WorldWideScience

Sample records for 60-130 mev photons

  1. PHOTONS IN THE PROTON-INDUCED REACTION WITH IN AT E(P)=50-MEV

    BALANDA, A; BACELAR, JCS; BETAK, E; BORDEWIJK, JA; KRASZNAHORKA, A; VANDERPLOEG, H; SIEMSSEN, RH; WILSCHUT, HW; VANDERWOUDE, A

    1994-01-01

    Photon emission in proton-induced reactions at 50 MeV with In-115 was studied. Analyses of the measured photon spectrum show that the GDR couples to the compound states as well as to pre-equilibrium states. The centroid and width of the GDR strength function were determined as E(GDR) = 15.4 +/- 0.7

  2. Measurements of photon mass attenuation coefficients for Ge and BGO crystals at 10 MeV

    The photon mass attenuation coefficients of the important materials for γ-ray detection, Ge and BGO (Bi4Ge3O12) crystals, have been measured for 10.0 MeV γ-rays. The measurement system using the laser-Compton backscattering γ-rays and the high-resolution high-energy photon spectrometer has been developed and utilized. The effectiveness of the system achieving the total systematic uncertainties of 0.5% for the measurements of the photon mass attenuation coefficients was demonstrated. It was shown that the measured photon mass attenuation coefficients, 318.1±1.7 [cm2/g] for the Ge crystal and 425.2±2.4 [cm2/g] for the BGO crystal, agree within the achieved experimental uncertainties with the evaluated values including atomic and nuclear processes at 10.0 MeV. (author)

  3. Nuclear multifragmentation by 700–1500 MeV photons: New data of GRAAL experiment

    Nedorezov, V. G., E-mail: vladimir@cpc.inr.ac.ru; Lapik, A. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Collaboration: GRAAL Collaboration

    2015-12-15

    The cross sections of carbon nucleus photodisintegration into protons and neutrons with high multiplicity for photon energies from 700 to 1500 MeV were measured. The experiment was performed at the tagged photon beam of the GRAAL setup using the wide-aperture detector LAGRANγE. It was shown that multifragmentation up to complete disintegration into separate nucleons is initiated by elementary reactions of meson photoproduction with a subsequent intranuclear cascade.

  4. Thermoluminescence response of Ge-, Al- and Nd- doped optical fibers by 6 MeV - electron and 6 MeV - photon irradiations

    In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6 MeV - electron response of Neodymium-doped SiO2 optical fibre by observing the measured TL response of 6 MV - photon and the ratio of known measured photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The samples were kept in gelatin capsule an irradiated with 6 MV - photon at the dose range from 0.5 Gy to 4.0 Gy. Siemens model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the photon beam to the samples. We found the average response ratio of 6 MV - photon and 6 MeV - electron in Ge-doped, Al-doped optical fibre and standard TLD-100 dosimeter are 0.83(3). Observing the measured value of 6 MV - photon irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6 MeV - electron irradiation of Neodymium-doped SiO2 optical fibre by the requirement for experimental measurements with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MV - photon irradiations.

  5. Demonstration of multilayer reflective optics at photon energies above 0.6 MeV

    Brejnholt, Nicolai F.; Soufli, Regina; Descalle, Marie-Anne; Fernandez-Perea, Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen; Honkimaeki, Veijo; Pivovaroff, Michael J.

    2014-01-01

    Focusing optics operating in the soft gamma-ray photon energy range can advance a range of scientific and technological applications that benefit from the large improvements in sensitivity and resolution that true imaging provides. An enabling technology to this end is multilayer coatings. We show that very short period multilayer coatings deposited on super-polished substrates operate efficiently above 0.6 MeV. These experiments demonstrate that Bragg scattering theory established for multil...

  6. Demonstration of multilayer reflective optics at photon energies above 0.6 MeV

    Brejnholt, Nicolai F.; Soufli, Regina; Descalle, Marie-Anne;

    2014-01-01

    Focusing optics operating in the soft gamma-ray photon energy range can advance a range of scientific and technological applications that benefit from the large improvements in sensitivity and resolution that true imaging provides. An enabling technology to this end is multilayer coatings. We show...... that very short period multilayer coatings deposited on super-polished substrates operate efficiently above 0.6 MeV. These experiments demonstrate that Bragg scattering theory established for multilayer applications as low as 1 eV continues to work well into the gamma-ray band. (C) 2014 Optical Society...

  7. Compton scattering from 12C using tagged photons in the energy range 65 - 115 MeV

    Myers, L S; Preston, M F; Anderson, M D; Annand, J R M; Boselli, M; Briscoe, W J; Brudvik, J; Capone, J I; Feldman, G; Fissum, K G; Hansen, K; Henshaw, S S; Isaksson, L; Jebali, R; Kovash, M A; Lewis, K; Lundin, M; MacGregor, I J D; Middleton, D G; Mittelberger, D E; Murray, M; Nathan, A M; Nutbeam, S; O'Rielly, G V; Schröder, B; Seitz, B; Stave, S C; Weller, H R

    2014-01-01

    Elastic scattering of photons from 12C has been investigated using quasi-monoenergetic tagged photons with energies in the range 65 - 115 MeV at laboratory angles of 60 deg, 120 deg, and 150 deg at the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden. A phenomenological model was employed to provide an estimate of the sensitivity of the 12C(g,g)12C cross section to the bound-nucleon polarizabilities.

  8. Methods for the measurement of the refractive index of MeV photons using total internal and external reflection

    Recently it has been theoretically and experimentally shown that for 1-10 MeV and 1-2 MeV photons, respectively, the refractive index of Si is greater than 1. Taking into account the difficulties of the carried out experiment it is proposed to measure directly the refractive index of Si and other materials detecting the total internal and external reflections.

  9. Measurements of 12C(→γ,pp) photon asymmetries for Eγ= 200–450 MeV

    Robinson, J; MacGregor, I.J.D.; Annand, J. R. M.; Aguar-Bartolomé, P.; Akasoy, L. K.; Arends, H.J.(Institut für Kernphysik, University of Mainz, Mainz, D-55099, Germany); Azimov, Y. I.; Bantawa, K.(Kent State University, Kent, OH, 44242, USA); Beck, R.; Bekrenev, V. S.; H. Berghäuser; Braghieri, A.; Branford, D.; Briscoe, W. J.; Brudvik, J.

    2013-01-01

    The 12C (→γ ,pp) reaction has been studied in the photon energy range 200-450 MeV at the Mainz microtron MAMI-C, where linearly polarised photons were energy-tagged using the Glasgow-Mainz Tagged Photon Spectrometer and protons were detected in the Crystal Ball detector. The photon asymmetry Σ has been measured over a wider Eγ range than previous measurements. The strongest asymmetries were found at low missing energies where direct emission of nucleon pairs is expected. Cuts on the dif...

  10. Disintegration of {sup 12}C nuclei by 700–1500 MeV photons

    Nedorezov, V. [Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, 117312 Moscow (Russian Federation); D' Angelo, A.; Bartalini, O. [Dipartimento di Fisica – Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, I-00133 Roma (Italy); INFN – Sezione di Roma “Tor Vergata”, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Bellini, V. [Dipartimento di Fisica – Università degli Studi di Catania, via Santa Sofia 64, I-95123 Catania (Italy); INFN – Sezione di Catania, via Santa Sofia 64, I-95123 Catania (Italy); Capogni, M. [Dipartimento di Fisica – Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, I-00133 Roma (Italy); INFN – Sezione di Roma “Tor Vergata”, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Casano, L.E. [INFN – Sezione di Roma “Tor Vergata”, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Castoldi, M. [Dipartimento di Fisica – Università degli Studi di Genova, via Dodecaneso 33, I-16146 Genova (Italy); Curciarello, F.; De Leo, V. [Dipartimento di Fisica e di Scienze della Terra, Università di Messina, salita Sperone 31, I-98166 Messina (Italy); INFN – Sezione di Catania, via Santa Sofia 64, I-95123 Catania (Italy); Didelez, J.-P. [IN2P3, Institut de Physique Nucléaire, Rue Georges Clemenceau, F-91406 Orsay (France); and others

    2015-08-15

    Disintegration of {sup 12}C nuclei by tagged photons of 700–1500 MeV energy at the GRAAL facility has been studied by means of the LAGRANγE detector with a wide angular acceptance. The energy and momentum distributions of produced neutrons and protons as well as their multiplicity distributions were measured and compared with corresponding distributions calculated with the RELDIS model based on the intranuclear cascade and Fermi break-up models. It was found that eight fragments are created on average once per about 100 disintegration events, while a complete fragmentation of {sup 12}C into 12 nucleons is observed typically only once per 2000 events. Measured multiplicity distributions of produced fragments are well described by the model. The measured total photoabsorption cross section on {sup 12}C in the same energy range is also reported.

  11. Characterization of γ-ray detectors using the photon tagger NEPTUN for energies up to 20 MeV

    Schnorrenberger, L.; Savran, D.; Glorius, J.; Lindenberg, K.; Löher, B.; Pietralla, N.; Sonnabend, K.

    2014-01-01

    A new setup for the characterization of γ-ray detectors has been installed at the NEPTUN photon tagger facility of TU Darmstadt. The tagging technique used at NEPTUN provides a quasi monoenergetic photon source up to about 20 MeV by selecting single γ-ray energies within a bremsstrahlung spectrum. The energy is freely selectable by changing the tagging condition. The detector response function (DRF) of γ-ray detectors for quasi monoenergetic incident photons can be measured. This allows to investigate DRFs of various photon detectors as a function of the incident γ-ray energy. Simulations of DRFs that are intensively used in the analysis of nuclear physics experiments can be tested and compared to experimental data. The experimental setup is presented and the measurement of the DRF of a large volume high-purity Germanium detector is described as an example.

  12. Characterization of γ-ray detectors using the photon tagger NEPTUN for energies up to 20 MeV

    Schnorrenberger, L., E-mail: schnorrenberger@ikp.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Savran, D. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Glorius, J. [Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Lindenberg, K. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Löher, B. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Sonnabend, K. [Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2014-01-21

    A new setup for the characterization of γ-ray detectors has been installed at the NEPTUN photon tagger facility of TU Darmstadt. The tagging technique used at NEPTUN provides a quasi monoenergetic photon source up to about 20 MeV by selecting single γ-ray energies within a bremsstrahlung spectrum. The energy is freely selectable by changing the tagging condition. The detector response function (DRF) of γ-ray detectors for quasi monoenergetic incident photons can be measured. This allows to investigate DRFs of various photon detectors as a function of the incident γ-ray energy. Simulations of DRFs that are intensively used in the analysis of nuclear physics experiments can be tested and compared to experimental data. The experimental setup is presented and the measurement of the DRF of a large volume high-purity Germanium detector is described as an example.

  13. FLUKA and PENELOPE simulations of 10 keV to 10 MeV photons in LYSO and soft tissue

    Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or over-estimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 keV sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemented to account for the momentum of shell electrons. - Highlights: • Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. • 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. • The pulse height spectra, depth doses central-axis as well as off-axis were found to agree within statistical uncertainty; no systematic difference was observed

  14. Attenuation analysis of neutrons and photons generated by 52-MeV protons transmitted through shielding materials

    Attenuation of neutrons and photons transmitted through grahite, iron, water and ordinary concrete assemblies were studied using gold foils for thermal neutron and an NE-213 organic scintillation detector with an (n-γ) discrimination technique for spectral measurements. Source neutrons and photons were produced by 52-MeV proton bombardment of a 21.4-mm-thick graphite target placed in front of the assembly. The distributions of the light output from the scintillator were unfolded by the revised FERDO code. These experimental results were used as benchmark data on neutron and photon penetration by neutrons energy above 15MeV. Multigroup Monte Carlo, one-dimensional ANISN and two-dimensional DOT-3.5 transport calculations were performed with the DLC-58/HELLO group cross sections to compare with the measurement and to evaluate the cross sections. The DOT code was also used for the estimation of room-scattered neutron and photon contribution to the measured spectra. The results of the ANISN calculation of neutrons and the three-dimensional Monte Carlo calculation agreed with the experimental values except for high energy neutrons transmitted through water and graphite. The agreement of both calculations was well within the accuracy of 7% in the measured attenuation coefficients. For photons, the ANISN calculation gave >20% overestimation of the attenuation coefficients in the case of deep penetration through the medium for which the photon mean-free-path is shorter than that of neutrons, such as in iron and concrete. The result of the DOT calculation of neutrons down to thermal energy agreed well with the gold foil measurement in the absolute value. (author)

  15. Characterization of radiation damage caused by 23 MeV protons in Multi-Pixel Photon Counter (MPPC)

    Li, Zhengwei; Xu, Yupeng; Liu, Congzhan; Gu, Yudong; Xie, Fei; Li, Yanguo; Hu, Hongliang; Zhou, Xu; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Zhang, Juan; Xu, Zhenling; Zhang, Yifei; Zhao, Jianling

    2016-06-01

    A automatic gain control system (AGC) is designed to continuously monitor and automatically control the gain of the phoswich detectors onboard the Hard X-ray Modulation Telescope (HXMT). It consists of a Am241 radioactive source and a photo-detector. The Am241 radioactive source is tagged within a plastic scintillator (BC440M). The scintillating photons produced by the decayed alpha particles from the radioactive source is readout by the photo-detector. The Multi-Pixel Photon Counter (MPPC) produced by Hamamatsu is used as the photo-detector for AGC. To verify the feasibility of its application in space environment, four MPPCs (S10362-33-050C) were irradiated by a beam of 23 MeV protons. The integrated proton fluence that exposed to the four MPPC samples are 1.0 ×108 p cm-2 , 2.0 ×108 p cm-2 , 4.0 ×108 p cm-2 and 1.0 ×1010 p cm-2 respectively. It is found that the increment leakage current of the MPPC samples caused by irradiation damage increase linearly with the integrated fluence. The pulse-height resolution of the MPPC has deteriorated hardly after irradiation. When irradiated up to 1.1 ×109cm-2 1 MeV equivalent neutrons, the MPPC completely lost its photon-counting capability but could still work as a photo-detector for AGC. The MPPC fails as a photo-detector for the AGC when the irradiated 1 MeV neutron equivalent fluences is up to 2.7 ×1010cm-2 .

  16. Quasifree Eta photoproduction on the proton and neutron of deuterium at photon energies up to 1150 MeV

    The present thesis describes the performance of the measurement of the quasi-free eta photoproduction on the neutron and on the proton of the deuterium for photon energies from the eta production threshold up to 1150 MeV. The ratio of the cross sections on the neutron to the cross sections on the proton could be determined to σn/σp=0.728±0.033. From this the isoscalar production amplitude, renormalized to the production amplitude on the proton, could be calculated with a value of 0.07±0.01

  17. Development of a vector and tensor polarized deuteron target and measurement of the target asymmetry in the photon-deuteron fission at 450 MeV and 650 MeV photon energy

    High vector- and tensor polarization was achieved with the newly-developed target material deuterated ammonia (ND3). For the dynamic nuclear polarization (DNP) the material was prepared by irradiation under liquid argon at 90 K with electrons of the Bonn 20 MeV injection Linac. At a magnetic field of 2.5 T and a temperature of 0.2 K we yielded a vector polarization of 0.44. The highest value 0.49 was obtained at 3.5 T after further 'in situ' irradiation during the measurement of spin observables of the deuteron. The corresponding values for the tensor polarization are 0.15 and 0.19. In addition, a method to enhance tensor polarization is introduced. This method bases on the saturation of RF-transitions in the deuteron spin system. The applicance to distinct deuteron spin-flip transitions in a single crystal is very effective. This has been demonstrated with promising results. At the Bonn 2.5 GeV Electron Synchrotron we have measured two angular distributions of the target asymmetry of the reaction γ + d↑ → p + n at photon energies of 450 MeV and 650 MeV and at proton-cm-angles between 250 and 1550. For one kinematical setting also the tensor asymmetry was measured. Proton and neutron were detected in coincidence. Our results are compared with recent analyses. (orig.)

  18. Application of the photon-fluence scaling theorem to absorbed dose calorimetry for bremsstrahlung peak energy >1.02 MeV

    Application of the 'photon fluence scaling theorem' allows the ionization chamber to be placed at points in media where the photon fluence is the same, hence eliminating problems with energy response. The theorem is applicable to Compton scattered photons. For photon energies greater than 1.02 MeV, pair production alters the photon fluence in such a way as to invalidate the scaling theorem. In this report the effect of pair production is examined, so that a correction may be applied to the photon fluence scaling theorem. This correction extends application of the theorem for bremsstrahlung spectra up to at least 25 MeV peak energy. 10 refs., 4 tabs., 1 fig

  19. FLUKA and PENELOPE simulations of 10keV to 10MeV photons in LYSO and soft tissue

    Chin, M P W; Fassò, A; Ferrari, A; Ortega, P G; Sala, P R

    2014-01-01

    Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 key to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or overestimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5\\%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 key sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemen...

  20. The response of the new hypersensitive thermoluminescence materials to high energy photons (0.6-6.0 MeV)

    The energy dependence of two types of LiF:Mg,Cu,P (GR-200A from China, MCP-N from Poland) and one type of α-Al2O3:C from Russia has been studied in the range 0.6-6.0 MeV. For completion, standard LiF:Mg,Ti (TLD-100 from USA) was also tested with the same methods. All the irradiations were carried out in Metrological Facilities in Spain (CIEMAT) and Germany (PTB). A build-up experiment was performed using different thicknesses of PMMA placed at the front and back of detectors. Corrections from photon attenuation, build-up factor and dose enhancement have been calculated and compared for further discussion. The results for the hypersensitive phosphors show an agreement within 5% when the 6-7 MeV photon response is compared with the standard 137Cs calibration, while an under-response of 10% is observed for TLD-100. (author)

  1. Study of radiation damage caused by 23MeV protons on Multi-Pixel Photon Counter (MPPC)

    The automatic gain control system (AGC) is designed to continuously monitor and automatically control the gain of the phoswich detectors of the Hard X-ray Modulation Telescope (HXMT). It consists of a 241Am radioactive source distributed within a plastic scintillator (BC408) viewed by Multi-Pixel Photon Counter (MPPC). To verify the feasibility of application in space experiments, four MPPCs (S10362-33-050C) from Hamamatsu were irradiated using a beam of 23MeV protons with flux 1.0×108pcm-2, 2.0×108pcm-2, 4.0×108pcm-2 and 1.0×1010pcm-2. The leakage current of irradiated MPPC samples is found to increase linearly with total dose due to radiation damage. The device has completely lost its photon-counting capability when irradiated up to 13.6Gy. The pulse-height resolution has deteriorated hardly after irradiation and couldn't work with more than 450Gy, where the measured sample has been illuminated with a few hundred photons by the 241Am radioactive source. (author)

  2. MeV- and Sub-MeV-photon Sources Based on Compton Backscattering at Spring-8 and KPSI-JAEA

    K.Kawase; M.Kando; T.Hayakawa; I.Daito; S.Kondo; T.Homma; T.Kameshima; H.Kotaki; L.Chen; Y.Fukuda; A.Faenov; Shizuma; S.V.Bulanov; T.Kimura; T.Tajima; M.Shoji; S.Suzuki; K.Tamura; H.Ohkuma; Y.Arimoto; T.Yorita; M.Fujiwara; S.Okajima

    2009-01-01

    Recently we have constructed two facilities for generating photon beams in the MeV and sub-MeV energy regions by means of the Compton backscattering with a laser and an electron beam at SPring-8 and at Kansai Photon Science Institute of Japan Atomic Energy Agency(KPSIJAEA).The MeV-photon source at SPring-8 consists of a continuous-wave optically-pumped far infrared laser with a wavelength of 118.8 μm and an 8 GeV stored electron beam.Present MeV-photon flux is estimated to be 1.3×10~3 photons/s.On the other hand,the sub-MeV-photon source at KPSI-JAEA consists of a pulse Nd:YAG laser with a wavelength of 1 064 nm and a 150 MeV electron beam accelerated by microtron.In the first trial of the photon production in this source,backscattered photon flux is estimated to be 20 photons/pulse.Both the Compton backscattered photon sources have possibilities to be used for new tools in various fields such as nuclear physics,materials science,and astronomy.

  3. Fissility of Bi, Pb, Au, Pt, W, Ta, V, and Ti nuclei measured with 100 MeV compton back-scattered photons

    Photofission cross sections of 209 Bi, nat Pb, 197 Au, nat Pt, nat W, 181 Ta, 51 V, and nat Ti nuclei have been measured at an incident photon energy of 100 MeV using monochromatic photons produced by Compton backscattering at the ROKK-1M facility (BINP, Novosibirsk). Detection of fission fragments has been performed by means of Makrofol track-etch detectors in close contact with metallic foils of the target elements. The values of fissility at 100 MeV deduced for the targets under investigation are found to range between 10-4 and 10-2. The present results show consistency with the fissility trends calculated for 69- and 600-MeV monoenergetic photons using a formalism based on the current two-step model for intermediate-energy photofission reactions. (author). 39 refs., 4 figs., 3 tabs

  4. Dilepton and double-photon production in proton-proton scattering at 190 MeV

    Caplar, R.; Bacelar, J.C.S; Castelijns, R.J.J.; Ermisch, K.; Gasparic, I.; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Löhner, H.; Mahjour Shafiei, M.

    2004-01-01

    The first high-statistics measurement of dilepton and double-photon yields in proton-proton scattering below the pion threshold has been performed. The data obtained allow a detailed study of off-shell effects in the proton-proton interaction.

  5. Astronomical telescope for photons-gamma rays of low energy (approximately 4 MeV using the difference method like a Venetian blind

    de Aguiar, O. D.; Martin, I. M.

    1980-07-01

    A description of a gamma ray telescope, which is sensitive to photons in the energy range of 3 - 10 MeV is presented. Collimation was provided by a passive shield which functioned somewhat like a 'venetian blind' to block the signal from one of the detectors. Signal subtraction techniques were used to obtain the desired information.

  6. The thermoluminescence characteristics and the glow curves of Thulium doped silica fiber exposed to 10 MV photon and 21 MeV electron radiation

    The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21 MeV electrons and 10 MV photons. The CFs were irradiated in the dose range of 0.2–10 Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21 MeV electrons than to 10 MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21 MeV electrons and 10 MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21 MeV) caused a shift of glow peak by 7–13 °C to the higher temperature region compared with photons radiation (10 MV). Our Tm-doped fibers seem to give high TL response after 21 MeV electrons, which gives around 2 times higher peak integral as compared with 10 MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF. - Highlights: • A sub-linear response of Tm doped silica CF was measured at dose range of 0.2–10 Gy. • The TL sensitivity of Tm doped silica CF is 2 times higher as compared to pure silica CF. • Tm-doped silica CF glow curve consists of 5 individual glow peaks. • The glow peak area and peak height of Tm-doped silica CF are highly dependent on dose. • The kinetics parameters are highly dependent on dose

  7. Charged particle equilibrium corrections for photon sources from 400 keV to 1.4 MeV

    Vasudevan, Latha

    Lack of charged particle equilibrium (CPE) has practical importance in radiological health protection, in nuclear medicine, and radiobiology where small radioactive point sources irradiate the human body accidentally or may be introduced into the body for diagnostic, therapeutic, or analytical purposes. The absorbed dose under CPE is readily calculated from knowledge of the photon energy fluence and mass-absorption coefficient of the material. When estimating absorbed dose rates at points close to the source, the primary radiation field varies appreciably over the region within the range of secondary particles. Under such conditions, CPE does not exist and prediction of absorbed dose becomes difficult. However, if one applies correction factors for non-CPE conditions, absorbed dose rates can be calculated fairly easily. In this dissertation, a CPE model was developed for non-CPE conditions to predict the fraction of charged particle equilibrium (GammaCPE) attained in a water medium for point sources of energies in the range from 400 keV to 1.4 MeV using EGS4-DOSRZ Monte Carlo calculation. A new methodology to calculate absorbed dose and kerma along the central axis of the cylindrical phantom was presented and the results were found to be in excellent agreement with published values. In order to corroborate with the EGS4-DOSRZ calculation, another model based on the Klein-Nishina single scattering cross section was developed to quantify the GammaCPE attained in water for point sources. A CPE path length coefficient (mu cm-1) was found for each photon energy and compared with published values. This coefficient was used to determine dose rates averaged over 1 cm2 at depths that are of interest in skin dose exposures. Experimental measurements of CPE were carried out for a Co-60 point source using GAFCHROMICRTM MD-55 film (1990) as the dosimetry media. The films were read using a document scanner. Dose rates obtained using the scanner method were compared with those

  8. Quasifree Eta photoproduction on the proton and neutron of deuterium at photon energies up to 1150 MeV; Quasifreie Eta-Photoproduktion am Proton und Neutron des Deuteriums bei Photonenergien bis 1150 MeV

    Krebeck, M.

    1995-12-31

    The present thesis describes the performance of the measurement of the quasi-free eta photoproduction on the neutron and on the proton of the deuterium for photon energies from the eta production threshold up to 1150 MeV. The ratio of the cross sections on the neutron to the cross sections on the proton could be determined to {sigma}{sub n}/{sigma}{sub p}=0.728{+-}0.033. From this the isoscalar production amplitude, renormalized to the production amplitude on the proton, could be calculated with a value of 0.07{+-}0.01.

  9. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  10. Measurement of the differential cross sections of the reaction γ+p → π++n at mean production angles and photon energies from 735 to 2005 MeV and parametrization of the c.m. angular distributions in the energy range from 300 to 1985 MeV

    In this experiment the differential cross sections of the reaction γp → π+n in the photon energy interval from 735 MeV to 2005 MeV under the pion laboratory angle of 330 and 60.80 were measured. (orig./HSI)

  11. Estimation of effective atomic numbers of some solutions for photon energy absorption in the energy region 0.2-1.5 MeV: An alternative method

    Kurudirek, Murat

    2011-12-01

    The effective atomic numbers (ZPEAeff), which are used to describe the composite materials in terms of equivalent elements, have been estimated in some solutions for photon energy absorption in the energy region 0.2-1.5 MeV. Since the mass energy absorption (μen/ρ) and mass attenuation coefficients (μ/ρ) remain more or less the same for any given material in the photon energy region 0.2-1.5 MeV where Compton scattering is the main dominant photon interaction process, semi-empirical relations including both μen/ρ and μ/ρ have been constituted as a function of energy. These parameters were then used to obtain ZPEAeff with the help of a Z-wise interpolation procedure. The results were compared with the experimental as well as other theoretical estimations wherever possible. Consequently, the present method is found to be readily applicable to the given solutions in order to estimate accurate values of ZPEAeff for which it is not possible to directly obtain experimentally using the conventional gamma spectrometry system.

  12. Estimation of effective atomic numbers of some solutions for photon energy absorption in the energy region 0.2-1.5 MeV: An alternative method

    The effective atomic numbers (ZPEAeff), which are used to describe the composite materials in terms of equivalent elements, have been estimated in some solutions for photon energy absorption in the energy region 0.2-1.5 MeV. Since the mass energy absorption (μen/ρ) and mass attenuation coefficients (μ/ρ) remain more or less the same for any given material in the photon energy region 0.2-1.5 MeV where Compton scattering is the main dominant photon interaction process, semi-empirical relations including both μen/ρ and μ/ρ have been constituted as a function of energy. These parameters were then used to obtain ZPEAeff with the help of a Z-wise interpolation procedure. The results were compared with the experimental as well as other theoretical estimations wherever possible. Consequently, the present method is found to be readily applicable to the given solutions in order to estimate accurate values of ZPEAeff for which it is not possible to directly obtain experimentally using the conventional gamma spectrometry system.

  13. Photon activation analysis of the scraper in a 200-MeV electron accelerator using gamma-spectrometry depth profiling

    Lijuan, He; Guobing, Yu; Guangyi, Ren; Zongjin, Duan

    2014-01-01

    For a high energy electron facility, the estimates of induced radioactivity in materials are of major importance to keep exposure to personnel and to the environment as low as reasonably achievable. In addition, an accurate prediction of induced radioactivity is also essential for the design, operation and decommissioning of a high energy electron linear accelerator. The research of induced radioactivity focuses on the photonuclear reaction, whose giant resonance response in the copper is ranging from 10 MeV to 28 MeV. The 200 MeV electron linac of NSRL is one of the earliest high-energy electron linear accelerators in P. R. China. The electrons are accelerated to 200 MeV by five acceleration tubes and collimated by the scrapers made of copper. At present, it is the first retired high-energy electron linear accelerator in domestic. Its decommissioning provides an efficient way for the induced radioactivity research of such accelerators, and is a matter of great significance to the accumulation of the induced ...

  14. Photon asymmetry measurements of $\\overrightarrow{\\gamma} \\mathrm{p} \\rightarrow \\pi^{0} \\mathrm{p}$ for E$_{\\gamma}$=320$-$650 MeV

    Gardner, S; Sikora, M H; Wunderlich, Y; Abt, S; Achenbach, P; Afzal, F; Aguar-Bartolome, P; Ahmed, Z; Annand, J R M; Arends, H J; Bantawa, K; Bashkanov, M; Beck, R; Biroth, M; Borisov, N S; Braghieri, A; Briscoe, W J; Cherepnya, S; Cividini, F; Costanza, S; Collicott, C; Demissie, B T; Denig, A; Dieterle, M; Downie, E J; Drexler, P; Ferretti-Bondy, M I; Filkov, L V; Glazier, D I; Garni, S; Gradl, W; Günther, M; Gurevich, G M; Hamilton, D; Heid, E; Hornidge, D; Huber, G M; Jahn, O; Jude, T C; Käser, A; Kay, S; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Linturi, J M; Lisin, V; Livingston, K; Lutterer, S; MacGregor, I J D; Macrae, R; Mancell, J; Manley, D M; Martel, P P; McGeorge, J C; McNicoll, E F; Middleton, D G; Miskimen, R; Mullen, C; Mushkarenkov, A; Neganov, A B; Neiser, A; Nikolaev, A; Oberle, M; Ostrick, M; Owens, R O; Otte, P B; Oussena, B; Paudyal, D; Pedroni, P; Polonski, A; Prakhov, S; Rajabi, A; Robinson, J; Rosner, G; Rostomyan, T; Sarty, A; Schumann, S; Sokhoyan, V; Spieker, K; Steffen, O; Sfienti, C; Strakovsky, I I; Strandberg, B; Strub, Th; Supek, I; Tarbert, C M; Thiel, A; Thiel, M; Thomas, A; Unverzagt, M; Usov, Yu A; Watts, D P; Werthmüller, D; Wettig, J; Wolfes, M; Witthauer, L; Zana, L

    2016-01-01

    High statistics measurements of the photon asymmetry $\\mathrm{\\Sigma}$ for the $\\overrightarrow{\\gamma}$p$\\rightarrow\\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\\check{\\mathrm{\\Sigma}}$ (= $\\sigma_{0}\\mathrm{\\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.

  15. Measurement of proton polarization in the deuteron photodisintegration reaction on the linearly polarized photon beam in the energy range Eγ=290-420 MeV at angle Θpx=65 deg cms

    The results of measurement of proton polarization in the reaction plane (Pxz) and in the plane (Py) perpendicular to it, in the deuteron photodisintegration reaction in the photon energy range from 290 MeV to 420 MeV at proton escape angle in cms Θpx=65 deg, are presented. The results are compared with the predictions of theoretical calculations of the gradient-invariant model with account of dibaryon resonances. 6 refs.; 2 figs.; 1 tab

  16. Ionization chamber with build-up cup spectral sensitivity to megavoltage (0.5-20 MeV) photon fluences in free air

    In-air measurements of photon beam properties, used in radiation therapy, is common practice for determining radiation output dependence from the field size, known as head scatter factors (HSF). PMMA and brass build-up caps are most popular miniphantoms for providing electron equilibrium. Discrepancies up to 2% in HSF measurements by different combinations of detectors and equilibrium caps have been published. One of the main reasons of those discrepancies is the detector system spectral sensitivity and differences in primary and scatter radiation spectra. In the light of new model based dose calculation methods direct radiation fluence measurement is of great interest. So, understanding of detector spectral sensitivity is important task for modern dosimetry of radiation therapy. In the present study Monte Carlo (MC) method was employed to calculate ionization chamber response to monoenergetic photon fluences, normalized to water kerma units. Simulation was done using EGS4 package. Electron transport was performed with ESTEPE equal to 4%. PEGS cross sections were generated for maximal energy 20 MeV with cutoff kinetic energy 10 KeV both for photons and electrons. Scanditronix RK-05 ionization chamber was chosen as a prototype. Eight cylindrical miniphantoms, representing four materials (PMMA, Al, Cu, Pb) and two front wall thickness, were simulated. Results are presented. Miniphantom front wall thicknesses in each case are shown in the figure. Diameter depends on the material and equal respectively: PMMA - 4, Al - 2.5, Cu - 1.5, and PB - 1.5 cm. Ionization chamber outer diameter is equal to 0.7 cm. Detector sensitivity has considerable energy dependence. Two effects explain it. First is the radiation attenuation in the miniphantom. Second is pair production, which dominates in high atomic number miniphantoms for energies above 5 MeV. Depending on the miniphantom material detector response changes from 1.5 to 5 times in the energy range from 0.5 to 20 MeV. Correct

  17. Determination of fission product yields in the 14 MeV photon (Bremsstrahlung) induced fission of 232Th

    The cumulative yields of various fission products in the 232Th(γ,f) with end-point Bremsstrahlung energy of 14 MeV having have been determined using off-line γ-ray spectrometric technique. The end-point Bremsstrahlung energy of 14 MeV was generated by impinging the electron beam on a solid graphite beam dump of the 20 electron LINAC (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany. From the cumulative fission yields, the mass chain yields were obtained by using charge distribution correction of medium energy. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect such as shell closure proximity and even-odd effect. The mass yield distribution in 232Th(γ,f) is triple humped unlike 238U(γ,f), where it is double humped. This different behaviour in between 232Th* and 238U* was explained from the point of different potential energy surfaces between two systems. (author)

  18. Photon-induced multiple particle emissions of 90Zr and natZr from 10 to 140 MeV

    A comprehensive analysis of electrodisintegration yields of protons on 90Zr is proposed taking into account the giant dipole resonance, isovector giant quadrupole resonance (IVGQR), and quasideuteron contributions to the total photoabsorption cross section from 10 to 140 MeV. The calculation applies the MCMC intranuclear cascade to address the direct and pre-equilibrium emissions and another Monte Carlo-based algorithm to describe the evaporation step. The final results of the total photoabsorption cross section for 90Zr and relevant decay channels are obtained by fitting the (e,p) measurements from the National Bureau of Standards and show that multiple proton emissions dominate the photonuclear reactions at higher energies. These results provide a consistent explanation for the exotic and steady increase of the (e,p) yield and also a strong evidence of a IVGQR with a strength parameter compatible with the E2 energy-weighted sum rule. The inclusive photoneutron cross sections for 90Zr and natZr, derived from these results and normalized with the (e,p) data, are in agreement within 10% with both Livermore and Saclay data up to 140 MeV

  19. Neutron interrogation of actinides with a 17 MeV electron accelerator and first results from photon and neutron interrogation non-simultaneous measurements combination

    Sari, A., E-mail: adrien.sari@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Carrel, F.; Lainé, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Lyoussi, A. [CEA, DEN, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2013-10-01

    In this article, we demonstrate the feasibility of neutron interrogation using the conversion target of a 17 MeV linear electron accelerator as a neutron generator. Signals from prompt neutrons, delayed neutrons, and delayed gamma-rays, emitted by both uranium and plutonium samples were analyzed. First results from photon and neutron interrogation non-simultaneous measurements combination are also reported in this paper. Feasibility of this technique is shown in the frame of the measurement of uranium enrichment. The latter was carried out by combining detection of prompt neutrons from thermal fission and delayed neutrons from photofission, and by combining delayed gamma-rays from thermal fission and delayed gamma-rays from photofission.

  20. Experimental measurement of the photon efficiency of a 4 mm thick NE 102 A scintillator for 14 MeV neutrons

    The purpose of this experiment is to determine the photon efficiency of a 4 mm thick NE 102 A neutron pinhole imaging system. Neutrons are produced by 1.5 MeV deuterons (accelerated in a VAN DE GRAAFF accelerator located at C.E.A.-Centre d'Etudes de Bruyeres le Chatel) interacting on a gaseous tritium target. A numerical calculation enables to estimate the energy deposition from a neutron in the scintillator. The photoconversion efficiency of the NE 102 A scintillator is determined. In order to confirm the results obtained with the neutrons, a complementary experiment has been made on the NE 102 A scintillator with a 10000 curies Co60 gamma source. The values obtained for the photoconversion efficiency are respectively (4.23 +- 0.42)% for neutrons and (4.16 +- 0.42)% for gamma

  1. Air kerma to personal dose equivalent conversion factors for ICRU and ISO recommended slab phantoms for photons from 20 keV to 1 MeV

    The present report summarizes the studies carried out at ENEA-AMB-PRO-IRP (Institute for Radiation Protection) that were addressed to the determination of air kerma to personal dose equivalent conversion coefficients for two practical phantoms as proposed by ICRU (International Commission for Radiation Units and Measurements) and by ISO (International Standard Organization) for photon personal dosimeters' calibration procedure. The analyses, developed using the MCNP Monte Carlo code, were mainly aimed at establishing which of the two proposed phantoms better approximates the ICRU theoretical one. Furthermore a complete tabulation of the conversion coefficients is supplied for monoenergetic photon beams from 20 keV to 1 MeV as well as for the two ISO X-ray reference series Wide Spectrum and Narrow Spectrum. The study has been performed in the framework of the CEC Contract F13P-CT92-0064 'The Measurement of the Spectral and Angular Distribution of External Radiations in Workplace and Implications for Personal Dosimetry

  2. Comprehensive study on energy absorption buildup factors and exposure buildup factors for photon energy 0.015 to 15 MeV up to 40 mfp penetration depth for gel dosimeters

    The gel dosimeter comprises of phantom, dosimetric material and three-D spatial dose distribution has advantages over one- and two-D dosimeters. Energy absorption buildup factor (EABF) and exposure buildup factor (EBF) values of sixteen gel dosimeters have been computed for photon energy 0.015 to 15 MeV up to 40 mfp (mean free path) penetration depths. Kerma of the gel dosimeters were computed for photon energy 1 keV to 20 MeV. The water and PMMA phantom equivalence of the gel dosimeters was evaluated using EABF, and large difference was noted below 1 MeV photon energy. This study should be useful for estimation of effective dose to the human organs and simulation of the dose for radiation therapy and various medical applications. - Highlights: • EABF and EBF values of 16 gel dosimeters were computed using GP fitting method. • Water and PMMA equivalence was investigated using EABF. • Ratio of EABF of BANG1 to water and PMMA is close to unity above 1 MeV. • Photon kerma relative to air of PRESAGE shows a peak at 40 keV

  3. Mass attenuation and mass energy absorption coefficients for 10 keV to 10 MeV photons; Coefficients d'attenuation massique et d'absorption massique en energie pour les photons de 10 keV a 10 MeV

    Joffre, H.; Pages, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this report are given the elements allowing the definition of the values of mass attenuation coefficients and mass energy absorption coefficients for some elements and mixtures, necessary for the study of tissue equivalent materials, for photons in the energy range 10 keV to 10 MeV. After a short reminding of the definitions of the two coefficients, follows, in table form, a compilation of these coefficients, as a function of energy, for simple elements, for certain mineral compounds, organic compounds, gases and particularly of soft tissues. (author) [French] Dans ce rapport, sont donnes les elements permettant de determiner les valeurs des coefficients d'attenuation massique et d'absorption massique en energie pour certains elements et melanges necessaires a l'etude des materiaux equivalents aux tissus pour les photons dans le domaine d'energie allant de 10 keV a 10 MeV. Apres un bref rappel des definitions des deux coefficients, suit, sous forme de tableaux, un recueil de ces coefficients, en fonction de l'energie, pour les elements simples, certains composes mineraux, composes organiques, gaz, et, particulierement, pour les tissus mous. (auteur)

  4. Photonics

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  5. Photonics

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  6. Photonics

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  7. Photonics

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  8. Energy dependent response of the Fricke gel dosimeter prepared with 270 Bloom gelatine for photons in the energy range 13.93 keV-6 MeV

    Cavinato, C.C. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Campos, L.L., E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil)

    2010-07-21

    The spectrophotometric energy dependent response to photons with effective energies between 13.93 keV and 6 MeV of the Fricke xylenol gel (FXG) dosimeter developed at IPEN, prepared using 270 Bloom gelatine, was evaluated in order to verify the possible dosimeter application in other medicine areas in addition to radiosurgery, for example, breast radiotherapy and blood bags radiosterilization. Other dosimetric characteristics were also evaluated. The obtained results indicate that the FXG dosimeter can contribute to dosimetry in different medical application areas including magnetic resonance imaging (MRI) evaluation technique that permits three-dimensional (3D) dose distribution evaluation.

  9. Energy dependent response of the Fricke gel dosimeter prepared with 270 Bloom gelatine for photons in the energy range 13.93 keV-6 MeV

    The spectrophotometric energy dependent response to photons with effective energies between 13.93 keV and 6 MeV of the Fricke xylenol gel (FXG) dosimeter developed at IPEN, prepared using 270 Bloom gelatine, was evaluated in order to verify the possible dosimeter application in other medicine areas in addition to radiosurgery, for example, breast radiotherapy and blood bags radiosterilization. Other dosimetric characteristics were also evaluated. The obtained results indicate that the FXG dosimeter can contribute to dosimetry in different medical application areas including magnetic resonance imaging (MRI) evaluation technique that permits three-dimensional (3D) dose distribution evaluation.

  10. Gamma Cherenkov-transition radiation of high energy electrons and methods for the measurement of the refractive index of MeV photons using total internal and external reflections (Invited talk)

    It is given a review of the theoretical works showing that gamma ray Cherenkov-transition radiation (GCTR) is produced in some materials the refractive index of which in gamma region is greater than 1 according to the famous results of [1]. Since there are some published doubts [2] on the theoretical results of [1], and taking into account the difficulties of the experiment [1], in order to confirm or decline the results [1] it is proposed to study experimentally GCTR and an experimental method for the measurement of refractive index of MeV photons.

  11. Caractérisation et optimisation de sources d'électrons et de photons produites par laser dans les domaines du keV et du MeV

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and theoptimization of laser-driven electron and photon sources. With the goal of usingthese sources for nuclear physics experiments, we focused on 2 energy ranges:one around a few MeV and the other around a few tens of keV. The first partof this work is thus dedicated to the study of detectors routinely used forthe characterization of laser-driven particle sources: Imaging Plates. A modelhas been developed and is fitted to experi...

  12. Tables and graphs of photon-interaction cross sections from 0.1 keV to 100 MeV derived from the LLL evaluated-nuclear-data library

    Energy-dependent evaluated photon interaction cross sections and related parameters are presented for elements H through Cf(Z = 1 to 98). Data are given over the energy range from 0.1 keV to 100 MeV. The related parameters include form factors and average energy deposits per collision (with and without fluorescence). Fluorescence information is given for all atomic shells that can emit a photon with a kinetic energy of 0.1 keV or more. In addition, the following macroscopic properties are given: total mean free path and energy deposit per centimeter. This information is derived from the Livermore Evaluated-Nuclear-Data Library (ENDL) as of October 1978

  13. Study of radionuclides created by 181Ta(γ,xn yp) reactions for bremsstrahlung photons produced by 150-MeV electrons

    Ten radionuclides, including isomers, from 172Ta to 180Ta and 180mHf were produced by photon interactions with a sample of elemental tantalum and measured by counting photons using a high-resolution detection system. Relative yields of these radionuclides were obtained. In addition, precision half lives were obtained for 175,176,180Ta and 180mHf. Those obtained for the three Ta isotopes agree with previously reported values. For 180mHf, the present measurements resulted in a half life determination of 6.05±0.06 hr, or about 10% longer than the currently adopted value for this half life

  14. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—a benchmark setup for prompt gamma-ray imaging devices

    Golnik, C.; Bemmerer, D.; Enghardt, W.; Fiedler, F.; Hueso-González, F.; Pausch, G.; Römer, K.; Rohling, H.; Schöne, S.; Wagner, L.; Kormoll, T.

    2016-06-01

    The finite range of a proton beam in tissue opens new vistas for the delivery of a highly conformal dose distribution in radiotherapy. However, the actual particle range, and therefore the accurate dose deposition, is sensitive to the tissue composition in the proton path. Range uncertainties, resulting from limited knowledge of this tissue composition or positioning errors, are accounted for in the form of safety margins. Thus, the unverified particle range constrains the principle benefit of proton therapy. Detecting prompt γ-rays, a side product of proton-tissue interaction, aims at an on-line and non-invasive monitoring of the particle range, and therefore towards exploiting the potential of proton therapy. Compton imaging of the spatial prompt γ-ray emission is a promising measurement approach. Prompt γ-rays exhibit emission energies of several MeV. Hence, common radioactive sources cannot provide the energy range a prompt γ-ray imaging device must be designed for. In this work a benchmark measurement-setup for the production of a localized, monoenergetic 4.44 MeV γ-ray source is introduced. At the Tandetron accelerator at the HZDR, the proton-capture resonance reaction 15N(p,α γ4.439)12C is utilized. This reaction provides the same nuclear de-excitation (and γ-ray emission) occurrent as an intense prompt γ-ray line in proton therapy. The emission yield is quantitatively described. A two-stage Compton imaging device, dedicated for prompt γ-ray imaging, is tested at the setup exemplarily. Besides successful imaging tests, the detection efficiency of the prototype at 4.44 MeV is derived from the measured data. Combining this efficiency with the emission yield for prompt γ-rays, the number of valid Compton events, induced by γ-rays in the energy region around 4.44 MeV, is estimated for the prototype being implemented in a therapeutic treatment scenario. As a consequence, the detection efficiency turns out to be a key parameter for prompt

  15. First Measurements of Spin-Dependent Double-Differential Cross Sections and the GDH Integrand from \\vec{^3He}(\\vec{\\gamma},n)pp at Incident Photon Energies of 12.8 and 14.7 MeV

    Laskaris, G; Lalremruata, B; Ye, Q J; Ahmed, M W; Averett, T; Deltuva, A; Dutta, D; Fonseca, A C; Gao, H; Golak, J; Huang, M; Karwowski, H J; Mueller, J M; Myers, L S; Peng, C; Perdue, B A; Qian, X; Sauer, P U; Skibiński, R; Tompkins, S Stave J R; Weller, H R; Witała, H; Wu, Y K; Zhang, Y; Zheng, W

    2013-01-01

    The first measurement of the three-body photodisintegration of longitudinally-polarized ^3He with a circularly-polarized \\gamma-ray beam was carried out at the High Intensity \\gamma-ray Source (HI\\gamma S) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the ^3He GDH integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations.

  16. The S.C.I.C. detector: an unconventional design for the detection of low-energy (200-300)MeV photons

    The simulated performances of a non-homogeneous e.m. calorimeter based on a 5 X tracking section using CsI(Tl) fibres, followed by a 10 X0Pb-SCIFI head-on back section are reported. The study shows that such a technique is quite promising for the high-efficiency detection of photons in the energy range of interest at a φ-factory machine

  17. Fluence-to-effective dose conversion coefficients from a Saudi population based phantom for monoenergetic photon beams from 10 keV to 20 MeV

    Fluence-to-dose conversion coefficients are important quantities for radiation protection, derived from Monte Carlo simulations of the radiation particles through a stylised phantom or voxel based phantoms. The voxel phantoms have been developed for many ethnic groups for their accurate reflection of the anatomy. In this study, we used the Monte Carlo code MCNPX to calculate the photon fluence-to-effective dose conversion coefficients with a voxel phantom based on the Saudi Arabian male population. Six irradiation geometries, anterior–posterior (AP), posterior–anterior (PA), left lateral (LLAT), right lateral (RLAT), rotational (ROT) and isotropic (ISO) were simulated for monoenergetic photon beams from 10 keV to 20 MeV. We compared the coefficients with the reference values in ICRP Publication 116. The coefficients in the AP and PA geometries match the reference values to 9% and 12% on average as measured by root mean square while those in the LLAT, RLAT ROT and ISO geometries differ, mostly below, from the reference by 23, 22, 15 and 16%, respectively. The torso of the Saudi phantom is wider than the ICRP reference male phantom and likely to cause more attenuation to the lateral beam. The ICRP reference coefficients serve well for the Saudi male population as conservative estimations for the purpose of radiation protection. (paper)

  18. Design of the experimental apparatus to obtain a thermal neutron beam, intermediate-energy neutrons (2-144 keV) and high-energy photons (6 MeV) by means of the TRIGA reactor at the ENEA Casaccia center

    Laitano, R F

    1987-01-01

    Design of the experimental apparatus to obtain a thermal neutron beam, intermediate-energy neutrons (2-144 keV) and high-energy photons (6 MeV) by means of the TRIGA reactor at the ENEA Casaccia center

  19. High energy photon response

    This study examines the response of the Hanford 4-chip and 5-chip dosimeter to high energy photons. The dose response of the Hanford Multipurpose Personnel Diometer (HMPD) to photons with energies greater than 0.65 MeV has been evaluated relative to the dose produced by photons from a 60Co. source. The penetrating dose determined with the HMPD is compared to the 1 cm depth dose in tissue measured with an extrapolation chamber. The results of the study indicate that the HMPD can be used to estimate the 1 cm depth dose in tissue from photons with energies between 0.65 MeV and 3.0 MeV to within an accuracy of 15%. However, the 1 cm depth dose is underestimated by 38% when the dosimeter is irradiated in a beam of very high energy photons produced by bombarding a tungsten target with 25 MeV electrons

  20. Technical Note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV–18 MeV

    Purpose: Water is the reference medium for radiation therapy dosimetry, but for film dosimetry it is more practical to use a solid phantom. As the composition of solid phantoms differs from that of water, the energy dependence of film exposed within solid phantoms may also differ. The energy dependence of a radiochromic film for a given beam quality Q (energy for monoenergetic beams) has two components: the intrinsic energy dependence and the absorbed-dose energy dependence f(Q), the latter of which can be calculated through a Monte Carlo simulation of radiation transport. The authors used Monte Carlo simulations to study the influence of the phantom material on the f(Q) of the EBT3 radiochromic film (Ashland Specialty Ingredients, Wayne, NJ) for photon beams with energies between 3 keV and 18 MeV. Methods: All simulations were carried out with the general-purpose Monte Carlo code PENELOPE 2011. The geometrical model consisted of a cylindrical phantom, with the film positioned at different depths depending on the initial photon energy. The authors simulated monoenergetic parallel photon beams and x-ray beams from a superficial therapy system. To validate their choice of simulation parameters, they also calculated f(Q) for older film models, EBT and EBT2, comparing with published results. In addition to water, they calculated f(Q) of the EBT3 film for solid phantom materials commonly used for film dosimetry: RW1 and RW3 (PTW-Freiburg, Freiburg, Germany), Solid Water (Gammex-RMI, Madison, WI), and PMMA. Finally, they combined their calculated f(Q) with published overall energy response data to obtain the intrinsic energy dependence of the EBT3 film in water. Results: The calculated f(Q) for EBT and EBT2 films was statistically compatible with previously published data. Between 10 keV and 18 MeV, the variation found in f(Q) of the EBT3 film for water was within 2.3%, with a standard statistical uncertainty less than 1%. If the quantity dose-to-water in the phantom is

  1. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  2. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R. [Univ. of New Mexico, Albuquerque, NM (United States); Hong-Nian Jow [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  3. Performances of large BGO crystals below 20 MeV

    This paper presents the performances of large tapered BGO crystals to low energy photons of 6 to 20 MeV. The read-out of the crystals was made with large area photodiodes associated to shaping amplifiers

  4. Dosimetric comparison of 4 MeV and 6 MeV electron beams for total skin irradiation

    In this study, dosimetric aspects of TSEI consisting of a 4 MeV beam with no spoiler were investigated in comparison to a nominal 6 MeV beam with spoiler, and the potential for clinical applications was evaluated. The TSEI technique is based on the Stanford technique, which utilizes a beam configuration of six-dual fields. MOSFETs were used to measure the optimal gantry angle, profile uniformity, and absolute dose at the calibration point. The depth dose curve of the central axis was measured in the treatment plane using EBT2 film. Photon contamination was measured as the dose at 5 cm depth in a solid water phantom relative to the maximum dose using a parallel plate ion chamber. A MOSFET dosimeter placed on the surface of a humanoid phantom, and EBT2 films inserted into a humanoid phantom were used to verify the TSEI commissioning. Dosimetric aspects of the 4 MeV TSEI beam, such as profile uniformity (±10%) and relative photon contamination (<0.001%), were comparable to those of a 6 MeV TSEI beam. The relative depth dose of the 4 MeV electrons was 81.4% at the surface and 100% at 0.4 cm. For the 6 MeV electrons, the relative depth dose was 93.4% at the surface and 100% from 0.2 cm to 0.4 cm. The calculated B-factor of the 4 MeV TSEI beam was 1.55, and 1.53 for the 6 MeV TSEI. 80% of the prescribed dose was obtained at 0.22 cm depth for the 4 MeV TSEI beam and 0.53 cm for the 6 MeV TSEI beam in the humanoid phantom measurement. The suggested 4 MeV beam for TSEI could be applied to shallow depth skin diseases and to electron boost as second treatment course

  5. Measurement by film dosimetry and calculation of energy dose distributions for electron and photon irradiation of 42 MeV using the Alderson phantom for planning of pendulum irradiation of the mediastinum in the treatment of peripheral bronchial carcinomas

    The energy dose distribution in an Alderson phantom applying a radiation energy of 42 MeV has been determined by film dosimetry and computation; the results have been compared in order to verify both methods and to improve the irradiation of bronchial carcinoma by achieving the best possible protection of healthy tissue and of the spinal cord. The comparative evaluations have shown that there is a good agreement between the calculated results and those measured by film dosimetry. (orig.)

  6. Neutron doses in an 8 MeV linear accelerator and an 18 MeV betatron

    Using uranium fission track dosimeters, dose distributions of neutrons produced by photonuclear reaction in the shielding material were measured near an 8 MeV linear accelerator and an 18 MeV betatron. Dose equivalents, as a function of bremsstrahlung doses in the central beam, are given for different points outside the irradiation field, in particular at the location of the patient. The neutron production was determined as a function of photon energy between 8 and 18 MeV and compared with literature values. (orig./HP)

  7. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    The recoil proton polarization of the reaction γp → π0p were measured at a C.M. angle of 1000 for incident photon energies between 451 and 1106 MeV, and at an angle of 1300 for energies from 400 MeV to 1142 MeV. One photon decayed from a π0-meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A3 can be estimated to be small at 1000. (author)

  8. Two body photodisintegration of the deuteron from 100 to 800 MeV

    The total and the differential cross sections for the D(γ,p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author)

  9. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table

  10. The low-energy photon tagger NEPTUN

    Savran, D., E-mail: savran@ikp.tu-darmstadt.d [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Lindenberg, K.; Glorius, J.; Loeher, B.; Mueller, S.; Pietralla, N.; Schnorrenberger, L.; Simon, V.; Sonnabend, K.; Waelzlein, C. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Elvers, M.; Endres, J.; Hasper, J.; Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany)

    2010-02-01

    A new photon tagging spectrometer was built at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The system is designed for tagging photons in an energy range from 6 to 20 MeV with the emphasis on best possible energy resolution and intensity. The absolute energy resolution of photons at 10 MeV is expected to be about 20 keV. With scintillating fibres as focal-plane detectors a maximum rate of tagged photons of 10{sup 4} keV{sup -1}s{sup -1} will be achieved. Detailed design studies including Monte Carlo simulations are presented, as well as results for the measured tagged photon energy profile of the system realized so far. This photon-tagging facility will allow to determine the photon absorption cross-sections as a function of excitation energy and to study the decay patterns of nuclear photo-excitations in great detail.

  11. The low-energy photon tagger NEPTUN

    Savran, D.; Lindenberg, K.; Glorius, J.; Löher, B.; Müller, S.; Pietralla, N.; Schnorrenberger, L.; Simon, V.; Sonnabend, K.; Wälzlein, C.; Elvers, M.; Endres, J.; Hasper, J.; Zilges, A.

    2010-02-01

    A new photon tagging spectrometer was built at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The system is designed for tagging photons in an energy range from 6 to 20 MeV with the emphasis on best possible energy resolution and intensity. The absolute energy resolution of photons at 10 MeV is expected to be about 20 keV. With scintillating fibres as focal-plane detectors a maximum rate of tagged photons of 104 keV -1s -1 will be achieved. Detailed design studies including Monte Carlo simulations are presented, as well as results for the measured tagged photon energy profile of the system realized so far. This photon-tagging facility will allow to determine the photon absorption cross-sections as a function of excitation energy and to study the decay patterns of nuclear photo-excitations in great detail.

  12. Workplace photon radiation fields

    The knowledge of workplace radiation fields is essential for measures in radiation protection. Information about the energy and directional distribution of the incident photon radiation was obtained by several devices developed by the National Radiation Protection Board, United Kingdom, by the Statens Stralskyddsinstitut, Sweden, together with EURADOS and by the Physikalisch-Technische Bundesanstalt, Germany. The devices are described and some results obtained at workplaces in nuclear industry, medicine and science in the photon energy range from 20 keV to 7 MeV are given. (author)

  13. Nuclear Resonance Fluorescence from Uranium above 2 MeV

    Kwan, E.; Howell, C. R.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Adekola, A.; Hammond, S. L.; Karwowski, H. J.; Tompkins, J. R.; Huibregtse, C.; Kelley, J. H.; Johnson, B.

    2009-10-01

    The detection of special nuclear materials is critical to the nation's efforts to counter serious threat from nuclear terrorist attacks. A research program has been initiated at TUNL to address the need for new nuclear data on the actinides using the High-Intensity Gamma-Ray Source (HIγS). The high-intensity nearly monoenergic and 100% polarized γ-ray beams from HγS were utilized to search for dipole states in ^235U and ^238U above 2 MeV. This information is necessary for developing technologies using Nuclear-Resonance Fluorescence (NRF) to nonintrusively scan cargo for specific nuclei. The existence of strong nuclear dipole transitions in the actinides above 2 MeV is important for nuclear forensics, because interrogation photons using NRF are the most penetrating at these energies. Results from our experiments at Eγ> 2.0 MeV on uranium will be presented.

  14. PHOTON-PHOTON COLLISIONS

    Burke, D.

    1982-01-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic eγ scattering. Considerable work has now been accumulated on resonance production by γγ collisions. Preliminary high statistics studies of the photon structure function Fγ2(x,Q2) are given and comments are made on the problems that remain to be solved.

  15. Photon-photon colliders

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  16. Photon-photon colliders

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  17. Electret dosemeter response to electrons with energy of 3 Mev, 7 Mev, 11 Mev

    The preliminary results obtained when electret ionization chambers are irradiated with electron of 3, 7, 11 Mev, from 12 mevatron accelerators using a external cop of polyethylene and nylon are presented. (C.G.C.)

  18. Photon-photon collisions

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of γγ physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive γγ reactions at high momentum transfer. 73 refs., 12 figs

  19. Photon-photon colliders

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  20. A high energy photon polarimeter for astrophysics

    Eingorn, Maxim; Vlahovic, Branislav; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

    2015-01-01

    A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 5.5 % accuracy of the polarization degree for a photon energy of 100 MeV, which would be a significant advance relative to the currently explored energy range of a few MeV. The proposed polarimeter design could easily be adjusted to the specific photon energy range to maximize efficiency if needed.

  1. Combined photon-neutron radiography for nondestructive analysis of materials

    Combined photon-neutron radiography was investigated as a nondestructive method to determine the shape and material composition of complex objects. A system consisting of photon and neutron sources in a cone beam configuration and a 2D detector array was modeled using the MCNP5 code. Photon-to-neutron transmission ratios were determined for a car engine using 0.1, 0.5, 2.5 MeV neutrons and 0.2, 0.5, 1 MeV photons. Focusing on inherent difference between neutron and photon interactions with matter, it was possible to classify materials within the scanned object. (author)

  2. 50 MeV polarimeter

    A description is given of the construction, operation and calibration of the 50 MeV polarimeter which was used at the ZGS. The dependence of the observed counts on various parameters, including the beam polarization, beam intensity and the solid angle in the two polarimeter arms is also discussed

  3. Photon-photon collisions

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  4. Photon-photon collisions

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e+e- storage rings. After a complete presentation of the helicity amplitude formalism for the general process e+e- → Xe+e-, various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  5. The MAX-lab tagged photon facility

    The tagged photon facility at MAX-lab in Lund, Sweden has recently been upgraded to higher energy. The present facility consists of a ∝200 MeV linac followed by a pulse stretcher ring. The extracted electron beam (∝50% duty factor) is used to generate a bremsstrahlung beam and photons are tagged by a choice of two different tagging spectrometers, optimized for different energy regions. The tagged photon range may presently be chosen between 15 MeV and 185 MeV. The energy resolution is typically ∝0.5 MeV and the tagged intensity is ∝106 MeV-1s-1. The available energy may increase somewhat in the near future. The initial experimental programme includes Compton scattering on deuterium using very large NaI detectors, (γ,π+) measurements using both solid-state and scintillator set-ups, and tests of electromagnetic calorimeter elements for the PANDA detector. Initial tests have been performed on total absorption cross-section measurements on 4He, using an active target, and on 6,7Li. A linearly polarized photon beam from coherent bremsstrahlung is being commissioned. The MAX-lab tagged photon facility is presented and an overview of the present experimental programme given.

  6. Transport calculations for a 14.8 MeV neutron beam in a water phantom

    A coupled neutron/photon Monte Carlo radiation transport code (MORSE-CG) has been used to calculate neutron and photon doses in a water phantom irradiated by 14.8 MeV neutrons from the Gas Target Neutron Source. The source-collimator-phantom geometry was carefully simulated. Results of calculations utilizing two different statistical estimators (next-collision and track-length) are presented

  7. Focusing the photon dose in a head phantom

    The 30 keV photons stereotactic focusing is being examined for two kinds of collimated sources and it has been found less advantageous as compared to the gamma-knife MeV range. (author) 2 figs., 2 refs

  8. Decay of photon with high as well as low energy

    Bhattacharyya, Indranath

    2016-01-01

    The decay of photon by the influence of magnetic field is considered. It is shown here that if the photon energy is grater than 1 MeV then photon can decay electron positron pair, but if it remains below 1 MeV then photon decays into neutrino antineutrino pair. The decay rates for both of the processes are calculated. All possible Feynman diagrams are taken into account to construct the matrix element for either of the processes. In the second process all three type of neutrinos are considered. The significance of these processes are discussed briefly.

  9. Polarization Observables in Deuteron Photodisintegration below 360 MeV

    Glister, J; Lee, B W; Gilman, R; Sarty, A J; Strauch, S; Higinbotham, D W; Piasetzky, E; Allada, K; Armstrong, W; Arrington, J; Beck, A; Benmokhtar, F; Berman, B L; Boeglin, W; Brash, E; Camsonne, A; Calarco, J; Chen, J P; Choi, Seonho; Chudakov, E; Coman, L; Craver, B; Cusanno, F; Dumas, J; Dutta, C; Feuerbach, R; Freyberger, A; Frullani, S; Garibaldi, F; Hansen, J -0; Holmstrom, T; Hyde, C E; Ibrahim, H; Ilieva, Y; de Jager, C W; Jiang, X; Jones, M K; Kang, H; Kelleher, A; Khrosinkova, E; Kuchina, E; Kumbartzki, G; LeRose, J J; Lindgren, R; Markowitz, P; Beck, S May-Tal; McCullough, E; Meekins, D; Meziane, M; Meziani, Z -E; Michaels, R; Moffit, B; Norum, B E; Oh, Y; Olson, M; Paolone, M; Paschke, K; Perdrisat, C F; Potokar, M; Pomatsalyuk, R; Pomerantz, I; Puckett, A; Punjabi, V; Qian, X; Qiang, Y; Ransome, R; Reyhan, M; Roche, J; Rousseau, Y; Saha, A; Sawatzky, B; Schulte, E; Shabestari, M; Shahinyan, A; Shneor, R; Sirca, S; Slifer, K; Solvignon, P; Song, J; Sparks, R; Subedi, R; Urciuoli, G M; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Zhan, X; Zhu, X

    2010-01-01

    High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  10. Polarization observables in deuteron photodisintegration below 360 MeV

    Glister, Jacqueline; Lee, Byungwuek; Gilman, R; Sarty, Adam; Strauch, Steffen; Higinbotham, Douglas; Piasetzky, Eliazer; Allada, Kalyan; Armstrong, Whitney; Arrington, John; Beck, Arie; Benmokhtar, Fatiha; Berman, Barry; Boeglin, Werner; Brash, Edward; Camsonne, Alexandre; Calarco, John; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Coman, Luminita; Craver, Brandon; Cusanno, Francesco; Dumas, Jonathan; Dutta, Chiranjib; Feuerbach, Robert; Freyberger, Arne; Frullani, Salvatore; Garibaldi, Franco; Hansen, Jens-Ole; Holmstrom, Timothy; Hyde, Charles; Ibrahim, Hassan; Ilieva, Yordanka; De Jager, Cornelis; Jiang, Xiaodong; Jones, Mark; Kang, Hoyoung; Kelleher, Aidan; Khrosinkova, Elena; Kuchina, Elena; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Markowitz, Pete; Beck, S. May-Tal; McCullough, Emily; Meekins, David; Meziane, Mehdi; Meziane, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Norum, Blaine; Oh, Yongseok; Olson, Michael; Paolone, Michael; Paschke, Kent; Perdrisat, Charles; Potokar, Milan; Pomatsalyuk, Roman; Pomerantz, Ishay; Puckett, Andrew; Punjabi, Vina; Qian, Xin; Qiang, Yi; Ransome, Ronald; Reyhand, Meral; Roche, Julie; Rousseau, Yannick; Saha, Arunava; Sawatzky, Bradley; Schulte, Elaine; Hashemi Shabestari, Mitra; Shahinyan, Albert; Shneor, R; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Song, JeongSeog; Sparks, Rachel; Subedi, Ramesh; Urciuoli, Guido; Wang, Kebin; Wojtsekhowski, Bogdan; Yan, Xinhu; Yao, Huan; Zhan, Xiaohui

    2011-03-01

    High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

  11. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  12. Nuclear photon science with inverse compton photon beam

    Recent developments of the synchrotron radiation facilities and intense lasers are now guiding us to a new research frontier with probes of a high energy GeV photon beam and an intense and short pulse MeV γ-ray beam. New directions of the science developments with photo-nuclear reactions are discussed. The inverse Compton γ-ray has two good advantages for searching for a microscopic quantum world; they are 1) good emittance and 2) high linear and circular polarizations. With these advantages, photon beams in the energy range from MeV to GeV are used for studying hadron structure, nuclear structure, astrophysics, materials science, as well as for applying medical science. (author)

  13. Proton-proton bremsstrahlung at 280 MeV

    A proton-proton bremsstrahlung experiment has been carried out at TRIUMF using a 280-MeV polarized proton beam impinging on a liquid-hydrogen target. All three outgoing particles were detected: the higher-energy proton in a magnetic spectrometer, the lower-energy proton with plastic scintillators, and the photon in lead-glass Cherenkov detectors. The experiment shows the first unambiguous evidence for off-shell effects in the free nucleon-nucleon interaction, in that the analyzing powers disagree strongly with the predictions of the soft-photon approximation (which incorporates only on-shell information) but are consistent with the results of calculations using the Bonn and Paris potentials

  14. Radiography studies with gamma rays produced by 14-MeV fusion neutrons

    Oxygen contained in pure water has been activated via the 16O(n, p)16N reaction using 14-MeV neutrons produced at a neutron generator with the 3H(d,n)4He source. Photons of 6.129 and 7.115 MeV, generated by the decay of 7.13-second 16N, were then used to demonstrate the feasibility of employing highly penetrating, nearly monoenergetic gamma rays for radiography studies of thick, dense objects composed of elements with medium to relatively high atomic numbers. A simple radiography apparatus was constructed by circulating water continuously between a position near the target of the neutron generator and a remote location where photon transmission measurements were conducted. A sodium iodide scintillator was employed to detect the photons. Pulses equivalent to photon energies smaller than 2.506 MeV (corresponding to the cascade sum of 1.333- and 1.173-MeV gamma rays from the decay of 5.271-year 60Co) were rejected by the electronics settings in order to reduce background and improve the signal-to-noise (S/N) ratio. Respectable S/N ratios on the order of 20-to-1 were achieved with this setup. Most of the background (N) could be attributed to ambient environmental radiation and cosmic-ray interactions with the lead shielding and detector. Four representative objects were examined by photon radiography in this study. This demonstrated how such - interesting features as hidden holes and discontinuities in atomic number could be easily identified from observed variations in the intensity of transmitted photons. Some advantages of this technique are described, and potential applications are suggested for a future scenario where fusion reactors are used to generate electric power and very intense sources of high-energy photons from 16N decay are continuously available as a byproduct of the reactor cooling process

  15. Activation analysis using γ photons

    This report summarizes all the data required for using photonuclear reactions in the field of analysis. After a brief review of the elementary properties of nuclear reactions induced by photon irradiation, the main characteristics are given of high energy (E > 20 MeV) Bremsstrahlung sources. The principle of activation analysis based on the use of photons is given. Actual examples of the analytic possibilities are described in detail, in particular in the case of the determination of very small quantities (-6) of C, N, O and F. The influence of interfering nuclear reactions is discussed. (author)

  16. Induced photonuclear interaction by Rhodotron-TT200 10 MeV electron beam

    Farshid Tabbakh; Mojtaba Mostajab Aldaavati; Mahdieh Hoseyni; Khadijeh Rezaee Ebrahim Saraee

    2012-02-01

    In this paper the photonuclear interaction induced by 10 MeV electron beam generating high-intensity neutrons is studied. Since the results depend on the target material, the calculations are performed for Pb, Ta and W targets which have high , in a simple geometry. MCNPX code has been used to simulate the whole process. Also, the results of photon generation has been compared with the experimental results to evaluate the reliability of the calculation. The results show that the obtained neutron flux can reach up to 1012 n/cm2 /s with average energies of 0.9 MeV, 0.4 MeV and 0.9 MeV for these three elements respectively with the maximum heat deposited as 3000 W/c3,4500 W/c3 and 6000 W/c3.

  17. Microwave Photonics

    A J Seeds; Liu, C. P.; Ismail, T; Fice, M. J.; Pozzi, F.; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  18. Polychromatic photons

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based on the...... positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted in a...

  19. Photon Structure

    Grindhammer, Guenter

    2001-01-01

    Large pT processes at HERA, initiated by almost real and by virtual photons, provide information on the structure of the photon. We report on the latest measurements of dijets and large pT particle production with the H1 detector. This includes a leading order determination of an effective virtual photon parton density, of the gluon density of the photon, and comparisons with models.

  20. Nuclear photonics

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  1. Inclusive Dark Photon Search at LHCb

    Ilten, Philip; Thaler, Jesse; Williams, Mike; Xue, Wei

    2016-01-01

    We propose an inclusive search for dark photons $A'$ at the LHCb experiment based on both prompt and displaced di-muon resonances. Because the couplings of the dark photon are inherited from the photon via kinetic mixing, the dark photon $A' \\to \\mu^+ \\mu^-$ rate can be directly inferred from the off-shell photon $\\gamma^* \\to \\mu^+ \\mu^-$ rate, making this a fully data-driven search. For Run 3 of the LHC, we estimate that LHCb will have sensitivity to large regions of the unexplored dark-photon parameter space, especially in the 210-520 MeV and 10-40 GeV mass ranges. This search leverages the excellent invariant-mass and vertex resolution of LHCb, along with its unique particle-identification and real-time data-analysis capabilities.

  2. Elastic and nuclear Raman scattering of photons

    Some recent experimental studies of fundamental photon scattering processes and inelastic scattering performed at the Negev IRR-2 reactor in the E 166Er and 238U in the approx. 15 MeV region, performed at the University of Illinois are discussed. (orig.) 891 KBE/orig. 892 ARA

  3. Searches for dark photons at the Mainz Microtron

    Merkel, H.; Achenbach, P.; Gayoso, C. Ayerbe; Beranek, T.; Bernauer, J. C.; Böhm, R.; Correa, L.; Denig, A.; Distler, M. O.; Esser, A.; Gómez, M.; Kegel, S.; Kohl, Y.; Mihovilovič, M.; Middleton, D. G.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Rohrbeck, M.; Majos, S. Sánchez [Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz (Germany); and others

    2013-11-07

    The A1 Collaboration at the Mainz Microtron (MAMI) operates high resolution spectrometers at very high luminosities for fixed target electron scattering experiments. The setup is well suited for the search for dark photons in the mass range between 50 MeV and 300 MeV. In these experiments, a possible dark photon would appear as a sharp peak in the mass spectrum of di-lepton electro-production. In this presentation the potential of the setup is presented and the possibilities for future experiments for dark photon searches at MAMI are discussed.

  4. Emission patterns of neutral pions in 40A MeV Ta+Au reactions

    Differential cross sections of neutral pions emitted in 181Ta+197Au collisions at a beam energy of 39.5A MeV have been measured with the two-arm photon spectrometer (TAPS). The kinetic energy and transverse momentum spectra of neutral pions cannot be properly described in the framework of the thermal model, nor when the reabsorption of pions is accounted for in a phenomenological model. However, high energy and high momentum tails of the pion spectra can be well fitted through thermal distributions with unexpectedly soft temperature parameters below 10 MeV.

  5. Observation of an eta'/sub c/ candidate state with mass 3592 +- 5 MeV

    An eta'/sub c/ candidate state is observed at a mass M = 3592 +- 5 MeV and with a natural linewidth GAMMA<8 MeV (95% confidence level), by using the ''crystal ball'' NaI(Tl) detector at the Stanford Linear Accelerator Center (SPEAR). The evidence is found in the inclusive photon spectrum in decays of the psi'(3684), where a signal is observed corresponding to a radiative transition to this state with branching ratio between 0.2% and 1.3%

  6. Photonic Lantern

    Leon-Saval, Sergio; Bland-Hawthorn, Joss

    2015-01-01

    Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus, enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail.

  7. High energy photons production in nuclear reactions

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  8. Photon energy absorption parameters for some polymers

    Singh, Tejbir; Rajni [Physics Department, M.M. University, Mullana-133 203 Haryana (India); Kaur, Updesh [Physics Department, P.K.R.J.S.S. School, Ambala City, Haryana (India); Singh, Parjit S., E-mail: dr_parjit@hotmail.co [Physics Department, Punjabi University, Patiala-147 002 Punjab (India)

    2010-03-15

    Some photon energy absorption parameters viz. mass energy absorption coefficient (mu/rho){sub en}, photon energy absorption effective atomic number (Z{sub PEA}), electron density (N{sub e}) and KERMA relative to air has been computed in the energy range from 1 keV to 20 MeV for some polymers such as nylon, poly-acrylo-nitrile, poly-methyl-acrylate, poly-vinyl-chloride, poly-styrene, synthetic rubber and poly-tetra-fluro-ethylene. The dependence of different parameters on incident photon energy and chemical composition of the selected polymers has been studied .

  9. Hidden Photons in Aharonov-Bohm-Type Experiments

    Arias, Paola; Diaz, Marco Aurelio; Jaeckel, Joerg; Koch, Benjamin; Redondo, Javier

    2016-01-01

    We discuss the Aharonov-Bohm effect in the presence of hidden photons kinetically mixed with the ordinary electromagnetic photons. The hidden photon field causes a slight phase shift in the observable interference pattern. It is then shown how the limited sensitivity of this experiment can be largely improved. The key observation is that the hidden photon field causes a leakage of the ordinary magnetic field into the supposedly field-free region. The direct measurement of this magnetic field can provide a sensitive experiment with a good discovery potential, particularly below the $\\sim$ meV mass range for hidden photons.

  10. Microwave photonics

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  11. Photonic glasses

    Gan, Fuxi

    2006-01-01

    This book introduces the fundamental mechanism of photonic glasses - the linear and nonlinear optical effects in glass under intense light irradiation: phot-induced absorption, refraction, polarization, frequency, coherence and monochromaticity changes. Emphasis is placed on new developments in the structure, spectroscopy and physics of new glassy materials for photonics applications, such as optical communication, optical data storage, new lasers and new photonic components and devices. The book presents the research results of the authors in new glasses for photonics over the last decade. Sa

  12. Detector for high-energy photon backscatter

    Silver, Michael D.; Erker, Joseph W.; Duncan, Michael Z.; Hartford, Thomas J.; Sivers, E. A.; Hopkinson, James F.

    1993-12-01

    High energy photon backscatter uses pair production to probe deep beneath surfaces with single side accessibility or to image thick, radiographically opaque objects. At the higher photon energies needed to penetrate thick and/or highly attenuating objects, Compton backscatter becomes strongly forward peaked with relatively little backscatter flux. Furthermore, the downward energy shift of the backscattered photon makes it more susceptible to attenuation on its outbound path. Above 1.022 MeV, pair production is possible; at about 10 MeV, pari production crosses over Compton scatter as the dominant x-ray interaction mechanism. The backscattered photons can be hard x rays from the bremsstrahlung of the electrons and positrons or 0.511 MeV photons from the annihilation of the positron. Monte Carlo computer simulations of such a backscatter system were done to characterize the output signals and to optimize a high energy detector design. This paper touches on the physics of high energy backscatter imaging and describes at some length the detector design for tomographic and radiographic imaging.

  13. Processes related to photon-photon collisions

    Two types of processes, related to photon-photon collisions, are considered: deep inelastic Compton scattering, and photon pair production. The relevant theoretical and experimental literature is reviewed

  14. Unparticle effects in photon-photon scattering

    Chang, Chun-Fu; Cheung, Kingman; Yuan, Tzu-Chiang

    2008-01-01

    Elastic photon-photon scattering can only occur via loop diagrams in the standard model and is naturally suppressed. Unparticle can induce tree-level photon-photon scattering through the operator F_{\\mu\

  15. Praseodymium activation detector for measuring bursts of 14 MeV neutrons

    A new, accurate, neutron activation detection scheme for measuring pulsed neutrons has been designed and tested. The detection system is sensitive to neutrons with energies above 10 MeV; importantly, it is insensitive to gamma radiation 141Pr, an element that has a single, naturally occurring isotope, a significant n,2n cross-section, and decays by positron emission that result in two coincident 511 keV photons. Neutron fluences are thus inferred by relating measured reaction product decay activity to fluence. Specific sample activity is measured using the sum-peak method to count gamma-ray coincidences from the annihilation of the positron decay products. The system was tested using 14 and 2.45 MeV neutron bursts produced by NSTec Dense Plasma Focus Laboratory fusion sources. Lead, copper, beryllium, and silver activation detectors were compared. The detection method allows measurement of 14 MeV neutron yield with a total error of ∼18%.

  16. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  17. The effect of 14.7 MeV neutrons on MOS structures

    Six MOS transistors on a common chip were irradiated with 14.7 MeV neutrons; the accompanying gamma radiation contributed 4% to the neutron dose. The mean energy of these photons was about 1 MeV. The dependence of the threshold voltage shift on the dose equivalent was investigated for several gate bias voltages. The MOS transistors irradiated with neutrons to a total dose equivalent of 188.40 Sv were also annealed isochronously in steps of 20 degC. The annealing curves are shown and activation energies of traps calculated therefrom. It was also found that the fading curve of fast-neutron-irradiated MOS transistors differed from that of photon irradiated ones. (J.B.)

  18. Comment on "Material Evidence of a 38 MeV Boson"

    Bernhard, J; Schlüter, T; Schönning, K

    2012-01-01

    In the recent preprint 1202.1739 it was claimed that preliminary data presented by COMPASS at recent conferences confirm the existence of a resonant state of mass 38 MeV decaying to two photons. This claim was made based on structures observed in two-photon mass distributions which however were shown only to demonstrate the purity and mass resolution of the $\\pi^0$ and $\\eta$ signals. The additional structures are understood as remnants of secondary interactions inside the COMPASS spectrometer. Therefore, the COMPASS data do not confirm the existence of this state.

  19. n-p-γ Bremsstrahlung below 210 MeV bombarding energy

    The experimental knowledge of the neutron-proton-gamma below 210 MeV bombarding energy is discussed. The knowledge of this process is poor and due to the small intensity and bad resolution of the neutron beams. In this energy region the one-pion exchange is the main source of high energy photons. The different models proposed to explain the process are summarized. As at higher bombarding energies heavier mesons are also expected to couple with the photons, the investigation of the elementary process above the pion threshold is suggested

  20. Polarization sensitivity of a segmented HPGe detector up to 10 MeV

    Hutter, C; Bayer, W; Galaviz, D; Hartmann, T; Mohr, P J; Müller, S; Rochow, W; Savran, D; Sonnabend, K; Vogt, K; Volz, S; Zilges, A

    2002-01-01

    Linear gamma-ray polarization can be measured using segmented germanium detectors. The polarization sensitivity of the Compton scattering process leads to asymmetries in the signals of a segmented detector. We have measured the polarization sensitivity of a four-fold segmented large volume germanium detector up to photon energies of approximately 10 MeV for the first time. The detector and its performance are compared to smaller Compton polarimeters which have been analyzed in previous work. A possible application of the described Compton polarimeter will be parity assignments in photon scattering experiments.

  1. Delbrueck scattering of monoenergetic photons

    The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)

  2. Photon Stars

    Schmidt, H. -J.; Homann, F.

    1999-01-01

    We discuss numerical solutions of Einstein's field equation describing static, spherically symmetric conglomerations of a photon gas. These equations imply a back reaction of the metric on the energy density of the photon gas according to Tolman's equation. The 3-fold of solutions corresponds to a class of physically different solutions which is parameterized by only two quantities, e.g. mass and surface temperature. The energy density is typically concentrated on a shell because the center c...

  3. Photonic Nanojets

    Heifetz, Alexander; Kong, Soon-Cheol; Alan V. Sahakian; Taflove, Allen; Backman, Vadim

    2009-01-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet’s minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for m...

  4. Microwave photonics

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  5. A high energy photon polarimeter for astrophysics

    Eingorn, Maxim; Fernando, Lakma; Vlahovic, Branislav; Ilie, Cosmin; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

    2015-01-01

    A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 6%...

  6. Monte Carlo simulation of microbeam photon irradiation of a single cell

    The numerical model presented in this paper offers the possibility of analyzing cell compartment response to irradiation microbeam fields of photons of different energies, beam sizes and cells arrangements. The results of the stochastic aspects of energy dissipation by photons interacting with the cells show that the energy deposited in the surrounding cells is 21% of the energy deposited in the target cell. The simulations with different photon beam energies ranging from 0.01 MeV to 2 MeV show that increased photon beam energy does not change the ratio of energy deposited in surrounding cell to that in target cell. (author)

  7. The ENDF/B-VI photon interaction library

    The ENDF/B-VI photon interaction library includes data to describe the interaction of photons with the elements Z = 1 to 100 over the energy range 10 eV to 100 MeV. This library has been designed to meet the traditional needs of users to model the interaction and transport of primary photons. However, this library contains additional information which used in a combination with our other data libraries can be used to perform much more detailed calculations, e.g., emission of secondary fluorescence photons. This paper describes both traditional and more detailed uses of this library

  8. Testing helicity-dependent γγ → γγ scattering in the region of MeV

    Light-by-light scatterings contain rich information on photon coupling to virtual and real particle states. In the context of quantum electrodynamics (QED), photons can couple to a virtual e+e− pair. Photons may also couple to known resonance states in the context of quantum chromodyanmics and electroweak dynamics in higher energy domains and possibly couple to unknown resonance states beyond the standard model. The perturbative QED calculations manifestly predict a maximized cross section at the MeV scale; however, no example of exact real-photon–real-photon scattering has yet been observed. Hence, we propose direct measurement with the maximized cross section at the center-of-mass system energy of 1–2 MeV to establish a firm footing at the MeV scale. Given current state of the art high power lasers, helicity-dependent elastic scattering may be observed at a reasonable rate, if a photon–photon collider exploiting γ-rays generated by the inverse nonlinear Compton process with electrons delivered from laser-plasma accelerators (LPA) are properly designed. We show that such verification is feasible in a table-top scale collider, which may be an unprecedented breakthrough in particle accelerators for basic physics research in contrast to energy frontier colliders

  9. Polarimeter for high energy photons

    Wojtsekhowski, Bogdan; Vlahovic, Branislav; Tedeschi, David; Danagulian, Samuel; Litvienko, Vladimir; Pinayev, Igor

    1999-11-01

    The physics program at TJNAF includes fundamental experiments with polarized photon beam in few GeV energy range. Development of the Polarimeter for use in Hall B experiments is the subject of present abstract. We have proposed to take advantage of the recent progress in silicon micro strip detectors for measurement of the geometry and angle correlation in electron positron pair production from an amorphous converter. A detailed analysis of the setup including MC simulation shows an experimental asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of the photon energies. This asymmetry value is confirmed by our experimental results obtained using 100 percent polarized 40 MeV γ rays at Duke FEL.

  10. Testing QCD in Photon-Photon Interactions

    Soldner-Rembold, Stefan

    1998-01-01

    At high energies photon-photon interactions are dominated by quantum fluctuations of the photons into fermion-antifermion pairs and into vector mesons. This is called photon structure. Electron-positron collisions at LEP are an ideal laboratory for studying photon structure and for testing QCD.

  11. Photonic crystals

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  12. Vesicle Photonics

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  13. Dosimetry in high-energy photon fields for the calibration of measuring instruments for radiation protection purposes

    This report describes the dosimetry in various reference photon fields with energies between 4.4 MeV and about 8 MeV. Two dosimetric quantities were chosen. The air kerma was determined from measurements without a phantom and the absorbed dose to water from measurements with a phantom. This mean that the range of realization of the quantity air kerma has been extended from the energy of Co-60 photons to about 8 MeV. The results can serve as basis for the calibration of radiation protection dosemeters in nuclear power plants (0-16(n,p)N-16 reaction) with high energy photons. (orig./HP)

  14. Experimental investigation of quadrupole virtual photon spectrum

    To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2+ level at 20.14 MeV in 24Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d2σ/dΩdE was measured 480, 900, 1320 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author)

  15. Search for photon oscillations into massive particles

    Fouché, Mathilde; Faure, Stéphane; Rizzo, Carlo; Mauchain, Julien; Nardone, Marc; Battesti, Remy; Martin, Luc; Sautivet, Anne-Marie; Paillard, Jean-Luc; Amiranoff, François

    2008-01-01

    In this paper, we present the final results of our experiment on photon-axion oscillations in the presence of a magnetic field, which took place at LULI (Laboratoire pour l'Utilisation des Lasers Intenses, Palaiseau, France). Our null measurement allowed us to exclude the existence of axions with inverse coupling constant $M>9.\\times 10^5$ GeV for low axion masses and to improve the preceding BFRT limits by a factor 3 or more for axion masses $1.1 {meV} meV}$. We also show that our experimental results improve the existing limits on the parameters of a low mass hidden-sector boson usually dubbed "paraphoton" because of its similarity with the usual photon.

  16. Photonic crystals principles and applications

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  17. Photon Structure in Photon Proton Interactions

    Vossebeld, J. H.

    1998-01-01

    Photoproduction of jets at HERA provides information on the partonic structure of the photon. We report on the latest dijet photoproduction results, for real photons and for photons at low virtualities, measured with the ZEUS detector.

  18. Photon Differentials

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny;

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation of...

  19. Photon differentials

    Schjøth, Lars; Revall Frisvad, Jeppe; Erleben, Kenny;

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation of...

  20. Two-Photon Processes and Photon Structure

    Schienbein, I.

    2002-01-01

    In this article aspects of photon-photon physics related to the structure of real and virtual photons are reviewed. A re-calculation of the virtual photon-photon box is performed and some discrepancies in the literature are clarified. A useful compilation of various relevant limits derived from the most general expressions is provided. Furthermore, structure functions of spin-averaged, transverse and longitudinal virtual target photons are defined and discussed. Finally, the factorization of ...

  1. <600> MeV synchro-cyclotron

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  2. MeV fullerene impacts on mica

    Doebeli, M.; Scandella, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ames, F. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Hillock heights on mica irradiated with MeV C{sub 60} ions have been investigated systematically. Results show that the small range of secondary particles along the track plays a crucial role in defect production. (author) figs., tab., refs.

  3. Neutron and photon spectra in LINACs

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10–6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  4. Saturated two-photon resonance ionization of He(21S)

    We have developed a photoionization method for complete conversion of a quantum-selected population to ionization, making possible sensitive and absolute measurement of the selected populations in a gas. Each photoionization involves the absorption of two photons (from a pulsed dye laser), one of which is resonant with an intermediate state. In this demonstration we measured the absolute number of He(21S) states per ion pair following interaction of pulses of 2-MeV photons with He

  5. Liquid xenon scintillation: photon yield and Fano factor measurements

    This paper presents a new measurement of the photon yield and the first measurement of the Fano factor in liquid xenon with a photomultiplier as photodetector. The observed photoelectron yield is 3.2/MeV which, after correction for detector solid angle and efficiency, corresponds to 78 600 photons/MeV. The Fano factor observed, Fs=0.033±0.045, agrees with the value measured in the gaseous state by other authors. ((orig.))

  6. An all-optical table-top collider for testing $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ scattering in the region of MeV

    Homma, Kensuke; Nakajima, Kazuhisa

    2015-01-01

    Photon-photon scatterings contain rich information on the two-photon coupling to a virtual $e^+e^-$ pair in QED and also the coupling to known resonance states in the context of QCD and the electroweak interaction. Moreover, discovering weakly-coupling resonance states over many orders of magnitude on the mass scale can provide us hints on something dark in the Universe. The perturbative QED calculations manifestly predict the maximized cross section at the MeV scale, however, any examples of real-photon - real-photon scattering have not been observed in that energy scale hitherto. Hence, we propose the direct measurement with the maximized cross-section at the center-of-mass energy of 1-2 MeV to establish the firm footing at the MeV scale. Given currently state-of-the-art high power lasers, the QED-based elastic scattering may be observed at a reasonable rate, if a photon-photon collider exploiting $\\gamma$-rays generated by the inverse Compton process with electrons delivered from laser-plasma accelerators ...

  7. Photon-Photon Interaction in a Photon Gas

    Thoma, Markus H.

    2000-01-01

    Using the effective Lagrangian for the low energy photon-photon interaction the lowest order photon self energy at finite temperature and in non-equilibrium is calculated within the real time formalism. The Debye mass, the dispersion relation, the dielectric tensor, and the velocity of light following from the photon self energy are discussed. As an application we consider the interaction of photons with the cosmic microwave background radiation.

  8. Photon-Photon Scattering at the Photon Linear Collider

    Jikia, G.; Tkabladze, A.

    1993-01-01

    Photon-photon scattering at the Photon Linear Collider is considered. Explicit formulas for helicity amplitudes due to $W$ boson loops are presented. It is shown that photon-photon scattering should be easily observable at PLC and separation of the $W$ loop contribution (which dominates at high energies) will be possible at $e^+e^-$ c.m. energy of 500~GeV or higher.

  9. Generation and application of 15 to 30 MeV parametric X-ray by linac

    Akimoto, T

    2002-01-01

    15 to 30 MeV parametric X-ray (PXR) was generated using Si single crystal by 45 MeV electron LINAC. To obtain good monochromatic hard X-ray field, the appropriate conditions were determined by theoretical analysis and experiments. The intensity of PXR was increased with increasing electron energy and crystal rotation angle. However, PXR energy is independent of electron energy. By increasing measurement angle, energy of PXR decreased, but its intensity increased. 15 to 30 keV PXR energy and about 10 sup - sup 5 to 10 sup - sup 6 photon/electron of intensity were observed at 15 to 22 deg detection angle under the operation conditions of 45 MeV electron energy and 4 to 8 nA of beam current. The mass attenuation coefficient of photon of Zr, Nb and Mo, in K absorption edge was measured. Application to determine lattice distortion of target sample and off-angle of crystal was investigated. Generation and detection of PXR, measurement of characteristic properties: crystal rotation angle, detection angle, electron e...

  10. Measures of gamma rays between 0,3 MeV and 3,0 MeV and of the 0,511 MeV annihilation line coming from Galactic Center Region

    The detection of the flux of the electron-positron annihilation line coming from the Galactic Center direction allows one to estimate the rate of positrons production and the corresponding luminosity. The results of measurements of the annihilation line flux intensity at 0.511 MeV, obtained with a balloon borne experiment to measure gamma rays in the energy interval 0.3 to 3 MeV are presented. The detector looked at the galactic disk in the longitude interval -310 0 and observed a flux intensity of (6.70 +- 0.85) x 10-3 photons cm-2 s-1, which is in good agreement with the flux value estimated assuming that the Galactic Center is a line source emitting uniformly. Some likely sources of positrons and annhilation regions are also discussed. The results for the continuum spectrum emitted from the Galactic Center in the energy interval 0.3 to 0.67 MeV are presented and compared with measurements had already made. (Author)

  11. Dark photons from charm mesons at LHCb

    Ilten, Philip; Thaler, Jesse; Williams, Mike; Xue, Wei

    2015-12-01

    We propose a search for dark photons A' at the LHCb experiment using the charm meson decay D*(2007 )0→D0A'. At nominal luminosity, D*0→D0γ decays will be produced at about 700 kHz within the LHCb acceptance, yielding over 5 trillion such decays during Run 3 of the LHC. Replacing the photon with a kinetically mixed dark photon, LHCb is then sensitive to dark photons that decay as A'→e+e-. We pursue two search strategies in this paper. The displaced strategy takes advantage of the large Lorentz boost of the dark photon and the excellent vertex resolution of LHCb, yielding a nearly background-free search when the A' decay vertex is significantly displaced from the proton-proton primary vertex. The resonant strategy takes advantage of the large event rate for D*0→D0A' and the excellent invariant-mass resolution of LHCb, yielding a background-limited search that nevertheless covers a significant portion of the A' parameter space. Both search strategies rely on the planned upgrade to a triggerless-readout system at LHCb in Run 3, which will permit the identification of low-momentum electron-positron pairs online during data taking. For dark photon masses below about 100 MeV, LHCb can explore nearly all of the dark photon parameter space between existing prompt-A' and beam-dump limits.

  12. Photon detectors

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  13. Photon locking

    Sleva, E. T.; Xavier, I. M., Jr.; Zewail, A.H.

    1986-01-01

    A novel observation of photon locking—the optical analog of spin locking—is reported, demonstrating the applicability of phase-coherent pulse sequences. The experiments are reported for the optical transition of iodine gas at 589.7 nm using the pulse sequence XYX-XYX̄. Locking decay rates are presented as a function of pressure and compared with optical dephasing (echo-decay) rates.

  14. Photon findings

    Urbina, Victor M.

    2000-01-01

    Two experiments were made using a microwave generator, which sent a narrow beam, through a metallic plate with horizontal movement. At the other end a horn antenna coupled to a field-strength detector. In linear polarization double cycloids paths were found and in circular polarization spiral paths were found. These experiments suggested that the photon is composed by two particles in dynamic equilibrium. The description of this model is given later as well as its parameters.

  15. Photon detectors

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  16. Nanowire photonics

    Peter J. Pauzauskie; Peidong Yang

    2006-01-01

    The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. Howev...

  17. Topological photonics

    Lu, Ling; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The application of topology, the mathematics of conserved properties under continuous deformations, is creating a range of new opportunities throughout photonics. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation, even in the presence of impurities. Similarly, the use of carefully designed wavevector-space topologies allows the creation of interfaces that support new states of light with useful and interesting prop...

  18. Two-photon radiation in the 90Zr 0+→0+ transition

    An experiment on studying two-photon radiation in 0+→0+-transition with 1.76 MeV of 90Zr is described. Ratio of two-photon process and pair conversion probabilities Wγγ/Wπ=(7.4±1.4)x10-4 is obtained

  19. Study of spin-isospin states in 1213Cγπ+ reactions using tagged photons

    Positive photopions from 1213C(γπ+)1213B were measured at the tagged photon facilities of Saskatchewan Accelerator Laboratory. The pions produced by tagged photons (169 ≤ Eγ ≤ 217 MeV) were detected by a system of plastic scintillator ΔE-E telescopes at five angles from 35 degrees to 145 degrees. Enriched (99%) 13C and graphite targets were used. The pion spectra show strong transitions leading to g.s., 4.5, 7.5 and 10 MeV states in 12B and g.s., 3.5, 6.4, 9.5 and 13 MeV states in 13B. Differential cross sections at the mean tagged photon energy 191 MeV will be shown

  20. Elastic Photon Differential Cross-Sections for Helium Near the Delta Resonance.

    Delli Carpini, Domenico

    A complete angular distribution of coherent photon scattering off ^4He was measured at average laboratory bremsstrahlung energies of 187 MeV, 235 MeV and 282 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using their new high duty factor electron beam. The scattered photons were observed with a high resolution NaI(Tl) total absorption scintillation detector. The energy resolution was sufficient to exclude photons from pi^0 decay and inelastic Compton scattering. These measurements test the Delta-hole formalism for this reaction and investigate modification of the Delta properties in a nuclear environment. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident for all the energies, especially at 187 MeV.

  1. 3D imaging using combined neutron-photon fan-beam tomography: A Monte Carlo study.

    Hartman, J; Yazdanpanah, A Pour; Barzilov, A; Regentova, E

    2016-05-01

    The application of combined neutron-photon tomography for 3D imaging is examined using MCNP5 simulations for objects of simple shapes and different materials. Two-dimensional transmission projections were simulated for fan-beam scans using 2.5MeV deuterium-deuterium and 14MeV deuterium-tritium neutron sources, and high-energy X-ray sources, such as 1MeV, 6MeV and 9MeV. Photons enable assessment of electron density and related mass density, neutrons aid in estimating the product of density and material-specific microscopic cross section- the ratio between the two provides the composition, while CT allows shape evaluation. Using a developed imaging technique, objects and their material compositions have been visualized. PMID:26953978

  2. Praseodymium activation detector for measuring bursts of 14 MeV neutrons

    Meehan, Tim, E-mail: meehanbt@nv.doe.go [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Hagen, E.C. [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Ruiz, C.L.; Cooper, G.W. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2010-08-21

    A new, accurate, neutron activation detection scheme for measuring pulsed neutrons has been designed and tested. The detection system is sensitive to neutrons with energies above 10 MeV; importantly, it is insensitive to gamma radiation <10 MeV and to lower-energy (e.g., fission and thermal) neutrons. It is based upon the use of {sup 141}Pr, an element that has a single, naturally occurring isotope, a significant n,2n cross-section, and decays by positron emission that result in two coincident 511 keV photons. Neutron fluences are thus inferred by relating measured reaction product decay activity to fluence. Specific sample activity is measured using the sum-peak method to count gamma-ray coincidences from the annihilation of the positron decay products. The system was tested using 14 and 2.45 MeV neutron bursts produced by NSTec Dense Plasma Focus Laboratory fusion sources. Lead, copper, beryllium, and silver activation detectors were compared. The detection method allows measurement of 14 MeV neutron yield with a total error of {approx}18%.

  3. Calibration processes for photon-photon colliders

    Bartos, E.; Dubnickova, A. -Z.; Galynskii, M. V.; Kuraev, E. A.

    2003-01-01

    Processes with creation of a pair charged particles with emission of hard photon and two pairs of charged particles are considered for colliding partially polarized photon photon beams. The effects of circular and linear polarization of the initial photons are discussed in more details.

  4. Calibration processes for photon-photon colliders

    Bartos, E; Galynsky, M V; Kuraev, E A

    2004-01-01

    Processes with creation of a pair charged particles with emission of hard photon and two pairs of charged particles are considered for colliding partially polarized photon photon beams. The effects of circular and linear polarization of the initial photons are discussed in more detail.

  5. Semiconductor quantum optics with tailored photonic nanostructures

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  6. Status of the Advanced Photon Source (APS) linear accelerator

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper

  7. 14 MeV proton activation analysis

    A fast nuclear nondestructive method for protein analysis using the 14 MeV proton activation has been developed. The total nitrogen content was measured through the reaction: 14N (p,n) 14O, (Tsub(1/2)=71 s). The 14O activity was detected by means of its characteristic 2.312 MeV gamma-ray line with a NaI(Tl) detector. For a fast determination of a large number of samples a mechanized sistem reacting a rate of one sample per minute has been developed. The laboratory electronics comprises a multichannel analyser, a PDP computer and an electronic module comtroller. Comparison of the results obtained by the method described and the classical Kjeldal technique for samples of various cereal grains (soya bean seads, wheat, barley and corn) showed good correlation. A problem of the analysis of the whole protein region on corn and soya-bean seads, where this region is thicker (0,2 - 2 mm), is mentioned. In this case flour was proposed to be used to obtain a protein homogeneous sample and the irradiaton dose for a sample was about 33,000 Gy, mainly (99%) from protons (27 s x 100 nA x 14 MeV)

  8. Modeling the Bremsstrahlung of 30-60 MeV electrons. Source term calculation

    The photofission process has been recently considered for the production of neutron rich isotopes and the development of radioactive beams. The radioprotection hazard should be studied accordingly. A survey of the radiative electron energy loss theory is reported in order to estimate numerically the Bremsstrahlung production of thick targets. The resulted Bremsstrahlung angular and energy theoretical distributions delivered from W and UCx thick converters are presented and compared with previous results. This study is focused on initial kinetic energies of the electron beam included in the range 30-60 MeV, suitable for the production of large photon yields able to induce the 238U fission. The source term for 50 MeV incident electrons is reported for radioprotection purposes. (authors)

  9. Virtual photon-photon scattering

    Hoferichter, Martin; Colangelo, Gilberto; Procura, Massimiliano; Stoffer, Peter(Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, Bern, CH-3012, Switzerland)

    2014-01-01

    Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e+e− → hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of the pr...

  10. Virtual photon-photon scattering

    Hoferichter, Martin; Colangelo, Gilberto; Procura, Massimiliano; Stoffer, Peter(Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, Bern, CH-3012, Switzerland)

    2013-01-01

    Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e^+e^- --> hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of th...

  11. Photons and photoneutrons spectra of a Linac of 15 MV

    Using the Monte Carlo code MCNP-5, the photons and photoneutrons spectra generated in the head stock of the lineal accelerator (Linac) Varian of 15 MV of the Cancerology State of Nayarit were determined. For the calculations a heterogeneous head stock was modeled, more compatible with the work conditions. In the center of the head stock a tungsten target was located on a copper support, followed by the flattened filter. The photons and photoneutrons spectra were obtained accelerating electrons and making them collide against the target to produce photons by Bremsstrahlung, these photons were transported inside the head stock and the photons and photoneutrons spectra were calculated in a punctual detector located under the flattened filter and in the isocenter. The spectra were evaluated in punctual detectors that were located in the plane from the isocenter to the long of the X and Y axes each 20 cm, in an equidistant way, up to 2 m, so much in the longitudinal and transversal axes. In the calculations were used histories 5E(6) with the purpose of obtaining smaller uncertainties to 1%. It was found that the photons spectrum in the punctual detector inside the head stock presents a pick of 1.25 MeV in the energy interval of 0.5 and 1.5 MeV, later suffers a filtration and diminishes in asymptote form. This spectrum modifies when the beam reaches the isocenter, diminishing the low energy photons. Inside the head stock the photoneutrons spectrum shows a structure with two picks, one before 1 MeV and other after 1 MeV; this is for effect of the collimators geometry and the distance. Finally an increment of the total neutrons flow to 60 cm of distance of the isocenter on the Y axis was observed, due to the design geometry of the modeling heterogeneous head stock. (Author)

  12. Active neutron/photon personal dosemeters

    Though active personal dosemeters for photon fields reflect already a high level of development, there is still a need to advance the design of dosemeters for use in mixed neutron/photon fields and especially for monitoring the staff of nuclear power plants and the personnel accompanying transports of spent fuel flasks. The measurement of the neutron component is usually associated with problems. After a short description of the complex mixed fields in the nuclear fuel cycle, the commercially available active dosemeters and those under development will be listed and problems arising from their use in these fields will be discussed. Two new developments, the Siemens EPD-N2 and the PTB DOS-2002, which both are capable of indicating neutron and photon doses, will be described and discussed in detail. New response functions with respect to personal dose equivalent Hp(10) will be presented for neutrons. They have been determined by measurements in the quasi-monoenergetic reference fields at PTB in the energy range from 24 keV to 14.8 MeV and in fields with broad spectral distributions using the radionuclide sources 252Cf(bare), 252Cf(D2O,mod) - with and without cadmium shielding - 241Am-Be as well as a thermal neutron beam. The spectral distributions of all fields and the readings of the dosemeters in these fields were taken as inputs for an unfolding procedure to determine the dosemeter response in the overall energy region from thermal to 15 MeV. The procedure was tested by folding the dosemeter response with the broad neutron spectra and comparing with the readings of the dosemeters. Another problem in practical workplace fields is linked with high energy photons. Photons with energies from 6 MeV to 7 MeV from the 16O(n,pγ) reaction contribute to dose, particularly at reactors, and have to be taken into account when dosemeters are processed. Measurements with high energy photons were therefore performed with both devices and will be discussed. Finally, practical

  13. Nanowire photonics

    Peter J. Pauzauskie

    2006-10-01

    Full Text Available The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. However, several challenges remain before the potential of nanowire building blocks is fully realized. We cover recent advances in nanowire synthesis, characterization, lasing, integration, and the eventual application to relevant technical and scientific questions.

  14. Photon spectrometry in thermal neutron standard field

    Kudo, K; Koshikawa, S; Toyokawa, H; Ohgaki, H; Matzke, M

    2002-01-01

    An NE213 liquid scintillation counter (5.08 cm in diameter and 5.08 cm long) with an LiF filter was used to measure the energy distribution of photons mixed in a thermal neutron field. The response function matrix of photons in an energy range up to 10 MeV was calculated by the EGS4/PRESTA code and properly folded with a resolution function. Pulse height spectra measured with a set of reference gamma-ray sources were compared to the calculated response function and agreed very well for all reference gamma-ray sources. The GRAVEL and MIEKE codes from the HEPRO program were used to unfold measured pulse height spectra. Energy distributions obtained by the unfolding were applied to evaluate the effective dose equivalent of photons mixed in a thermal neutron field.

  15. Optimal generation of indistinguishable photons from non-identical artificial molecules

    Cancellieri, E.; Troiani, F.; Goldoni, G.

    2009-01-01

    We show theoretically that nearly indistinguishable photons can be generated with non-identical semiconductor-based sources. The use of virtual Raman transitions and the optimization of the external driving fields increases the tolerance to spectral inhomogeneity to the meV energy range. A trade-off emerges between photon indistinguishability and efficiency in the photon-generation process. Linear (quadratic) dependence of the coincidence probability within the Hong-Ou-Mandel setup is found w...

  16. A numerical study of the characteristics of the LEALE photon beam

    At the LEALE laboratory a monochromatic photon beam with energy in the range 80/300 MeV is available. Photons are produced by positron annihilation on a liquid hydrogen target. The characteristics of the beam are calculated for various conditions (positron energy, photon collimator, target thickness), taking into account the effects contributing to the beam spreading (energy loss and multiple scattering of protons in the annihilation target, energy distribution and angular divergence of the positron beam). (author)

  17. High intensity X/γ photon beams for nuclear physics and photonics

    Serafini, L.; Alesini, D.; Bacci, N.; Bliss, N.; Cassou, K.; Curatolo, C.; Drebot, I.; Dupraz, K.; Giribono, A.; Petrillo, V.; Palumbo, L.; Vaccarezza, C.; Variola, A.; Zomer, F.

    2016-05-01

    In this manuscript we review the challenges of Compton backscattering sources in advancing photon beam performances in the 1 - 20 MeV energy range, underlining the design criteria bringing to maximum spectral luminosity and briefly describing the main achievements in conceiving and developing new devices (multi-bunch RF cavities and Laser recirculators) for the case of ELI-NP Gamma Beam System (ELI-NP-GBS).

  18. High intensity X/γ photon beams for nuclear physics and photonics

    Serafini L.

    2016-01-01

    Full Text Available In this manuscript we review the challenges of Compton backscattering sources in advancing photon beam performances in the 1 – 20 MeV energy range, underlining the design criteria bringing to maximum spectral luminosity and briefly describing the main achievements in conceiving and developing new devices (multi-bunch RF cavities and Laser recirculators for the case of ELI-NP Gamma Beam System (ELI-NP-GBS.

  19. Geant4-based comprehensive study of the absorbed fraction for electrons and gamma-photons using various geometrical models and biological tissues

    Rahman Ziaur; Rehman Shakeel Ur.; Mirza Sikander M.; Arshed Waheed; Mirza Nasir M.

    2013-01-01

    The Geant4-based comprehensive model has been developed to predict absorbed fraction values for both electrons and gamma photons in spherical, ellipsoidal, and cylindrical geometries. Simulations have been carried out for water, ICRP soft-, brain-, lung-, and ICRU bone tissue for electrons in 0.1 MeV-4 MeV and g-photons in the 0.02 MeV-2.75 MeV energy range. Consistent with experimental observations, the Geant4-simulated values of absorbed fractions show a ...

  20. Evidence for Gamma-Ray Flares in 3C 279 and PKS 1622-297 at ~10 MeV

    Collmar, W; Blömen, H; Blom, J J; Hermsen, W; McConnell, M; Stacy, J G; Bennett, K; Williams, O R

    1997-01-01

    The EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) has observed at energies above 100 MeV strong gamma-ray flares with short-term time variability from the gamma-ray blazars 3C 279 and PKS 1622-297. During these flaring periods both blazars have been detected by the COMPTEL experiment aboard CGRO at photon energies of about 10 MeV, revealing simultaneous gamma-ray activity down to these energies. For both cases the derived fluxes exceed those measured in previous observations, and 3C 279 shows an indication for time variability within the observational period. Both sources show evidence for `hard' MeV spectra. In general the behaviour of both sources at gamma-ray energies is found to be quite similar supporting the conclusion that the underlying physical mechanism for both gamma-ray flares might be the same.

  1. Measurement of eta photoproduction on the proton from threshold to 1500 MeV

    Bartalini, O.; Bellini, V.; Bocquet, J.P.; Calvat, P.; Capogni, M.; Casano, L.; Castoldi, M; D'Angelo, A.(Università di Roma Tor Vergata and INFN, Sezione di Roma Tor Vergata, Rome, Italy); Didelez, J. P.; Di Salvo, R.; Fantini, A.; Franco, D.(APC, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France); Gaulard, C.; Gervino, G.; Ghio, F.

    2007-01-01

    Beam asymmetry and differential cross section for the reaction gamma+p->eta+p were measured from production threshold to 1500 MeV photon laboratory energy. The two dominant neutral decay modes of the eta meson, eta->2g and eta->3pi0, were analyzed. The full set of measurements is in good agreement with previously published results. Our data were compared with three models. They all fit satisfactorily the results but their respective resonance contributions are quite different. The possible ph...

  2. Angular distribution of photofission fragments in 238U at 5.43 MeV

    The angular distribution of photofission fragments of 238U, produced by 5.43 MeV monochromatic photons from the η,γ reaction in sulphur, has been measured using glass plates as detectors. In the analysis of the results only the contributions from the (Jπ, K) 1= (1-,0), (1-,1) and (2+,0) terms were considered. The coefficients of the angular distributions of the fission fragments were obtained. An analysis of the data available in the literature on the angular distribution near the photofission threshold is also presented. (author)

  3. Reaction mechanisms in 12C(γ,pp) near 200 MeV

    Inclusive 12C(γ,pp) cross sections have been measured with tagged photons in the range Eγ=187 endash 227 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The large angular acceptance allowed the measurement of noncoplanar pp emission. The cross sections were compared to a Monte Carlo intranuclear cascade calculation. Agreement was reasonable for the shapes of the cross sections but the calculated total cross section was 3.9 times larger than the data. copyright 1996 The American Physical Society

  4. A 50-MeV mm-wave electron linear accelerator system for production of tunable short wavelength synchrotron radiation

    The Advanced Photon Source (APS) at Argonne in collaboration with the University of Illinois at Chicago and the University of Wisconsin at Madison is developing a new millimeter wavelength, 50-MeV electron linear accelerator system for production of coherent tunable wavelength synchrotron radiation. Modern micromachining techniques based on deep etch x-ray lithography, LIGA (Lithografie, Galvanoformung, Abformung), capable of producing high-aspect ratio structures are being considered for the fabrication of the accelerating components

  5. Total photoabsorption cross sections for 1H, 2H and 3He from 200 to 800 MeV

    The total photoabsorption cross sections for 1H, 2H and 3He have been measured for incident photon energies ranging from 200 to 800 MeV. The results show clearly the changes in the nucleon resonances in going from 1H to 3He. In particular, for the D13 region the behaviour for 3He is intermediate between that for 1H, 2H and heavier nuclei. (author)

  6. Response of monitoring instruments to high-energy photon radiation

    Haridas, G; Pradhan, S D; Nayak, A R; Bhagwat, A M

    2000-01-01

    Response of commercially available monitoring instruments to high-energy photon radiation was studied under the stored beam condition of a few milliamperes in the storage ring of the Synchrotron Radiation Source, INDUS-I, at Centre for Advanced Technology (CAT), Indore. The storage ring has a circumference of 18.96 m, where electrons at 450 MeV are stored for a few hours, during which the emitted synchrotron radiation is exploited for scientific research and other applications. Radiation environment near storage ring has bremsstrahlung photons of various energies (maximum 450 MeV). A study has indicated underestimation of dose by conventional radiation monitoring instruments by a factor of 2-4. Response after transmission of photons through massive shield was also studied, which indicated spectral degradation and good response by the survey meters.

  7. Nuclear Photonics

    Habs, D; Jentschel, M; Thirolf, P G

    2012-01-01

    With new gamma-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest with 10^13 g/s and a bandwidth of Delta E_g/E_g ~10^-3, a new era of g-beams with energies <=20 MeV comes into operation, compared to the present world-leading HIGS facility (Duke Univ., USA) with 10^8 g/s and Delta E_g/E_g~0.03. Even a seeded quantum FEL for g-beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused g-beams. We describe a new experiment at the g-beam of the ILL reactor (Grenoble), where we observed for the first time that the index of refraction for g-beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for g-beams are being developed. Thus we have to optimize the system of the g-beam facility, the g-beam optics and g-detectors. We can trade g-intensity for band width, going down to Delta E_g/E_g ~ 10^-6 and address individual nuclear levels. 'Nuclear pho...

  8. The low energy photon tagger NEPTUN: Toward a detailed study of the Pygmy dipole resonance with real photons

    Semmler, Diego; Aumann, T.; Bauer, C.; Baumann, M.; Beckstein, M.; Beller, J.; Blecher, A.; Cvejin, N.; Duchene, M.; Hug, F.; Kahlbow, J.; Knoerzer, M.; Kreis, K.; Kremer, C.; Ries, P.; Romig, C.; Scheit, H.; Schnorrenberger, L.; Symochko, D.; Walz, C. [Institut fuer Kernphysik, Darmstadt (Germany); Lefol, R. [University of Saskatchewan, Saskatoon (Canada); Loeher, B. [ExtreMe Matter Institute EMMI and Research Division, Frankfurt (Germany); Institute for Advanced Studies FIAS, Frankfurt (Germany)

    2014-07-01

    The low energy photon tagger NEPTUN at the S-DALINAC delivers a quasi-monoenergetic photon beam between about 4 MeV and 20 MeV with a resolution of approximately 25 keV. Tagged photons provide the possibility to measure the dipole strength of nuclei in the energy range below and above the neutron threshold. The highly efficient LaBr{sub 3} based spectrometer GALATEA will be used to detect not only the direct decays to the ground state, but also cascading decays can be measured with suitable efficiency. We will measure (γ,n)- and (γ,nγ)-reactions with neutron detectors based on plastic scintillators. This talk provides an overview about setup and goals of the NEPTUN experiment as well as the current state of the commissioning phase. Planned optimizations of the setup, based on the results of a test beam time in June 2013, are also presented.

  9. Photon mapping

    Nečas, Ondřej

    2009-01-01

    V rámci této práce byla provedena praktická implementace algoritmu photon mapping. Pro dosažení kvalitnějšího výstupu byly zkoumány některé základní a pokročilejší metody globálního osvětlení. Tyto náročné algoritmy jsou často prakticky nepoužitelné a je nutná jejich optimalizace. Základem praktické implementace je optimalizace raytraceru. Vzorky nepřímého difuzního osvětlení počítané metodou Monte Carlo je možné mezi sebou interpolovat s použitím vhodné techniky....

  10. Production of high energy photon beam at TAC

    When an electron pass through an electric field, the electron loose its part of energy and photon is generated. This process is known as Bremsstrahlung (means 'radiation breaking' in German) and this photon can be used in a variety of different application. The TAC will be first Turkish Accelerator Center (TAC) where a IR-FEL and Beamstrahlung photon beam facilities will be established in first stage. The electrons will be accelerated up to 40 MeV by two LINAC and these beam will be used to generate Bremsstrahlung photon. In this study, the main parameters for Bremsstrahlung photon beam facility will be established at TAC will be detailed and fields to be used Bremsstrahlung beam will also be presented.

  11. Supernova bounds on the dark photon using its electromagnetic decay

    The hypothetical massive dark photon (γ′) which has kinetic mixing with the SM photon can decay electromagnetically to e+e− pairs if its mass m exceeds 2me, and otherwise into three SM photons. These decays yield cosmological and supernovae associated signatures. We briefly discuss these signatures, particularly in connection with the supernova SN1987A, and delineate the extra constraints that arise on the mass and mixing parameter of the dark photon. In particular, we find that for dark photon mass mγ′ in the 5–20 MeV range arguments based on supernova 1987A observations lead to a bound on ϵ which is about 300 times stronger than the presently existing bounds based on energy loss arguments

  12. Physics at high energy photon photon colliders

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  13. Photon Aided and Inhibited Tunneling of Photons

    liu, xuele

    2013-01-01

    In the light of the interest in the transport of single photons in arrays of waveguides, fiber couplers, photonic crystals, etc., we consider the quantum mechanical process of the tunneling of photons through evanescently or otherwise coupled structures. We specifically examine the issue of tunneling between two structures when one structure already contains few photons. We demonstrate the possibility of both photon aided and inhibited tunneling of photons. The Bosonic nature of photons enhances the tunneling probability. We also show how the multiphoton tunneling probability can be either enhanced or inhibited due to the presence of photons. We find similar results for the higher order tunneling. Finally, we show that the presence of a squeezed field changes the nature of tunneling considerably.

  14. Physics at High Energy Photon Photon Colliders

    Chanowitz, Michael S.

    1994-01-01

    I review the physics prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  15. ETAII 6 MEV PEPPERPOT EMITTANCE MEASUREMENT

    Paul, A C; Richardson, R; Weir, J

    2004-10-18

    We measured the beam emittance at the ETAII accelerator using a pepper-pot diagnostic at nominal parameters of 6 MeV and 2000 Amperes. During the coarse of these experiments, a ''new tune'' was introduced which significantly improved the beam quality. The source of a background pedestal was investigated and eliminated. The measured ''new tune'' emittance is {var_epsilon}= 8.05 {plus_minus} 0. 53 cm - mr or a normalized emittance of {var_epsilon}{sub n} = 943 {plus_minus} 63 mm - mr In 1990 the ETAII programmatic emphasis was on free electron lasers and the paramount parameter was whole beam brightness. The published brightness for ETAII after its first major rebuild was J = 1 - 3 x 10{sup 8} A/(m - rad){sup 2} at a current and energy of 1000-1400 Amperes and 2.5 MeV. The average normalized emittance derived from table 2 of that report is 864 mm-mr corresponding to a real emittance of 14.8 cm-mr.

  16. High Energy Photon-Photon Collisions -

    Brodsky, Stanley J.; SLAC; Zerwas, Peter M.; DESY

    1994-01-01

    The collisions of high energy photons produced at an electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions, and extensions of the Standard Model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary $e^+e^-$ collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly $\\gamma\\gamma \\rightarrow W^+...

  17. Polarization precession in photon-photon encounters

    Sawyer, R. F.

    2004-01-01

    We calculate the rate of precession of the direction of polarization of a photon traversing a sea of plane-polarized photons moving in the opposed direction, where the interaction is the one-loop "vacuum" Heisenberg-Euler coupling of four fields. Substantial precession can take place in a distance many orders of magnitude shorter than the free path for photon-photon scattering, mediated by the same interaction. We consider briefly the possibility of some interesting collective effects in the ...

  18. Total cross section of hadron photoproduction on Be, C, Hsub(2)O and Al nuclei in the energy range Esub(γ)=(200-900) MeV

    New experimental results of the measurement of total cross section of hadron photoproduction on Be, C, H2O and Al nuclei for the photon energy of (0.2-0.9) GeV obtained on the tagged photon beam by means of hadron detectors covering the solid angle approximately 4π are reported. The results are compared with the available data on total cross section of hadron photoproduction. For the oxygen nucleus the comparison is carried out with the theoretical predictions for the photon energy up to 400 MeV

  19. Jets in Photon-Photon Collisions

    Fontannaz, M.

    1994-01-01

    We study jet production in photon-photon reactions at the next-to-leading logarithm accuracy. The discussion of the theoretical uncertainties and the role of the quark and gluon distributions in the photon is emphasized. The phenomenology at TRISTAN energies is discussed and predictions are made for LEP 200.

  20. Suzaku Observations of Extreme MeV Blazar Swift J0746.3+2548

    Watanabe, Shin; Sato, Rie; Takahashi, Tadayuki; Kataoka, Jun; Madejski, Greg; Sikora, Marek; Tavecchio, Fabrizio; Sambruna, Rita; Romani, Roger; Edwards, Philip G.; Pursimo, Tapio

    2008-12-01

    We report the Suzaku observations of the high luminosity blazar SWIFT J0746.3+2548 (J0746) conducted in November 2005. This object, with z = 2.979, is the highest redshift source observed in the Suzaku Guaranteed Time Observer (GTO) period, is likely to show high gamma-ray flux peaking in the MeV range. As a result of the good photon statistics and high signal-to-noise ratio spectrum, the Suzaku observation clearly confirms that J0746 has an extremely hard spectrum in the energy range of 0.3-24 keV, which is well represented by a single power-law with a photon index of {Lambda}{sub ph} {approx_equal} 1.17 and Galactic absorption. The multiwavelength spectral energy distribution of J0746 shows two continuum components, and is well modeled assuming that the high-energy spectral component results from Comptonization of the broad-line region photons. In this paper we search for the bulk Compton spectral features predicted to be produced in the soft X-ray band by scattering external optical/UV photons by cold electrons in a relativistic jet. We discuss and provide constraints on the pair content resulting from the apparent absence of such features.

  1. Suzaku Observations of Extreme MeV Blazar SWIFT J0746.3+2548

    Watanabe, Shin; Takahashi, Tadayuki; Kataoka, Jun; Madejski, Greg; Sikora, Marek; Tavecchio, Fabrizio; Sambruna, Rita; Romani, Roger; Edwards, Philip G; Pursimo, Tapio

    2008-01-01

    We report the Suzaku observations of the high luminosity blazar SWIFT J0746.3+2548 (J0746) conducted in November 2005. This object, with z = 2.979, is the highest redshift source observed in the Suzaku Guaranteed Time Observer (GTO) period, is likely to show high gamma-ray flux peaking in the MeV range. As a result of the good photon statistics and high signal-to-noise ratio spectrum, the $Suzaku$ observation clearly confirms that J0746 has an extremely hard spectrum in the energy range of 0.3-24 keV, which is well represented by a single power-law with a photon index of 1.17 and Galactic absorption. The multiwavelength spectral energy distribution of J0746 shows two continuum components, and is well modeled assuming that the high-energy spectral component results from Comptonization of the broad-line region photons. In this paper we search for the bulk Compton spectral features predicted to be produced in the soft X-ray band by scattering external optical/UV photons by cold electrons in a relativistic jet. W...

  2. Computational Study of Integrated Neutron/Photon Imaging for Illicit Material Detection

    Hartman, Jessica; Barzilov, Alexander

    The feasibility of integration of photon and neutron radiography for nondestructive detection of illicit materials was examined. The MCNP5 code was used to model a radiography system consisting of accelerator-based neutron and photon sources and the imaging detector array, with an object under scrutiny placed between them. For this examination, the objects consisted of a matrix of low-Z and high-Z materials of various shapes and density. Transmission-radiography computations were carried out using 2.5-MeV deuterium-deuterium and 14-MeV deuterium-tritium neutron sources, and a 0.3-MeV photon source. The radiography tallies for both neutron and photon sources were modeled for the same geometry of the system. The photon-to- neutron transmission ratios were determined for each pixel of the detector array and utilized to identify the presence of specific materials in the radiographic images. By focusing on the inherent difference between neutron and photon interactions, it was possible to determine the shape and material composition of complex objects present within a pallet or a shipping container. The use of a single imaging array of scintillation detectors for simultaneous measurements of fast neutrons and photons is discussed, and its function in the dual neutron/photon radiography applications is addressed.

  3. Shielding considerations for the 750-MeV electron accelerator at the University of Illinois

    This report summarizes some of the calculations that were carried out to provide shielding data for the 750-MeV electron accelerator under construction at the University of Illinois. All of the results described herein were obtained for a 300-MeV and/or 750-MeV electron beam. All calculations deal with doses produced by the particle beam during operation and do not include secondary radiation sources, i.e., induced radioactivity. The dose equivalents were obtained as a function of shield thickness so that various accident scenatios could be considered, i.e., various percentages of beam loss during operation. The calculated results that were considered included: (1) the earth shielding thickness (and iron door) surrounding the accelerator vault, (2) the earth shielding thickness around the beam transport tunnel, (3) an estimate of the thickness and composition of the movable shielding door in the general purpose electron beam experimental area, (4) the shield thickness around the beam dump in the bremsstrahlung irradiation facility, (5) skyshine dose from some of the experimental areas, and (6) dose rates inside and outside the tagged photon facility. The programs and cross section data bases used in the calculations, as well as the source neutron spectra calculations, are presented. The results of the dose calculations are presented and discussed

  4. RR photons

    Camara, Pablo G; Marchesano, Fernando

    2011-01-01

    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge $U(1)_Y$ (hence with the photon). In this paper we study in detail different avenues by which $U(1)_{RR}$ bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by St\\"uckelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional $p$-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that ty...

  5. Full distribution of dipole states below 9MeV in 76Se

    Cooper, N.; Werner, V.; Smith, M. K.; Goddard, P. M.; Reichel, F.; Beller, J.; Fritzsche, M.; Pietralla, N.; Romig, C.; Savran, D.; Scheck, M.; Sonnabend, K.; Wagner, J.; Chakraborty, A.; Crider, B. P.; Peters, E.; Yates, S. W.; Kelly, J.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Deleanu, D.; Filipescu, D.; Glodariu, T.

    2011-10-01

    Systematics of photoexcitation strength near the particle emission threshold has been of great interest in recent years due its importance in stellar nucleosynthesis of certain heavy nuclei. Theories such as the QRPA and its variants are currently used to calculate photoexcitation strength in this energy region, as well as the nuclear matrix element of the hypothetical 0 ν 2 β -decay modes, such as 76Ge -->76Se + 2e- . Dipole states between 2 and 4MeV in 76Se have been studied using linearly polarized, nearly monoenergetic photons produced by Compton-backscattering at the HI γ --> S facility. The experiment completes a series of photon scattering experiments performed on this nucleus in the energy region below 9MeV, both at the S-DALINAC and at HI γ --> S. Collective dipole excitations are investigated. Supported by U.S. DOE grant nos. DE-FG02-91ER40609 and DE-FG02-97ER41033, and NSF grant no. PHY-0956310.

  6. Optomechanical photon shuttling between photonic cavities

    Li, Huan

    2014-01-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...

  7. Photon-hadron and photon-photon collisions in ALICE

    Schicker, R.

    2015-01-01

    A review is given on photon-hadron and photon-photon collisions in the ALICE experiment. The physics motivation for studying such reactions is outlined, and the results obtained in proton-lead and lead-lead collisions in Run 1 of the LHC are discussed. The improvement in detector rapidity coverage due to a newly added detector system is presented. The ALICE perspectives for data taking in LHC Run II are summarised.

  8. Status of the Advanced Photon Source (APS) linear accelerator

    A 2856-MHz S-band, electron-positron linear accelerator (linac) has been constructed at the Advanced Photon Source (APS). It is the source of particles and the injector for the other APS accelerators, and linac commissioning is well underway. The linac is operated 24 hours per day to support linac beam studies and rf conditioning, as well as positron accumulator ring and synchrotron commissioning studies. The design goal for accelerated positron current is 8-mA, and has been met. Maximum positron energy to date is 420-MeV, approaching the design goal of 450-MeV. The linac design and its performance are discussed

  9. Dark Photon Search at BABAR

    Greenwood, Ross N; /MIT /SLAC

    2012-09-07

    Presented is the current progress of a search for the signature of a dark photon or new particle using the BaBar data set. We search for the processes e{sup +}e{sup -} {yields} {gamma}{sub ISR}A{prime},A{prime} {yields} e{sup +}e{sup -} and e{sup +}e{sup -} {yields} {gamma}{sub ISR}{gamma}, {gamma} {yields} A{prime},A{prime} {yields} e{sup +}e{sup -}, where {gamma}{sub ISR} is an initial state radiated photon of energy E{sub {gamma}} >= 1 GeV. Twenty-five sets of Monte Carlo, simulating e{sup +}e{sup -} collisions at an energy of 10.58 GeV, were produced with different values of the A{prime} mass ranging from 100 MeV to 9.5 GeV. The mass resolution is calculated based on Monte Carlo simulations. We implement ROOT's Toolkit for Multivariate Analysis (TMVA), a machine learning tool that allows us to evaluate the signal character of events based on many of discriminating variables. TMVA training is conducted with samples of Monte Carlo as signal and a small portion of Run 6 as background. The multivariate analysis produces additional cuts to separate signal and background. The signal efficiency and sensitivity are calculated. The analysis will move forward to fit the background and scan the residuals for the narrow resonance peak of a new particle.

  10. Resolved Photon Processes

    Drees, Manuel; Godbole, Rohini M.(Centre for High Energy Physics, Indian Institute of Science, 560012, Bangalore, India)

    1995-01-01

    We review the present level of knowledge of the hadronic structure of the photon, as revealed in interactions involving quarks and gluons ``in" the photon. The concept of photon structure functions is introduced in the description of deep--inelastic $e \\gamma$ scattering, and existing parametrizations of the parton densities in the photon are reviewed. We then turn to hard \\gamp\\ and \\gaga\\ collisions, where we treat the production of jets, heavy quarks, hard (direct) photons, \\jpsi\\ mesons, ...

  11. Resolved Photon Processes

    Godbole, RM

    1998-01-01

    After giving a very brief introduction to the resolved photon processes, I will summarise the latest experimental information from HERA, on resolved photon contribution to large pt jet production as well as to direct photon production. I will point out the interesting role that resolved photon processes can play in increasing our understanding of the dynamics of the Quarkonium production. I will then discuss the newer information on the parton content of virtual photons as well as the kt dist...

  12. Review of neutron data: 10 to 40 MeV

    Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed

  13. 14 MeV neutrons physics and applications

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  14. Monte Carlo electron/photon transport

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  15. Semiconductor quantum optics with tailored photonic nanostructures

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings (ΔE∝5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of single photon emission into the waveguide. The results obtained during the course of this thesis contribute significantly to

  16. (γ,n) reaction in nuclei of the 12<=A<=238 interval in the intermediate energy region (300 MeV-1000MeV)

    The absolute cross section of the 12C(γ,n)11C, 19F(γ,n)18F, 23Na(γ,n)22Na, 31P(γ,n)30P, 52Cr(γ,n)51Cr, 55Mn(γ,n)54Mn, 59Co(γ,n)58Co, 75As(γ,n)74As, 103Rh(γn)102Rh, 127I(γ,n)126I, 197Au(γ,n)196Au and 238U(γ,n)237U reactions were determined, experimentally, in the energy range from 300 MeV to 1000 MeV, using Bremsstrahlung photons. The measured cross sections were compared with results estimated by Monte Carlo Method applied to intranuclear cascades initiated by phothons. A functional dependence between the average value of (γ,n) absolute cross section and the mass number, were established. The (γ,n) absolute cross sections from simple relations, which transparencies of complexe nuclei for mesons and nucleons photo produced were also determined. (M.C.K.)

  17. Photonic Crystals Towards Nanoscale Photonic Devices

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  18. Photonic Crystals Towards Nanoscale Photonic Devices

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  19. High resolution (γ, n) experiments in light nuclei at Eγ ≅ 60 MeV

    The experiments was undertaken to establish the real photon reaction mechanism on light nuclei in the intermediate photon-energy region, Eγ ≅ 60 MeV. The shortage of high quality (γ, n) data was the main motivation for starting a systematic investigation of this reaction channel. In this work, 12C and 16O were examined. In the future, both heavier (40Ca) and lighter (4He) targets will be investigated. Two neutron detector arrays were built and tested. A state-of-the-art neutron spectrometer was constructed by combining these arrays with a high resolution (≅ 300 keV) photon tagger. The intrinsic time resolution of this spectrometer (≅ 800 ps) allowed an excellent neutron energy resolution to be achieved (≅ 1 MeV) with fairly short flight paths (≅ 6 m), thereby optimizing the geometrical efficiency (≅ 10 msr) of the apparatus. The excellent energy resolution of the spectrometer allowed individual states (or cluster of states) to be resolved. This resolution approaches that available for the (γ, p) reaction. For 12C and 16O the same states seen in the (γ, p) reaction were observed over an angular range from 30-115 degrees. The most important result, concerning the obtained absolute differential cross sections, is the striking similarity between the (γ, p) and (γ, n) reaction channels. This applies to both target nuclei for all populated states, independent of character (1h or 2h1p). A much detailed comparison is thus possible with these new data, providing greater constraints on the theoretical models. Further, access to more and better data will hopefully attract greater theoretical interest. The experiment was a collaboration between the Photonuclear research group at Lund University in Sweden and the Nuclear structure group from the University of Glasgow. The data were collected at MAX-lab in Lund, Sweden, during two run periods in November 1990 and February 1992. 96 refs, 105 figs, 28 tabs

  20. Valine radiolysis by MeV ions

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  1. Photon albedo for water, concrete, and iron at normal incidence, and dependence on the thickness of reflecting material

    Marković Vladimir M.; Krstić Dragana; Stevanović Nenad; Nikezić Dragoslav R.

    2013-01-01

    Total number and angular albedo were calculated for commonly used shielding materials, water, concrete, and iron, for photons with initial energies from 10 keV up to 10 MeV and normal incident angle. Influence of material thickness on total number albedo was also investigated. Double differential albedo was determined from simulation of photon transport through materials by using PENELOPE and MCNP software. Backscattered photons were scored and grouped in equal intervals of energy and a...

  2. Photon-photon scattering: a tutorial

    Liang, Yi; Czarnecki, Andrzej

    2011-01-01

    Long-established results for the low-energy photon-photon scattering, gamma gamma --> gamma gamma, have recently been questioned. We analyze that claim and demonstrate that it is inconsistent with experience. We demonstrate that the mistake originates from an erroneous manipulation of divergent integrals and discuss the connection with another recent claim about the Higgs decay into two photons. We show a simple way of correctly computing the low-energy gamma gamma scattering.

  3. Azimuthal Correlations in Photon-Photon Collisions

    Arteaga, N.; Carimalo, C.; Kessler, P.; Ong, S.; Panella, O.

    1995-01-01

    Using the general helicity formula for $\\gamma^* \\gamma^*$ collisions, we are showing that it should be possible to determine a number of independent ``structure functions'', i.e. linear combinations of elements of the two-photon helicity tensor, through azimuthal correlations in two-body or quasi two-body reactions induced by the photon-photon interaction, provided certain experimental conditions are satisfied. Numerical results of our computations are presented for some particular processes...

  4. Aspherical Photon and Anti-Photon Surfaces

    Gibbons, G W

    2016-01-01

    In this note we identify photon surfaces and anti-photon surfaces in some physically interesting spacetimes, which are not spherically symmetric. All of our examples solve physically reasonable field equations, including for some cases the vacuum Einstein equations, albeit they are not asymptotically flat. Our examples include the vacuum C-metric, the Melvin solution of Einstein-Maxwell theory and generalisations including dilaton fields. The (anti-)photon surfaces are not round spheres, and the lapse function is not always constant.

  5. Photonic Eigenmodes in a Photonic Crystal Membrane

    E. Ya. Glushko; O. E. Glushko; L. A. Karachevtseva

    2012-01-01

    Photonic membranes are the most widely used kind of 2D photonic crystals in signal processing. Nevertheless, some important aspects of electromagnetic field behavior in membrane like photonic crystals (MPCs) need detail investigation. We develop the approach close to resonant coupling modes method which unites both external and intrinsic problems, in-plane and out-of-plane geometries, and resonator properties of MPC. The resonator standing modes are excited by an external source through the s...

  6. Photon-Photon Interactions via Rydberg Blockade

    Fleischhauer, Michael; Pohl, Thomas; Gorshkov, Alexey Vyacheslavovich; Otterbach, Johannes; Lukin, Mikhail D.

    2011-01-01

    We develop the theory of light propagation under the conditions of electromagnetically induced transparency (EIT) in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We demonstrate that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-phot...

  7. Photon statistics of intense entangled photon pulses

    Schlawin, F.; Mukamel, S

    2013-01-01

    Time- and frequency-gated two-photon counting is given by a four-time correlation function of the electric field. This reduces to two times with purely time gating. We calculate this function for entangled photon pulses generated by parametric down-conversion. At low intensity, the pulses consist of well-separated photon pairs, and crossover to squeezed light as the intensity is increased. This is illustrated by the two-photon absorption signal of a three-level model, which scales linearly fo...

  8. Measurement of energy and direction distribution of neutron and photon fluences in workplace fields

    Within the EU Project EVIDOS, a spectrometer with 24 silicon detectors mounted on the surface of a polyethylene sphere is used for the determination of the energy and direction distribution of neutrons and photons. It has been characterized with respect to neutron radiation with energies from thermal up to 15 MeV and to photon radiation with energies from 65 keV to 6 MeV. The first measurements described here were performed in the simulated workplace field, CANEL, at Cadarache, with the purpose of checking the instrument and the unfolding procedures. (authors)

  9. The Heavy Photon Search experiment at Jefferson Laboratory

    Celentano, Andrea [INFN-GENOVA

    2014-11-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or "heavy-photon", mediator of a new fundamental interaction, called "dark-force", that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling epsilon2 between 10−5 and 10−10. The HPS experiment will look for the e+e− decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering.

  10. The Heavy Photon Search experiment at Jefferson Laboratory

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or heavy-photon, mediator of a new fundamental interaction, called dark-force, that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling ε2 between 10−5 and 10−10. The HPS experiment will look for the e+e− decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering

  11. The Heavy Photon Search experiment at Jefferson Laboratory

    Celentano, Andrea

    2015-01-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new $U(1)$ massive gauge boson, or "heavy-photon," mediator of a new fundamental interaction, called "dark-force," that couples to ordinary photons trough kinetic mixing. HPS has sensitivity in the mass range 20 MeV - 1 GeV and coupling $\\varepsilon^2$ between 10$^{-5}$ and 10$^{-10}$. The HPS experiment will search for the $e^+e^-$ decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO$_4$ electromagnetic calorimeter for energy measurement and fast triggering.

  12. Characterization of gamma-ray detectors with tagged photons

    Schnorrenberger, Linda

    2012-07-01

    Photon detectors are used for various kinds of experiments in the field of nuclear physics. The response function of photon detectors on gamma rays is complex and needs to be considered during the analysis of experimental data. This thesis experimentally investigates such response functions for different detector types in a large energy range (2-20 MeV). The experiments described in this thesis were performed at the NEPTUN photon tagging facility, which provides a mono energetic photon source with tunable energy and intensity. As these were the first experiments to be performed at NEPTUN, within this study extensive development and commissioning of the setup also with respect to future campaigns were accomplished. The setup is shown to be well suited for the systematic study of detector response functions, while measurements of nuclear reactions need further improvements. (orig.)

  13. Energy response improvement for photon dosimetry using pulse analysis

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  14. Aspects on the optimal photon beam energy for radiation therapy

    The selection of optimal photon beam energy is investigated both for realistic clinical bremsstrahlung beams and for monoenergetic photon beams. The photon energies covered in this investigation range from 60Co to bremsstrahlung and monoenergetic beams with maximum energies up to 50 MeV. One head and neck tumor and an advanced cervix tumor are investigated and the influence of beam direction is considered. It is shown that the use of optimized intensity modulated photon beams significantly reduces the need of beam energy selection. The most suitable single accelerator potential will generally be in the range 6-15 MV for both superficially located and deep-seated targets, provided intensity-modulated dose delivery is employed. It is also shown that a narrow penumbra region of a photon beam ideally should contain low-energy photons (≤4 MV), whereas the gross tumor volume, particularly when deep-seated targets are concerned, should be irradiated by high-energy photons. The regions where low photon energies are most beneficial are where organs at risk are laterally close to the target volume. The situation is completely changed when uniform or wedged beams are used. The selection of optimal beam energy then becomes a very important task in line with the experience from traditional treatment techniques. However, even with a large number of uniform beam portals, the treatment outcome is substantially lower than with a few optimized intensity-modulated beams. (orig.)

  15. The High Energy Emission of the Crab Nebula from 20 keV to 6 MeV with INTEGRAL

    Jourdain, E

    2009-01-01

    The SPI spectrometer aboard the INTEGRAL mission observes regularly the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power law models give a good description in the X-ray domain (mean photon index ~ 2.05) and MeV domain (photon index ~ 2.23), crucial information are contained in the evolution of the slope with energy between these two values. This study has been carried out trough individual observations and long duration (~ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual c...

  16. 10 MeV Medical Cyclotron Prototype Beam Commissioning

    GUAN; Feng-ping; GE; Tao; YIN; Zhi-guo; SONG; Guo-fang; ZHANG; Tian-jue; JI; Bin; LI; Peng-zhan; CAO; Lei; HOU; Shi-gang; LIU; Geng-shou; WANG; Feng; LEI; Yu; WU; Long-cheng; WEN; Li-peng; LI; Zhen-guo; CUI; Tao; JIA; Xian-lu; YAO; Hong-juan; PAN; Gao-feng; ZHANG; Su-ping; CAI; Hong-ru; XIE; Huai-dong

    2012-01-01

    <正>A 10 MeV medical cyclotron prototype for the production of short-lived isotopes has been developed independently at CIAE with a time span of 2 years. On the inner target, 8 hours stability test has been finished. The extraction beam is 10 MeV with a beam intensity of 100 μA.

  17. Preliminary Report on the Evaluation of an Electron-Positron Collider as a source of Monoenergetic Photons

    Fast, James E.; Campbell, Luke W.

    2009-11-30

    Abstract Active interrogation methods are being investigated to detect shielded special nuclear material (SNM). These approaches utilize either neutron or photon beams to excite the SNM in concert with either neutron or gamma ray detectors to observe the stimulated emissions. The two primary methodologies with photon beams are photofission and nuclear resonance florescence (NRF). Photofission requires photons energies of 7-10 MeV while NRF requires photon energies around 2 MeV. For both techniques, photons that are not in the appropriate energy band, e.g. the low energy tail of a Bremsstrahlung photon beam, contribute unwanted additional radiation dose to cargo. Typically less than 10% of the photons are in the usable energy band. The additional photon production generates a commensurate amount of additional radiation dose in the source and target areas, impacting shielding requirements and/or dose to operators and equipment and at the expense of a similar increase in power consumption. Hence it is highly desirable to produce narrow energy (“monoenergetic”) photon beams with tunable energy in the range of ~2-20 MeV.

  18. Quantum Computing using Photons

    Elhalawany, Ahmed; Leuenberger, Michael

    2013-03-01

    In this work, we propose a theoretical model of two-quantum bit gates for quantum computation using the polarization states of two photons in a microcavity. By letting the two photons interact non-resonantly with four quantum dots inside the cavity, we obtain an effective photon-photon interaction which we exploit for the implementation of an universal XOR gate. The two-photon Hamiltonian is written in terms of the photons' total angular momentum operators and their states are written using the Schwinger representation of the total angular momentum.

  19. Preoperative irradiation in carcinoma of the pancreas. [/sup 60/Co or 46 MeV photons

    Pilepich, M.V. (Washington Univ., St. Louis, MO); Miller, H.H.

    1980-11-01

    Seventeen patients with carcinoma confined to the pancreas and the peripancreatic area received preoperative radiation therapy in an attempt to increase the resectability rate and to reduce the incidence of recurrence. The tumors were considered either unresectable or of borderline resectability. The radiation dose ranged between 4000 to 5000 rads, the majority of patients (75%) receiving 4400 to 4600 rads in 4 1/2 to 5 weeks. After a period averaging six weeks the patients were reevaluated for surgery. Eleven patients were explored and six underwent radical resection. Two patients remained disease free after five years. Pancreatic resection is feasible following a course of preoperative radiotherpy to a moderately high dose. It is suggested that the response of the primary tumor to radiotherapy be used as a criterion for selecting patients for reexploration and resection.

  20. The experiment 787 high efficiency photon veto detector in the 20 - 300 MEV range

    Experiment E787 is searching for the rare decay K → πνν at the Brookhaven Alternating Gradient Synchrotron (AGS). To suppress the background from the dominant K → ππo branch, a fast lead scintillator sandwich veto assembly system was used. An inefficiency level of ∼ 1 x 10-6 has been achieved for detecting πo. The limitations are in part geometrical in part due to photonuclear interactions. Our present understanding of these limitations will be presented together with our upgrading plans using pure CSI crystals. (author). 7 refs., 4 figs

  1. Photon and photoneutron spectra produced in radiotherapy Linacs

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10-6 and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  2. Photon and photoneutron spectra produced in radiotherapy Linacs

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  3. Low-power communication with a photonic heat pump.

    Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

    2014-12-15

    An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3. PMID:25607478

  4. Nuclear photon science with inverse-Compton scattering

    Recent developments of the synchroton radiation facilities and intense lasers are now guiding us to a new research frontier with probes of a high energy GeV photon beam and an intense and short pulse MeV γ-ray beam. New directions of the science developments with photo-nuclear reactions are discussed. The inverse Compton γ -ray has two good advantages for searching for a microscopic quantum world; they are 1) good emmitance and 2) high linear and circular polarizations. With these advantages, photon beams in the energy range from MeV to GeV are used for studying hadron structure, nuclear structure, astrophysics, materials science, as well as for applying medical science. (author)

  5. Photon interaction data for ENDF/B-VI

    The ENDF/B-VI photon interaction library includes data for the elements hydrogen (Z=1) through fermium (Z=100) over the energy range 10 eV to 100 MeV. This library contains data to meet the needs of traditional photon transport methods. However, this library also contains data that can be used to perform much more detailed transport calculations. This paper describes the contents of this library and how it can be used for both traditional and more detailed transport calculations

  6. Axion-like particle searches with sub-THz photons

    Capparelli, L; Ferretti, J; Giazotto, F; Polosa, A D; Spagnolo, P

    2015-01-01

    We propose a variation, based on very low energy and extremely intense photon sources, on the well established technique of Light-Shining-through-Wall (LSW) experiments for axion-like particle searches. With radiation sources at 30 GHz, we compute that present laboratory exclusion limits on axion-like particles might be improved by at least four orders of magnitude, for masses m_a <~ 0.01~meV. This could motivate research and development programs on dedicated single-photon sub-THz detectors.

  7. Monochromatic and identifiable photons used in photonuclear research

    A general overview is given of the most common experimental procedures for the production and utilisation of monochromatic and (or) identifiable photon probes actually operational in 1979. Their basic characteristics, merits and drawbacks, together with their respective major domains of experimental physics to which they are usually applied, are also investigated. Methods for producing such monochromatic and (or) identifiable photon probes, with a continuously variable energy from a few MeV up till about 180 GeV, are treated in some detail. Some of the most promising future trends in the ulterior development of such electromagnetic probes are also mentioned

  8. Two-Photon Total Annihilation of Molecular Positronium

    Pérez-Ríos, Jesús; Greene, Chris H

    2014-01-01

    The rate for complete two-photon annihilation of molecular positronium Ps$_{2}$ is reported. This decay channel involves a four-body collision among the fermions forming Ps$_{2}$, and two photons of 1.022 MeV, each, as the final state. The quantum electrodynamics result for the rate of this process is found to be $\\Gamma_{Ps_{2} \\rightarrow \\gamma\\gamma}$ = 9.0 $\\times 10^{-12}$ s$^{-1}$. This decay channel completes the most comprehensive decay chart for Ps$_{2}$ up to date.

  9. Axion-like particle searches with sub-THz photons

    Capparelli, L. M.; Cavoto, G.; Ferretti, J.; Giazotto, F.; Polosa, A. D.; Spagnolo, P.

    2016-06-01

    We propose a variation, based on very low energy and extremely intense photon sources, on the well established technique of Light-Shining-through-Wall (LSW) experiments for axion-like particle searches. With radiation sources at 30 GHz, we compute that present laboratory exclusion limits on axion-like particles might be improved by at least four orders of magnitude, for masses ma ≲ 0.01 meV. This could motivate research and development programs on dedicated single-photon sub-THz detectors.

  10. Controllable photon source

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  11. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    Hagmann, C; Pruet, J

    2006-10-26

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence.

  12. Photonic Design for Photovoltaics

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  13. Polychromatic photon absorptiometry

    Photon absorptiometry is a popular method for determining the mineral contents of body components, such as bone. The single photon absorptiometry introduced by Cameron and Sorenson (1963) has become widely accepted. Dichromatic absorptiometry using two monochromatic photon beams was recently introduced by Witt and Mazess (1978). The photon absorptiometry described here involves as unlimited number of monochromatic photon beams and component materials. Formulation for this polychromatic photon absorptiometry (PCPA) can be described as the linear algebraic expression using the least square method, by measuring photon intensities for each photon beam attenuated by the sample. For example, the lead content of lead-containing acrylic resin sheets was measured by PCPA using fluorescent X-ray from appropriate secondary targets which had been excited by white X-rays. The values obtained were in good agreement with the real contents and proved accurate to within 1%. (author)

  14. Anisotropic progressive photon mapping

    Liu, XiaoDan; Zheng, ChangWen

    2014-01-01

    Progressive photon mapping solves the memory limitation problem of traditional photon mapping. It gives the correct radiance with a large passes, but it converges slowly. We propose an anisotropic progressive photon mapping method to generate high quality images with a few passes. During the rendering process, different from standard progressive photon mapping, we store the photons on the surfaces. At the end of each pass, an anisotropic method is employed to compute the radiance of each eye ray based on the stored photons. Before move to a new pass, the photons in the scene are cleared. The experiments show that our method generates better results than the standard progressive photon mapping in both numerical and visual qualities.

  15. Jet and hadron production in photon-photon collisions

    Soldner-Rembold, Stefan

    1999-01-01

    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  16. Data for the Chilton-Huddleston photon-albedo approximations

    Empirical parameters for two different gamma-ray albedo formulas, originally proposed by Chilton and Huddleston, are presented for water, concrete, iron, and lead for 12 photon energies ranging from 0.1 to 10 MeV and for reflected doses based on the ambient dose equivalent, the effective dose equivalent, and the exposure. The parameters were obtained by fitting the albedo formulas to MCNP-calculated albedo values over the complete ranges of incident and reflected directions

  17. Multi-photon creation and single-photon annihilation of electron-positron pairs

    In this thesis we study multi-photon e+e- pair production in a trident process, and singlephoton e+e- pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e+e- pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e+e- plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e+e- dynamics at very high density. (orig.)

  18. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  19. Direct photons in nuclear collisions at fair energies

    Using the extrapolation of existing data, estimations of prompt-photon production at FAIR energies have been made. At y = yc.m. the rapidity density of prompt photons with pt > 1.5 GeV/c per central Au + Au event at 25 A GeV is estimated as ∼10-4. With the planned beam intensity 109 per second and 1% interaction probability, for 10% of most central events one can expect the prompt-photon rate ∼102 photons per second. Direct photons from the hadron scenario of ion collisions generated by the Hadron-String-Dynamics (HSD) transport approach with implemented meson scatterings πρ → πγ, ππ → ργ have been analyzed. Photons from short-living resonances (e.g., ω → π0γ) decaying during the dense phase of the collision should be considered as direct photons. They contribute significantly in the direct photon spectrum at pt = 0.5-1 GeV/c. At the FAIR energy 25 A GeV in Au + Au central collisions the HSD generator predicts, as a lower estimate, γdirect/γ (π0) ≅ 0.5% in the region pt = 0.5-1 GeV/c. At pt = 1.5-2 GeV/c γprompt/ γ (π0) ≅ 2%. Thermal direct photons have been evaluated with the Bjorken Hydro-Dynamics (BHD) model. The BHD spectra differ strongly from the HSD predictions. The direct-photon spectrum is very sensitive to the initial temperature parameter T0 of the model. The 10-MeV increase in the T0 value leads to ∼2 times higher photon yield.

  20. Photon Physics at LHC

    VANDER DONCKT, Marie; 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008)

    2008-01-01

    Experimental prospects for studying high-energy photon-photon and photon-proton interactions at the LHC are discussed. Assuming a typical LHC multipurpose detector, various signals and their irreducible backgrounds are presented after applying acceptance cuts. Selection strategies based on photon interaction tagging techniques are presented. Prospects are discussed for the Higgs boson search, detection of SUSY particles and of anomalous quartic gauge couplings, as well as fo...

  1. Nonlinear Integrated Microwave Photonics

    Marpaung, David; Eggleton, Benjamin J.

    2013-01-01

    Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we discuss the potential of on-chip nonlinear processing towards the creation of robust and multifunctional microwave photonic (MWP) processors. We also highlight key recent results in the field, inclu...

  2. Photonics. Present and future

    K. I. Silakov; T. T. Silakova

    2011-01-01

    Short review of the literature in the field of photonics, which reflects the new technology of ultra-compact optical communications components, the use of generators to transmission light instead of wires is represented. This is - silicon photonics - finding ways to use semiconductor components and of standard semiconductor technology to create optical devices, silicon photonics - the creation of a silicon photonic waveguide. All of these components can be used in the construction of computer...

  3. Switching to Photonics

    Hinton, Harvard S.

    1992-01-01

    The use of hardware that exploits the interplay of photons and electrons to switch voice, data, and video is discussed. The two directions being taken by current research-guided-wave and free-space photonics-are examined. Photonic time-slot interchanges are described. Multidivisional fabrics, based on a combination of space-division and time-division multiplexing, are considered, as is the wavelength-division-based photonic packet switch, another kind of multidimensional fabric. The use of se...

  4. Planar photonic crystal

    Nedeljkovic, Dusan; Pearsall, T. P.; Kuchinsky, S. A.; Mikhailov, M. D.; Lončar, Marko; Scherer, Axel

    2001-01-01

    We present results of guiding light in a single-line-defect planar photonic crystal (PPC) waveguide with 90° and 60° bends. The wave guiding is obtained by total internal reflection perpendicular to the plane of propagation and by the photonic band gap for the 2D photonic crystal in the plane. The results for photonic waveguiding are shown and demonstrated at 1.5 µm wavelength.

  5. Measuring photon-photon interactions via photon detection

    Macovei, Mihai A.

    2010-01-01

    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found tha...

  6. Measurement of 1.7 to 74 MeV polarised gamma rays with the HARPO TPC

    Geerebaert, Y; Amano, S; Attié, D; Bernard, D; Bruel, P; Calvet, D; Colas, P; Daté, S; Delbart, A; Frotin, M; Giebels, B; Götz, D; Hashimoto, S; Horan, D; Kotaka, T; Louzir, M; Minamiyama, Y; Miyamoto, S; Ohkuma, H; Poilleux, P; Semeniouk, I; Sizun, P; Takemoto, A; Yamaguchi, M; Wang, S

    2016-01-01

    Current {\\gamma}-ray telescopes based on photon conversions to electron-positron pairs, such as Fermi, use tungsten converters. They suffer of limited angular resolution at low energies, and their sensitivity drops below 1 GeV. The low multiple scattering in a gaseous detector gives access to higher angular resolution in the MeV-GeV range, and to the linear polarisation of the photons through the azimuthal angle of the electron-positron pair. HARPO is an R&D program to characterise the operation of a TPC (Time Projection Chamber) as a high angular-resolution and sensitivity telescope and polarimeter for {\\gamma} rays from cosmic sources. It represents a first step towards a future space instrument. A 30 cm cubic TPC demonstrator was built, and filled with 2 bar argon-based gas. It was put in a polarised {\\gamma}-ray beam at the NewSUBARU accelerator in Japan in November 2014. Data were taken at different photon energies from 1.7 MeV to 74 MeV, and with different polarisation configurations. The electronic...

  7. Photon track evolution

    Given the time scale of biological, biochemical, biophysical and physical effects in a radiation exposure of living tissue, the first physical stage can be considered to be independent of time. All the physical interactions caused by the incident photons happen at the same starting time. From this point of view it would seem that the evolution of photon tracks is not a relevant topic for analysis; however, if the photon track is considered as a sequence of several interactions, there are several steps until the total degradation of the energy of the primary photon. We can characterise the photon track structure by the probability p(E,j), that is, the probability that a photon with energy E suffers j secondary interactions. The aim of this work is to analyse the photon track structure by considering j as a step of the photon track evolution towards the total degradation of the photon energy. Low energy photons (<150 keV) are considered, with water phantoms and half-extended geometry. The photon track evolution concept is presented and compared with the energy deposition along the track and also with the spatial distribution of the several steps in the photon track. (authors)

  8. Silicon nanostructures for photonics

    Nanostructuring silicon is an effective way to turn silicon into a photonic material. In fact, low-dimensional silicon shows light amplification characteristics, non-linear optical effects, photon confinement in both one and two dimensions, photon trapping with evidence of light localization, and gas-sensing properties. (author)

  9. Diffusion Based Photon Mapping

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination...... features, while eliminating noise. We call our method diffusion based photon mapping....

  10. Photonic crystal fibers

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  11. Diffusion Based Photon Mapping

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination...... features, while eliminating noise. We call our method diffusion based photon mapping....

  12. Superconducting photonic crystals

    Berman, Oleg L.; Lozovik, Yurii E.; Eiderman, Sergey L.; Coalson, Rob D.

    2006-01-01

    The band structure of a novel type of photonic crystal with superconducting constituent elements is calculated numerically via a plane wave expansion. The density of states and the dependence of the width of the photonic gap on the filling factor is analyzed for a two-dimensional photonic crystal consisting of an infinite array of parallel superconducting cylinders.

  13. Direct photon interferometry

    Peressounko, D.

    2005-01-01

    We consider recent developments in the theory of the two-photon interferometry in ultrarelativistic heavy ion collisions with emphasis on the difference between photon and hadron interferometry. We review the available experimental results and discuss possibilities of measurement of the photon Bose-Einstein correlations in ongoing and future experiments.

  14. Status of a new 90 MeV injector linac for the electron booster synchrotron at Tohoku University

    The Great East Japan Earthquake (March 11, 2011) has inflicted enormous damage on the accelerator facility of Research Center for Electron Photon Science, Tohoku University. A 46-year-old 300 MeV linac had been operated for radioisotope (RI) production and also as an injector of a 1.2 GeV booster synchrotron for nuclear physics experiments. Low energy part of the linac will be rebuilt with all recyclable components to sustain RI production. A new small linac is constructed as the injector for the booster synchrotron. The injector consists of a thermionic rf-gun, an alpha magnet, two 3m-long accelerating structures and transport line to the synchrotron. The maximum energy of injector is 90 MeV with beam loading. The detail of the injector linac is presented in this conference. (author)

  15. Ultrafast photonic crystal optical switching

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  16. Solar Hidden Photon Search

    Schwarz, Matthias; Wiedemann, Guenter; Lindner, Axel; Redondo, Javier; Ringwald, Andreas; Wiedemann, Gunter

    2011-01-01

    The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS heli...

  17. Polarization versus photon spin

    Luis Aina, Alfredo; Rodil, Alfonso

    2014-01-01

    We examine whether the Stokes parameters of a two-mode electromagnetic field results from the superposition of the spins of the photons it contains. To this end we express any n-photon state as the result of the action on the vacuum of n creation operators generating photons which can have may different polarization states in general. We find that the macroscopic polarization holds as sum of the single-photon Stokes parameters only for the SU(2) orbits of photon-number states. The states that...

  18. Solar Hidden Photon Search

    Schwarz, Matthias; Redondo, Javier; Ringwald, Andreas; Wiedemann, Guenter

    2011-01-01

    The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope.

  19. B-> K photon photon via intermediate eta'

    Ahmady, Mohammad R.

    1999-01-01

    We examine our previous conjecture that the eta' intermediate resonance has the dominant role in the long distance contributions to B decay into two photons and a strange final state hadron. We calculate the branching ratio of the exclusive B-> K eta'-> K photon photon decay using the nonspectator mechanism for eta' production in charmless hadronic B decays. It is shown that the obtained branching ratio B^eta'(B-> K\\gamma\\gamma)~ 8.7 X 10^{-7} is more than twice as large as the eta_c contribu...

  20. An inelastic X-ray spectrometer with 2.2 meV energy resolution

    Sinn, H; Alatas, A; Barraza, J; Bortel, G; Burkel, E; Shu, D; Sturhahn, W; Sutter, J P; Toellner, T S; Zhao, J

    2001-01-01

    We present a new spectrometer at the Advanced Photon Source for inelastic X-ray scattering with an energy resolution of 2.2 meV at an incident energy of 21.6 keV. For monochromatization, a nested structure of one silicon channel cut and one 'artificial' channel cut is used in forward-scattering geometry. The energy analysis is achieved by a two-dimensional focusing silicon analyzer in backscattering geometry. In the first demonstration experiments, elastic scattering from a Plexiglas sup T sup M sample and two dispersion curves in a beryllium single crystal were measured. Based on these data sets, the performance of the new spectrometer is discussed.

  1. The response of several luminescent materials to keV and MeV ions

    We have quantified the ionoluminescence of several materials when irradiated with protons and He ions accelerated to keV and MeV energies. In particular, we have determined the absolute luminosity in terms of the number of photons emitted per incident ion from the front and back faces of thin screens of Y3Al5O12:Ce (0.15% CeO2), Al2O3:Ti (0.2% Ti), fused silica, and chemical vapour deposited diamond. This work has been motivated principally by their application in diagnostics for measuring fast ion losses at the edges of hot plasmas in fusion devices, where their radiation hardness, compared to that of standard phosphors, make them attractive candidates. Here, after presenting brief descriptions of the materials and summarizing the experimental set-up and the analysis method used, the results obtained are presented, and the afterglow and damage are evaluated

  2. Radiative capture of polarized neutrons by polarized protons at Tn=183 MeV

    Xu, G.; Pate, S. F.; Bloch, C.; Vigdor, S. E.; Bowyer, S. M.; Bowyer, T. W.; Jacobs, W. W.; Meyer, H. O.; Pierce, E.; Sowinski, J.; Whiddon, C.; Wissink, S. W.; Jolivette, P. L.; Pickar, M. A.

    1995-12-01

    In order to provide a quantitative test of theoretical calculations incorporating meson-exchange currents and intermediate Δ resonances, we measure the normal-component spin correlation coefficient CNN, the differential cross section dσ/dΩ, and the neutron and proton analyzing powers An and Ap, each as a function of angle, for n-->p-->-->dγ at Tn=183 MeV. Our n-->p-->-->dγ results, combined with the previous cross section and photon asymmetry data collected in the past decade, place quite strong constraints on model calculations. Our data are in excellent agreement with theoretical predictions by Jaus and Woolcock that incorporate meson-exchange and isobar current effects and relativistic corrections, signifying great recent progress in our understanding of these effects in the nucleon-nucleon system.

  3. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  4. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system

  5. Inclusive hard processes in photon-photon and photon-proton interactions

    Glasman, Claudia

    1999-01-01

    Measurements of jet, prompt photon, high-pT hadron and heavy quark production in photon-induced processes provide tests of QCD and are sensitive to the photon parton densities. A review of the latest experimental results in photon-photon and photon-proton interactions is presented. Next-to-leading-order QCD calculations for these measurements are discussed.

  6. Experiments on n-p scattering with 260-Mev neutrons

    Kelley, E.; Segre, E.; Leith, C.; Wiegand, C.

    1950-03-06

    Neutrons produced by 350 Mev protons impinging on beryllium are scattered by hydrogen. The authors measure the differential scattering cross section as a function of the scattering angle. Results are summarized here.

  7. EXPERIMENTS ON N-P SCATTERING WITH 260 MEV NEUTRONS

    Kelly, E.; Leith, C.; Segre, E.; Wiegand, C.

    1950-03-06

    Neutrons produced by 350 Mev protons impinging on beryllium are scattered by hydrogen. We measure the differential scattering cross section as a function of the scattering angle. Results are summarized in Fig. 3 of the paper.

  8. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D3,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  9. Ion clearing and photoelectron production in the 200 MeV SXLS ring

    The X-ray Lithography Source (XLS) offers a unique opportunity to study both ion clearing and photoelectron production since its energy can be ramped from 60 to 200 MeV which represents critical photon energy var-epsilon c between 0.8 and 30 eV. The installed clearing electrodes collect not only positive ions produced by the circulating electron beam but also expel photoelectrons which are created in much larger quantities when clearing electrodes (CEs) are hit by synchrotron radiation. At var-epsilon c = 0.8 eV the photoelectron production decreases six orders of magnitude when compared to var-epsilon c = 30 eV and direct clearing (positive ion) current measurements become possible. The design of the SXLS clearing system and its behavior are presented. In normal 200 MeV operation, clearing electrode current is dominated by photoelectrons. Clearing electrodes appear essential only in several locations but not in the dipoles. The effect of clearing voltage on the tune and the beam profile is also discussed

  10. Jet Production in Photon-Photon Interactions

    Soldner-Rembold, Stefan

    1996-01-01

    The inclusive one- and two-jet cross-sections are measured in collisions of quasi-real photons at e+e- centre-of-mass energies of 130 and 136 GeV using the OPAL detector at LEP. Jets are reconstructed with a cone jet finding algorithm. The jet cross-sections are compared to next-to-leading order (NLO) perturbative QCD calculations. Transverse energy flows in jets are studied separately for direct and resolved two-photon events.

  11. Quantum nonlinear optics — photon by photon

    Chang, Darrick E.; Vuletić, Vladan; Lukin, Mikhail D.

    2014-01-01

    The realization of strong interactions between individual photons is a long-standing goal of both fundamental and technological significance. Scientists have known for over half a century that light fields can interact inside nonlinear optical media, but the nonlinearity of conventional materials is negligible at the light powers associated with individual photons. Nevertheless, remarkable advances in quantum optics have recently culminated in the demonstration of several methods for generati...

  12. Production of 14 MeV neutrons by heavy ions

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  13. Diagnostics for the 400 MeV FNAL Linac

    The last four 201 MHz alvarez tanks of the twenty-year-old, 200 MeV Fermilab Linac are being replaced by seven high-gradient (7 KV/m), high-frequency (805 MHz) side-coupled-cavity structures to produce a 400 MeV beam for injection into the Booster. Good, reliable beam diagnostics are an important factor in the success of this project. This paper discusses the diagnostic systems

  14. The effect of polarization entanglement in photon-photon scattering

    Rätzel, Dennis; Menzel, Ralf

    2016-01-01

    It is found that the differential cross section of photon-photon scattering is a function of the degree of entanglement of the two-photon state, and an analytic expression is derived. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons.

  15. High resolution 12C(γ,p) experiments at Eγ ≅ 25-75 MeV

    Absolute differential cross sections for the 12C(γ,p)11B reaction have been measured over proton detection angels ranging from 30 to 150 deg, using tagged photons of 25-75 MeV energy, for low-lying regions of residual excitation energy in 11B. Four experiments were performed at the MAX laboratory in Lund in order to provide data. Previously reported cross sections for the reaction had systematic uncertainties of a magnitude which made them agree, in spite of a large spread in absolute values. The cross sections reported, with a systematic uncertainty of 8%, remove previous ambiguities for Eγ=40-75 MeV. A reinterpretation of the states excited in11B at E about 7 MeV is also presented. The data are compared with quasi-elastic (e,e'p) results in PWIA in the same recoil momentum range. It is found that the momentum distributions do not scale for the two reaction types. Furthermore, the data are compared with the results for the inverse reaction (p,γ) in the centre-of-momentum system by detailed balance. The comparison with respect to missing momentum indicates an angular dependence in the (γ,p) reaction which is not present in the inverse (p,γ) reaction. Recent results from the MAX laboratory for the (γ,n) reaction are compared to the (γ,p) results. The mirror nuclei 11C and 11B have almost identical excitation energy spectra at Eγ=60 MeV. It is concluded that HF-RPA calculations with essential contributions of meson exchange currents provide a qualitative description of the angular distributions obtained for the (γ,p) reaction. An extension of the spherical symmetric basis for the wave function is suggested for the states at E about 7 MeV in 11B. 108 refs, 83 figs

  16. Experiment and theory for the reaction 7Li(γ,t)4He for E/sub γ/<50 MeV

    Differential and total cross sections for the 7Li(γ,t)4He reaction were measured. Both real and virtual photons were used in the experiment and gave self-consistent results. The data show a broad resonance indicating the presence of positive parity states near 8 MeV excitation in 7Li. A calculation using an α-3H cluster model of 7Li was also performed. Poor agreement is found between the calculation and experimental results

  17. Observation and search for γ rays 1-20 MeV from the Crab, NGC4151, Cyg X-1, Cyg X-3, CG135 +1 and 3C273

    Observations of γ-rays of 1-20 MeV with the UCR Compton double scatter γ-ray telescope are reported for a balloon flight launched from Palestine, Texas, 4.5 GV, at 01.00UT 29 September 1978. The energy distribution of the total γ-rays from the Crab from 1.2 to 20 MeV was measured. Two σ upper limits of 3, 2, 0.6 and 0.4 x 10-4 photons cm-2 s-1 MeV-1 at energies 1.2-3, 3-5, 5-10 and 10-20 MeV, respectively, were found for the Seyfert galaxy NGC4151, the black hole candidate Cyg X-1 and for Cyg X-3. In the same energy intervals, the 2σ upper limits for the nearest and second nearest QSOs CG135+1 and 3C273 are 5, 3, 1 and 0.4 x 10-4 photons cm-2s-1MeV-1. These upper limits restrict confirmed γ-ray sources at 1-20 MeV to the Crab and NP0532. The upper limits found for NGC4151 do not support Seyfert galaxies as the source of cosmic diffuse radiation. (author)

  18. Determining photon energy absorption parameters for different soil samples.

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-05-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with (137)Cs and (60)Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of (137)Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  19. High Energy Photon-Photon and Electron-Photon Collisions

    S. J. Brodsky

    1998-01-01

    The advent of a next linear $e^\\pm e^-$ collider and back-scatterd laser beams will allow the study of a vast array of high energy processes of the Standard Model through the fusion of real and virtual photons and other gauge bosons. As examples, I discuss virtual photon scattering $\\gamma^* \\gamma^* \\to X$ in the region dominated by BFKL hard Pomeron exchange and report the predicted cross sections at present and future $e^\\pm e^-$ colliders. I also discuss exclusive $\\gamma \\gamma$ reaction...

  20. Photon and proton induced fission on heavy nuclei at intermediate energies

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  1. Photon and proton induced fission on heavy nuclei at intermediate energies

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  2. Measurements of photon response and light yield homogeneity with PbWO4 crystals for PANDA

    The dynamic range for the crystals of the PANDA calorimeter is foreseen to span from 10 MeV to 15 GeV in order to make reconstruction of channels with both low and high energy photons possible. The synchrotron facility MAX-Lab in Lund, Sweden, provides a unique opportunity to measure response function of crystals at energies in the low energy regime. The photon energy resolution for an array of PbWO4 crystals has been measured in the range of 10 MeV to 100 MeV. Another important feature is the homogeneity of the light yield response along the crystals. Results from these energy resolution and homogeneity measurements arre reported.

  3. Photon and proton induced fission on heavy nuclei at intermediate energies

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  4. Planar and axial coherent bremsstrahlung of type A from a 17-MeV electron beam in a diamond crystal

    Making use of the many-beam (one- and two-dimensional quantum treatment) formalism for transversely bound electrons moving through crystal lattices, we have computed planar and axial coherent bremsstrahlung (type A) spectra for 17-MeV electrons passing through a 10-μm thick diamond (C) crystal. We found that in the planar case the momentum transfer occurs in the direction perpendicular to the plane and results in a photon emission in the forward direction (electron-beam direction). In the axial case, the momentum transfer occurs in the plane perpendicular to the axis of interest. Only momentum transfers along the scan direction (electron transverse momentum direction) result in a photon emission in the forward direction. Two different scans have shown that the energies of the coherent bremsstrahlung peaks depend strongly on the direction of the electron transverse momentum but the intensities of the strongest peaks do not show any considerable change

  5. Photon spectrometry utilizing neural networks

    Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)

  6. Photonic Crystal Laser Accelerator Structures

    Cowan, Benjamin; Javanmard, Mehdi; Siemann, Robert H.

    2003-01-01

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optic...

  7. Anthracene dosimeter characterization under radiotherapy photons

    New radiotherapy techniques such as intensity-modulated radiation therapy and stereotactic radiosurgery have increased the need for dosimeters that can provide measurements in real time with high spatial resolution. Organic scintillation dosimeters are able to measure with accuracy small radiation fields and fields with high gradients, besides having advantages such as water and soft tissue equivalence and the possibility to be used in vivo. Anthracene is an organic scintillator crystal with the highest known scintillation efficiency among organic scintillation materials. The objective of this work is to characterize the anthracene as a dosimeter under radiotherapy photons energies, analysing its signal against average granulosity, intern capsule diameter, absorbed dose, absorbed dose rate, photon energy and its spatial resolution; with the last one analysed under three methods (edge spread function, line spread function and modulation transfer function). The photons energies used were 1.25 MeV (60Co), 0.661 MeV (137Cs) and X-rays (effective energies of 28.4; 46.5; 48.5; 94.0 e 106.0 keV). The scintillation detection system consisted of an optical fiber with one end attached to the anthracene capsule and the other to a photomultiplier tube maintained by power supply followed by an electrometer. Once Cerenkov radiation occurs in the optical fiber, it was removed from the total scintillation signal trough the subtraction of the signal, taken irradiating the optical fiber without the anthracene attached to one of its extremity. From results obtained, one can infer that the dosimeter signal increases proportionally with average granulosity and intern capsule diameter. The signal is linearly dependent of absorbed dose, linearly dependent of low photons energies and independent for high photons energies, as well as independent of the absorbed dose rate. From the spatial resolution values obtained it was possible to infer that the one obtained through modulation transfer

  8. Response of electret dosemeters to eletrons with energies of 3 MeV, 7 MeV, 11 MeV

    The response of the electret dosemeter to electrons of 3,7 and 11 MeV from an accelerator Mevatron 12 is studied. Two external coatings (polyethylene or nylon) are used and a comparative evaluation is presented. (M.A.C.)

  9. Single-photon imaging

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  10. Hybrid photon detectors

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  11. Heavy Quark Pair Production in Polarized Photon--Photon Collisions

    Jikia, George; Tkabladze, Avto

    2000-01-01

    We present the next-to-leading-order cross sections of the heavy quark-antiquark pair production in polarized photon-photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including one-loop QCD radiative corrections.

  12. Precise measurement of prompt photon emission for carbon ion therapy

    Agodi, C; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Voena, C

    2011-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments is still a matter of research. A possible technique exploits the information provided by single photon emission from nuclear decays induced by the irradiation. This paper reports the measurements of the spectrum and rate of such photons produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud of INFN, Catania, with a Poly-methyl methacrylate target. The differential production rate for photons with energy E > 2 MeV and emitted at 90 degree is found to be $dN_{\\gamma}/(dN_C d\\Omega)=(2.92\\pm 0.19)\\times 10^{-2}$sr$^{-1}$.

  13. A Photon Counting Imager

    Albright, Kevin L.; Smith, R. Clayton; Ho, Cheng; Wilson, S. Kerry; Bradley, Jeffery; Bird, Alan; Casperson, Don E.; Hindman, Miles; Whitaker, Rob; Theiler, James; Scarlett, Robert; Priedhorsky, William C.

    1998-01-01

    The Remote Low Light Imaging (RULLI) system responds to individual photons using a modification to conventional image intensifier technology and fast timing electronics. Each photon received at the detector is resolved in three dimensions (X, Y, and time). The accumulation of photons over time allows the system to image with very low light levels, such as starlight illumination. Using a low power pulsed laser and very fine time discrimination, three dimensional imaging has been accomplished w...

  14. Two photon reactions

    Some recent results from the field of photon-photon interaction are presented. After a brief general introduction author discusses resonance production, exclusive processes with the four pion final state (γγ→π+π-π+π-), exclusive reaction γγ→psi psi, γγ - 2 body final state and jet production. Total hadronic cross sections for γγ - interactions and the photon structure function are also considered. (M.F.W.)

  15. Photonic Crystal Waveguide Fabrication

    Høvik, Jens

    2012-01-01

    This research is entirely devoted to the study and fabrication of structures with periodic dielectric constants, also known as photonic crystals (PhCs). These structures show interesting dispersion characteristics which give them a range of prohibited frequencies that are not allowed to propagate within the crystal. This property makes them suited for a wide array of photonic-based components. One-dimensional photonic crystals are already commercialized and are of widespread use in for exampl...

  16. Integrated microwave photonics

    Marpaung, David; Roeloffzen, Chris; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  17. Green silicon photonics

    Jalali, B.; Fathpour, S.; Tsia, K

    2009-01-01

    Silicon photonics have provided low-cost communication components for Internet applications and are now aimed towards providing environmentally friendly and green optical solutions. The need for energy-efficient photonics is due to the excessive energy dissipated in advanced electronics and an increase in power density that has posed a challenge to the most advanced chip-cooling technologies. The two-photon absorption (TPA)-generated free carriers need to be actively removed from the waveguid...

  18. Fractal Photonic Crystal Waveguides

    Monsoriu, Juan A.; Zapata-Rodriguez, Carlos J.; Silvestre, Enrique; Furlan, Walter D.

    2004-01-01

    We propose a new class of one-dimensional (1D) photonic waveguides: the fractal photonic crystal waveguides (FPCWs). These structures are photonic crystal waveguides (PCWs) etched with fratal distribution of grooves such as Cantor bars. The transmission properties of the FPCWs are investigated and compared with those of the conventional 1D PCWs. It is shown that the FPCW transmission spectrum has self-similarity properties associated with the fractal distribution of grooves. Furthermore, FPCW...

  19. Dark photons in the Dalitz-like decay of a scalar

    Kozlov, G A

    2016-01-01

    The couplings of the Standard Model sector to the scale invariant degrees of freedom can open the possibility to study dark photons (DP). The Dalitz-like decay of the (Higgs-like) scalar boson into a single photon and DP is studied. The interaction between DP and quarks is mediated by the derivative of the scalar field - the dilaton, the virtual (fictitious) state. The mass of the dilaton does not enter the final solutions. Upper limits are set on the DP mass, the mixing strength between the standard photon and DP. The model does allow to estimate the DP mass with the value of 4.5 MeV.

  20. Effects of radiation damage caused by proton irradiation on Multi-Pixel Photon Counters (MPPCs)

    Matsumura, T.; Matsubara, T.; Hiraiwa, T.; Horie, K.; Kuze, M.; Miyabayashi, K.; Okamura, A; Sawada, T.; Shimizu, S.; Shinkawa, T.; Tsunemi, T.; M. Yosoi

    2009-01-01

    We have investigated the effects caused by proton-induced radiation damage on Multi-Pixel Photon Counter (MPPC), a pixelized photon detector developed by Hamamatsu Photonics. The leakage current of irradiated MPPC samples linearly increases with total irradiated doses due to radiation damage, which is not completely recovered even after a year from the irradiation. No significant change has been observed in the gains at least up to 8.0 Gy ($9.1\\times10^7$ n/mm$^2$ in 1 MeV neutron equivalent ...

  1. Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media

    Kumar, Sudhir; Nahum, Alan E.

    2016-02-01

    Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed dose D, kerma K and a special form of kerma, K ncpt, obtained by setting the charged-particle transport energy cut-off very high, thereby preventing the generation of ‘secondary bremsstrahlung’ along the charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, differential in energy, from which collision kerma, K col and K were derived. The ratios K/D, K ncpt/D and K col/D have thereby been determined over a very large volumes of water, aluminium and copper irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV ‘clinical’ radiotherapy qualities. Concerning depth-dependence, the ‘area under the kerma, K, curve’ exceeded that under the dose curve, demonstrating that kerma does not conserve energy when computed over a large volume. This is due to the ‘double counting’ of the energy of the secondary bremsstrahlung photons, this energy being (implicitly) included in the kerma ‘liberated’ in the irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this ‘violation’ amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% for a ‘clinical’ 6 MV beam in water. By contrast, K col/D and K ncpt/D, also computed over very large phantoms of the same three media, for the same beam qualities, are equal to unity within (very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, K ncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 MeV beam at a depth of  ≈51 g cm-2 for both very high and very low charged-particle transport cut

  2. Photon absorption mechanism in the 4He(γ, npp)n reaction

    We measured the 4He(γ, npp)n reaction in a kinematically complete way for the first time using the large-acceptance TAGX spectrometer and tagged photons at Eγ = 135-455 MeV. The momentum and angular distributions of the nucleons are explained by assuming that photons are absorbed either on the two-nucleon systems (np and pp) or on the three nucleon system (npp). The data can not be reproduced well by the photon absorption on the np system only. (author)

  3. Photonic Integrated Circuits

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  4. Biomedical photonics handbook

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  5. Nonlinear Integrated Microwave Photonics

    Marpaung, David

    2013-01-01

    Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we discuss the potential of on-chip nonlinear processing towards the creation of robust and multifunctional microwave photonic (MWP) processors. We also highlight key recent results in the field, including frequency agile MWP filters and ultra-wideband signal generators.

  6. Photonics. Present and future

    K. I. Silakov

    2011-03-01

    Full Text Available Short review of the literature in the field of photonics, which reflects the new technology of ultra-compact optical communications components, the use of generators to transmission light instead of wires is represented. This is - silicon photonics - finding ways to use semiconductor components and of standard semiconductor technology to create optical devices, silicon photonics - the creation of a silicon photonic waveguide. All of these components can be used in the construction of computer systems linked by powerful optical data networks. Optical communication system will eliminate the "bottleneck" due to the difference in memory bandwidth and processor speed, and improve overall performance computing plate-tformy.

  7. Towards THz integrated photonics

    Hübers, Heinz-Wilhelm

    2010-01-01

    The demonstration of an integrated terahertz transceiver featuring a quantum cascade laser and a Schottky diode mixer promises new applications for compact and convenient terahertz photonic instrumentation.

  8. Review on Dark Photon

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  9. Thermoluminescent analyses of mean photon energy of a field

    Cavalieri, T. A.; De Paiva, F.; Fonseca, G.; Dalledone S, P. de T.; Yoriyaz, H., E-mail: tassio.cavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Nowadays a common method of dosimetry is utilize the thermoluminescent dosimetry (TLD) of LiF, where for pure gamma field is typically used the LiF or CaF{sub 2} TLDs and for mixed neutron and gamma field dosimetry is used the pair TLD-600/TLD-700. The difference between these three LiF TLDs is the amount of isotope {sup 6}Li in their composition. The isotope {sup 6}Li has a great cross section for thermal neutrons, making the TLD-600 sensitive to thermal neutrons beyond the radiation gamma. Whereas the TLD-700 is considered sensitive only for radiation gamma. Some studies showed an energetic dependence of these TLDs for gammas rays. So the goal of this work was study these energetic dependence of TLDs from the angular coefficient of their response versus dose calibration curves when they were irradiated in four fields with photons of different energies: 43 keV, 662 keV, 1.2 MeV, 3 MeV. In order to create the calibration curves TLD, it was performed three irradiations with distinct exposure times for each photon energy. These studies showed a different angular coefficient to each curve; demonstrate the energetic dependence of these TLDs. By simulation with Monte Carlo based code, MCNP-5, it was observed the deposited photon dose due to different photons energies. From these simulations, it was also possible to observe a difference of dose deposition in TLDs when they were exposed to the same dose provided from different photons energies. These work showed the previously study of photon energetic dependence of LiF TLDs. (Author)

  10. Thermoluminescent analyses of mean photon energy of a field

    Nowadays a common method of dosimetry is utilize the thermoluminescent dosimetry (TLD) of LiF, where for pure gamma field is typically used the LiF or CaF2 TLDs and for mixed neutron and gamma field dosimetry is used the pair TLD-600/TLD-700. The difference between these three LiF TLDs is the amount of isotope 6Li in their composition. The isotope 6Li has a great cross section for thermal neutrons, making the TLD-600 sensitive to thermal neutrons beyond the radiation gamma. Whereas the TLD-700 is considered sensitive only for radiation gamma. Some studies showed an energetic dependence of these TLDs for gammas rays. So the goal of this work was study these energetic dependence of TLDs from the angular coefficient of their response versus dose calibration curves when they were irradiated in four fields with photons of different energies: 43 keV, 662 keV, 1.2 MeV, 3 MeV. In order to create the calibration curves TLD, it was performed three irradiations with distinct exposure times for each photon energy. These studies showed a different angular coefficient to each curve; demonstrate the energetic dependence of these TLDs. By simulation with Monte Carlo based code, MCNP-5, it was observed the deposited photon dose due to different photons energies. From these simulations, it was also possible to observe a difference of dose deposition in TLDs when they were exposed to the same dose provided from different photons energies. These work showed the previously study of photon energetic dependence of LiF TLDs. (Author)

  11. Sfermion production at photon colliders

    Klasen, M

    2000-01-01

    We calculate total and differential cross sections for sfermion production in $e^+e^-$ annihilation and in photon-photon collisions with arbitrary photon polarization. The total cross section at a polarized photon collider is shown to be larger than the $e^+e^-$ annihilation cross section up to the kinematic limit of the photon collider.

  12. Resonances in photon-photon scattering

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(π0 → γγ) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in γγ scattering, including especially the low mass dipion. 34 references

  13. Crab Nebula observations - 0.2-10 MeV

    Gruber, D. E.

    1975-01-01

    Observations of the total emission from the Crab Nebula and also of the pulsed component were made over the 0.2 to 10-MeV range during three balloon flights in 1971 with an actively-collimated NaI scintillator. The total emission flux was positively observed over the entire interval. The observed spectrum to 1 MeV agrees with an extrapolation of the E to the -2.2 power law, which fits lower-energy data. The observations above 1 MeV are factors of 3 and 20 above this law and are better fit with a spectral index of 0.8. Confidence levels are 3 sigma or better for each half-decade band. The three observations are consistent with a constant flux level. The NP 0532 flux, detected during one flight only (August 8) between 0.2 and 0.38 MeV, agrees with the exponential power law spectrum already determined from other observations. The possibility of a rapidly rising pulsed emission fraction over the 0.1- to 1-MeV interval is excluded by this observation.

  14. Temporal Structure of MeV Electron Precipitation

    Millan, R. M.; Lorentzen, K. R.; Lin, R. P.; Smith, D. M.

    2001-12-01

    On January 12, 2000, the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) long duration balloon experiment was launched from McMurdo, Antarctica carrying x-ray instrumentation designed to search for MeV electron precipitation similar to the event observed in 1996 over Kiruna, Sweden (L=5.8). MAXIS detected seven x-ray bursts with significant flux extending above 0.8 MeV during the 18 day flight in addition to extended periods of softer X-ray activity. These seven events are characterized by an extremely flat spectrum ( ~E-1.7) indicating that the bulk of precipitating electrons producing the x-rays is at relativistic energies. The bursts were detected between magnetic latitudes 58o-67o (corresponding to L-values between 3.8-6.7) with durations varying from several minutes to several hours. The MeV bursts were found to occur preferentially in the late afternoon/dusk sectors (14:30-00:00 MLT) while softer precipitation was detected at all magnetic local times. Two of the strongest MeV events detected by MAXIS show strong modulation of the x-ray count rate at ULF timescales ( ~150 s) similar to modulations observed during the Kiruna event at 100-200 s. We present results from temporal analysis of the MAXIS germanium spectrometer data and examine ground-based and spacecraft observations for evidence of coincident ULF wave activity.

  15. Estimation of photon dose generated by a short pulse high power laser

    The authors obtain a new equation to estimate the forward component of a photon dose generated through the interaction between a target and a short pulse high power laser. As the equation is quite simple, it is useful for calculating the photon dose. The equation shows that the photon dose is proportional to the electron temperature in the range >3 MeV and proportional to the square of the electron temperature in the range <3 MeV. The dose estimated with this method is roughly consistent with the result of Monte Carlo simulation. With some assumptions and corrections, it can reproduce experimental results obtained and the dose result calculated at other laboratories. (authors)

  16. Effective photon spectra for Photon Colliders

    Ginzburg, I. F.; KOTKIN, G.L.

    1999-01-01

    The luminosity distribution in the effective $\\gamma\\gamma$ mass at photon collider has usually two peaks which are well separated: high energy peak with mean energy spread 5-7% and wide low energy peak.The low energy peak depends strongly on details of design it is unsuitablefor the study of New Physics phenomena. We find simple approximte form of spectra of collided photons for $\\gamma\\gamma$ and $e\\gamma$ colliders wich convolution describes high energy luminosity peak with good accuracy i...

  17. On Higgs Production in Photon Photon Collisions

    Yakovlev, Oleg

    2000-01-01

    I review recent progress on the Higgs production in gamma gamma collisions at the photon mode of the Next Linear Collider (NLC). I mainly focus on two particular topics. The first topic is the Higgs-two photon vertex, which is sensitive to new physics, and can be considered a counter of the number of new heavy particles. I recall the results on QCD and electroweak two loop radiative corrections. The second topic is the heavy quark anti-quark pair production in gamma gamma collisions, which is...

  18. Resonances in photon-photon scattering

    Selected topics in meson spectroscoy are reviewed as they are illuminated by photon-photon collisons. Subjects include the S*/f0 (975) and δ/a0 (980) as /ovr qq/qq candidates, the /iota///eta/ (1460) and θ/f2 (1700) as glueball candidates, and the spin 1 X(1420) seen in tagged events which represents new physics whether its parity is positive, J/sup PC/ = 1++, or negative with exotic J/sup PC/ = 1/sup /minus/+/. 57 refs., 2 figs., 1 tab

  19. Multi-Photon Interference and Temporal Distinguishability of Photons

    Ou, Z. Y.

    2007-01-01

    A number of recent interference experiments involving multiple photons are reviewed. These experiments include generalized photon bunching effects, generalized Hong-Ou-Mandel interference effects and multi-photon interferometry for demonstrations of multi-photon de Broglie wavelength. The multi-photon states used in these experiments are from two pairs of photons in parametric down-conversion. We find that the size of the interference effect in these experiments, characterized by the visibili...

  20. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Sabarinathan J; Cox JD; Singh

    2010-01-01

    Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap th...

  1. An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays

    Tanimori, T; Takada, A; Iwaki, S; Komura, S; Kurosawa, S; Matsuoka, Y; Miuchi, K; Miyamoto, S; Mizumoto, T; Mizumura, Y; Nakamura, K; Nakamura, S; Oda, M; Parker, J D; Sawano, T; Sonoda, S; Takemura, T; Tomono, D; Ueno, K

    2015-01-01

    Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which are originated from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The recent major mission/instrument in the MeV band, CGRO/COMPTEL, which was Compton Camera (CC), detected mere $\\sim30$ persistent sources. It is in stark contrast with $\\sim$2000 sources in the GeV band. Here we report the performance of an Electron-Tracking Compton Camera (ETCC), and prove that it has a good potential to break through this stagnation in MeV gamma-ray astronomy. The ETCC provides all the parameters of Compton-scattering by measuring 3-D recoil electron tracks; then the SPD (Scatter Plane Deviation) lost in CCs is recovered. The energy loss rate (dE/dx), which CCs cannot measure, is also obtained, and is found to be indeed helpful to reduce the background under conditions similar to space. Accordingly the si...

  2. Attenuation data of point isotropic neutron sources up to 400MeV in water, ordinary concrete and iron

    Kotegawa, Hiroshi; Tanaka, Shun-ichi; Sakamoto, Yukio; Nakane, Yoshihiro; Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1994-08-01

    A comprehensive attenuation data of dose equivalent for point isotropic monoenergetic neutron sources up to 400MeV in infinite shields of water, ordinary concrete and iron has been calculated using the ANISN-JR code and a neutron-photon multigroup macroscopic cross section HIL086R. The attenuation factors were fitted to a 4th order polynomial exponent formula, making possible to use easily for point kernel codes. Additional data in finite shielding geometry was also calculated to correct the effect due to infinite medium, giving the maximum correction of 0.23 in the region for more 400 cm distance from neutron source of 400 MeV in iron shield. Effective attenuation length for monoenergetic neutrons have been studied in detail. Subsequently, it was shown that the attenuation length was strongly dependent upon the penetration length and the Moyer`s formula using a single attenuation length brought large error into the dose estimation behind thick shields for the intermediate energy neutrons up to 400 MeV. Furthermore, it was demonstrated that there was difference more than 50 % in the attenuation length of iron between the calculations with HIL086R and HIL086 because of the self-shielding effect. (author).

  3. Attenuation data of point isotropic neutron sources up to 400MeV in water, ordinary concrete and iron

    A comprehensive attenuation data of dose equivalent for point isotropic monoenergetic neutron sources up to 400MeV in infinite shields of water, ordinary concrete and iron has been calculated using the ANISN-JR code and a neutron-photon multigroup macroscopic cross section HIL086R. The attenuation factors were fitted to a 4th order polynomial exponent formula, making possible to use easily for point kernel codes. Additional data in finite shielding geometry was also calculated to correct the effect due to infinite medium, giving the maximum correction of 0.23 in the region for more 400 cm distance from neutron source of 400 MeV in iron shield. Effective attenuation length for monoenergetic neutrons have been studied in detail. Subsequently, it was shown that the attenuation length was strongly dependent upon the penetration length and the Moyer's formula using a single attenuation length brought large error into the dose estimation behind thick shields for the intermediate energy neutrons up to 400 MeV. Furthermore, it was demonstrated that there was difference more than 50 % in the attenuation length of iron between the calculations with HIL086R and HIL086 because of the self-shielding effect. (author)

  4. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  5. NuSTAR, Swift, and GROND observations of the flaring MeV blazar: PMN J0641$-$0320

    Ajello, M; Paliya, V S; Kocevski, D; Tagliaferri, G; Madejski, G; Rau, A; Schady, P; Greiner, J; Massaro, F; Bakolovic, M; Buehler, R; Giomi, M; Marcotulli, L; D'Ammando, F; Stern, D; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Harrison, F A; Zhang, W W

    2016-01-01

    MeV blazars are a sub--population of the blazar family, exhibiting larger--than--average jet powers, accretion luminosities and black hole masses. Because of their extremely hard X--ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the $Fermi$ Large Area Telescope and subsequent follow-up observations with $NuSTAR$, $Swift$ and GROND of a new member of the MeV blazar family: PMN J0641$-$0320. Our optical spectroscopy provides confirmation that this is a flat--spectrum radio quasar located at a redshift of $z=1.196$. Its very hard $NuSTAR$ spectrum (power--law photon index of $\\sim$1 up to $\\sim$80 keV) indicates that the emission is produced via inverse Compton scattering off photons coming from outside the jet.The overall spectral energy distribution of PMN J0641$-$0320 is typical of powerful blazars and by reproducing it with a simple one-zone leptonic emission model we find the emission region to be located either inside the broad line region or within th...

  6. Photodisintegration of /sup 3/H and /sup 3/He. [Threshold to 25 MeV

    Faul, D.D.

    1980-09-01

    The photoneutron cross sections for /sup 3/H and /sup 3/He have been measured from threshold to approx. 25 MeV with monoenergetic photons from the annihilation in flight of fast positrons at the LLL Electron-Positron Linear Accelerator facility. These reactions include the two-body breakup of /sup 3/H and the three-body breakup of both /sup 3/H and /sup 3/He; these measurements for /sup 3/H are the first to span the energy region across the peaks of the cross sections. An efficient BF/sub 3/-tube-and-paraffin neutron detector and high-pressure gaseous samples of several moles each (the activity of the /sup 3/H sample was approx. 200,000 Ci) were employed in these measurements. Measurements on /sup 16/O and /sup 2/H also were performed to verify the absolute cross-section scale. The results, when compared with each other and with results for the two-body breakup cross section for /sup 3/He from the literature, show that the two-body breakup cross sections for /sup 3/H and /sup 3/He have nearly the same shape, but the one for /sup 3/He lies lower in magnitude; the three-body breakup cross section for /sup 3/He lies higher in magnitude and is broader in the peak region and also rises less sharply from threshold than that for /sup 3/H; and these measured differences between the cross sections for the breakup modes largely compensate in their sum, so that the total photon absorption cross sections for /sup 3/H and /sup 3/He are nearly the same in both size and shape at energies near and above their peaks. Theoretical results from the literature disagree with the experimental results to a certain extent over the entire photon-energy region for which the photoneutron cross sections were measured. 50 figures, 7 tables.

  7. ALICE Photon Multiplicity Detector

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  8. Diffusion Based Photon Mapping

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features...

  9. Photonic Crystal Fiber Attenuator

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  10. Photonic Crystal Fibres

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic...

  11. Two photon physics

    Some recent results from two photon collisions measured in e+e- interactions are reviewed. Measurements of γγ widths of resonances, of resonance production and hard scattering in exclusive final states, of deep inelastic electron-photon scattering and of inclusive hadron production are presented and discussed. (author)

  12. Hadronic photon-photon interactions at high energies

    Engel, R.; Ranft, J.

    1995-01-01

    Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. The hadron production in photon-photon collisions at present and future electr...

  13. Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs

    Fan, Y Z; Wei, D M; Zhang, Bing

    2005-01-01

    For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock crosses the ejecta, usually the shocked regions are still precipitated by the prompt MeV \\gamma-ray emission. Because of the tight overlapping of the MeV photon flow with the shocked regions, the optical depth for the GeV photons produced in the shocks is very large. These high energy photons are absorbed by the MeV photon flow and generate relativistic e^\\pm pairs, which re-scatter the prompt $\\gamma-$rays and power detectable sub-GeV emission. Since the total energy contained in the forward shock region and the reverse shock region are comparable, the predicted sub-GeV emission is independent on whether the GRB ejecta are magnetized (in which case the reverse shock IC and synchrotron self-Compton emission is suppressed). As a result, sub-GeV flashes are generic for the GRB wind model, and they should be typically detectable by the future {\\em Gamma-Ray Large Area Telescope}. Overlapping also influence neutrino emission. Besides the 10^...

  14. 3 MeV Test Stand commissioning report

    Bellodi, Guilia; Andreassen, O; Comblin, J-F; Dimov, V; Lallement, J-B; Martin, C; Midttun, O; Ovalle, E; Raich, U; Roncarolo, F; Rossi, C; Scrivens, R; Vollaire, J; Yarmohammadi Satri, M; Zocca, Z

    2013-01-01

    Linac4 is a normal-conducting 160 MeV H- linear accelerator, presently under construction, that will replace the present 50 MeV Linac2 as injector of the CERN proton accelerator complex with the goal of increasing the LHC luminosity. The Linac4 front-end, composed of a 45 keV ion source, a Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) housing a beam chopper, was commissioned at the 3 MeV test stand area during the first half of 2013. This report gives details of the installation and operational systems used, describes the commissioning phases and measurements performed and summarizes the results that were finally achieved and the lessons learnt in the process.

  15. An RFQ accelerator system for MeV ion implantation

    Hirakimoto, Akira; Nakanishi, Hiroaki; Fujita, Hiroyuki; Konishi, Ikuo; Nagamachi, Shinji; Nakahara, Hiroshi; Asari, Masatoshi

    1989-02-01

    A 4-vane-type Radio-Frequency Quadrupole (RFQ) accelerator system for MeV ion implantation has been constructed and ion beams of boron and nitrogen have been accelerated successfully up to an energy of 1.01 and 1.22 MeV, respectively. The acceleration of phosphorus is now ongoing. The design was performed with two computer codes called SUPERFISH and PARMTEQ. The energy of the accelerated ions was measured by Rutherford backscattering spectroscopy. The obtained values agreed well with the designed ones. Thus we have confirmed the validity of our design and have found the possibility that the present RFQ will break through the production-use difficulty of MeV ion implantation.

  16. 10MeV 25KW industrial electron LINAC

    Kamino, Y.

    1998-06-01

    A 10MeV 25KW plus class electron LINAC was developed for sterilisation of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2m electro-plated travelling wave guide uses a 5MW 2856MHz pulse klystron as an RF source and provides 25KW beam power at the Ti alloy beam window stably after the energy analysing magnet with 10MeV plus-minus 1 MeV energy slit. The practical maximum beam power reached 29 KW and this demonstrated the LINAC as one of the most powerful S-band electron LINACs in the world. The control of the LINAC is fully automated and the "One-Button Operation" is realised, which is valuable for easy operation as a plant system. 2 systems have been delivered and are being operated stably.

  17. Photonics in wireless transceivers

    During the last few years, the cross-fertilization between photonics and radio systems has been helping to overcome some major limitations of the classical radio technologies, setting new paradigms, and promising improved performance and new applications with strong benefits for public communications and safety. In particular, photonics-based wireless systems, albeit still at research level, are moving toward a new generation of multifunctional systems able to manage the wireless communication with several different frequencies and protocols, even simultaneously while also realizing surveillance operations. Photonics matches the new requirements of flexibility for software-defined architectures, thanks to its ultra-wide bandwidths and ease of tunability, and guarantees low footprint and weight, thanks to integrated photonic technologies. Moreover, photonics also allows increased resolution and sensitivity by means of the inherent low phase noise of lasers. (author)

  18. Active Photonic Crystal Waveguides

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission are...... presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  19. The JHP 200-MeV proton linear accelerator

    Kato, Takao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    A 200-MeV proton linear accelerator for the Japanese Hadron Project (JHP) has been designed. It consists of a 3-MeV radio-frequency quadrupole linac (RFQ), a 50-MeV drift tube linac (DTL) and a 200-MeV separated-type drift tube linac (SDTL). A frequency of 324 MHz has been chosen for all of the rf structures. A peak current of 30 mA (H{sup -} ions) of 400 {mu}sec pulse duration will be accelerated at a repetition rate of 25 Hz. A future upgrade plan up to 400 MeV is also presented, in which annular-coupled structures (ACS) of 972 MHz are used in an energy range of above 150 or 200 MeV. One of the design features is its high performance for a beam-loss problem during acceleration. It can be achieved by separating the transition point in the transverse motion from that of the longitudinal motion. The transverse transition at a rather low-energy range decreases the effects of space-charge, while the longitudinal transition at a rather high-energy range decreases the effects of nonlinear problems related to acceleration in the ACS. Coupled envelope equations and equipartitioning theory are used for the focusing design. The adoption of the SDTL structure improves both the effective shunt impedance and difficulties in fabricating drift tubes with focusing magnets. An accurate beam-simulation code on a parallel supercomputer was used for confirming any beam-loss problem during acceleration. (author)

  20. Elastic and inelastic scattering of 30 MeV and 180 MeV antiprotons on nuclei

    This thesis reports on the first measurements of angular distributions for elastic and inelastic scattering of antiprotons from nuclei, which have been performed, using the beam delivered by LEAR and the spectrometer SPES II, over a wide angular range and with good precision. Angular distributions for elastic scattering of 50 MeV antiprotons from 12C, 40Ca, 208Pb and 180 MeV antiprotons from 12C, 16O, 18O, 40Ca, 208Pb have been measured. Data on the inelastic 4.4 MeV and 9.6 MeV excited states of 12C and 1.98 MeV excited state of 18O have also been collected. The diffractive angular distributions are first analysed in terms of a fuzzy black disk model, which confirms that the antiproton is strongly absorbed (annihilation) by the nuclei. Optical model analysis, with Woods-Saxon geometry, shows that the real potential is attractive and shallow. The potentials are only determined at the nuclear surface, around the strong absorption radius, where /W(R)/ > 2 /V(R)/. Main characteristics of the antip-nucleus elastic scattering cross sections are well described within microscopic models using the free elementary antiN N interaction, like KMT which have no free parameters. Possibility for test of spin-isospin dependence of the elementary amplitude antiN-N from the measurement of unnatural parity states is also studied

  1. Roadmap on silicon photonics

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O’Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  2. Resolution considerations in MeV ion microscopy and lithography

    Norarat, Rattanaporn, E-mail: rattanaporn@rmutl.ac.th [University of Applied Sciences (HES-SO), Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland); Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, 57120 Chiang Rai (Thailand); Whitlow, Harry J. [University of Applied Sciences (HES-SO), Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland)

    2015-04-01

    There a disparity between the way the resolution is specified in microscopy and lithography using light compared to MeV ion microscopy and lithography. In this work we explore the implications of the way the resolution is defined with a view to answering the questions; how are the resolving powers in MeV ion microscopy and lithography relate to their optical counterparts? and how do different forms of point spread function affect the modulation transfer function and the sharpness of the edge profile?.

  3. Crosslinking of commercial polyethylenes by 10 MeV electrons

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  4. Photon number conservation and photon interference

    Koniorczyk, Matyas; Janszky, Jozsef

    2001-01-01

    The group theoretical aspect of the description of passive lossless optical four-ports (beam splitters) is revisited. It is shown through an example, that this approach can be useful in understanding interferometric schemes where a low number of photons interfere. The formalism is extended to passive lossless optical six-ports, their SU(3)-theory is outlined.

  5. Unparticle effects in photon-photon scattering

    Elastic photon-photon scattering can occur in the Standard Model only via loop diagrams and is naturally suppressed. Unparticle can induce tree-level photon-photon scattering through the operator FμνFμνOU for spin-0 unparticle or FμαFανOUμν for spin-2 unparticle. Due to the peculiar CP-conserving phase exp(-idUπ) associated with the time-like unparticle propagator for non-integral scaling dimension dU, the interference effects of the s-channel amplitude with the t- and u-channels ones on the total cross sections as well as the angular distributions are found to be of some significance. We found that the matrix-element squared is independent of whether we used the transverse form or the conformal form for the spin-2 unparticle propagator. In addition, we show that the cross sections via unparticle exchange can be substantially larger than the Standard Model contribution

  6. Unparticle effects in photon-photon scattering

    Chang, C.-F. [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Cheung Kingman [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China)], E-mail: cheung@phys.nthu.edu.tw; Yuan, T.-C. [Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China)

    2008-06-26

    Elastic photon-photon scattering can occur in the Standard Model only via loop diagrams and is naturally suppressed. Unparticle can induce tree-level photon-photon scattering through the operator F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}}O{sub U} for spin-0 unparticle or F{sub {mu}}{sub {alpha}}F{sup {alpha}}{sub {nu}}O{sub U}{sup {mu}}{sup {nu}} for spin-2 unparticle. Due to the peculiar CP-conserving phase exp(-id{sub U}{pi}) associated with the time-like unparticle propagator for non-integral scaling dimension d{sub U}, the interference effects of the s-channel amplitude with the t- and u-channels ones on the total cross sections as well as the angular distributions are found to be of some significance. We found that the matrix-element squared is independent of whether we used the transverse form or the conformal form for the spin-2 unparticle propagator. In addition, we show that the cross sections via unparticle exchange can be substantially larger than the Standard Model contribution.

  7. Photon/Electron Benchmarks for Intercode Comparisons

    Hughes, Henry Grady III [Los Alamos National Laboratory; Sweezy, Jeremy Ed [Los Alamos National Laboratory; Lemaire, Sebastien [CEA/DIF (France); Caillaud, M. [CEA/DIF (France); Sauvestre, J. E. [CEA/DIF (France); Umbert, A. [CEA/DIF (France)

    2015-07-21

    The goal of this work was to improve accuracy and efficiency of two Monte-Carlo transport codes (MCNP and DIANE) with an emphasis on γ+electron physics. The approach involved intercode comparisons + measurements for gamma/e- energy deposition in a cylinder with a photon source and different materials (C, Pb) and the bombardment of 15-MeV electrons on thick targets (Al, Be, Pb). Comparisons of the codes DIANE and MCNP6 showed good agreement (differences < 3%) for gamma-electron energy deposition in a 2D cylinder, except for the first 0.1 μm of lead (difference < 10%). Comparisons with measurements showed generally good agreement, often better than 10%; best-performing codes/options are problem-dependent; and single-event discrepancies are in active use in reviewing electron elastic scattering.

  8. Radiation effects on MOS and bipolar devices by 8 MeV protons, 60 MeV Br ions and 1 MeV electrons

    The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code. (condensed matter: structure, thermal and mechanical properties)

  9. THE HIGH-ENERGY EMISSION OF THE CRAB NEBULA FROM 20 keV TO 6 MeV WITH INTEGRAL SPI

    The SPI spectrometer aboard the International Gamma-Ray Astrophysics Laboratory mission regularly observes the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power-law models give a good description in the X-ray domain (mean photon index ∼ 2.05) and MeV domain (photon index ∼ 2.23), crucial information is contained in the evolution of the slope with energy between these two values. This study has been carried out through individual observations and long duration (∼ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power-law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions, respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power-law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.

  10. Viscosity in a Lepton-Photon Universe

    Husdal, Lars

    2016-01-01

    We look at viscosity production in a universe consisting purely of leptons and photons. This is quite close to what the Universe actually look like when the temperature was between $10^{10}$ K and $10^{12}$ K ($1$ -- $100$ MeV). By taking the strong force and the hadronic particles out of the equation, we can examine how the viscous forces behave with all the 12 leptons present. By this we study how shear- and (more interestingly) bulk viscosity is affected during periods with particle annihilation. We use the theory given by Hoogeveen et. al. from 1986, replicate their 9-particle results and expanded it to include the muon and tau particles as well. This will impact the bulk viscosity immensely for high temperatures. We will show that during the beginning of the lepton era, when the temperature is around 100 MeV, the bulk viscosity will be roughly 100 million times larger with muons included in the model compared to a model without.

  11. Single photons on demand

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  12. Direct Photons at RHIC

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (pT) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high pT direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e+e- pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data

  13. Final States in Photon-Photon and Photon-Proton Interactions

    Soldner-Rembold, Stefan

    1998-01-01

    The total hadronic photon-photon cross-section measured by L3 and OPAL and the apparent discrepancy between the results are discussed. OPAL measurements of jet and charged hadron production in photon-photon scattering and preliminary H1 results on neutral pion production in photon-proton scattering are also presented. The mechanism of baryon number transfer in photon-proton interactions at HERA has been studied for the first time by H1.

  14. Model of a photon

    Alexandrov B. L.

    2015-09-01

    Full Text Available The article examines the historical aspect of the appearance of the concept of the photon, which was introduced through the works of Planck, Einstein, Compton, Lewis. It is noted that the photon has both corpuscular characteristics (momentum, mass, energy and wave (frequency, wavelength, which are interconnected. Thus, the photon has dual properties – of a particle and a wave. The article deals with the analysis described in the literature of the photon model proposed by S.M. Polyakov and O.S. Polyakova, F.M. Konarevym-Krauzerom, V.G.Kozlovym and S.I. Chervyakov, as well as with their advantages and disadvantages. A version of the model in the form of a photon of two identical but oppositely charged halfmass, which simultaneously perform translational, rotational and vibrational motion was suggested. We have shown derivation of the amplitude of vibration of the two half-mass photon connected with simple relation with wavelength, described with this photon. On this basis, it is concluded that the state of a photon is characterized by a rotational movement of its oppositely charged half-stuff, which radius (r is the amplitude of the oscillation process of each of the half-mass, and described by oppositely charged half-mass circumference length S in expanded form in a result of the progressive movement is the length wave l. This work displays the wave equation describing the motion of photons in the form of a standing wave which is a complete analog-independent Schrödinger equation for the motion of an electron in a hydrogen atom

  15. Photon and dilepton emission rates from high density quark matter

    We compute the rates of real and virtual photon (dilepton) emission from dense QCD matter in the color-flavor locked (CFL) phase, focusing on results at moderate densities (three to five times the nuclear saturation density) and temperatures T≅80 MeV. We pursue two approaches to evaluate the electromagnetic response of the CFL ground state: (i) a direct evaluation of the photon self-energy using quark particle/hole degrees of freedom and (ii) a hidden local symmetry framework based on generalized mesonic excitations, where the ρ meson is introduced as a gauge boson of a local SU(3) color-flavor group. The ρ coupling to generalized two-pion states induces a finite width and allows us to address the issue of vector meson dominance in the CFL phase. We compare the calculated emissivities (dilepton rates) to those arising from standard hadronic approaches including in-medium effects. For rather large superconducting gaps (several tens of MeV at moderate densities), as suggested by both perturbative and nonperturbative estimates, the dilepton rates from CFL quark matter turn out to be very similar to those obtained in hadronic many-body calculations, especially for invariant masses above M≅0.3 GeV. A similar observation holds for (real) photon production

  16. Photon collider Higgs factories

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  17. Photon energy upconverting nanopaper

    Hanner, Anna Justina; Busko, Dmitry; Avlasevich, Yuri; Glasser, Gunnar; Baluschev, Stanislav; Landfester, Katharina

    2014-01-01

    The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA......-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and...

  18. Physics of photonic devices

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  19. Single photon quantum cryptography

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-01-01

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 9500 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over ...

  20. Fundamentals of microwave photonics

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  1. Nanostructured polymers for photonics

    Chantal Paquet

    2008-04-01

    Full Text Available We review recent progress in the development of polymer nanostructured materials with periodic structures and compositions having applications in photonics and optical data storage. This review provides a brief description of the microfabrication and self-assembly methods used for the production of polymer materials with periodic structures, and highlights the properties and applications of photonic materials derived from block copolymers, colloid crystals, and microfabricated polymers. We conclude with a summary of current and future research efforts and opportunities in the development of polymer materials for photonic applications.

  2. Photonics: Technology project summary

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  3. Strained Silicon Photonics

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  4. Photonic crystal fibers -

    Libori, Stig E. Barkou

    2002-01-01

    possibilities, the thesis will attempot to offer a proof of concept, rather than an in-depth analysis, thus reflecting the present state of the art within the area of micro-structured fibers. Another important sub-class of micro-structured fibers is photonic bandgap fibers. Photonic bandgap fibers are far more......-structured fibers that guide light by simple index effects. However, photonic bandgap fibers offer more radical possibilities, such as core regions with an effective index that is lower than the surrounding effective cladding index one may guide light in air- and dispersion qualities that differ from both those of...

  5. Neutron cross sections at 14 MeV

    Neutron activation cross sections on Nd isotopes at 14 MeV were measured using the Ge(Li) gamma-ray spectroscopy. The nonlinear least square method was used for resolving the gamma spectra. The results obtained are discussed in detail and compared with theoretical results on other isotopes

  6. The 400 MeV Linac Upgrade at Fermilab

    Noble, R.J.

    1992-12-01

    The Fermilab Linac Upgrade in planned to increase the energy of the H{sup {minus}} linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHs drift-tube linac (DTL) tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MRs side-coupled cavity modules operating at an average axial field of about 7.5 MV/meter. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a 12 MW klystron-based rf power supply. Three of seven accelerator modules have been fabricated, power tested and installed in their temporary location adjacent to the existing DTL. All seven RF Modulators have been completed and klystron installation has begun. Waveguide runs have completed from the power supply gallery to the accelerator modules. The new linac will be powered in the temporary position without beam in order to verify overall system reliability until the laboratory operating schedule permits final conversion to 400 MeV operation.

  7. Analysis of 33 MeV Nitrogen irradiated UHMWPE

    In this work, we irradiated UHMWPE with 33 MeV Nitrogen ions, at several fluences, to generate surface modifications without affecting the bulk properties. These modifications were quantified by means of wear resistance tests and Fourier transform infrared spectroscopy (FTIR) measurements. Experimental results show an optimum ion fluence value that maximizes UHMWPE wear resistance

  8. Linac4 crosses the 100 MeV threshold

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  9. 200 MeV RF linac for synchrotron injection

    Construction has been completed on an electron linear accelerator for the Brookhaven National Laboratory. This accelerator will be used for the injection of a 200 MeV electron beam into a synchrotron for lithography experiments. This paper describes the conceptual design of the linac, its e-gun pulser, and its control and timing systems. 3 figs., ref

  10. MeV neutrinos in double beta decay

    Zuber, K.

    1996-01-01

    The effect of Majorana neutrinos in the MeV mass range on the double beta decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half life data, limits on the mixing parameter $U_{eh}^2$ of the order 10$^{-7}$ can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined.

  11. Tomography of photon-added and photon-subtracted states

    Bazrafkan, MR; Man'ko, [No Value

    2003-01-01

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the m

  12. Electron and photon production from relativistic laser-plasma interactions

    The interaction of short and intense laser pulses with plasmas is a very efficient source of relativistic electrons with tunable properties. In low density plasmas, we observed bunches of electrons up to 200 MeV, accelerated in the wake field of the laser pulse. Less energetic electrons (tens of MeV) have been obtained, albeit with a higher efficiency, during the interaction with a solid target. When these relativistic electrons slow down in a thick tungsten target, they emit very energetic Bremsstrahlung photons which have been diagnosed directly with photoconductors, and indirectly through photonuclear activation measurements. Dose, photoactivation, a nd photofission measurements are reported. These results are in reasonable agreement, over three orders of magnitude, with a model built on laser -plasma interaction and electron transport numerical simulations. (author)

  13. Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption

    Nakanishi, Toshihiro; Kobayashi, Hirokazu; Sugiyama, Kazuhiko; Kitano, Masao

    2009-01-01

    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is complete...

  14. Microwave background constraints on mixing of photons with hidden photons

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle χ0 -7 - 10-5 for hidden photon masses between 10-14 eV and 10-7 eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained. (orig.)

  15. Thermoluminescence Response of Ge-Doped Cylindrical-, Flat- and Photonic Crystal Silica-Fibres to Electron and Photon Radiation

    Entezam, A.; Khandaker, M. U.; Amin, Y. M.; Ung, N. M.; Bradley, D. A.; Maah, J.; Safari, M. J.; Moradi, F.

    2016-01-01

    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6–10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1–5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications. PMID:27149115

  16. Thermoluminescence Response of Ge-Doped Cylindrical-, Flat- and Photonic Crystal Silica-Fibres to Electron and Photon Radiation.

    Entezam, A; Khandaker, M U; Amin, Y M; Ung, N M; Bradley, D A; Maah, J; Safari, M J; Moradi, F

    2016-01-01

    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications. PMID:27149115

  17. Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV

    Marisaldi, M.; Fuschino, F.; Tavani, M.; Dietrich, S.; Price, C.; Galli, M.; Pittori, C.; Verrecchia, F.; Mereghetti, S.; Cattaneo, P. W.; Colafrancesco, S.; Argan, A.; Labanti, C.; Longo, F.; Del Monte, E.; Barbiellini, G.; Giuliani, A.; Bulgarelli, A.; Campana, R.; Chen, A.; Gianotti, F.; Giommi, P.; Lazzarotto, F.; Morselli, A.; Rapisarda, M.; Rappoldi, A.; Trifoglio, M.; Trois, A.; Vercellone, S.

    2014-02-01

    We present the characteristics of 308 terrestrial gamma ray flashes (TGFs) detected by the Minicalorimeter (MCAL) instrument on board the AGILE satellite during the period March 2009-July 2012 in the ±2.5° latitude band and selected to have the maximum photon energy up to 30 MeV. The characteristics of the AGILE events are analyzed and compared to the observational framework established by the two other currently active missions capable of detecting TGFs from space, RHESSI and Fermi. A detailed model of the MCAL dead time is presented, which is fundamental to properly interpret our observations. The most significant contribution to dead time is due to the anticoincidence shield in its current configuration and not to the MCAL detector itself. Longitude and local time distributions are compatible with previous observations, while the duration distribution is biased toward longer values because of dead time. The intensity distribution is compatible with previous observations, when dead time is taken into account. The TGFs cumulative spectrum supports a low production altitude, in agreement with previous measurements. We also compare our sample to lightning sferics detected by the World Wide Lightning Location Network and suggest a new method to assess quantitatively the consistency of two TGF populations based on the comparison of the associated lightning activity. According to this method, AGILE and RHESSI samples are compatible with the same parent population. The AGILE TGF catalog below 30 MeV is accessible online at the website of the ASI Science Data Center http://www.asdc.asi.it/mcaltgfcat/.

  18. Principles of photonics

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  19. Smart packaging for photonics

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W. [ed.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  20. Random access photonic metamaterials

    Cencillo-Abad, P.; Ou, J.Y.; Valente, J.; Plum, E.; Zheludev, N.I.

    2015-01-01

    We demonstrate the first addressable reconfigurable photonic metamaterials thus enabling control over optical material properties with simultaneous spatial and temporal resolution. Potential applications of random access metadevices include active focusing, beam steering, dynamic transformation optics and video holography.

  1. Photons and magnetization

    Pile, P.; Němec, P.; Jungwirth, Tomáš

    2013-01-01

    Roč. 7, č. 6 (2013), s. 500. ISSN 1749-4885 Institutional support: RVO:68378271 Keywords : spintronics * photonics * magneto -optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 29.958, year: 2013

  2. Photonic Quantum Information Processing

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  3. Photonic band gap materials

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented

  4. Photon-photon interaction in axial channeling

    Klenner, J.; Augustin, Jürgen; Schäfer, Andreas; Greiner, Walter

    2006-01-01

    We investigate the possibility that high-energy photons are channeled, when passing through an oriented single crystal, due to Delbrück scattering. For this purpose the exact electron propagator for the single-string model is constructed. Starting from a separation of variables, we solve the Dirac equation for a cylindrical electrostatic potential. The propagator for such external fields is constructed from solutions of the radial Dirac equation. This propagator is applied to a calculation of...

  5. Hadronic photon-photon scattering at LEP

    Wengler, Thorsten

    2007-01-01

    Hadronic interactions of two quasi-real photons have been studied extensively both during the LEP1 and the LEP2 data taking periods. The higher energies available at LEP2 in particular opened regions of phase space where hadronic processes can be predicted reliably by perturbative QCD calculations, usually available to next-to-leading order in the strong coupling constant for the process concerned. Over a wide range of observables and phase space good agreement is observed between measurement...

  6. Photonics Explorer: revolutionizing photonics in the classroom

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  7. New results for a photon-photon collider

    Asner, D.; Grzadkowski, B.(Faculty of Physics, University of Warsaw, HoŻa 69, 00-681, Warsaw, Poland); Gunion, J. F.; Logan, H. E.; V. Martin; Schmitt, M.; Velasco, M. M.

    2002-01-01

    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.

  8. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  9. Beyond photon pairs

    Yorulmaz, Saime Çiğdem

    2014-01-01

    In this thesis we explore spatial quantum correlations of high-dimensional multi-photon states. These states are produced using the process of parametric down-conversion and are experimentally explored by measuring correlations with only two detectors. Compared to earlier investigations of multi-photon states, the correlations in this thesis are created in the spatial domain instead of the temporal domain. This has a distinct experimental advantage because it is much easier to measure the emi...

  10. Photon energy lifter

    Gaburro, Zeno; Ghulinyan, Mher; Riboli, Francesco; Pavesi, Lorenzo; Recati, Alessio; Carusotto, Iacopo

    2005-01-01

    We propose a time-dependent photonic structure, in which the carrier frequency of an optical pulse is shifted without changing its shape. The efficiency of the device takes advantage of slow group velocities of light attainable in periodic photonic structures. The frequency shifting effect is quantitatively studied by means of Finite Difference Time Domain simulations for realistic systems with optical parameters of conventional silicon technology.

  11. Photon Channelling in Foams

    Schmiedeberg, Michael; Miri, MirFaez; Stark, Holger

    2005-01-01

    Experiments by Gittings, Bandyopadhyay, and Durian [Europhys. Lett.\\ \\textbf{65}, 414 (2004)] demonstrate that light possesses a higher probability to propagate in the liquid phase of a foam due to total reflection. The authors term this observation photon channelling which we investigate in this article theoretically. We first derive a central relation in the work of Gitting {\\em et al.} without any free parameters. It links the photon's path-length fraction $f$ in the liquid phase to the li...

  12. Anti-photon

    Moret-Bailly, Jacques

    2010-01-01

    Quantum electrodynamics corrects miscalculations of classical electrodynamics, but by introducing the pseudo-particle "photon" it is the source of errors whose practical consequences are serious. Thus W. E. Lamb disadvises the use of the word "photon" in an article whose this text takes the title. The purpose of this paper is neither a compilation, nor a critique of Lamb's paper: It adds arguments and applications to show that the use of this concept is dangerous while the semi-classical theo...

  13. Photon Structure Function

    Godbole, Rohini M.(Centre for High Energy Physics, Indian Institute of Science, 560012, Bangalore, India)

    1996-01-01

    After briefly explaining the idea of photon structure functions (F gamma2, F gammaL),I review the current theoretical and experimental developements in the subject of extraction of q-gamma from a study of the Deep Inelastic Scattering (DIS). I then end by pointing out recent progress in getting information about the parton content of the photon from hard processes other than DIS.

  14. Photonics in switching

    Midwinter, John E; Kelley, Paul

    1993-01-01

    Photonics in Switching provides a broad, balanced overview of the use of optics or photonics in switching, from materials and devices to system architecture. The chapters, each written by an expert in the field, survey the key technologies, setting them in context and highlighting their benefits and possible applications. This book is a valuable resource for those working in the communications industry, either at the professional or student level, who do not have extensive background knowledge or the underlying physics of the technology.

  15. Photonic flame effect

    Tcherniega, N. V.; Kudryavtseva, A. D.

    2006-01-01

    We observed new effect which we called photonic flame effect (PFE). Several 3-dimensional photonic crystals (artificial opals) were posed on Cu plate at the temperature of liquid nitrogen (77K). Typical distance between them was 1-5 centimeters. Long-continued optical luminescence was excited in one of them by the ruby laser pulse. Analogous visible luminescence manifesting time delay appeared in other samples of the crystals. Experiments were realized for opal crystals and for nanocomposites...

  16. Nanostructured polymers for photonics

    Chantal Paquet; Eugenia Kumacheva

    2008-01-01

    We review recent progress in the development of polymer nanostructured materials with periodic structures and compositions having applications in photonics and optical data storage. This review provides a brief description of the microfabrication and self-assembly methods used for the production of polymer materials with periodic structures, and highlights the properties and applications of photonic materials derived from block copolymers, colloid crystals, and microfabricated polymers. We co...

  17. Coherent terahertz photonics.

    A J Seeds; Fice, M. J.; Balakier, K; M Natrella; Mitrofanov, O.; Pepper, M.; Renaud, C.C.; M. Lamponi; M Chtioui; Van Dijk, F.; Aeppli, G.; A G Davies; Dean, P.; Linfield, E

    2013-01-01

    We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance...

  18. Photonics: practically there?

    Paula Gould

    2002-01-01

    Materials that contain a photonic band gap have the potential to manipulate light with remarkable precision. Successful fabrication of such structures, known as photonic crystals, has fueled interest in a whole host of novel optical devices, ranging from miniature lasers and all-optical circuits to smart textiles and biomedical transport systems. Growing confidence that ‘the time is right’ to realize the new technology’s commercial potential has been demonstrated by the emergence of numerous ...

  19. Surface nanoscale axial photonics

    Sumetsky, M.; Fini, J. M.

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...

  20. Strained Silicon Photonics

    Wehrspohn, Ralf B; Jörg Schilling; Christian Bohley; Clemens Schriever

    2012-01-01

    A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is inves...

  1. Engineering photonic nanojets

    Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Rockstuhl, Carsten; Herzig, Hans Peter

    2011-01-01

    Photonic Nanojets are highly localized wave fields emerging directly behind dielectric microspheres; if suitably illuminated. In this contribution we reveal how different illumination conditions can be used to engineer the photonic Nanojets by measuring them in amplitude and phase with a high resolution interference microscope. We investigate how the wavelength, the amplitude distribution of the illumination, its polarization, or a break in symmetry of the axial-symmetric structure and the il...

  2. Photonic Bandgap Fibers

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  3. Photon-Notoph Equations

    Dvoeglazov, V V

    1998-01-01

    In the sixties Ogievetskii and Polubarinov proposed the concept of a notoph, whose helicity properties are complementary to those of a photon. We analyze the theory of antisymmetric tensor fields in the view of the normalization problem. The obtained result is that it is possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Physical consequences are discussed.

  4. ALICE photon spectrometer crystals

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  5. Photonic bandgap structures

    Marco, Pisco; Antonello, Cutolo

    2012-01-01

    This E-Book covers the research and the development of a novel generation of photonic devices for sensing applications. Key features of this book include a brief review of basic PhCs related design and fabrication concepts, a selection of crossover topics for the development of novel technological platforms for physical, chemical and biological sensing and a description of the main PhCs sensors to date by representing many of the exciting sensing applications that utilize photonic crystal structures.

  6. Measurement of atmospheric neutron and photon energy spectra at aviation altitudes using a phoswich-type neutron detector

    Neutron energy spectrum from 7 to 180 MeV and photon energy spectrum from 4 to 50 MeV were measured onboard an aircraft using a newly developed phoswich-type neutron detector at 10.8 km altitude (atmospheric depth of 249 g/cm2) and geographical latitude of 39degN (a vertical cut-off rigidity of 10.2 GV) near Japan on February 13, 2008 (at a heliocentric potential of 312 MV). Our results were compared with other measurements obtained using 3He-loaded or extended-energy multi moderator neutron spectrometers (Bonner balls) at aviation altitudes, an organic liquid scintillator on the ground, and a double-scatter neutron telescope at the top of the atmosphere and with calculations using the LUIN2000, EXPACS and RMC codes. Our measured results give a large, sharp peak around a neutron energy of 70 MeV, although Bonner balls present a broad peak around 100 MeV due to low energy resolution. Our neutron fluxes agree well with the others. The measured photon energy spectrum is between the LUIN2000- and EXPACS-calculated spectra and agrees with measured vertical photon spectra at the top of the atmosphere. This onboard study provides the first experimental neutron energy spectrum in the high-energy region (over 10 MeV) with a high energy resolution. (author)

  7. Strong exciton-photon coupling with colloidal nanoplatelets in an open microcavity

    Flatten, Lucas C.; Christodoulou, Sotirios; Patel, Robin K.; Buccheri, Alexander; Coles, David M.; Benjamin P. L. Reid; Taylor, Robert A.; Moreels, Iwan; Smith, Jason M.

    2016-01-01

    Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of $66 \\pm 1$ meV and $58 \\pm 1$ meV are observed for the heavy and light hole ...

  8. Possible nonvanishing mass of photon

    From phenomenological and field-theoretical considerations on photon mass, we first show that photon is not limitted to being massless at the present stage. Next we illustrate a possibility of formulating a local field theory for massive photons coupled with nonconserved currents, while we cannot do for massless photons. (author)

  9. AVERAGE REACTION CROSS-SECTIONS FOR 74-MEV TO 112-MEV ALPHA-PARTICLES ON I-127 AND CS-133

    WARNER, RE; WILSCHUT, HW; RULLA, WF; FELDER, GN

    1991-01-01

    The average reaction cross section for 74- to 112-MeV alpha particles on I-127 and Cs-133 was measured by a new method using a magnetic spectrograph and a CsI scintillation detector. The result, sigma-R = 2220+/-50 mb, is in good agreement with optical model calculations and finite-range microscopic

  10. Photonic Quantum Computing

    Barz, Stefanie

    2013-05-01

    Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. In this talk I will present a series of experiments in the field of photonic quantum computing. The first experiment is in the field of photonic state engineering and realizes the generation of heralded polarization-entangled photon pairs. It overcomes the limited applicability of photon-based schemes for quantum information processing tasks, which arises from the probabilistic nature of photon generation. The second experiment uses polarization-entangled photonic qubits to implement ``blind quantum computing,'' a new concept in quantum computing. Blind quantum computing enables a nearly-classical client to access the resources of a more computationally-powerful quantum server without divulging the content of the requested computation. Finally, the concept of blind quantum computing is applied to the field of verification. A new method is developed and experimentally demonstrated, which verifies the entangling capabilities of a quantum computer based on a blind Bell test.

  11. Single-photon imaging

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist's view from different domains to the forthcoming ''single-photon imaging'' revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields. (orig.)

  12. Photon scattering from 12C and 4He nuclei near the Δ(1232) resonance

    Igarashi, R.; Bergstrom, J. C.; Caplan, H. S.; Doss, K. G. E.; Hallin, E. L.; Skopik, D. M.; Delli Carpini, D.; Booth, E. C.; McIntyre, E. K.; Miller, J. P.; Lucas, M. A.; MacGibbon, B. E.; Nathan, A. M.; Wells, D.

    1995-08-01

    Angular distributions for photon scattering from 12C and 4He have been measured using continuous wave bremsstrahlung from the Saskatchewan Accelerator Laboratory pulse stretcher ring. Data for carbon were taken at 158.8, 195.2, 197.2, 247.2, and 290.2 MeV end-point energies, and for helium were taken at an end-point energy of 158.8 MeV. A large NaI(Tl) gamma ray spectrometer with 1.7% resolution was used to detect the scattered photons at laboratory scattering angles ranging from 20° to 150°. The excellent energy resolution of the NaI detector allowed a separation of elastic from inelastic photon scattering for the first time at these energies. The angular distributions for elastic scattering are in only fair agreement with delta-hole theory and theory based on the optical theorem at forward angles, and completely disagree with theory at backward angles. Measured cross sections for inelastic scattering leading to the 4.43 MeV state in carbon are small compared to the elastic scattering at forward angles, but are dominant at backward angles. This experiment is the first to separate elastic from inelastic photon scattering at these energies.

  13. Photon scattering from 12C and 4He nuclei near the Δ(1232) resonance

    Angular distributions for photon scattering from 12C and 4He have been measured using continuous wave bremsstrahlung from the Saskatchewan Accelerator Laboratory pulse stretcher ring. Data for carbon were taken at 158.8, 195.2, 197.2, 247.2, and 290.2 MeV end-point energies, and for helium were taken at an end-point energy of 158.8 MeV. A large NaI(Tl) gamma ray spectrometer with 1.7% resolution was used to detect the scattered photons at laboratory scattering angles ranging from 20 degree to 150 degree. The excellent energy resolution of the NaI detector allowed a separation of elastic from inelastic photon scattering for the first time at these energies. The angular distributions for elastic scattering are in only fair agreement with delta-hole theory and theory based on the optical theorem at forward angles, and completely disagree with theory at backward angles. Measured cross sections for inelastic scattering leading to the 4.43 MeV state in carbon are small compared to the elastic scattering at forward angles, but are dominant at backward angles. This experiment is the first to separate elastic from inelastic photon scattering at these energies

  14. Response of a close to final prototype for the P bar ANDA Electromagnetic Calorimeter to photons at energies below 1 GeV

    Rosenbaum, C.; Diehl, S.; Dormenev, V.; Drexler, Peter; Kavatsyuk, M.; Kuske, T.; Nazarenko, S.; Novotny, R. W.; Rosier, P.; Ryazantsev, A.; Wieczorek, P.; Wilms, A.; Wohlfahrt, B.; Zaunick, H.-G.

    2016-07-01

    The response of two generations of prototypes of the P bar ANDA Electromagnetic Calorimeter (EMC), PROTO60 and PROT120, to photons in the energy range between 50 MeV and 800 MeV was obtained. Furthermore, the performance of the pre-amplifier ASIC (APFEL) under real experimental conditions, the position dependence of the energy resolution within the crystal and the implementation of higher order energy correction algorithms with a 15 GeV/c positron beam were studied.

  15. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons

    Girolami, B.; Larsson, B.; Preger, M.; Schaerf, C.; Stepanek, J.

    1996-09-01

    The frontal collisions of a laser beam with relativistic electrons result in Compton-backscattered photons. The energy of these photons is dependent on the laser and electron energy in the range from kilo-electron-volts to tens of mega-electron-volts. In a sufficiently narrow backscattering angle the photons are nearly monochromatic. Over the past 30 years there have been several attempts to produce photon beams by laser backscattering from relativistic electrons stored in magnetic ring structures. One aim is to produce photons in the high mega-electron-volt energy range with fluxes useful for nuclear physics research; another is to produce photons in the high kilo-electron-volt energy range, which would be useful for medical applications, such as coronary angiography or treatment of tumour. Our present interest is to investigate the possibility of using 34 keV to 10 MeV photon beams for applications in stereotactic functional radiosurgery. We foresee the possibility of neurosurgical operations through the intact skull with precise and effective destruction of deeply lying millimetre-sized targets with minimal effects on intervening structures, high reproducibility and good prediction of the results. Our paper presents: a Monte Carlo study of radiosurgery based on cross firing with 34 keV to 100 MeV photon beams and 200 and 580 MeV proton beams, a theoretical description of the kinematics of Compton backscattering and estimates of the backscattered photon flux from several combinations of laser cavities at Nd:YAG (1.17 eV) and images/0031-9155/41/9/002/img8.gif" ALIGN="TOP"/> (0.117 eV) laser energies and electron storage rings energies in the range 0.1 - 1.3 GeV. As examples, existing magnetic structures, such as the images/0031-9155/41/9/002/img9.gif" ALIGN="TOP"/> Accumulator in the lower energy range and the Trieste Synchrotron Light Source ELETTRA in the higher energy range have been utilized in the calculations. The Monte Carlo study has shown that

  16. Determining photon energy absorption parameters for different soil samples

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2012-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137Cs and 60Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137Cs. The effective atomic numbers (Z eff ) and the e...

  17. Enhanced production of direct photons in Au+Au collisions at sqrt(s_NN)=200 GeV

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J S; Chang, B S; Charvet, J L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanad, M; Csrgo, T; Dahms, T; Das, K; David, o G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Yu V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; Enyo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Gunji, T; Gustafsson, H; Hachiya, AT; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Bösing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Krl, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Lika, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, s B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Man'ko, V I; Mao, Y; Maek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mike, s P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, s M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saitô, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Sluneka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, cS P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarjn, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomaek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, Itzhak; Tsuchimoto, Y; Tuli, S K; Tydesj, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, o J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2008-01-01

    The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced e+e- pair yield above hadronic sources is observed in Au+Au collisions. Treating the excess as internal conversion of direct photons, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess over p+p is exponential in p_T}, with inverse slope T = 221 +/- 23 (stat) +/- 18 (syst) MeV. Hydrodynamical models with initial temperatures T_init ~ 300-600 MeV at times of 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition at ~ 170 MeV.

  18. Characterization of PARIS LaBr$_3$(Ce)-NaI(Tl) phoswich detectors upto $E_\\gamma$ $\\sim$ 22 MeV

    Ghosh, C; Pillay, R G; K., Anoop; Dokania, N; Pal, Sanjoy; Pose, M S; Mishra, G; Rout, P C; Kumar, Suresh; Pandit, Deepak; Mondal, Debasish; Pal, Surajit; Banerjee, S R; Napiorkowski, Paweł J; Dorvaux, Oliver; Kihel, S; Mathieu, C; Maj, A

    2016-01-01

    In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr$_3$(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of $E_{\\gamma}$ = 0.6 to 22.6 MeV using radioactive sources and employing $^{11}B(p,\\gamma)$ reaction at $E_p$ = 163 keV and $E_p$ = 7.2 MeV. The linearity of energy response of the LaBr$_3$(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of $\\sim$ 2.1% at $E_\\gamma$ = 22.6~MeV is measured for configuration giving best linearity upto high energy. Time resolution of the phoswich detector is measured with $^{60}$Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM $\\sim$ 315~ps). In order to study the effect...

  19. Tracking and imaging gamma-ray experiment (TIGRE) for 300-keV to 100-MeV gamma-ray astronomy

    Tumer, Tumay O.; Bhattacharya, Dipen; Blair, Scott C.; Case, Gary; Dixon, David D.; Liu, Chia-Ling; O'Neill, Terrence J.; White, R. Stephen; Zych, Allen D.

    1994-09-01

    The Tracking and Imaging Gamma-Ray Experiment (TIGRE) uses multilayers of silicon strip detectors both as a gamma-ray converter and to track Compton recoil electrons and positron-electron pairs. The silicon strip detectors also measure the energy losses of these particles. For Compton events, the direction and energy of the Compton scattered gamma ray are measured with arrays of small CsI(TI)-photodiode detectors so that an unique direction and energy can be found for each incident gamma ray. The incident photon direction for pair events is found from the initial pair particle directions. TIGRE is the first Compton telescope with a direct imaging capability. With a large (pi) -steradian field-of-view, it is sensitive to gamma rays from 0.3 to 100 MeV with a typical energy resolution of 3% (FWHM) and a 1-(sigma) angular resolution of 40 arc-minutes at 2 MeV. A small balloon prototype instrument is being constructed that has a high absolute detection efficiency of 8% over the full energy range and a sensitivity of 10 milliCrabs for an exposure of 500,000 s. TIGRE's innovative design also uses the polarization dependence of the Klein-Nishina formula for gamma-ray source polarization measurements. The telescope will be described in detail and new results from measurements at 0.5 MeV and Monte Carlo calculations from 1 to 100 MeV will be presented.

  20. Photonic Aharonov-Bohm effect in photon-phonon interactions.

    Li, Enbang; Eggleton, Benjamin J; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential. PMID:24476790

  1. Monte Carlo simulations and benchmark measurements on the response of TE(TE) and Mg(Ar) ionization chambers in photon, electron and neutron beams

    Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei

    2015-06-01

    The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7

  2. Operating experience of 10 MeV industrial linac

    For the past three years, an Industrial 10 MeV RF Electron linac has been in operation at Electron Beam Centre, Navi Mumbai. This pulsed linac has an on-axis coupled cavity bi-periodic π/2 structure and operates at frequency of 2856 MHz. The linac has been tested up to a maximum beam power of 5 kW and is being used for industrial applications. A successful 24-hour continuous run, at 3 kW, established the long term stability of all the linac parameters. This paper describes the high power operating experience of the 10 MeV linac. Details of RF conditioning and performance of the linac during long term tests is presented. Effect of various linac parameters, including injection voltage, RF input power, PRF, gun filament heating power, on the output beam power and energy has been discussed. (author)

  3. Upgrade of the Brookhaven 200 MeV linac

    The Brookhaven 200 MeV linac serves as the injector for the AGS Booster, as well as delivering beam to the Biomedical Isotope Resource Center. During the past year, many linac systems have been upgraded to allow operation at 2.5 times higher average current (150 μA). This was achieved by an increase in rep-rate from 5 to 7.5 Hz, an increase in beam current from 25 mA to 37 mA, and a slight increase in pulse width to ∼530 μs. Additional upgrades were made to improve reliability and modernize old systems. This paper describes improvements made in the 35 keV and 750 keV beam transport, 200 MeV beam transport, rf transmission line, rf power supplies, control systems, and instrumentation

  4. Femtosecond Time-resolved MeV Electron Diffraction

    Zhu, Pengfei; Cao, J; Geck, J; Hidaka, Y; Kraus, R; Pjerov, S; Shen, Y; Tobey, R I; Zhu, Y; Hill, J P; Wang, X J

    2013-01-01

    We report the experimental demonstration of electron diffraction with 130 femtosecond time resolution using bench-top MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminium and single-crystal 1T-TaS_{2} are obtained utilizing a 5 femto-Coulomb (~3x10^{4} electrons) pulse of electrons at 2.8 MeV. The timing jitter between the pump laser and probe electron beam was found to be ~ 100 fs. The time resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS_{2} following an optical pump. Our experiemntal results demonstrate the feasibility of ultimately realizing 40 fs time-resolved electron diffraction.

  5. Magnifying lens for 800 MeV proton radiography

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  6. Initial Test of the PEFP 20MeV DTL

    Kim, Han-Sung; Han, Sang-Hyo; Hwang, Yong-Suk; Jang, Ji-Ho; Kim, Yong-Hwan; Kwon, Hyeok-Jung; Park, Mi-Young; Tae Seol, Kyung

    2005-01-01

    A conventional 20MeV drift tube linac (DTL) for the Proton Engineering Frontier Project (PEFP) has been developed as a low energy section of 100MeV accelerator. The machine consists of four tanks with 152 cells supplied with 900kW RF power from 350MHz klystron through the ridge-loaded waveguide coupler. We assembled the fabricated accelerator components and aligned each part with care. We have also prepared the subsystems for the test of the DTL such as RF power delivery system, high voltage DC power supply, vacuum system, cooling system, measurements and control system and so on. The detailed description of the initial test setup and preliminary test results will be given in this paper.

  7. MeV electron populations as measured on DMSP

    A dosimeter flown on the DMSP F7 spacecraft during solar minimum from January 1984 through October 1987 measured electron fluxes and dose behind four different dome thicknesses. The spacecraft was in an 840 km, circular, polar orbit with a 101 minute orbit period. Using sophisticated display and analysis software developed for the CRRES program, the DMSP data base was re-examined. Displays of the data set uncovered previously unseen phenomena to include > 2.5 MeV electron penetrations to low magnetic latitudes during magnetospheric storm periods. During three periods (1 August 1984, 8--9 February 1986 and 12 September 1986) the > 2.5 MeV electrons were measured penetrating all the way to the magnetic equator. This is the first known report of these particles at the magnetic equator at 840 km. The particle penetrations occurred during periods of high magnetic activity as indicated by Kp and other indices

  8. XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions

    Nakano, K.; Yoshizaki, H.; Saitoh, Y.; Ishikawa, N.; Iwase, A.

    2016-03-01

    To simulate energetic neutron irradiation effects, yttria-stabilized zirconia (YSZ) which is one of the major materials for electrical corrosion potential sensors (ECP sensors) was irradiated with heavy ions at energies ranging from 7.3 MeV to 2.2 GeV. Ion irradiation effects on the lattice structure were analyzed using the X-ray diffraction (XRD). The increase in lattice constant was induced by the ion irradiation. It was dominated by the elastic collision process and not by the electronic excitation process. The lattice disordering which was observed as a broadening of XRD peaks was also induced by the irradiation especially for 200 MeV Xe ion irradiation. The present result suggests that the expansion and/or the disordering of YSZ lattice induced by energetic neutrons may affect the durability of a joint interface between a metal housing and YSZ membrane for the usage of ECP sensors in nuclear power reactors.

  9. Charm and bottom quark production in photon-nucleon and photon-photon collisions

    Szczurek, A.

    2002-01-01

    I discuss mechanisms of heavy quark production in (real) photon-nucleon and (real) photon - (real) photon collisions. In particular, I focuse on application of the Saturation Model. In addition to the main dipole-nucleon or dipole-dipole contribution included in recent analyses, I propose how to calculate within the same formalism the hadronic single-resolved contribution to heavy quark production. At high photon-photon energies this yields a sizeable correction of about 30-40 % for inclusive...

  10. Measurement of photonuclear cross sections from 30 to 140 MeV for intermediate and heavy mass nuclei (Sn, Ce, Ta, Pb and U)

    The total photonuclear absorption cross section for Sn, Ce, Ta, Pb and U has been studied from 25 to 140 MeV using a continuously variable monochromatic photon beam obtained from the annihilation in flight of monoenergetic positrons. The basic experimental results are a set of data giving sums of inclusive multiple photoneutron production cross sections of the form σsup(j) (Esub(γ) = Σsub(i=j)σ(γ,in) for neutron multiplicities ranging from j=1 to 12. From these data the total photonuclear absorption cross section σ(tot : Esub(γ)) has been deduced. It is concluded that Levinger's modified quasi-deuteron model describes the total cross sections reasonably well. When these data are combined with lower energy data and integrated to 140 MeV they indicate the need for an enhancement factor K for the Thomas-Reiche-Kuhn sum rule of 0.76+-0.10. No evidence was found that would indicate an A-dependence for the enhancement factor. From event-by-event records of observed photoneutron multiplicities it was also possible to determine the mean number of photoneutrons, antiν, for each photon energy and the widths W of the multiplicities distributions. From these measurements one also obtains the cross section for the formation of a compound nucleus state excited with the full energy of the absorbed photon

  11. Evolution of the 400 MeV linac design

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  12. Construction of 35 MeV DSM at Nihon University

    High quality electron beam is needed for the excitation of the free electron laser(FEL). Construction of the 35 MeV double-sided microtron for the FEL has been started at 1984. This accelerator will feed a electron beam which has narrow energy width and low emittance. A first one turn beam line has been completed. Beam accelerating experiments and high power microwave tests are performed. (author)

  13. Scanning magnet power supply for 10 MeV linac

    The 10 MeV/10 kW RF Linac, coming up at Radiation Processing Facility, Indore; requires a variable frequency and variable amplitude saw-tooth current source for its scanning magnet. In this paper, development of a power supply, which is capable of generating a bipolar saw-tooth current wave up to ±10 A at a frequency, ranging from 0.5 Hz to 50 Hz, is presented. (author)

  14. Construction of a pulsed MeV positron beam line

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  15. Radiation sterilization by 10 MeV electron beams

    Gamma-ray sterilization by 60Co source has been already popular in Japan. Many Kinds of medical plastic devices such as catheters, disposable syringes, dializers etc, has been irradiated at 60Co irradiation facilities instead of the conventional ethylene oxide fumigation method. On the other hand, improvement of the quality of electron accelerators has made it easier to take advantage of relatively high energy electrons which are profitable for radiation sterilization because of their high dose rate saving process hours and easiness of source handling and radiation control. So electron-beam sterilization is now under investigation in Japan and, partly, it will be practiced in the near future. Yet few data are available in the present situation. Especially for high energy electron beams near 10 MeV, more data are necessary for practical application of electron-beam sterilization. Therefore, in this study, sensitivity of Bacillus pumilus E601, the biological standard of radiation sterilization, was examined using 10 MeV electron beams from linear accelerator and sterility of the beams was also checked at each depth of plastic boards in order to get basic information for determination of sterility dose. Endospores from B. pumilus were dried on filter papers (Toyo No.1) and irradiated by 10 MeV electron beams of 60Co gamma-rays. The survival curves were shown in Fig. 1. The D values were obtained as 1.9 kGy ± 0.2 for electron beams and 1.7 kGy ± 0.1 for 60Co gamma-rays, both of which were similar. Electron beams could sterilize the endospores nearly uniformly till 3 cm depth of plastic boards at 10 MeV (Fig. 2,3). This indicates a possibility to sterilize relatively bulky products such as dializers etc. (author)

  16. True absorption and scattering of 50 MeV pions

    The inclusive pion inelastic scattering and true absorption cross sections at 50 MeV were measured for π+ on natural Li, C, Fe, Nb, Bi and for π- on C, Fe, Bi. The results show that π- cross sections are much larger than π+, the difference being significantly larger than expected from a simple Coulomb calculation. In particular, in 12C the absorption of negative pions is about twice that of positive pions

  17. Photonic band gap of 2D complex lattice photonic crystal

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  18. Two-photon interference with non-identical photons

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  19. High Energy Photon-Photon Colliders

    Telnov, Valery

    1997-01-01

    Using the laser backscattering method at future TeV linear colliders one can obtain gamma-gamma and electron-gamma colliding beams (photon colliders) with the energy and luminosity comparable to that in e+e- collisions. Now this option is included to conceptual designs of linear colliders. This paper (talk at the conference on nonlinear optics) is a short introduction to this field with an emphasis on required lasers which can be used both for e -> gamma conversion and for preparation of elec...

  20. Scoping studies - photon and low energy neutron interrogation

    Becker, G.; Harker, Y.; Jones, J. [LMITCo, Idaho Falls, ID (United States); Harmon, F. [Idaho State Univ., Pocatello, ID (United States)

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  1. Cosmological Constraints on Decoupled Dark Photons and Dark Higgs

    Berger, Joshua; Walker, Devin G E

    2016-01-01

    Any neutral boson such as a dark photon or dark Higgs that is part of a non-standard sector of particles can mix with its standard model counterpart. When very weakly mixed with the Standard Model, these particles are produced in the early Universe via the freeze-in mechanism and subsequently decay back to standard model particles. In this work, we place constraints on such mediator decays by considering bounds from Big Bang nucleosynthesis and the cosmic microwave background radiation. We find both nucleosynthesis and CMB can constrain dark photons with a kinetic mixing parameter between log {\\epsilon} ~ -10 to -17 for masses between 1 MeV and 100 GeV. Similarly, the dark Higgs mixing angle {\\epsilon} with the Standard Model Higgs is constrained between log {\\epsilon} ~ -6 to -15. Dramatic improvement on the bounds from CMB spectral distortions can be achieved with proposed experiments such as PIXIE.

  2. Photon asymmetry in radiative muon capture on calcium

    The photon asymmetry (αγ) and partial branching ratio above 57 MeV (Rk>57) have been measured for radiative muon capture on 40Ca in order to determine the magnitude of the induced-pseudoscalar coupling constant, gP. Based on 2500 events a value of αγ 1.32-0.47+0.54 is obtained from a fit to the photon time spectrum; this implies a value for gP A. For the first time the asymmetry signal is clearly visible and unconstrained multi-parameter fits reproduce the parameters obtained from the decay electron spectrum. The present results are discussed and compared in detail with previous results. (Author) 46 refs., 2 tabs., 6 figs

  3. Cosmological Constraints on Decoupled Dark Photons and Dark Higgs

    Berger, Joshua [Univ. of Wisconsin, Madison, WI (United States); Jedamzik, Karsten [Univ. Montpellier II (France). Lab. Univers. et Particules de Monpellier; Walker, Devin G.E. [Univ. of Washington, Seattle, WA (United States). Dept. of Physics

    2016-05-23

    Any neutral boson such as a dark photon or dark Higgs that is part of a non-standard sector of particles can mix with its standard model counterpart. When very weakly mixed with the Standard Model, these particles are produced in the early Universe via the freeze-in mechanism and subsequently decay back to standard model particles. In this work, we place constraints on such mediator decays by considering bounds from Big Bang nucleosynthesis and the cosmic microwave background radiation. We find both nucleosynthesis and CMB can constrain dark photons with a kinetic mixing parameter between log ϵ ~ -10 to -17 for masses between 1 MeV and 100 GeV. Similarly, the dark Higgs mixing angle ϵ with the Standard Model Higgs is constrained between log ϵ ~ -6 to -15. Dramatic improvement on the bounds from CMB spectral distortions can be achieved with proposed experiments such as PIXIE.

  4. GCR-Induced Photon Luminescence of the Moon

    Lee, K. T.; Wilson, T. L.

    2008-01-01

    It is shown that the Moon has a ubiquitous photon luminescence induced by Galactic cosmic-rays (GCRs), using the Monte Carlo particle-physics program FLUKA. Both the fluence and the flux of the radiation can be determined by this method, but only the fluence will be presented here. This is in addition to thermal radiation emitted due to the Moon s internal temperature and radioactivity. This study is a follow-up to an earlier discussion [1] that addressed several misconceptions regarding Moonshine in the Earth-Moon system (Figure 1) and predicted this effect. There also exists a related x-ray fluorescence induced by solar energetic particles (SEPs, <350 MeV) and solar photons at lower x-ray energies, although this latter fluorescence was studied on Apollo 15 and 16 [2- 5], Lunar Prospector [6], and even EGRET [7].

  5. Numerical simulation of photon response in portal monitors

    The adjoint technique has been applied to accurately and economically predict the response of a portal monitor to photon emissions below about 1.5 MeV, thus encompassing those sources generally of interest in nuclear safeguards applications. The adjoint source was defined as the product of the total attenuation coefficient and an experimentally determined efficiency factor, which accounts for the performance characteristics of the signal-processing system. The efficiency factor was determined from a combination of data obtained from a single NE-102 scintillator and results from corresponding three-dimensional forward MORSE calculations. A prototype walk-through portal was then fabricated with four identical NE-102 scintillators. Adjoint MORSE calculations were performed to obtain net count rates for various sources within this portal. These results were compared to experimental data and were found to agree to well within 10%. The photon response within the portal detection volume was then characterized by a series of MORSE calculations

  6. Antigravity Acts on Photons

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  7. The irreducible photon

    Andrews, David L.

    2009-08-01

    In recent years it has become evident that the primary concept of the photon has multiple interpretations, with widely differing secondary connotations. Despite the all-pervasive nature of this concept in science, some of the ancillary properties with which the photon is attributed in certain areas of application sit uneasily alongside those invoked in other areas. Certainly the range of applications extends far beyond what was envisaged in the original conception, now entering subjects extending from elementary particle physics and cosmology through to spectroscopy, statistical mechanics and photochemistry. Addressing this diverse context invites the question: What is there, that it is possible to assert as incontrovertibly true about the photon? Which properties are non-controversial, if others are the subject of debate? This paper describes an attempt to answer these questions, establishing as far as possible an irreducible core of what can rightly be asserted about the photon, and setting aside some of what often is, but should never be so asserted. Some of the more bewildering difficulties and differences of interpretation owe their origin to careless descriptions, highlighting a need to guard semantic precision; although simplifications are frequently and naturally expedient for didactic purposes, they carry the risk of becoming indelible. Focusing on such issues, the aim is to identify how much or how little about the photon can be regarded as truly non-controversial.

  8. Scattering of MeV neutrons from elemental iron

    Neutron elastic- and inelastic-scattering cross sections of elemental iron are measured from 1.5 to 4.0 MeV with incident-neutron resolutions of < or approx. = to 50 keV and at incident-neutron energy intervals of < or approx. = to 50 keV. Cross sections for the excitation of observed levels at 0.853, 1.389, 2.097, 2.579, 2.677, 2.974 and 3.152 MeV are determined. The observed elastic- and inelastic-scattering angular distributions fluctuate strongly with incident energy. The experimental results are averaged over broad energy intervals and interpreted in terms of spherical optical-statistical and coupled-channels models including consideration of direct-vibrational excitations. The importance of a comprehensive data base in such energy-averaged interpretations and of the direct-vibrational excitations is stressed. The present measured and calculated results, combined with those reported in the literature, are used to formulate an evaluated scattered-neutron data file in the ENDF format extending from 1.0 to 4.0 MeV. 41 references

  9. MeV ion processing applications for industry

    Ions beams with MeV energies produce a variety of interactions with matter, broadly classified as either electronic or nuclear. These interactions in turn lead to changes in the properties of the matter which may be beneficial or detrimental. In high technology industry, use is increasingly made of ion beam technologies to process novel materials. Typical applications include high energy implantation, in which the deposition of a specific element at depth within the structure of material is the required objective, and irradiation modification, in which the balance between the beneficial and the detrimental effects of the fast ion interactions is exploited. The basic principles behind MeV ion processing are described. Broad areas of application in industrial materials include effects in ion beam analysis, Thin Layer Activation for wear and corrosion measurement, carrier lifetime control in electronic devices, and the simulation of radiation damage effects in, for example, solar cells for spacecraft. New development areas are described in which subtle but potentially significant changes in the chemistry of surfaces and interfaces may be generated by exposure to MeV ion beams. (orig.)

  10. Forward-to-backward asymmetry of the (γ,n) reaction in the energy range 20-30 MeV

    The forward-to-backward asymmetry of neutrons emitted in the (γ,n) reactions on /sup nat/Pb and /sup nat/Cd targets was measured for photons in the range of 20 to 30 MeV, where the isovector quadrupole giant resonance is expected to lie. The asymmetry was observed to increase from small values (≅0.2) to large ones (≅0.6 and 0.8) for /sup nat/Cd and /sup nat/Pb, respectively. This phenomenon is interpreted as the interference between E1 and E2 amplitudes. From an analysis of the asymmetry the excitation energies of the E2 isovector resonances were estimated to be 23.5 +- 1.5 and 26.5 +- 1.5 MeV for the Pb and Cd nuclei, respectively. The E2 isovector resonances are found to be considerably wider than the E1 resonances. 36 refs., 15 figs., 4 tabs

  11. WISP Dark Matter eXperiment and Prospects for Broadband Dark Matter Searches in the $1\\,\\mu$eV--$10\\,$meV Mass Range

    Horns, Dieter; Lobanov, Andrei; Ringwald, Andreas

    2014-01-01

    Light cold dark matter consisting of weakly interacting slim (or sub-eV) particles (WISPs) has been in the focus of a large number of studies made over the past two decades. The QCD axion and axion-like particles with masses in the $0.1\\,\\mu$eV--$100\\,$meV are strong candidates for the dark matter particle, together with hidden photons with masses below $\\lesssim 100\\,$meV. This motivates several new initiatives in the field, including the WISP Dark Matter eXperiment (WISPDMX) and novel conceptual approaches for broad-band WISP searches using radiometry measurements in large volume chambers. First results and future prospects for these experiments are discussed in this contribution.

  12. Electroexcitation of the 0+ (3.562 MeV) level of 6Li and its application to the reaction 6Li(γ,π+)6He

    The M1 form factor for the 0+ (3.562 MeV, T=1) level in 6Li has been measured in the momentum transfer range q=0.26-1.15 fm-1. The radiative width is found to be GAMMAsub(γ0)=8.16+-0.19eV by extrapolation to the photon point. Phenomenological configuration amplitudes have been obtained for the ground and 3.562 MeV level, and it is shown that the 1p harmonic oscillator radial wave functions do not give a good description of the inelastic form factor. The results have been applied to the reaction 6Li(γ,π+)6He near threshold. The theoretical cross section is 24% higher than the data. The muon capture rate in 6Li and Fsub(A)(0) are also evaluated. (Auth.)

  13. Observation of the two photon cascade 3.7 → 3.1 + γγ via an intermediate state Psub(c)

    The two photon cascade decay of tge 3.7 GeV resonance into the 3.1 GeV resonance has been observed in two nearly independent experiments. The clustering of the photon energies around 160 MeV and 420 MeV observed in the channel 3.7 → (3.1 → μ+μ-) + γγ indicates the existence of at least one intermediate state with even charge conjugation at a mass around 3.52 GeV or 3.26 GeV. (orig.)

  14. Comparative evaluation of photon cross section libraries for materials of interest in PET Monte Carlo simulations

    Zaidi, H

    1999-01-01

    the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...

  15. Computer simulation of coherent interaction of charged particles and photons with crystalline solids at high energies

    Apyan, A

    2007-01-01

    Monte Carlo simulation code has been developed and tested for studying the passage of charged particle beams and radiation through the crystalline matter at the energies from tens of MeV up to hundreds of GeV. The developed Monte Carlo code simulates electron, positron and photon shower in single crystals and amorphous media. The Monte Carlo code tracks the all generations of charged particles and photons through the aligned crystal by taking into account the parameters of incoming beam, multiple scattering, energy loss, emission angles, transverse dimension of beams, and linear polarization of produced photons. The simulation results are compared with the CERN-NA-59 experimental data. The realistic descriptions of the electron and photon beams and the physical processes within the silicon and germanium single crystals have been implemented.

  16. Scattering and absorption differential cross sections for double photon Compton scattering

    B S Sandhu; M B Saddi; B Singh; B S Ghumman

    2001-10-01

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin aluminum foils are used as scatterer. The two simultaneously emitted photons in this process are detected in coincidence using two NaI(T1) scintillation detectors and a slow-fast coincidence set-up of 30 nsec resolving time. The measured values of scattering and absorption differential cross sections agree with theory within experimental estimated error.

  17. Bremsstrahlung photons - an ideal tool in nuclear structure and nuclear astrophysics

    Full text of publication follows. Bremsstrahlung photons, produced by decelerating electrons, are a very useful probe to investigate current topics in nuclear structure and nuclear astrophysics. The photon scattering facility of the superconducting electron accelerator S-DALINAC at the Darmstadt University of Technology allows for high resolution Nuclear Resonance Fluorescence (NRF) experiments up to 10 MeV. One current topic of interest in nuclear structure is the investigation of Pygmy Dipole Resonances (PDR), which are located near the particle threshold. Recently, experiments have been carried out on Ca isotopes [1] as well as on several N=82 nuclei [2] in order to understand the structure of the PDR. Moreover, important astrophysical questions can be investigated using real photons (g,n) reaction rates, which play a major role in nucleosynthesis, can be measured at the S-DALINAC by simulating a quasi-stellar photon bath with variable temperature [3,4

  18. Initial temperature and EoS of quark matter via direct photons

    The time evolution of the quark-gluon plasma created in gold-gold collisions of the Relativistic Heavy Ion Collider (RHIC) can be described by hydrodynamical models. Distribution of hadrons reflects the freeze-out state of the matter. To investigate the time evolution, one needs to analyze penetrating probes, such as direct photon spectra. Distributions of low-energy photons were published in 2010 by Phenix. In this paper we analyze a 3+1 dimensional solution of relativistic hydrodynamics and calculate momentum distribution of direct photons. Using earlier fits of this model to hadronic spectra, we compare photon calculations to measurements and find that the initial temperature of the center of the fireball is at least (519 ± 12) MeV, while for the equation of state we get cs = 0.36 ± 0.02

  19. Photon physics with PHENIX

    White, S. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. The author then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. The experiment will measure relatively low p{sub t} photons near y=0 in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  20. Photon kinetics in plasmas

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  1. Photonics: practically there?

    Paula Gould

    2002-09-01

    Strange things happen to light when it passes through photonic crystals. A significant variation in refractive index between the material’s periodic lattice structure and its substrate traps transmitted photons in either one area or the other, creating distinct ‘allowed’ and ‘forbidden’ energy regions. Light with wavelengths equivalent to the forbidden region, the so-called photonic bandgap, is stopped from passing further. Wavelengths from the rest of the electromagnetic spectrum, on the other hand, are free to continue their passage through the material unhindered. In effect, the material is able to halt the passage of light just as the periodic potential of semiconductors, such as silicon, bars electrons from occupying the forbidden energy bandgap.

  2. Photonic Feshbach resonance

    2010-01-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.

  3. Anti-photon

    Moret-Bailly, Jacques

    2010-01-01

    The purpose of this article is neither a compilation, nor a critique of the article by W. E. Lamb of which it gets the name: It adds arguments and applications. Quantum electrodynamics quantizes "normal modes" chosen arbitrarily among the infinity of sets of orthogonal modes of the electromagnetic field. Changing the choice of normal modes splits the photons which are not physical objects. The classical field of electromagnetic energy is often, wrongly, considered as linear, so that Bohr's electron falls on the nucleus and photon counting is false. Using absolute energies and radiances avoids doing these errors. Considering the photons as small particles interacting without pilot waves with single atoms, astrophysicists use Monte-Carlo computations for the propagation of light in homogeneous media while it works only in opalescent media as clouds. Thus, for instance, two theories abort while, they are validated using coherence and Einstein theories, giving a good interpretation of the rings of supernova remna...

  4. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  5. The H(n,n) cross section in the 20 MeV to 350 MeV range

    The differential H(n,n) cross section has been used as a standard relative to which other neutron emission cross sections, e.g., elastic or inelastic scattering, have been measured in several Mev region and these measured values are compared with the VL40 solution of R. Arndt, and R.L. Workman, Nuclear Data Standards for Nuclear Measurements, H. Conde (ed.). NEANDC-311, INDC (SEC)-101, 1992, p. 17. For hydrogen, the differential elastic scattering cross section can be directly related to the total cross section, since no other channels of importance are open below the pion production threshold at about 280 MeV (the capture and Bremsstrahlung cross section are very small). 16 refs, 3 figs

  6. The dosimetry of 3 MeV and 14 MeV neutrons with the ferrous sulphate solution

    The aim of the present work is to determine the G value of a standard ferrous sulphate solution for neutrons with mean energies of 3 MeV and 14 MeV. The number of the transformed Fe ions is evaluated by means of a spectrophotometrical procedure and the absorbed energy is determined by applying the ionometrical method. Especial attention is payed to the calculation of the mean total dose in the irradiated sample taking radiation attenuation into account. For this purpose the spatial distribution of absorbed energy within the probe is determined. Further, it is investigated how the fraction of the γ component in the total absorbed dose varies in the sample, in order to evaluate its mean value, which is needed for the final determination of the G value for the neutron component. (orig.)

  7. The disintegration of nuclei in violent heavy ion interactions at 55 A MeV-110 A MeV

    High multiplicity 12C induced reactions in Ag(Br) at energies between 55 A MeV and 110 A MeV have been selected and investigated event by event in nuclear emulsions. Only a fraction of these events can possibly be described in terms of a normal thermal spectator-participant mechanism. Several events exhibit a violent breakup into several light and medium-mass fragments. A strong suppression of projectile associated proton- and composite particle emission in the forward direction is found in comparison with inclusive spectra. A large part of the low energy protons originates from a very slow source, with a velocity comparable to that of the heaviest fragment. The parallel fraction of the C.m. energy in each event, which is governed by the more energetic protons, has a broad distribution with a mean value of 0.61 and thus with no signals of collective production mechanisms. (orig.)

  8. Setting up a 30 MeV high current cyclotron facility in Kolkata

    Dey, Malay Kanti; Bhandari, Rakesh Kumar [Variable Energy Cyclotron Centre, Kolkata (India)

    2009-11-15

    A 30 MeV proton cyclotron facility is being set up by this centre in Kolkata. This high current cyclotron will be used to produce PET (Positron Emission Tomography and SPECT (Single Photon Emission Computed Tomography)) isotopes for medical diagnostics purposes. Two beams will be simultaneously extractable from the cyclotron, which is the Cyclone-30 model of IBA, Belgium. The beams can be of different energy and intensity. There will be several beam lines for utilization of the beam. Two beam lines are being dedicated for SPECT and one for PET isotope production. In addition, there will be one dedicated beam line for material science and chemistry research. A fifth beam line, which will bend the beam vertically down into a basement cave, will be utilized for dedicated experiments for R and D on windows for high power beams. Several hot cells are being provided for SPECT and PET isotope radiochemistry works. In addition, hot cells are being provided for research experiments also. This facility, when is operation around the middle of 2010, will offer unique opportunities for R and D in the area of radiochemistry, material science, isotope production and their applications etc. In this presentation details of the facility and its utilization will be presented. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. X-ray generation by MeV electrons in silicon: temperature, tilt, and thickness dependence

    When relativistic electrons strike a single crystal target, sharp peaks are observed in the x-ray spectrum generated. One type of radiation, called coherent bremsstrahlung, results from coherent electron scattering by atoms arranged on the crystal lattice. The other type of radiation is channeling radiation. The electrons channeling near major crystal axes enter quantized orbits and emit x-ray photons as a consequence of transitions between orbits. Observations of channeling and coherent bremsstrahlung spectra using 2 to 3 MeV electrons incident on targets 1 and 3 μm thick are described. Large changes in channeling x-ray energies and intensities are observed over a narrow range of temperature from room temperature to 20000C. There are no such large changes in the coherent bremsstrahlung spectra under the same conditions. Intensity measurements over a range of thicknesses for both types of radiation are reported. Finally, changes in the energy of the highest energy channeling peak are found as the channeling axis is tilted away from the electron beam

  10. Cross sections and analyzing powers of 15N(p,n)15O at 200 MeV and 494 MeV

    Differential cross sections and analyzing powers have been measured for the 15N(p,n)15 O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of-Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than .2 for momentum transfers of less than 1 fm-1. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A=-.7 near q=0.7 fm-1. 53 refs., 44 figs

  11. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    Sato, T.; Takahashi, T.; Saito, T.;

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found to...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  12. Photon-phonon superradiation

    Andrianov, S.N.; Samartsev, V.V.; Sheibut, Y.E. [Zavoiskii Physicotechnical Institute, Tatarstan (Russian Federation)

    1995-09-01

    The theory of photon-phonon superradiation in extended samples of impurity molecular crystals was developed within the framework of the nonequilibrium statistical operator method. Optical superradiation on indirect transitions of anisotropic impurity molecules involving resonant phonons under conditions of their hermodynamic equilibrium was studied. Two-quantum superradiation on a Stokes indirect transition accompanied by emission of coherent photons and phonons with nonequilibrium initial phonon subsystem was also examined. Prerequisites to the effect were analyzed and its main properties were described. 16 refs., 3 figs.

  13. Germanium for silicon photonics

    Ishikawa, Yasuhiko, E-mail: y-ishikawa@material.t.u-tokyo.ac.j [Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Wada, Kazumi [Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2010-01-01

    This paper describes that Ge plays an enabler to integrate active photonic devices on a Si platform. In spite of the large lattice mismatch of {approx} 4% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared active photonic devices, i.e., photodiodes, optical modulators and light emitters, are described. Several issues on the device physics as well as the integration with Si electronics are discussed.

  14. Mesoscopic photon heat transistor

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir...

  15. Photonic wires and trumpets for ultrabright single photon sources

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël;

    2013-01-01

    Photonic wires have recently demonstrated very attractive assets in the field of high-efficiency single photon sources. After presenting the basics of spontaneous emission control in photonic wires, we compare the two possible tapering strategies that can be applied to their output end so as to...... tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...... mirror and tapered tip display jointly a record-high efficiency (0.75±0.1 photon per pulse) and excellent single photon purity. Beyond single photon sources, photonic wires and trumpets appear as a very attractive resource for solid-state quantum optics experiments....

  16. How well does QCD work for photon-photon collisions?

    Wengler, Thorsten

    2002-01-01

    The performance of QCD in describing hadronic photon-photon collisions is investigated in the light of recent measurements from LEP on di-jet production, light hadron transverse momentum spectra, and heavy quark production.

  17. Models for Photon-photon Total Cross-sections

    Godbole, RM; Grau, A.; Pancheri, G.

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  18. The Status of Charmonium Production in Photon-Photon Collisions

    Qiao, Cong-Feng

    2001-01-01

    The status of Charmonium production in photon-photon collisions is briefly reviewed. I would like to mention that although the preliminary data were obtained in experiment, the theoretical investigation is not in a compatible status.

  19. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  20. Spin polarized induction of quantum correlations_entanglement using a 2 MeV proton beam channeling

    Berec, Vesna

    2013-01-01

    In solid_state hybrid electron_nuclear spin systems quantum entanglement plays vital role in allowing accessible transfer of information between subatomic particles, regardless of the host lattice coordination spatial geometry, revealing the powerful resource for nuclear quantum states engineering. Here we present study of 2 MeV superfocused channeled proton (SCP) beam induced polarization of atom_photon correlated states, established in isotopically purified silicon nanocrystal. Two level entangling interaction which couples an initial quantum state to two possible light_matter states via silicon nanocrystal interface is presented. The anisotropic hyperfine coupling is demonstrated by strong mixing of quantum states within the control mechanism of the coherent proton pulse sequence. Obtained results reveal the mutual predictable correlation of particles of energy_matter, by using the fully broadcastable and precise hybrid electron_nuclear spin qubit manipulations which can be exploited for the speed_superior...