Ferrario, M; Palumbo, L
2014-01-01
The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.
Chauvin, N
2013-01-01
First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.
International Nuclear Information System (INIS)
Cooler Storage Ring (CSR), and upgrading program planned at the Heavy Ion Research Facility in Lanzhou (HIRFL), will supply beams with higher quality and intensity. Space charge effects should be considered due to this magnitude of intensity in CSR. The concept and some phenomena of space charge effects are discussed. Space charge intensity limit and space charge tune shift of normal CSR operation are given. It is of significance for the construction and operation of the future facility
Effective Topological Charge Cancelation Mechanism
Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo
2016-06-01
Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.
Numerical Simulation for Space Charge Effect Calculation
International Nuclear Information System (INIS)
Numerical simulation of space charge effect, analysis of three dimensional uniformly charged zero emittance ellipsoidal bunch as well as comparative analysis of numerical and analytical results are presented. (author)
Effects of induced charge in the kinestatic charge detector.
Wagenaar, D J; Terwilliger, R A
1995-05-01
The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect. PMID:7643803
Effect of Zn Adsorption on Charge of Variable Charge Soils
Institute of Scientific and Technical Information of China (English)
SUNHAN－YUAN
1993-01-01
The variation in appa rent carge of two typical variable charge soils resulting from Zn adsorption were studied by KCl saturation and NH4NO3 replacement methods.Results showed that zinc were adsorbed specifically to those sites with negative charge.As in different pH ranges,the percantages of specific and electrostatic adsorptions of zine and the mechanisms of specific adsorption were different,the effects of Zn adsorption on apparent charge were varied and could be characterized as:when 1 mmol Zn2+ was adsorbed,a change about 1 mmol in the apparent charge was observed in the low pH range(1),1.4 to 1.5mmol in the moderate pH range(II) and 0.55 to 0.6mmol in the high pH range (III).These experimental data,in terms of soil charge,proved once more author's conclusion in the preceding paper(Sun,1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH,three pH ranges with different adsorption mechanisms were delineated;that is,in Range I,specific adsorption was the predominant mechanism,in Ranges II and III,specific and electrostatic adsorptions co-existed,but their specific adsorption mechanisms were not identical.
Space charge effects: tune shifts and resonances
International Nuclear Information System (INIS)
The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs
Mass Effect on Axial Charge Dynamics
Guo, Er-dong
2016-01-01
We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.
Surface charge measurement by the Pockels effect
Sam, Y L
2001-01-01
have been observed by applying both impulse and AC voltages to a needle electrode in direct contact with the BSO. AC surface discharge behaviour of polymeric materials bonded to the BSO has also been investigated. The effect of the surrounding environment has been experimentally examined by placing the cell inside a vacuum chamber. Surface charge measurements have been made at various atmospheric pressures. The effect of an electro-negative gas (Sulphur Hexafluoride) on the surface charge distribution has also been investigated. This thesis is concerned with the design and development of a surface charge measurement system using Pockels effect. The measurement of surface charge is important in determining the electrical performance of high voltage insulation materials. The method proposed allows on-line measurement of charge and can generate two-dimensional images that represent the charge behaviour on the surface of the material under test. The measurement system is optical and uses a Pockels crystal as the ...
Fluctuation charge effects in ionization fronts
Energy Technology Data Exchange (ETDEWEB)
Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)
2008-05-21
In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.
On the effective charge of hydrophobic polyelectrolytes
Chepelianskii, Alexei; Mohammad-Rafiee, Farshid; Raphael, Elie
2008-01-01
In this paper we analyze the behavior of hydrophobic polyelectrolytes. It has been proposed that this system adopts a pearl-necklace structure reminiscent of the Rayleigh instability of a charged droplet. Using a Poisson-Boltzmann approach, we calculate the counterion distribution around a given pearl assuming the latter to be penetrable for the counterions. This allows us to calculate the effective electric charge of the pearl as a function of the chemical charge. Our predictions are in very...
Charge multiplication effect in thin diamond films
Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.
2016-07-01
Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.
Charge Screening Effect in Metallic Carbon Nanotubes
Sasaki, K
2001-01-01
Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.
Effect of interfacial charge on micellar structure
Chevalier, Y; Belloni, L; Hayter, J.B.; Zemb, T
1985-01-01
We have studied the structure and effective charge of sodium octylphosphate micelles in aqueous solution as a function of concentration and pH. Such variations may be used to alter the structural charge Z0 of the polar headgroup from 0.8 to 2 without altering the surfactant molecule. Small angle neutron scattering coupled with the Hayter-Penfold analytical technique was used to measure the aggregation number N and the effective charge Z. The micelles are small and spherical for Z0 = 2, increa...
Effective Charge Carrier Utilization in Photocatalytic Conversions.
Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong
2016-05-17
Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the
Screening effect on nanostructure of charged gel
DEFF Research Database (Denmark)
Sugiyama, M; Annaka, M; Hino, M;
2004-01-01
Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions. The...... dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...
The effect of single-particle charge limits on charge distributions in dusty plasmas
International Nuclear Information System (INIS)
An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)
Ion specific effects on charged interfaces
Medda, Luca
2013-01-01
The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...
Infrared finite effective charge of QCD
Aguilar, A C; Papavassiliou, J
2008-01-01
We show that the gauge invariant treatment of the Schwinger-Dyson equations of QCD leads to an infrared finite gluon propagator, signaling the dynamical generation of an effective gluon mass, and a non-enhanced ghost propagator, in qualitative agreement with recent lattice data. The truncation scheme employed is based on the synergy between the pinch technique and the background field method. One of its most powerful features is that the transversality of the gluon self-energy is manifestly preserved, exactly as dictated by the BRST symmetry of the theory. We then explain, for the first time in the literature, how to construct non-perturbatively a renormalization group invariant quantity out of the conventional gluon propagator. This newly constructed quantity serves as the natural starting point for defining a non-perturbative effective charge for QCD, which constitutes, in all respects, the generalization in a non-Abelian context of the universal QED effective charge. This strong effective charge displays a...
Effective dynamics of a classical point charges
Polonyi, Janos
2013-01-01
The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham-Lorentz force is recovered and its similarity to anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Energy Technology Data Exchange (ETDEWEB)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)
2015-05-28
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
International Nuclear Information System (INIS)
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui
2015-05-01
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar
Medium effect on charge symmetry breaking
International Nuclear Information System (INIS)
We examine the nuclear medium effect on charge symmetry breaking (CSB) caused by isospin mixing of two neutral vector mesons interacting with nucleons in the nuclear medium. Isospin mixing is assumed to occur through the transition between isoscalar and isovector mesons. We use a quantum hadrodynamic nuclear model in the mean-field approximation for the meson fields involved. We find that (i) charge symmetry is gradually restored in nuclear matter in β equilibrium as the nucleon density increases; (ii) when the system departs from β equilibrium, CSB is much enhanced because the isospin mixing depends strongly on the nucleon isovector density; (iii) this leads to the symmetry energy coefficient of 32MeV, of which more than 50 percent arises from the mesonic mean fields; (iv) the Nolen-Schiffer anomaly regarding the masses of neighboring mirror nuclei can be resolved by considering these aspects of CSB in nuclear medium. copyright 1997 The American Physical Society
Universal Charge Diffusion and the Butterfly Effect
Blake, Mike
2016-01-01
We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by $D_c = C v_B^2/ (2 \\pi T)$ where $v_B$ is the velocity of the butterfly effect. The constant of proportionality, $C$, depends only on the scaling exponents of the infra-red theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-01
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
Effects of charged particles on DNA
International Nuclear Information System (INIS)
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs 1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderate RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations. (author)
Effects of granular charge on flow and mixing
Shinbrot, T.; Herrmann, H. J.
2008-12-01
Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.
Counterion Condensation and Effective Charge of PAMAM Dendrimers
Directory of Open Access Journals (Sweden)
Ulrich Scheler
2011-04-01
Full Text Available PAMAM dendrimers are used as a model system to investigate the effects of counterion condensation and the effective charge for spherical polyelectrolytes. Because of their amino groups, PAMAM dendrimers are weak polyelectrolytes. Lowering the pH results in an increasing protonation of the amino groups which is monitored via the proton chemical shifts of the adjacent CH2 groups. The effective charge is determined from a combination of diffusion and electrophoresis NMR. The fraction of the charges, which are effective for the interaction with an external electric field or other charges, decreases with increasing generation (size of the dendrimers.
Medium effects on charged pion ratio in heavy ion collisions
Ko, Che Ming; Xu, Jun
2010-01-01
We have recently studied in the delta-resonance--nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed.
Medium effects on charged pion ratio in heavy ion collisions
International Nuclear Information System (INIS)
We have recently studied in the delta-resonance–nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed. (author)
Understanding the effect of space charge on instabilities
Energy Technology Data Exchange (ETDEWEB)
Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chao, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Chin, Y. H. [National Lab. for High Energy Physics (KEK), Ibaraki (Japan)
2015-05-03
The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.
Space charge effects in proton linear accelerators
International Nuclear Information System (INIS)
Space charge difficulties are relatively well known because of the inconveniences they cause, but the physical mechanisms by which they operate are obscure; an attempt was made to explain some of these mechanisms. The method chosen involves a numerical simulation of the beam; computer programs describing beam dynamics with space charge are presented; they are used to check results obtained elsewhere. A series of experiments was performed demonstrating that coupling phenomena produce an equalization of r. m. s. velocities in the 3 directions; new quantity (sort of hyper-emittance) is introduced: its growth between the input and output of a given linac is proportional to the beam intensity. (author)
The effect of conformal symmetry on charged wormholes
Kuhfittig, Peter K F
2016-01-01
This paper discusses the effect that conformal symmetry can have on a charged wormhole. The analysis yields a physical interpretation of the conformal factor in terms of the electric charge. The rate of change of the conformal factor determines much of the outcome, which ranges from having no solution to wormholes having either one or two throats.
Charges for plastic bags : Motivational and behavioral effects
Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica
2014-01-01
Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control sup
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-01-01
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three dist...
The effective charge effect in partially stripped ion-helium collisions
International Nuclear Information System (INIS)
The double and single ionization cross section ratios of helium by partially stripped carbon, oxygen and fluorine ions are measured for projectile charge states ranging from +1 to +4 and impact energies from 1.5 MeV to 7.5 MeV. The effective charge effect in partially stripped ion-helium collisions is studied. It is found that the effective charge qeff increases as the impinging energy increases and qeff shows a modest dependence upon the projectile charge state in the present energy range. The projectile charge state, projectile energy, projectile and target electronic state dependences of the effective charge effect may be explained using orbital interpenetrating. (orig.)
Mergers in the GB Electricity Market: effects on Retail Charges
International Nuclear Information System (INIS)
The opening up of the UK residential electricity sector in 1999 prompted several studies of the impact this had on both the level and structuring of retail charges, and on incumbent players' market power. Drawing on observations of regional tariffs for the month of January 2004, this paper supports previous conclusions based on simulated retail charges, looking at the response of real tariffs to distribution and transmission costs, customer density, and the length of low voltage underground circuit. We also investigate whether vertically integrated suppliers have a particular effect on charges ceteris paribus the effect of cost drivers and supplier-related factors. (author)
Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn
Pourhassan, Behnam
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.
Space Charge Effects in Rectilinear Motion Emittance
Chen, C
2000-01-01
This report summarizes the presentations and discussions over a wide range of topics in Working Group I at the Second ICFA Advanced Accelerator Workshop on Physics of High-Brightness Beams held at University of California at Los $9 Angeles (UCLA), November 9-12, 1999. Latest developments towards to a better understanding of high-brightness photoinjectors were reported. The design and commissioning of the Los Alamos National Laboratory (LANL) Low-Energy $9 Demonstration Accelerator (LEDA) Radio-Frequency Quadrupole (RFQ) were reported. The problem of beam halo formation was discussed in both beam transport systems and the SLAC 50 MW 11.4 GHz periodic permanent magnet (PPM) focusing $9 klystron amplifier. A new class of corkscrewing elliptic beam equilibria was reported, and applications of such novel beam equilibria in controlling of charge-density and velocity fluctuations, beam halo formation and emittance $9 growth were discussed. Pattern formation in proton rings was also discussed.
Quantum gravity effects on charged microblack holes thermodynamics
Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.
2016-08-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.
Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics
Abbasvandi, N; Radiman, Shahidan; Abdullah, W A T Wan
2016-01-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum, and maximal momentum as GUP type II on thermodynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.
Effect of radiative cooling on a hot charged dusty grains with charging fluctuation
International Nuclear Information System (INIS)
The effect of the radiative cooling of electrons on the gravitational collapse of hot dust grains with fluctuating electric charge is investigated. Propagation of linear solitary radiation in an unmagnetized collisionless dusty plasma is studied. The standard normal-mode analysis is used to study the stability condition of linear wave
Effect of radiative cooling on collapsing charged grains
Indian Academy of Sciences (India)
B P Pandey; Vinod Krishan; M Roy
2001-01-01
The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with ﬂuctuating electric charge is investigated. We ﬁnd that the radiative cooling as well as the charge ﬂuctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes ﬁnite in the presence of radiative cooling of electrons and is further enhanced due to charge ﬂuctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.
Effect of Wall Charge on Striation in Plasma Display Cells
Institute of Scientific and Technical Information of China (English)
HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi
2007-01-01
Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.
Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn
Behnam Pourhassan; Mir Faizal
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. ...
Effect of thermal fluctuations on a charged dilatonic black Saturn
Behnam Pourhassan; Mir Faizal
2016-01-01
In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. ...
Charging effects in passivated silicon detectors
Bracken, D. S.; Kwiatkowski, K.; Morley, K. B.; Renshaw Foxford, E.; Komisarcik, K.; Rader, A. J.; Viola, V. E.
1995-02-01
Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented.
Charging effects in passivated silicon detectors
Energy Technology Data Exchange (ETDEWEB)
Bracken, D.S. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Kwiatkowski, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Morley, K.B. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Renshaw Foxford, E. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Komisarcik, K. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Rader, A.J. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF; Viola, V.E. [Indiana Univ., Bloomington, IN (United States). Dept. of Chem. and Phys. and IUCF
1995-11-11
Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented. (orig.).
Charging effects in passivated silicon detectors
International Nuclear Information System (INIS)
Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented. (orig.)
Iavarone, Anthony T.; Jurchen, John C.; Williams, Evan R.
2000-01-01
The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing...
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-01-01
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experimen...
Effect of Charge, Size and Temperature on Stability of Charged Colloidal Nano Particles
Institute of Scientific and Technical Information of China (English)
A. Golchoobi; A. Khosravi; H. Modarress; A Ahmadzadeh
2012-01-01
Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model.The well-known Derjaguin-Landau-Verwey-Overbeek theory is applied to account for effective interactions between particles.Effect of temperature,valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated.The results indicate that the suspension is more stable at higher temperatures.On the other hand,for a more stable suspension to exist,lower microion valance is favorable.For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher.However for the best of our results larger colloidal particle are less stable.Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.
Resist charging effect correction function qualification for photomasks production
Sidorkin, Vadim; Finken, Michael; Wandel, Timo; Nakayamada, Noriaki; Cantrell, G. R.
2014-10-01
We quantitatively evaluate Nuflare's latest resist charging effect correction (CEC) model for advanced photomask production using e-beam lithography. Functionality of this CEC model includes the simulation of static and timedependent charging effects together with an improved calibration method. CEC model calibration is performed by polynomial fitting of image placement distortions induced by various beam scattering effects on a special test design with writing density variations. CEC model parameters can be fine tuned for different photomask blank materials facilitating resist charging compensation maps for different product layers. Application of this CEC model into production yields a significant reduction in photomask image placement (IP), as well as improving photomask overlay between critical neighbouring layers. The correlations between IP improvement facilitated by this CEC model and single mask parameters are presented and discussed. The layer design specifics, resist and blank materials, coupled with their required exposure parameters are observed to be the major influences on CEC model performance.
Space Charge Effects in Bunch Shape Monitors
Feschenko, A V
2000-01-01
The operation and parameters of Bunch Shape Monitors using coherent transformation of time structure of an analyzed beam into a spatial one of low energy secondary electrons emitted from a wire target is influenced by the characteristics of a beam under study. The electromagnetic field of a bunch disturbs the trajectories of secondary electrons, thus resulting in a degradation of phase resolution and in errors of phase reading. Another effect is the perturbation of the target potential due to the current in the wire induced by a bunch as well as due to current compensating emission of the secondary electrons. The methods, the models and the results of simulations are presented.
Space Charge Effects in Bunch Shape Monitors
Feschenko, Alexander
The operation and parameters of Bunch Shape Monitors using coherent transformation of time structure of an analyzed beam into a spatial one of low energy secondary electrons emitted from a wire target is influenced by the characteristics of a beam under study. The electromagnetic field of a bunch disturbs the trajectories of secondary electrons, thus resulting in a degradation of phase resolution and in errors of phase reading. Another effect is the perturbation of the target potential due to the current in the wire induced by a bunch as well as due to current compensating emission of the secondary electrons. The methods, the models and the results of simulations are presented.
Charge conjugation and Lense-Thirring Effect: A new Asymmetry
Ahluwalia-Khalilova, D V
2004-01-01
This essay presents a new asymmetry that arises from the interplay of charge conjugation and Lense-Thirring effect. When applied to Majorana neutrinos, the effects predicts nu_e overline{nu}_e oscillations in gravitational environments with rotating sources. Parameters associated with astrophysical environments indicate that the presented effect is presently unobservable for solar neutrinos. But, it will play an important role in supernova explosions, and carries relevance for the observed matter-antimatter asymmetry in the universe.
Competition effects in charged particle induced reactions
International Nuclear Information System (INIS)
Absolute cross sections have been measured for 14 reactions: 54Cr(p,γ)55Mn for 0.83 MeV less than or equal to E/sub p/ less than or equal to 3.61 MeV, 54Cr(pn,)54Mn for 2.23 MeV less than or equal to E/sub p/ less than or equal to 3.61 MeV, 51V(p,γ)52Cr for 0.93 MeV less than or equal to E/sub p/ less than or equal to 4.47 MeV, 51V(p,n)51Cr for 1.58 MeV 68Zn(p,γ)69Ga for 1.67 MeV less than or equal to E/sub p/ less than or equal to 4.97 MeV, 68Zn(p,n)68Ga for 3.77 MeV less than or equal to E/sub p/ less than or equal to 5.03 MeV, 68Zn(p,γ)65Cu for 3.36 MeV less than or equal to E/sub p/ less than or equal to 5.48 MeV, 48Ca(p,γ)49Sc for 0.58 MeV less than or equal to E/sub p/ less than or equal to 2.67 MeV, 48Ca(p,n,)48Sc for 0.96 less than or equal to E/sub p/ less than or equal to 2.67 MeV, 37Cl(α,γ)41K for 2.90 MeV less than or equal to E/sub α/ less than or equal to 5.23 MeV, 62Ni(α,γ)66Zn for 5.07 MeV less than or equal to E/sub α/ less than or equal to 8.64 MeV, 62Ni(α,n)65Zn for 6.95 MeV less than or equal to E/sub α/ less than or equal to 8.76 MeV, 64Ni(α,γ)68Zn for 4.50 MeV less than or equal to E/sub α/ less than or equal to 7.45 MeV, and 64Ni(α,n)67Zn for 5.29 less than or equal to E/sub α/ less than or equal to 7.44 MeV. Substantial drops in cross section were observed above the neutron thresholds for all the radiative capture reactions except 48Ca(p,γ). In the 48Ca(p,γ)and 68Zn(p,α) reactions significant though smaller neutron competition effects were observed. These cross sections were compared with cross sections calculated with global Hauser-Feshbach models. Criteria for isospin indexing, width fluctuation corrections, and black nuclues strength functions were established
Charge transport in disordered organic field-effect transistors
Tanase, C; Blom, PWM; Meijer, EJ; de Leeuw, DM; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS
2002-01-01
The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is dependen
Space charge effects in a bending magnet system
International Nuclear Information System (INIS)
In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented
Electron cloud and space charge effects in the Fermilab Booster
Energy Technology Data Exchange (ETDEWEB)
Ng, K.Y.; /Fermilab
2007-06-01
The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.
Electron cloud and space charge effects in the Fermilab Booster
International Nuclear Information System (INIS)
The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than ∼1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated
The effect of microscopic charged particulates in space weather
Energy Technology Data Exchange (ETDEWEB)
Popel, S I; Kopnin, S I [Institute for Dynamics of Geospheres RAS, Leninsky pr. 38, bld. 1, 119334 Moscow (Russian Federation); Yu, M Y [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Ma, J X [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang Feng, E-mail: s_i_popel@mtu-net.ru, E-mail: popel@idg.chph.ras.ru [College of Science, China Agricultural University, Beijing 100083 (China)
2011-05-04
Space weather is a relatively new and important field of research. It is relevant to diverse topics such as radio communication, space travel, diagnostics of ionospheric and space plasmas, detection of pollutants and re-entry objects, prediction of terrestrial weather and global warming. Recently it has been shown that nano- and micrometre-sized electrically charged particulates from interplanetary space and from the Earth's atmosphere can affect the local properties as well as the diagnostics of the interplanetary, magnetospheric, ionospheric and terrestrial complex plasmas. In this report the sources of the charged dust particulates and the effects of the latter on the near-Earth space weather are examined.
The effect of microscopic charged particulates in space weather
International Nuclear Information System (INIS)
Space weather is a relatively new and important field of research. It is relevant to diverse topics such as radio communication, space travel, diagnostics of ionospheric and space plasmas, detection of pollutants and re-entry objects, prediction of terrestrial weather and global warming. Recently it has been shown that nano- and micrometre-sized electrically charged particulates from interplanetary space and from the Earth's atmosphere can affect the local properties as well as the diagnostics of the interplanetary, magnetospheric, ionospheric and terrestrial complex plasmas. In this report the sources of the charged dust particulates and the effects of the latter on the near-Earth space weather are examined.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-11-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.
Space charge effects and induced signals in resistive plate chambers
Lippmann, Christian; Schnizer, Bernhard
2003-01-01
Using special integral representations of the solution for the static electric field of a point charge in a three layer geometry with different permittivities, we calculate the effect of the space charge on the avalanche in the gas gap of an RPC. A detailed Monte Carlo simulation was developed which allows calculation of the actual charge spectrum. Results of this simulation are presented, using the example of a trigger-RPC with 2 mm gas gap, similar to the ones used by ATLAS (ATLAS TDR 10, CERN-LHCC-97-22), and a timing RPC with 300 mum gas gap (Nucl. Instr. and Meth. A 449 (2000) 295). Finally, we also present analytic solutions for the weighting field of an RPC readout strip, which allow to calculate the directly induced crosstalk and induced signals.
Effective dynamics of an electrically charged string with a current
Kazinski, P. O.
2005-08-01
Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.
Effective Dynamics of an Electrically Charged String with a Current
International Nuclear Information System (INIS)
Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparameterization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are derived. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found
Effective dynamics of an electrically charged string with a current
Kazinski, P O
2005-01-01
Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...
Electromagnetic effects on the orbital motion of a charged spacecraft
Abdel-Aziz, Yehia Ahmed; Khalil, Khalil Ibrahim
2014-05-01
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numerical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.
Electromagnetic effects on the orbital motion of a charged spacecraft
International Nuclear Information System (INIS)
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numerical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft
Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics
Abbasvandi, N.; Soleimani, M. J.; Radiman, Shahidan; Abdullah, W. A. T. Wan
2016-01-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type...
Amplified effect of surface charge on cell adhesion by nanostructures
Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao
2016-06-01
Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c
The Effects of Surface Modification on Spacecraft Charging Parameters
Evans, Amberly; Dennison, J. R.
2010-10-01
Charging of materials by incident radiation is affected by both environmental and physical conditions. Modifying a material's physical surface will change its reflection, transmission and absorption of the incident radiation which are integrally related to the accumulation of charge and energy deposition in the material. An optical analysis of the effect of surface modification on spacecraft charging parameters on prototypical Cu samples is presented. Samples were roughened with abrasive compounds ranging from 0.5 to 10 microns in size. Using a UV/VIS/NIR light source and a diffraction grating spectrometer, measurements were performed on pristine and modified materials. The index of refraction and absorption coefficient were determined using the Fresnel Equations. The resulting absorption coefficient and Tauc plot were used to determine the energy of the band gap. The measured spectra confirmed that surface modification does induce changes in optical reflection, transmission, and absorption. The increased absorption observed results in increased photon energy deposited in the material, leading to increased charge emission through the photoelectric effect.
Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.
Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel
2015-07-01
Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. PMID:26099508
Charge Effects on Mechanical Properties of Elastomeric Proteins
Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar
2012-02-01
Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.
Plasma effect in silicon charge coupled devices (CCDs)
Energy Technology Data Exchange (ETDEWEB)
Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)
2011-02-11
Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.
Plasma effect in silicon charge coupled devices (CCDs)
International Nuclear Information System (INIS)
Plasma effect is observed in CCDs exposed to heavy ionizing α-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region (≥3.5 MeV). The measurements were extended to lower energies using α-particles produced by (n,α) reactions of neutrons in a 10B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of α particles, which opens an interesting possibility for using these detectors in neutron imaging applications.
Charge carrier coherence and Hall effect in organic semiconductors.
Yi, H T; Gartstein, Y N; Podzorov, V
2016-01-01
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-03-01
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.
Generalized polymer effective charge measurement by capillary isotachophoresis
Czech Academy of Sciences Publication Activity Database
Chamieh, J.; Koval, Dušan; Besson, A.; Kašička, Václav; Cottet, H.
2014-01-01
Roč. 1370, Nov 28 (2014), s. 255-262. ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA13-17224S; GA MŠk 7AMB12FR012 Grant ostatní: GA AV ČR(CZ) M200551207 Institutional support: RVO:61388963 Keywords : polymer effective charge * polyelectrolyte * isotachophoresis * counter-ion condensation * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.169, year: 2014
Non-perturbative Green's functions and the QCD effective charge
Aguilar, Arlene C
2009-01-01
Using as ingredients the non-perturbative solutions of various QCD Green's function obtained from Schwinger-Dyson equations (SDEs), we study two versions of the QCD effective charge. The first one obtained from the pinch technique gluon self-energy, and the second from the ghost-gluon vertex. Despite the distinct nature of their buildings blocks, the two effectives charges are almost identical in the entire range of momenta, due to a fundamental identity relating the ghost dressing function with the two form factors of Green's function, which is of central importance in the PT-BFM formalism. In this talk, we outline how to derive this crucial identity from the SDEs of the aforementioned Green's functions. The renormalization procedure that preserves the validity of this identity is discussed in detail. Most importantly, we show that due to the infrared finiteness of the gluon propagator, the QCD charge obtained with either definition freezes in the deep infrared, in agreement with theoretical and phenomenolog...
3D Simulations of Space Charge Effects in Particle Beams
International Nuclear Information System (INIS)
For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 109 protons/cm3) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)
3D Simulations of Space Charge Effects in Particle Beams
Energy Technology Data Exchange (ETDEWEB)
Adelmann, A
2002-10-01
For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)
Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods
International Nuclear Information System (INIS)
In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the
Cost-effective electric vehicle charging infrastructure siting for Delhi
Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne
2016-06-01
Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6–7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ∼10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.
Cataractogenic effects of heavy charged particles in mice
International Nuclear Information System (INIS)
The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls
The effect of polymer charge density and charge distribution on the formation of multilayers
Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V
2003-01-01
Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for
The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.
Proximity effects in cold gases of multiply charged atoms (Review)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) 0 and for the alkali and alkaline-earth elements Eproxi theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for
Proceedings of photo-induced space charge effects in semiconductors
International Nuclear Information System (INIS)
This volume consists of the proceedings of the Symposium on Photo-Induced Space Charge Effects in Semiconductors: Photoconductivity, Spectroscopy and Electro-Optics. The symposium was held at the Spring Meeting of the Materials Research Society in San Francisco from April 29 to May 1. Our motivation for organizing this symposium was fueled by a persistent feeling that several independent research communities were following much of the same physics. However, the lines of communication among the communities were relatively tenuous. These communities include the electrooptic, photodetector, photorefractive and defect spectroscopy communities. In each of these disciplines, one of the primary concerns is the presence of photo-induced space charge. Although there are problems that are specific to each group, there are many effects that they all have in common, with identical underlying physics. Despite the strong similarities, separate approaches and nomenclature have built up in the individual communities. Jargon form one community may be meaningless to another, although the physical effects themselves are easily recognizable
Charge correlation effects on ionization of weak polyelectrolytes
International Nuclear Information System (INIS)
Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.
Charge correlation effects on ionization of weak polyelectrolytes
Energy Technology Data Exchange (ETDEWEB)
Panagiotopoulos, A Z, E-mail: azp@princeton.ed [Department of Chemical Engineering and Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States)
2009-10-21
Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.
Absence of the Electric Aharonov-Bohm Effect due to Induced Charges
Wang, Rui-Feng
2015-09-01
This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.
Free charge localization and effective dielectric permittivity in oxides
Maglione, Mario
2016-06-01
This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.
Effects of polarization-charge shielding in microwave heating
International Nuclear Information System (INIS)
Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread
Ultrafast photoelectron spectroscopy of solutions: space-charge effect
Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.
2015-09-01
The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.
Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors
DEFF Research Database (Denmark)
Kuvvetli, Irfan; Budtz-Jørgensen, Carl
2007-01-01
In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and Cd...
Hall effect in quantum critical charge-cluster glass.
Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan
2016-04-19
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081
Hall effect in quantum critical charge-cluster glass
Wu, Jie; Bollinger, Anthony T.; Sun, Yujie
2016-04-01
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.
The gravitational effect on induced charge density for an obliquely rotating neutron star
International Nuclear Information System (INIS)
The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it
The gravitational effect on induced charge density for an obliquely rotating neutron star
Energy Technology Data Exchange (ETDEWEB)
De Paolis, F. [Delaware Univ., Newark (United States). Bartol Research Inst.; Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Qadir, A. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Tarman, I.H. [King Fahd University of Petroleum and Minerals, Dharan (Saudi Arabia). Dept. of Mathematical Sciences
1999-11-01
The effect om the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it.
International Nuclear Information System (INIS)
We have used charge-induced absorption to quantify the influence of injected charges on electro absorption measurements in single-wall carbon nanotube films. The interpretations of experimental measurements of X processes in nanotubes are simplified by taking into account the change in electron-electron interactions upon charge injection. Electro absorption spectra that are properly corrected for charge-induced effects show remarkable agreement with a simple Stark shift of the exciton transitions with no notable second-derivative contributions. Thus, distinguishing electric field effects from carrier density effects allows for a more rigorous calculation of exciton polarizability from electro absorption measurements, even in heterogeneous films. PACS: 78.67.Ch Nanotubes: optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures.
Working Group 2 summary: Space charge effects in bending systems
International Nuclear Information System (INIS)
At the start of the Workshop, the authors asked the Working Group 2 participants to concentrate on three basic goals: (1) survey the status of how comprehensively the physics concerning space-charge effects in bends is understood and how complete is the available ensemble of analytic and computational tools; (2) guided by data from experiments and operational experience, identify sources of, and cures for, beam degradation; and (3) review space-charge physics in rings and the limitations it introduces. As the Workshop unfolded, the third goal naturally folded into the other two goals, and these goals, they believe, were fulfilled in that the Working Group was able to compile an end product consisting of a set of recommendations for potentially fruitful future work. This summary constitutes an overview of the deliberations of the Working Group, and it is their hope that the summary clarifies the motivation for the recommended work listed at the end. The summary is organized according to the two aforementioned goals, and the prime topics of discussion appear as subsections under these goals
Effects of cytosine methylation on DNA charge transport
Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian
2012-04-01
The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.
The effect of additives on charge decay in electron-beam charged polypropylene films
Energy Technology Data Exchange (ETDEWEB)
Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X [Institute for Communications Technology, Darmstadt University of Technology, 64283 Darmstadt (Germany); Behrendt, N; Altstaedt, V [Polymer Engineering, University of Bayreuth, 95447 Bayreuth (Germany); Von Salis-Soglio, C; Erhard, D P; Schmidt, H-W, E-mail: j.hillenbrand@nt.tu-darmstadt.d [Macromolecular Chemistry I, University of Bayreuth, 95447 Bayreuth (Germany)
2009-03-21
The charge decay in isotactic polypropylene (i-PP) films of 50 {mu}m thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 {mu}m. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 deg. C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.
The effect of additives on charge decay in electron-beam charged polypropylene films
Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X; Behrendt, N; von Salis-Soglio, C; Erhard, D P; Altstädt, V; Schmidt, H-W
2009-03-01
The charge decay in isotactic polypropylene (i-PP) films of 50 µm thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 µm. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 °C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.
Charge Transfer and Support Effects in Heterogeneous Catalysis
Energy Technology Data Exchange (ETDEWEB)
Hervier, Antoine [Univ. of California, Berkeley, CA (United States)
2011-12-21
the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO_{2} films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO_{2}, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO_{2} films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO_{2} as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO_{2}. With non-stoichiometric TiO_{2}, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O_{2} alone, and in
Effects of dispersive wave modes on charged particles transport
Schreiner, Cedric
2015-01-01
The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.
Absence of the Electric Aharonov-Bohm Effect due to Induced Charges
Rui-Feng Wang
2015-01-01
This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced...
Charge Stripper Effects on Beam Optics in 180-degree Bending Section of RISP Linac
Jang, Ji-Ho; Song, Jeong Seog
2016-01-01
The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam qualities by scattering when the heavy ions go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for uranium beam case in order to satisfy the beam power requirement at an IF (Inflight Fragmentation) target. This work focuses on the beam optics affected by the charge stripper in the 180-dgree bending section.
Charge diffusion and the butterfly effect in striped holographic matter
Lucas, Andrew
2016-01-01
Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.
Background charges and quantum effects in quantum dots transport spectroscopy
Pierre M.; Hofheinz M.; Jehl X.; Sanquer M.; Molas G.; Vinet M.; Deleonibus S.
2009-01-01
We extend a simple model of a charge trap coupled to a single-electron box to energy ranges and parameters such that it gives new insights and predictions readily observable in many experimental systems. We show that a single background charge is enough to give lines of differential conductance in the stability diagram of the quantum dot, even within undistorted Coulomb diamonds. It also suppresses the current near degeneracy of the impurity charge, and yields negative differential lines far ...
Effect of Image Forces on Polyelectrolyte Adsorption at a Charged Surface
Messina, Rene
2004-01-01
The adsorption of flexible and highly charged polyelectrolytes onto oppositely charged planar surfaces is investigated by means of Monte Carlo simulations. The effect of image forces stemming from the dielectric discontinuity at the substrate interface is considered. The influence, at fixed polyelectrolyte volume fraction, of chain length and surface-charge density is also considered. A detailed structural study, including monomer and fluid charge distributions, is provided. It is demonstrate...
International Nuclear Information System (INIS)
In the context of Bayesian probability theory, we discuss a model for estimating the plasma ion effective charge Zeff, integrating data from both bremsstrahlung spectroscopy and individual impurity concentrations obtained via charge exchange spectroscopy (CXS). The validity of the model, taking into account statistical as well as systematic uncertainties, is shown via the deviance information criterion. The consistency of the continuum and CXS data regarding Zeff is improved, as measured by the symmetrized Kullback-Leibler divergence and the geodesic distance between the respective Zeff marginal posterior densities.
Effects of charged sand on electromagnetic wave propagation and its scattering field
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.
Quantum effects near a charged black hole singularity
International Nuclear Information System (INIS)
In this paper, the authors present an investigation of the problem of quantum fluctuations near a charged black hole singularity. The authors show that quantum fluctuations do not vanish near the singularity leading to the conclusion that charged black hole singularities are unlikely to occur in nature. This result may be obvious but we derive it here
Evidence of Space-Charge Effects in Thermal Poling
DEFF Research Database (Denmark)
Wu, X.; Arentoft, Jesper; Wong, D.; Fleming, S.
1999-01-01
The in situ thermal poling processes in germanosilicate fibers for positive and negative poling voltages are significantly different. Thermal poling of silica fibers consists of two processes: the faster linear process of charge migration and the subsequent single exponential process of charge io...
Charged spin-1 gluons, parton model and the Archimedes effect
International Nuclear Information System (INIS)
In a gauge theory of (SU(2) x U(1))sub(flavour) x SU(3)sub(colour) with unconfined integer-charged quarks and massive inter-charged gluons both quarks and gluons contribute to electro and neutrino-production. The gluon parton contribution to the lepto-production of colour is considered. (author)
Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries
Energy Technology Data Exchange (ETDEWEB)
J.T. Londergan; D.P. Murdock; A.W. Thomas
2006-04-14
Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.
Two rods confined by positive plates: effective forces and charge distribution profiles
International Nuclear Information System (INIS)
The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained
Saturation effects in charge-changing collisions with multiply-charged C and O ions
International Nuclear Information System (INIS)
The electron loss of multiply-charged dressed ions by heavy neutral atoms can have a significant contribution from collisions with small impact parameters. This can render one of the two competing mechanisms which govern the electron loss, i.e. the screening, highly non-perturbative. The other mechanism (antiscreening) is due to electron-electron interactions and its contribution can be treated perturbatively. The dependence of the total electron loss cross sections on the target atomic number, Z2, presents a strong saturation as the value of Z2 increases. Calculations based on the plane wave Born approximation present such a behavior for the antiscreening but not for the screening, since this saturation is related to a non-perturbative regime. In this work we compare data for the total electron loss cross sections of C3+ and O5+ ions by H, He, Ne, Ar, Kr and Xe targets, with energies ranging from 1.0 to 3.5 MeV, with calculations for the screening contribution based on the free-collision model. This comparison shows that, for highly-charged ions, the electron capture and direct target ionization channels play a major role in the description of experimental electron loss data. (orig.)
Light-induced charging effects in microscopic ion traps
International Nuclear Information System (INIS)
Full text: Microfabricated ion traps are discussed as one of the most promising candidates for a quantum mechanical computer. By bringing the electrodes close to the ions a rich selection of trapping potentials can be created and many traps can, in principle, be operated in parallel. However, the proximity of the electrodes and other surfaces poses strong constraints on the materials used. In particular, near-by glass surfaces that may be used for high-finesse cavities around the ions or for light collection represent a challenge, since the dielectric surfaces may charge up and perturb the trapping potential. By bringing a glass substrate close to a surface ion trap, the charging can be studied in a controlled manner. Two distinct mechanisms of charging have been observed, both being light-induced with different wavelength dependence. The results allow an estimate of the rate of charge production and may be prove useful for the design of new integrated microscopic ion traps. (author)
Institute of Scientific and Technical Information of China (English)
CHEN,Jun-Rong; CAI,Jing; XU,Bu-Yi; LI,Quan; ZHAO,Ke-Qing
2008-01-01
Based on the semi-classical model of the charge transport, theoretical studies on the effect of different periph-eral chains including alkynyl on charge transport properties of triphenylene have been carried out using density functional theory (DFT) at the level of B3LYP/6-31G**. The results indicate that all the title compounds are ad-vantageous to the charge transport. The introduction of amide RCONH to the discotic ring of triphenylene can raise the positive charge transport rate largely, and introduction of ester in peripheral chains is helpful to the positive charge transport and negative charge transport. The positive charge transport properties of monosubstituted triphenylene are better than those of disubstituted and trisubstituted triphenylenes obviously.
Effect of electrical charges and fields on injury and viability of airborne bacteria.
Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus
2002-07-20
In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. PMID:12115440
Atmosphere turbulence effect on the hot particle charge
International Nuclear Information System (INIS)
The charging of hot beta-active aerosol articles of the micron size range in the turbulent current has been studied experimentally . For this purpose hot particles, obtained by the neutron activation of gold placed on the surface of glass microspheres by the cathode spraying method, were introduced into the turbulent current with the Reynolds number of 104 - 105. Results of the determination of particle charges within the current velocity range from 0.5 to 3 m/s confirm the reliability of the previously obtained model of the charging of hot particles in the turbulent current of the near - ground atmospere layer which is described by the function directly proportional to the radius of particles and the half-cube of the wind velocity, and inversely proportional to the square root of the height. The scheme is suggested and specific features are described of experimental installations used in the process of studies
Dynamical image-charge effect in molecular tunnel junctions
DEFF Research Database (Denmark)
Jin, Chengjun; Thygesen, Kristian Sommer
2014-01-01
When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the...... finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single-level model, an analytical treatment shows that the conductance is suppressed by a factor Z(2), where Z is the quasiparticle renormalization factor, compared to the static IC approximation...
Wong, Richard L.; Amster, I. Jonathan
2007-01-01
It is often stated that ions of the same mass-to-charge do not induce space-charge frequency shifts among themselves in an ion cyclotron resonance mass spectrometry measurement. Here, we demonstrate space-charge induced frequency shifts for ions of a single mass-to-charge. The monoisotopic atomic ion, Cs+, was used for this study. The measured frequency is observed to decrease linearly with an increase in the number of ions, as has been reported previously for space-charge effects between ion...
Shocron, Amit N.; Suss, Matthew E.
2016-01-01
Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Thr...
Effect of nuclear motion on the critical nuclear charge for two-electron atoms
King, Andrew W; Rhodes, Luke C; Readman, Charles A; Cox, Hazel
2015-01-01
A variational method for calculating the critical nuclear charge, Zc, required for the binding of a nucleus to two electrons is reported. The method is very effective and performs well compared to the traditional variational principle for calculating energy. The critical nuclear charge, which corresponds to the minimum charge required for the atomic system to have at least one bound state, has been calculated for helium-like systems both with infinite and finite nuclear masses. The value of $...
Gate effect in charge-density wave nanowires
Slot, E.; Holst, M.A.; Van der Zant, H.S.J.
2005-01-01
We have investigated transport characteristics of charge-density wave nanowires with a few hundred parallel chains. At temperatures below50K, these samples show power-law behavior in temperature and voltage, characteristic for one-dimensional transport. In this regime, gate dependent transport has b
Space-charge effect in vacuum-evaporated phthalocyanine films
Czech Academy of Sciences Publication Activity Database
Jivkov, I.; Nedkov, T.; Nešpůrek, Stanislav; Danev, G.; Schauer, F.
2000-01-01
Roč. 58, 2-3 (2000), s. 340-343. ISSN 0042-207X R&D Projects: GA MŠk OC 518.10; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : space charge * phthalocyanine Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.520, year: 2000
Charge-Hall effect driven by spin force: reciprocal of the spin-Hall effect
zhang, ping; Niu, Qian
2004-01-01
A new kind of charge-Hall effect is shown. Unlike in the usual Hall effect, the driving force in the longitudinal direction is a spin force, which may originate from the gradient of a Zeeman field or a spin-dependent chemical potential. The transverse force is provided by a Berry curvature in a mixed position-momentum space. We can establish an Onsager relation between this effect and the spin-Hall effect provided the spin current in the latter is modified by a torque dipole contribution. Thi...
Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways
Directory of Open Access Journals (Sweden)
Jinxiang Xi
2014-01-01
Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.
Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti
Energy Technology Data Exchange (ETDEWEB)
Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)
1995-04-01
The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).
Neutrino-Electron Scattering: Charge Radius and Effective Couplings
International Nuclear Information System (INIS)
In this work the neutral-current scattering cross-section for neutrinos on electrons is calculated assuming that a massive Dirac neutrino is characterized by a phenomenological parameters, a charge radius (r2) and the right-handed currents are present in the framework of a Left-Right symmetric model (LR). Using the CHARM II result for the charge radius of the muon-neutrino |(r2)| < 6.0 × 10−33 cm2, we place a bound on −7.9 × 10−33 cm2 ≤ (r2)LR ≤ 7.9 × 10−33 cm2. We discuss the relationship between the electron neutral couplings gveV and gveA and the LR model parameters
Pressure effect on charge carrier mobility in SmS
International Nuclear Information System (INIS)
Dependences of the charge carrier mobility on the pressure of hydrostatic compression for samarium monosulfide minocrystals and some solid solutions on its base in the pressure range from the atmospheric to critical pressures of the semiconductor-metal phase transition at T=300K are investigated. The behaviour of the factor in SmS under pressure is calculated from the experimental data on the pressure dependence of the Hall constant and thermo-e.m.f
Space-charge effects in vacuum-deposited polyimide layer
Czech Academy of Sciences Publication Activity Database
Zhivkov, I.; Strijkova, V.; Spassova, E.; Danev, G.; Nešpůrek, Stanislav; Iwamoto, M.
2005-01-01
Roč. 7, č. 1 (2005), s. 245-248. ISSN 1454-4164 R&D Projects: GA MŠk ME 558 Grant ostatní: Ministry of Education and Science(BG) X-1322 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyimide * electrical conductivity * space-charge spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005
Space-charge effects in Penning ion traps
Czech Academy of Sciences Publication Activity Database
Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.
2015-01-01
Roč. 785, JUN (2015), s. 153-162. ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.216, year: 2014
Effective models for charge transport in DNA nanowires
Gutierrez, Rafael; Cuniberti, Gianaurelio
2006-01-01
The rapid progress in the field of molecular electronics has led to an increasing interest on DNA oligomers as possible components of electronic circuits at the nanoscale. For this, however, an understanding of charge transfer and transport mechanisms in this molecule is required. Experiments show that a large number of factors may influence the electronic properties of DNA. Though full first principle approaches are the ideal tool for a theoretical characterization of the structural and elec...
Schwinger Effect in (A)dS and Charged Black Hole
Kim, Sang Pyo
2015-01-01
In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.
Schwinger effect in (A)dS and charged black hole
Kim, Sang Pyo
In an Anti-de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.
Non-linear effects on radiation propagation around a charged compact object
Cuzinatto, R R; de Vasconcelos, K C; Medeiros, L G; Pompeia, P J
2015-01-01
The propagation of non-linear electromagnetic waves is carefully analyzed on a curved spacetime created by static spherically symmetric mass and charge distribution. We compute how the non-linear electrodynamics affects the geodesic deviation and the redshift of photons propagating near this massive charged object and, in the linear approximation, the effects of electromagnetic self-interaction can be disparted from the usual Reissner-Nordstr\\"om terms. In the particular case of Euler-Heisenberg effective Lagrangian, we find that these self-interaction effects might be important near charged white dwarfs.
Eremin, Ilya; Nogueira, Flavio S.; Tarento, Rene-Jean
2005-01-01
We consider the spin and charge Josephson current between two non-uniform Fulde-Ferrel-Larkin-Ovchinnikov superconductors with helimagnetic order. We demonstrate that the presence of the helimagnetic phase generates a spin Josephson effect and leads to additional contributions to both single-particle and Josephson charge current. It is shown that for such systems the AC effect differs more radically from the DC effect than in the case of a BCS superconductor with helimagnetic order considered...
Space-charge effects of the proportional counters in a multiple-ionization chamber
International Nuclear Information System (INIS)
At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected
High temperature thermocline TES - effect of system pre-charging on thermal stratification
Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea
2016-05-01
The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.
Anomalous effective charges and far-IR optical absorption of Al2Ru from first principles
International Nuclear Information System (INIS)
For the orthorhombic intermetallic semiconductor Al2Ru, the band structure, valence charge density, zone-center optical-phonon frequencies, and Born effective-charge and electronic dielectric tensors are calculated using variational density-functional perturbation theory with ab initio pseudopotentials and a plane-wave basis set. Good agreement is obtained with recent measurements on polycrystalline samples, which showed anomalously strong far-IR absorption by optical phonons, while analysis of the valence charge density shows that the static ionic charges of Al and Ru are negligible. Hybridization is proposed as the single origin both of the semiconducting gap and the anomalous Born effective charges. Analogous behavior is expected in related compounds such as NiSnZr, PbTe, skutterudites, and Al-transition-metal quasicrystals. copyright 1996 The American Physical Society
Shocron, Amit N
2016-01-01
Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.
Lie, T. T.; Liang, Xiuli; Haque, M. H.
2015-03-01
Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.
Effect of Space Charge on the Propagation Path of Air Gap Discharge
Institute of Scientific and Technical Information of China (English)
郝丽霞; 王伟; 詹花茂; 韩筱慧; 邓丽红
2011-01-01
The existence of space charge may be addressed as one of the reasons that could cause shielding failure of transmission lines. In order to study the effect of space charge on discharge propagation path, a new experimental system, including mainly DC high voltage generator, impulse voltage generator as well as rod-plane electrode, has been established. The space charge was generated around the rod by means of pre-applying DC high voltage, and the air gap dis- charge experiments were conducted with and without pre-applying DC high voltage, respectively. Meanwhile, high speed cameras worked simultaneously from the front and lateral side to record the discharge propagation path so as to obtain the curvature. After statistical analysis, it is shown that the curvature increases in the middle and lower portions of the propagation path when the effect of space charge is taken into account.
Radial explosion strain and its fracture effect from confined explosion with charge of cyclonite
Institute of Scientific and Technical Information of China (English)
徐国元; 段乐珍; 古德生; 闫长斌
2004-01-01
Instrumented experiments were conducted in concrete models to study the explosion-induced radial strain and fracture effect of rock-like media under confined explosion with a charge of cyclonite. As a charge was exploded,two different radial strain waves were sequentially recorded by a strain gage at a distance of 80 mm from the center of charge. Through the attenuation formula of the maximum compressive strain(εrmax ), the distribution of εrmax and its strain rate(ε) between the charge and gage were obtained. The effect of the two waves propagating outwards on the radial fracture of surrounding media was discussed. The results show that the two waves are pertinent to the loading of shock energy (Es) and bubble energy (Eb) against concrete surrounding charge, respectively. The former wave lasts for much shorter time than the latter. The peak values of εrmax and ε of the former are higher than those of the latter, respectively.
Effects of surface charge on the anomalous light extinction from metallic nanoparticles
Sijercic, Edin; Leung, P. T.
2016-07-01
The effects of extraneous surface charges on the anomalous extinction from metallic nanoparticles are studied via an application of the extended Mie theory by Bohren and Hunt. Due to the sensitivity of the higher multipolar resonance on the surface charges, it is found that quenching of the anomalous resonance can be observed with presence of only a modest amount of charges on these particles. The observed effects thus provide a rather sensitive mechanism for the monitoring of the neutrality of these nanoparticles using far field scattering approaches.
Li, Sheng
2011-12-01
This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.
Heavy ion charge-state distribution effects on energy loss in plasmas
Barriga-Carrasco, Manuel D.
2013-10-01
According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.
Space charge effects in axial injection line for U-400 cyclotron
International Nuclear Information System (INIS)
The space charge influence on the beam dynamics in transport line is studied by the method of the distribution moments. Fifteen equations describing dependence of the first and second order moments (average transverse beam sizes and velocities, cross terms) on longitudinal coordinate are solved numerically. For particular U-400 cyclotron injection line the value of current which produces significant effect on beam dynamics is defined. It is shown that space charge effects can be compensated by proper readjusting of the solenoid strengths
Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53
Shih, Chi-Tin; Roche, Stephan; Römer, Rudolf A.
2007-01-01
We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective single-strand or double-strand tight-binding models which simulate hole propagation along the DNA, a statistical analysis of charge transmission modulations associated with all possible point mutations is performed. We find that in contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker {...
Memory and nonlinear transport effects in charging-discharging of a supercapacitor
Uchaikin, V. V.; Ambrozevich, A. S.; Sibatov, R. T.; Ambrozevich, S. A.; Morozova, E. V.
2016-02-01
We report on the results of analysis of the kinetics of charge-discharge current of Panasonic supercapacitors in a wide range of time from 10-1 to 104 s. The non-Debye behavior of relaxation observed earlier by us and other authors is confirmed experimentally, and the influence of the supercapacitor charging regime on this process for various previous histories (values of applied voltage, charging time, and load resistance) is analyzed. The results are compared with available experimental data for paper-oil and electrolytic capacitors and with the results of calculations in the linear response model. It is found that in contrast to conventional capacitors, the response of the supercapacitor under investigation to variations of the charging regime does not match the linear response model. The relation of this nonlinearity to processes in the double electric layer, the morphology of the porous electrode, and the effect of charge reversal in pores is considered.
Effect of argon addition on plasma parameters and dust charging in hydrogen plasma
International Nuclear Information System (INIS)
Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.
Wang, Xin
2015-01-01
We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.
Wang, Xin; Liang, Shi-Dong
2013-02-01
We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.
Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction
Tabi, C. B.; Dang Koko, A.; Oumarou Doko, R.; Ekobena Fouda, H. P.; Kofané, T. C.
2016-01-01
We modify the Peyrard-Bishop-Holstein model and bring out the influence of the torsion and solvent interactions on charge transport in DNA. Through the linear stability analysis, we detect regions of instability and we compare the results with those of the standard Peyrard-Bishop-Holstein model. There are two regimes where modulated charge patterns can occur: the undertwisted and the overtwisted conformations. Numerical simulations are used to confirm our analytical predictions. Charge patterns are obtained and propagate more easily in an overwinded helix than in an underwinded one. The effects of dissipation and thermal fluctuations are also studied, which confirm the robustness of the obtained modulated patterns. On the one hand, we argue that in the absence of twisting, temperature can lead to the breaking of the hydrogen bonds between bases and prevent charges from propagating. On the other hand, when the molecule is overtwisted, the solvent and the temperature will rather enhance charge spreading patterns with random features.
Charged Kaon Mass Measurement using the Cherenkov Effect
Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K
2009-01-01
The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.
Self-interaction effects on charge-transfer collisions
Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A
2016-01-01
In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.
Charge-independence breaking effects in nucleon-deuteron scattering
International Nuclear Information System (INIS)
The standard non-relativistic approach to the study of few-nucleon systems is based on phenomenological pair potentials which accurately fit the N-N scattering data. As an example, the so-called AV14 and Bonn potentials reproduce the n-p data, while the RSC, TRS and Paris potentials the p-p ones. All these potentials do not include Charge Independence Breaking (CIB) terms, which seem to be required by the differences in the experimental anp, app, and ann scattering lengths. One possibility, that has been investigated in Ref. 1, is to modify the 1S0 potential so as to reproduce the experimental values. Recently [2], it has been shown that different local potentials, which accurately fit both the n-p and p-p data, give almost the same triton binding energy, Bt=7.62±0.01 MeV. copyright 1995 American Institute of Physics
The Effect of Membrane Charge on Gold Nanoparticle Synthesis via Surfactant Membranes.
Markowitz; Dunn; Chow; Zhang
1999-02-01
The effect of vesicle membrane structure and charge on the synthesis of gold nanoparticles was investigated. The vesicle membranes were comprised of either negatively charged soy lipids or mixtures of charge neutral and negatively charged soy lipids. Palladium ions bound to the membranes served as the catalyst for metal particle synthesis using an electroless metallization procedure. The size range of particles synthesized using membranes comprised of only negatively charged lipids (5-15 nm) was significantly smaller than those synthesized using mixtures of negatively charged and charge-neutral lipids (2-180 nm). X-ray diffraction revealed that the average crystallite size decreased with increasing palladium ion content of the membranes. It also showed that the average crystallite size was smaller for particles synthesized using vesicles comprised of only soy phoshohydroxyethanol lipids than for particles synthesized using vesicles comprised of only soy phosphatidic acid lipids. Particles synthesized with membranes comprised of only negatively charged lipids were encapsulated within the resulting lipid membrane matrix. FT-IR of the lipid matrix indicated that the matrix was formed as the result of ionic bridging of the lipid phosphate headgroups with gold ions. Copyright 1999 Academic Press. PMID:9924109
Schaffer, L.; Burns, J. A.
1995-01-01
Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.
The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation
Kuzovkov, V. N.; Kotomin, E. A.; de la Cruz, M. Olvera
2011-07-01
The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.
Blaise, G.; Pesty, F.; Garoche, P.
2009-02-01
Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EIexoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.
Energy Technology Data Exchange (ETDEWEB)
Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)
2015-11-28
An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.
International Nuclear Information System (INIS)
An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (Ninv) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed Id-Vg measurements enabled an accurate effective mobility vs Ninv extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs
Effect of gaseous void on bipolar charge transport in layered polymer film
International Nuclear Information System (INIS)
This paper describes a hybrid algorithm to study the effect of a gaseous void on bipolar charge transport in layered polymer film. This hybrid algorithm uses a source distribution technique based on an axisymmetric boundary integral equation method to solve the Poisson equation and a fourth order Runge–Kutta (RK4) method with an upwind scheme for time integration. Iterative stability is assured by satisfying the Courant–Friedrichs–Levy stability criterion. Dynamic charge mapping is achieved by allowing conducting and insulating boundaries and material interfaces to be represented by equivalent free and bound charge distributions that collectively satisfy all local and far-field conditions. This hybrid technique caters to bipolar charge injection, field-dependent mobility transport, recombination, and trapping/de-trapping in the bulk and at material and physical interfaces. The resulting charge map is the taxonomy of the different charge types and their abundance, and presents a dynamic view of the temporal and spatial distributions. The paper is motivated by images of breakdown experiments that point to the role of gaseous void in delamination growth. For the test configuration, the high field at the edge of the gaseous void act as a sink first for positive and then negative charge. The net effect is to increase delamination stress at the edge leading to further growth of the defect and increasing the potential for partial discharge within the void. (paper)
Miranda Carreño, Rubén; Blanco Suárez, Ángeles; Fuente González, Elena de la; Negro Álvarez, Carlos Manuel
2008-01-01
The effect of charge density of 5 cationic polyacrylamides (C-PAMs)and 3 anionic polyacrylamides (A-PAMs) in single and in dual treatments with a coagulant on the flocculation and removal of dissolved and colloidal material by dissolved air flotation (DAF) in papermaking has been studied. In single systems, good results were achieved both with low and high charge C-PAMs(1.0and 3.0–3.5 meq/g). In dual sy tems, high charge C-PAMs (3.0–3.5 meq/g)and A-PAMs (1.5 meq/g), were the most efficient. R...
Transverse space charge effect calculation in the Synergia accelerator modeling toolkit
Energy Technology Data Exchange (ETDEWEB)
Okonechnikov, Konstantin; Amundson, James; Macridin, Alexandru; /Fermilab
2009-09-01
This paper describes a transverse space charge effect calculation algorithm, developed in the context of accelerator modeling toolkit Synergia. The introduction to the space charge problem and the Synergia modeling toolkit short description are given. The developed algorithm is explained and the implementation is described in detail. As a result of this work a new space charge solver was developed and integrated into the Synergia toolkit. The solver showed correct results in comparison to existing Synergia solvers and delivered better performance in the regime where it is applicable.
Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.
Das, Pradipta Kr
2016-01-01
Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant. PMID:26530465
Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.
Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J
2015-01-21
The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. PMID:25470772
González-Mozuelos, P.
2016-02-01
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short
Energy Technology Data Exchange (ETDEWEB)
González-Mozuelos, P. [Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360 (Mexico)
2016-02-07
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short
González-Mozuelos, P
2016-02-01
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short
Projectile charge and velocity effect on UO2 sputtering in the nuclear stopping regime
International Nuclear Information System (INIS)
Angular distributions and yields of uranium sputtered by slow highly charged Xeq+ ions (kinetic energy 1.5 keV ≤ Ek ≤ 81 keV, charge state 1 ≤ q ≤ 25 ) from UO2 were measured by means of the catcher technique. A charge state effect on the sputtering process is observed at 8 and 81 keV. A deviation from a A*cos(θ) shape (the linear collision cascade theory) is observed in case of Xeq+ impinging a UO2 surface at Ek = 8 keV. Yields increase linearly with projectile charge state q thus clearly revealing the contribution of potential energy to the sputtering process. In addition, as the kinetic energy of a Xe10+ projectile decreases from 81 keV to 1.5 keV, a velocity effect is clearly observed on the angular distribution. (authors)
Taheri, H.; Schmidt, F.P.; Gabi, M.
2015-01-01
This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be us...
Space-Charge Effects in the Super B-Factory LER
Venturini, Marco
2007-01-01
Space-charge effects in the low-energy ring of the proposed Super-B Factory are studied using a weak-strong model of dynamics as implemented in the code Marylie/Impact (MLI). The impact of space charge appears noticeable but our results suggest the existence of workable regions of the tune space where the design emittance is minimally affected. However, additional studies are recommended to fully substantiate this conclusion.
Some effects of transverse space charge in the SNS/HIF test bed
International Nuclear Information System (INIS)
To assess the effect of transverse space charge in the proposed SNS/HIF simulation experiments the change in the SNS lattice parameters under the influence of transverse space-charge has been estimated by integrating the K-V beam envelope equations and approximating that for the dispersion. Using equations suggested by Garren (Proc. HIF Workshop, Berkeley 1979, LBL 10301, p 377 (1980)), periodic solutions were found for various currents. (U.K.)
Chaudhuri, A. K.
2012-01-01
In nucleon-nucleon collisions, charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collision in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte-Carlo Glauber model of initial condition is generalised to include the fluctuations. Explicit simulations with the generalised Monte-Carlo Glauber model initial c...
Mendy, J E B; Mendy, Jean El Bachir; Govaerts, Jan
2002-01-01
Given the most general Lorentz invariant four-fermion effective interaction possible for two neutrinos and two charged fermions, whether quarks or leptons, all possible 2-to-2 processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are considered. Explicit and convenient expressions are given for the associated differential cross-sections. Such a parametrization should help assess the sensitivity to physics beyond the Standard Model of neutrino beam experiments which are in the design stage at neutrino factories.
International Nuclear Information System (INIS)
20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)
Simulation of the dielectric charging-up effect in a GEM detector
Energy Technology Data Exchange (ETDEWEB)
Alfonsi, M., E-mail: Matteo.Alfonsi@cern.ch [CERN, Geneva (Switzerland); Croci, G.; Duarte Pinto, S. [CERN, Geneva (Switzerland); Rocco, E. [INFN Torino and University of Eastern Piedmont (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy); Veenhof, R.; Villa, M. [CERN, Geneva (Switzerland)
2012-04-11
The charging up effect is well-known in detectors containing dielectric materials and it is due to electrons and ions liberated in an avalanche and collected on the dielectric surfaces. In particular in Gas Electron Multiplier (GEM) based detectors, charges can be captured by the Kapton that separates top and bottom electrodes. The collection of a substantial number of charges on the dielectric surfaces induces a modification of the field inside the GEM holes that implies important consequences on some fundamental parameters such as the electron transparency and the effective gain. The correct simulation of this effect opens new ways to the detailed study of the processes that happens in a GEM-based detector and gives the possibility to optimise the GEM geometry in order to avoid it. This paper compares results of the measurements and the simulations, with and without the introduction of the charging-up effect, of the GEM electron transparency in the case of a single GEM detector. The introduction of the charging up effect in the simulation resulted to be crucial in order to get the proper agreement with the measurements. The measurements and simulations of the GEM effective gain will be the subject of a future work.
Charge independence and charge symmetry
Miller, G A; Miller, Gerald A; van Oers, Willem T H
1994-01-01
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.
Charge independence and charge symmetry
International Nuclear Information System (INIS)
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs
Electrical charging effects on the sliding friction of a model nano-confined ionic liquid
International Nuclear Information System (INIS)
Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture
Electrical charging effects on the sliding friction of a model nano-confined ionic liquid
Energy Technology Data Exchange (ETDEWEB)
Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)
2015-10-14
Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.
Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J
2012-10-15
A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952
Crawford, Jennifer; Rinzler, Andrew; Hershfield, Selman
The carbon nanotube vertical organic field effect transistor is a vertical sequence consisting of a gate electrode, gate dielectric, thin nanotube network source electrode, organic semiconducting channel and finally the drain electrode. The drain current is modulated by the gate voltage which varies a Schottky barrier between source and channel layers. Hysteresis in the current-voltage characteristic has been observed when a electret charge trapping layer is placed between the nanotube source and the gate dielectric. We provide a model for charge injection into a trapping layer placed in contact with the carbon nanotube film and solve self-consistently for the electrostatics and the occupancy of the traps. For a range of applied gate voltages the simulations demonstrate hysteresis of the carbon nanotubes' charge as a result of the electric field produced by the trapped charge. This affects the current by modulating the Schottky barrier. This work was supported by the NSF Grant DMR-1461019.
EFFECT OF NaOH CHARGE ON FIBER CHARACTERISTICS OF P-RC APMP PULP
Institute of Scientific and Technical Information of China (English)
Fangong Kong; Jiachuan Chen; Guihua Yang; Zhaocheng Li; Huaiyu Zhan
2004-01-01
Fiber screen analysis, fiber quality analysis and SEM observation were used to investigate the effects of NaOH charge on fiber characteristics in Triploid Populus Tomentosa P-RC APMP pulping in this paper. The results showed that increasing NaOH charge in P-RC APMP process could reduce energy consumption and fines percent, increase the mean fiber length and long fiber percent and make the curl index and kink index of fiber ascend. The results from SEM observation illustrated that the fiber with high NaOH charge had higher softness degree, better cutting resistant ability and better inter-fiber bonding ability. With increasing of NaOH charge, the surface of handsheets became more and more smooth, and there were less and less gaps and holes on the paper surface.
Effects of Surface Charges on Dental Implants: Past, Present, and Future
Directory of Open Access Journals (Sweden)
Cecilia Yan Guo
2012-01-01
Full Text Available Osseointegration is a major factor influencing the success of dental implantation. To achieve rapid and strong, durable osseointegration, biomaterial researchers have investigated various surface treatment methods for dental subgingival titanium (Ti implants. This paper focuses on surface-charge modification on the surface of titanium dental implants, which is a relatively new and very promising methodology for improving the implants’ osseointegration properties. We give an overview on both theoretical explanations on how surface-charge affects the implants' osseointegration, as well as a potential surface charge modification method using sandblasting. Additionally, we discuss insights on the important factors affecting effectiveness of surface-charge modification methods and point out several interesting directions for future investigations on this topic.
Charge-correlation effects in calculations of atomic short-range order in metallic alloys
Energy Technology Data Exchange (ETDEWEB)
Pinski, F.J. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Staunton, J.B. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Johnson, D.D. [Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States)
1998-06-01
The {open_quotes}local{close_quotes} chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only {open_quotes}band-energy{close_quotes} contributions. {copyright} {ital 1998} {ital The American Physical Society}
Charging effect simulation model used in simulations of plasma etching of silicon
International Nuclear Information System (INIS)
Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)—a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured—as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.
Effects of charging and doping on orbital hybridizations and distributions in TiO2 clusters
Zhao, Hong Min; Wu, Miao Miao; Wang, Qian; Jena, Puru
2011-11-01
Charging and doping are two important strategies used in TiO2 quantum dots for photocatalysis and photovoltaics. Using small clusters as the prototypes for quantum dots, we have carried out density functional calculations to study the size-specific effects of charging and doping on geometry, electronic structure, frontier orbital distribution, and orbital hybridization. We find that in neutral (TiO2)n clusters the charge transfer from Ti to O is almost size independent, while for the anionic (TiO2)n clusters the corresponding charge transfer is reduced but it increases with size. When one O atom is substituted with N, the charge transfer is also reduced due to the smaller electron affinity of N. As the cluster size increases, the populations of 3d and 4s orbitals of Ti decrease with size, while the populations of the 4p orbital increase, suggesting size dependence of spd hybridizations. The present study clearly shows that charging and doping are effective ways for tailoring the energy gap, orbital distributions, and hybridizations.
Senthilkumar, K.; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.
2003-01-01
Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of
International Nuclear Information System (INIS)
Iodine ions of high charge states are observed upon irradiation of methyl iodide clusters with an intense femtosecond laser pulse. All signals from multicharged ions exhibit a peak splitting in the time-of-flight mass spectra, indicating their origin from a Coulomb explosion process. These main peaks are accompanied by smaller peaks attributed to field ionization of highly charged species in the ion optics of the TOF mass spectrometer. It is shown that highly charged atomic ions formed from Coulomb explosion, upon interaction with electric field close to the mesh, can lose another electron leading to the formation of even higher charged species. The observation of this charge stripping process is evidence for the formation of highly excited ions in the course of the Coulomb explosion process, providing new insights into the mechanisms of femtosecond ionization involving multi-electron loss. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels
Energy Technology Data Exchange (ETDEWEB)
Zaleski, T M
2008-10-23
Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.
Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels
International Nuclear Information System (INIS)
Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear
Simulation of space charge effect on time resolution in resistive plate chambers
International Nuclear Information System (INIS)
India Based Neutrino Observatory (INO) will use 28,800 Resistive Plate Chambers (RPCs) in its 50 kton magnetized Iron Calorimeter (ICAL). RPCs are gaseous parallel-plate detectors that contain a small gas gap between two parallel plates which are kept under a high voltage of a few kVs. The main features of this detector are excellent spatial resolution and time resolution. These detectors have been successfully used in many particle physics experiments and are well suited for fast space-time particle tracking as required for the muon trigger at the LHC experiments. The RPC can be operated either in the streamer or in the avalanche mode. In order to study the signal generation from the RPC, space charge effect is an important phenomenon to be considered. We have compared the simulated time resolution with the measured time resolution in the avalanche mode for different gas mixtures in our previous work, without considering the space charge effect. If the number of charge carriers in the avalanche reaches large values they influence the electric field and the gas gain in the gap. This phenomenon is called space charge effect. In this paper, we take into account the space charge effect to calculate time resolution
Wu, Yuan-Yan; Tan, Zhi-Jie
2013-01-01
Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work, we systematically calculated the potentials of mean force between two like-charged nanoparticles in salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the potential of mean force and compared systematically with the inversed-Boltzmann method. An effective attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather than the charge inversion effect. The present method would be useful for calculating effective interactions during nucleic acid folding.
Energy Technology Data Exchange (ETDEWEB)
Wu, Yuan-Yan; Wang, Feng-Hua; Tan, Zhi-Jie, E-mail: zjtan@whu.edu.cn
2013-10-30
Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work, we systematically calculated the potentials of mean force between two like-charged nanoparticles in salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the potential of mean force and compared systematically with the inversed-Boltzmann method. An effective attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather than the charge inversion effect. The present method would be useful for calculating effective interactions during nucleic acid folding.
Studies of Space Charge Effects in the Proposed CERN PS2
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; /LBL, Berkeley; Ryne, Robert; /LBL, Berkeley; De Maria, Riccardo; /Brookhaven; Macridin, Alexandru; /Fermilab; Spentzouris, Panagiotis; /Fermilab; Papaphilippou, Yannis; /CERN; Wienands, Ulrich; /SLAC
2012-06-22
A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.
Effective action for the field equations of charged black holes
International Nuclear Information System (INIS)
We consistently reduce the equations of motion for the bosonic N = 2 supergravity action, using a multi-centered black hole ansatz for the metric. This reduction is done in a general, non-supersymmetric setup, in which we extend concepts of BPS black hole technology. First we obtain a more general form of the black hole potential, as part of an effective action for both the scalars and the vectors in the supergravity theory. Furthermore, we show that there are extra constraints specifying the solution, which we calculate explicitly. In the literature, these constraints have already been studied in the one-center case. We also show that the effective action we obtain for non-static metrics can be linked to the 'entropy function' for the spherically symmetric case, as defined by Sen (2005 J. High Energy Phys. JHEP09(2005)038) and Cardoso et al (2007 J. High Energy Phys. JHEP03(2007)085)
Inhomogeneous charging and screening effects in semiconductor quantum dot arrays
Energy Technology Data Exchange (ETDEWEB)
Wetzler, R [Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kunert, R [Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Wacker, A [Fysiska Institutionen, Lunds Universitet, Box 118, 22100 Lund (Sweden); Schoell, E [Institut fuer Theoretische Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)
2004-07-01
The electronic properties of quantum dot (QD) arrays are strongly influenced by the Coulomb interaction of electrons within the dot as well as with those in neighbouring dots. In this paper, we investigate this behaviour taking into account screening by a free electron gas in the vicinity of the QDs. We find pronounced effects for standard capacitance[ndash]voltage (CV) measurements of QD structures embedded in a pn-diode. In particular, we show that the three-dimensional nature of the problem is crucial for devices with low dot-density, whereas the self-consistency between electron depletion in the bulk layer and dot occupation is important for high dot-densities. The Coulomb interaction between the dots induces a broadening of the peaks in the CV characteristic which is comparable with the effect of disordered QD arrays, where we considered realistic size and position fluctuations obtained by a kinetic Monte Carlo simulation.
Phase diffusion and charging effects in Josephson junctions
Grabert, Hermann; Ingold, Gert-Ludwig; Paul, Benjamin
1998-01-01
The supercurrent of a Josephson junction is reduced by phase diffusion. For ultrasmall capacitance junctions the current may be further decreased by Coulomb blockade effects. We calculate the Cooper pair current by means of time-dependent perturbation theory to all orders in the Josephson coupling energy and obtain the current-voltage characteristic in closed form in a range of parameters of experimental interest. The results comprehend phase diffusion of the coherent Josephson current in the...
Effect of alkyl functionalization on charging of colloidal silica in apolar media.
Poovarodom, Saran; Poovarodom, Sathin; Berg, John C
2010-11-15
The present work examines the effect of alkyl-silane treatment on the charging of colloids in apolar solvent using two otherwise identical 250 nm diameter, spherical silica particles, one with untreated surface and the other treated with hexadecyltrimethoxysilane (C16), dispersed in an apolar isoparaffin solvent (Isopar-L) containing one of three oil-soluble surfactants: Aerosol-OT, OLOA 11,000, and zirconyl 2-ethyl hexanoate. The electrophoretic mobility of each dispersion was determined using phase angle light scattering (PALS). It was found that at sufficiently high surfactant concentration, i.e., where micelles begin to form in the bulk, the particle surfaces could be electrically charged. All three surfactants studied imparted a negative surface charge to the untreated silica particles. In all cases, the C16-treated particles were also found to be negatively charged but had a much higher magnitude of mobility than the untreated silica. Although the increase in magnitude of mobility as a result of the alkyl functionalization was surprising, it could be attributed to the increase in the number of surface hydroxyl groups arising from the hydrolysis of unbound methoxy groups of the silane molecules. The added hydroxyl groups provided additional potential acid-base interaction sites, resulting in higher particle mobility. It was also found that further increases in surfactant concentration lowered the particle mobility, attributed to the increasing concentration of electrically charged micelles, which may partially neutralize the surface charge or compress the electrical double layer. PMID:20728088
International Nuclear Information System (INIS)
Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.
Snizhko, Kyrylo
2016-01-01
Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle's effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.
Negative space charge effects in photon-enhanced thermionic emission solar converters
International Nuclear Information System (INIS)
In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163
Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films
International Nuclear Information System (INIS)
We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously
Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films
Energy Technology Data Exchange (ETDEWEB)
Dehghan, Ashkan; Shi, An-Chang [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Schick, M. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)
2015-10-07
We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.
The effective neutrino charge radius in the presence of fermion masses
International Nuclear Information System (INIS)
We show how the crucial gauge cancellations leading to a physical definition of an effective neutrino charge radius persist in the presence of non-vanishing fermion masses. An explicit one-loop calculation demonstrates that, as happens in the massless case, the pinch technique rearrangement of the Feynman amplitudes, together with the judicious exploitation of the fundamental current relation Jα(3)=2(JZ+sinθw2Jγ)α, leads to a completely gauge independent definition of the effective neutrino charge radius. Using the formalism of the Nielsen identities it is further proved that the same cancellation mechanism operates unaltered to all orders in perturbation theory
Chaudhuri, A. K.
2013-03-01
In nucleon-nucleon collisions, a charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collisions in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte Carlo Glauber model of initial condition is generalized to include the fluctuations. Explicit simulations with the generalized Monte Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have a large effect on the flow harmonics.
Chaudhuri, A K
2012-01-01
In nucleon-nucleon collisions, charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collision in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte-Carlo Glauber model of initial condition is generalised to include the fluctuations. Explicit simulations with the generalised Monte-Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have large effect on the flow harmonics.
The dust-acoustic mode in two-temperature electron plasmas with charging effects
Indian Academy of Sciences (India)
Zhong Xijuan; Chen Hui; Liu Nianhua; Liu Sanqiu
2016-04-01
Dust charging in an unmagnetized collisionless dusty plasma with two-temperature electrons was investigated based on the orbital motion limited theory, where the two-temperature electrons and ions are modelled by the Maxwellian distributions. Then by taking into account the effects of two-temperature electron and the associated charging fluctuations, the dispersion peculiarities of dust-acoustic waves are studied based on dust fluid dynamics. The present results show that the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons.
Resistive Micromegas for sampling calorimetry, a study of charge-up effects
Chefdeville, M.; Karyotakis, Y.; Geralis, T.; Titov, M.
2016-07-01
Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.
Gold plasmonic effects on charge transport through single molecule junctions
Adak, Olgun; Venkataraman, Latha
2014-03-01
We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.
Non-targeted effects induced by high LET charged particles
Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio
Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.
Effects of High Charge Densities in Multi-GEM Detectors
Franchino, S; Hall-Wilton, R.; Muller, H.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.
2015-01-01
A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.
The effect of space charge in fast photomultipliers on the time resolution of liquid scintillators
International Nuclear Information System (INIS)
This paper reports on the effect of space charge and the inter dynodes parasitic component in fast photomultipliers on the time resolution of liquid scintillators investigated using strongly time correlated Gamma rays from 60Co and 22Na sources. For 52 mm diameter THORN-EMI photomultiplier model No.9815B, coupled to a 50 mm diameter NE213 cell, an improvement of 14% and 21% in time resolution is achieved after minimizing the space charge effects. A further improvement of 13% is obtained in time resolution for 60 Co and 22Na sources if sixth dynode signal is used instead of anode signal for timing analysis. For the 130 mm diameter THORN-EMI photomultiplier model No. 9823B coupled to 125 mm diameter NE213 cell, the influence of space charge on the time resolution of the detector is insignificant. However and improvement of 4 - 10% is obtained using sixth dynode signal
Space charge effects downstream from an electric grid in magnetized plasma
International Nuclear Information System (INIS)
This paper presents a one-dimensional treatment of Poisson's equation for the solution of the electric potential in a region downstream from a grid electrode. The motivation for this study is to gain an understanding of the effects of space charge inside a gridded energy analyzer that is being used to measure the electron distribution function in magnetized plasma. The analysis bring into light an ideal regime where these effects naturally isolate the electron current to a collector placed downstream from the grid. The study also gives generic relations for the variation of the space charge limited electron and ion currents with the grid voltage. These relations can be compared with an actual characteristic as a means of diagnosing the impact of space charge inside the analyzer
Effect of self-induced space charge in a high pressure position-sensitive proportional counter
International Nuclear Information System (INIS)
The response of a position-sensitive proportional counter filled with Ar+30%CH4 counting gas under a pressure of 7 atm has been studied in detail for 8-keV incident X-rays. The counter was operated in the region of limited proportionality, where the avalanche growth is greatly affected by self-induced space charge and hence an unfamiliar distorted energy spectrum is often observed. It is confirmed that the avalanches caused by the halo effect of Ar K X-rays, emitted in photoelectric absorption of incident X-rays, have higher gas amplification as compared to other photopeak avalanches due to different origin of primary electrons. The analysis has revealed that the effect of self-induced space charge hinders the avalanche growth of photopeak events to the extent of 50% of the observed avalanche charge. Comprehensive analysis of the complicated counter response in the region of limited proportionality under high pressure is provided. (orig.)
Diffuse-Charge Effects on the Transient Response of Electrochemical Cells
Bazant, M van Soestbergen; P M Biesheuvel; M Z
2009-01-01
We present theoretical models for the time-dependent voltage of an electrochemical cell in response to a current step, including effects of diffuse charge (or "space charge") near the electrodes on Faradaic reaction kinetics. The full model is based on the classical Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions to describe electron-transfer reactions across the Stern monolayer at the electrode surface. In practical situations, diffuse charge is confined to thin diffuse layers (DLs), which poses numerical difficulties for the full model but allows simplification by asymptotic analysis. For a thin quasi-equilibrium DL, we derive effective boundary conditions on the quasi-neutral bulk electrolyte at the diffusion time-scale, valid up to the transition time, where the bulk concentration vanishes due to diffusion limitation. We integrate the thin DL problem analytically to obtain a set of algebraic equations, whose (numerical) solution compares favorably to the full mod...
Charge fluctuations and their effect on conduction in biological ion channels
Luchinsky, D G; Kaufman, I; McClintock, P V E; Eisenberg, R S
2008-01-01
The effect of fluctuations on the conductivity of ion channels is investigated. It is shown that modulation of the potential barrier at the selectivity site due to electrostatic amplification of charge fluctuations at the channel mouth exerts a leading-order effect on the channel conductivity. A Brownian dynamical model of ion motion in a channel is derived that takes into account both fluctuations at the channel mouth and vibrational modes of the wall. The charge fluctuations are modeled as a short noise flipping the height of the potential barrier. The wall fluctuations are introduced as a slow vibrational mode of protein motion that modulates ion conductance both stochastically and periodically. The model is used to estimate the contribution of the electrostatic amplification of charge fluctuations to the conductivity of ion channels.
K. Senthilkumar; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.
2003-01-01
Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of the molecular orbitals on individual triphenylene molecules. This was realized by exploiting the unique feature of the Amsterdam density functional theory program that allows one to use molecular o...
Effective charges in nuclei in the vicinity of $^{100}SN$
Ekström, Andreas
The shell structure of atomic nuclei far from the line of beta-stability and the properties of the nucleon-nucleon interaction in exotic isotopes are not well known. The development of radioactive ion beams (RIBs) puts certain unexplored regions of the nuclear chart within reach of detailed experimental investigations. The low-energy nuclear structure of the unstable isotopes 106,108,110Sn, 100,102,104Cd, and 106,108In have been studied using sub-barrier Coulomb excitation of postaccelerated RIBs. The experiments were carried out at the REX-ISOLDE facility at CERN. The deduced transition probabilities - B(E2) values - provide a detailed benchmark of modern models of the nucleon-nucleon interaction. The B(E2) values between the 0+ ground states and the first excited 2+ states in the Sn and Cd isotopes were compared with shell-model calculations. These are based on effective interactions derived from renormalized multi-meson and QCD-based nucleon-nucleon potentials. In order to reproduce the experimental result...
Effect of Surface Charge on Laser-induced Neutral Atom Desorption
International Nuclear Information System (INIS)
When an ionic metal oxide crystal is cleaved, inhomogeneous electrical charging of the surface can be a result. Such an effect has been well-documented in magnesium oxide (100). For example, recent rigorous AFM studies indicate that nanoscale charged clusters of MgO are created during cleavage, with high concentrations often located at terrace step edges.(1) In addition, ablation processes of freshly cleaved magnesium oxide crystals may be effected by remnant surface charging and microstructures.(2) We report here that such surface charging strongly impacts even neutral atom desorption, even under conditions of extremely mild excitation of surface terrace features. In our experiments, single crystal MgO (100) is cleaved in air and placed in an ultra-high vacuum chamber (UHV). We irradiate the crystal at 6.4 eV, photon energy resonant with five-coordinated (5-C) terrace sites and probe desorbing neutral oxygen atoms. It is found that a significant fraction of desorbed neutral oxygen atoms from the charged surface possess kinetic energies in excess of 0.7 eV. This is in contrast to uncharged samples (discharged in vacuo over 24 hours) that display a near-thermal oxygen atom distribution.
International Nuclear Information System (INIS)
The results presented here reveal a surprising dependence of the charge-collection efficiency of LT GaAs FETs (field effect transistors) on the depth profile of the deposited charge. Investigation of the temporal dependence of the signal amplitude, carrier density contours, and potential contours reveals different mechanisms for charge collection arising from carriers deposited above and below the LT GaAs buffer layer, respectively. In particular, carriers deposited below the LT GaAs buffer layer dissipate slowly and give rise to a persistent charge collection that is associated with a bipolar-like gain process. These results may be of significance in understanding the occurrence of single-event upsets from protons, neutrons, and large-angle, glancing heavy-ion strikes. (authors)
Isotope effect in charge-transfer collisions of H with He{sup +}
Energy Technology Data Exchange (ETDEWEB)
Loreau, J.; Dalgarno, A. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Ryabchenko, S. [Northern (Arctic) Federal University, 17 Severnaya Dvina Emb., 163002 Arkhangelsk (Russian Federation); Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium); Vaeck, N. [Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium)
2011-11-15
We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.
Dynamic aperture and space charge effect studies for the Recycler ring for Project-X
Xiao, M; Johnson, D E
2012-01-01
A simplified Recycler lattice was created to fine tune injection straight, ring tune, and phase trombone. In this paper, we will present detailed modifications for further optimization of Recycler lattice which requires the investigation of tune footprint and dynamic aperture based on higher order momentum components of the magnetic fields, together with the space charge effects.
Himmelberger, Scott
2012-11-23
The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
CR-39 trace solid detectors samples, previously exposed to alpha particles and fission fragments from a Cf-252 source, were submitted to a annealing treatment to study his effects on the characteristics of charged particle traces registration. (L.C.J.A.)
International Nuclear Information System (INIS)
The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described
Effect of Moliere theory on path length distribution of fast charged particles
International Nuclear Information System (INIS)
The path length distribution due to multiple Coulomb scattering, considering single scattering and more accurate screening potential than gaussian approximation, is discussed after Moliere theory. Solutions for restricted conditions are indicated, from which we discuss effects of Moliere cross section on the path length distribution of charged particles and the time structure of electromagnetic cascade showers. (author)
Directory of Open Access Journals (Sweden)
V. B. Tawakley
1960-10-01
Full Text Available In this paper the effects on maximum pressure and muzzle velocity due to small changes in various quantities defining the loading conditions have been obtained mathematically when using composite charge in guns. Calculations have been done for a particular gun to illustrate these results.
Within-Individual Variation in Preferences Equity Effects of Congestion Charges
DEFF Research Database (Denmark)
Borjesson, Maria; Cherchi, Elisabetta; Bierlaire, Michel
2013-01-01
The purpose of this research was to explore how the values of travel time (VTT) and preferences for different modes vary within individuals compared with the variation between observed trips. With 6-week revealed preference panel data and stated preference data from a mode choice context, both...... equity effects of congestion charges are likely to be overestimated....
International Nuclear Information System (INIS)
A method is described for determining ion cyclotron resonance (ICR) heating effects on multiply charged-ion energy distributions using a Monte Carlo fit to experimental time-of-flight spectrometer data. The method is general but is used here specifically to separate the effects of plasma ambipolar potential spread and ion temperature in an electron cyclotron resonance (ECR) heated magnetic mirror ion source (MIMI) [Phys. Fluids 28, 3116 (1985)]. A steady-state equilibrium model is also developed that models the relevant atomic processes occurring in MIMI plasmas. This model and the Monte Carlo analysis are used to relate the effect of midplane ICR heating on end loss ion charge state distributions to its effect on the confined ion distributions. The model allows for collisional, moderately collisional, and collisionless confinement, specific to each charge state in the distribution. Both experiment and modeling show that increased ion temperature causes a shift to lower-Z ion populations in both the confined and end loss charge-state distributions
EFFECT OF ULTRASOUND ACTIVATION OF SHS-CHARGE ON THE FINAL PRODUCT
Directory of Open Access Journals (Sweden)
V. V. Klubovich
2016-04-01
Full Text Available The paper describes the effect of ultrasound activation of dolomite, which is used for producing refractory material by the SHS method, on the final product. X-ray investigation has demonstrated that ultrasound activation of the initial charge brings about changes in the phase composition of the synthesized product.
Effect of dielectric electrization on two motion of charging electron flux
International Nuclear Information System (INIS)
Effects of dielectric material electrization (monocrystals of lithium fluoride and alumophosphate glasses) on motion of an electron charging flux are investigated. Irradiation of samples is carried out in an electron flux with the energy of 50 keV. The pattern of luminescence in regions of a dielectric material, in which electrons penetrate, is visually observed and photographed. The effect of limiting the electron injection into a high-ohmic dielectric material is discovered experimentally as well as the formation of a current tube including the charged region. The conditions, under which the effect becomes apparent, depending on the electron flux energy, electrization geometry, and electrophysical properties of the material are determined quantitatively. It is necessary to take into account the effect observed, when investigating the effects of the electron flux with medium energies on high-ohmic dielectric materials
Beam space charge effects in high-current cyclotron injector CI-5
International Nuclear Information System (INIS)
Separated sector cyclotron-injector CI-5 has been studied in the framework of the external injection into phasotron project. The calculations of beam dynamics characteristics of Cyclotron CI-5 for H- beam of 5 MeV energy are presented. Space charge limits (both transverse and longitudinal) have been investigated. Analytical estimations and numerical simulations of particle motion taking into account space charge effects confirm that it is possible to achieve 10 mA in a 5 MeV separated sector H- Cyclotron
Aberration of a negative ion beam caused by space charge effect
International Nuclear Information System (INIS)
Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.
Effect of ground state correlations on the charge transition densities of vibrational states
International Nuclear Information System (INIS)
The effect of ground state correlations on the charge transition densities of vibrational states in spherical nuclei is studied. The problem for the ground state correlations beyond RPA leads to a non-linear system of equations, which is solved numerically. The influence of the correlations on the pairing is taken into account too. The inclusion of ground state correlations beyond RPA results in an essential suppression of the charge transition density in the nuclear interior in comparison with the RPA calculations and enables one to reproduce the experimental data. 30 refs., 7 figs., 3 tabs
CrossRef Space-charge effects in Penning ion traps
Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N
2015-01-01
The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.
Ohba, T
2016-06-01
Carbon nanotubes and graphene are among the major nanomaterials in nanoscience and technology. Despite having π electrons, these nanocarbon allotropes have been simply considered as neutral in classical calculations. In this study, the effects of partial charges on graphene and curved interfaces on molecular adsorption were investigated using Monte Carlo simulations of N2 and NaCl aqueous solutions on graphene and carbon nanotubes. The simulated N2 adsorption behavior and adsorption potential on partially charged and non-charged graphene coincided with each other. The adsorption potentials suggested that partially charged graphene attracted Na ions and repelled Cl ions. However, those tendencies were not present in NaCl aqueous solutions on graphene. Conversely, in partially charged carbon nanotube models, a preference for Na ions and repulsion of Cl ions in the internal nanospaces were observed in the adsorption potentials using Monte Carlo simulations. Curved interfaces in the internal nanospaces of carbon nanotubes enhanced these properties, suggesting significant electrostatic interactions in a curved π-conjugated system. PMID:27181336
Charge of interstellar dust in dense molecular clouds: Effect of cosmic rays
Ivlev, Alexei; Galli, Daniele; Caselli, Paola
2015-01-01
The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(\\mathrm{H_2})$ between $\\sim10^4$ cm$^{-3}$ and $\\sim10^6$ cm$^{-3}$. The charging effect o...