WorldWideScience

Sample records for 53r gene highly

  1. Clofarabine Has Apoptotic Effect on T47D Breast Cancer Cell Line via P53R2 Gene Expression

    Mohammad Rahmati-Yamchi; Nosratollah Zarghami; Hojjatollah Nozad Charoudeh; Yasin Ahmadi; Behzad Baradaran; Mohammad Khalaj-Kondori; Morteza Milani; Abolfazl Akbarzadeh; Maghsud Shaker; Mohammad Pourhassan-Moghaddam

    2015-01-01

    Purpose: Clofarabine, a purine nucleoside analogue and inhibitor of Ribonucleotide Reductase (RR), is used for treatment of leukemia. Clofarabine-induced defect in DNA replication, induces p53 and subsequently P53R2 genes as subunit of RR. clofarabine deregulated P53R2 gene expression leading to the elevated levels of P53R2 which impose resistance to DNA damaging drugs. In this study the apoptotic and cytotoxic effects of clofarabine has been investigated on breast cancer ce...

  2. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences

    Brázdová, Marie; Quante, T.; Tögel, L.; Walter, K.; Loscher, Ch.; Tichý, Vlastimil; Činčárová, Lenka; Deppert, W.; Tolstonog, G.V.

    2009-01-01

    Roč. 37, č. 5 (2009), s. 1486-1500. ISSN 0305-1048 R&D Projects: GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA MŠk(CZ) 1K04119 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * cancer * gene expression Subject RIV: BO - Biophysics Impact factor: 7.479, year: 2009

  3. Association of the germline TP53 R337H mutation with breast cancer in southern Brazil

    Srivastava Kumar

    2008-12-01

    Full Text Available Abstract Background The germline TP53-R337H mutation is strongly associated with pediatric adrenocortical tumors (ACT in southern Brazil; it has low penetrance and limited tissue specificity in most families and therefore is not associated with Li-Fraumeni syndrome. However, other tumor types, mainly breast cancer, have been observed in carriers of several unrelated kindreds, raising the possibility that the R337H mutation may also contribute to breast tumorigenesis in a genetic background-specific context. Methods We conducted a case-control study to determine the prevalence of the R337H mutation by sequencing TP53 exon 10 in 123 women with breast cancer and 223 age- and sex-matched control subjects from southern Brazil. Fisher's test was used to compare the prevalence of the R337H. Results The R337H mutation was found in three patients but in none of the controls (p = 0.0442. Among the carriers, two had familial history of cancer meeting the Li-Fraumeni-like criteria. Remarkably, tumors in each of these three cases underwent loss of heterozygosity by eliminating the mutant TP53 allele rather than the wild-type allele. Polymorphisms were identified within the TP53 (R72P and Ins16 and MDM2 (SNP309 genes that may further diminish TP53 tumor suppressor activity. Conclusion These results demonstrate that the R337H mutation can significantly increase the risk of breast cancer in carriers, which likely depends on additional cooperating genetic factors. These findings are also important for understanding how low-penetrant mutant TP53 alleles can differentially influence tumor susceptibility.

  4. Association of the germline TP53 R337H mutation with breast cancer in southern Brazil

    The germline TP53-R337H mutation is strongly associated with pediatric adrenocortical tumors (ACT) in southern Brazil; it has low penetrance and limited tissue specificity in most families and therefore is not associated with Li-Fraumeni syndrome. However, other tumor types, mainly breast cancer, have been observed in carriers of several unrelated kindreds, raising the possibility that the R337H mutation may also contribute to breast tumorigenesis in a genetic background-specific context. We conducted a case-control study to determine the prevalence of the R337H mutation by sequencing TP53 exon 10 in 123 women with breast cancer and 223 age- and sex-matched control subjects from southern Brazil. Fisher's test was used to compare the prevalence of the R337H. The R337H mutation was found in three patients but in none of the controls (p = 0.0442). Among the carriers, two had familial history of cancer meeting the Li-Fraumeni-like criteria. Remarkably, tumors in each of these three cases underwent loss of heterozygosity by eliminating the mutant TP53 allele rather than the wild-type allele. Polymorphisms were identified within the TP53 (R72P and Ins16) and MDM2 (SNP309) genes that may further diminish TP53 tumor suppressor activity. These results demonstrate that the R337H mutation can significantly increase the risk of breast cancer in carriers, which likely depends on additional cooperating genetic factors. These findings are also important for understanding how low-penetrant mutant TP53 alleles can differentially influence tumor susceptibility

  5. Synergism between clofarabine and decitabine through p53R2: A pharmacodynamic drug-drug interaction modeling

    Thudium, Karen E.; Ghoshal, Sampa; Fetterly, Gerald J.; Den Haese, Jason P.; Karpf, Adam R.; Wetzler, Meir

    2012-01-01

    Clofarabine (CLO), a purine nucleoside analog with promising efficacy in acute myeloid leukemia (AML), inhibits the ribonucleotide reductase, p53R2. We have shown that p53R2 mRNA is up-regulated by decitabine (DEC), another drug with promising activity in AML. We developed a pharmacodynamic model to characterize the interaction between CLO and DEC on an AML cell line and down-regulated p53R2 protein to understand its role. These results confirm a role for p53R2 in both CLO and DEC mechanism o...

  6. MEK2 regulates ribonucleotide reductase activity through functional interaction with ribonucleotide reductase small subunit p53R2.

    Piao, Chunmei; Youn, Cha-Kyung; Jin, Min; Yoon, Sang Pil; Chang, In-Youb; Lee, Jung Hee; You, Ho Jin

    2012-09-01

    The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRNA, dramatically decreased the serum-stimulated RNR activity. Moreover, p53R2 siRNA, but not R2 siRNA, significantly inhibits serum-stimulated RNR activity, indicating that p53R2 is specifically regulated by a MEK2-dependent pathway. Co-immunoprecipitation analyses revealed that the MEK2 segment comprising amino acids 65-171 is critical for p53R2-MEK2 interaction, and the binding domain of MEK2 is required for MEK2-mediated increased RNR activity. Phosphorylation of MEK1/2 was greatly augmented by ionizing radiation, and RNR activity was concurrently increased. Ionizing radiation-induced RNR activity was markedly attenuated by transfection of MEK2 or p53R2 siRNA, but not R2 siRNA. These data show that MEK2 is an endogenous regulator of p53R2 and suggest that MEK2 may associate with p53R2 and upregulate its activity. PMID:22895183

  7. MEK2 regulates ribonucleotide reductase activity through functional interaction with ribonucleotide reductase small subunit p53R2

    Piao, Chunmei; Youn, Cha-Kyung; Jin, Min; Yoon, Sang Pil; Chang, In-Youb; Lee, Jung Hee; You, Ho Jin

    2012-01-01

    The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRN...

  8. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  9. Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions

    Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.

    Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p

  10. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  11. HIGH EFFICIENCY RETROVIRUS-MEDIATED GENE TRANSFER TO LEUKEMIA CELLS

    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng

    1999-01-01

    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  12. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Baseler Michael W

    2007-11-01

    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  13. Mitochondrial tRNA gene translocations in highly eusocial bees

    Daniela Silvestre

    2006-01-01

    Full Text Available Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Considering the high number of rearrangements observed, the data presented here contradict the general rule of high gene order conservation among closely related organisms, and also represent a powerful molecular tool to help solve questions about phylogeny and evolution in bees.

  14. Genes related to high temperature tolerance during maize seed germination.

    Dutra, S M F; Von Pinho, E V R; Santos, H O; Lima, A C; Von Pinho, R G; Carvalho, M L M

    2015-01-01

    The identification of genes related to heat tolerance is fundamental for the development of high-quality seeds that are tolerant to heat stress condition. The objective of this study was to evaluate maize lineages and the gene expression involved in high temperature tolerance during germination using physiological tests, proteomics, and transcriptome analysis. Seeds from six maize lineages (30, 44, 54, 63, 64, and 91) with different levels of tolerance to high temperatures were used. Lineages 54 and 91 were observed to be more tolerant to high temperature conditions. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration; with the controlled deterioration, the highest level of gene expression did not occur in the most tolerant materials; the association of lower expression of genes involved in heat-resistant protein systems was observed in seeds from lineage 44, which were more susceptible to high temperatures, and the highest gene expression of LEA D-34, ZmAN13, and AOX-1 was observed in seeds from lineage 64 when submitted to controlled deterioration. PMID:26782452

  15. The human VH3b gene subfamily is highly polymorphic

    Adderson, E.E.; Carroll, W.L. (Univ. of Utah, Salt Lake City, UT (United States)); Azmi, F.H.; Wilson, P.M.; Shackelford, P.G. (Washington Univ., St. Louis, MO (United States))

    1993-07-15

    The authors have previously shown that human antibody (Ab) directed against the capsular polysaccharide of the important bacterial pathogen, Haemophilus influenzae type b (Hib) is encoded by a small group of VH3 gene family members. The majority of anti-Hib PS Ab use members of the smaller VH3b subfamily. To examine directly the available human VH3 repertoire, they have used PCR to amplify and clone candidate germ-line VH3b H chain V region genes from two unrelated subjects from whom anti-Hib polysaccharide mAb had been previously obtained. A single functional VH3b germ-line gene was obtained from one subject. This gene is identical throughout the coding region to the previously identified gene 9.1. Twelve distinct VH3b germ-line sequences, 87.6-99.8% homologous to one another, were obtained from the second subject. One of these genes, LSG1.1, is also identical to the 9.1 germ-line gene, and a second, LSG6.1 is identical to a previously reported cDNA, M85. These germ-line VH3b genes are 82.7-94.1% homologous to rearranged anti-Hib PS VH3b segments obtained from these subjects. These findings further demonstrate that considerable polymorphism of VH segments exists in the human population. Despite the presence of very highly homologous VH elements in the germ line, particular genes are highly conserved within the outbred human population. 52 refs., 4 figs.

  16. Gene expression profiling in peanut using high density oligonucleotide microarrays

    Burow Mark

    2009-06-01

    Full Text Available Abstract Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B, oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.

  17. Detecting key structural features within highly recombined genes.

    John E Wertz

    2007-01-01

    Full Text Available Many microorganisms exhibit high levels of intragenic recombination following horizontal gene transfer events. Furthermore, many microbial genes are subject to strong diversifying selection as part of the pathogenic process. A multiple sequence alignment is an essential starting point for many of the tools that provide fundamental insights on gene structure and evolution, such as phylogenetics; however, an accurate alignment is not always possible to attain. In this study, a new analytic approach was developed in order to better quantify the genetic organization of highly diversified genes whose alleles do not align. This BLAST-based method, denoted BLAST Miner, employs an iterative process that places short segments of highly similar sequence into discrete datasets that are designated "modules." The relative positions of modules along the length of the genes, and their frequency of occurrence, are used to identify sequence duplications, insertions, and rearrangements. Partial alleles of sof from Streptococcus pyogenes, encoding a surface protein under host immune selection, were analyzed for module content. High-frequency Modules 6 and 13 were identified and examined in depth. Nucleotide sequences corresponding to both modules contain numerous duplications and inverted repeats, whereby many codons form palindromic pairs. Combined with evidence for a strong codon usage bias, data suggest that Module 6 and 13 sequences are under selection to preserve their nucleic acid secondary structure. The concentration of overlapping tandem and inverted repeats within a small region of DNA is highly suggestive of a mechanistic role for Module 6 and 13 sequences in promoting aberrant recombination. Analysis of pbp2X alleles from Streptococcus pneumoniae, encoding cell wall enzymes that confer antibiotic resistance, supports the broad applicability of this tool in deciphering the genetic organization of highly recombined genes. BLAST Miner shares with

  18. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice.

    Goh, Amanda M; Xue, Yuezhen; Leushacke, Marc; Li, Ling; Wong, Julin S; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B; Mann, Karen M; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P

    2015-07-20

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly elevated levels of mutant p53 can be detected in apparently normal cells in a mutant p53 knock-in mouse model. In fact, in the small intestine, mutant p53 spontaneously accumulates in a manner dependent on gene dosage and cell type. Mutant p53 protein is regulated similarly to wild type p53, which can accumulate rapidly after induction by ionising radiation or Mdm2 inhibitors, however, the clearance of mutant p53 protein is much slower than wild type p53. The accumulation of the protein in the murine small intestine is limited to the cycling, crypt base columnar cells and proliferative zone and is lost as the cells differentiate and exit the cell cycle. Loss of Mdm2 results in even higher levels of p53 expression but p53 is still restricted to proliferating cells in the small intestine. Therefore, the small intestine of these p53 mutant mice is an experimental system in which we can dissect the molecular pathways leading to p53 accumulation, which has important implications for cancer prevention and therapy. PMID:26255629

  19. A novel method to identify high order gene-gene interactions in genome-wide association studies: Gene-based MDR

    Oh Sohee; Lee Jaehoon; Kwon Min-Seok; Weir Bruce; Ha Kyooseob; Park Taesung

    2012-01-01

    Abstract Background Because common complex diseases are affected by multiple genes and environmental factors, it is essential to investigate gene-gene and/or gene-environment interactions to understand genetic architecture of complex diseases. After the great success of large scale genome-wide association (GWA) studies using the high density single nucleotide polymorphism (SNP) chips, the study of gene-gene interaction becomes a next challenge. Multifactor dimensionality reduction (MDR) analy...

  20. A mammalianized synthetic nitroreductase gene for high-level expression

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  1. A mammalianized synthetic nitroreductase gene for high-level expression

    Grohmann Maik

    2009-08-01

    Full Text Available Abstract Background The nitroreductase/5-(azaridin-1-yl-2,4-dinitrobenzamide (NTR/CB1954 enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. Methods We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. Results In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Conclusion Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans.

  2. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  3. High-resolution gene mapping using admixture linkage disequilibrium

    2002-01-01

    This note reports simulation study on the rate of decay in linkage dis equilibrium (LD) in mixed populations over multiple discrete generations and explores the usefulness of the LD analysis in high-resolution gene mapping. The results indicate that the smaller the recombination fraction and the fewer generati ons since admixtureevent, the higher power of the approach in gene mapping. The expected estimate of recombination fraction would give an estimate that is slig htly biased upwards, if relevant genes are in tight linkage. The estimated recom bination fraction is usually larger than the true value within 2-5 generations. From generations 10-20, the mean estimates are in good agreement with the true value. The method presented here enables estimation of means and corresponding confidence intervals of the recombination fraction at any number of generations.

  4. The P53R2 Gene involved in a P53-dependent Cell-cycle Checkpoint for DNA Damage%依赖P53的P53R2基因在细胞周期检验点对损伤DNA的修复作用

    张伟; 明镇寰

    2001-01-01

    @@1. p53基因及P53蛋白p53基因最初被认为是一个普通的癌基因,其产物的作用是刺激肿瘤细胞的生长。但后来发现原先研究的p53基因只是野生型p53基因的突变体,只有突变型p53基因的产物才能刺激不正常细胞(如癌细胞)的生长,而野生型p53基因的产物对肿瘤则有抑制作用,正常的p53基因原来是一个抑癌基因。经长期研究发现,突变型p53基因在人

  5. Highly parallel identification of essential genes in cancer cells.

    Luo, Biao; Cheung, Hiu Wing; Subramanian, Aravind; Sharifnia, Tanaz; Okamoto, Michael; Yang, Xiaoping; Hinkle, Greg; Boehm, Jesse S; Beroukhim, Rameen; Weir, Barbara A; Mermel, Craig; Barbie, David A; Awad, Tarif; Zhou, Xiaochuan; Nguyen, Tuyen; Piqani, Bruno; Li, Cheng; Golub, Todd R; Meyerson, Matthew; Hacohen, Nir; Hahn, William C; Lander, Eric S; Sabatini, David M; Root, David E

    2008-12-23

    More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process. PMID:19091943

  6. Conditional Gene Targeting in Mouse High Endothelial Venules

    Kawashima, Hiroto; Hirakawa, Jotaro; Tobisawa, Yuki; Fukuda, Minoru; Saga, Yumiko

    2009-01-01

    High endothelial venules (HEVs) are specialized blood vessels of secondary lymphoid organs composed of endothelial cells with a characteristic cuboidal morphology. Lymphocytes selectively adhere to and migrate across HEVs to initiate immune responses. In this study, we established a novel transgenic mouse line expressing Cre recombinase under the transcriptional control of the gene encoding HEV-expressed sulfotransferase, N-acetylglucosamine-6-O-sulfotransferase 2 (GlcNAc6ST-2), using bacteri...

  7. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice

    Goh, Amanda M.; Xue, Yuezhen; Leushacke, Marc; LI, LING; Wong, Julin S.; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B.; Mann, Karen M.; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P

    2015-01-01

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly...

  8. High throughput 16S rRNA gene amplicon sequencing

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup;

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r...... belonging to the phylum Chloroflexi. Based on knowledge about their ecophysiology, other control measures were introduced and the bulking problem was reduced after 2 months. Besides changes in the filament abundance and composition also other changes in the microbial community were observed that likely...... correlated with the bacterial species composition in 25 Danish full-scale WWTPs with nutrient removal. Examples of properties were SVI, filament index, floc size, floc strength, content of cations and amount of extracellular polymeric substances. Multivariate statistics provided several important insights...

  9. Mitochondrial tRNA gene translocations in highly eusocial bees

    Daniela Silvestre; Maria Cristina Arias

    2006-01-01

    Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Consid...

  10. Gene expression profile differences in high and low metastatic human ovarian cancer cell lines by gene chip

    许沈华; 牟瀚舟; 吕桂泉; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 程勇; 杨文

    2002-01-01

    Objectives To study the difference between gene expressions of high (H0-8910PM) and low (HO-8910) metastatic human ovarian carcinoma cell lines and screen novel associated genes by cDNA microarray. Methods cDNA retro-transcribed from equal quantities of mRNA derived from high and low metastatic tumor cells or normal ovarian tissues were labeled with Cy5 and Cy3 fluorescein as probes. The mixed probe was hybridized with two pieces of BioDoor 4096 double dot human whole gene chip and scanned with a ScanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results A total of 355 genes with expression levels more than 3 times larger were found by comparing the HO-8910 cell with normal ovarian epithelial cells. A total of 323 genes with expression levels more than 3 times larger in HO-8910PM cells compared to normal ovarian epithelium cells were also detected. A total of 165 genes whose expression levels were more than two times those of HO-8910PM cells compared to their mother cell line (HO-8910) were detected. Twenty-one genes with expression levels >3 times were found from comparison of these two tumor cell lines.Conclusions cDNA microarray techniques are effective in screening differential gene expression between two human ovarian cancer cell lines (H0-8910PM; HO-8910) and normal ovarian epithelial cells. These genes may be related to the genesis and development of ovarian carcinoma. Analysis of the human ovarian cancer gene expression profile with cDNA microarray may help in gene diagnosis, treatment and prevention.

  11. The R package FANet: sparse factor analysis model for high dimensional gene co-expression networks

    Blum, Anne; Houee-Bigot, Magalie; Lagarrigue, Sandrine; Causeur, David

    2014-01-01

    Inference on gene regulatory networks from high-throughput expression data turns out to be one of the main current challenges in systems biology. Such interaction networks are very insightful for the deep understanding of biological relationships between genes. In particular, a functional characterization of gene modules of highly interacting genes enables the identification of biological processes underlying complex traits as diseases. Inference on this dependence structure shall...

  12. Cell type-selective disease-association of genes under high regulatory load

    Galhardo, Mafalda Sofia; Berninger, Philipp; Nguyen, Thanh Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-01-01

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic m...

  13. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish. PMID:26747053

  14. Consciousness of evolution and human gene in German high school students

    Kamizono, Kohtaro

    2004-01-01

    An association map of evolution (Vererbung) indicates two meanings, 'money' and 'gene', among high school students in the Rhein district in Germany. What the students know about evolution includes biological words, social development and alteration of planets in transferred meaning. High school students in Germany know more about human gene than Japanese students at Nagasaki University. What high school students know about human gene seems to depend on the media. Over 20% among the testees in...

  15. High-performance web services for querying gene and variant annotation

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S.; Putman, Timothy E.; Ainscough, Benjamin J.; Griffith, Obi L.; Torkamani, Ali; Whetzel, Patricia L.; Mungall, Christopher J.; Mooney, Sean D; Su, Andrew I

    2016-01-01

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-...

  16. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F1 were high responders and EO-LR→F1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  17. Analysis of Gene Expression in the K562-n High Tumorigenitic Human Leukemia Cell Line

    Shuqing Lü; Xiaoping Xu; Fang Xia; JianMin Wang

    2005-01-01

    OBJECTIVE The human leukemia K562-n cell line displays much higher tumorigenic actively in nude mice compared with its parental K562 cell line. The molecular mechanism of the differences in tumorigenicity between K562-n and K562 in nude mice was examined.METHODS The differences in gene expression between K562 and K562-n cells were analyzed by using cDNA microarrays.RESULTS Among the12,800 genes examined, there was a significant difference in expression of 139 genes between K562-n and K562 cells.Eighty-five of these genes have been registered in the GeneBank and 54are unknown. The genes accessible from the GeneBank include:1)oncogenes and tumor-supressor genes; 2) genes related to transcription regulation, the cell cycle and apoptosis; 3) genes related to the cytoskeleton and cytokinetics; 4) genes related to metabolism and transport; 5) genes related to immune function. There were also some differently expressed genes with mixed functions.CONCLUSION There are many genes differentially expressed between K562-n and K562 cells .The high tumorigenicity of the human leukemia K562-n cell line in nude mice might be related to its specific geneexpression profile.

  18. Gene transcriptional profiles in human lymphoblastoid cells with low and high doses of irradiation

    Objective: To compare the gene expression difference between 0.1 and 5 Gy X-ray irradiated cells,and to explore its possible mechanism. Methods: A cDNA microarray corresponding to 45033 human genes was used to analyze the transcriptional profiles of normal human lymphoblastoid AHH-1 cells at 4 h after 0.1 or 5 Gy irradiation. The genes with a fold change ≥ 2.0 were identified as the differentially expressed genes. real-lime PCR and Western blot were used to confirm the expression of PERP. Results: The microarray assay showed that there were 760 up-regulated genes and 1222 down-regulated genes in the cells at 0.1 Gy, while there were 744 genes down-regulated and 457 genes up-regulated in the cells at 5 Gy. In addition, 55 genes were commonly up-regulated and 339 genes commonly down-regulated at 0.1 and 5 Gy. The predominant biological processes of the differential genes responding to low-dose radiation include cell-cell signaling transduction and DNA damage response, and the altered genes after 5 Gy irradiation were related to cell proliferation, differentiation, and apoptosis. Moreover, the expression of PERP gene was down regulated, which was consistent with the data of microarray assay. Conclusions: The quantitative and qualitative differences in the gene expressions may contribute to the diverse biological effects induced by low or high doses of ionizing radiation. (authors)

  19. High Order Gene-Gene Interactions in Eight Single Nucleotide Polymorphisms of Renin-Angiotensin System Genes for Hypertension Association Study

    Cheng-Hong Yang

    2015-01-01

    Full Text Available Several single nucleotide polymorphisms (SNPs of renin-angiotensin system (RAS genes are associated with hypertension (HT but most of them are focusing on single locus effects. Here, we introduce an unbalanced function based on multifactor dimensionality reduction (MDR for multiloci genotypes to detect high order gene-gene (SNP-SNP interaction in unbalanced cases and controls of HT data. Eight SNPs of three RAS genes (angiotensinogen, AGT; angiotensin-converting enzyme, ACE; angiotensin II type 1 receptor, AT1R in HT and non-HT subjects were included that showed no significant genotype differences. In 2- to 6-locus models of the SNP-SNP interaction, the SNPs of AGT and ACE genes were associated with hypertension (bootstrapping odds ratio [Boot-OR] = 1.972~3.785; 95%, confidence interval (CI 1.26~6.21; P<0.005. In 7- and 8-locus model, SNP A1166C of AT1R gene is joined to improve the maximum Boot-OR values of 4.050 to 4.483; CI = 2.49 to 7.29; P<1.63E−08. In conclusion, the epistasis networks are identified by eight SNP-SNP interaction models. AGT, ACE, and AT1R genes have overall effects with susceptibility to hypertension, where the SNPs of ACE have a mainly hypertension-associated effect and show an interacting effect to SNPs of AGT and AT1R genes.

  20. Structural relationships between highly conserved elements and genes in vertebrate genomes.

    Hong Sun

    Full Text Available Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes.

  1. Highly parallel identification of essential genes in cancer cells

    Luo, Biao; Cheung, Hiu Wing; Subramanian, Aravind; Sharifnia, Tanaz; Okamoto, Michael; Yang, Xiaoping; Hinkle, Greg; Boehm, Jesse S.; Beroukhim, Rameen; Weir, Barbara A.; Mermel, Craig; Barbie, David A; Awad, Tarif; Zhou, Xiaochuan; Nguyen, Tuyen Van

    2008-01-01

    More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such...

  2. Gene interaction network analysis suggests differences between high and low doses of acetaminophen

    Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity

  3. The influence of bovine milk high or low in isoflavones on hepatic gene expression in mice

    Skaanild, Mette Tingleff; Nielsen, Tina Skau

    2012-01-01

    Isoflavones have generated much attention due to their potential positive effects in various diseases. Phytoestrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phytoestrogens. The aim of this study was to analyze the changes in...... hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17β-estradiol, equol, Tween 80, and milk high and low in isoflavone content for a week. Gene expression was analyzed using an array q......PCR kit. It was revealed that Tween 80 and 17β-estradiol upregulated both phase I and phase II genes to the same extent whereas equol alone, high and low isoflavone milk did not alter the expression of phase I genes but decreased the expression of phase II genes. This study shows that dietary isoflavones...

  4. Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle

    Hojman, Pernille; Gissel, Hanne; Andre, Franck M;

    2008-01-01

    Gene transfer by electroporation is gaining momentum now that high-level, long-term expression of transgenes is being obtained. Several different pulse regimens are efficient, yet little information is available about the physiological muscular response to gene electrotransfer. This paper provides...

  5. HIPMap: A High-Throughput Imaging Method for Mapping Spatial Gene Positions.

    Shachar, Sigal; Pegoraro, Gianluca; Misteli, Tom

    2015-01-01

    The three-dimensional organization of genes inside the cell nucleus affects their functions including DNA transcription, replication, and repair. A major goal in the field of nuclear architecture is to determine what cellular factors establish and maintain the position of individual genes. Here, we describe HIPMap, a high-throughput imaging and analysis pipeline for the mapping of endogenous gene loci within the 3D space of the nucleus. HIPMap can be used for a variety of applications including screening, mapping translocations, validating chromosome conformation capture data, probing DNA-protein interactions, and interrogation of the relationship of gene expression with localization. PMID:26472748

  6. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    Vadas, M.A.

    1982-02-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F/sub 1/ mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR..-->..F/sub 1/ were high responders and EO-LR..-->..F/sub 1/ were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy.

  7. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    Merlin G. Butler

    2015-03-01

    Full Text Available Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD. The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families.

  8. Electronic Sorting of Immune Cell Subpopulations Based on Highly Plastic Genes.

    Wang, Pingzhang; Han, Wenling; Ma, Dalong

    2016-07-15

    Immune cells are highly heterogeneous and plastic with regard to gene expression and cell phenotype. In this study, we categorized genes into those with low and high gene plasticity, and those categories revealed different functions and applications. We proposed that highly plastic genes could be suited for the labeling of immune cell subpopulations; thus, novel immune cell subpopulations could be identified by gene plasticity analysis. For this purpose, we systematically analyzed highly plastic genes in human and mouse immune cells. In total, 1,379 human and 883 mouse genes were identified as being extremely plastic. We also expanded our previous immunoinformatic method, electronic sorting, which surveys big data to perform virtual analysis. This approach used correlation analysis and took dosage changes into account, which allowed us to identify the differentially expressed genes. A test with human CD4(+) T cells supported the method's feasibility, effectiveness, and predictability. For example, with the use of human nonregulatory T cells, we found that FOXP3(hi)CD4(+) T cells were highly expressive of certain known molecules, such as CD25 and CTLA4, and that this process of investigation did not require isolating or inducing these immune cells in vitro. Therefore, the sorting process helped us to discover the potential signature genes or marker molecules and to conduct functional evaluations for immune cell subpopulations. Finally, in human CD4(+) T cells, 747 potential immune cell subpopulations and their candidate signature genes were identified, which provides a useful resource for big data-driven knowledge discoveries. PMID:27288532

  9. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    Ma Wujun

    2010-05-01

    Full Text Available Abstract Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and

  10. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  11. Recombinant cells that highly express chromosomally-integrated heterologous gene

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  12. Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype

    Hove, Hanne Buciek; Dunø, Morten; Daugaard-Jensen, Jette;

    Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype.......Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype....

  13. Gene expression in mammalian cells after exposure to 95 MeV/amu argon ions

    Arenz, Andrea; Hellweg, Christine E.; Meier, Matthias M.; Baumstark-Khan, Christa

    High LET radiations, such as heavy ions or neutrons, have an increased biological effectiveness compared to X-rays for gene mutation, genomic instability and carcinogenesis. Estimating the biological risks from space radiation encountered by cosmonauts will continue to influence long term duration in space, such as the planned mission to Mars. The human radiation responsive genes CDKN1A (p21/WAF), GADD45α (GADD45), GADD45β (MyD118), RRM2b (p53R2) and BRCA2 (FancD1), involved in cell cycle control or damage repair, were screened for gene expression changes in MCF-7 cells by quantitative real-time reverse transcription PCR (qRT-PCR) assay, using cDNA obtained from total RNA isolated at various time points after irradiation with accelerated doses of 36-argon ions and X-rays. Examination of the expression profiles 2 and 12 h after exposure reveals a pattern consistent with a population of cells in the early response to DNA damage and invoking cell stress responses. Interesting new data showing different expression patterns according to the gene and the type of ionizing radiation used could be obtained. Results show, that the signaling and repair activities induced after heavy ion or X-ray exposure are not the same and gene expression patterns may become useful indicators for distinguishing different types of radiation in relation to their biological effects.

  14. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

    Santos Carla S

    2012-11-01

    Full Text Available Abstract Background Pine wilt disease (PWD, caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus, damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN and Pinus pinea (less susceptible to PWN. Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species

  15. Selection for the compactness of highly expressed genes in Gallus gallus

    Zhou Ming

    2010-05-01

    (n = 1105, and compared the first intron length and the average intron length between highly expressed genes (top 5% expressed genes and weakly expressed genes (bottom 5% expressed genes. We found that the first intron length and the average intron length in highly expressed genes are not different from that in weakly expressed genes. We also made a comparison between ubiquitously expressed genes and narrowly expressed somatic genes with similar expression levels. Our data demonstrated that ubiquitously expressed genes are less compact than narrowly expressed genes with the similar expression levels. Obviously, these observations can not be explained by mutational bias hypotheses either. We also found that the significant trend between genes' compactness and expression level could not be affected by local mutational biases. We argued that the selection of economy model is most likely one to explain the relationship between gene expression and gene characteristics in chicken genome. Conclusion Natural selection appears to favor the compactness of highly expressed genes in chicken genome. This observation can be explained by the selection of economy model. Reviewers This article was reviewed by Dr. Gavin Huttley, Dr. Liran Carmel (nominated by Dr. Eugene V. Koonin and Dr. Araxi Urrutia (nominated by Dr. Laurence D. Hurst.

  16. A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat

    Li Zhongyi

    2010-11-01

    Full Text Available Abstract Background Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homoeologous genes encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L. is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homoeologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation that frequently generate whole-gene deletions. Results To facilitate the screening for specific homoeologous gene deletions in hexaploid wheat, we have developed a TaqMan qPCR-based method that allows high-throughput detection of deletions in homoeologous copies of any gene of interest, provided that sufficient polymorphism (as little as a single nucleotide difference amongst homoeologues exists for specific probe design. We used this method to identify deletions of individual TaPFT1 homoeologues, a wheat orthologue of the disease susceptibility and flowering regulatory gene PFT1 in Arabidopsis. This method was applied to wheat nullisomic-tetrasomic lines as well as other chromosomal deletion lines to locate the TaPFT1 gene to the long arm of chromosome 5. By screening of individual DNA samples from

  17. Enzyme free cloning for high throughput gene cloning and expression

    de Jong, R. N.; Daniëls, M.; Kaptein, R; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EFC) procedure, a PCR-only method that eliminates all variables other than PCR efficiency by circumventing enzymatic treatments. We compared the cloning efficiency of EFC with that of Ligation Indepe...

  18. Altered gene expression in highly purified enterocytes from patients with active coeliac disease

    Jackson John

    2008-08-01

    Full Text Available Abstract Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99% were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.

  19. High-throughput gene expression profiling of memory differentiation in primary human T cells

    Russell Kate

    2008-08-01

    Full Text Available Abstract Background The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1 the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2 a suitable cell-line representative of naive T cells. Results Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.

  20. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum.

    Iskandar, Christelle F; Cailliez-Grimal, Catherine; Rahman, Abdur; Rondags, Emmanuel; Remenant, Benoît; Zagorec, Monique; Leisner, Jorgen J; Borges, Frédéric; Revol-Junelles, Anne-Marie

    2016-09-01

    The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity. PMID:27217362

  1. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities.

    Hart, Traver; Chandrashekhar, Megha; Aregger, Michael; Steinhart, Zachary; Brown, Kevin R; MacLeod, Graham; Mis, Monika; Zimmermann, Michal; Fradet-Turcotte, Amelie; Sun, Song; Mero, Patricia; Dirks, Peter; Sidhu, Sachdev; Roth, Frederick P; Rissland, Olivia S; Durocher, Daniel; Angers, Stephane; Moffat, Jason

    2015-12-01

    The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell. PMID:26627737

  2. Gene

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  3. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii.

    Chuan Xu

    Full Text Available Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the "model" fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant (ΔMrKu70 as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the

  4. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier.

    Suk, Jung Soo; Kim, Anthony J; Trehan, Kanika; Schneider, Craig S; Cebotaru, Liudmila; Woodward, Owen M; Boylan, Nicholas J; Boyle, Michael P; Lai, Samuel K; Guggino, William B; Hanes, Justin

    2014-03-28

    Inhaled gene carriers must penetrate the highly viscoelastic and adhesive mucus barrier in the airway in order to overcome rapid mucociliary clearance and reach the underlying epithelium; however, even the most widely used viral gene carriers are unable to efficiently do so. We developed two polymeric gene carriers that compact plasmid DNA into small and highly stable nanoparticles with dense polyethylene glycol (PEG) surface coatings. These highly compacted, densely PEG-coated DNA nanoparticles rapidly penetrate human cystic fibrosis (CF) mucus ex vivo and mouse airway mucus ex situ. Intranasal administration of the mucus penetrating DNA nanoparticles greatly enhanced particle distribution, retention and gene transfer in the mouse lung airways compared to conventional gene carriers. Successful delivery of a full-length plasmid encoding the cystic fibrosis transmembrane conductance regulator protein was achieved in the mouse lungs and airway cells, including a primary culture of mucus-covered human airway epithelium grown at air-liquid interface, without causing acute inflammation or toxicity. Highly compacted mucus penetrating DNA nanoparticles hold promise for lung gene therapy. PMID:24440664

  5. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    Pang Edwin CK

    2007-09-01

    Full Text Available Abstract Background Cultivated chickpea (Cicer arietinum has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

  6. A panel of genes methylated with high frequency in colorectal cancer

    The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests. Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP). Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas. This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes

  7. Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes

    Mondal U

    2008-01-01

    Full Text Available Purpose: To anlyse codon usage patterns of five complete genomes of Salmonella , predict highly expressed genes, examine horizontally transferred pathogenicity-related genes to detect their presence in the strains, and scrutinize the nature of highly expressed genes to infer upon their lifestyle. Methods: Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were analysed with Codon W and CAI (codon adaptation index Calculator. Results: Translational efficiency plays a role in codon usage variation in Salmonella genes. Low bias was noticed in most of the genes. GC3 (guanine cytosine at third position composition does not influence codon usage variation in the genes of these Salmonella strains. Among the cluster of orthologous groups (COGs, translation, ribosomal structure biogenesis [J], and energy production and conversion [C] contained the highest number of potentially highly expressed (PHX genes. Correspondence analysis reveals the conserved nature of the genes. Highly expressed genes were detected. Conclusions: Selection for translational efficiency is the major source of variation of codon usage in the genes of Salmonella . Evolution of pathogenicity-related genes as a unit suggests their ability to infect and exist as a pathogen. Presence of a lot of PHX genes in the information and storage-processing category of COGs indicated their lifestyle and revealed that they were not subjected to genome reduction.

  8. High throughput functional genomics: identification of novel genes with tumor suppressor phenotypes.

    Koenig-Hoffmann, Kerstin; Bonin-Debs, Angelika L; Boche, Irene; Gawin, Beate; Gnirke, Andrea; Hergersberg, Christoph; Madeo, Frank; Kazinski, Michael; Klein, Matthias; Korherr, Christian; Link, Dieter; Röhrig, Sascha; Schäfer, Rolf; Brinkmann, Ulrich

    2005-01-20

    We have used a combination of high throughput functional genomics, computerized database mining and expression analyses to discover novel human tumor suppressor genes (TSGs). A genome-wide high throughput cDNA phenotype screen was established to identify genes that induce apoptosis or reduce cell viability. TSGs are expressed in normal tissue and frequently act by reduction of growth of transformed cells or induce apoptosis. In agreement with that and thus serving as platform validation, our pro-apoptotic hits included genes for which tumor suppressing activities were known, such as kangai1 and CD81 antigen. Additional genes that so far have been claimed as putative TSGs or associated with tumor inhibitory activities (prostate differentiation factor, hRAS-like suppressor 3, DPH2L1-like and the metastasis inhibitor Kiss1) were confirmed in their proposed TSG-like phenotype by functionally defining their growth inhibitory or pro-apoptotic function towards cancer cells. Finally, novel genes were identified for which neither association with cell growth nor with apoptosis were previously described. A subset of these genes show characteristics of TSGs because they (i) reduce the growth or induce apoptosis in tumor cells; (ii) show reduced expression in tumor vs. normal tissue; and (iii) are located on chromosomal (LOH-) loci for which cancer-associated deletions are described. The pro-apoptotic phenotype and differential expression of these genes in normal and malignant tissue make them promising target candidates for the diagnosis and therapy of various tumors. PMID:15455385

  9. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer. PMID:26832203

  10. The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole.

    Chung, Hae-Sun; Kim, Kyeongmi; Hong, Sang Sook; Hong, Seong Geun; Lee, Kyungwon; Chong, Yunsop

    2015-03-01

    Emerging resistance to trimethoprim/sulfamethoxazole (SXT) poses a serious threat to the treatment of Stenotrophomonas maltophilia infections. We determined the prevalence and molecular characteristics of acquired SXT resistance in recent clinical S. maltophilia isolates obtained from Korea. A total of 252 clinical isolates of S. maltophilia were collected from 10 university hospitals in Korea between 2009 and 2010. Antimicrobial susceptibility was determined by using the CLSI agar dilution method. The sul1, sul2, and sul3 genes, integrons, insertion sequence common region (ISCR) elements, and dfrA genes were detected using PCR. The presence of the sul1 gene and integrons was confirmed through sequence analysis. Among the 32 SXT-resistant isolates, sul1 was detected in 23 isolates (72%), all of which demonstrated high-level resistance (≥64 mg/L) to SXT. The sul1 gene (varying in size and structure) was linked to class 1 integrons in 15 of the 23 isolates (65%) harboring this gene. None of the SXT-susceptible isolates or the SXT-resistant isolates with a minimum inhibitory concentration of 4 and 8 mg/L were positive for sul1. Moreover, the sul2, sul3, and dfrA genes or the ISCR elements were not detected. The sul1 gene may play an important role in the high-level SXT resistance observed in S. maltophilia. PMID:25729729

  11. RELATED GENES IN LUNG CANCER TISSUES ASSOCIATED WITH RESIDENTIAL HIGH RADON EXPOSURE

    夏英; 杨梅英; 张守志; 叶常青

    2002-01-01

    Objective: To investigate the related genes in lung cancer tissues associated with residential high radon exposure. Methods: Differentially expressed gene fragments in lung cancer and normal lung tissues were discovered by differential display and reverse Northern blot hybridization method. The fragments positive in lung cancer and negative in normal lung tissue were determined. Results: Seven differential displayed fragments were sequenced. One of them named NA7 is 95% homologous with AI208667 in EAT of Genbank. Another fragment named NG2 is up to 98% homologous with five fragments. The remained one CA1 may be a new gene fragment. Conclusion: 3 gene fragments were discovered from lung cancer and normal lung tissues of high radon exposure resident.

  12. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells

    Jared Carlson-Stevermer

    2016-01-01

    Full Text Available CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing.

  13. Cyclen-Based Cationic Lipids for Highly Efficient Gene Delivery towards Tumor Cells

    Huang, Qing-Dong; Zhong, Guo-Xing; Zhang, Yang; Ren, Jiang; Fu, Yun; Zhang, Ji; ZHU, WEN; Yu, Xiao-Qi

    2011-01-01

    Background Gene therapy has tremendous potential for both inherited and acquired diseases. However, delivery problems limited their clinical application, and new gene delivery vehicles with low cytotoxicity and high transfection efficiency are greatly required. Methods In this report, we designed and synthesized three amphiphilic molecules (L1–L3) with the structures involving 1, 4, 7, 10-tetraazacyclododecane (cyclen), imidazolium and a hydrophobic dodecyl chain. Their interactions with plas...

  14. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

    Craig W. Herbold

    2015-07-01

    Full Text Available High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse and high quality sets of amplicon sequence data for modern studies in microbial ecology.

  15. Currently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.

    Butler, Merlin G; McGuire, Austen B; Masoud, Humaira; Manzardo, Ann M

    2016-03-01

    A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives. PMID:26462458

  16. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  17. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA.

    Bennetzen, J L; Schrick, K; Springer, P S; Brown, W E; SanMiguel, P

    1994-08-01

    We have characterized the copy number, organization, and genomic modification of DNA sequences within and flanking several maize genes. We found that highly repetitive DNA sequences were tightly linked to most of these genes. The highly repetitive sequences were not found within the coding regions but could be found within 6 kb either 3' or 5' to the structural genes. These highly repetitive regions were each composed of unique combinations of different short repetitive sequences. Highly repetitive DNA blocks were not interrupted by any detected single copy DNA. The 13 classes of highly repetitive DNA identified were found to vary little between diverse Zea isolates. The level of DNA methylation in and near these genes was determined by scoring the digestibility of 63 recognition/cleavage sites with restriction enzymes that were sensitive to 5-methylation of cytosines in the sequences 5'-CG-3' and 5'-CNG-3'. All but four of these sites were digestible in chromosomal DNA. The four undigested sites were localized to extragenic DNA within or near highly repetitive DNA, while the other 59 sites were in low copy number DNAs. Pulsed field gel analysis indicated that the majority of cytosine modified tracts range from 20 to 200 kb in size. Single copy sequences hybridized to the unmodified domains, while highly repetitive sequences hybridized to the modified regions. Middle repetitive sequences were found in both domains. PMID:7958822

  18. Differential gene expression in high- and low-active inbred mice.

    Dawes, Michelle; Moore-Harrison, Trudy; Hamilton, Alicia T; Ceaser, Tyrone; Kochan, Kelli J; Riggs, Penny K; Lightfoot, J Timothy

    2014-01-01

    Numerous candidate genes have been suggested in the recent literature with proposed roles in regulation of voluntary physical activity, with little evidence of these genes' functional roles. This study compared the haplotype structure and expression profile in skeletal muscle and brain of inherently high- (C57L/J) and low- (C3H/HeJ) active mice. Expression of nine candidate genes [Actn2, Actn3, Casq1, Drd2, Lepr, Mc4r, Mstn, Papss2, and Glut4 (a.k.a. Slc2a4)] was evaluated via RT-qPCR. SNPs were observed in regions of Actn2, Casq1, Drd2, Lepr, and Papss2; however, no SNPs were located in coding sequences or associated with any known regulatory sequences. In mice exposed to a running wheel, Casq1 (P = 0.0003) and Mstn (P = 0.002) transcript levels in the soleus were higher in the low-active mice. However, when these genes were evaluated in naïve animals, differential expression was not observed, demonstrating a training effect. Among naïve mice, no genes in either tissue exhibited differential expression between strains. Considering that no obvious SNP mechanisms were determined or differential expression was observed, our results indicate that genomic structural variation or gene expression data alone is not adequate to establish any of these genes' candidacy or causality in relation to regulation of physical activity. PMID:24551844

  19. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos

    Ken-ichi T. Suzuki

    2013-03-01

    Recently, gene editing with transcription activator-like effector nucleases (TALENs has been used in the life sciences. TALENs can be easily customized to recognize a specific DNA sequence and efficiently introduce double-strand breaks at the targeted genomic locus. Subsequent non-homologous end-joining repair leads to targeted gene disruption by base insertion, deletion, or both. Here, to readily evaluate the efficacy of TALENs in Xenopus laevis embryos, we performed the targeted gene disruption of tyrosinase (tyr and pax6 genes that are involved in pigmentation and eye formation, respectively. We constructed TALENs targeting tyr and pax6 and injected their mRNAs into fertilized eggs at the one-cell stage. Expectedly, introduction of tyr TALEN mRNA resulted in drastic loss of pigmentation with high efficiency. Similarly, for pax6, TALENs led to deformed eyes in the injected embryos. We confirmed mutations of the target alleles by restriction enzyme digestion and sequence analyses of genomic PCR products. Surprisingly, not only biallelic but also paralogous, gene disruption was observed. Our results demonstrate that targeted gene disruption by TALENs provides a method comparable to antisense morpholinos in analyzing gene function in Xenopus F0 embryos, but also applies beyond embryogenesis to any life stage.

  20. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  1. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  2. Characterization of differentially expressed genes using high-dimensional co-expression networks

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... of spurious information along the network are avoided. The proposed inference procedure is based on the minimization of the Bayesian Information Criterion (BIC) in the class of decomposable graphical models. This class of models can be used to represent complex relationships and has suitable...... properties that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical...

  3. Gene expression profiles after ionizing radiation in three closely related human lymphoblastoid cell lines with different p53 status

    Full text: The p53 protein has been implicated in multiple cellular responses related to DNA damage, including apoptosis, cell cycle control, as well as DNA replication, transcription, and repair. Alterations in any of these processes could be related to increased genomic instability. Our previous study indicated that the lack of wild-type p53 does not lead to increased mutability. To investigate further how p53 is involved in regulating mutational processes, we used 8K cDNA microarrays to compare the patterns of gene expression among three closely related human cell lines with different p53 status including TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNA samples were collected at different time points (1, 3, 6, 9, and 24h) after 10Gy gamma-radiation. After template-based clustering analysis of the gene expression over the time course, our preliminary results showed that 464 genes are either up- or down-regulated by 2 fold following 10Gy radiation treatment. In addition, cluster analyses of gene expression profiles among these three cell lines revealed distinct patterns. In TK6, 175 genes were being up-regulated, while 36 genes showed down-regulation. In contrast, WTK1 showed 75 genes being up-regulated and 12 genes being down-regulated. In NH32, only 54 genes showed up-regulation. Furthermore, we found several genes associated with DNA repair such as DDB2, p53R2, XPC, PCNA, BTG2 and MSH2 were highly induced in TK6 compared to WTK1 and NH32. These TK6 up-regulated genes were confirmed by using real-time RT-PCR and are being further investigated at the protein level by Western blots

  4. Human cytomegalovirus UL145 gene is highly conserved among clinical strains

    Zhengrong Sun; Ying Lu; Qiang Ruan; Yaohua Ji; Rong He; Ying Qi; Yanping Ma; Yujing Huang

    2007-09-01

    Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects in newborns. A region (referred to as UL/b′) present in the Toledo strain of HCMV and low-passage clinical isolates) contains 22 additional genes, which are absent in the highly passaged laboratory strain AD169. One of these genes, UL145 open reading frame (ORF), is located between the highly variable genes UL144 and UL146. To assess the structure of the UL145 gene, the UL145 ORF was amplified by PCR and sequenced from 16 low-passage clinical isolates and 15 non-passage strains from suspected congenitally infected infants. Nine UL145 sequences previously published in the GenBank were used for sequence comparison. The identities of the gene and the similarities of its putative protein among all strains were 95.9–100% and 96.6–100%, respectively. The post-translational modification motifs of the UL145 putative protein in clinical strains were conserved, comprising the protein kinase C phosphorylation motif (PKC) and casein kinase II phosphorylation site (CK-II). We conclude that the structure of the UL145 gene and its putative protein are relatively conserved among clinical strains, irrespective of whether the strains come from patients with different manifestations, from different areas of the world, or were passaged or not in human embryonic lung fibroblast (HELF) cells.

  5. High-resolution statistical mapping reveals gene territories in live yeast.

    Berger, Axel B; Cabal, Ghislain G; Fabre, Emmanuelle; Duong, Tarn; Buc, Henri; Nehrbass, Ulf; Olivo-Marin, Jean-Christophe; Gadal, Olivier; Zimmer, Christophe

    2008-12-01

    The nonrandom positioning of genes inside eukaryotic cell nuclei is implicated in central nuclear functions. However, the spatial organization of the genome remains largely uncharted, owing to limited resolution of optical microscopy, paucity of nuclear landmarks and moderate cell sampling. We developed a computational imaging approach that creates high-resolution probabilistic maps of subnuclear domains occupied by individual loci in budding yeast through automated analysis of thousands of living cells. After validation, we applied the technique to genes involved in galactose metabolism and ribosome biogenesis. We found that genomic loci are confined to 'gene territories' much smaller than the nucleus, which can be remodeled during transcriptional activation, and that the nucleolus is an important landmark for gene positioning. The technique can be used to visualize and quantify territory positions relative to each other and to nuclear landmarks, and should advance studies of nuclear architecture and function. PMID:18978785

  6. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder.

    Douglas, Lindsay N; McGuire, Austen B; Manzardo, Ann M; Butler, Merlin G

    2016-07-15

    Bipolar disorder (BPD) is genetically heterogeneous with a growing list of BPD associated genes reported in recent years resulting from increased genetic testing using advanced genetic technology, expanded genomic databases, and better awareness of the disorder. We compiled a master list of recognized susceptibility and genes associated with BPD identified from peer-reviewed medical literature sources using PubMed and by searching online databases, such as OMIM. Searched keywords were related to bipolar disorder and genetics. Our compiled list consisted of 290 genes with gene names arranged in alphabetical order in tabular form with source documents and their chromosome location and gene symbols plotted on high-resolution human chromosome ideograms. The identified genes impacted a broad range of biological pathways and processes including cellular signaling pathways particularly cAMP and calcium (e.g., CACNA1C, CAMK2A, CAMK2D, ADCY1, ADCY2); glutamatergic (e.g., GRIK1, GRM3, GRM7), dopaminergic (e.g., DRD2, DRD4, COMT, MAOA) and serotonergic (e.g., HTR1A, HTR2A, HTR3B) neurotransmission; molecular transporters (e.g., SLC39A3, SLC6A3, SLC8A1); and neuronal growth (e.g., BDNF, IGFBP1, NRG1, NRG3). The increasing prevalence of BPD calls for better understanding of the genetic etiology of this disorder and associations between the observed BPD phenotype and genes. Visual representation of genes for bipolar disorder becomes a tool enabling clinical and laboratory geneticists, genetic counselors, and other health care providers and researchers easy access to the location and distribution of currently recognized BPD associated genes. Our study may also help inform diagnosis and advance treatment developments for those affected with this disorder and improve genetic counseling for families. PMID:27063557

  7. Plant protein kinase genes induced by drought, high salt and cold stresses

    2000-01-01

    Drought, high salt and cold are three different kinds of environment stresses that severely influence the growth, development and productivity of crops. They all decrease the water state of plant cells, and consequently result in the harm of plant from water deficit. Several genes encoding protein kinases and induced by drought, high salt and low temperature have been isolated from Arabidopsis. These protein kinases include receptor protein kinase (RPK), MAP kinases, ribosomal-protein kinases and transcription-regulation protein kinase. The expression features of these genes and the regulatory roles of these protein kinases in stress response and signal transduction are discussed.

  8. Cyclen-based cationic lipids for highly efficient gene delivery towards tumor cells.

    Qing-Dong Huang

    Full Text Available BACKGROUND: Gene therapy has tremendous potential for both inherited and acquired diseases. However, delivery problems limited their clinical application, and new gene delivery vehicles with low cytotoxicity and high transfection efficiency are greatly required. METHODS: In this report, we designed and synthesized three amphiphilic molecules (L1-L3 with the structures involving 1, 4, 7, 10-tetraazacyclododecane (cyclen, imidazolium and a hydrophobic dodecyl chain. Their interactions with plasmid DNA were studied via electrophoretic gel retardation assays, fluorescent quenching experiments, dynamic light scattering and transmission electron microscopy. The in vitro gene transfection assay and cytotoxicity assay were conducted in four cell lines. RESULTS: Results indicated that L1 and L3-formed liposomes could effectively bind to DNA to form well-shaped nanoparticles. Combining with neutral lipid DOPE, L3 was found with high efficiency in gene transfer in three tumor cell lines including A549, HepG2 and H460. The optimized gene transfection efficacy of L3 was nearly 5.5 times more efficient than that of the popular commercially available gene delivery agent Lipofectamine 2000™ in human lung carcinoma cells A549. In addition, since L1 and L3 had nearly no gene transfection performance in normal cells HEK293, these cationic lipids showed tumor cell-targeting property to a certain extent. No significant cytotoxicity was found for the lipoplexes formed by L1-L3, and their cytotoxicities were similar to or slightly lower than the lipoplexes prepared from Lipofectamine 2000™. CONCLUSION: Novel cyclen-based cationic lipids for effective in vitro gene transfection were founded, and these studies here may extend the application areas of macrocyclic polyamines, especially for cyclen.

  9. Effects of BST and high energy diet on gene expression in mammary parenchyma of dairy heifers

    Betina Joyce Lew

    2013-07-01

    Full Text Available The objective of this study was to determine the effects of dietary energy and recombinant bovine somatotropin (bST injection to identify genes that might control mammogenesis. Total RNA was extracted from the parenchymal tissue of 32 heifers randomly assigned to one of four treatments: two diets (a standard diet and a high energy, high protein diet, each with or without bST. To perform microarray experiments, RNA samples were pooled (2 animals/pool before reverse transcription and labeling with Cy3 or Cy5. A 4-node loop design was used to examine the differential gene expression among treatments using a bovine-specific cDNA microarray (National Bovine Functional Genomics Consortium Library, NBFGC containing 18,263 unique expressed sequence tags (EST. Significance levels of differential gene expression among treatments were assessed using a mixed model approach. Injection of bST altered the expression of 12 % of the genes on NBFGC slide related to tissue development, whereas 6% were altered by diet. Administration of bST increases the expression of genes positively related to cell proliferation and mammary parenchyma to a greater extent than a high energy diet.

  10. The Influence of Bovine Milk High or Low in Isoflavones on Hepatic Gene Expression in Mice

    Mette T. Skaanild

    2010-01-01

    Full Text Available Isoflavones have generated much attention due to their potential positive effects in various diseases. Phytoestrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phytoestrogens. The aim of this study was to analyze the changes in hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17-estradiol, equol, Tween 80, and milk high and low in isoflavone content for a week. Gene expression was analyzed using an array qPCR kit. It was revealed that Tween 80 and 17-estradiol upregulated both phase I and phase II genes to the same extent whereas equol alone, high and low isoflavone milk did not alter the expression of phase I genes but decreased the expression of phase II genes. This study shows that dietary isoflavones can regulate the transcription of especially phase II liver enzymes which potentially could give rise to an increase in reactive oxygen metabolites that may contribute to the development of cancer.

  11. The Influence of Bovine Milk High or Low in Isoflavones on Hepatic Gene Expression in Mice

    Isoflavones have generated much attention due to their potential positive effects in various diseases. Phyto estrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phyto estrogens. The aim of this study was to analyze the changes in hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17βestradiol, equol, Tween 80, and milk high and low in isoflavone content for a week. Gene expression was analyzed using an array qPCR kit. It was revealed that Tween 80 and 17β-estradiol up regulated both phase I and phase II genes to the same extent whereas equol alone, high and low isoflavone milk did not alter the expression of phase I genes but decreased the expression of phase II genes. This study shows that dietary isoflavones can regulate the transcription of especially phase II liver enzymes which potentially could give rise to an increase in reactive oxygen metabolites that may contribute to the development of cancer.

  12. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  13. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  14. High-Resolution Genomic and Expression Profiling Reveals 105 Putative Amplification Target Genes in Pancreatic Cancer

    Eija H. Mahlamaki

    2004-09-01

    Full Text Available Comparative genomic hybridization (CGH studies have provided a wealth of information on common copy number aberrations in pancreatic cancer, but the genes affected by these aberrations are largely unknown. To identify putative amplification target genes in pancreatic cancer, we performed a parallel copy number and expression survey in 13 pancreatic cancer cell lines using a 12,232-clone cDNA microarray, providing an average resolution of 300 kb throughout the human genome. CGH on cDNA microarray allowed highly accurate mapping of copy number increases and resulted in identification of 24 independent amplicons, ranging in size from 130 kb to 11 Mb. Statistical evaluation of gene copy number and expression data across all 13 cell lines revealed a set of 105 genes whose elevated expression levels were directly attributable to increased copy number. These included genes previously reported to be amplified in cancer as well as several novel targets for copy number alterations, such as p21-activated kinase 4 (PAK4, which was previously shown to be involved in cell migration, cell adhesion, and anchorage-independent growth. In conclusion, our results implicate a set of 105 genes that is likely to be actively involved in the development and progression of pancreatic cancer.

  15. Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages.

    Chang-Ming Guo

    Full Text Available Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood-brain barrier (BBB. The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB.

  16. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  17. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background. PMID:23630316

  18. Different gene expressions between cattle and yak provide insights into high-altitude adaptation.

    Wang, K; Yang, Y; Wang, L; Ma, T; Shang, H; Ding, L; Han, J; Qiu, Q

    2016-02-01

    DNA sequence variation has been widely reported as the genetic basis for adaptation, in both humans and other animals, to the hypoxic environment experienced at high altitudes. However, little is known about the patterns of gene expression underlying such hypoxic adaptations. In this study, we examined the differences in the transcriptomes of four organs (heart, kidney, liver and lung) between yak and cattle, a pair of closely related species distributed at high and low altitudes respectively. Of the four organs examined, heart shows the greatest differentiation between the two species in terms of gene expression profiles. Detailed analyses demonstrated that some genes associated with the oxygen supply system and the defense systems that respond to threats of hypoxia are differentially expressed. In addition, genes with significantly differentiated patterns of expression in all organs exhibited an unexpected uniformity of regulation along with an elevated frequency of nonsynonymous substitutions. This co-evolution of protein sequences and gene expression patterns is likely to be correlated with the optimization of the yak metabolic system to resist hypoxia. PMID:26538003

  19. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction

    Markholt, Sara; Grøndahl, M L; Ernst, Erik;

    2012-01-01

    The pool of primordial follicles in humans is laid down during embryonic development and follicles can remain dormant for prolonged intervals, often decades, until individual follicles resume growth. The mechanisms that induce growth and maturation of primordial follicles are poorly understood but...... follicles once activated either continue growth or undergo atresia. We have isolated pure populations of oocytes from human primordial, intermediate and primary follicles using laser capture micro-dissection microscopy and evaluated the global gene expression profiles by whole-genome microarray analysis...... known to be associated with early oocyte development, were identified with exceptionally high expression levels, such as the anti-proliferative transmembrane protein with an epidermal growth factor-like and two follistatin-like domains (TMEFF2), the Rho-GTPase-activating protein oligophrenin 1 (OPHN1...

  20. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Arvidson, Sandra Marie Neumann; Loeschcke, Volker; Demontis, Ditte; Kristensen, Torsten Nygaard

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim...... behavioral activity in fruit flies. Results provide additional support for the investigated genes being risk candidate genes for ADHD in humans....

  1. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  2. Discovering biclusters in gene expression data based on high-dimensional linear geometries

    Liew Alan

    2008-04-01

    Full Text Available Abstract Background In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits consistent pattern over a subset of conditions. Conventional clustering algorithms that deal with the entire row or column in an expression matrix would therefore fail to detect these useful patterns in the data. Recently, biclustering has been proposed to detect a subset of genes exhibiting consistent pattern over a subset of conditions. However, most existing biclustering algorithms are based on searching for sub-matrices within a data matrix by optimizing certain heuristically defined merit functions. Moreover, most of these algorithms can only detect a restricted set of bicluster patterns. Results In this paper, we present a novel geometric perspective for the biclustering problem. The biclustering process is interpreted as the detection of linear geometries in a high dimensional data space. Such a new perspective views biclusters with different patterns as hyperplanes in a high dimensional space, and allows us to handle different types of linear patterns simultaneously by matching a specific set of linear geometries. This geometric viewpoint also inspires us to propose a generic bicluster pattern, i.e. the linear coherent model that unifies the seemingly incompatible additive and multiplicative bicluster models. As a particular realization of our framework, we have implemented a Hough transform-based hyperplane detection algorithm. The experimental results on human lymphoma gene expression dataset show that our algorithm can find biologically significant subsets of genes. Conclusion We have proposed a novel geometric interpretation of the biclustering problem. We have shown that many common types of bicluster are just different spatial arrangements of hyperplanes in

  3. IGF-1 gene polymorphisms in Polish families with high-grade myopia

    Rydzanicz, Malgorzata; Nowak, Dorota M; Karolak, Justyna A; Frajdenberg, Agata; Podfigurna-Musielak, Monika; Mrugacz, Malgorzata; Gajecka, Marzena

    2011-01-01

    Purpose Recent work has suggested that insulin-like growth factor 1 (IGF-1) gene polymorphisms are genetically linked with high-grade myopia (HM), which is a complex-trait eye disorder in which numerous candidate loci and genes are thought to play a role. We investigated whether the IGF-1 single nucleotide polymorphisms (SNPs) rs6214, rs10860860, and rs2946834 are associated with HM (≤-6.0 diopters [D]) and any myopia (≤-0.5 D) phenotype in Polish families. Methods Forty-two multiplex HM Poli...

  4. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    FlorenciaMarcucci

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computa...

  5. High-Throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Zhang, Xiaohong; Marcucci, Florencia; Firestein, Stuart

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R and V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on comput...

  6. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  7. High-throughput identification of antigen-specific TCRs by TCR gene capture

    Linnemann, Carsten; Heemskerk, Bianca; Kvistborg, Pia;

    2013-01-01

    The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We...... have developed a high-throughput DNA-based strategy to identify TCR sequences by the capture and sequencing of genomic DNA fragments encoding the TCR genes. We establish the value of this approach by assembling a large library of cancer germline tumor antigen-reactive TCRs. Furthermore, by exploiting...... knowledge of antigen specificities, which may be the first step toward the development of autologous TCR gene therapy to target patient-specific neoantigens in human cancer....

  8. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  9. Differential Gene Expression in High- and Low-Active Inbred Mice

    Michelle Dawes

    2014-01-01

    Full Text Available Numerous candidate genes have been suggested in the recent literature with proposed roles in regulation of voluntary physical activity, with little evidence of these genes’ functional roles. This study compared the haplotype structure and expression profile in skeletal muscle and brain of inherently high- (C57L/J and low- (C3H/HeJ active mice. Expression of nine candidate genes [Actn2, Actn3, Casq1, Drd2, Lepr, Mc4r, Mstn, Papss2, and Glut4 (a.k.a. Slc2a4] was evaluated via RT-qPCR. SNPs were observed in regions of Actn2, Casq1, Drd2, Lepr, and Papss2; however, no SNPs were located in coding sequences or associated with any known regulatory sequences. In mice exposed to a running wheel, Casq1 (P=0.0003 and Mstn (P=0.002 transcript levels in the soleus were higher in the low-active mice. However, when these genes were evaluated in naïve animals, differential expression was not observed, demonstrating a training effect. Among naïve mice, no genes in either tissue exhibited differential expression between strains. Considering that no obvious SNP mechanisms were determined or differential expression was observed, our results indicate that genomic structural variation or gene expression data alone is not adequate to establish any of these genes’ candidacy or causality in relation to regulation of physical activity.

  10. Morphological Profiles of RNAi-Induced Gene Knockdown Are Highly Reproducible but Dominated by Seed Effects.

    Shantanu Singh

    Full Text Available RNA interference and morphological profiling-the measurement of thousands of phenotypes from individual cells by microscopy and image analysis-are a potentially powerful combination. We show that morphological profiles of RNAi-induced knockdown using the Cell Painting assay are in fact highly sensitive and reproducible. However, we find that the magnitude and prevalence of off-target effects via the RNAi seed-based mechanism make morphological profiles of RNAi reagents targeting the same gene look no more similar than reagents targeting different genes. Pairs of RNAi reagents that share the same seed sequence produce image-based profiles that are much more similar to each other than profiles from pairs designed to target the same gene, a phenomenon previously observed in small-scale gene-expression profiling experiments. Various strategies have been used to enrich on-target versus off-target effects in the context of RNAi screening where a narrow set of phenotypes are measured, mostly based on comparing multiple sequences targeting the same gene; however, new approaches will be needed to make RNAi morphological profiling (that is, comparing multi-dimensional phenotypes viable. We have shared our raw data and computational pipelines to facilitate research.

  11. Overproduction from a cellulase gene with a high guanosine-plus-cytosine content in Escherichia coli.

    O'Neill, G P; Kilburn, D G; Warren, R A; Miller, R C

    1986-10-01

    A recombinant exoglucanase was expressed in Escherichia coli to a level that exceeded 20% of total cellular protein. To obtain this level of overproduction, the exoglucanase gene coding sequence was fused to a synthetic ribosome-binding site, an initiating ATG, and placed under the control of the leftward promoter of bacteriophage lambda contained on the runaway replication plasmid vector pCP3 (E. Remaut, H. Tsao, and W. Fiers, Gene 22:103-113, 1983). With the exception of an inserted asparagine adjacent to the initiating ATG, the highly expressed exoglucanase is identical to the native exoglucanase. The overproduced exoglucanase can be isolated easily in an enriched form as insoluble aggregates, and exoglucanase activity can be recovered by solubilization of the aggregates in 6 M urea or 5 M guanidine hydrochloride. Since the codon usage of the exoglucanase gene is so markedly different from that of E. coli genes, the overproduction of the exoglucanase in E. coli indicates that codon usage may not be a major barrier to heterospecific gene expression in this organism. PMID:3096205

  12. Analysis on differential expressed genes of ovarian tissue between high- and low-yield laying hen.

    Chen, Wei; Song, Ling-Jun; Zeng, Yong-Qing; Yang, Yun; Wang, Hui

    2013-01-01

    In order to elucidate molecular genetic mechanism of laying hen reproduction at the transcriptional level and the structure of significantly differential genes, the mRNA differential display and reverse northern dot-blot were used to detect the differential expression of genes in the ovary tissue of low-yield laying hens and high-yield laying hens in the present study. Sixteen 32-week-old CAU-pink laying hens divided into two groups were used and the laying performance was measured. The results showed that only the egg numbers were significantly different between the two groups; and from 15 primer pairs, a total of 336 bands were displayed of which 59 cDNA bands were found to be differentially expressed in both high-yield and low-yield laying hen. The sequence analysis indicated that the expression of such bands as H-AP5, H-P5, and H-P4 was significantly potentiated in high-yield laying hen using primer pairs AP5/HT11G, P5/HT11G and P4/HT11G and these transcripts had high homology (98%) to HoxDb, HoxCa, and HoxBa, respectively. The differentially expressed gene fragments may be relevant to the progression of the high-yield hens to the egg-laying stage. And further study is required to elucidate the molecular function to improve the productivity of laying hens. PMID:23947664

  13. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Kaul Rajinder

    2009-11-01

    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  14. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  15. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  16. The prion-related protein (testis-specific) gene (PRNT) is highly polymorphic in Portuguese sheep.

    Mesquita, P; Garcia, V; Marques, M R; Santos Silva, F; Oliveira Sousa, M C; Carolino, I; Pimenta, J; Fontes, C M G A; Horta, A E M; Prates, J A M; Pereira, R M

    2016-02-01

    The objective of this study was to search for polymorphisms in the ovine prion-related protein (testis-specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene-coding region was analyzed by single-strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine-X-X-serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C-112G-129T-144A,17CT-112GC-129CT-144AG and 17T-112C-129C-144G), and the only three animals found homozygous at c.78A had the 17C-112G-129C-144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP). PMID:26538093

  17. dNTP Supply Gene Expression Patterns after P53 Loss

    Radivoyevitch, Tomas, E-mail: txr24@case.edu [Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106 (United States); Saunthararajah, Yogen [Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave. R40, Cleveland, OH 44195 (United States); Pink, John [Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106 (United States); Ferris, Gina [Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH 44106 (United States); Lent, Ian; Jackson, Mark; Junk, Damian [Departments of Epidemiology and Biostatistics, General Medical Sciences (Oncology), and Pathology, Case Western Reserve School of Medicine, Cleveland, OH 44106 (United States); Kunos, Charles A. [Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, OH 44106 (United States)

    2012-11-20

    Loss of the transcription factor p53 implies mRNA losses of target genes such as the p53R2 subunit of human ribonucleotide reductase (RNR). We hypothesized that other genes in the dNTP supply system would compensate for such p53R2 losses and looked for this in our own data and in data of the Gene Expression Omnibus (GEO). We found that the de novo dNTP supply system compensates for p53R2 losses with increases in RNR subunit R1, R2, or both. We also found compensatory increases in cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) and in mitochondrial deoxyguanosine kinase (dGK), all of the salvage dNTP supply system; in contrast, the remaining mitochondrial salvage enzyme thymidine kinase 2 (TK2) decreased with p53 loss. Thus, TK2 may be more dedicated to meeting mitochondrial dNTP demands than dGK which may be more obligated to assist cytosolic dNTP supply in meeting nuclear DNA dNTP demands.

  18. dNTP Supply Gene Expression Patterns after P53 Loss

    Loss of the transcription factor p53 implies mRNA losses of target genes such as the p53R2 subunit of human ribonucleotide reductase (RNR). We hypothesized that other genes in the dNTP supply system would compensate for such p53R2 losses and looked for this in our own data and in data of the Gene Expression Omnibus (GEO). We found that the de novo dNTP supply system compensates for p53R2 losses with increases in RNR subunit R1, R2, or both. We also found compensatory increases in cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) and in mitochondrial deoxyguanosine kinase (dGK), all of the salvage dNTP supply system; in contrast, the remaining mitochondrial salvage enzyme thymidine kinase 2 (TK2) decreased with p53 loss. Thus, TK2 may be more dedicated to meeting mitochondrial dNTP demands than dGK which may be more obligated to assist cytosolic dNTP supply in meeting nuclear DNA dNTP demands

  19. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  20. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  1. Association between PKA gene polymorphism and NTDs in high risk Chinese population in Shanxi

    Wu, Jian; Lu, Xiaolin; Wang, Zhen; Shangguan, Shaofang; Chang, Shaoyan; Li, Rui; Wu, Lihua; Bao, Yihua; Niu, Bo; Wang, Li; Zhang, Ting

    2013-01-01

    Objective: This study aimed to investigate the single nucleotide polymorphisms (SNPs) of PKA and neural tube defects (NTDs) in Chinese population. Method: A total of 183 NTDs cases and 200 healthy controls were used in this study. 7 selected single nucleotide polymorphism (SNP) sites in the PKA gene were analyzed with MassArray high-throughput DNA analyzer with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. A series of statistical methods were carrie...

  2. High Frequency of Large Intragenic Deletions in the Fanconi Anemia Group A Gene

    Morgan, Neil V.; Tipping, Alex J.; Joenje, Hans; Mathew, Christopher G.

    1999-01-01

    Fanconi anemia (FA) is an autosomal recessive disorder exhibiting chromosomal fragility, bone-marrow failure, congenital abnormalities, and cancer. At least eight complementation groups have been described, with group A accounting for 60%–65% of FA patients. Mutation screening of the group A gene (FANCA) is complicated by its highly interrupted genomic structure and heterogeneous mutation spectrum. Recent reports of several large deletions of FANCA, coupled with modest mutation-detection rate...

  3. Highly expressed genes are associated with inverse antisense transcription in mouse

    Andras Györffy; Pawel Surowiak; Zsolt Tulassay; Balazs Györffy

    2007-08-01

    There is a growing evidence, that antisense transcription might have a key role in a range of human diseases. Although predefined sense–antisense pairs were extensively studied, the antisense expression of the known sense genes is rarely investigated. We retrieved and correlated the expression of sense and antisense sequences of 1182 mouse transcripts to assess the prevalence and to find the characteristic pattern of antisense transcription. We contrasted three Affymetrix MGU74A version 1 mouse genome chips to six MGU74A version 2 chips. For these 1182 transcripts, the version 1 chips contain the antisense sequences of the transcripts presented on the version 2 chips. The original data was taken from the GEO database (GDS431 and GDS432). As the Affymetrix data are semiquantitative, the relative expression levels of antisense partners were analysed. We detected antisense transcription, although the average antisense expression is shifted towards smaller expression values (MGU74A version 1, 516; version 2, 1688). An inverse direct correlation between sense and antisense expression values could be observed at high expression values. At a very high relative expression—above 40,000—the Pearson correlation coefficient is getting closer to −1. Transcripts with high inverse expression ratio may be correlated to the investigated gene (major histocompatibility complex class II trans activator). The ratio of sense to antisense transcripts varied among different chromosomes; on chromosomes 14 and 1 the level of antisense expression was higher than that of sense. We conclude that antisense transcription is a common phenomenon in the mouse genome. The hypothesis of regulatory role of antisense transcripts is supported by the inverse antisense gene expression of highly expressed genes.

  4. The Influence of Bovine Milk High or Low in Isoflavones on Hepatic Gene Expression in Mice

    Nielsen, Tina S.; Skaanild, Mette T.

    2010-01-01

    Isoflavones have generated much attention due to their potential positive effects in various diseases. Phytoestrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phytoestrogens. The aim of this study was to analyze the changes in hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17 -estradiol, equol, Tween 80, ...

  5. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  6. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids. PMID:26945769

  7. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development.

    Chang, Ti-Cheng; Yang, Yang; Retzel, Ernest F; Liu, Wan-Sheng

    2013-07-23

    The male-specific region of the mammalian Y chromosome (MSY) contains clusters of genes essential for male reproduction. The highly repetitive and degenerative nature of the Y chromosome impedes genomic and transcriptomic characterization. Although the Y chromosome sequence is available for the human, chimpanzee, and macaque, little is known about the annotation and transcriptome of nonprimate MSY. Here, we investigated the transcriptome of the MSY in cattle by direct testis cDNA selection and RNA-seq approaches. The bovine MSY differs radically from the primate Y chromosomes with respect to its structure, gene content, and density. Among the 28 protein-coding genes/families identified on the bovine MSY (12 single- and 16 multicopy genes), 16 are bovid specific. The 1,274 genes identified in this study made the bovine MSY gene density the highest in the genome; in comparison, primate MSYs have only 31-78 genes. Our results, along with the highly transcriptional activities observed from these Y-chromosome genes and 375 additional noncoding RNAs, challenge the widely accepted hypothesis that the MSY is gene poor and transcriptionally inert. The bovine MSY genes are predominantly expressed and are differentially regulated during the testicular development. Synonymous substitution rate analyses of the multicopy MSY genes indicated that two major periods of expansion occurred during the Miocene and Pliocene, contributing to the adaptive radiation of bovids. The massive amplification and vigorous transcription suggest that the MSY serves as a genomic niche regulating male reproduction during bovid expansion. PMID:23842086

  8. Rice Mitochondrial Genes Are Transcribed by Multiple Promoters That Are Highly Diverged

    Qun-Yu Zhang; Yao-Guang Liu

    2006-01-01

    Plant mitochondrial genes are often transcribed into complex sets of mRNA. To characterize the transcription initiation and promoter structure, the transcript termini of four mitochondrial genes, atp1, atp6, cob,rps7, in rice (Oryza sativa L.), were determined by using a modified circularized RNA reverse transcriptionpolymerase chain reaction method. The results revealed that three genes (atp1, atp6, rps7) were transcribed from multiple initiation sites, indicating the presence of multiple promoters. Two transcription termination sites were detected in three genes (atp6, cob, rps7), respectively. Analysis on the promoter architecture showed that the YRTA (Y=T or C, R=A or G) motifs that are widely present in the mitochondrial promoters of other monocot and dicot plant species were detected only in two of the 12 analyzed promoters.Our data suggest that the promoter sequences in the rice mitochondrial genome are highly diverged in comparison to those in other plants, and the YRTA motif is not an essential element for the promoter activity.

  9. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    Jett, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  10. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    Jinming Luo

    Full Text Available Microbes have great potential for arsenic (As and antimony (Sb bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb in a high As (range from 34.11 to 821.23 mg kg-1 and Sb (range from 226.67 to 3923.07 mg kg-1 contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3 were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871 and aioA-like (R2 = 0.675 gene abundance and As concentration, and indicated that intracellular As(V reduction and As(III oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  11. Extraction of high-quality RNA from pancreatic tissues for gene expression studies.

    Augereau, Cécile; Lemaigre, Frédéric P; Jacquemin, Patrick

    2016-05-01

    Extracting RNA from pancreatic tissue is notoriously challenging because of the organ's high RNase content. Standard methods using TriPure or TRIzol classically yield RNA of sufficient quality for routine gene expression analysis but not for microarray or deep sequencing analysis. Here we developed a simple method to extract high-quality RNA from mouse pancreas. Our method uses an RNase inhibitor and combines different protocols using guanidium thiocyanate-phenol extraction. It enables reproducible isolation of RNA with an RNA integrity number around 9. PMID:26896683

  12. Tumor Classification Using High-Order Gene Expression Profiles Based on Multilinear ICA

    Ming-gang Du

    2009-01-01

    Full Text Available Motivation. Independent Components Analysis (ICA maximizes the statistical independence of the representational components of a training gene expression profiles (GEP ensemble, but it cannot distinguish relations between the different factors, or different modes, and it is not available to high-order GEP Data Mining. In order to generalize ICA, we introduce Multilinear-ICA and apply it to tumor classification using high order GEP. Firstly, we introduce the basis conceptions and operations of tensor and recommend Support Vector Machine (SVM classifier and Multilinear-ICA. Secondly, the higher score genes of original high order GEP are selected by using t-statistics and tabulate tensors. Thirdly, the tensors are performed by Multilinear-ICA. Finally, the SVM is used to classify the tumor subtypes. Results. To show the validity of the proposed method, we apply it to tumor classification using high order GEP. Though we only use three datasets, the experimental results show that the method is effective and feasible. Through this survey, we hope to gain some insight into the problem of high order GEP tumor classification, in aid of further developing more effective tumor classification algorithms.

  13. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system

    Eroglu E

    2013-04-01

    Full Text Available Erdal Eroglu,1 Pooja M Tiwari,1 Alain B Waffo,1 Michael E Miller,2 Komal Vig,1 Vida A Dennis,1 Shree R Singh1 1Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA; 2Research Instrumentation Facility, Auburn University, AL, USA Abstract: The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs, which consisted of poly (2-hydroxyethyl methacrylate nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV-F gene construct (a model for a DNA vaccine. The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM, fluorescence activated cell sorting (FACS, and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR, we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo. Keywords: pHEMA+chitosan nanoparticles, nonviral vector

  14. The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations

    Qiong ZHANG; Xingzhi HAN; Robert H S KRAUS; Le YANG; Liqing FAN; Yinzi YE; Yi TAO

    2016-01-01

    For species that have a broad geographic distribution, adaptive variation may be attributable to gene expression plasticity. Nanorana parkeri is an anuran endemic to the southern Tibetan Plateau where it has an extensive altitudinal range (2850 to 5100 m asl). Low oxygen concentration is one of the main environmental characteristics of the Tibetan Plateau. Hypoxia-inducible factor α subunits (HIF-1α and HIF-2α, encoded by Endothelial PAS domain protein 1 (EPAS1)) and associated genes (e.g., vascular endothelial growth factor (VEGF) and Erythropoietin (EPO)) play crucial roles in maintaining oxygen homeostasis. In this study, we compared the expression of HIF-1A, VEGF, EPAS1 and EPO mRNA between two populations of N. parkeri: one population inhabiting the native high altitudes, and the second living in, and being acclimated to, the lower plains (70 m asl). The expression of HIF-1A, VEGF and EPAS1 mRNA in the high altitude population were significantly higher than in the acclimated population, whereas there was no significant difference for EPO between two groups. Our results indicated that gene expression plasticity may make significant contributions to local adaptation of species that have broad altitudinal distributions. In addition, we deepen our understanding of the adaptive potential of this species by evaluating the experiments in the scope of its evolutionary history.

  15. Identification of colorectal cancer-restricted microRNAs and their target genes based on high-throughput sequencing data

    Chang J; Huang L; Cao Q; Liu F.

    2016-01-01

    Jing Chang, Liya Huang, Qing Cao, Fang Liu Department of Gerontology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, People’s Republic of China Abstract: To identify potential key microRNAs (miRNAs) and their target genes for colorectal cancer (CRC). High-throughput sequencing data of miRNA expression and gene expression (ID: GSE46622) were downloaded from Gene Expression Omnibus, including matched colon tumor, normal colon epithelium, and liver metast...

  16. Identification of colorectal cancer-restricted microRNAs and their target genes based on high-throughput sequencing data

    Liu, Fang(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

    2016-01-01

    Jing Chang, Liya Huang, Qing Cao, Fang Liu Department of Gerontology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, People’s Republic of China Abstract: To identify potential key microRNAs (miRNAs) and their target genes for colorectal cancer (CRC). High-throughput sequencing data of miRNA expression and gene expression (ID: GSE46622) were downloaded from Gene Expression Omnibus, including matched colon tumor, normal colon epithelium, and liver me...

  17. Mutations in the WTX - gene are found in some high-grade microsatellite instable (MSI-H) colorectal cancers

    Scheel Silvio K; Porzner Marc; Pfeiffer Sabine; Ormanns Steffen; Kirchner Thomas; Jung Andreas

    2010-01-01

    Abstract Background Genetically, colorectal cancers (CRCs) can be subdivided into tumors with chromosomal instability (CIN) or microsatellite instability (MSI). In both types of CRCs genes that are involved in the degradation of β-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli) is affected in most cases, high grade MSI (MSI-H) CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (β-CATENIN) gene itself. Recently in Wilms tumo...

  18. Highly Frequent Mutations in Negative Regulators of Multiple Virulence Genes in Group A Streptococcal Toxic Shock Syndrome Isolates

    Ikebe, Tadayoshi; Ato, Manabu; Matsumura, Takayuki; Hasegawa, Hideki; Sata, Tetsutaro; Kobayashi, Kazuo; Watanabe, Haruo

    2010-01-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogen...

  19. Engineering high-level aluminum tolerance in barley with the ALMT1 gene.

    Delhaize, Emmanuel; Ryan, Peter R; Hebb, Diane M; Yamamoto, Yoko; Sasaki, Takayuki; Matsumoto, Hideaki

    2004-10-19

    Acidity is a serious limitation to plant production on many of the world's agricultural soils. Toxic aluminium (Al) cations solubilized by the acidity rapidly inhibit root growth and limit subsequent uptake of water and nutrients. Recent work has shown that the ALMT1 gene of wheat (Triticum aestivum) encodes a malate transporter that is associated with malate efflux and Al tolerance. We generated transgenic barley (Hordeum vulgare) plants expressing ALMT1 and assessed their ability to exude malate and withstand Al stress. ALMT1 expression in barley conferred an Al-activated efflux of malate with properties similar to those of Al-tolerant wheat. The transgenic barley showed a high level of Al tolerance when grown in both hydroponic culture and on acid soils. These findings provide additional evidence that ALMT1 is a major Al-tolerance gene and demonstrate its ability to confer effective tolerance to acid soils through a transgenic approach in an important crop species. PMID:15471989

  20. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression

    Casanova, Emily L.; Sharp, Julia L.; Chakraborty, Hrishikesh; Sumi, Nahid Sultana; Casanova, Manuel F.

    2016-01-01

    Background Intellectual disability (ID), autism, and epilepsy share frequent yet variable comorbidities with one another. In order to better understand potential genetic divergence underlying this variable risk, we studied genes responsible for monogenic IDs, grouped according to their autism and epilepsy comorbidities. Methods Utilizing 465 different forms of ID with known molecular origins, we accessed available genetic databases in conjunction with gene ontology (GO) to determine whether t...

  1. High-frequency and low-frequency effects on vibrational resonance in a synthetic gene network

    The high-frequency and low-frequency effects on vibrational resonance (VR) in a synthetic gene network are studied. Results show that the role of the high-frequency signal in VR acts as that of noise in stochastic resonance (SR), namely a high-frequency signal can change the effective value of the control parameter such that the random state–state transitions of the switch can happen. A low-frequency signal with lower frequency and higher amplitude tends to favor the response of the system. When VR occurs, the ratio of the optimal amplitude (Bopt) to the corresponding frequency (Ω) of the high-frequency signal is a definite constant. Furthermore, if noise is introduced into the system, noise plays a suppressive role for VR, and various resonance phenomena including the bell-shaped VR and VR without tuning are exhibited in the system

  2. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. PMID:26890482

  3. In situ Expression of Functional Genes Reveals Nitrogen Cycling at High Temperatures in Terrestrial Hydrothermal Systems

    Loiacono, S. T.; Meyer-Dombard, D. R.

    2011-12-01

    An essential element for life, nitrogen occurs in all living organisms and is critical for the synthesis of amino acids, proteins, nucleic acids, and other forms of biomass. Thus, nitrogen cycling likely plays a vital role in microbial metabolic processes as well as nutrient availability. For microorganisms in "extreme" environments, this means developing adaptations that allow them to survive in harsh conditions and still perform the metabolisms essential to sustain life. Recent studies have screened biofilms and thermal sediments of Yellowstone National Park (YNP) thermal features for the presence of nifH genes, which code for a key enzyme in the nitrogen fixation process [1-4]. Furthermore, analysis of nitrogen isotopes in biofilms across a temperature and chemical gradient revealed that nitrogen fixation likely varies across the chemosynthetic/photosynthetic ecotone [5]. Although research has evaluated and confirmed the presence of nifH genes in various thermophilic microbial communities, the existence of a gene in the DNA of an organism does not verify its use. Instead, other methods, such as culturing, isotope tracer assays, and gene expression studies are required to provide direct evidence of biological nitrogen fixation. Culturing and isotope tracer approaches have successfully revealed high-temperature biological nitrogen fixation in both marine hydrothermal vent microbial communities [6] and in acidic, terrestrial hydrothermal sediment [3]. Transcriptomics-based techniques (using mRNA extracted from samples to confirm in situ expression of targeted genes) have been much more limited in number, and only a few studies have, to date, investigated in situ expression of the nifH gene in thermophilic microbial communities [2, 7]. This study explores the presence and expression of nifH genes in several features of the Lower Geyser Basin (LGB) of YNP. Nucleic acids from chemosynthetic and photosynthetic microbial communities were extracted and then amplified

  4. Fish Oil Decreases Hepatic Lipogenic Genes in Rats Fasted and Refed on a High Fructose Diet

    Gabriela S. de Castro

    2015-03-01

    Full Text Available Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3 fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP, fatty acid synthase (FAS and microsomal triglyceride transfer protein (MTTP. Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.

  5. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus)

    Limborg, Morten; Helyar, S.J.; de Bruyn, M.;

    2012-01-01

    High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel...

  6. Highly efficient method for gene delivery in mouse dorsal root ganglia neurons

    Valérie Castellani

    2015-02-01

    Full Text Available The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5 to 16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60 – 80% and low toxicity (> 60% survival were achieved with robust differentiation in response to Nerve growth factor (NGF. Moreover, 3-50 times fewer cells are needed (6x104 compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.

  7. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. PMID:26466852

  8. High Expression of Endogenous Retroviral Envelope Gene in the Equine Fetal Part of the Placenta

    Stefanetti, Valentina; Marenzoni, Maria Luisa; Passamonti, Fabrizio; Cappelli, Katia; Garcia-Etxebarria, Koldo; Coletti, Mauro; Capomaccio, Stefano

    2016-01-01

    Endogenous retroviruses (ERVs) are proviral phases of exogenous retroviruses that have co-evolved with vertebrate genomes for millions of years. Previous studies have identified the envelope (env) protein genes of retroviral origin preferentially expressed in the placenta which suggests a role in placentation based on their membrane fusogenic capacity and therefore they have been named syncytins. Until now, all the characterized syncytins have been associated with three invasive placentation types: the endotheliochorial (Carnivora), the synepitheliochorial (Ruminantia), and the hemochorial placentation (human, mouse) where they play a role in the syncytiotrophoblast formation. The purpose of the present study was to evaluate whether EqERV env RNA is expressed in horse tissues as well and investigate if the horse, possessing an epitheliochorial placenta, has “captured” a common retroviral env gene with syncytin-like properties in placental tissues. Interestingly, although in the equine placenta there is no syncytiotrophoblast layer at the maternal-fetal interface, our results showed that EqERV env RNA is highly expressed at that level, as expected for a candidate syncytin-like gene but with reduced abundance in the other somatic tissues (nearly 30-fold lower) thus suggesting a possible role in the placental tissue. Although the horse is one of the few domestic animals with a sequenced genome, few studies have been conducted about the EqERV and their expression in placental tissue has never been investigated. PMID:27176223

  9. High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening.

    Kwon, Seok Joon; Lee, Dong Woo; Shah, Dhiral A; Ku, Bosung; Jeon, Sang Youl; Solanki, Kusum; Ryan, Jessica D; Clark, Douglas S; Dordick, Jonathan S; Lee, Moo-Yeal

    2014-01-01

    Differential expression of various drug-metabolizing enzymes (DMEs) in the human liver may cause deviations of pharmacokinetic profiles, resulting in interindividual variability of drug toxicity and/or efficacy. Here, we present the 'Transfected Enzyme and Metabolism Chip' (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity. The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1 and UGT1A4) in THLE-2 cell microarrays. To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner. PMID:24799042

  10. High Expression of Endogenous Retroviral Envelope Gene in the Equine Fetal Part of the Placenta.

    Valentina Stefanetti

    Full Text Available Endogenous retroviruses (ERVs are proviral phases of exogenous retroviruses that have co-evolved with vertebrate genomes for millions of years. Previous studies have identified the envelope (env protein genes of retroviral origin preferentially expressed in the placenta which suggests a role in placentation based on their membrane fusogenic capacity and therefore they have been named syncytins. Until now, all the characterized syncytins have been associated with three invasive placentation types: the endotheliochorial (Carnivora, the synepitheliochorial (Ruminantia, and the hemochorial placentation (human, mouse where they play a role in the syncytiotrophoblast formation. The purpose of the present study was to evaluate whether EqERV env RNA is expressed in horse tissues as well and investigate if the horse, possessing an epitheliochorial placenta, has "captured" a common retroviral env gene with syncytin-like properties in placental tissues. Interestingly, although in the equine placenta there is no syncytiotrophoblast layer at the maternal-fetal interface, our results showed that EqERV env RNA is highly expressed at that level, as expected for a candidate syncytin-like gene but with reduced abundance in the other somatic tissues (nearly 30-fold lower thus suggesting a possible role in the placental tissue. Although the horse is one of the few domestic animals with a sequenced genome, few studies have been conducted about the EqERV and their expression in placental tissue has never been investigated.

  11. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  12. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  13. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2014-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  14. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  15. Evaluation and Application of Two High-Iron Transgenic Rice Lines Expressing a Pea Ferritin Gene

    YE Hong-xai; LI Mei; Guo Ze-jian; Shu Qing-yao; xu Xiao-hui; BAO Jin-song; SHEN Sheng-quan

    2008-01-01

    A totaI of 105 transgenic rice lines independently transformed with a pea ferritin gene (Fer)were previously obtained.After seven generations of selfing and β-glucuronidase(GUS)assisted selection,82 transgenic lines with stable agronomic traits were got.Among the 82 transgenic lines,two high-iron transgenic rice lines Fer34 and Fer65,with the iron contents in the milled rice being 4.82 and 3.46 times of that of the wild type Xiushui 11,respectively were identified.In the two transgenic lines,the exogenous Fer gene was highly expressed,and inherited as a single locus.The transgene had no negative effect on the agronomic traits of rice plant,other mineral nutritional components,appearance quailty and eating quailty of the milled rice,indicating that these two lines were elite high-iron breeding lines.Furthermore,the practical application and further studies facilitating utilization of the two elite breeding lines were discussed.

  16. A novel, highly efficient gene-cloning system for Micromonospora strains.

    Hasegawa, M.; Dairi, T; T. Ohta; Hashimoto, E.

    1991-01-01

    A highly efficient gene-cloning system for Micromonospora olivasterospora, a producer of the antibiotic fortimicin A (astromicin), suited to shotgun cloning has been developed. The system is supported by two new advancements accomplished in this study. One is the construction of novel plasmid vectors pMO116, pMO126, pMO133, pMO136, and pMO217, all consisting of replicons from newly found Micromonospora plasmids and selectable markers cloned from a neomycin-producing Micromonospora strain. The...

  17. A high throughput Chromatin ImmunoPrecipitation approach reveals principles of dynamic gene regulation in mammals

    Garber, Manuel; Yosef, Nir; Goren, Alon; Raychowdhury, Raktima; Thielke, Anne; Guttman, Mitchell; Robinson, James; Minie, Brian; Chevrier, Nicolas; Itzhaki, Zohar; Blecher-Gonen, Ronnie; Bornstein, Chamutal; Amann-Zalcenstein, Daniela; Weiner, Assaf; Friedrich, Dennis

    2012-01-01

    Understanding the principles governing mammalian gene regulation has been hampered by the difficulty in measuring in-vivo binding dynamics of large numbers of transcription factors (TF) to DNA. Here, we develop a high-throughput Chromatin ImmunoPrecipitation (HT-ChIP) method to systematically map protein-DNA interactions. HT-ChIP was applied to define the dynamics of DNA binding by 25 TFs and 4 chromatin marks at 4 time-points following pathogen stimulus of dendritic cells. Analyzing over 180...

  18. High efficiency of replication and expression of foreign genes in SV40-transformed human fibroblasts.

    Boast, S; La Mantia, G; Lania, L; Blasi, F

    1983-01-01

    Human fibroblasts (HF) were transformed in vitro with origin-defective SV40 DNA (ori-) using the calcium phosphate co-precipitation technique. The SV40 ori- transformed human cells (HSF) were able to replicate efficiently a recombinant DNA molecule containing the ori sequence of SV40 DNA. Transfection of HFS with pTBC1, a recombinant pi vx plasmid containing the herpes simplex virus thymidine kinase (HSV-TK) gene and the ori SV40 sequences, results in high levels of TK mRNA of correct size. T...

  19. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors

    Li W

    2012-08-01

    Full Text Available Wei Li,1,2,* Huafei Li,1,* Jinfeng Li,1,* Huajing Wang,1,* He Zhao,1 Li Zhang,1 Yu Xia,1 Zengwei Ye,1 Jie Gao,1,2 Jianxin Dai,1–3 Hao Wang,1–3 Yajun Guo1–31International Joint Cancer Institute, The Second Military Medical University, Shanghai, 2National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, 3PLA General Hospital Cancer Center, PLA Graduate School of Medicine, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: The main obstacles for cationic polyplexes in gene delivery are in vivo instability and low solid-tumor accumulation. Safe vectors with high transfection efficiency and in vivo tumor accumulation are therefore highly desirable. In this study, the amphiphilic block copolymer poly(n-butyl methacrylate-b-poly(N-acryloylmorpholine was synthesized by reversible addition–fragmentation chain-transfer (RAFT radical polymerization. The corresponding well-defined vesicles with narrow size distribution were tailored by finely regulating the packing parameter (β of copolymer (1/2 < β < 1. Compared with traditional "gold-standard" polycation (polyethylenimine, 25 kDa, plasmid DNA condensing efficiency, DNase I degradation protection, and cellular uptake were improved by the supramolecular nano vesicles. In addition, the plasmid DNA transferring efficiency in 10% fetal bovine serum medium was enlarged five times to that of polyethylenimine in renal tubular epithelial and human hepatocellular carcinoma cell lines. This improved in vitro transfection was mainly attributed to the densely packed bilayer. This stealth polyplex showed high serum stability via entropic repulsion, which further protected the polyplex from being destroyed during sterilization. As indicated by the IVIS® Lumina II Imaging System (Caliper Life Sciences, Hopkinton, MA 24 hours post

  20. Pre-amplification in the context of high-throughput qPCR gene expression experiment

    Korenková, Vlasta; Scott, J.; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjoback, R.

    2015-01-01

    Roč. 16, č. 5 (2015). ISSN 1471-2199 R&D Projects: GA ČR(CZ) GAP304/12/1585; GA ČR(CZ) GA15-08239S; GA ČR GA13-02154S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : High-throughput qPCR * Gene expression * Exponential pre-amplification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.194, year: 2014

  1. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product.

    Nakagama, H; Heinrich, G.; Pelletier, J; Housman, D E

    1995-01-01

    The Wilms' tumor suppressor gene, WT1, encodes a zinc finger polypeptide which plays a key role regulating cell growth and differentiation in the urogenital system. Using the whole-genome PCR approach, we searched murine genomic DNA for high-affinity WT1 binding sites and identified a 10-bp motif 5'GCGTGGGAGT3' which we term WTE). The WTE motif is similar to the consensus binding sequence 5'GCG(G/T)GGGCG3' recognized by EGR-1 and is also suggested to function as a binding site for WT1, settin...

  2. High-throughput screening of Sirtuin family of genes in breast cancer.

    Igci, Mehri; Kalender, Mehmet Emin; Borazan, Ersin; Bozgeyik, Ibrahim; Bayraktar, Recep; Bozgeyik, Esra; Camci, Celaletdin; Arslan, Ahmet

    2016-07-15

    Mammalian Sirtuins have been shown to perform distinct cellular functions and deregulated expression of these genes was reported to be involved in the development of various malignancies including breast cancer. An increasing number of evidence indicates that Sirtuins have both tumor promoter and tumor suppressor functions. However, the roles of Sirtuins have not been well-reported in breast cancer. In the present study, quantitative expression levels of Sirtuins (SIRT1-7) in breast cancer patients and breast cancer cell lines (MCF-7 and SKBR3) and control cell line (CRL-4010) were assessed by using a high-throughput real-time PCR method. As a result, Sirtuins were found to be differentially expressed in breast cancer tissues and cancer cell lines. Particularly, expressions of SIRT1 and SIRT4 were found to be significantly down-regulated in breast cancer tissues and SKBR3 breast cancer cells. In contrast, SIRT2, SIRT3, and SIRT5 genes were shown to be up-regulated in our study. Although SIRT6 and SIRT7 were also up-regulated in breast cancer tissues, these expression changes were statistically insignificant. Additionally, SIRT2, SIRT3, SIRT5, SIRT6 and SIRT7 were found to be differentially expressed in breast cancer cell lines. Yet, these changes were not well-correlated with tissue expression levels. In conclusion, Sirtuin family of genes shows differential expressions in breast cancer tissues and cells and SIRT1 and SIRT4 seem to play key tumor suppressor roles in breast cancer development. Herein, we report expression levels of Sirtuin family of genes in both breast cancer tissues and cancer cell lines simultaneously. PMID:27080717

  3. Long QT interval in Turner syndrome--a high prevalence of LQTS gene mutations.

    Christian Trolle

    Full Text Available OBJECTIVES: QT-interval prolongation of unknown aetiology is common in Turner syndrome. This study set out to explore the presence of known long QT mutations in Turner syndrome and to examine the corrected QT-interval (QTc over time and relate the findings to the Turner syndrome phenotype. METHODS: Adult women with Turner syndrome (n = 88 were examined thrice and 68 age-matched healthy controls were examined once. QTc was measured by one blinded reader (intra-reader variability: 0.7%, and adjusted for influence of heart rate by Bazett's (bQTc and Hodges's formula (hQTc. The prevalence of mutations in genes related to Long QT syndrome was determined in women with Turner syndrome and a QTc >432.0 milliseconds (ms. Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done. RESULTS: The mean hQTc in women with Turner syndrome (414.0 ± 25.5 ms compared to controls (390.4 ± 17.8 ms was prolonged (p432 ms, 7 had mutations in major Long QT syndrome genes (SCN5A and KCNH2 and one in a minor Long QT syndrome gene (KCNE2. CONCLUSION: There is a high prevalence of mutations in the major LQTS genes in women with TS and prolonged QTc. It remains to be settled, whether these findings are related to the unexplained excess mortality in Turner women. CLINICAL TRIAL REGISTRATION: NCT00624949. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol/sid/S0001FLI/selectaction/View/ts/3/uid/U000099E.

  4. Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum

    Chen Fanguo

    2007-05-01

    Full Text Available Abstract Background High molecular weight glutenin subunits (HMW-GS have been proved to be mostly correlated with the processing quality of common wheat (Triticum aestivum. But wheat cultivars have limited number of high quality HMW-GS. However, novel HMW-GS were found to be present in many wheat asymmetric somatic hybrid introgression lines of common wheat/Agropyron elongatum. Results To exploit how these new subunits were generated, we isolated HMW-GS genes from two sib hybrid lines (II-12 and 11-4-6 and compared them with those from their parents. The result shows that two genes of hybrid (H11-3-3 and H11-4-3 are directly introgressed from the donor parent Agropyron elongatum; one hybrid gene (H1Dx5 comes from point mutation of a parental wheat gene (1Dx2.1; two other hybrid genes (H1By8 and H1By16 are likely resulting from unequal crossover or slippage of a parental wheat gene (1By9.1; and the sixth novel hybrid gene (H1Dy12 may come from recombination between two parental genes. Conclusion Therefore, we demonstrate that novel HMW-GS genes can be rapidly created through asymmetric somatic hybridization in a manner similar with the evolution mechanism of these genes supposed before. We also described gene shuffling as a new mechanism of novel HMW-GS gene formation in hybrids. The results suggest that asymmetric somatic hybridization is an important approach for widening HMW-GS genebank of wheat quality improvement.

  5. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits

    Catherine eRAVEL

    2014-11-01

    Full Text Available The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator. In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

  6. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-04-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. PMID:26736050

  7. High-Resolution Analysis of Gene Copy Number Alterations in Human Prostate Cancer Using CGH on cDNA Microarrays: Impact of Copy Number on Gene Expression

    Maija Wolf

    2004-05-01

    Full Text Available Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classical chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28 and loss (18 were found, their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13% and gains at iq and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, 74-76 Mbp from the p-telomere, which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, 17q (losses, at 3q, 5p, 6p (gains. Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P < .0001 overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.

  8. A High Soy Diet Enhances Neurotropin Receptor and Bcl-XL Gene Expression in the Brains of Ovariectomized Female Rats

    Lovekamp-Swan, Tara; Glendenning, Michele L.; Schreihofer, Derek A.

    2007-01-01

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen’s benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expre...

  9. Identification of novel small molecule inhibitors of adenovirus gene transfer using a high throughput screening approach.

    Duffy, Margaret R; Parker, Alan L; Kalkman, Eric R; White, Katie; Kovalskyy, Dmytro; Kelly, Sharon M; Baker, Andrew H

    2013-08-28

    Due to many favourable attributes adenoviruses (Ads) are the most extensively used vectors for clinical gene therapy applications. However, following intravascular administration, the safety and efficacy of Ad vectors are hampered by the strong hepatic tropism and induction of a potent immune response. Such effects are determined by a range of complex interactions including those with neutralising antibodies, blood cells and factors, as well as binding to native cellular receptors (coxsackie adenovirus receptor (CAR), integrins). Once in the bloodstream, coagulation factor X (FX) has a pivotal role in determining Ad liver transduction and viral immune recognition. Due to difficulties in generating a vector devoid of multiple receptor binding motifs, we hypothesised that a small molecule inhibitor would be of value. Here, a pharmacological approach was implemented to block adenovirus transduction pathways. We developed a high throughput screening (HTS) platform to identify small molecule inhibitors of FX-mediated Ad5 gene transfer. Using an in vitro fluorescence and cell-based HTS, we evaluated 10,240 small molecules. Following sequential rounds of screening, three compounds, T5424837, T5550585 and T5660138 were identified that ablated FX-mediated Ad5 transduction with low micromolar potency. The candidate molecules possessed common structural features and formed part of the one pharmacophore model. Focused, mini-libraries were generated with structurally related molecules and in vitro screening revealed novel hits with similar or improved efficacy. The compounds did not interfere with Ad5:FX engagement but acted at a subsequent step by blocking efficient intracellular transport of the virus. In vivo, T5660138 and its closely related analogue T5660136 significantly reduced Ad5 liver transgene expression at 48 h post-intravenous administration of a high viral dose (1×10¹¹ vp/mouse). Therefore, this study identifies novel and potent small molecule inhibitors of the

  10. Application of high molecular weight DNA cloning in legume nodulation gene analysis

    High molecular weight (HMW) DNA was isolated from Glycine max (soybean) and the model legume Lotus japonicus for the purpose of legume genome analysis. The primary objectives were the gene regions that control nodulation, early plant-microbe interaction and cell division responses. HMW DNA was separated by pulse field gel electrophoresis (CHEF-PFGE) and analyzed with closely linked restriction fragment length polymorphism (RFLP) markers co-hybridized with clones, permitting estimation of the regional physical distances as they relate to recombination frequency. In the distal region of molecular linkage group H containing one of the genes controlling nodule number autoregulation and symbiotic nitrate tolerance (i.e. the nts gene), 1 cM was equivalent to less than 500 kb. Partially digested EcoRI soybean and L. japonicus HMW DNA were cloned into pYAC4. Stable yeast artificial chromosomes (YACs) carrying up to 960 kb DNA were generated. The average insert size was 200 kb. Hybridization with total genomic soybean DNA revealed YACs with different amounts of repeated DNA sequences. Mapping of the end clones demonstrated whether the YACs were chimeric. YACs of different complexity were used for chromosome identification using degenerate primer polymerase chain reaction and fluorescent in situ hybridization. This approach is a fast alternative to testing for YAC chimerism. Single arbitrary and structured mini-hairpin primers were used to amplify and DNA fingerprint the YACs, providing a means of identifying the additional markers needed for contig construction. HMW DNA was cloned into the F plasmid bacterial artificial chromosome (BAC) vector. The YACs and BACs were also constructed with DNA from the small genome/highly transformable legume L. japonicus. Mapping of the YAC and BAC clones with molecular markers will help to ascertain the degree of chimerism and stability in the different cloning systems. YACs, molecular markers and cDNA clones will be useful for chromosome

  11. A high-throughput protocol for mutation scanning of the BRCA1 and BRCA2 genes

    Detection of mutations by DNA sequencing can be facilitated by scanning methods to identify amplicons which may have mutations. Current scanning methods used for the detection of germline sequence variants are laborious as they require post-PCR manipulation. High resolution melting (HRM) is a cost-effective rapid screening strategy, which readily detects heterozygous variants by melting curve analysis of PCR products. It is well suited to screening genes such as BRCA1 and BRCA2 as germline pathogenic mutations in these genes are always heterozygous. Assays for the analysis of all coding regions and intron-exon boundaries of BRCA1 and BRCA2 were designed, and optimised. A final set of 94 assays which ran under identical amplification conditions were chosen for BRCA1 (36) and BRCA2 (58). Significant attention was placed on primer design to enable reproducible detection of mutations within the amplicon while minimising unnecessary detection of polymorphisms. Deoxyinosine residues were incorporated into primers that overlay intronic polymorphisms. Multiple 384 well plates were used to facilitate high throughput. 169 BRCA1 and 239 BRCA2 known sequence variants were used to test the amplicons. We also performed an extensive blinded validation of the protocol with 384 separate patient DNAs. All heterozygous variants were detected with the optimised assays. This is the first HRM approach to screen the entire coding region of the BRCA1 and BRCA2 genes using one set of reaction conditions in a multi plate 384 well format using specifically designed primers. The parallel screening of a relatively large number of samples enables better detection of sequence variants. HRM has the advantages of decreasing the necessary sequencing by more than 90%. This markedly reduced cost of sequencing will result in BRCA1 and BRCA2 mutation testing becoming accessible to individuals who currently do not undergo mutation testing because of the significant costs involved

  12. High Serum Endostatin Level in Egyptian Children with Down Syndrome: Gene Dosage Effect

    N.A. Meguid

    2004-01-01

    Full Text Available The present study was carried out on 51 individuals with Down syndrome (DS; 39 patients with trisomy 21 and 12 patients with mosaicism as well as their 22 matched controls. Their ages ranged from 2 months to 18 years. The purpose of this work was to study the level and the gene dosage effect of serum endostatin in DS children and control subjects. Present results showed significant high levels of endostatin in the population with complete trisomy 21 compared to mosaicism and control subjects, whereas, in cases with mosaicism, endostatin levels showed no statistical difference compared to control subjects. Congenital heart disease was present in 58.8%. No significant difference in endostatin levels between cases with congenital heart and cases without. Reviewing the literature showed that DS patients are resistant to solid tumours and rarely have haemangiomas. This study concluded that the increased levels of endostatin is a gene dosage effect (three copies of the protein and it could be used as a preventive protein for high risk population up to the level seen in DS without side effects. The present work is important in the field of angiogenesis, not only from research area, but also from product development safety.

  13. Screening of Highly-expressed-HMGB1-Gene Human Lung Cancer Cell Lines

    Yi LIU

    2009-09-01

    Full Text Available Background and objective Lung cancer is a type of malignant tumor which threats human health and life. Its morbidity might increase dramatically in a long period. Lung cancer is the leading cause of cancer-related death all over the world. HMGB1 (high mobility group box B 1 is a non-histone chromosome binding protein in the cells. It takes part in many biological processes including genes transcription and DNA repair. HMGB1 overexpression can result in cell apoptosis, differentiation, migration and proliferation. The main purpose of this study was to detect the HMGB1 expression of 4 lung cancer cell lines in order to select the most suitable cell line to do the work next step. Methods Four lung cancer cell lines were cultured by normal method, Western blot and real-time quantitative PCR were used to verify the levels of expression of HMGB1. The cell line which HMGB1 over-expressed was selected. Results HMGB1 expressed in all 4 lung cancer cell lines, the cell line L9981 was the most highly expressed cell line (P < 0.001. Conclusion All 4 lung cancer cell lines expree HMGB1 gene. As the HMGB1 overexpression cell line, L9981 is an ideal material for follow-up research.

  14. A novel gene, lstC, of Listeria monocytogenes is implicated in high salt tolerance.

    Burall, Laurel S; Simpson, Alexandra C; Chou, Luoth; Laksanalamai, Pongpan; Datta, Atin R

    2015-06-01

    Listeria monocytogenes, causative agent of human listeriosis, has been isolated from a wide variety of foods including deli meats, soft cheeses, cantaloupes, sprouts and canned mushrooms. Standard control measures for restricting microbial growth such as refrigeration and high salt are often inadequate as L. monocytogenes grows quite well in these environments. In an effort to better understand the genetic and physiological basis by which L. monocytogenes circumvents these controls, a transposon library of L. monocytogenes was screened for changes in their ability to grow in 7% NaCl and/ or at 5 °C. This work identified a transposon insertion upstream of an operon, here named lstABC, that led to a reduction in growth in 7% NaCl. In-frame deletion studies identified lstC which codes for a GNAT-acetyltransferase being responsible for the phenotype. Transcriptomic and RT-PCR analyses identified nine genes that were upregulated in the presence of high salt in the ΔlstC mutant. Further analysis of lstC and the genes affected by ΔlstC is needed to understand LstC's role in salt tolerance. PMID:25790994

  15. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  16. A Biomimic Reconstituted High Density Lipoprotein Nanosystem for Enhanced VEGF Gene Therapy of Myocardial Ischemia

    Xiaotian Sun

    2015-01-01

    Full Text Available A biomimic reconstituted high density lipoprotein (rHDL based system, rHDL/Stearic-PEI/VEGF complexes, was fabricated as an advanced nanovector for delivering VEGF plasmid. Here, Stearic-PEI was utilized to effectively condense VEGF plasmid and to incorporate the plasmid into rHDL. The rHDL/Stearic-PEI/VEGF complexes with diameter under 100 nm and neutral surface charge demonstrated enhanced stability under the presence of bovine serum albumin. Moreover, in vitro cytotoxicity and transfection assays on H9C2 cells further revealed their superiority, as they displayed lower cytotoxicity with much higher transfection efficiency when compared to PEI 10K/VEGF and Lipos/Stearic-PEI/VEGF complexes. In addition, in vivo investigation on ischemia/reperfusion rat model implied that rHDL/Stearic-PEI/VEGF complexes possessed high transgene capacity and strong therapeutic activity. These findings indicated that rHDL/Stearic-PEI/VEGF complexes could be an ideal gene delivery system for enhanced VEGF gene therapy of myocardial ischemia, which might be a new promising strategy for effective myocardial ischemia treatment.

  17. Lognormality and oscillations in the coverage of high-throughput transcriptomic data towards gene ends

    High-throughput transcriptomics experiments have reached the stage where the count of the number of reads alignable to a given position can be treated as an almost-continuous signal. This allows us to ask questions of biophysical/biotechnical nature, but which may still have biological implications. Here we show that when sequencing RNA fragments from one end, as is the case on most platforms, an oscillation in the read count is observed at the other end. We further show that these oscillations can be well described by Kolmogorov’s 1941 broken stick model. We investigate how the model can be used to improve predictions of gene ends (3′ transcript ends), but conclude that with present data the improvement is only marginal. The results highlight subtle effects in high-throughput transcriptomics experiments which do not have a biological origin, but which may still be used to obtain biological information. (paper)

  18. Bifunctional chimeric SuperCD suicide gene -YCD: YUPRT fusion is highly effective in a rat hepatoma model

    Florian Graepler; Ulrike A Lauer; Reinhard Vonthein; Michael Gregor; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer; Marie-Luise Lemken; Wolfgang A Wybranietz; Ulrike Schmidt; Irina Smirnow; Christine D Groβ; Martin Spiegel; Andrea Schenk; Hansj(o)rg Graf

    2005-01-01

    AIM: To investigate the effects of catalytically superior gene-directed enzyme prodrug therapy systems on a rat hepatoma model.METHODS: To increase hepatoma cell chemosensitivity for the prodrug 5-fluorocytosine (5-FC), we generated a chimeric bifunctional SuperCD suicide gene, a fusion of the yeast cytosine deaminase (YCD) and the yeast uracil phosphoribosyltransferase (YUPRT) gene.RESULTS: In vitro stably transduced Morris rat hepatoma cells (MH) expressing the bifunctional SuperCD suicide gene (MH SuperCD) showed a clearly marked enhancement in cell killing when incubated with 5-FC as compared with MH ceils stably expressing YCD solely (MH YCD) or the cytosine deaminase gene of bacterial origin(MH BCD), respectively. In vivo, MH SuperCD tumors implanted both subcutaneously as well as orthotopically into the livers of syngeneic ACI rats demonstrated significant tumor regressions (P<0.01) under both high dose as well as low dose systemic 5-FC application,whereas MH tumors without transgene expression (MH naive) showed rapid progression. For the first time, an order of in vivo suicide gene effectiveness (SuperCD>>YCD > > BCD > > > negative control) was defi ned as a result of a directin vivo comparison of all three suicide genes.CONCLUSION: Bifunctional SuperCD suicide gene expression is highly effective in a rat hepatoma model,thereby significantly improving both the therapeutic index and the efficacy of hepatocellular carcinoma killing by fluorocytosine.

  19. Identification of colorectal cancer-restricted microRNAs and their target genes based on high-throughput sequencing data

    Chang J

    2016-03-01

    Full Text Available Jing Chang, Liya Huang, Qing Cao, Fang Liu Department of Gerontology, Xinhua Hospital Affiliated to Jiaotong University School of Medicine, Shanghai, People’s Republic of China Abstract: To identify potential key microRNAs (miRNAs and their target genes for colorectal cancer (CRC. High-throughput sequencing data of miRNA expression and gene expression (ID: GSE46622 were downloaded from Gene Expression Omnibus, including matched colon tumor, normal colon epithelium, and liver metastasis tissues from eight CRC patients. Paired t-test and NOISeq separately were utilized to identify differentially expressed miRNAs (DE-miRNAs and genes. Then, target genes with differential expression and opposite expression trends were identified for DE-miRNAs. Combined with tumor suppressor gene, tumor-associated gene, and TRANSFAC databases, CRC-restricted miRNAs were screened out based on miRNA-target pairs. Compared with normal tissues, there were 56 up- and 37 downregulated miRNAs in metastasis tissues, as well as eight up- and 30 downregulated miRNAs in tumor tissues. miRNA-1 was downregulated in tumor and metastasis tissues, while its target oncogenes TWIST1 and GATA4 were upregulated. Besides, miRNA-let-7f-1-3p was downregulated in tumor tissues, which also targeted TWIST1. In addition, miRNA-133b and miRNA-4458 were downregulated in tumor tissues, while their common target gene DUSP9 was upregulated. Conversely, miRNA-450b-3p was upregulated in metastasis tissues, while its target tumor suppressor gene CEACAM7 showed downregulation. The identified CRC-restricted miRNAs might be implicated in cancer progression via their target genes, suggesting their potential usage in CRC treatment. Keywords: colorectal cancer, differentially expressed microRNAs, differentially expressed genes, oncogenes, tumor suppressor genes

  20. A high-throughput transient gene expression system for switchgrass (Panicum virgatum L. seedlings

    Agarwal Sujata

    2010-05-01

    Full Text Available Abstract Background Grasses are relatively recalcitrant to genetic transformation in comparison to certain dicotyledons, yet they constitute some of the most important biofuel crops. Genetic transformation of switchgrass (Panicum virgatum L. has previously been reported after cocultivation of explants with Agrobacterium and biolistics of embryogenic calli. Experiments to increase transient gene expression in planta may lead to stable transformation methods with increased efficiency. Results A high-throughput Agrobacterium-mediated transient gene expression system has been developed for in planta inoculation of germinating switchgrass seedlings. Four different Agrobacterium strains were compared for their ability to infect switchgrass seedlings, and strain AGL1 was found to be the most infective. Wounding pretreatments such as sonication, mixing by vortex with carborundum, separation by centrifugation, vacuum infiltration, and high temperature shock significantly increased transient expression of a reporter gene (GUSPlus, a variation of the β-glucuronidase (GUS gene. The addition of L-cysteine and dithiothreitol in the presence of acetosyringone significantly increased GUS expression compared with control treatments, whereas the addition of 0.1% surfactants such as Silwet L77 or Li700 decreased GUS expression. 4-Methylumbelliferyl beta-D-galactopyranoside (MUG assays showed a peak of β-glucuronidase (GUS enzyme activity 3 days after cocultivation with Agrobacterium harboring pCambia1305.2, whereas MUG assays showed a peak of enzyme activity 5 days after cocultivation with Agrobacterium harboring pCambia1305.1. Conclusion Agrobacterium strains C58, GV3101 and EHA105 are less able to deliver transfer DNA to switchgrass seedlings (cultivar Alamo compared with strain AGL1. Transient expression was increased by double or triple wounding treatments such as mixing by vortex with carborundum, sonication, separation by centrifugation, and heat shock

  1. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    Zhao Xiao

    2010-10-01

    Full Text Available Abstract Background There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology. Results H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity. Conclusions The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified.

  2. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP Which Is Overexpressed in Highly Proliferating Tissues.

    Lukasz Michal Szafron

    Full Text Available CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.

  3. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects. PMID:26463842

  4. Down-regulation of EPHX2 gene transcription by Sp1 under high-glucose conditions.

    Oguro, Ami; Oida, Shoko; Imaoka, Susumu

    2015-09-15

    sEH (soluble epoxide hydrolase), which is encoded by the EPHX2 gene, regulates the actions of bioactive lipids, EETs (epoxyeicosatrienoic acids). Previously, we found that high-glucose-induced oxidative stress suppressed sEH levels in a hepatocarcinoma cell line (Hep3B) and sEH was decreased in streptozotocin-induced diabetic mice in vivo. In the present study, we investigated the regulatory mechanisms underlying EPHX2 transcriptional suppression under high-glucose conditions. The decrease in sEH was prevented by an Sp1 (specificity protein 1) inhibitor, mithramycin A, and overexpression or knockdown of Sp1 revealed that Sp1 suppressively regulated sEH expression, in contrast with the general role of Sp1 on transcriptional activation. In addition, we found that AP2α (activating protein 2α) promoted EPHX2 transcription. The nuclear transport of Sp1, but not that of AP2α, was increased under high glucose concomitantly with the decrease in sEH. Within the EPHX2 promoter -56/+32, five Sp1-binding sites were identified, and the mutation of each of these sites showed that the first one (SP1_1) was important in both suppression by Sp1 and activation by AP2α. Furthermore, overexpression of Sp1 diminished the binding of AP2α by DNA-affinity precipitation assay and ChIP, suggesting competition between Sp1 and AP2α on the EPHX2 promoter. These findings provide novel insights into the role of Sp1 in transcriptional suppression, which may be applicable to the transcriptional regulation of other genes. PMID:26341485

  5. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    Mohammad H Dezfulian

    Full Text Available The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.

  6. Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes

    White Bradley N

    2010-07-01

    Full Text Available Abstract Background Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon, that is more closely related to red wolves (C. rufus and coyotes (C. latrans than grey wolves (C. lupus. Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution. Results We found high concordance across analyses between the mtDNA regions studied. Both had a high percentage of variable sites (CR = 14.6%; ATP = 9.7% and both phylogenies clustered eastern wolf haplotypes monophyletically within a North American evolved lineage apart from coyotes. Divergence estimates suggest the putative red wolf sequence is more closely related to coyotes (DxyCR = 0.01982 ± 0.00494 SD; DxyATP = 0.00332 ± 0.00097 SD than the eastern wolf sequences (DxyCR = 0.03047 ± 0.00664 SD; DxyATP = 0.00931 ± 0.00205 SD. Neutrality tests on both genes were indicative of the population expansion of coyotes across eastern North America, and dN/dS ratios suggest a possible role for purifying selection in the evolution of North American lineages. dN/dS ratios were higher in European evolved lineages from northern climates compared to North American evolved lineages from temperate regions, but these differences were not statistically significant. Conclusions These results demonstrate high concordance between coding

  7. A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes

    Ke Tao

    2012-03-01

    Full Text Available Abstract Background To facilitate the screening of large quantities of new antimicrobial peptides (AMPs, we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity. Results Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia. Conclusions The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a

  8. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    Wright, J.; Teraoka, S.; Concannon, P. [Univ. of Washington School of Medicine, Seattle, WA (United States)] [and others

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  9. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  10. Prevalence of a characteristic gene profile in high-level rhythmic gymnasts.

    Tringali, Cristina; Brivio, Ilaria; Stucchi, Beatrice; Silvestri, Ilaria; Scurati, Raffaele; Michielon, Giovanni; Alberti, Giampietro; Venerando, Bruno

    2014-01-01

    High-level physical performance in rhythmic gymnastics is influenced by numerous skills and anthropometric factors. In order to understand if genetic predisposition could play a role to define the elite rhythmic gymnast phenotype, we analysed the frequency of common polymorphisms linked to genes correlated with body mass (ADRB2 and FTO), explosive strength (ACTN3 and ACE), and joint mobility (COL5A1), in 42 gymnasts involved in National and International events, and in 42 control girls. Our results demonstrated that high-level rhythmic gymnasts constituted a genetically selected population showing higher frequency of: (a) ADRB2 and FTO alleles linked to low body mass index and low fat mass; (b) COL5A1 CT genotype linked to high joint mobility and to the occurrence of genu recurvatum, but also to a higher incidence of injuries. ACTN3 and ACE polymorphisms did not appear to be connected with the phenotype of high-level rhythmic gymnast. Based on these data, it can be assumed that these polymorphisms could positively affect the phenotype and performance of gymnasts. PMID:24702222

  11. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  12. Molecular deregulation induced by silencing of the high mobility group protein A2 gene in retinoblastoma cells

    Venkatesan, Nalini; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi; Deepa, Murali; Khetan, Vikas; Reddy, M. Ashwin

    2012-01-01

    Aim To explore the molecular mechanisms deregulated by high mobility group protein A2 (HMGA2) gene silencing in retinoblastoma (RB) cells. Methods Synthetic anti-HMGA2 short interfering RNA (siRNA) was used to silence the HMGA2 gene in cultured Y79 RB cells that were subjected to whole genome microarray analysis. The expression of differentially regulated key genes was confirmed with quantitative reverse-transcriptase polymerase chain reaction (qRT–PCR) in post-silenced RB cell lines (Y79 and...

  13. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery

    Christopher J. Hayes

    2015-06-01

    Full Text Available PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits.

  14. Gene expression identifies heterogeneity of metastatic propensity in high-grade soft tissue sarcomas

    Skubitz, Keith M; Francis, Princy; Skubitz, Amy P N;

    2012-01-01

    Metastatic propensity of soft tissue sarcoma (STS) is heterogeneous and may be determined by gene expression patterns that do not correlate well with morphology. The authors have reported gene expression patterns that distinguish 2 broad classes of clear cell renal carcinoma (ccRCC-gene set), and...

  15. Highly luminescent and cytocompatible cationic Ag2S NIR-emitting quantum dots for optical imaging and gene transfection

    Duman, Fatma Demir; Hocaoğlu, Ibrahim; Kiraz, Alper; Acar, Havva Yagci; Ozturk, Deniz Gulfem; Gozuacik, Devrim

    2015-01-01

    The development of non-toxic theranostic nanoparticles capable of delivering a therapeutic cargo and providing a means for diagnosis is one of the most challenging tasks in nano-biotechnology. Gene therapy is a very important mode of therapy and polyethyleneimine (PEI) is one of the most successful vehicles for gene transfection, yet poses significant toxicity. Optical imaging utilizing quantum dots is one of the newer but fast growing diagnostic modalities, which requires non-toxic, highly l...

  16. Implications of using whole genome sequencing to test unselected populations for high risk breast cancer genes: a modelling study

    Warren-Gash, Charlotte; Kroese, Mark; Burton, Hilary; Pharoah, Paul

    2016-01-01

    Background The decision to test for high risk breast cancer gene mutations is traditionally based on risk scores derived from age, family and personal cancer history. Next generation sequencing technologies such as whole genome sequencing (WGS) make wider population testing more feasible. In the UK’s 100,000 Genomes Project, mutations in 16 genes including BRCA1 and BRCA2 are to be actively sought regardless of clinical presentation. The implications of deploying this approach at scale for pa...

  17. DAG Expression: High-Throughput Gene Expression Analysis of Real-Time PCR Data Using Standard Curves for Relative Quantification

    Ballester, María; Cordón, Rubén; Folch, Josep M.

    2013-01-01

    Background Real-time quantitative PCR (qPCR) is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. Results The recently developed commercial microarrays allow for the drawing of standard curves of multipl...

  18. Effects of dietary high fructose corn syrup on regulation of energy intake and leptin gene expression in rats

    Guadalupe López-Rodríguez; Silke Kotasek Osuna; Marcos Galván García; Teodoro Suárez Dieguez

    2015-01-01

    OBJECTIVE: To evaluate in Wistar rats the effect of chronic use of high fructose corn syrup on serum lipids, body weight, energy intake regulation, and expression of associated genes. METHODS: For 11 weeks, male rats were fed a standard diet with either water (control) or 15% high fructose corn syrup solution, or fed a high-fat diet. The rats' food intake and body weight were measured weekly. Expression of leptin and fatty acid synthase genes was quantified in their brain and adipose tissue ...

  19. Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides

    Triticum dicoccoides sel. G-25, a selection of wild emmer with a protein content of 20.5% and a kernel weight of 31.5 mg, was used as the donor of protein genes. Since this selection is highly resistant to stripe rust, the object of the crossing programme was to transfer this resistance, together with the high protein potential, to durum and bread wheat cultivars susceptible to the disease. In the tetraploid lines obtained from the T. dicoccoides/T. durum cross, the protein values ranged from 17 to 22%. These lines had resistance to stripe rust from the wild emmer and to stem rust from the durum. After two further crosses between these tetraploid lines and T. aestivum cultivars, several lines were selected which combined good yield, high protein level and resistance to rust diseases. These lines attained protein levels of 14 to 19% in the whole grain and 14 to 17% in the flour, combined with yields of 4.5 to 6.0 t/ha. They had also inherited resistance to stem rust, and in some instances also to leaf rust, from the cultivated wheat parental lines. (author)

  20. DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

    María Ballester

    Full Text Available BACKGROUND: Real-time quantitative PCR (qPCR is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. RESULTS: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using the same n-fold diluted samples. Data Analysis Gene (DAG Expression software has been developed to perform high-throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our analysis was tested and compared with other available methods. CONCLUSIONS: DAG Expression is a freely available software that permits the automated analysis and visualization of high-throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://www.dagexpression.com/dage.zip.

  1. Manifestation in F2 of pleiotropic gene in the cross between mother variety and its high protein mutant pt. 1

    High protein rice mutant (M12 plant generation in 1976) was obtained from the progeny of X-rayed Hokwang variety. Besides high protein, the mutant accompanied two other mutated characters of reduced culm length and earlier heading date. Crossing between the mutant and its mother variety was made (1) to examine the gene(s) controlling high protein, (2) to verify the pleiotropic (or linkage) relation among the three changed characters and (3) to test the possibility of introducing the high protein gene(s) into mother variety. The assumption that a single pleiotropic recessive gene might be responsible for the three mutated characters was evidenced in F2 by the segregation of mother and mutant types in the ratio of 3:1. Besides these parental types there were numbers of segregant groups in F2. Among them were types which were mother-like phenotypically but had as high protein content as the mutant. These segregants were placed under further experiment for the confirmation of the character manifestation or fixation in later generations. (author)

  2. Isolation of high salinity stress tolerant genes from Pisum sativum by random overexpression in Escherichia coli and their functional validation.

    Joshi, Amita; Dang, Hung Quang; Vaid, Neha; Tuteja, Narendra

    2009-05-01

    Salinity stress is one of the major factors which reduce crop plants growth and productivity resulting in significant economic losses worldwide. Therefore, it would be fruitful to isolate and functionally identify new salinity stress-induced genes for understanding the mechanism and developing salinity stress tolerant plants. Based on functional gene screening assay, we have isolated few salinity tolerant genes out of one million Escherichia coli (SOLR) transformants containing pea cDNAs. Sequence analysis of three of these genes revealed homology to Ribosomal-L30E (RPL30E), Chlorophyll-a/b-binding protein (Chla/bBP) and FIDDLEHEAD (FDH). The salinity tolerance of these genes in bacteria was further confirmed by using another strain of E. coli (DH5alpha) transformants. The homology based computational modeling of these proteins suggested the high degree of conservation with the conserved domains of their homologous partners. The reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression of these cDNAs (except the FDH) was upregulated in pea plants in response to NaCl stress. We observed that there was no significant effect of Li(+) ion on the expression level of these genes, while an increase in response to K(+) ion was observed. Overall, this study provides an evidence for a novel function of these genes in high salinity stress tolerance. The PsFDH showed constitutive expression in planta suggesting that it can be used as constitutively expressed marker gene for salinity stress tolerance in plants. This study brings new direction in identifying novel function of unidentified genes in abiotic stress tolerance without previous knowledge of the genome sequence. PMID:19816097

  3. Identification of colorectal cancer-restricted microRNAs and their target genes based on high-throughput sequencing data.

    Chang, Jing; Huang, Liya; Cao, Qing; Liu, Fang

    2016-01-01

    To identify potential key microRNAs (miRNAs) and their target genes for colorectal cancer (CRC). High-throughput sequencing data of miRNA expression and gene expression (ID: GSE46622) were downloaded from Gene Expression Omnibus, including matched colon tumor, normal colon epithelium, and liver metastasis tissues from eight CRC patients. Paired t-test and NOISeq separately were utilized to identify differentially expressed miRNAs (DE-miRNAs) and genes. Then, target genes with differential expression and opposite expression trends were identified for DE-miRNAs. Combined with tumor suppressor gene, tumor-associated gene, and TRANSFAC databases, CRC-restricted miRNAs were screened out based on miRNA-target pairs. Compared with normal tissues, there were 56 up- and 37 downregulated miRNAs in metastasis tissues, as well as eight up- and 30 downregulated miRNAs in tumor tissues. miRNA-1 was downregulated in tumor and metastasis tissues, while its target oncogenes TWIST1 and GATA4 were upregulated. Besides, miRNA-let-7f-1-3p was downregulated in tumor tissues, which also targeted TWIST1. In addition, miRNA-133b and miRNA-4458 were downregulated in tumor tissues, while their common target gene DUSP9 was upregulated. Conversely, miRNA-450-b-3p was upregulated in metastasis tissues, while its target tumor suppressor gene CEACAM7 showed downregulation. The identified CRC-restricted miRNAs might be implicated in cancer progression via their target genes, suggesting their potential usage in CRC treatment. PMID:27069368

  4. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  5. High-definition CpG methylation of novel genes in gastric carcinogenesis identified by next-generation sequencing.

    Sepulveda, Jorge L; Gutierrez-Pajares, Jorge L; Luna, Aesis; Yao, Yuan; Tobias, John W; Thomas, Steven; Woo, Yanghee; Giorgi, Federico; Komissarova, Elena V; Califano, Andrea; Wang, Timothy C; Sepulveda, Antonia R

    2016-02-01

    Gastric cancers are the most frequent gastric malignancy and usually arise in the sequence of Helicobacter pylori-associated chronic gastritis. CpG methylation is a central mechanism of epigenetic gene regulation affecting cancer-related genes, and occurs early in gastric carcinogenesis. DNA samples from non-metaplastic gastric mucosa with variable levels of gastritis (non-metaplastic mucosa), intestinal metaplasia, or gastric cancer were screened with methylation arrays for CpG methylation of cancer-related genes and 30 gene targets were further characterized by high-definition bisulfite next-generation sequencing. In addition, data from The Cancer Genome Atlas were analyzed for correlation of methylation with gene expression. Overall, 13 genes had significantly increased CpG methylation in gastric cancer vs non-metaplastic mucosa (BRINP1, CDH11, CHFR, EPHA5, EPHA7, FGF2, FLI1, GALR1, HS3ST2, PDGFRA, SEZ6L, SGCE, and SNRPN). Further, most of these genes had corresponding reduced expression levels in gastric cancer compared with intestinal metaplasia, including novel hypermethylated genes in gastric cancer (FLI1, GALR1, SGCE, and SNRPN), suggesting that they may regulate neoplastic transformation from non-malignant intestinal metaplasia to cancer. Our data suggest a tumor-suppressor role for FLI1 in gastric cancer, consistent with recently reported data in breast cancer. For the genes with strongest methylation/expression correlation, namely FLI1, the expression was lowest in microsatellite-unstable tumors compared with other gastric cancer molecular subtypes. Importantly, reduced expression of hypermethylated BRINP1 and SGCE was significantly associated with favorable survival in gastric cancer. In summary, we report novel methylation gene targets that may have functional roles in discrete stages of gastric carcinogenesis and may serve as biomarkers for diagnosis and prognosis of gastric cancer. PMID:26769141

  6. High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example

    Prasad Swati

    2008-07-01

    Full Text Available Abstract Background While the genomic annotations of diverse lineages of the Mycobacterium tuberculosis complex are available, divergences between gene prediction methods are still a challenge for unbiased protein dataset generation. M. tuberculosis gene annotation is an example, where the most used datasets from two independent institutions (Sanger Institute and Institute of Genomic Research-TIGR differ up to 12% in the number of annotated open reading frames, and 46% of the genes contained in both annotations have different start codons. Such differences emphasize the importance of the identification of the sequence of protein products to validate each gene annotation including its sequence coding area. Results With this objective, we submitted a culture filtrate sample from M. tuberculosis to a high-accuracy LTQ-Orbitrap mass spectrometer analysis and applied refined N-terminal prediction to perform comparison of two gene annotations. From a total of 449 proteins identified from the MS data, we validated 35 tryptic peptides that were specific to one of the two datasets, representing 24 different proteins. From those, 5 proteins were only annotated in the Sanger database. In the remaining proteins, the observed differences were due to differences in annotation of transcriptional start sites. Conclusion Our results indicate that, even in a less complex sample likely to represent only 10% of the bacterial proteome, we were still able to detect major differences between different gene annotation approaches. This gives hope that high-throughput proteomics techniques can be used to improve and validate gene annotations, and in particular for verification of high-throughput, automatic gene annotations.

  7. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates.

    Ikebe, Tadayoshi; Ato, Manabu; Matsumura, Takayuki; Hasegawa, Hideki; Sata, Tetsutaro; Kobayashi, Kazuo; Watanabe, Haruo

    2010-04-01

    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors. PMID:20368967

  8. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons.

    Straccia, Marco; Garcia-Diaz Barriga, Gerardo; Sanders, Phil; Bombau, Georgina; Carrere, Jordi; Mairal, Pedro Belio; Vinh, Ngoc-Nga; Yung, Sun; Kelly, Claire M; Svendsen, Clive N; Kemp, Paul J; Arjomand, Jamshid; Schoenfeld, Ryan C; Alberch, Jordi; Allen, Nicholas D; Rosser, Anne E; Canals, Josep M

    2015-01-01

    A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening. PMID:26417608

  9. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    Straccia, Marco; Garcia-Diaz Barriga, Gerardo; Sanders, Phil; Bombau, Georgina; Carrere, Jordi; Mairal, Pedro Belio; Vinh, Ngoc-Nga; Yung, Sun; Kelly, Claire M; Svendsen, Clive N; Kemp, Paul J; Arjomand, Jamshid; Schoenfeld, Ryan C; Alberch, Jordi; Allen, Nicholas D; Rosser, Anne E; Canals, Josep M

    2015-01-01

    A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening. PMID:26417608

  10. Expression of HIF-1α and Its Target Genes in the Nanorana parkeri Heart:Implications for High Altitude Adaptation

    Qiong ZHANG; Xingzhi HAN; Yinzi YE; Robert H S KRAUS; Liqing FAN; Le YANG; Yi TAO

    2016-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) and its target genes vascular endothelial growth factor (VEGF) and transferrins (TF) play an important role in native endothermic animals’ adaptation to the high altitude environments. For ectothermic animals – especially frogs – it remains undetermined whether HIF-1α and its target genes (VEGF and TF) play an important role in high altitude adaptation, too. In this study, we compared the gene sequences and expression of HIF-1α and its target genes (VEGF and TF) between three Nanorana parkeri populations from different altitudes (3008 m a.s.l., 3440 m a.s.l. and 4312 m a.s.l.). We observed that the cDNA sequences of HIF-1A exhibited high sequence similarity (99.38%) among the three altitudinally separated populations; but with increasing altitude, the expression of HIF-1A and its target genes (VEGF and TF) increased significantly. These results indicate that HIF-1αplays an important role in N. parkeri adaptation to the high altitude, similar to its role in endothermic animals.

  11. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss. PMID:27493246

  12. Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes.

    Desmond-Le Quéméner, Elie; Rimboud, Mickaël; Bridier, Arnaud; Madigou, Céline; Erable, Benjamin; Bergel, Alain; Bouchez, Théodore

    2016-08-01

    Biocathodes polarized at high potential are promising for enhancing Microbial Fuel Cell performances but the microbes and genes involved remain poorly documented. Here, two sets of five oxygen-reducing biocathodes were formed at two potentials (-0.4V and +0.1V vs. saturated calomel electrode) and analyzed combining electrochemical and metagenomic approaches. Slower start-up but higher current densities were observed at high potential and a distinctive peak increasing over time was recorded on cyclic voltamogramms, suggesting the growth of oxygen reducing microbes. 16S pyrotag sequencing showed the enrichment of two operational taxonomic units (OTUs) affiliated to Ectothiorodospiraceae on high potential electrodes with the best performances. Shotgun metagenome sequencing and a newly developed method for the identification of Taxon Specific Gene Annotations (TSGA) revealed Ectothiorhodospiraceae specific genes possibly involved in electron transfer and in autotrophic growth. These results give interesting insights into the genetic features underlying the selection of efficient oxygen reducing microbes on biocathodes. PMID:27126080

  13. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  14. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  15. THE HIGH ACTIVITY OF VECTIBIX IN PATIENTS WITH METASTATIC COLORECTAL CANCER WITH THE RAS WILD-TYPE GENE

    N. N. Semenov

    2015-02-01

    Full Text Available High-efficiency inhibitors of EGFR (panitumumab and cetuximab in combination with chemotherapy in patients with advanced colorectal cancer is the result of the targeting special group of the patients based on studies of genes. Previously it was shown that the presence of mutation in exon 2 of KRAS gene (40 % of patients determines the effectivity of this group of drugs. However, the search for additional indicators was continued. The result is that the presence of mutations in exons 3 and 4 of KRAS gene and in exons 2, 3 and 4 of NRAS gene also predict EGFR inhibitors efficacy. These mutations are defined in 10 % of patients. Analysis showed that the efficiency of panitumumab and cetuximab in combination with chemotherapy significantly increased in patients with wild-type KRAS and NRAS.

  16. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.

    Gangwar, Manali; Sood, Hemant; Chauhan, Rajinder Singh

    2016-04-01

    Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering. PMID:26878857

  17. HIGH FREQUENCY GENETIC TRANSFORMATION OF CICHORIUM INTYBUS L. USING nptII GENE AS A SELECTIVE MARKER.

    Matvieieva, N; Shakhovsky, A; Kvasko, O; Kuchuk, N

    2015-01-01

    Cichorium intybus L. is an important vegetable crop used as salad (leaf form) and for the production of coffee substitutes (root form). At the same time these plants can also be used in biotechnologies for synthesis of pharmaceutical proteins. Here we report the possibility of high frequency Agrobacterium rhizogenes- or A. tumefaciens-mediated transformation of C. intybus L. for construction of transgenic "hairy" roots and plants. The used plasmids contained target human interferonifn-α2b gene, Mycobacterium tuberculosis ESAT6:Ag85B antigene esxA::fbpB(ΔTMD) fused gene and human telomerase reverse transcriptase h Tert gene. Using of nptII gene as a selective one was preferable to the bar gene for chicory. In this case the frequency of transgenic plants or "hairy" roots formation was significantly higher. Cultivation of explants on the medium with Basta in concentration 1-2 mg/l have led to plants death or to significant reduction of number of shoots formed. Frequency of "hairy" roots formation varied from 5.9 to 42.3% after A. rhizogenes-mediated transformation. Frequency of regeneration of transgenic plants varied from 10 to 86% after A. tumefaciens-mediated transformation. Both A. rhizogenes- and A. tumefaciens-mediated transformation frequency depended on the type of explants, roots or cotyledons, and vector used. Usage of A. tumefaciens carrying pCB064 plasmid (target esxA:fbpB(ΔTMD) fused gene and nptII selective gene) resulted in the most effective regeneration of transgenic plants with regeneration frequency up to 86%. In the case of chicory A. rhizogenes-mediated transformation the highest regeneration frequency up to 42.3% was demonstrated using p CB161 vector with ifn-α2b target gene and nptII selective gene. PMID:26419064

  18. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations

    Pereira Francisco B

    2011-12-01

    Full Text Available Abstract Background The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as required for maximal fermentation performance under industrial conditions. Results Chemogenomics data were used to identify eight genes whose expression confers simultaneous resistance to high concentrations of glucose, acetic acid and ethanol, chemical stresses relevant for VHG fermentations; and eleven genes conferring simultaneous resistance to stresses relevant during lignocellulosic fermentations. These eleven genes were identified based on two different sets: one with five genes granting simultaneous resistance to ethanol, acetic acid and furfural, and the other with six genes providing simultaneous resistance to ethanol, acetic acid and vanillin. The expression of Bud31 and Hpr1 was found to lead to the increase of both ethanol yield and fermentation rate, while Pho85, Vrp1 and Ygl024w expression is required for maximal ethanol production in VHG fermentations. Five genes, Erg2, Prs3, Rav1, Rpb4 and Vma8, were found to contribute to the maintenance of cell viability in wheat straw hydrolysate and/or the maximal fermentation rate of this substrate. Conclusions The identified genes stand as preferential targets for genetic engineering manipulation in order to generate more robust industrial strains, able to cope with the most significant fermentation stresses and, thus, to increase ethanol production rate and final ethanol titers.

  19. Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy

    Breast cancer patients show a wide variation in normal tissue reactions after radiotherapy. The individual sensitivity to x-rays limits the efficiency of the therapy. Prediction of individual sensitivity to radiotherapy could help to select the radiation protocol and to improve treatment results. The aim of this study was to assess the relationship between gene expression profiles of ex vivo un-irradiated and irradiated lymphocytes and the development of toxicity due to high-dose hyperfractionated radiotherapy in patients with locally advanced breast cancer. Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database http://www.ncbi.nlm.nih.gov/geo/ (GEO accession GSE15341). We obtained a small group of 81 genes significantly regulated by radiotherapy, lumped in 50 relevant pathways. Using ANOVA and t-test statistical tools we found 20 and 26 constitutive genes (0 Gy) that segregate patients with and without acute and late toxicity, respectively. Non-supervised hierarchical clustering was used for the visualization of results. Six and 9 pathways were significantly regulated respectively. Concerning to irradiated lymphocytes (2 Gy), we founded 29 genes that separate patients with acute toxicity and without it. Those genes were gathered in 4 significant pathways. We could not identify a set of genes that segregates patients with and without late toxicity. In conclusion, we have found an association between the constitutive gene expression profile of peripheral blood lymphocytes and the development of acute and late toxicity in consecutive, unselected patients. These observations suggest the possibility of predicting normal tissue response to irradiation in high-dose non-conventional radiation therapy regimens. Prospective studies with higher number of patients are needed to validate these preliminary results

  20. High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae

    Ping Sheng; Yushan Li; Sean D. G. Marshall; Hongyu Zhang

    2015-01-01

    In this study, we used a culture-independent method based on library construction and sequencing to analyze the genetic diversity of the cellulase and hemicellulase genes of the bacterial community resident in the hindgut of Holotrichia parallela larvae. The results indicate that there is a large, diverse set of bacterial genes encoding lignocellulose hydrolysis enzymes in the hindgut of H. parallela. The total of 101 distinct gene fragments (similarity <95%) of glycosyl hydrolase families...

  1. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle

    Shengli Yu; Junjie Luo; Zhiyuan Song; Fangrong Ding; Yunping Dai; Ning Li

    2011-01-01

    Dear Editor,Gene targeting is in widespread use as a gold standard for determining the function of genes in mice and human embryonic stem cells [1].However,the poor efficiency of this technology has hindered its application to domestic animals,for which embryonic stem cells are not available.Although gene-targeted large domestic animals have been produced successfully by combination of homologous recombination-based targeting strategy and cloning [2-4],the efficiency is very low and,more importantly,the disruption of the targeted gene is usually mono-allelic.It thus takes a long time to obtain a null mutant.

  2. Effects of dietary high fructose corn syrup on regulation of energy intake and leptin gene expression in rats

    Guadalupe López-Rodríguez

    2015-12-01

    Full Text Available OBJECTIVE: To evaluate in Wistar rats the effect of chronic use of high fructose corn syrup on serum lipids, body weight, energy intake regulation, and expression of associated genes. METHODS: For 11 weeks, male rats were fed a standard diet with either water (control or 15% high fructose corn syrup solution, or fed a high-fat diet. The rats' food intake and body weight were measured weekly. Expression of leptin and fatty acid synthase genes was quantified in their brain and adipose tissue upon sacrifice at age 119 days using real-time polymerase chain reaction. RESULTS: The intake of 15% high fructose corn syrup did not affect the rats' weight, only the rats on the high-fat diet gained significant weight. The rats in both diets had lower levels of leptin expression and high levels of fatty acid synthase in the brain, which were associated with high serum triglycerides. CONCLUSION: Fifteen percent high fructose corn syrup intake and the high-fat diet reduced leptin gene expression in the brain of Wistar rats, with differential effects on weight gain.

  3. Gene transfection in high serum levels: case studies with new cholesterol based cationic gemini lipids.

    Santosh K Misra

    Full Text Available BACKGROUND: Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH and oligo-oxyethylene -(CH2CH2On- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. METHODOLOGY/PRINCIPAL FINDINGS: To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM, dynamic light scattering (DLS, zeta potential measurements and X-ray diffraction (XRD. We studied the lipid/DNA complex (lipoplex formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50% greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. CONCLUSIONS/SIGNIFICANCE: -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.

  4. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua)

    Nielsen, Einar Eg; Hemmer-Hansen, Jakob; Poulsen, Nina Aagaard; Loeschcke, Volker; Moen, Thomas; Johansen, Johansen; Mittelholzer, Christian; Taranger, Geir-Lasse; Ogden, Rob; Carvalho, Gary R.

    2009-01-01

    Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associate......Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene...... DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation...... despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of evolutionary forces in general, and for the conservation of marine biodiversity under rapidly increasing evolutionary pressure from climate and...

  5. Isolation and characterization of "GmScream" promoters that regulate highly expressing soybean (Glycine max Merr.) genes.

    Zhang, Ning; McHale, Leah K; Finer, John J

    2015-12-01

    To increase our understanding of the regulatory components that control gene expression, it is important to identify, isolate and characterize new promoters. In this study, a group of highly expressed soybean (Glycine max Merr.) genes, which we have named "GmScream", were first identified from RNA-Seq data. The promoter regions were then identified, cloned and fused with the coding region of the green fluorescent protein (gfp) gene, for introduction and analysis in different tissues using 3 tools for validation. Approximately half of the GmScream promoters identified showed levels of GFP expression comparable to or higher than the Cauliflower Mosaic Virus 35S (35S) promoter. Using transient expression in lima bean cotyledonary tissues, the strongest GmScream promoters gave over 6-fold higher expression than the 35S promoter while several other GmScream promoters showed 2- to 3-fold higher expression. The two highest expressing promoters, GmScreamM4 and GmScreamM8, regulated two different elongation factor 1A genes in soybean. In stably transformed soybean tissues, GFP driven by the GmScreamM4 or GmScreamM8 promoter exhibited constitutive high expression in most tissues with preferentially higher expression in proliferative embryogenic tissues, procambium, vascular tissues, root tips and young embryos. Using deletion analysis of the promoter, two proximal regions of the GmScreamM8 promoter were identified as contributing significantly to high levels of gene expression. PMID:26706070

  6. Mutations in the WTX - gene are found in some high-grade microsatellite instable (MSI-H) colorectal cancers

    Genetically, colorectal cancers (CRCs) can be subdivided into tumors with chromosomal instability (CIN) or microsatellite instability (MSI). In both types of CRCs genes that are involved in the degradation of β-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli) is affected in most cases, high grade MSI (MSI-H) CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (β-CATENIN) gene itself. Recently in Wilms tumors, WTX (Wilms tumor gene on the X-chromosome) was discovered as another gene involved in the destruction of β-CATENIN. As the WTX-gene harbors a short T6-microsatellite in its N-terminal coding region, we hypothesized that frameshift-mutations might occur in MSI-H CRCs in the WTX gene, thus additionally contributing to the stabilization of β-CATENIN in human CRCs. DNA was extracted from 632 formalin-fixed, paraffin-embedded metastatic CRCs (UICCIV) and analyzed for MSI-H by investigating the stability of the highly sensitive microsatellite markers BAT25 and BAT26 applying fluorescence capillary electrophoresis (FCE). Then, in the MSI-H cases, well described mutational hot spot regions from the APC-, AXIN2- and CTNNBI genes were analyzed for genomic alterations by didesoxy-sequencing while the WTX T6-microsatellite was analyzed by fragment analysis. Additionally, the PCR products of T5-repeats were subcloned and mutations were validated using didesoxy-sequencing. Furthermore, the KRAS and the BRAF proto-oncogenes were analyzed for the most common activating mutations applying pyro-sequencing. mRNA expression of WTX from MSI-H and MSS cases and a panel of colorectal cancer cell lines was investigated using reverse transcription (RT-) PCR and FCE. In our cohort of 632 metastatic CRCs (UICCIV) we identified 41 MSI-H cases (6.5%). Two of the 41 MSI-H cases (4.8%) displayed a frameshift mutation in the T6-repeat resulting in a T5 sequence. Only one case, a male patient, expressed the mutated WTX

  7. Mutations in the WTX - gene are found in some high-grade microsatellite instable (MSI-H colorectal cancers

    Scheel Silvio K

    2010-08-01

    Full Text Available Abstract Background Genetically, colorectal cancers (CRCs can be subdivided into tumors with chromosomal instability (CIN or microsatellite instability (MSI. In both types of CRCs genes that are involved in the degradation of β-CATENIN are frequently mutated. Whereas in CIN CRCs APC (Adenomatous Polyposis Coli is affected in most cases, high grade MSI (MSI-H CRCs frequently display mutations in various genes, like the APC-, AXIN2- or CTNNBI (β-CATENIN gene itself. Recently in Wilms tumors, WTX (Wilms tumor gene on the X-chromosome was discovered as another gene involved in the destruction of β-CATENIN. As the WTX-gene harbors a short T6-microsatellite in its N-terminal coding region, we hypothesized that frameshift-mutations might occur in MSI-H CRCs in the WTX gene, thus additionally contributing to the stabilization of β-CATENIN in human CRCs. Methods DNA was extracted from 632 formalin-fixed, paraffin-embedded metastatic CRCs (UICCIV and analyzed for MSI-H by investigating the stability of the highly sensitive microsatellite markers BAT25 and BAT26 applying fluorescence capillary electrophoresis (FCE. Then, in the MSI-H cases, well described mutational hot spot regions from the APC-, AXIN2- and CTNNBI genes were analyzed for genomic alterations by didesoxy-sequencing while the WTX T6-microsatellite was analyzed by fragment analysis. Additionally, the PCR products of T5-repeats were subcloned and mutations were validated using didesoxy-sequencing. Furthermore, the KRAS and the BRAF proto-oncogenes were analyzed for the most common activating mutations applying pyro-sequencing. mRNA expression of WTX from MSI-H and MSS cases and a panel of colorectal cancer cell lines was investigated using reverse transcription (RT- PCR and FCE. Results In our cohort of 632 metastatic CRCs (UICCIV we identified 41 MSI-H cases (6.5%. Two of the 41 MSI-H cases (4.8% displayed a frameshift mutation in the T6-repeat resulting in a T5 sequence. Only one case, a

  8. High Expression of the RECK Gene in Breast Cancer Cells is Related to Low Invasive Capacity

    Tao Sun; Daqing Jiang; Jinming Li; Dongyun Han; Zhiguo Song

    2006-01-01

    OBJECTIVE To investigate the expression of the RECK gene in human breast (cancer) cell lines, and to determine the relationship between RECK gene expression and the invasive capacity of the breast cancer cell lines.METHODS The invasive capacity of breast (cancer) cell lines including HBL-100, MCF-7 and MDA-MB-435S were determined by the Transwell method. The protein expression levels of RECK, MMP-2 and MMP- 9 genes in these three cell lines were measured by immunocytochemical methods. The expressions of the RECK gene and protein level were measured by RT-PCR and Western blots in the cell lines respectively.RESULTS The order of the invasive capacity of the breast (cancer) cell lines was MDA-MB-435S, being the highest, and HBL-100, being the lowest. The invasive capacity difference between any two groups among the three groups was significant (P<0.01). The protein expression level of the RECK gene in the HBL-100 cell line was highest, and no expression was detected in MDA-MB-435S cells. Moreover, the expression of the RECK gene was negatively correlated with the expression of the MMP-2 and MMP-9 genes. The mRNA level of the RECK gene in HBL-100 cells was the highest, but no expression was found in the MDA-MB-435S cells (P<0.001).CONCLUSION There was a significant negative correlation between the expression level of the RECK gene and invasive capacity in vitro, and the RECK gene expression showed an inverse proportion to that of the MMP-2, MMP-9 genes.

  9. Rasch-based high-dimensionality data reduction and class prediction with applications to microarray gene expression data

    Kastrin, Andrej

    2010-01-01

    Class prediction is an important application of microarray gene expression data analysis. The high-dimensionality of microarray data, where number of genes (variables) is very large compared to the number of samples (obser- vations), makes the application of many prediction techniques (e.g., logistic regression, discriminant analysis) difficult. An efficient way to solve this prob- lem is by using dimension reduction statistical techniques. Increasingly used in psychology-related applications, Rasch model (RM) provides an appealing framework for handling high-dimensional microarray data. In this paper, we study the potential of RM-based modeling in dimensionality reduction with binarized microarray gene expression data and investigate its prediction ac- curacy in the context of class prediction using linear discriminant analysis. Two different publicly available microarray data sets are used to illustrate a general framework of the approach. Performance of the proposed method is assessed by re-randomization s...

  10. Identification of rare high-risk copy number variants affecting the dopamine transporter gene in mental disorders

    Hoeffding, Louise K; Duong, Linh T T; Ingason, Andrés;

    2015-01-01

    rare high-risk variants of psychiatric disorders. METHODS: We performed a systematic screening for CNVs affecting SLC6A3 in 761 healthy controls, 672 schizophrenia patients, and 194 patients with bipolar disorder in addition to 253 family members from six large pedigrees affected by mental disorders...... affective disorders. Recently, copy number variants (CNVs) in SLC6A3 have been identified in healthy subjects but so far, the implication of CNVs affecting this gene in psychiatric diseases has not been addressed. AIMS: In the present study, we aimed to investigate whether CNVs affecting SLC6A3 represent...... sizes and two affected several genes in addition to SLC6A3. CONCLUSION: Our findings suggest that rare high-risk CNVs affecting the gene encoding the dopamine transporter contribute to the pathogenesis of schizophrenia and affective disorders....

  11. A locus on chromosome 20 encompassing genes that are highly expressed in the epididymis

    (A)ke Lundwall

    2007-01-01

    During liquefaction of the ejaculate, the semen coagulum proteins semenogelin Ⅰ (SEMG1) and semenogelin Ⅱ (SEMG2) are degraded to low molecular mass fragments by kallikrein-related peptidase 3 (KLK3), also known as prostate-specific antigen. Semenogelin molecules initiate their own destruction by chelating Zn2+ that normally would completely inhibit the proteolytic activity of KLK3. In a similar way, semenogelins might regulate the activity of kallikrein-related peptidases in the epididymis, something that might be of importance for the maturation of spermatozoa or generation of anti-bacterial peptides. Studies on the evolution of semen coagulum proteins have revealed that most of them carry an exon that displays a rapid and unusual evolution. As a consequence, homologous proteins in rodents and primates show almost no conservation in primary structure. Further studies on their evolution suggest that the progenitor of the semen coagulum proteins probably was a protease inhibitor that might have displayed antimicrobial activity. The semenogelin locus on chromosome 20 contains at least 17 homologous genes encoding probable protease inhibitors with homology to semen coagulum proteins. All of these are highly expressed in the epididymis where they, similar to the semenogelins, could affect the maturation of spermatozoa or display antibacterial properties.

  12. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut.

    Hinnebusch, B Joseph; Rosso, Marie-Laure; Schwan, Tom G; Carniel, Elisabeth

    2002-10-01

    The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar. PMID:12406213

  13. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses.

    Muramatsu, Masayuki; Hihara, Yukako

    2012-01-01

    Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments. PMID:22006212

  14. Molecular Analysis of Hemagglutinin Gene of a Goose Origin Highly Pathogenic Avian Influenza Virus

    Chen Hualan; Yu Kangzhen; Bu Zhigao

    2000-01-01

    The hemagglutinin (HA) of avian influenza virus (AIV) plays a key role in determining the pathogenicity, cell receptor-binding property and host range of the virus. A goose origin AIV A/Goose/Guangdong/1/96(H5N1) (GD/96) was confirmed as a highly pathogenic AIV (HPAIV) by the tests of intravenous pathogenic index (IVPI) and the assay of plaque formation. The sequence results of the HA gene cDNA of the isolate reveal that there is an insertion of 6 basic amino acids ( R-R-R-K-K-R-) in the cleavage site between the HA1 and HA2, which is the characterization of the H5 subtype HPAIV. When compared with the lethal A/Hongkong/156/97 (H5N1) (HK/97), there is a homology of 98% at the nucleotide level and 98. 2% at the amino acid level. Furthermore, no difference of nucleotides related to all of the 6 potential glycosylation sites, the 2 receptor-binding sites and the basic amino acid insert within the HA existed between GD/96 and HK/97. These results imply that the GD/96 and HK/97 have a closely related common ancestor and share the same biological properties decided by the HA.

  15. High-fat diets promote insulin resistance through cytokine gene expression in growing female rats.

    Flanagan, Anne M; Brown, Jackie L; Santiago, Consuelo A; Aad, Pauline Y; Spicer, Leon J; Spicer, Maria T

    2008-08-01

    To determine if tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). IL-6 gene expression is influenced by amount and source of dietary fat, 30 weanling female rats were randomly assigned to a moderate-fat soybean oil (MFS; 22% of total energy fed as fat), high-fat (HF) soybean oil (HFS; 39% of total energy fed as fat), or HF tallow (HFT; 39% of total energy fed as fat) diet treatments. Oral glucose tolerance tests (OGTT) were conducted serially over 10 weeks of treatment. HFT and HFS rats gained more weight and had greater body fat than the MFS rats fed similar amounts of energy. Both groups of HF-fed rats had greater (PHFT compared to HFS and MFS rats. There were positive correlations (PHFT group, after which, on Week 9, insulin secretion was diminished in response to the OGTT, suggesting impaired pancreatic insulin secretion. HFS rats exhibited insulin resistance on Week 9 OGTT. In summary, an HFT diet fed to growing female rats caused insulin resistance associated with increased hepatic TNF-alpha mRNA leading to pancreatic insufficiency. Early-onset insulin resistance related to the inflammatory process in obesity is influenced by the amount and type of fat in the diet. PMID:17904344

  16. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map.

    Wicks, S R; Yeh, R T; Gish, W R; Waterston, R H; Plasterk, R H

    2001-06-01

    Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene. PMID:11381264

  17. Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer.

    Villegas-Ruiz, Vanessa; Moreno, Jose; Jacome-Lopez, Karina; Zentella-Dehesa, Alejandro; Juarez-Mendez, Sergio

    2016-01-01

    There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile. PMID:27268623

  18. Changes in Expression of Genes Regulating Airway Inflammation Following a High-Fat Mixed Meal in Asthmatics.

    Li, Qian; Baines, Katherine J; Gibson, Peter G; Wood, Lisa G

    2016-01-01

    Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma subjects. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthmatics. Subjects with asthma (n = 11) and healthy controls (n = 8) consumed a high-fat/energy meal, containing total energy (TE) of 3846 kJ and 48 g of total fat (20.5 g saturated). Sputum was induced at 0 and 4 h, and gene expression was examined by microarray and quantitative real-time PCR (qPCR). Following the high fat dietary challenge, 168 entities were significantly differentially expressed greater than >1.5 fold in subjects with asthma, whereas, in healthy controls, only 14 entities were differentially expressed. Of the 168 genes that were changed in asthma, several biological processes were overrepresented, with 25 genes involved in "immune system processes". qPCR confirmed that S100P, S100A16, MAL and MUC1 were significantly increased in the asthma group post-meal. We also observed a strong correlation and a moderate correlation between the change in NLRP12 and S100A16 gene expression at 4 h compared to baseline, and the change in total and saturated non-esterified plasma fatty acid levels at 2 h compared to baseline. In summary, our data identifies differences in inflammatory gene expression that may contribute to increased airway neutrophilia following a high fat meal in subjects with asthma and may provide useful therapeutic targets for immunomodulation. This may be particularly relevant to obese asthmatics, who are habitually consuming diets with a high fat content. PMID:26751474

  19. Changes in Expression of Genes Regulating Airway Inflammation Following a High-Fat Mixed Meal in Asthmatics

    Qian Li

    2016-01-01

    Full Text Available Consumption of a high fat meal can increase neutrophilic airway inflammation in asthma subjects. This study investigates the molecular mechanisms driving airway neutrophilia following a high fat meal in asthmatics. Subjects with asthma (n = 11 and healthy controls (n = 8 consumed a high-fat/energy meal, containing total energy (TE of 3846 kJ and 48 g of total fat (20.5 g saturated. Sputum was induced at 0 and 4 h, and gene expression was examined by microarray and quantitative real-time PCR (qPCR. Following the high fat dietary challenge, 168 entities were significantly differentially expressed greater than >1.5 fold in subjects with asthma, whereas, in healthy controls, only 14 entities were differentially expressed. Of the 168 genes that were changed in asthma, several biological processes were overrepresented, with 25 genes involved in “immune system processes”. qPCR confirmed that S100P, S100A16, MAL and MUC1 were significantly increased in the asthma group post-meal. We also observed a strong correlation and a moderate correlation between the change in NLRP12 and S100A16 gene expression at 4 h compared to baseline, and the change in total and saturated non-esterified plasma fatty acid levels at 2 h compared to baseline. In summary, our data identifies differences in inflammatory gene expression that may contribute to increased airway neutrophilia following a high fat meal in subjects with asthma and may provide useful therapeutic targets for immunomodulation. This may be particularly relevant to obese asthmatics, who are habitually consuming diets with a high fat content.

  20. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas.

    Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan

    2016-04-01

    As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters. PMID:26746430

  1. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt;

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  2. Effect of metformin on proliferation and related genes expression of human osteoblast MG63 under high glucose

    曹小俊

    2013-01-01

    Objective To study the effect of metformin on proliferation and related genes expression of human osteoblast.Methods The proliferation of MG63 cells under high glucose intervened with metformin was measured by CCK-8 assay. The activity of intracellular alkaline phosphatase

  3. High preservation of CpG cytosine methylation patterns at imprinted gene loci in liver and brain of aged mice.

    Silvia Gravina

    Full Text Available A gradual loss of the correct patterning of 5-methyl cytosine marks in gene promoter regions has been implicated in aging and age-related diseases, most notably cancer. While a number of studies have examined DNA methylation in aging, there is no consensus on the magnitude of the effects, particularly at imprinted loci. Imprinted genes are likely candidate to undergo age-related changes because of their demonstrated plasticity in utero, for example, in response to environmental cues. Here we quantitatively analyzed a total of 100 individual CpG sites in promoter regions of 11 imprinted and non-imprinted genes in liver and cerebral cortex of young and old mice using mass spectrometry. The results indicate a remarkably high preservation of methylation marks during the aging process in both organs. To test if increased genotoxic stress associated with premature aging would destabilize DNA methylation we analyzed two DNA repair defective mouse models showing a host of premature aging symptoms in liver and brain. However, also in these animals, at the end of their life span, we found a similarly high preservation of DNA methylation marks. We conclude that patterns of DNA methylation in gene promoters of imprinted genes are surprisingly stable over time in normal, postmitotic tissues and that the multiple documented changes with age are likely to involve exceptions to this pattern, possibly associated with specific cellular responses to age-related changes other than genotoxic stress.

  4. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  5. PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing.

    Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the

  6. PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing.

    Florian Barbi

    Full Text Available Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5 and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2, active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may

  7. Differential gene expression induced by high LET charged particles in normal human fibroblasts

    We investigated differential gene expression of normal human skin HSF42 fibroblasts induced by heavy ions using cDNA microarray technology. Irradiation with 3 types of heavy ions was performed at Heavy Ion Medical Accelerator in Chiba (HIMAC) facility. Out of 7458 genes, we found 61 significant genes (40 up-regulated and 21 down-regulated) that distinguished between human skin fibroblast HSF42 cells non-irradiated and irradiated with 1 Gy of neon particles and 62 significant genes (48 up-regulated and 14 down-regulated) that distinguished between HSF42 cells non-irradiated and irradiated with 1 Gy of silicon particles. Furthermore, we are going to analyze profiles of HSF42 cells exposed to carbon particles and compare those profiles between different types of beams. (author)

  8. Acquisition of useful and high ability genes for acidophilic bacteria; Kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Senda, T.; Inoue, C.; Shinbori, Y. [Tohoku University, Sendai (Japan)

    1997-02-01

    This effort aims at the development of high-performance bacteria usable in bio-leaching in metal smelting by acquiring genes capable of realizing such. A method is used of choosing some isolated strains exhibiting high-performance traits and acquiring target genes therefrom by use of genetic engineering. Approximately 200 kinds in the aggregate of acidophilic bacteria are currently available for the study, including isolated iron-oxidizing and sulfur-oxidizing bacteria, standard species acquired for the study, and strains previously isolated by the laboratory. The bacteria are tested with respect to their Fe{sup 2+}-oxidizing rates, sulfur-oxidizing capabilities, and strength to withstand inhibiting substances (Ag{sup +}, Cl{sup -}, Mo{sup 6+}, etc.), which results in the nomination of 8 strains. The study planned to follow includes processes involving the extraction of chromosome DNAs from the 8 strains and their refinement, gene cloning by the Southern hybridization method, determination of their base sequences, determination of the difference between the strains in point of gene expression, and investigations of the relations that the results of these processes bear toward the said high-performance traits. Also under way is a study about the infuence-exerting factors revealed during the evaluation of the abilities of acidphlic bacteria. 2 refs., 2 tabs.

  9. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells

    Luo, Zhongjun; Macris, Margaret A.; Faruqi, A. Fawad; Glazer, Peter M.

    2000-01-01

    To test the ability of triple helix-forming oligonucleotides (TFOs) to promote recombination within chromosomal sites in mammalian cells, a mouse LTK− cell line was established carrying two mutant copies of the herpes simplex virus thymidine kinase (TK) gene as direct repeats in a single chromosomal locus. Recombination between these repeats can produce a functional TK gene and occurs at a spontaneous frequency of 4 × 10−6 under standard culture conditions. When cells were microinjected with ...

  10. Most Highly Expressed Protein-Coding Genes Have a Single Dominant Isoform

    Ezkurdia, Iakes; Rodriguez, Jose Manuel; Pau, Enrique Carrillo-de Santa; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L

    2015-01-01

    Although eukaryotic cells express a wide range of alternatively spliced transcripts, it is not clear whether genes tend to express a range of transcripts simultaneously across cells, or produce dominant isoforms in a manner that is either tissue-specific or regardless of tissue. To date, large-scale investigations into the pattern of transcript expression across distinct tissues have produced contradictory results. Here, we attempt to determine whether genes express a dominant splice variant ...