (CT). The pair of inversion pulses are applied to the satellite transitions for a series of inorganic sulfates, the sulfate ions in the two cementitious materials ettringite and thaumasite, and the two tetrathiometallates (NH 4) 2WS 4 and (NH 4) 2MoS 4. These materials all exhibit 33S quadrupole coupling constants ( CQ) in the range 0.1-1.0 MHz, with precise CQ values being determined from analysis of the PT enhanced 33S MAS NMR spectra. The enhancement factors for the WURST and HS elements are quite similar and are all in the range 1.74-2.25 for the studied samples, in excellent agreement with earlier reports on HS enhancement factors (1.6-2.4) observed for other spin I = 3/2 nuclei with similar CQ values (0.3-1.2 MHz). Thus, a time saving in instrument time by a factor up to five has been achieved in natural abundance 33S MAS NMR, a time saving which is extremely welcome for this important low-γ nucleus.

  16. Chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples

    This paper describes the potentiality of chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for lichen chemotaxonomic investigations. Lichens present a difficult morphologic differentiation and the chemical analyses are frequently employed for their taxonomic classification, mainly due to the secondary metabolites to be relatively constant for these organisms. The lichen chemotaxonomic classification is usually carried out by color reactions, chromatography, fluorescence and mass spectrometry analysis, where the identification is obtained by one or more techniques. There are some papers which use the carbohydrate content in chemotaxonomy investigation. However, the majority of these techniques involve laborious and time consuming sample pre-treatment. This work focuses on application of 1H high resolution magic angle spinning - nuclear magnetic resonance (HR-MAS NMR) and Fourier transform infrared (FT-IR) associated with chemometric analysis to intact samples. In comparison to other traditional techniques, 1H HR-MAS NMR and FT-IR allied with chemometrics provided a fast and economic method for lichen chemotaxonomy. Both methods were useful for lichen analysis and permitted the satisfactory distinction among families, genera and species, although better results were achieved for FT-IR data

  17. Multibody final states of the 6Li+6Li reaction at 97 MeV

    Absolute coincidence cross sections were measured for the reactions 6Li+6Li->3α, 6Li(6Li, 2α), and 6Li(6Li, 2d), where the latter two represent N-body (N >= 4) final states. Broad peaks from the 6Li(6Li, 2α) reaction are well described by a double spectator pole (DSP) model utilizing a Hulthen wave function, whereas near 40 MeV the DSP peaks are much narrower than predicted. A broad peak in the 3α final-state spectrum attributed to a single-spectator pole (SSP) process, is well described with the same wave function. The SSP is the principal mechanism for the 3α reaction, in contrast to data near 40 MeV which show that sequential decay from 8Be levels is dominant. (orig.)

  18. Structure determination of uniformly 13C, 15N labeled protein using qualitative distance restraints from MAS solid-state 13C-NMR observed paramagnetic relaxation enhancement

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn2+ mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library

  19. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    Chagas, L.H.; De Carvalho, G.S.G. [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil); San Gil, R.A.S. [Universidade Federal do Rio de Janeiro, Instituto de Química, 21949-900 Rio de Janeiro, RJ (Brazil); Chiaro, S.S.X. [PETROBRAS-CENPES, 21941-915 Rio de Janeiro, RJ (Brazil); Leitão, A.A. [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil); Diniz, R., E-mail: renata.diniz@ufjf.edu.br [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  20. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  1. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2013-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into l...

  2. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  3. Solid state P-31 MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials

    Risskov Sørensen, Daniel; Nielsen, U. G.; Skou, E. M.

    2014-01-01

    .1 and 74.2 M% were produced and characterized with powder X-ray diffraction, P-31 MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H3PO4 takes place above 200 degrees C, and increases with temperature. At 500 degrees C the NbOPO4 and H3PO4 has...... reacted to form niobium pyrophosphate (Nb2P4O15). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5.10(-3) S/cm for a sample containing 74.2 M% of...

  4. 1H-MAS-NMR Chemical Shifts in Hydrogen-Bonded Complexes of Chlorophenols (Pentachlorophenol, 2,4,6-Trichlorophenol, 2,6-Dichlorophenol, 3,5-Dichlorophenol, and p-Chlorophenol) and Amine, and H/D Isotope Effects on 1H-MAS-NMR Spectra

    Hisashi Honda

    2013-01-01

    Chemical shifts (CS) of the 1H nucleus in N···H···O type hydrogen bonds (H-bond) were observed in some complexes between chlorophenols [pentachlorophenol (PCP), 2,4,6-tricholorophenol (TCP), 2,6-dichlorophenol (26DCP), 3,5-dichlorophenol (35DCP), and p-chlorophenol (pCP)] and nitrogen-base (N-Base) by solid-state high-resolution 1H-NMR with the magic-angle-spinning (MAS) method. Employing N-Bases with a wide range of pKa values (0.65–10.75), 1H-MAS-NMR CS values of bridging H atoms in H-bonds...

  5. 1H-MAS-NMR Chemical Shifts in Hydrogen-Bonded Complexes of Chlorophenols (Pentachlorophenol, 2,4,6-Trichlorophenol, 2,6-Dichlorophenol, 3,5-Dichlorophenol, and p-Chlorophenol and Amine, and H/D Isotope Effects on 1H-MAS-NMR Spectra

    Hisashi Honda

    2013-04-01

    Full Text Available Chemical shifts (CS of the 1H nucleus in N···H···O type hydrogen bonds (H-bond were observed in some complexes between chlorophenols [pentachlorophenol (PCP, 2,4,6-tricholorophenol (TCP, 2,6-dichlorophenol (26DCP, 3,5-dichlorophenol (35DCP, and p-chlorophenol (pCP] and nitrogen-base (N-Base by solid-state high-resolution 1H-NMR with the magic-angle-spinning (MAS method. Employing N-Bases with a wide range of pKa values (0.65–10.75, 1H-MAS-NMR CS values of bridging H atoms in H-bonds were obtained as a function of the N-Base’s pKa. The result showed that the CS values were increased with increasing pKa values in a range of DpKa 2: The maximum CS values was recorded in the PCP (pKa = 5.26–4-methylpyridine (6.03, TCP (6.59–imidazole (6.99, 26DCP (7.02–2-amino-4-methylpyridine (7.38, 35DCP (8.04–4-dimethylaminopyridine (9.61, and pCP (9.47–4-dimethylaminopyridine (9.61 complexes. The largest CS value of 18.6 ppm was recorded in TCP–imidazole crystals. In addition, H/D isotope effects on 1H-MAS-NMR spectra were observed in PCP–2-amino-3-methylpyridine. Based on the results of CS simulation using a B3LYP/6-311+G** function, it can be explained that a little changes of the N–H length in H-bond contribute to the H/D isotope shift of the 1H-MAS-NMR peaks.

  6. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S., E-mail: lebrown@uoguelph.ca [University of Guelph, Departments of Physics, and Biophysics Interdepartmental Group (Canada)

    2013-02-15

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ({sup 13}C/{sup 15}N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  7. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly (13C/15N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  8. High Field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Hu, Jian Z.; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles HF

    2016-04-04

    High field quantitative 27Al MAS NMR and temperature programmed desorption (TPD) of ethanol are used to study the surface and phase transformation of gamma-Al2O3 during calcination in the temperature range of 500 to 1300 degrees C. Following ethanol adsorption, ethylene is generated during TPD with a desorption temperature > 200 degrees C. With increasing calcination temperature prior to TPD, the amount of ethylene produced decreases monotonically. Significantly, 27Al MAS NMR reveals that the amount of penta-coordinate Al3+ ions (Lewis acid sites) also decreases with increasing calcination temperature. In fact, a strong correlation between the amount of penta-coordinate Al3+ ions and the amount of strongly adsorbed ethanol molecules (i.e., the ones that convert to ethylene during TPD) is obtained. This result indicates that the penta-coordinate aluminum sites are the catalytic active sites on alumina surfaces during ethanol dehydration reaction across the entire course of gamma- to alpha-Al2O3 phase transformations.

  9. XRD, FTIR and 13C CP/ MAS NMR Studies of Composite Comprising Poly(vinyl acetate)- silylated Si-MCM-41

    A composite structure based on silylated MCM-41 and Poly(vinyl acetate) (PVAc) was synthesized via solution intercalation. Poly(vinyl acetate)-silylated Si- MCM-41 composite were characterized by XRD, FTIR spectroscopy and 13C CP/ MAS NMR in order to determine the compatibility between PVAc and the silicate host. XRD study reveals that the framework of silylated Si-MCM-41 was not altered upon incorporation of PVAc. FTIR study showed that characteristic peak assigned to carbonyl group in PVAc was observed around 1741.6 cm-1 for all the composites indicating the presence of PVAc in the silylated Si-MCM-41. 13C CP/ MAS NMR showed the increase of line width of the peak assigned to C=O carbonyl group indicating the increase in randomness of polymer chains in confined space. The shifting of the C=O carbonyl groups is a sign of the change in chemical environment of the carbonyl owing to the interaction of PVAc with the silica matrix of silylated Si-MCM-41. (author)

  10. Modification of molybdenum structural environment in borosilicate glasses with increasing content of boron and calcium oxide by 95Mo MAS NMR

    In nuclear borosilicate glasses, when molybdenum is in too high concentration and when it combines with other elements such as alkali and alkaline-earth elements it may form crystalline molybdates, including sodium molybdate, Na2MoO4, during melt cooling. In a nuclear vitrification context, the origin of this phenomenon must be understood to control and to avoid the appearance of this water-soluble crystalline phase. The solubility limit of MoO3 was found to be 2.5 mol% in a simplified SiO2-B2O3-Na2O-CaO nuclear glass at about 1300 degrees C. Higher MoO3 concentrations induced liquid phase separation followed by crystallization of Na2MoO4 and CaMoO4. This study assessed the impact of increasing the CaO and B2O3 content on the tendency of the melts to crystallize and the impact on the glass network structure. Structural analysis (Mo-95 MAS NMR and B-11 MAS NMR) of several glass series and standard SiO2-Na2O-MoO3 or SiO2-CaO-MoO3 glass showed that the nature of the crystallized phases that may appear during cooling of the melt can be controlled by correlation of the proportion of Na+ cations remaining free in the glass network with the soda/lime environment of tetrahedral MoO42- entities. (authors)

  11. Modification of Molybdenum Structural Environment in Borosilicate Glasses with Increasing Content of Boron and Calcium Oxide by 95Mo MAS NMR

    In nuclear borosilicate glasses, when molybdenum is in too high concentration and when it combines with other elements such as alkali and alkaline-earth elements it may form crystalline molybdates, including sodium molybdate, Na2MoO4, during melt cooling. In a nuclear vitrification context, the origin of this phenomenon must be understood to control and to avoid the appearance of this water-soluble crystalline phase. The solubility limit of MoO3 was found to be 2.5 mol% in a simplified SiO2-B2O3-Na2O-CaO nuclear glass at about 1300 degrees C. Higher MoO3 concentrations induced liquid phase separation followed by crystallization of Na2MoO4 and CaMoO4. This study assessed the impact of increasing the CaO and B2O3 content on the tendency of the melts to crystallize and the impact on the glass network structure. Structural analysis (95Mo MAS NMR and 11B MAS NMR) of several glass series and standard SiO2-Na2O-MoO3 or SiO2-CaO-MoO3 glass showed that the nature of the crystallized phases that may appear during cooling of the melt can be controlled by correlation of the proportion of Na+ cations remaining free in the glass network with the soda/lime environment of tetrahedral MoO42- entities. (authors)

  12. Mechanisms of emission of particles charged in 6Li + 6Li and 6Li + 10B reactions at low energies

    The lithium 6 nucleus is a projectile of interest to study nuclear reactions at low energy due to the possibility to obtain high heats of reaction, and to its structure which can play an important role in the projectile-target interaction. This research thesis focused on the study of two low-energy reactions provoked by lithium projectiles. These reactions are studied within the framework of the theoretical model of aggregates. The first part presents the experimental conditions of both reactions, reports the development and analysis of nuclear plates, and the transformation of a given type of particle histogram into a spectrum in the mass centre system. The next parts report the study of the 6Li + 6Li reaction (previous results, kinematic analysis, spectrum of secondary particles, theoretical analysis of results) and of the 6Li + 10B reaction (previous results, experimental results, study of the continuous spectrum of alpha particle, reaction mechanisms)

  13. 15N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms

    Janssen, Geertje J.; Roy, Esha; Matysik, Jörg; Alia, A.

    2011-01-01

    In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) nuclear magnetic res...

  14. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  15. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  16. Characterizing crystal disorder of trospium chloride: a comprehensive, 13C CP/MAS NMR, DSC, FTIR, and XRPD study

    Urbanová, Martina; Šturcová, Adriana; Brus, Jiří; Beneš, Hynek; Skořepová, E.; Kratochvíl, B.; Čejka, J.; Šeděnková, Ivana; Kobera, Libor; Policianová, Olivia; Šturc, A.

    2013-01-01

    Roč. 102, č. 4 (2013), s. 1235-1248. ISSN 0022-3549 R&D Projects: GA ČR GPP106/11/P426 Institutional support: RVO:61389013 Keywords : trospium chloride * solid state NMR * factor analysis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.007, year: 2013

  17. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  18. (14)N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies.

    Haies, Ibraheem M; Jarvis, James A; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-03-01

    Overtone (14)N NMR spectroscopy is a promising route for the direct detection of (14)N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from (1)H to the (14)N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for (14)N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker-Planck equations. PMID:25662410

  19. Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study

    Gil, B.; Zones, S. I.; Hwang, S.-J.; Voláková, Martina; Čejka, Jiří

    2008-01-01

    Roč. 112, č. 8 (2008), s. 2997-3007. ISSN 1932-7447 R&D Projects: GA ČR GA104/07/0383; GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : nuclear magnetic resonance * adsorbed probe molecules * angle- spinning NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  20. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m-3. Solid state CP/MAS 13C n.m.r. (cross polarization/magic angle spinning 13C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  1. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  2. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  3. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    POPA KARIN; RAISON Philippe; MARTEL LAURA; Martin, Philippe; PRIEUR DAMIEN; SOLARI Pier-Lorenzo; BOUEXIERE Daniel; KONINGS Rudy; SOMERS Joseph

    2015-01-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as beta- decay product of plutonium) in the +III oxidation state was determined based on XANES results. High resolution solid state 31P NMR seems to agree with the XANES r...

  4. Insights into a lipid regulator by solid-state MAS NMR : kinetic and structure-functional studies on diacylglycerol kinase

    Ullrich, Sandra Johanna

    2013-01-01

    In this thesis the integral membrane protein diacylglycerol kinase (DAGK) from E.coli is investigated with solid-state NMR. The aim is to gain an insight into the enzyme’s mechanism through integration of kinetic, structural and dynamic data. The biological function of DAGK is the transfer of the γ-phosphate group from Mg*ATP to diacylglycerol (DAG) building phosphatidic acid (PA)[6] as port of the membrane-derived oligosaccharide cycle[31,34]. Surprisingly, DAGK does not share structural or ...

  5. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  6. Feshbach resonances in fermionic 6Li

    Feshbach resonances in 6Li were experimentally studied and theoretically analyzed. In addition to two previously known s-wave resonances, three p-wave resonances were found. Four of these resonances are narrow and yield a precise value of the singlet scattering length. The position of the broad s-wave resonance near 83 mT is mostly sensitive to the triplet potential. It was previously determined in a molecule-dissociation experiment for which we, here, discuss systematic shifts

  7. 6Li foil thermal neutron detector

    Ianakiev, Kiril D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Macarthur, Duncan W [Los Alamos National Laboratory

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  8. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2016-05-01

    Heteronuclear cross polarization (CP) has been commonly used to enhance the sensitivity of dilute low-γ nuclei in almost all solid-state NMR experiments. However, CP relies on heteronuclear dipolar couplings, and therefore the magnetization transfer efficiency becomes inefficient when the dipolar couplings are weak, as is often the case for mobile components in solids. Here, we demonstrate methods that combine CP with heteronuclear Overhauser effect (referred to as CP-NOE) or with refocused-INEPT (referred to as CP-RINEPT) to overcome the efficiency limitation of CP and enhance the signal-to-noise ratio (S/N) for mobile components. Our experimental results reveal that, compared to the conventional CP, significant S/N ratio enhancement can be achieved for resonances originating from mobile components, whereas the resonance signals associated with rigid groups are not significantly affected due to their long spin-lattice relaxation times. In fact, the S/N enhancement factor is also dependent on the temperature, CP contact time as well as on the system under investigation. Furthermore, we also demonstrate that CP-RINEPT experiment can be successfully employed to independently detect mobile and rigid signals in a single experiment without affecting the data collection time. However, the resolution of CP spectrum obtained from the CP-RINEPT experiment could be slightly compromised by the mandatory use of continuous wave (CW) decoupling during the acquisition of signals from rigid components. In addition, CP-RINEPT experiment can be used for spectral editing utilizing the difference in dynamics of different regions of a molecule and/or different components present in the sample, and could also be useful for the assignment of resonances from mobile components in poorly resolved spectra. Therefore, we believe that the proposed approaches are beneficial for the structural characterization of multiphase and heterogeneous systems, and could be used as a building block in

  9. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  10. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    The area intensity change of C1, C4, and C6 in spectrum obtained by 13C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling

  11. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  12. Resonances in the proton-6Li scattering

    The differential cross section and the analyzing power of the p+6Li scattering were measured in the laboratory energy range from 1.6 respectively 2.8 MeV to 10 MeV at 45 respectively 40 energies in full angular distributions. The data were subjected both to an analysis in the optical model which yielded already hints to resonance effects and to a comphrehensive scattering-phase analysis for L=0, 1, and 2 under inclusion of channel spin and orbital angular momentum mixings. The consistent description of all data required the assumption of broad resonance structures. An approximate parametrization by a Breit-Wigner formula allowed the estimation of the resonance parameters. (orig./HSI)

  13. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  14. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively {sup 13}C-labelled proteins

    Higman, Victoria A. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Flinders, Jeremy [Genentech, Inc., Structural Biology Department (United States); Hiller, Matthias; Jehle, Stefan; Markovic, Stefan; Fiedler, Sebastian; Rossum, Barth-Jan van; Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany)], E-mail: oschkinat@fmp-berlin.de

    2009-08-15

    In recent years, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been growing into an important technique to study the structure of membrane proteins, amyloid fibrils and other protein preparations which do not form crystals or are insoluble. Currently, a key bottleneck is the assignment process due to the absence of the resolving power of proton chemical shifts. Particularly for large proteins (approximately >150 residues) it is difficult to obtain a full set of resonance assignments. In order to address this problem, we present an assignment method based upon samples prepared using [1,3-{sup 13}C]- and [2-{sup 13}C]-glycerol as the sole carbon source in the bacterial growth medium (so-called selectively and extensively labelled protein). Such samples give rise to higher quality spectra than uniformly [{sup 13}C]-labelled protein samples, and have previously been used to obtain long-range restraints for use in structure calculations. Our method exploits the characteristic cross-peak patterns observed for the different amino acid types in {sup 13}C-{sup 13}C correlation and 3D NCACX and NCOCX spectra. An in-depth analysis of the patterns and how they can be used to aid assignment is presented, using spectra of the chicken {alpha}-spectrin SH3 domain (62 residues), {alpha}B-crystallin (175 residues) and outer membrane protein G (OmpG, 281 residues) as examples. Using this procedure, over 90% of the C{alpha}, C{beta}, C' and N resonances in the core domain of {alpha}B-crystallin and around 73% in the flanking domains could be assigned (excluding 24 residues at the extreme termini of the protein)

  15. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins

    In recent years, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been growing into an important technique to study the structure of membrane proteins, amyloid fibrils and other protein preparations which do not form crystals or are insoluble. Currently, a key bottleneck is the assignment process due to the absence of the resolving power of proton chemical shifts. Particularly for large proteins (approximately >150 residues) it is difficult to obtain a full set of resonance assignments. In order to address this problem, we present an assignment method based upon samples prepared using [1,3-13C]- and [2-13C]-glycerol as the sole carbon source in the bacterial growth medium (so-called selectively and extensively labelled protein). Such samples give rise to higher quality spectra than uniformly [13C]-labelled protein samples, and have previously been used to obtain long-range restraints for use in structure calculations. Our method exploits the characteristic cross-peak patterns observed for the different amino acid types in 13C-13C correlation and 3D NCACX and NCOCX spectra. An in-depth analysis of the patterns and how they can be used to aid assignment is presented, using spectra of the chicken α-spectrin SH3 domain (62 residues), αB-crystallin (175 residues) and outer membrane protein G (OmpG, 281 residues) as examples. Using this procedure, over 90% of the Cα, Cβ, C' and N resonances in the core domain of αB-crystallin and around 73% in the flanking domains could be assigned (excluding 24 residues at the extreme termini of the protein)

  16. Spectroscopic information of 6Li from elastic scattering of deuterons, 3He and 4He by 6Li

    The elastic scattering of deuterons, 3He and 4He on 6Li at different incident energies have been analyzed in the framework of the optical model (OM) using ECIS88 as well as SPI GENOA codes. The optical potential parameters were extracted in the phenomenological treatment. A good agreement between theoretical and experimental differential cross-sections was obtained in whole angular range. Parameters for real part of potential have been also calculated microscopically with double-folding model for the d, 3He and 4He scattering, respectively, using DFPOT code. The elastic transfer mechanism has been studied by coupled reaction channel (CRC) method using FRESCO code. Spectroscopic amplitudes of 6Li ≡ t + 3He and 6Li ≡ α + d configurations have been extracted from d, 3He and 4He scattering on 6Li at wide energy range. A comparison between spectroscopic amplitudes obtained from deuteron and α elastically scattering from 6Li has been made. The extracted spectroscopic amplitudes of 6Li ≡ 4He + d(SF = SA2) from 6Li(d, 6Li)d and 6Li(α, 6Li)α are not the same as expected theoretically. (author)

  17. Phosphole complexes of Gold(I) halides: Comparison of solution and solid-state structures by a combination of solution and CP/MAS 31P NMR spectroscopy and x-ray crystallography

    A series of complexes of 1-phenyldibenzophosphole (DBP), 1-phenyl-3,4,-dimethylphosphole (DMPP), and triphenylphosphine of the type LnAuX (n = 1, L = DBP, DMPP, Ph3P, X = Cl, Br, I; n = 3, L = DBP, X = Cl, Br, I; n = 3, L = Ph3P, X = Cl; n = 4, L = DBP, DMPP, X = PF6) have been prepared and characterized. The structures of (DBP)AuCl (1), (DBP)3AuCl (2), and (DMPP)AuCl (3) have been determined from three-dimensional x-ray data collected by counter methods. Crystal structure of the complexes is reported. The CP/MAS 31P(1H) NMR spectrum of complex 1 shows two resonances in a 1:1 intensity ratio, and the CP/MAS 31P(1H) NMR spectrum of complex 3 shows three resonances in a 1:1:1 intensity ratio for reasons that are not yet understood. Though the three phospholes are crystallographically inequivalent (d(AuP) = 2.359 (1), 2.382 (1), and 2.374 (2) angstrom) the molecule has effective Cs symmetry as evidenced by the observation of two 31P resonances in a 2:1 intensity ratio in its CP/MAS 31P(1H) NMR spectrum. Variable-temperature 31P(1H) NMR spectra obtained on solutions of LAuCl + L in various ratios were analyzed to determine the nature of the species present in solution and to gain information regarding their relative stabilities as a function of the nature of the phosphine. 79 refs., 8 figs., 9 tabs

  18. 3He(3H,γ)6Li

    The authors have calculated the 3He(3H,γ)6Li reaction rate at big bang temperatures based on a microscopic study in the framework of the Generator Coordinate Method. It is discussed whether 6Li could be made by 3He + 3H fusion in the early epoch of our universe

  19. The evaluation of cross sections for n + 6Li reaction

    Neutron nuclear data of 6Li are important for fusion neutronics calculation. Therefore, the cross sections for n + 6Li reaction are evaluated in the energy range from 10-5 eV to 20 MeV. In the evaluation, 6Li(n, d+n)4He and 6Li(n, n+d)4He reactions are included. It is concluded that there is really only the second excited level (3.562 MeV) in the inelastic scattering, no assumed levels were taken into account. The evaluated data describe the real process of n + 6Li reactions and improve the existing evaluated libraries such as ENDF/B-6 and JENDL-3

  20. sup 3 He( sub 3 H,. gamma. ) sup 6 Li; Source of sup 6 Li production in the big bang

    Funck, C.; Langanke, K. (Inst. fur Theoretisch Physik I, Univ. Munster, D-4400 Munster (DE))

    1990-01-10

    The authors have calculated the {sup 3}He({sup 3}H,{gamma}){sup 6}Li reaction rate at big bang temperatures based on a microscopic study in the framework of the Generator Coordinate Method. It is discussed whether {sup 6}Li could be made by {sup 3}He + {sup 3}H fusion in the early epoch of our universe.

  1. Structure determination of uniformly {sup 13}C, {sup 15}N labeled protein using qualitative distance restraints from MAS solid-state {sup 13}C-NMR observed paramagnetic relaxation enhancement

    Tamaki, Hajime [Hokkaido University, Graduate School of Life Science (Japan); Egawa, Ayako [Osaka University, Institute for Protein Research (Japan); Kido, Kouki [Hokkaido University, Graduate School of Life Science (Japan); Kameda, Tomoshi [National Institute of Advanced Industrial Science and Technology, Biotechnology Research Institute for Drug Discovery (Japan); Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu [Hokkaido University, Faculty of Advanced Life Science (Japan); Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan); Demura, Makoto, E-mail: demura@sci.hokudai.ac.jp [Hokkaido University, Faculty of Advanced Life Science (Japan)

    2016-01-15

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn{sup 2+} mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library.

  2. Studies of the D state of 6Li using the FSU polarized 6Li Beam

    One way to quantify the D-state component of the wave function of a nucleus is by the quantity η, the ratio of the D- and S-state asymptotic normalization constants. Analyses of the analyzing powers from transfer reactions induced by polarized ions have been useful for the determination of η in the A=2-4 systems. In an effort to determine η for the d+α relative motion in 6Li we have measured analyzing powers for (6L rvec i,d) reactions on 58Ni and 40Ca at E(6Li)=34 and h;MeV. The experiments were performed at Florida State University using the Optically Pumped Polarized Lithium Ion Source. We compared the data with the results of well-constrained DWBA calculations assuming a direct α-particle transfer mechanism. With η the only free parameter in the calculations, a best fit to the tensor analyzing power data results in an average value of η=+0.0003±0.0009, much smaller than previous determinations. copyright 1999 American Institute of Physics

  3. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations

    Paluch, P.; Pawlak, T.; Jeziorna, A.; Trébosc, J.; Hou, G.; Vega, A. J.; Amoureux, J. P.; Dračínský, Martin; Polenova, T.; Potrzebowski, M. J.

    2015-01-01

    Roč. 17, č. 43 (2015), s. 28789-28801. ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : solid-state NMR * angle spinning NMR * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04475h

  4. Efficient and facile Ar-Si bond cleavage by montmorillonite KSF: synthetic and mechanistic aspects of solvent-free protodesilylation studied by solution and solid-state MAS NMR.

    Zafrani, Yossi; Gershonov, Eytan; Columbus, Ishay

    2007-08-31

    A facile and efficient method for the cleavage of the Ar-Si bond of various aryl trimethyl silanes is described. When adsorbed on montmorillonite KSF (mont KSF), these arylsilanes readily undergo a solvent-free protodesilylation to the corresponding arenes at room temperature in excellent yields. This approach seems to be superior to the traditional mild methods (i.e., desilylation by TFA, TBAF, CsF), in terms of reaction yield, rate, and environmentally benign conditions. Some mechanistic studies using both solution and solid-state magic-angle spinning (SS MAS) (1)H NMR are also presented. PMID:17676903

  5. X particle effect for 6Li reaction rates calculations

    The inferred primordial 6Li-7Li abundances are different from standard big bang nucleosynthesis results, 6Li is 1000 times larger and 7Li is 3 times smaller than the big bang prediction. In big bang nucleosynthesis, negatively charged massive X particles a possible solution to explain this primordial Li abundances problem [1]. In this study, we consider only X particle effect for nuclear reactions to obtain S-factor and reaction rates for Li. All S-factors calculated within the Optical Model framework for d(α,γ)6Li system. We showed that the enhancement effect of massive negatively charged X particle for 6Li system reaction rate.(author)

  6. 6^Li in the atmosphere of GJ 117 Revisited

    Christian, D J; Jevremovic, D

    2008-01-01

    Detection of 6^Li has been shown for energetic solar events, one chromospherically active binary, and several dwarf halo stars. We had previously found a 6^Li/7^Li = 0.03+/-0.01 for active K dwarf GJ 117 using VLT UVES observations. Here we present high signal-to-noise (>1000) high spectral resolution observations taken with the McDonald Observatory's 2.7m and echelle spectrometer of GJ 117. We have used the solar spectrum and template stars to eliminate possible blends, such as Ti I, in the 6^Li spectral region. Our new analysis, using an updated PHOENIX model atmosphere finds 6^Li/7^Li = 0.05+/-0.02. Additionally, bisector analysis showed no significant red asymmetries that would affect the lithium line profile. No changes above the statistical uncertainties are found between the VLT and McDonald data. The amount of 6^Li derived for GJ 117 is consistent with creation in spallation reactions on the stellar surface, but we caution that uncertainties in the continuum level may cause additional uncertainty in t...

  7. CDCC calculations of elastic scattering for the systems 6Li+144Sm and 6Li+208Pb. Effect of resonances of 6Li on elastic scattering angular distributions

    Calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 144Sm and 208Pb at energies above the barrier, are performed with the Continuum Discretized Coupled-Channel method (CDCC). Ground, resonant and nonresonant continuum states of 6Li are included up to some maximum energy εmax for which convergence is achieved. In the three-body system, global interactions are used for the α-target and d - target sub-systems. The effect of continuum resonant states of 6Li, i.e., l = 2, jπ = 3+, 2+ and 1+ on elastic scattering angular distributions is investigated by extracting these states from the continuum space. It is found that the calculated elastic scattering angular distributions are in good agreement with the measurements for most of the cases studied where consideration of couplings to continuum states is essential. It is also found that the resonance character of the continuum states is in some cases important to obtain agreement with the data

  8. Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of {alpha}-spectrin by MAS solid-state NMR

    Chevelkov, Veniamin [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Faelber, Katja [Max-Delbrueck-Centrum fuer Molekulare Medizin (Germany); Diehl, Anne [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany); Heinemann, Udo [Max-Delbrueck-Centrum fuer Molekulare Medizin (Germany); Oschkinat, Hartmut; Reif, Bernd [Forschungsinstitut fuer Molekulare Pharmakologie (FMP) (Germany)], E-mail: reif@fmp-berlin.de

    2005-04-15

    Water molecules are a major determinant of protein stability and are important for understanding protein-protein interactions. We present two experiments which allow to measure first the effective T{sub 2} decay rate of individual amide proton, and second the magnetization build-up rates for a selective transfer from H{sub 2}O to H{sup N} using spin diffusion as a mixing element. The experiments are demonstrated for a uniformly {sup 2}H, {sup 15}N labeled sample of a microcrystalline SH3 domain in which exchangeable deuterons were back-substituted with protons. In order to evaluate the NMR experimental data, as X-ray structure of the protein was determined using the same crystallization protocol as for the solid-state NMR sample. The NMR experimental data are correlated with the dipolar couplings calculated from H{sub 2}O-H{sup N} distances which were extracted from the X-ray structure of the protein. We find that the H{sup N}T{sub 2} decay rates and H{sub 2}O-H{sup N} build-up rates are sensitive to distance and dynamics of the detected water molecules with respect to the protein. We show that qualitative information about localization and dynamics of internal water molecules can be obtained in the solid-state by interpretation of the spin dynamics of a reporter amide proton.

  9. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  10. 6Li-doped silicate glass for thermal neutron shielding

    Glass formulations are described that contain high concentrations of 6Li and are suitable for use as thermal neutron shielding. One formulation contained 31 mol% of 6Li2O and 69 mol% of SiO2. Studies were performed on a second formulation that contained as much as 37 mol% of 6Li2O and 59 mol% of SiO2, with 4 mol% Al2O3 added to prevent crystallization at such high 6Li2O concentrations. These lithium silicate glasses can be formed into a variety of shapes using conventional glass fabrication techniques. Examples include flat plates, disks, hollow cylinders, and other more complex geometries. Both in-beam and in-core experiments have been performed to study the use and durability of Li silicate glasses. In-core experiments show the glass can withstand the intense radiation fields near the core of a reactor. The neutron attenuation of the glasses used in these studies was 90%/mm. In-beam studies show that the glass is effective for reducing the gamma-ray and neutron fields near experiments. ((orig.))

  11. Reaction mechanisms in the 6Li+ 52Cr system

    Pandey Bhawna

    2015-01-01

    Full Text Available Reactions induced by the weakly bound 6Li projectile interacting with the intermediate mass target 52Cr are investigated. The choice of this particular reaction in our study is because it is proposed as a surrogate reaction [6Li(52Cr, d56Fe*] for the measurement of 55Fe(n,p reaction cross-section, which has been found to be very important in fusion reactor studies. All the conditions which have to be satisfied for using the surrogate method have been checked. The energy of 6Li beam is selected in a way so as to get equivalent neutron energy in the region of 9-14 MeV, which is of primary interest in fusion reactor application. In the present work, statistical model calculations PACE (Projection-Angular-Momentum-Coupled-Evaporation, ALICE and Continuum-Discretized–Coupled-Channel (CDCC: FRESCO have been used to provide information for the 6Li + 52Cr system and the respective contributions of different reaction mechanisms. The present theoretical work is an important step in the direction towards studying the cross-section of the 55Fe(n, p55Mn reaction by surrogate method.

  12. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    Sevelsted, Tine F.; Skibsted, Jørgen, E-mail: jskib@chem.au.dk

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  13. Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO2 at room temperature and high relative humidity and studied after one to 12 weeks. 29Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q3 and Q4 silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by 13C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, 27Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi)4 units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase

  14. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods.

    Pajchel, L; Nykiel, P; Kolodziejski, W

    2011-12-01

    The objective of this work was to study concentration of silicon and its structural forms present in herbal drugs. Equisetum arvense and Urtica dioica L. from teapot bags, dietary supplements (tablets and capsules) containing those herbs, dry extract obtained from a teapot bag of E. arvense, and samples of the latter herb harvested in wild habitat over four months were studied using wavelength dispersive X-ray spectroscopy (WD-XRF) and high-resolution solid-state (29)Si NMR. The highest concentration of Si, ca. 27mg/g, was found in the herbal material from the teapot bags containing E. arvense. The Si content in natural E. arvense (whole plants) increased from May to August by ca. 7mg/g, reaching value 26mg/g. Three different silicon forms were detected in the studied herbal samples: Si(OSi)4 (Q(4)), Si(OH)(OSi)3 (Q(3)) and Si(OH)2(OSi)2 (Q(2)). Those sites were populated in E. arvense in the following order: Q(4)≫Q(3)>Q(2). A dramatic, ca. 50-fold decrease of the Si concentration during the infusion process was observed. The infusion process and the subsequent drying procedure augmented population of the Q(4) sites at the cost of the Q(2) sites. The WD-XRF and (29)Si NMR methods occurred useful and complementary in the study of herbal materials. PMID:21813258

  15. Investigation of Pozzolanic Reaction in Nanosilica-Cement Blended Pastes Based on Solid-State Kinetic Models and 29Si MAS NMR

    Jiho Moon

    2016-02-01

    Full Text Available The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. In this study, Ordinary Portland Cement (OPC was mixed with 1% and 3% nanosilica by weight to produce cement pastes with water to binder ratio (w/b of 0.45. The specimens were cured for 7 days. 29Si nuclear magnetic resonance (NMR experiments are conducted and conversion fraction of nanosilica is extracted. The results are compared with a solid-state kinetic model. It seems that pozzolanic reaction of nanosilica depends on the concentration of calcium hydroxide.

  16. Unusual Threshold Anomaly in the 6Li+208Pb System

    ZHANG Chun-Lei; JIA Hui-Ming; WU Zhen-Dong; XU Xin-Xing; BAI Chun-Lin; ZHANG Huan-Qiao; LIN Cheng-Jian; RUAN Ming; LIU Zu-Hua; YANG Feng; WU Xiu-Kun; ZHOU Ping; AN Guang-Peng

    2006-01-01

    @@ The angular distributions of elastic scattering for the 6Li +208Pb system have been measured at several energies around the Coulomb barrier. The parameters of optical potential are extracted by means of a phenomenological optical model analysis. It is found that the real and imaginal potentials show a pronounced energy dependence.The behaviour of the potential at the nearly especially sub-barrier energies in the 6Li+208Pb system is quite different from the results of some previous reports observed in other systems, such as 19 F +208 Pb and 16 O+208 Pb.This unusual threshold phenomenon indicates that breakup channel is strongly coupled with the elastic channel and has obvious effects on optical potential.

  17. Feshbach resonances in mixtures of 6Li and 40K

    We report on the measurement of Feshbach resonances in Fermi-Fermi mixtures. For this purpose we have created an ultracold mixture of the fermionic alkali isotopes 6Li and 40K in an optical dipole trap. In the same trap we have realized a three-component degenerate spin mixture of 40K -atoms at T 0.3TF. To create the mixture we start by loading a two-species magneto-optical trap (MOT) from two separate 2D-MOT sources. We realized for the first time a 2D-MOT source for lithium, yielding a large cold flux of up to 109 s-1. The mixture is then captured in an optically-plugged magnetic quadrupole trap. After sympathetic cooling of 6Li by 40K to T∝10μK the mixture is loaded into optical tweezers. The mixture is optically transported over a distance of 21.5 cm into a science cell where we measure Feshbach resonances using magnetic field coils designed for high homogeneity. We report on our progress measuring the width of Feshbach resonances in 6Li -40K mixtures and locating resonances in mixtures of 40K.

  18. Inter- and intramolecular distance measurements by solid-state MAS NMR: Determination of gramicidin A channel dimer structure in hydrated phospholipid bilayers

    Fu Riqiang; Cotten, Myriam; Cross, Timothy A. [Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory (United States)

    2000-03-15

    Distance constraints are an important complement to orientational constraints. While a high-resolution monomer structure of the ion channel forming polypeptide, gramicidin A, has been solved with 120 orientational constraints, the precise geometry of the dimer interface has not been characterized. Here, using both {sup 13}C and {sup 15}N labeled gramicidin A samples in hydrated phospholipid bilayers, both inter- and intramolecular distances have been measured with a recently developed simultaneous frequency and amplitude modulation (SFAM) solid-state NMR scheme. Using this approach {sup 15}N-{sup 13}C{sub 1} residual dipolar couplings across a hydrogen bond as small as 20 {+-} 2 Hz have been characterized. While such distances are on the order of 4.2 {+-} 0.2 A, the spectroscopy is complicated by rapid global motion of the molecular structure about the bilayer normal and channel axis. Consequently, the nominal 40 Hz dipolar coupling is averaged depending on the orientation of the internuclear vector with respect to the motional axis. The intermolecular distance confirmed the previously described monomeric structure, while the intramolecular distance across the monomer-monomer interface defined this junction and confirmed the previous model of this interface.

  19. (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopic investigations of ternary silicides TPtSi, germanides TPtGe (T = Ti, Zr, Hf) and stannide TiPtSn.

    Benndorf, Christopher; Eckert, Hellmut; Pöttgen, Rainer

    2016-05-10

    Eight ternary tetrelides TPtX (T = Ti, Zr, Hf; X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing. TiPtSi, ZrPtSi, ZrPtGe, HfPtSi and HfPtGe crystallize with the orthorhombic TiNiSi type structure, in the space group Pnma. The structures of HfPtSi (a = 654.44(9), b = 387.97(6), c = 750.0(1) pm, wR2 = 0.0592, 411 F(2) values, 20 variables) and HfPtGe (a = 660.36(7), b = 395.18(4), c = 763.05(8) pm, wR2 = 0.0495, 430 F(2) values, 20 variables) were refined from single crystal X-ray diffractometer data. TiPtSn adopts the cubic MgAgAs type. TiPtGe is dimorphic with a TiNiSi type high-temperature modification which transforms to cubic LT-TiPtGe (MgAgAs type). All phases were investigated by high resolution (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopy. In the cubic compounds, the (47/49)Ti NMR signals are easily detected owing to the absence of quadrupolar broadening effects. The (195)Pt resonances of the orthorhombic compounds are characterized by strongly negative isotropic Knight shifts and large Knight shift anisotropies, whereas positive isotropic Knight shifts and no anisotropies are observed for the cubic compounds. These results indicate that the phase transition in TiPtGe is associated with dramatic changes in the electronic properties. Within each group of isotypic compounds the isotropic (29)Si, (47/49)Ti and (195)Pt Knight shifts show systematic dependences on the transition metal or tetrel atomic number, suggesting that the numerical values are influenced by the electronegativities of the metallic (or metalloid) neighbours. PMID:27097719

  20. Fe/ZSM-5 prepared by sublimination of FeCl{sub 3}: The structure of the Fe species as determined by IR, {sup 27}Al MAS NMR, and EXAFS spectroscopy

    Marturano, P.; Drozdova, L.; Kogelbauer, A.; Prins, R.

    2000-05-15

    The state of the iron in two different Fe/ZSM-5 samples prepared by sublimation of FeCl{sub 3} was investigated by EXAFS, IR, {sup 27}Al MAS NMR, XRD, and nitrogen adsorption measurements. In one Fe/ZSM-54 (Fe/Al = 1) sample, EXAFS revealed for the first time the presence of diferric (hydr)oxo-bridged binuclear clusters, whose structures differ from those postulated in the literature, resembling that of the methane monooxygenase enzyme. IR showed that binuclear Fe complexes are located at the ion-exchange positions of the zeolite, compensating one or two lattice charges. The remainder of the charge-compensating one or two lattice charges. The remainder of the charge-compensating sites are Broensted hydroxyls. On both zeolites, the NMR detection of the framework Al atoms (54 ppm) is strongly perturbed by the paramagnetic effects induced by the Fe ions. The intensity of this peak parallels that of the Broensted hydroxyls in the IR spectra, thus reflecting the presence of Fe species at ion-exchange positions. In a second Fe/ZSM-5 (Fe/Al = 0.8) sample, the iron was present predominantly in the form of large hematite particles (EXAFS, XRD), although a minor fraction of binuclear species might be present as well. The formation of different species seems to be related to different hydrolysis processes occurring on the two zeolites upon washing of the preparation after the sublimation of FeCl{sub 3}. It is also suggested that the final state of the Fe depends on the presence of extraframework Al species as well as the crystallite size of the zeolite used.

  1. Analysis of mercerization process based on the intensity change of deconvoluted resonances of {sup 13}C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    Miura, Kento [Mitsubishi Rayon Co., Ltd. Otake Research Laboratories (Japan); Nakano, Takato, E-mail: tnakano@kais.kyoto-u.ac.jp [Laboratory of Biomaterials Design, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University (Japan)

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by {sup 13}C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling.

  2. Substitution of Lithium for Magnesium, Zinc, and Aluminum in Li15 Si4 : Crystal Structures, Thermodynamic Properties, as well as (6) Li and (7) Li NMR Spectroscopy of Li15 Si4 and Li15-x Mx Si4 (M=Mg, Zn, and Al).

    Baran, Volodymyr; van Wüllen, Leo; Fässler, Thomas F

    2016-05-01

    An investigation into the substitution effects in Li15 Si4 , which is discussed as metastable phase that forms during electrochemical charging and discharging cycles in silicon anode materials, is presented. The novel partial substitution of lithium by magnesium and zinc is reported and the results are compared to those obtained for aluminum substitution. The new lithium silicides Li14 MgSi4 (1) and Li14.05 Zn0.95 Si4 (2) were synthesized by high-temperature reactions and their crystal structures were determined from single-crystal data. The magnetic properties and thermodynamic stabilities were investigated and compared with those of Li14.25 Al0.75 Si4 (3). The substitution of a small amount of Li in metastable Li15 Si4 for more electron-rich metals, such as Mg, Zn, or Al, leads to a vast increase in the thermodynamic stability of the resulting ternary compounds. The (6,7) Li NMR chemical shift and spin relaxation time T1 -NMR spectroscopy behavior at low temperatures indicate an increasing contribution of the conduction electrons to these NMR spectroscopy parameters in the series for 1-3. However, the increasing thermal stability of the new ternary phases is accompanied by a decrease in Li diffusivity, with 2 exhibiting the lowest activation energy for Li mobility with values of 56, 60, and 62 kJ mol(-1) for 2, Li14.25 Al0.75 Si14 , and 1, respectively. The influence of the metastable property of Li15 Si4 on NMR spectroscopy experiments is highlighted. PMID:27027661

  3. Study of the reactions 6Li(pα)3He, 6Li(dα)4He, 6Li(dp0)7Li and 6Li(dp1)7Li* from 300 keV to 1000 keV

    Experimental results are presented for the four reactions 6Li (pα)3He, 6Li (dα)4He, 6Li (dp0)7Li and 6Li (dp1)7Li* between 300 keV and 1000 keV. The angular distributions, the excitation curves and the total cross-section curves are presented in absolute values. (authors)

  4. Examination of the structure in solid state of amino analogs of 4,4‧-[1,5-pentanediylbis(oxy)]bisbenzonitrile by means of X-ray diffraction, 13C CP/MAS NMR, and theoretical calculations

    Maciejewska, Dorota; Wolska, Irena; Żabiński, Jerzy

    2008-05-01

    A single crystal of X-ray diffraction structures is presented for 4,4'-[1,5-(3-oxapentanediylbis(amino))]bisbenzonitrile 2 and 4,4'-[1,5-( N-methyl-3-azapentane-diylbis(oxy))]bisbenzonitrile 3. The molecular structures of these derivatives differ especially in conformations of the central linker: in 2 this linker adopts a trans/ gauche conformation, whereas in 3 - a fully extended conformation. The N atoms in various positions of the aliphatic linker change dramatically the molecular packing mode of both bisnitriles. But in both cases the nitrile groups take part in intermolecular hydrogen bonds: a type of N sbnd H···N in 2 and of C sbnd H···N in 3. Various conformations of both molecules were reflected in 13C CP/MAS NMR spectra in solid state as single and double resonance patterns for 2 and 3, respectively. A preliminary anticancer assay against 60 cell lines of 3 reveals strong growth inhibition of leukemia, melanoma, and renal cancer cells.

  5. Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid-state MAS NMR; I. Celsian, BaAl{sub 2}Si{sub 2}O{sub 8}

    MacKenzie, K.J.D.; Kemmitt, T. [New Zealand Institute for Industrial Research and Development, P.O. Box 31-310, Lower Hutt (New Zealand)

    1999-01-04

    Hybrid gels of celsian composition were prepared from Al alkoxide, tetrathylorthosilicate (TEOS) and Ba acetate and their structure evolution was studied up to 1300C by thermal analysis and X-ray diffraction. Information on their pre-crystallization behaviour was also provided by {sup 27}Al, {sup 29}Si and {sup 137}Ba MAS NMR spectroscopy. Apart from some excess Ba acetate which decomposed to traces of BaCO{sub 3} and BaO by ca. 500C, the gels are X-ray amorphous and relatively homogeneous, and begin to crystallize to hexagonal celsian at 900C. From {approx}500C onwards, an Al-substituted tetrahedral SiO{sub 4} framework begins to be established, evidenced by a progressive increase in the tetrahedral {sup 27}Al sites and the Q{sup 4}(4Al) {sup 29}Si resonance. Migration of Ba into the polyhedral celsian sites occurs much more slowly. A small amount of mullite and Ba{sub 2}SiO{sub 4} which crystallize from Al-rich and Ba-rich regions, respectively, also form crystalline celsian in secondary reactions at ca. 1100C. The observation of a {sup 27}Al shoulder at ca. 36 ppm at 500-900C may arise from Ba-poor mullite-like regions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid-state MAS NMR; I. Celsian, BaAl2Si2O8

    Hybrid gels of celsian composition were prepared from Al alkoxide, tetrathylorthosilicate (TEOS) and Ba acetate and their structure evolution was studied up to 1300C by thermal analysis and X-ray diffraction. Information on their pre-crystallization behaviour was also provided by 27Al, 29Si and 137Ba MAS NMR spectroscopy. Apart from some excess Ba acetate which decomposed to traces of BaCO3 and BaO by ca. 500C, the gels are X-ray amorphous and relatively homogeneous, and begin to crystallize to hexagonal celsian at 900C. From ∼500C onwards, an Al-substituted tetrahedral SiO4 framework begins to be established, evidenced by a progressive increase in the tetrahedral 27Al sites and the Q4(4Al) 29Si resonance. Migration of Ba into the polyhedral celsian sites occurs much more slowly. A small amount of mullite and Ba2SiO4 which crystallize from Al-rich and Ba-rich regions, respectively, also form crystalline celsian in secondary reactions at ca. 1100C. The observation of a 27Al shoulder at ca. 36 ppm at 500-900C may arise from Ba-poor mullite-like regions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Tensor polarization of 6Li*(2.186 MeV, 3+) in the 9Be(p,α)6Li reaction at 40 MeV

    Tensor moments tkq have been determined for the 6Li*(2.186 MeV, 3+) state produced in the 9Be(p,α1)6Li reaction at 40 MeV. Angular correlation measurements were made between α1 and the α-particle or deuteron fragment from the breakup of 6Li*. Comparison of the tkq are made with the predictions of a model that includes direct and exchange processes. Angular distributions of the differential cross sections for the 9Be(p,α)6Li reaction for the g.s. and first two excited states are presented. (orig.)

  8. Resonant and nonresonant Coulomb break up of 6Li

    The resonant and nonresonant cross section for break up of 6Li in the Coulomb field of a heavy nucleus is theoretically studied on the basis of a DWBA approach and analysed in view of a possible experimental access to electromagnetic transition matrix elements between the ground state of the projectile and α+d continuum states at small relative energies. The calculation explicitly uses some simplifications appearing in the particular case of quadrupole transitions which dominate the considered case. Various sensitivities of the cross sections are discussed. (orig.)

  9. Ab initio no-core solutions for $^6$Li

    Shin, Ik Jae; Maris, Pieter; Vary, James P; Forssén, Christian; Rotureau, Jimmy; Michel, Nicolas

    2016-01-01

    We solve for properties of $^6$Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and $J^{\\pi}=2_{2}^{+}$ resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLO$_{opt}$ realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through N$_{max}$=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the $^6$Li ground state and $J^{\\pi}=2_{2}^{+}$ resonance by ...

  10. Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

    Ridinger, Armin; Salez, Thomas; Fernandes, Diogo Rio; Bouloufa, Nadia; Dulieu, Olivier; Salomon, Christophe; Chevy, Frederic

    2011-01-01

    We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.

  11. ZnS/6Li scintillation material as an alternative to 6Li-glass scintillators for neutron detection in time focusing geometry

    As an alternative of using 6Li-glass scintillators for neutron detection in time focusing geometry the effects of ZnS/6Li scintillation material on the measuring efficiency will be discussed on example of the high resolution RTOF device FSS at GKSS Geesthacht, Germany. ((orig.))

  12. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined. PMID:25961154

  13. Neutron spectrum measurements in CFRMF by 6Li spectrometry

    The neutron energy spectrum of the Couples Fast Reactivity Measurements Facility (CFRMF) has been measured by the 6Li(n,α)t spectrometry technique between the energies of 10 keV and 8 MeV. These measurements were made in order to improve the knowledge of this benchmark neutron field as related to dosimetry and other integral cross sections. Energy spectra of both the α + t and t responses were obtained simultaneously using two-parameter multichannel pulse height analysis. Spectrometers of different design and resolution characteristics were applied. The data were reduced using recently evaluated cross section information. The results are compared with the neutron spectrum calculated using recently evaluated cross section information. (author)

  14. A Cluster Model of ^6He and ^6Li

    Armstrong, Jeremy; Sakharuk, Alexander; Zelevinsky, Vladimir

    2007-10-01

    Small nuclei provide an ideal testing ground of few-body theories. ^6He is particularly interesting in that it shows an extended particle distribution similar to a halo nucleus, is loosely bound, and is a Borromean system. We apply the Brink Formalism in secondary quantization to study the structure of ^6He. This formalism allows for the proper treatment of Fermi statistics and correct projection into eigenstates of angular momentum. The alpha plus dineutron configuration and ``cigar'' (neutron, alpha, neutron chain) configuration were studied to obtain binding energies, charge radii, matter radii, and B(E2) for ^6He. The same configurations were used to obtain the same observables for ^6Li. We were then able to calculate the log ft value for the beta decay of ^6He. We now examine the effects of different nucleon-nucleon interactions on our systems.

  15. 6Li electromagnetic form factors and phenomenological cluster models

    The longitudinal form factors of the ground and 2.18 MeV (3+, T = 0) states, and the transverse form factors of the 3.56 MeV (0+, T = 1) and 5.37 MeV (2+, T = 1) states of 6Li are compared with the predictions based on fully antisymmetrized α-d and t-tau cluster models. The longitudinal form factors are adequately described by the α-d model, but the transverse form factors seem to be more consistent with a t-tau model which is close to the shell-model limit. Estimates are made for the ground state t and α spectroscopic factors. The 3.56 MeV M1 transition current density is calculated for both models and compared with experiment. (Auth.)

  16. Quantum effects in the case of (6)Li+ and (7)Li+ ions evolving in a neutral (6)Li gas at a wide range of temperatures.

    Bouchelaghem, F; Bouledroua, M

    2014-02-01

    This work deals with the quantum-mechanical calculation of the temperature-dependent mobility of ionic lithium atoms diffusing in their parent gas. The computation of the quantal phase shifts in connection with the gerade and ungerade potential-energy curves, through which Li(+) approaches Li(2s), leads to the computation of the charge-transfer and diffusion cross sections. The behavior of the coefficients of diffusion and mobility with temperature is also examined. Throughout this work, the isotopic effects in the (6)Li(+)-(6)Li and (7)Li(+)-(6)Li collisions are emphasized. PMID:24326775

  17. THE 2H(alpha, gamma6LI REACTION AT LUNA AND BIG BANG NUCLEOSYNTHETIS

    Carlo Gustavino

    2013-12-01

    Full Text Available The 2H(α, γ6Li reaction is the leading process for the production of 6Li in standard Big Bang Nucleosynthesis. Recent observations of lithium abundance in metal-poor halo stars suggest that there might be a 6Li plateau, similar to the well-known Spite plateau of 7Li. This calls for a re-investigation of the standard production channel for 6Li. As the 2H(α, γ6Li cross section drops steeply at low energy, it has never before been studied directly at Big Bang energies. For the first time the reaction has been studied directly at Big Bang energies at the LUNA accelerator. The preliminary data and their implications for Big Bang nucleosynthesis and the purported 6Li problem will be shown.

  18. Towards 6Li-40K ground state molecules

    The production of a quantum gas with strong long - range dipolar interactions is a major scientific goal in the research field of ultracold gases. In their ro - vibrational ground state Li-K dimers possess a large permanent dipole moment, which could possibly be exploited for the realization of such a quantum gas. A production of these molecules can be achieved by the association of Li and K at a Feshbach resonance, followed by a coherent state transfer. In this thesis, detailed theoretical an experimental preparations to achieve state transfer by means of Stimulated Raman Adiabatic Passage (STIRAP) are described. The theoretical preparations focus on the selection of an electronically excited molecular state that is suitable for STIRAP transfer. In this context, molecular transition dipole moments for both transitions involved in STIRAP transfer are predicted for the first time. This is achieved by the calculation of Franck-Condon factors and a determination of the state in which the 6Li-40K Feshbach molecules are produced. The calculations show that state transfer by use of a single STIRAP sequence is experimentally very well feasible. Further, the optical wavelengths that are needed to address the selected states are calculated. The high accuracy of the data will allow to carry out the molecular spectroscopy in a fast and efficient manner. Further, only a comparatively narrow wavelength tuneability of the spectroscopy lasers is needed. The most suitable Feshbach resonance for the production of 6Li-40K molecules at experimentally manageable magnetic field strengths is occurring at 155 G. Experimentally, this resonance is investigated by means of cross-dimensional relaxation. The application of the technique at various magnetic field strengths in the vicinity of the 155 G Feshbach resonance allows a determination of the resonance position and width with so far unreached precision. This reveals the production of molecules on the atomic side of the resonance

  19. Insight into the local magnetic environments and deuteron mobility in jarosite (AFe3(SO4)2(OD)6, A = K, Na, D3O) and hydronium alunite ((D3O)Al3(SO4)2(OD,OD2)6), from variable temperature 2H MAS NMR spectroscopy

    Nielsen, Ulla Gro; Heinmaa, Ivo; Samoson, Ago;

    2011-01-01

    Detailed insight into the magnetic properties and mobility of the different deuteron species in jarosites (AFe3(SO4)2(OD)6, A = K, Na, D3O) is obtained from variable temperature 2H MAS NMR spectroscopy from 40 K to 300 K. Fast MAS results in high resolution spectra of these paramagnetic compounds....... The 2H NMR hyperfine shift (), measured as a function of temperature, provides to be a very sensitive probe of the local magnetic environment. Two different magnetic environments are observed: i) Fe2-OD and D3O+/ in stoichiometric regions of the sample. Here (2H) is proportional to the bulk...... susceptibility and follows a Curie-Weiss law above 150 K. ii) Fe-OD2 and D2O near Fe vacancies. The Fe near these vacancies shows strong local anti-ferromagnetic couplings even high above the Néel temperature (ca. 65 K). 2H NMR can discriminate between D2O and D3O+ ions substituted on the A site due to the...

  20. An X-ray diffraction and P-31 MAS NMR study of rare-earth phosphate glasses, (R2O3)(x)(P2O5)(1-x), x=0.175-0.263, R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er

    Cole, Jacqueline M.; van Eck, Ernst R. H.; Mountjoy, Gavin; Anderson, Ruth; Brennan, Tessa; Bushnell-Wye, Graham; Newport, Robert J; Saunders, George A.

    2001-01-01

    An X-ray diffraction and P-31 MAS NMR study of rare-earth phosphate glasses of composition, (R2O3)(x)P2O5)(1-x), where x = 0.175-0.263 and R = La-Er (except for Pm), is presented. The structures of these materials were investigated as a function of (a) rare-earth atomic number and (b) glass composition, The results show an increase in rare-earth coordination number from six to seven as the rare-earth ion increases in size. This effect is most evident for the rare earths, Ce, Pr and Nd, and ap...

  1. Development of {sup 6}LiF thermal neutron shield for PGNAA

    Kim, M. S.; Park, J. H.; Hong, K. W.; Jun, B. J. [KAERI, Taejon (Korea, Republic of); Bun, S. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2001-05-01

    The {sup 6}LiF tile which will be utilized as the neutron shield of the gamma ray detector at the prompt gamma neutron activation analysis facility of KAERI-HANARO is developed. The {sup 6}LiF powder is obtained by the reaction of hydrofluoric acid with the {sup 6}Li{sub 2}CO{sub 3} powder, and the yield of the {sup 6}LiF is 86% of the theoretical value. In order to fabricate the stable tile from toxic and irritant LiF powder, the optimum sintering procedure is developed using the LiF powder with naturally abundant {sup 6}Li. The sintering temperature is 720 .deg. C, and the heating rate is 120 .deg. C/h. The preliminary heating process at 500 .deg. C is added in fabricating the {sup 6}LiF tile. The density of fabricated LiF tile is 2.4{approx}2.5 g/cm{sup 3}, and it is above 90% of theoretical density. The density of fabricated {sup 6}LiF tile is 2.25 g/cm{sup 3}, and the neutron transmission rate is below 10{sup -8}, so the thermal neutron transmission is negligible. Therefore, the tile is confirmed to be useful for PGNAA facility.

  2. Electroexcitation of the 0+ (3.562 MeV) level of 6Li and its application to the reaction 6Li(γ,π+)6He

    The M1 form factor for the 0+ (3.562 MeV, T=1) level in 6Li has been measured in the momentum transfer range q=0.26-1.15 fm-1. The radiative width is found to be GAMMAsub(γ0)=8.16+-0.19eV by extrapolation to the photon point. Phenomenological configuration amplitudes have been obtained for the ground and 3.562 MeV level, and it is shown that the 1p harmonic oscillator radial wave functions do not give a good description of the inelastic form factor. The results have been applied to the reaction 6Li(γ,π+)6He near threshold. The theoretical cross section is 24% higher than the data. The muon capture rate in 6Li and Fsub(A)(0) are also evaluated. (Auth.)

  3. Ultra-low temperature MAS-DNP

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  4. Direct measurement of the spin-dependent capture and scattering of slow neutrons by 6Li

    The spin-dependent capture cross section sigma/sup c//sub +/-sigma/sup c//sub -/ of slow neutrons (lambda = 1.074 A) by 6Li has been determined from the flipping ratio of a transmitted polarized neutron beam as a function of 6Li polarization. We used two methods, one of which also enabled us to measure the spin-dependent scattering length b/sub +/-b/sub -/ of 6Li. We find sigma/sub +//sup c/-sigma/sub -//sup c/ = -1170 +- 50 b and b/sub +/-b/sub -/ = (-0.38 +- 0.05) x 10-12 cm

  5. Effect of the breakup process on the direct reaction with a 6Li projectile

    We investigate the effect of the breakup process on the direct reaction (DR) for 6Li. In order to study this effect, we introduce the experimental and semiexperimental ratio factors Rexpt and Rth by using the semiexperimental and experimental α-production cross sections and DR cross sections. The average values of the ratio Rexpt (Rth) for the 6Li+208Pb and 6Li+209Bi systems are 0.90 (0.91) and 0.86 (0.85), respectively. From these results, it can be seen that the α-production cross sections are the main contribution to the DR cross sections.

  6. Spin-dipole excitations of 6Li in charged pion photoproduction

    In the framework of bound shell model the photoproduction cross sections of charged pions on 6Li are calculated when spin-isospin dipole resonance is excited. It is shown that the transition strenqth concentrates in several energy regions. Such a gross-structure of the excitation spectrum is gaverned by the confiqurational splittinq of the resonance. The excitation spectrum in 6Li(γ, π)-reaction is compared with the 6Li(π, γ), (e, e') and (n, p) reaction spe;tra where spin-isospin transitions are dominating too

  7. Diffraction proton scattering on 6Li nucleus and its cluster structure

    Elastic and inelastic scattering of 600 and 1040 MeV protons on 6Li nucleus without suggesting equality of pp-and pn-amplitudes of elastic scattering are investigated within the frames of diffraction approximation. Parameters of 6Li nucleus wave functions, parameters of amplitude of elastic NN scattering at given proton energies are given, differential cross sections of elastic and inelastic proton scattering with excitation of 3+ level for four types of 6Li wave functions are presented graphically. It is obvious from the given calculations that none of the simplest 6Li wave functions can explain the present experimental data. The whole complex of experimental data on elastic and inelastic proton scattering cannot be explained within the frames of a simple αd cluster model using known at present sets of parameters of elastic NN scattering amplitude

  8. Effects of nuclear breakup channel on fusion of 6Li+64Zn system around barrier energies

    We have studied the effects of breakup, occurring due to the nuclear interaction between weakly bound 6Li and tightly bound 64Zn isotopes, on the fusion reaction at near barrier energies within the framework of dynamic polarization potential (DPP) approach. When the nuclear induced dynamic polarization potential is taken into account sub barrier enhancement and above barrier suppression have been found which improves the matching between the fusion excitation function data and predictions for 6Li+64Zn system significantly. (author)

  9. Multi-particle correlation effect at intermediate-energy proton scattering by 6Li

    In the framework of the Glauber-Sitenko theory study is made of the elastic proton scattering by 6Li at the energy of 0.6 and 1.04 GeV using the realistic phenomenological wave functions for different sets of parameters of the elastic scattering NN-amplitudes. An essential cross-sections on a form of the 6Li wave function is shown

  10. Lines in the spectrum of 6LiH (2985--5158 A)

    The emission spectra of the A1Σ+--X1Σ+ bands of 6LiH were photographed in the 2985 - 5158 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm-1. High-purity 6LiH crystals were obtained from Oak Ridge National Laboratory. The atomic percent of 6Li in 6LiH was 95.58 percent. The discharge source was a demountable stainless steel hollow cathode lamp. The lithium hydride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of H2. The disharge was run at about 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of 6LiH are given in this report (COO-2326-17). Similar spectra for 6LiD and 7LiH are given in companion reports (COO-2326-18) and (COO-2326-19), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum

  11. Lines in the spectrum of 6LiD (3086--5156 A)

    The emission spectra of A1Σ+--X1Σ+ bands of 6LiD were photographed in the 3086 A - 5156 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm-1. High-purity 6LiD crystals were obtained from Oak Ridge National Laboratory. The atomic percent of 6Li in 6LiD was 95.58 percent. The discharge source is a demountable stainless steel hollow cathode lamp. The lithium deuteride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of D2. The discharge was run at about 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of 6LiD are given in this report (COO-2326-18). Similar spectra for 6LiH and 7LiH are given in companion reports (COO-2326-17) and (COO-2326-19), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum

  12. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  13. Global optical model potentials for symmetrical lithium systems: 6Li+6Li, 7Li+7Li at Elab = 5-40 MeV

    Angular distributions of 6Li+6Li elastic scattering were measured for Elab=5-40 MeV. An optical model analysis of these data together with older data of 7Li+7Li elastic scattering taken at Elab = 8-17 MeV was performed with the aim to search for a ''global'' OM potential which describes elastic scattering in both Li-Li systems in a broad energy range. Both surface and volume absorbing potentials can be found which fulfill this requirement if a linear energy dependence is assumed of the depths of the real as well as the imaginary potential. These depths, if fitted to individual angular distributions, are found to vary in a correlated manner with the beam energy. This is taken as indication of strong coupling between elastic, inelastic, and reaction channels. This is corroborated by the existence of resonances in reaction channels at these energies where the potential depths are most pronouncedly changing. (orig.)

  14. Electroexcitation of 6Li with application to the reactions 6Li(π-,γ)/sub 1s/ 6He(0+,2+)

    The transverse form factor for the 5.37 MeV(2+,T=1) level of 6Li is analyzed in terms of a phenomenological model to give the configuration amplitudes and transition density. Radiative pion capture rates for the 1s atomic orbital of 6Li leading to the two lowest states of 6He are estimated using the phenomenological functions. The radiative pion capture rate to 6He(g.s.) agrees with experiment, but the rate to 6He(2+,1.8 MeV) is larger than the measured value. It is shown that if the longitudinal form factor is small at q approx. = m/sub π/, the transverse 5.37 MeV form factor gives the radiative pion capture matrix elements directly. As part of this study, the C2 form factor was measured near q=m/sub π/, and its implications on the wave functions are considered

  15. Study of direct and sequential break-up reactions in 6Li+ 112Sn system

    The 6Li projectile while moving in the field of a target nucleus can not only dissociate into α+d but it can also first exchange a few nucleon with the target and then break up into two fragments. Identification of all these processes is important to understand the break-up mechanism of 6Li projectile and also to find the origin of the high yield of alpha particle production in such a reaction. In this paper, we present the exclusive measurement of breakup cross sections in 6Li+112Sn reaction exploring the above possibilities. Cross sections for both sequential as well as direct breakup are measured and compared with the theoretical calculations. The measured elastic scattering angular distributions were used as a constraint to the potential parameters that were used in the calculations to explain both elastic scattering and the breakup processes simultaneously

  16. Effect of nucleon momentum inside cluster nuclei 6Li and 6He

    6Li and 6He are cluster nuclei including a tightly bound alpha (4He) core surrounded by two loosely bound nucleons. The One-Nucleon Exchange (ONE) process in p(6He, 4He+n)d and p(6Li, 4He+p)d reactions has been measured for the first time in inverse kinematics to study nucleon-nucleon correlations at rather short range of two nucleon system in 6He and 6Li. In frame of this work we are concentrated in analyzing the effect of Fermi nucleon momentum inside two these nuclei on kinematics of the ONE reaction mentioned above via calculation and measurement for angular distribution of the emitted alpha particles with respect to the beam direction. (author)

  17. Determining the 6Li Doped Side of a Glass Scintillator for Ultra Cold Neutrons

    Jamieson, Blair

    2015-01-01

    Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted Cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is 6Li depleted and the other side Li doped. This note outlines a method to determine which side of the glass stack is doped with 6Li using AmBe and 252Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the alpha and triton energies of neutron capture on 6Li when the enriched side is facing the Si surface barrier detector.

  18. The In Situ Polymerization and Characterization of PA6/LiCl Composites

    Dandan Sun

    2013-01-01

    Full Text Available PA6/LiCl composites were synthesized by in situ anionic polymerization based on the interaction between the inorganic salts and PA6. Sodium hydroxide as initiator and N-acetylcaprolactam as activator were used in the preparation of PA6/LiCl composites with variety of LiCl content. X-ray diffraction (XRD and differential scanning calorimeter (DSC testing results showed that both of degree of crystallinity and melting temperature of the composites were decreased under the influence of LiCl. And the γ crystal phase proportion increased with increasing the LiCl content to appropriate amount.

  19. Properties of 4He and 6Li with improved chiral EFT interactions

    Maris, P.; Binder, S.; Calci, A.; Epelbaum, E.; Furnstahl, R. J.; Golak, J.; Hebeler, K.; Kamada, H.; Krebs, H.; Langhammer, J.; Liebig, S.; Meißner, U.-G.; Minossi, D.; Nogga, A.; Potter, H.; Roth, R.; Skibiński, R.; Topolnicki, K.; Vary, J. P.; Witala, H.

    2016-03-01

    We present recent results for 4He and 6Li obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. At N3LO and N4LO additional renormalization using the Similarity Renormalization Group is adopted to improve numerical convergence of the many-body calculations. We discuss results for the ground state energies, as well as the magnetic moment and the low-lying spectrum of 6Li.

  20. Properties of 4He and 6Li with improved chiral EFT interactions

    Maris P.

    2016-01-01

    Full Text Available We present recent results for 4He and 6Li obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. At N3LO and N4LO additional renormalization using the Similarity Renormalization Group is adopted to improve numerical convergence of the many-body calculations. We discuss results for the ground state energies, as well as the magnetic moment and the low-lying spectrum of 6Li.

  1. Role of projectile breakup in {sup 6}He and {sup 6}Li induced fusion reactions around barrier energies

    Kumari, Anju; Kharab, Rajesh, E-mail: kharabrajesh@rediffmail.com

    2015-09-15

    The influence of projectile breakup on fusion cross section for {sup 6}He + {sup 209}Bi, {sup 6}He + {sup 64}Zn, {sup 6}Li + {sup 209}Bi and {sup 6}Li + {sup 64}Zn reactions at near barrier energies is studied within the framework of quantum diffusion approach. The breakup does not affect the fusion induced by {sup 6}He, whereas a significant suppression for {sup 6}Li induced reaction is observed in below barrier energy region.

  2. Magic-angle-spinning NMR studies of zeolite SAPO-5

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  3. Basic technology for {sup 6}Li enrichment using an ionic-liquid impregnated organic membrane

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Terai, Takayuki [The Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ({sup 6}Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% {sup 6}Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the {sup 6}Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the {sup 6}Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  4. Optical model studies of 6Li elastic scattering at 156 MeV

    Differential cross sections for 6Li elastic scattering at 156 MeV from 12C, 40Ca 90Zr and 208Pb are presented. The sensitivity to various potential forms is established by using Saxon Woods, Saxon-Woods-squred, density independent and density dependent folded potentials. The extent to which the experimental data determine the potentials and related quantities is discussed. (orig.)

  5. Primordial α +d →6Li+γ reaction and second lithium puzzle

    Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.

    2016-04-01

    During the Big Bang, 6Li was synthesized via the 2H(α ,γ ) 6Li reaction. After almost 25 years of the failed attempts to measure the 2H(α ,γ ) 6Li reaction in the laboratory at Big Bang energies, just recently the LUNA Collaboration presented the first successful measurements at two different Big Bang energies [Anders et al., Phys. Rev. Lett. 113, 042501 (2014), 10.1103/PhysRevLett.113.042501]. In this paper we will discuss how to improve the accuracy of the direct experiment. To this end the photon's angular distribution is calculated in the potential model. It contains contributions from electric dipole and quadrupole transitions and their interference, which dramatically changes the photon's angular distribution. The calculated distributions at different Big Bang energies have a single peak at ˜50∘ . These calculations provide the best kinematic conditions to measure the 2H(α ,γ ) 6Li reaction. The expressions for the total cross section and astrophysical factor are also derived by integrating the differential cross section over the photon's solid angle. The LUNA data are in excellent agreement with our calculations using a potential approach combined with a well established asymptotic normalization coefficient for 6Li→α +d . Comparisons of the available experimental data for the S24 astrophysical factor and different calculations are presented. The Big Bang lithium isotopic ratio 6Li/7Li=(1.5 ±0.3 ) ×10-5 following from the LUNA data and the present analysis are discussed in the context of the disagreement between the observational data and the standard Big Bang model, which constitutes the second lithium problem.

  6. Nuclear reactions of the system {sup 6} Li on {sup 58} Ni near the Coulomb barrier; Reacciones nucleares del sistema {sup 6} Li sobre {sup 58} Ni cerca de la barrera de Coulomb

    Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Protons, alpha particles and deuterons coming from the reactions {sup 6} Li + {sup 58} Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system {sup 6} Li + {sup 59} Co. (Author)

  7. Gamow shell model description of radiative capture reactions $^6$Li$(p,\\gamma)$$^7$Be and $^6$Li$(n,\\gamma)$$^7$Li

    Dong, G X; Fossez, K; Płoszajczak, M; Jaganathen, Y; Betan, R M Id

    2016-01-01

    According to standard stellar evolution, lithium abundance is believed to be a useful indicator of the stellar age. However, many evolved stars like red giants show huge fluctuations around expected theoretical abundances that are not yet fully understood. The better knowledge of nuclear reactions that contribute to the creation and destruction of lithium can help to solve this puzzle. In this work we apply the Gamow shell model (GSM) formulated in the coupled-channel representation (GSM-CC) to investigate the mirror radiative capture reactions $^6$Li$(p,\\gamma)$$^7$Be and $^6$Li$(n,\\gamma)$$^7$Li. The cross-sections are calculated using a translationally invariant Hamiltonian with the finite-range interaction which is adjusted to reproduce spectra, binding energies and one-nucleon separation energies in $^{6-7}$Li, $^7$Be. All relevant $E1$, $M1$, and $E2$ transitions from the initial continuum states to the final bound states $J={3/2}_1^-$ and $J={1/2}^-$ of $^7$Li and $^7$Be are included. We demonstrate th...

  8. First direct measurement of the 2H(α,γ)6Li cross section at Big Bang energies at LUNA

    The amount of 6Li produced during the Big Bang Nucleosynthesis (BBN) era can be theoretically estimated on the basis of cosmological and nuclear astrophysics knowledge. The latter strongly depends on the measurement of the nuclear cross section of the processes involved in the production and destruction of 6Li during the first stages of the Universe. Whereas the destruction process cross sections are well known, the reaction that dominates the 6Li production, the 2H(α,γ)6Li, has never been directly measured in the BBN energy range and only upper limits coming from indirect measurements are available till now. Here we report the first direct measurement of the 2H(α,γ)6Li cross section at BBN energies obtained at LUNA (Laboratory for Underground Nuclear Astrophysics, LNGS, Italy). (author)

  9. Impact of structural differences in carcinopreventive agents indole-3-carbinol and 3,3'-diindolylmethane on biological activity. An X-ray, ¹H-¹⁴N NQDR, ¹³C CP/MAS NMR, and periodic hybrid DFT study.

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Szafrański, Marek; Seliger, Janez; Žagar, Veselko; Burchardt, Dorota V

    2015-09-18

    Three experimental techniques (1)H-(14)N NQDR, (13)C CP/MAS NMR and X-ray and Density Functional Theory (GGA/BLYP with PBC) and Hirshfeld surfaces were applied for the structure-activity oriented studies of two phyto-antioxidants and anticarcinogens: indole-3-carbinol, I3C, and 3,3'-diindolylmethane, DIM, (its bioactive metabolite). One set of (14)N NQR frequencies for DIM (2.310, 2.200 and 0.110 MHz at 295K) and I3C (2.315, 1.985 and 0.330 MHz at 160K) was recorded. The multiplicity of NQR lines recorded at RT revealed high symmetry (chemical and physical equivalence) of both methyl indazole rings of DIM. Carbonyl (13)C CSA tensor components were calculated from the (13)C CP/MAS solid state NMR spectrum of I3C recorded under fast and slow spinning. At room temperature the crystal structure of I3C is orthorhombic: space group Pca21, Z=4, a=5.78922(16), b=15.6434(7) and c=8.4405(2)Å. The I3C molecules are aggregated into ribbons stacked along [001]. The oxygen atomsare disorderedbetween the two sites of different occupancy factors. It implies that the crystal is built of about 70% trans and 30% gauche conformers, and apart from the weak OH⋯O hydrogen bonds (O⋯O=3.106Å) the formation of alternative O'H⋯O bonds (O'⋯O=2.785Å) is possible within the 1D ribbons. The adjacent ribbons are further stabilised by O'H⋯O bonds (O'⋯O=2.951Å). The analysis of spectra and intermolecular interactions pattern by experimental techniques was supported by solid (periodic) DFT calculations. The knowledge of the topology and competition of the interactions in crystalline state shed some light on the preferred conformations of CH2OH in I3C and steric hindrance of methyl indole rings in DIM. A comparison of the local environment in gas phase and solid permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given anticarcinogen to the protein or nucleic acid. PMID:26066413

  10. Measurement of the 1H(6He,6Li)n reaction in inverse kinematics

    The 1H(6He,6Li)n reaction was studied at 0 degree with the NSCL A1200 fragment separator in the energy loss mode. A 6He secondary beam at E/A=93 MeV was used to measure the Gamow-Teller and Fermi strengths between the ground state of 6He and the ground and excited states of 6Li, in inverse kinematics. At 0 degree the ground-state cross section is measured to be dσGS/(dΩ)=43±16 mb/sr, which is dominated by systematic error in the secondary beam flux. The ratio of Gamow-Teller to Fermi strength is not sensitive to this error and is found to be (87±6)% of that expected from (p,n) systematics and β decay. Angular distributions have been measured between 0 degree and 10 degree in the center of mass. copyright 1996 The American Physical Society

  11. Effect of target deformation and projectile breakup in complete fusion of 6Li + 152Sm

    Nuclear reaction induced by weakly bound (stable or radioactive) nuclei is a subject of current experimental and theoretical interest. Measurements of fusion cross section involving loosely bound projectile 6Li and 9Be exist with different conclusion about the enhancement or suppression of fusion cross section. Recently we have measured the fusion cross section for 6Li + 144Sm, where it has been found that there is an enhancement of fusion cross section below the barrier in comparison with single BPM calculation, where as there is an overall suppression in fusion cross section as compared to CCFULL calculation in the entire energy range measured. With this motivation, we chose a deformed target, 152Sm, with β2 = 0.24 to compare with the results of 144Sm which is a spherical target. It will also be interesting to see effect of target deformation (enhancement) versus projectile breakup (suppression) specially at subbarrier energy

  12. Investigation of the reaction D(4He, γ)6Li at ultralow energies

    Burkatovskaya, Yu. B.; Bystritsky, V. M.; Dudkin, G. N.; Krylov, A. R.; Lysakov, A. S.; Gazi, S.; Huran, J.; Nechaev, B. A.; Padalko, V. N.; Sadovsky, A. B.; Tuleushev, Yu. G.; Filipowicz, M.; Philippov, A. V.

    2016-03-01

    The cross section of the reaction D(4He, γ)6Li with titanium and zirconium deuterides as targets is measured for incident 4He+ ion energies of 30 and 36 keV, respectively. The ion beam is generated by a Hall pulsed plasma accelerator. For the first time, upper limits on the cross section of the reaction D(4He, γ)6Li at ultralow energies are imposed (at 90% confidence level): σ ≤ 1.2 × 10-35 cm2 for the TiD2 target and E(4He+) = 30 keV, and σ ≤ 7 × 10-36 cm2 for the ZrD2 target and E(4He+) = 36 keV

  13. Thermal neutron detection using a silicon pad detector and 6LiF removable converters

    A semiconductor detector coupled with a neutron converter is a good candidate for neutron detection, especially for its compactness and reliability if compared with other devices, such as 3He tubes, even though its intrinsic efficiency is rather lower. In this paper we show a neutron detector design consisting of a 3 cm × 3 cm silicon pad detector coupled with one or two external 6LiF layers, enriched in 6Li at 95%, placed in contact with the Si active surfaces. This prototype, first characterized and tested at INFN Laboratori Nazionali del Sud and then at JRC Ispra, was successfully shown to detect thermal neutrons with the expected efficiency and an outstanding gamma rejection capability.

  14. Neutron assay in mixed radiation fields with a 6Li-loaded plastic scintillator

    A novel technique for assay of thermal and fast neutrons in a 6Li-loaded plastic scintillator is presented. Existing capture-gated thermal neutron detection techniques were evaluated with the 6Li-loaded plastic scintillator studied in this work. Using simulations and experimental work, shortcomings in its performance were highlighted. As a result, it was proposed that by separating the combined fast and thermal neutron events from gamma events, using established pulse shape discrimination techniques, the thermal neutron events could then be assayed. Experiments were conducted at the National Physical Laboratory, Teddington, performing neutron assays with seven different neutron fields using the proposed technique. For each field, thermal and fast neutron content was estimated and were shown to corroborate with the seven synthesised fields

  15. Enhancement of the CP-odd effect in the nuclear electric dipole moment of $^6$Li

    Yamanaka, Nodoka

    2015-01-01

    We calculate for the first time the electric dipole moment (EDM) of the $^6$Li nucleus within the alpha + p + n three-body cluster model using the Gaussian expansion method, assuming the one meson exchange P, CP-odd nuclear forces. It is found that the EDM of the $^6$Li is 2 times more sensitive on the isovector pion exchange P, CP-odd nuclear force than the deuteron EDM, due to the CP-odd interaction between the nucleons and the alpha cluster. The $^9$Be EDM is also calculated in the same framework as an alpha + alpha + n three-body system. We also test the ab initio calculation of the EDM of the deuteron, $^3$H and $^3$He nuclei using the realistic Argonne $v18$ nuclear force. In the ab initio calculations, good agreements with previous studies are obtained. We finally discuss the prospects for the new physics beyond the standard model.

  16. Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework

    Dytrych, T; Launey, K D; Draayer, J P; Maris, P; Vary, J P; Langr, D; Oberhuber, T

    2015-01-01

    We present an ab initio symmetry-adapted no-core shell-model description for $^{6}$Li. We study the structure of the ground state of $^{6}$Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to $q \\sim 4$ fm$^{-1}$. We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E2 and M1 reduced transition probabilities, as well as point-nucleon matter rms radii.

  17. Development of a mini high efficiency neutron detector based on 6LiI (Eu) scintillator

    A mini neutron detector with the dimension of φ25 mm ×20 mm is developed based on a 6LiI( Eu) scintillator with a Hamamatsu S3590-08 photodiode. The detector was used to detect thermal neutrons from a paraffin shielded 252Cf neutron source and the detect efficiency to thermal neutron was calculated to be 95% with a resolution of thermal neutron peak about 16%. (authors)

  18. The 6Li(γ,p) reaction at intermediate photon energies

    The 6Li(γ,p) reaction was measured at average tagged photon energies of left angle Eγ right angle =59 and 75 MeV. Protons were detected at 5 different angles between 30 circle and 150 circle. Most of the observed strength is apparently due to the three-body breakup channels. In particular the semi-inclusive (γ,p(n)) and (γ,p(t)) channels are discussed. ((orig.))

  19. Fusion and nonfusion phenomena in the 6Li+40Ca reaction at 156 MeV

    Reaction products from 6Li-induced reactions on 40Ca at 156 MeV have been studied using the dE x E identification as well as the inclusive γ-ray method. The complete fusion cross-section has been found to be σsub(f)=(77 +- 11)mb. The Z distribution of fusion evaporation residues is compared with statistical model predictions. The Z spectrum of reaction products shows a maximum at 156Li break-up. (author)

  20. Investigation of the selection of the selectively heated ions of 6Li isotope from lithium plasma

    Results of experiments on preparation of enriched lithium by means of plasma isotope separation method using ion cyclotron resonance (ICR) are presented. Two types of collectors were compared: cylindrical and plane ones. Both collectors were placed just as in homogeneous magnetic field immediately after the zone of selective ICR heating, so in diverging weakened one, closer to solenoid end. In cylindrical collector higher lithium enrichment by 6Li (up to 83 %) is observed. That corresponds to distribution coefficient ≅60

  1. Measurement of interaction energy near a Feshbach resonance in a 6Li Fermi gas

    Bourdel, T; Cubizolles, J.; Khaykovich, L.; Magalhaes, K. M. F.; Kokkelmans, S. J. J. M. F.; G. V. Shlyapnikov; Salomon, C

    2003-01-01

    We investigate the strongly interacting regime in an optically trapped $^6$Li Fermi mixture near a Feshbach resonance. The resonance is found at $800(40) $G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics. We observe an unexpected and large shift ($80 $G) between the resonance peak and both the maximum of atom loss and the change of sign of the interaction energy.

  2. Formation of eta'(958) Meson Bound States by the 6Li(gamma,d) reaction

    Miyatani, M; Nagahiro, H; Hirenzaki, S

    2016-01-01

    We have investigated the 6Li(gamma,d) reaction theoretically for the formation of the eta'(958) mesic nucleus close to the recoilless kinematics. We have developed the theoretical formula and reported the quantitative results of the formation spectra for various cases in this article. We have found that the formation cross sections are reduced by the effects of the fragile deuteron form factor.

  3. BEC of 41 K in a Fermi sea of 6 Li

    Lous, Rianne S.; Fritsche, Isabella; Huang, Bo; Jag, Michael; Cetina, Marko; Walraven, Jook T. M.; Grimm, Rudolf

    2016-05-01

    We report on the production of a 41 K Bose-Einstein condensate (BEC) immersed in a degenerate two-component 6 Li Fermi sea. After evaporation in an optical dipole trap, we obtain 1 . 2 ×104 41 K atoms with a 55% BEC fraction and a Fermi sea with T /TF work is supported by the Austrian Science Fund FWF within the collaborative research grant FoQuS.

  4. Understanding the effect of channel coupling on fusion of 6Li+64Ni

    Moin Shaikh, Md.; Roy, Subinit

    2016-07-01

    The effect of inelastic excitation and single particle transfer reactions on fusion have been investigated for the system 6Li+64Ni at near barrier energies. The calculations show that a simultaneous coupling to the inelastic excitation of projectile and target along with positive Q-value 1n- and 1p-stripping channels, describes the experimental CF cross sections reasonably well in the below barrier region.

  5. E/Z MAS demonstration

    Los Alamos National Laboratory has developed E/Z MAS, a new generation nuclear material accountability application based on the latest technology and designed for facilities required to track nuclear materials with a simple-to-use interface. E/Z MAS is based on years of experience spent developing nuclear material accounting systems. E/Z MAS uses a modern relational database with a web server and enables users on a classified local area network to interact with the database with web browsers. The E/Z MAS Demonstration poster session demonstrates the E/Z MAS functions required by an operational nuclear facility to track material as it enters and leaves a facility and to account for the material as it moves through a process. The generation of internal facility reports and external reports for the Russian Federal system will be demonstrated. Bar-code readers will be used to demonstrate the ability of EZ MAS to automate certain functions, such as physical inventories at facilities

  6. Enhanced cosmological 6Li abundance as a potential signature of residual dark matter annihilations

    Residual late-time dark matter particle annihilations during and after big-bang nucleosynthesis may alter the predicted cosmological abundances of the light elements. Within the constrained minimal supersymmetric extension of the standard model with a neutralino as the lightest supersymmetric particle, we find negligible effects on the abundances of deuterium, 3He, 4He, and 7Li predicted by homogeneous big-bang nucleosynthesis, but potentially a large enhancement in the predicted abundance of 6Li. This enhancement may be as much as 2 orders of magnitude in the focus-point WMAP strip and in the coannihilation and funnel regions for large tanβ for small m1/2, and the effect is still significant at large m1/2. However, the potential 6Li enhancement is negligible in the part of the coannihilation strip for tanβ=10 that survives the latest LHC constraints. A similar enhancement of the 6Li abundance may also be found in a model with common, nonuniversal Higgs masses (the NUHM1).

  7. THE NEW DETECTIONS OF 7Li/6Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    We have determined the isotopic abundance ratio of 7Li/6Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed ζ Oph for comparison with previous data. The observed abundance ratios were 7Li/6Li = 8.1+3.6-1.8 and 6.3+3.0-1.7 for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within ±2σ error bars and are also consistent with our measurement of 7Li/6Li = 7.1+2.9-1.6 for a cloud along the line of sight to ζ Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of 7Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  8. Unified description of ^{6}Li structure and deuterium-^{4}He dynamics with chiral two- and three-nucleon forces.

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2015-05-29

    We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.027, in agreement with a determination from ^{6}Li-^{4}He elastic scattering, but overestimates the excitation energy of the 3^{+} state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the ^{2}H(α,γ)^{6}Li radiative capture, responsible for the big-bang nucleosynthesis of ^{6}Li. PMID:26066431

  9. Elastic break-up of 156 MeV 6Li projectiles with large asymptotic relative momenta of the fragments

    The triple differential cross sections for elastic break-up of 156 MeV 6Li projectiles by the reactions 208Pb (6Li, ad) 208Pbg.s., and 12C (6Li, ad) 12Cg.s. have been measured with large asymptotic relative momenta of the outgoing fragments. The data exhibit rather unfamiliar shapes of the energy spectra, often replacing the usual bell-shape distributions by double-peaked structures and varying rapidly with the relative emission angles. The origin of these features has been explored and the cross sections have been analysed on the basis of a diffractive disintegration approach. (orig.)

  10. Triple-differential cross section of the 208Pb(6Li, αd)208 Pb Coulomb breakup and astrophysical S-factor of the d(α,γ)6 Li reaction at extremely low energies

    A method of calculation of the triple-differential cross section of the 208Pb(6Li, αd)208Pb Coulomb breakup at astrophysically relevant energies E of the relative motion of the breakup fragments, taking into account the three-body (α - d - 208Pb) Coulomb effects and the contributions from the E1- and E2- multipoles, including their interference, has been proposed. The new results for the astrophysical S-factor of the direct radiative capture d(α, γ)6 Li reaction at E ≤ 250 keV have been obtained. It is shown that the experimental triple-differential cross section of the 208Pb(6Li, αd)208Pb Coulomb breakup can also be used to give information about the value of the modulus squared of the nuclear vertex constant for the virtual 6Li → α + d. (author)

  11. Big Bang nucleosynthesis and the results of the 2H(α,γ)6Li experiment at LUNA

    Observations of the 6Li abundance in very metal-poor stars, if confirmed, show a level of 6Li that is several orders of magnitude larger than the production of this nuclide in standard Big Bang nucleosynthesis. The 2H(α,γ)6Li nuclear reaction is believed to dominate 6Li production in the Big Bang, but there are no directly measured data at relevant energies yet. The reaction has been studied at the LUNA 0.4 MV accelerator, deep underground in the Gran Sasso laboratory in Italy, using an intensive He+ beam and a windowless deuterium gas target. The conclusions from the final data analysis of the experiment are presented.

  12. Comparison of Thermal Neutron Detection Efficiency of $^{6}$Li Scintillation Glass and $^{3}$He Gas Proportional Tube

    Xu, Ming; Tang, Zhi-Cheng; Chen, Guo-Ming; Tao, Jun-Quan

    2013-01-01

    We report on a comparison study of the $^{3}$He gas proportional tube and the $^{6}$Li incorporated scintillation glasses on thermal neutron detection efficiency. Both $^{3}$He and $^{6}$Li are used commonly for thermal neutron detection because of their high neutron capture absorption coefficient. By using a neutron source $^{252}$Cf and a paraffin moderator in an alignment system, we can get a small beam of thermal neutrons. A flash ADC is used to measure the thermal neutron spectrum of eac...

  13. Comparative analysis of pulse shape discrimination methods in a 6Li loaded plastic scintillator

    Three algorithms for discriminating between fast neutrons, thermal neutrons and gamma rays in a 6Li loaded plastic scintillator have been compared. Following a literature review of existing pulse shape discrimination techniques, the performance of the charge comparison method, triangular filtering and frequency gradient analysis were investigated in this work. The scintillator was exposed to three different mixed gamma/neutron radiation fields. The figure of merit of neutron/gamma separation was investigated over a broad energy range, as well as for the neutron capture energy region. After optimisation, all three methods were found to perform similarly in terms of neutron/gamma separation

  14. Model Calculation of n + 6Li Reactions Below 20 MeV

    ZHANG Jing-Shang; HAN Yin-Lu

    2001-01-01

    Based on the unified Hauser-Feshbach and exciton model for light nuclei, the calculations of reaction cross sections and the double-differential cross sections for n + 6Li are performed. Since all of the first-particle emissions are from the compound nucleus to the discrete levels, the angular momentum coupling effect in pre-equilibrium mechanism must be taken into account. The fitting of the measured data indicates that the three-body break-up process needs to be involved, and the pre-equilibrium reaction mechanism dominates the reaction processes. In light nucleus reactions the recoil effect must be taken into account.``

  15. Study of the 6Li + p → 3He + 4He reaction in inverse kinematics

    Angular distribution measurements were performed for the 6Li + p → 3He + 4He reaction in inverse kinematics at incident energies of 2.7, 3.3, 4.2 and 4.8 MeV/u. The detection of both recoils (3He and 4He) over the laboratory angle range θlab = 16 circle to 34 circle allowed the determination of the angular distribution over a wide angular range in the center-of-mass frame (θc.m. ∝ 40 circle to 140 circle). The results clarify inconsistencies between existing data sets and are consistent with compound nucleus model calculations. (orig.)

  16. Neutron detector based on Particles of 6Li glass scintillator dispersed in organic lightguide matrix

    Most 3He replacement neutron detector technologies today have overlapping neutron–gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron–gamma separation of 3He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. 6Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of 6Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium (6Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of 6Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a true plateau in the counting

  17. 16O resonances near 4α threshold through 12C(6Li,d) reaction

    Several narrow alpha resonant 16O states were detected through the 12C(6Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)

  18. Elastic scattering for the system {sup 6}Li+p at near barrier energies with MAGNEX

    Soukeras, V.; Pakou, A.; Sgouros, O. [Department of Physics and HINP, The University of Ioannina, 45110 Ioannina (Greece); Cappuzzello, F.; Bondi, M.; Nicolosi, D. [INFN Laboratory Nazionali del Sud, via S. Sofia 62, 95125, Catania, Italy and Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95125, Catania (Italy); Acosta, L.; Marquinez-Duran, G.; Martel, I. [Departamento di Fisica Aplicada, Universidad de Huelva, E-21071, Huelva (Spain); Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M. [INFN Laboratory Nazionali del Sud, via S. Sofia 62, 95125, Catania (Italy); Alamanos, N. [CEA-Saclay, DAPNIA-SPhN, 91191, Gif-sur-Yvette (France); De Napoli, M. [INFN - Sezione di Catania, via S. Sofia 64, 95125, Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95125, Catania, Italy and INFN - Sezione di Catania, via S. Sofia 64, 95125, Catania (Italy); and others

    2015-02-24

    Elastic scattering measurements have been performed for the {sup 6}Li+p system in inverse kinematics at the energies of 16, 20, 25 and 29 MeV. The heavy ejectile was detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS) in Catania, in the angular range between ∼2{sup 0} and 12{sup 0} in the laboratory system, giving us the possibility to span almost a full angular range in the center of mass system. Results will be presented and discussed for one of the energies.

  19. The scattering of 136 MeV protons from 6Li

    Differential cross sections have been measured for the elastic scattering of 136 MeV protons from 6Li, and for inelastic scattering to the first two excited states. The optical model fit to the elastic scattering differential cross section gave parameters which were retained for the analysis of the two inelastic transitions. The latter differential cross sections were fairly well fitted in shape, but in both cases there is a discrepancy in absolute magnitude of a factor between 1.5 and 4

  20. Nuclear Reaction 6Li(n,4He)T as Radiation Source

    Our investigation was based on the reaction 6Li(n,4He)T, most convenient for the generation of high intensity flow of tritons by the use of thermal neutron flux in atomic reactor. This reaction has high cross section (sigma=953 b), practically no threshold, is rather exothermic (Q=4.78 MeV) and kinetic energy of charged particles (Et=2,74 MeV) is sufficient for the penetration through potential barrier of light elements with Z11C, 13N, 18F, 28Mg, 34mCI and more long lived 3H for medical purposes

  1. Neutron detector based on Particles of 6Li glass scintillator dispersed in organic lightguide matrix

    Ianakiev, K. D.; Hehlen, M. P.; Swinhoe, M. T.; Favalli, A.; Iliev, M. L.; Lin, T. C.; Bennett, B. L.; Barker, M. T.

    2015-06-01

    Most 3He replacement neutron detector technologies today have overlapping neutron-gamma pulse-height distributions, which limits their usefulness and performance. Different techniques are used to mitigate this shortcoming, including Pulse Shape Discrimination (PSD) or threshold settings that suppress all gammas as well as much of the neutrons. As a result, count rates are limited and dead times are high when PSD is used, and the detection efficiency for neutron events is reduced due to the high threshold. This is a problem in most applications where the neutron-gamma separation of 3He detectors had been essential. This challenge is especially severe for neutron coincidence and multiplicity measurements that have numerous conflicting requirements such as high detection efficiency, short die-away time, short dead time, and high stability. 6Li-glass scintillators have excellent light output and a single peak distribution, but they are difficult to implement because of their gamma sensitivity. The idea of reducing the gamma sensitivity of 6Li-glass scintillators by embedding small glass particles in an organic light-guide medium was first presented by L.M. Bollinger in the early 60s but, to the best of our knowledge, has never been reduced to practice. We present a proof of principle detector design and experimental data that develop this concept to a large-area neutron detector. This is achieved by using a multi-component optical medium (6Li glass particles attached to a glass supporting structure and a mineral oil light guide) which matches the indices of refraction and minimizes the absorption of the 395 nm scintillator light. The detector design comprises a 10 in. long tube with dual end readout with about 3% volume density of 6Li glass particles installed. The presented experimental data with various neutron and gamma sources show the desired wide gap between the neutron and gamma pulse height distributions, resulting in a true plateau in the counting

  2. 6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?

    Steffen, M; Caffau, E; Bonifacio, P; Ludwig, H -G; Spite, M

    2012-01-01

    The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0....

  3. Tritium production in a sphere of 6LiD irradiated by 14-MeV neutrons

    The specific production of tritium in samples of 6LiH and 7LiH embedded in a 600-mm-diam sphere of 6LiD irradiated by a central source of 14-MeV neutrons was determined by measuring the activity of the hydrogen evolved from the samples of each isotope at each of five different radii in the 6LiD assembly. The entire process of decomposing the LiH, transferring the evolved gas into counters, and determining the decay rate was standardized by processing LiH samples irradiated by thermal neutrons for which the 6Li(n,α) cross section is well known. The specific production of tritium in 6LiH and 7LiH (embedded samples) and the activation of radiochemical detector foils of 45Sc, 89Y, 90Zr, 169Tm, 191Ir 373, 193Ir 627, 197Au, 235U, and 238U placed at various positions in the 6LiD sphere were calculated and compared with the experimental data. One- and three-dimensional Monte Carlo and S/sub n/ neutron-transport calculations were performed. The most reliable (three-dimensional Monte Carlo) calculation is in reasonable agreement with both the tritium-production and the radiochemical-activation data. The existing discrepancies between calculation and experiment appear largely attributable to uncertainties in some tritium-production and radiochemical-activation cross sections. 15 references

  4. Detection efficiency simulation and measurement of 6LiI/natLiI scintillation detector

    Background: Being of very high detection efficiency and small size, Lithium iodide (LiI) scintillator detector is used extensively in neutron measurement and environmental monitoring. Purpose: Using thermal reactor, neutron detectors will be tested and calibrated. And a new neutron detector device will be designed and studied. Methods: The relationship between the size and detection efficiency of the thermal neutron detector 6LiI/natLil was studied using Monte Carlo code GEANT4 and MCNP5 package, and the thermal neutron efficiency of detector was calibrated by reactor neutrons. Results: The theoretical simulation shows that the thermal neutron detection efficiency of detector of 10-mm thickness is relatively high, the enriched 6Lil is up to 98% and the nature natLiI 65%. The thermal neutron efficiency of detector is calibrated by reactor thermal neutrons. Considering the neutron scattering by the lead brick, high density polythene and environment neutron contribution, the detection efficiency of 6LiI detector is about 90% and natLiI detector 70%. Conclusion: The detector efficiency can reach the efficiency value of theoretical calculations. (authors)

  5. Measuring the absorption mean cross section in 6Li relative to 235U fission

    Due to the fact that the neutron absorption cross section in 6Li is used as one of standards for determinaton of neutron-physical characteristics of fast reactors the ratio of mean cross sections for absorption by 6Li (A6) and 235U fission F25 are experimentalli investigated. The measurements have been performed in the KBR-8, KBR-10,BFS/39/1 bfs-44, BFS/45a-1 and BFS-46 critical assemblies which are characterized by various neutron spectra by means of a lithium counter with semiconductor detectors. Ratios A6/F25 for investigated assemblies constituted respectively 0.605+-0.009; 0.604+-0.004; 0.581+-0.009; 0.590+-0.574+-0.005. The values of 235U diffusion mean cross sections obtained on the base of these fata and calculated using the CRAB-1 program (given in brackets) are equal respectively 1.53+-0.005 (1.51) 2.38+-0.08 (2.42); 1.935+-0.060 (1.95); 1.89+-0.08 (1.95); 1.780+-0.11 (1.69); 1.90+-0.06 (1.89)

  6. Moderator type neutron spectrometer using 6LiF thermoluminescence dosimeter (TLD)

    For epithermal neutron spectroscopy, one of the important problems in neutron and health physics, a few methods have been considered, but each has difficulties, respectively. To overcome these difficulties and obtain the simple and stable detector operation, a moderator type simultaneous multi-detector has been developed, which has 15 6LiF TLD's embedded in polyethylene moderator. (It is called Filter Transmission Detector (FTD) by the author.) This gives 15 simultaneous data, different in moderating filter sensitivity. Also, the dynamic range of measurement can be large, and the perturbation in the moderator by the detectors can be made small. The paper first describes on the characteristics of 6LiF TLD, then gives the specifications of FTD and reports on the calculated results of response function. In the measurement using a 252Cf neutron source, the spatial distribution of reactivity composed from the response functions and neutron spectra comparatively well agreed with the experimental values. The results of verification in actual neutron field (after transmitted in the fast column and concrete of the reactor ''Yayoi'') showed relatively good agreement with other spectrometrical results in the energy range of tens of keV to MeV. (Wakatsuki, Y.)

  7. Measurement of 6Li(n,α)3H reaction cross section

    The 6Li(n,α)3H reaction cross section was measured at 12 discrete neutron energies between 80 KeV and 470 KeV by using the Oak Ridge Linear Acelerator (ORELA) as a pulsed neutron source. The neutron beam was filtered through 20 cm or 30 cm of Armco iron which produces several monoenergetic energies groups (iron windows) between 20 KeV and 1000 KeV about 2 KeV wide. The (n,α) events were detected by a 1 mm thick Li-glass scintillator and the neutron flux was measured with a NE110 plastic scintillator 6,6 cm thick and 10 cm in diameter. Multiple scattering corrections in the Li-glass and the NE110 scintillator efficiency were determined theoretically by using Monte Carlo technique. The 6Li content in the Li-glasses was determined by transmission measurements with low energy neutrons. A theoretical fit was applied to the results by the R-matrix theory. (Author)

  8. Alpha cluster states in light nuclei populated through the (6Li,d) reaction

    Full text: The alpha cluster correlation is an important concept in the nuclear physics of light nuclei. The main purpose of the research program in progress is the investigation of the alpha clustering phenomenon in (xα) and(xα+ν) nuclei through the (6Li,d) alpha transfer reaction. In fact, there is scarce experimental information on the subject, in particular associated with resonant states predicted near (xα) and (xα+ν) thresholds. Measurements of the 12,13C(6Li,d) 16,17O reactions, at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique. The work is under way and an experimental energy resolution of 30 keV was obtained. Near the (4α) breakup threshold in 16O, three narrow alpha resonances, not previously measured, were detected, revealing important α + 12C(G.S.) components. One of these resonances corresponds to the known 0+ state at 15.1 MeV[5] of excitation that has probably, according to Funaki et al., the gas like configuration of the 4α condensate state, with a very dilute density and a large component of α + 12C(Hoyle) configuration. As was already mentioned, our experimental information points to the necessity of including the α + 12C(G.S.) component in the wave function. (author)

  9. TiO{sub 2} colloidal nanocrystals surface modification by V{sub 2}O{sub 5} species: Investigation by {sup 47,49}Ti MAS-NMR and H{sub 2}, CO and NO{sub 2} sensing properties

    Epifani, Mauro, E-mail: mauro.epifani@le.imm.cnr.it [Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR–IMM), via Monteroni c/o Campus Universitario, I-73100 Lecce (Italy); Comini, Elisabetta [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti 9, 25133 Brescia (Italy); Díaz, Raül [Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles (Spain); Force, Carmen [NMR Unit, Centro de Apoyo Tecnológico, Universidad Rey Juan Carlos, c/Tulipán, s/n, 28933 Móstoles (Spain); Siciliano, Pietro [Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR–IMM), via Monteroni c/o Campus Universitario, I-73100 Lecce (Italy); Faglia, Guido [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti 9, 25133 Brescia (Italy)

    2015-10-01

    Highlights: • Novel sensing architecture is presented, made by V{sub 2}O{sub 5} modification of TiO{sub 2} surface. • MAS NMR techniques are a powerful tool for studying the influence of the V{sub 2}O{sub 5} layer. • The V{sub 2}O{sub 5} surface deposition enhanced the adsorption properties with respect to pure TiO{sub 2}. - Abstract: TiO{sub 2} and TiO{sub 2}–V{sub 2}O{sub 5} nanocrystals were prepared by coupling sol–gel and solvothermal methods, followed by heat-treatment at 400 °C, after which the mean nanocrystal size was about 5 nm. The materials were characterized by X-ray diffraction, transmission electron microscopy and solid state nuclear magnetic resonance spectroscopy. It was shown that while the TiO{sub 2} phase was always anatase even after heat-treatment at 500 °C, the presence of the vanadium oxide species enhanced the surface re-configuration of the Ti ions. Hence the coordination environment of surface Ti atoms was drastically changed, by formation of further bonds and imposition of a given local geometry. The final hypothesis was that in pure titania surface rearrangement occurs, leading to the new NMR signal, but this modification was favored in the TiO{sub 2}–V{sub 2}O{sub 5} sample, where the Ti surface atoms were forced into the final configurations by the bonding with V atoms through oxygen. The materials heat-treated at 400 °C were used to process chemoresistive sensors, which were tested to hydrogen, CO and NO{sub 2}, as examples of gases with peculiar sensing mechanisms. The results evidenced that the surface deposition of V{sub 2}O{sub 5} onto the anatase TiO{sub 2} nanocrystals was effective in modifying the adsorption properties of the anatase nanocrystals.

  10. Reanalysis of tritium production in a sphere of 6LiD irradiated by 14-MeV neutrons

    Tritium production and activation of radiochemical detector foils in a sphere of 6LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The 6LiD sphere consisted of 10 solid hemispherical nested shells with ampules of 6LiH, 7LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the 6LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritium production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in 6LiH and 0.999 +- 2.1% in 7LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis