WorldWideScience

Sample records for 5-hydroxymethylfurfural degradation pathways

  1. Degradation of 5-hydroxymethylfurfural in honey.

    Fallico, B; Arena, E; Zappala, M

    2008-11-01

    5-Hydroxymethylfurfural (HMF) is the most important intermediate product of the acid-catalyzed dehydration reaction of hexoses and/or Maillard reaction; furthermore, it is the most used index to evaluate thermal damages or ageing in food products. Usually its degradation reactions, being very slow, are neglected. This study reports the findings concerning the degradation kinetics of HMF, in honeys of different floral origin at a temperature between 25 and 50 degrees C. The results highlighted higher degradation rates (k(HMF) (degradation)) compared to the corresponding formation rates (k(HMF) (formation)) in chestnut and citrus samples. Similar k-values were found in multifloral honey. Moreover, the reaction of HMF degradation was characterized by lower activation energy (E(a)) values compared to E(a) formation values. The final concentration of HMF in honey, during storage at room temperature, should be ascribed to high sugar concentration. The fluctuation of HMF in honeys could depend on the equilibrium between the accumulation and the degradation processes. This can affect the validity of HMF as storage index in some honeys, above all during the analysis of those honeys whose legislation is too restrictive (citrus) or in chestnut honey analysis where it does not accumulate. PMID:19021792

  2. Degradation of 5-hydroxymethylfurfural during yeast fermentation.

    Akıllıoglu, Halise Gül; Mogol, Burçe Ataç; Gökmen, Vural

    2011-12-01

    5-Hydroxymethyl furfural (HMF) may occur in malt in high quantities depending on roasting conditions. However, the HMF content of different types of beers is relatively low, indicating its potential for degradation during fermentation. This study investigates the degradation kinetics of HMF in wort during fermentation by Saccharomyces cerevisiae. The results indicated that HMF decreased exponentially as fermentation progressed. The first-order degradation rate of HMF was 0.693 × 10(-2) and 1.397 × 10(-2)min(-1) for wort and sweet wort, respectively, indicating that sugar enhances the activity of yeasts. In wort, HMF was converted into hydroxymethyl furfuryl alcohol by yeasts with a high yield (79-84% conversion). Glucose and fructose were utilised more rapidly by the yeasts in dark roasted malt than in pale malt (pyeast cells, and presence of sugars in the fermentation medium increases this activity. PMID:22010851

  3. 5-Hydroxymethylfurfural protects against ER stress-induced apoptosis in GalN/TNF-α-injured L02 hepatocytes through regulating the PERK-eIF2α signaling pathway.

    Jiang, Ze-Qun; Ma, Yan-Xia; Li, Mu-Han; Zhan, Xiu-Qin; Zhang, Xu; Wang, Ming-Yan

    2015-12-01

    5-Hydroxymethylfurfural (5-HMF), a water-soluble compound extracted from wine-processed Fructus corni, is a novel hepatic protectant for treating acute liver injury. The present study was designed to investigate the protective effect of 5-HMF in human L02 hepatocytes injured by D-galactosamine (GalN) and tumor necrosis factor-α (TNF-α) in vitro and to explore the underlying mechanisms of action. Our results showed that 5-HMF caused significant increase in the viability of L02 cells injured by GalN/TNF-α, in accordance with a dose-dependent decrease in apoptotic cell death confirmed by morphological and flow cytometric analyses. Based on immunofluorescence and Western blot assays, we found that GalN/TNF-α induced ER stress in the cells, as indicated by the disturbance of intracellular Ca(2+) concentration, the activation of protein kinase RNA (PKR)-like ER kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α), and expression of ATF4 and CHOP proteins, which was reversed by 5-HMF pre-treatment in a dose-dependent manner. The anti-apoptotic effect of 5-HMF was further evidenced by balancing the expression of Bcl-2 family members. In addition, the knockdown of PERK suppressed the expression of phospho-PERK, phospho-eIF2α, ATF4, and CHOP, resulting in a significant decrease in cell apoptosis after the treatment with GalN/TNF-α. 5-HMF could enhance the effects of PERK knockdown, protecting the cells against the GalN/TNF-α insult. In conclusion, these findings demonstrate that 5-HMF can effectively protect GalN/TNF-α-injured L02 hepatocytes against ER stress-induced apoptosis through the regulation of the PERK-eIF2α signaling pathway, suggesting that it is a possible candidate for liver disease therapy. PMID:26721708

  4. Dehydration of Different Ketoses and Aldoses to 5-Hydroxymethylfurfural

    van Putten, Robert-Jan; Soetedjo, Jenny N. M.; Pidko, Evgeny A.; van der Waal, Jan C.; Hensen, Emiel J. M.; de Jong, Ed; Heeres, Hero J.

    2013-01-01

    5-Hydroxymethylfurfural (HMF) is considered an important building block for future bio-based chemicals. Here, we present an experimental study using different ketoses (fructose, sorbose, tagatose) and aldoses (glucose, mannose, galactose) under aqueous acidic conditions (65gL(-1) substrate, 100-160

  5. 5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography

    Teixidó, Erika; Núñez Burcio, Oscar; Santos Vicente, Francisco Javier; Galcerán Huguet, M. Teresa

    2010-01-01

    Micellar electrokinetic chromatography (MEKC) has been applied for the determination of 5-hydroxymethylfurfural in several foodstuffs. A 75 mM phosphate buffer solution at pH 8.0 containing 100 mM sodium dodecylsulfate was used as background electrolyte (BGE), and the separation was performed by applying +25 kV in a 50 µm I.D. uncoated fused-silica capillary. Good linearity over the range 2.5-250 mg kg-1 (r2 ≥ 0.999) and run-to-run and day-to-day precisions at low and medium concentration lev...

  6. From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-hydroxymethylfurfural.

    Kang, Eun-Sil; Hong, Yeon-Woo; Chae, Da Won; Kim, Bora; Kim, Baekjin; Kim, Yong Jin; Cho, Jin Ku; Kim, Young Gyu

    2015-04-13

    A facile pathway to furan derivatives from lignocellulosic biomass via 5-acetoxymethylfurfural (AMF) was developed. AMF possesses advantageous properties due to its less-hydrophilic acetoxymethyl group relative to the hydroxymethyl group of 5-hydroxymethylfurfural (HMF). The hydrophobicity and chemical stability of AMF allowed practical isolation and purification to afford a highly pure product of up to 99.9 %. AMF was produced in good to excellent yields under mild conditions from 5-chloromethylfurfural (CMF) and alkylammonium acetates, both of which could be obtained directly from lignocellulosic biomass. Heterogeneous reactions with polymer-supported alkylammonium acetates were also established; this showed the feasibility of a continuous process for this pathway. AMF could be transformed into various promising furanic compounds, such as 2,5-furandicarboxylic acid (FDCA), 2,5-furandimethanol (FDM), and 5-hydroxymethyl-2-furanoic acid (HFA), in high yields. PMID:25619448

  7. Synthesis of Bis(hydroxylmethylfurfuryl)amine Monomers from 5-Hydroxymethylfurfural.

    Xu, Zhanwei; Yan, Peifang; Liu, Kairui; Wan, Lu; Xu, Wenjuan; Li, Huixiang; Liu, Xiumei; Zhang, Z Conrad

    2016-06-01

    We report the synthesis of bis(hydroxylmethylfurfuryl)amine (BHMFA) from 5-hydroxymethylfurfural (5-HMF) by reacting 5-HMF with primary amines in the presence of homogeneous Ru(II) catalysts having sterically strained ligands. BHMFA is a group of furan-based monomers that offer great potential to form functional biopolymers with tunable properties. A range of primary amines, such as aliphatic and benzyl amines, are readily converted with 5-HMF to form the corresponding BHMFA in good yields. The reaction proceeds through reductive amination of 5-HMF with primary amine to form secondary amine, followed by reductive amination of 5-HMF with in situ generated secondary amine to produce BHMFA. PMID:27151257

  8. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type.

    Nguyen, Ha T; Van der Fels-Klerx, H J Ine; Peters, Ruud J B; Van Boekel, Martinus A J S

    2016-02-01

    This study aimed to investigate the effects of sugar type on the reaction mechanism for formation of acrylamide and 5-hydroxymethylfurfural (HMF) during the baking of biscuits at 200°C using multiresponse modelling. Four types of biscuits were prepared: (1) with sucrose, (2) with glucose and fructose, (3) with fructose only and (4) with glucose only. Experimental data showed that HMF concentration was highest in biscuits with glucose and fructose, whereas acrylamide concentration was highest in biscuits with glucose, also having the highest asparagine concentration. Proposed mechanistic models suggested that HMF is formed via caramelisation and that acrylamide formation follows the specific amino acid route, i.e., reducing sugars react with asparagine to form the Schiff base before decarboxylation, to generate acrylamide without the Amadori rearrangement product and sugar fragmentation. Study results contribute to understanding chemical reaction pathways in real food products. PMID:26304386

  9. Fast quantitation of 5-hydroxymethylfurfural in honey using planar chromatography.

    Chernetsova, Elena S; Revelsky, Igor A; Morlock, Gertrud E

    2011-07-01

    An approach for rapid quantitation of 5-hydroxymethylfurfural (HMF) in honey using planar chromatography is suggested for the first time. In high-performance thin-layer chromatography (HPTLC) the migration time is approximately 5 min. Detection is performed by absorbance measurement at 290 nm. Polynomial calibration in the matrix over a range of 1:80 showed correlation coefficients, r, of  ≥  0.9997 for peak areas and  ≥  0.9996 for peak heights. Repeatability in the matrix confirmed the suitability of HPTLC-UV for quantitation of HMF in honey. The relative standard deviation (RSD, %, n = 6) of HMF at 10 ng/band was 2.9% (peak height) and 5.2% (peak area); it was 0.6% and 1.0%, respectively, at 100 ng/band. Other possible detection modes, for example fluorescence measurement after post-chromatographic derivatization and mass spectrometric detection, were also evaluated and can coupling can be used as an additional tool when it is necessary to confirm the results of prior quantitation by HPTLC-UV. The confirmation is provided by monitoring the HMF sodium adduct [M + Na](+) at m/z 149 followed by quantitation in TIC or SIM mode. Detection limits for HPTLC-UV, HPTLC-MS (TIC), and HPTLC-MS (SIM) were 0.8 ng/band, 4 ng/band, and 0.9 ng/band, respectively. If 12 μL honey solution was applied to an HPTLC plate, the respective detection limits for HMF in honey corresponded to 0.6 mg kg(-1). Thus, the developed method was highly suitable for quantitation of HMF in honey at the strictest regulated level of 15 mg kg(-1). Comparison of HPTLC-UV detection with HPTLC-MS showed findings were comparable, with a mean deviation of 5.1 mg kg(-1) for quantitation in SIM mode and 6.1 mg kg(-1) for quantitation in TIC mode. The mean deviation of the HPTLC method compared with the HPLC method was 0.9 mg kg(-1) HMF in honey. Re-evaluation of the same HPTLC plate after one month showed a deviation of 0.5 mg kg(-1) HMF in honey. It was demonstrated that the proposed

  10. 5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography.

    Teixidó, Erika; Núñez, Oscar; Santos, F Javier; Galceran, M Teresa

    2011-06-15

    Micellar electrokinetic chromatography (MEKC) has been applied for the determination of 5-hydroxymethylfurfural in several foodstuffs. A 75mM phosphate buffer solution at pH 8.0 containing 100mM sodium dodecylsulphate was used as background electrolyte (BGE), and the separation was performed by applying +25kV in a 50μm I.D. uncoated fused-silica capillary. Good linearity over the range 2.5-250mgkg(-1) (r(2)⩾0.999) and run-to-run and day-to-day precisions at low and medium concentration levels were obtained. Sample limit of detection (0.7mgkg(-1)) and limit of quantification (2.5mgkg(-1)) were established by preparing the standards in blank matrix. The procedure was validated by comparing the results with those obtained with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Levels of HMF in 45 different foodstuffs such as breakfast cereals, toasts, honey, orange juice, apple juice, jam, coffee, chocolate and biscuits were determined. PMID:25213975

  11. Protein Engineering of GRE2 from Saccharomyces cerevisiae for Enhanced Detoxification of 5-hydroxymethylfurfural

    Furfural and 5-hydroxymethylfurfural (HMF) are representative inhibitors generated by lignocellulosic biomass pretreatment such as dilute acid hydrolysis that inhibit microbial growth and subsequent fermentation. It is possible to in situ detoxify these inhibitory compounds using tolerant Saccharom...

  12. PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF) VIA FRUCTOSE DEHYDRATION: EFFECT OF SOLVENT AND SALTING-OUT

    F. N. D. C. Gomes; L. R. Pereira; N. F. P. Ribeiro; M. M. V. M. Souza

    2015-01-01

    Abstract 5-Hydroxymethylfurfural (HMF) is a key renewable platform compound for production of fuels and chemical intermediates. The production of 5-hydroxymethylfurfural (HMF) from fructose dehydration was studied using H3PO4 as catalyst, in organic/water system with different solvents (acetone, 2-butanol and ethyl ether). The effect of fructose concentration, temperature and acid concentration was investigated in acetone/water medium. The increase in fructose concentration favors the formati...

  13. 5-Hydroxymethylfurfural from wine-processed Fructus corni inhibits hippocampal neuron apoptosis***

    Hai Gu; Zequn Jiang; Mingyan Wang; Haiying Jiang; Fengming Zhao; Xia Ding; Baochang Cai; Zhen Zhan

    2013-01-01

    Previous studies have shown that 5-hydroxymethylfurfural, a compound extracted from wine- pro-cessed Fructus corni, has a protective effect on hippocampal neurons. The present study was de-signed to explore the related mechanisms. Our study revealed that high and medium doses (10, 1μmol/L) of 5-hydroxymethylfurfural could improve the morphology of H2O2-treated rat hippocampal neurons as revealed by inverted phase-contrast microscopy and transmission electron microscopy. MTT results showed that incubation with high and medium doses of 5-hydroxymethylfurfural caused a significant increase in the viability of neuronal cells injured by H2O2. Flow cytometry assays con-firmed that H2O2 could induce cellapoptosis, while high and medium doses of 5-hydroxymethylfurfural had a visible protective effect on apoptotic rat hippocampal neurons. Re-al-time PCR and western blot analysis showed that high and medium doses of 5-hydroxymethylfurfural prevented H2O2-induced up-regulation of p53, Bax and caspase-3 and antagonized the down-regulation of Bcl-2 induced by H2O2 treatment. These results suggested that 5-hydroxymethylfurfural could inhibit apoptosis of cultured rat hippocampal neurons injured by H2O2 via increase in Bcl-2 levels and decrease in p53, Bax and caspase-3 protein expression lev-els.

  14. One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid.

    Qu, Yongshui; Li, Li; Wei, Quanyuan; Huang, Chongpin; Oleskowicz-Popiel, Piotr; Xu, Jian

    2016-01-01

    Conversion of carbohydrate into 5-hydroxymethylfurfural (5- HMF), a versatile, key renewable platform compound is regarded as an important transformation in biomass-derived carbohydrate chemistry. A variety of ILs, not only acidic but also alkaline ILs, were synthesized and used as catalyst in the production of 5-HMF from disaccharide. Several factors including reaction temperature, IL dosage, solvent and reaction time,were found to influence the yield of 5-HMF from cellobiose. Of the ILs tested, hydroxy-functionalized ionic liquid (IL), 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ([AEMIM]BF4) showed the highest catalytic activity and selectivity. 5-HMF yield of 68.71% from sucrose was obtained after 6 hrs at 160 °C. At the same condition with cellobiose as substrate, 5-HMF yield was 24.73%. In addition, 5-HMF also exhibited good stablity in this reaction system. Moreover, a kinetic analysis was carried out in both acidic and alkaline IL-catalyzed system, suggesting main side reaction in the conversion of fructose catalyzed by acidic and alkaline IL was polymerization of fructose and 5-HMF degradation, respectively. PMID:27181523

  15. Confirmation of patulin and 5-hydroxymethylfurfural in apple juice by gas chromatography/mass spectrometry.

    Rupp, H S; Turnipseed, S B

    2000-01-01

    A gas chromatographic/mass spectrometric (GC/MS) method was developed for the confirmation of patulin and 5-hydroxymethylfurfural (HMF) extracted from apple juice. The extraction is based on the official AOAC method for liquid chromatographic analysis. Juice extracts are quickly and easily derivatized with bis(trimethylsilyl)trifluoracetamide under mild conditions, and the trimethylsilyl ethers of the analytes are stable for at least several hours. The analytes are determined by GC/MS using an electron-impact source and selected ion monitoring of characteristic ions. For both analytes, the interassay differences between base-peak ratios for samples and standards were all <7.1% (absolute). The presence of patulin was confirmed at fortification levels of about 30-400 microg/L and naturally occurring levels of about 80-400 microg/L. The presence of HMF was also confirmed at levels < or = 2 mg/L. The proposed mass spectral fragmentation pathways of the analytes are presented. PMID:10868584

  16. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John;

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation....... product 5-hydroxymethyl-2-furancarboxylic acid is found to depend on the amount of added base and the oxygen pressure, suggesting that the reaction proceeds via initial oxidation of the aldehyde moiety followed by oxidation of the hydroxymethyl group of 5-hydroxymethylfurfural. Under optimized reaction...... conditions, a 71% yield of 2,5-furandicarboxylic acid is obtained at full 5-hydroxymethylfurfural conversion in the presence of excess base....

  17. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water

    Hansen, Thomas Steen; Mielby, Jerrik Jørgen; Riisager, Anders

    2011-01-01

    Boric acid and salts showed a synergistic effect on the dehydration of concentrated aqueous sugar solutions to yield 5-hydroxymethylfurfural.......Boric acid and salts showed a synergistic effect on the dehydration of concentrated aqueous sugar solutions to yield 5-hydroxymethylfurfural....

  18. Caprolactam from Renewable Resources : Catalytic Conversion of 5-Hydroxymethylfurfural into Caprolactone

    Buntara, Teddy; Noel, Sebastien; Phua, Pim Huat; Melián-Cabrera, Ignacio; Vries, Johannes G. de; Heeres, Hero J.

    2011-01-01

    Renewable nylon: 5-Hydroxymethylfurfural (HMF), which can be obtained from renewable resources such as D-fructose, was converted into caprolactone with very good overall selectivity in only three steps. The new route involves two hydrogenation steps to obtain 1,6-hexanediol, which was oxidatively cy

  19. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng;

    2013-01-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization...

  20. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose

    Søndergaard Hansen, Thomas; Woodley, John; Riisager, Anders

    2009-01-01

    Studies on the HCl-catalysed microwave-assisted dehydration of highly concentrated aqueous fructose (27 wt %) to 5-hydroxymethylfurfural (HMF) revealed a significant increase in the fructose conversion rate over the conventional heated systems. Water, being the most benign solvent and therefore...

  1. PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF VIA FRUCTOSE DEHYDRATION: EFFECT OF SOLVENT AND SALTING-OUT

    F. N. D. C. Gomes

    2015-03-01

    Full Text Available Abstract 5-Hydroxymethylfurfural (HMF is a key renewable platform compound for production of fuels and chemical intermediates. The production of 5-hydroxymethylfurfural (HMF from fructose dehydration was studied using H3PO4 as catalyst, in organic/water system with different solvents (acetone, 2-butanol and ethyl ether. The effect of fructose concentration, temperature and acid concentration was investigated in acetone/water medium. The increase in fructose concentration favors the formation of condensation products and rehydration products are favored at high acid concentration. The solvents exhibited similar performance when the volume ratio of organic to aqueous phase was 1:1, but when this ratio increases to 2:1, the HMF yield obtained with ether was much lower. NaCl addition to the aqueous phase promoted the extraction of HMF to the organic phase, with an HMF yield of 80% in the case of 2:1 acetone/water medium.

  2. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions

    Pereira, V.; Albuquerque, F.M.; Ferreira, A. C.; Cacho, J.; Marques, J. C.

    2011-01-01

    As furfural (F) and 5-hydroxymethylfurfural (HMF) are essentially formed from sugar dehydration, especially in food submitted to heat, they can be found in beverages, as well as fortified sweet wines. In order to assess the impact of temperature on Madeira winemaking, three traditional varieties of Madeira wines (Malvasia, Sercial and Tinta Negra Mole) were studied to evaluate the F and HMF contents. The wines were produced by two vinification processes, following traditional and modern metho...

  3. Acrylamide and 5-hydroxymethylfurfural formation in reconstituted potato chips during frying

    Miao, YuTian; Zhang, HuanJie; Zhang, LuLu; Wu, SiJia; Sun, Yijia; Shan, Yu; Yuan, Yuan

    2013-01-01

    In our present paper, the effect of water activity and processing conditions in reconstituted potato chips was considered as a model to investigate the changes of acrylamide (AA) and 5-hydroxymethylfurfural (HMF). The results suggested that the formation of AA and HMF was highly correlated with frying temperature and time. Water activity could also influence the formation of AA and HMF. Meanwhile, the formation of HMF has significant correlation with the formation of AA in reconstituted potat...

  4. Multiple gene mediated aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae

    Furfural and HMF (5-hydroxymethylfurfural) are representative inhibitors to ethanologenic yeast generated from biomass pretreatment using dilute acid hydrolysis. Few yeast strains tolerant to inhibitors are available. We have developed tolerant strains of Saccharomyces cerevisiae with enhanced bio...

  5. Effect of Storage on Acrylamide and 5-hydroxymethylfurfural Contents in Selected Processed Plant Products with Long Shelf-life.

    Michalak, Joanna; Gujska, Elżbieta; Czarnowska, Marta; Klepacka, Joanna; Nowak, Fabian

    2016-03-01

    This study investigated the effects of storage and temperature duration on the stability of acrylamide (AA) and 5-hydroxymethylfurfural (HMF) in selected foods with long shelf-life. Products were analysed fresh and stored at temperatures of 4 and 25 °C after 6 and 12 months (with the exception of soft bread samples, which were analysed after 15 and 30 days). The AA and HMF contents were determined with RP-HPLC coupled to a diode array detector (DAD). AA and HMF were not stable in many processed plant products with a long shelf-life. The highest AA reduction and the largest increase in HMF content were observed in the samples stored at a higher temperature (25 °C) for 12 months. It was found that an initial water activity of 0.4 is favourable to HMF formation and that AA reduction may be considerably greater in stored products with a low initial water activity. The kind of product and its composition may also have a significant impact on acrylamide content in stored food. In the final period of storage at 25 °C, acrylamide content in 100% cocoa powder, instant baby foods, 20% cocoa powder and instant coffee was 51, 39, 35 and 33% lower than in products before storage, respectively. It was observed that a large quantity of ε-NH2 and SH groups of amino acids in some products can be assumed as the reason for the significant AA degradation. PMID:26768597

  6. CONVERSION OF FRUCTOSE TO 5-HYDROXYMETHYLFURFURAL WITH A FUNCTIONALIZED IONIC LIQUID

    Hao Ma,

    2011-11-01

    Full Text Available Fructose can be efficiently converted to 5-hydroxymethylfurfural by using the functionalized ionic liquid 3-(2-chloroethyl-1-methylimidazolium chloride as both solvent and catalyst in the presence of water. This work advances the field and is distinct from earlier efforts in the sense that the observed yields of HMF from fructose are rather high and the reaction conditions rather mild and neutral in the complete absence of acidic additives (HMF yield 76% at 100 oC in 40 minutes.

  7. OPTIMIZATION OF PRODUCTION OF 5-HYDROXYMETHYLFURFURAL FROM GLUCOSE IN A WATER: ACETONE BIPHASIC SYSTEM

    A. D. M. Mendonça

    2015-06-01

    Full Text Available Abstract5-Hydroxymethylfurfural (HMF is considered to be an important building block for biorefineries and has a high potential for the production of chemicals and fuels. Production of HMF from glucose was studied using phosphoric acid as catalyst, in a water:acetone system with volume ratio of 1:2 and NaCl. An experimental design was applied to examine the influence of temperature, time and concentration of catalyst on the HMF yield. HMF yields of more than 50 % were obtained when using 200 ºC, 8.4 min and 0.8% of catalyst. The temperature is the main factor influencing the HMF yield.

  8. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural

    Wang, Guang-Hui; Hilgert, Jakob; Richter, Felix Herrmann; Wang, Feng; Bongard, Hans-Josef; Spliethoff, Bernd; Weidenthaler, Claudia; Schüth, Ferdi

    2014-03-01

    The synthesis of 2,5-dimethylfuran (DMF) from 5-hydroxymethylfurfural (HMF) is a highly attractive route to a renewable fuel. However, achieving high yields in this reaction is a substantial challenge. Here it is described how PtCo bimetallic nanoparticles with diameters of 3.6 ± 0.7 nm can solve this problem. Over PtCo catalysts the conversion of HMF was 100% within 10 min and the yield to DMF reached 98% after 2 h, which substantially exceeds the best results reported in the literature. Moreover, the synthetic method can be generalized to other bimetallic nanoparticles encapsulated in hollow carbon spheres.

  9. Development and validation of an HPLC method to determine metabolites of 5-hydroxymethylfurfural (5-HMF).

    Hardt-Stremayr, Magdalena; Bernaskova, Marketa; Hauser, Stefanie; Kunert, Olaf; Guo, Xinghua; Stephan, Janette; Spreitz, Josef; Lankmayr, Ernst; Schmid, Martin G; Wintersteiger, Reinhold

    2012-10-01

    The food component 5-hydroxymethylfurfural is supposed to have antioxidative properties and is therefore used as an acting agent in a novel anticancer infusion solution, named Karal®, and an oral supplementation. Previous studies showed that after oral and intravenous application, the substance is completely decomposed to its metabolites: 5-hydroxymethylfuroic acid, 2,5-furandicarboxylic acid, and N-(hydroxymethyl)furoyl glycine. The formation of a fourth metabolite, namely 5-sulphoxymethylfurfural, is still not clarified according to literature. Due to commercial unavailability, synthesis of 5-sulphoxymethylfurfural was conducted and a synthesis procedure for N-(hydroxymethyl)furoyl glycine had to be developed. Identification of the synthesised compounds was proven by LC-MS and NMR. An appropriate HPLC method was established to obtain good separation of the four possible metabolic substances and 5-hydroxymethylfurfural within 12 min via a HILIC column (150 × 4.6 mm, 5 μm) using a gradient grade system switching from mobile phase A (ACN/ammonium formate 100 mM, pH 2.35, 95:5, v/v) to mobile phase B (ACN/ammonium formate 100 mM, pH 2.35, 85:15, v/v). The procedure was afterward validated following ICH guidelines in terms of selectivity, linearity, precision, LOD, and LOQ. PMID:22941583

  10. Lysosome: regulator of lipid degradation pathways

    Settembre, Carmine; Ballabio, Andrea

    2014-01-01

    Autophagy is a catabolic pathway that has a fundamental role in the adaptation to fasting and primarily relies on the activity of the endolysosomal system, to which the autophagosome targets substrates for degradation. Recent studies have revealed that the lysosomal–autophagic pathway plays an important part in the early steps of lipid degradation. In this review, we discuss the transcriptional mechanisms underlying co-regulation between lysosome, autophagy, and other steps of lipid catabolis...

  11. An Unexpected Reaction between 5-Hydroxymethylfurfural and Imidazolium-Based Ionic Liquids at High Temperatures

    Zongbao K. Zhao

    2011-10-01

    Full Text Available A new compound was detected during the production of 5-hydroxymethylfurfural (HMF from glucose and cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl at high temperatures. Further experiments found that it was derived from the reaction of HMF with [Bmim]Cl. The structure of new compound was established as 1-butyl-2-(5’-methyl-2’-furoylimidazole (BMI based on nuclear magnetic resonance and mass spectrometry analysis, and a possible mechanism for its formation was proposed. Reactions of HMF with other imidazolium-based ionic liquids were performed to check the formation of BMI. Our results provided new insights in terms of side reactions between HMF and imidazolium-based ionic liquids, which should be valuable for designing better processes for the production of furans using biomass and related materials.

  12. Detection and determination of interfering 5-hydroxymethylfurfural in the analysis of caramel-coloured pharmaceutical syrups.

    Hewala, I I; Blaih, S M; Zoweil, A M; Onsi, S M

    1993-02-01

    A comparison between different caramels described for use in the pharmaceutical industry is presented. An interfering substance, 5-hydroxymethylfurfural (5-HMF), was detected in some caramels. Conditions and proofs for the formation of 5-HMF are presented. Interference by 5-HMF during the analysis of the active drugs and the possibility of interaction with the active drugs during the shelf-life of the drug formulation are discussed. A limit test for 5-HMF in caramel was developed. The test depends on measuring the difference in absorbance between two equimolar solutions of caramel, one of which contains sodium borohydride. The test is sensitive and selective for the detection and determination of trace amounts of 5-HMF without interference from the brown products of caramel. PMID:8192718

  13. Simultaneous determination of 5-hydroxymethylfurfural and patulin in apple juice by reversed-phase liquid chromatography.

    Gökmen, V; Acar, J

    1999-06-25

    A rapid, simple and economical method was described for the simultaneous determination of 5-hydroxymethylfurfural (HMF) and patulin in apple juice. The sample was extracted with ethyl acetate and the extract was then cleaned up by extraction with a sodium carbonate solution. Then HMF and patulin were determined by reversed-phase liquid chromatography using a C18 column and a photodiode array detector. HMF and patulin could be completely resolved by using the mixture water-acetonitrile (99:1, v/v) as the mobile phase with a flow rate of 1.0 ml/min. Mean recoveries of HMF ranged from 86% to 100% with an overall mean of 94%, that of patulin ranged from 94% to 125% with an overall mean of 103%, for different spiking levels. The limits of detection for HMF and patulin in apple juice were found to be < 0.01 mg/l and < 5 micrograms/l, respectively. PMID:10431352

  14. Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural (HMF Using ZrCl4 Catalyst in Nitromethane

    Raju S. Thombal

    2014-09-01

    Full Text Available Solvent nitromethane along with a variety of metal chloride and mineral acids as catalyst were studied for the synthesis of 5-Hydroxymethylfurfural (HMF, a key precursor in the formation of alternative fuel 2,5-dimethylfuran (DMF and other value added chemicals. Reaction time, temperature and catalyst concentration were also systematically studied to achieve highest HMF formation. Among the carbohydrates studied for HMF synthesis, D-fructose and inulin were found particularly most productive yielding >70% and with 100% selectivity using ZrCl4 in nitromethane at 100 oC during 3h. Readily available reagents, solvents, and simple reaction conditions could mark this process promising for HMF formation from biomass.

  15. Recyclable Magnetite Nanoparticle Catalyst for One-Pot Conversion of Cellobiose to 5-Hydroxymethylfurfural in Water

    Anuja Bhalkikar

    2015-01-01

    Full Text Available Environmentally benign and easily recoverable magnetite nanoparticles (Fe3O4 NPs were demonstrated to catalyze the one-pot conversion of cellobiose, a glucose disaccharide, to 5-hydroxymethylfurfural (5-HMF. The conversion was achieved in water under hydrothermal conditions. The catalytic activity of Fe3O4 NPs surpassed those of iron (II and iron (III chlorides in this reaction. Optimized cellobiose conversion reactions catalyzed with Fe3O4 NPs gave the highest 5-HMF yields of 23.4 ± 0.6% at 160°C for 24 hours. After three reuses, the Fe3O4 NP catalyst retained its catalytic activity with similar 5-HMF yields, demonstrating the recyclability of this eco-friendly catalyst in water.

  16. Analysis of 5-hydroxymethylfurfural in foods by gas chromatography-mass spectrometry.

    Teixidó, E; Santos, F J; Puignou, L; Galceran, M T

    2006-11-24

    A new, simple and selective method for the analysis of 5-hydroxymethylfurfural (HMF) in foods by gas chromatography coupled to mass spectrometry (GC-MS) is proposed. Several derivatising procedures based on the formation of an HMF silylated derivative using different reagents were studied. Among the derivatising reagents examined, N,O-bis-trimethylsilyltrifluoroacetamide (BSTFA) provided the best derivatisation yield. Sample clean-up was also optimised, using either liquid-liquid extraction with dichloromethane or solid-phase extraction (SPE) with several commercially available cartridges, and the best results were obtained using ENV+ cartridges. Quality parameters such as day-to-day and run-to-run precision (RSD<10%), linearity (between 25 and 700 ng g(-1)) and detection limit (6 ng g(-1)) were established. This method was successfully applied to the analysis of HMF content in several Spanish food samples from a local market, such as jam, honey, orange juice and bakery products. PMID:17010355

  17. Acrylamide and 5-hydroxymethylfurfural formation in reconstituted potato chips during frying.

    Miao, YuTian; Zhang, HuanJie; Zhang, LuLu; Wu, SiJia; Sun, YiJia; Shan, Yu; Yuan, Yuan

    2014-12-01

    In our present paper, the effect of water activity and processing conditions in reconstituted potato chips was considered as a model to investigate the changes of acrylamide (AA) and 5-hydroxymethylfurfural (HMF). The results suggested that the formation of AA and HMF was highly correlated with frying temperature and time. Water activity could also influence the formation of AA and HMF. Meanwhile, the formation of HMF has significant correlation with the formation of AA in reconstituted potato chips. A typical exponential growth curve was observed by plotting AA levels vs HMF content which were all determined under different heating condition: [Formula: see text]. The model could be used as a tool for estimating the formation of AA when the content of HMF was known. PMID:25477673

  18. Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt.

    Qu, Yongshui; Huang, Chongpin; Zhang, Jie; Chen, Biaohua

    2012-02-01

    The dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) with room temperature ionic liquids (ILs) is a way of producing liquid fuels from renewable resources, but separation of products and IL is energy intensive. In this work, a heteropolyacid salt of an IL-forming cation functionalized with a propanesulfonate group, 1-(3-sulfonicacid)propyl-3-methyl imidazolium phosphotungstate ([MIMPS](3)PW(12)O(40)), was used as a catalyst-rather than as a solvent-in the conversion of fructose to 5-HMF. The maximum yield of 5-HMF was 99.1% at 120°C after 2h using sec-butanol as solvent, and the catalyst was separated from the reaction mixture by a simple process at the end of the reaction and reused six times without loss of activity. PMID:22201545

  19. An RP-HPLC determination of 5-hydroxymethylfurfural in honey The case of strawberry tree honey.

    Spano, Nadia; Casula, Lucia; Panzanelli, Angelo; Pilo, Maria I; Piu, Paola C; Scanu, Roberta; Tapparo, Andrea; Sanna, Gavino

    2006-02-15

    The use of the RP-HPLC official method of the International Honey Commission (IHC) for the determination of 5-hydroxymethylfurfural (HMF) in strawberry tree honey (Arbutus unedo, a typical Sardinian honey) has brought to light a specific and heavy chromatographic interference that prevents accurate quantification. The interference has been identified as homogentisic acid (HA), i.e. the marker of the botanical origin of the honey. For this reason, an alternative RP-HPLC method is proposed. The bias-free method allows a complete separation of HMF from HA to the baseline level and is faster and more precise than the RP-HPLC official method: the detection and quantification limits are 1.9 and 4.0mgkg(-1), respectively, whereas the repeatability is ca. 2% in the HMF concentration range of 5-140mgkg(-1). PMID:18970477

  20. Direct Conversion of Mono- and Polysaccharides into 5-Hydroxymethylfurfural Using Ionic-Liquid Mixtures.

    Siankevich, Sviatlana; Fei, Zhaofu; Scopelliti, Rosario; Jessop, Philip G; Zhang, Jiaguang; Yan, Ning; Dyson, Paul J

    2016-08-23

    Platform chemicals are usually derived from petrochemical feedstocks. A sustainable alternative commences with lignocellulosic biomass, a renewable feedstock, but one that is highly challenging to process. Ionic liquids (ILs) are able to solubilize biomass and, in the presence of catalysts, convert the biomass into useful platform chemicals. Herein, we demonstrate that mixtures of ILs are powerful systems for the selective catalytic transformation of cellulose into 5-hydroxymethylfurfural (HMF). Combining ILs with continuous HMF extraction into methyl-isobutyl ketone or 1,2-dimethoxyethane, which form a biphase with the IL mixture, allows the online separation of HMF in high yield. This one-step process is operated under relatively mild conditions and represents a significant step forward towards sustainable HMF production. PMID:27345462

  1. Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures.

    Kędzierska-Matysek, Monika; Florek, Mariusz; Wolanciuk, Anna; Skałecki, Piotr; Litwińczuk, Anna

    2016-04-01

    The effect of heating at various temperatures (30, 40, 50, 60, 70 and 80 °C) on dynamic viscosity, colour, 5-hydroxymethylfurfural (5-HMF) concentration and diastase activity of raw rape honey were assessed. In fresh honey, moisture, ash, free acidity, pH and electrical conductivity averaged 185.3 g kg(-1), 1.2 g kg(-1), 18.71 mEq kg(-1), 4.2 and 0.25 mS cm(-1), respectively. Heating significantly (p ≤ 0.05) increased lightness (L*), yellowness (b*), chroma (C*), hue (h°) values, but decreased redness (a*). The viscosity at 20 °C (33.6 Pa s) differed significantly (p ≤ 0.01) with those at 30, 40 and 50 °C (8.2, 2.5, and 1.6 Pa s, respectively). Diastase activity decreased concomitant with heating at higher temperatures. Honey heated at 80 °C for 15 min showed the maximum increase of 5-HMF content, with an average of 1.9 mg kg(-1) (62 %), compared to unheated samples. Heating for 15 min between 50 °C and 80 °C did not significantly degrade the quality of the honey, but, slightly enhanced formation of 5-HMF and reduced the diastase activity. PMID:27413239

  2. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  3. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature-time profile effects and kinetics

    Fels, van der H.J.; Capuano, E.; Nguyen, H.T.; Mogol, B.A.; Kocadagli, T.; Goncuoglu Tas, N.; Hamzalioglu, A.; Boekel, van M.A.J.S.; Gokmen, V.

    2014-01-01

    The present study aimed to investigate the effect of recipe and temperature–time on the formation of acrylamide and 5-hydroxymethylfurfural (HMF) during biscuit baking. Baking experiments were performed with biscuits of two different recipes, with and without NaCl, at 180 °C, 190 °C and 200 °C. Acry

  4. Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran

    Sádaba, Irantzu; Gorbanev, Yury; Kegnæs, Søren;

    2013-01-01

    The catalytic performance of zeolite-supported vanadia catalysts was examined for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) in organic solvents such as N,N-dimethylformamide (DMF), methyl isobutyl ketone, toluene, trifluorotoluene and DMSO. Catalysts based on...

  5. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  6. Inoculum pre-treatment affects the fermentative activity of hydrogen-producing communities in the presence of 5-hydroxymethylfurfural.

    Bellucci, Micol; Botticella, Giuseppe; Francavilla, Matteo; Beneduce, Luciano

    2016-01-01

    To enhance the productivity of mixed microbial cultures for fermentative bio-hydrogen production, chemical-physical pre-treatments of the original seed are needed to suppress the activity of hydrogen (H2)-consuming microbes. This approach might influence negatively the composition and diversity of the hydrogen-producing community with consequences on the functional stability of the H2-producing systems in case of perturbations. In this study, we aimed at investigating the effect of different types of pre-treatment on the performance of hydrogen production systems in the presence of an inhibitor, such as 5-hydroxymethylfurfural (HMF). The efficiency and the microbial community structure of batch reactors amended with HMF and inoculated with non-pretreated and pretreated (acid, heat shock, and aeration) anaerobic sludge were evaluated and compared with control systems. The type of pre-treatments influenced the microbial community assembly and activity in inhibited systems, with significant effect on the performance. Cumulative H2 production tests showed that the pre-aerated systems (control and HMF inhibited) were the most efficient, while the difference of the lag phase of the pre-acidified control and HMF-added test was negligible. Analyses of the structure of the enriched microbial community in the systems through PCR-denaturing gradient gel electrophoresis (DGGE) followed by band sequencing revealed that the differences in performance were mostly related to shifts in the metabolic pathways rather than in the predominant species. In conclusion, the findings suggest that the use of specific inoculum pre-treatment could contribute to regulate the metabolic activity of the fermentative H2-producing bacteria in order to enhance the bio-energy production. PMID:26428244

  7. Rapid determination of 5-hydroxymethylfurfural by DART ionization with time-of-flight mass spectrometry.

    Rajchl, Aleš; Drgová, Ladislava; Grégrová, Adéla; Cížková, Helena; Sevčík, Rudolf; Voldřich, Michal

    2013-05-01

    DART (direct analysis in real time), a novel technique with wide potential for rapid screening analysis, coupled with high-resolution time-of-flight mass spectrometry (TOF-MS) has been used for quantitative analysis of 5-hydroxymethylfurfural (5-HMF), a typical temperature marker of food. The DART/TOF-MS method was optimised and validated. Quantification of 5-HMF was achieved by use of a stable isotope-labelled 5-HMF standard prepared from glucose. Formation of 5-HMF from saccharides, a potential source of overestimation of results, was evaluated. Forty-four real samples (honey and caramelised condensed sweetened milk) and 50 model samples of heated honey were analysed. The possibility of using DART for analysis of heated samples of honey was confirmed. HPLC and DART/TOF-MS methods for determination of 5-HMF were compared. The correlation equation between these methods was DART = 1.0287HPLC + 0.21340, R(2) = 0.9557. The DART/TOF-MS method has been proved to enable efficient and rapid determination of 5-HMF in a variety of food matrices, for example honey and caramel. PMID:23503749

  8. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution.

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng; Qiao, Yan; Hou, Xianglin

    2013-09-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization of the reaction parameters including the screening of 8 co-catalysts was carried out. Among them, AlCl3 and B(OH)3 improved 5-HMF yield, whereas CdCl2, CuCl2 and NH4Cl had no effect. CrCl3, SnCl4 and SnCl2 showed negative effects, i.e. lower yields. Consequently, the optimal reaction conditions were found to be 67 wt.% ZnCl2 aqueous solution, at 120 °C without co-catalyst. The reactions were further studied by in situ NMR, and no intermediate or other byproducts, except humins, were observed. Finally, the substrate scope was expanded from GlcNH2 to N-acetyl-D-glucosamine and various chitosan polymers with different molecular weights, 5-HMF yield from polymers were generally lower than that from GlcNH2. PMID:23819974

  9. Catalytic conversion of inulin and fructose into 5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids.

    Xie, Haibo; Zhao, Zongbao K; Wang, Qian

    2012-05-01

    In this work, we found that lignosulfonic acid (LS), which is a waste byproduct from the paper industry, in ionic liquids (ILs) can catalyze the dehydration of fructose and inulin into 5-hydroxymethylfurfural (HMF) efficiently, which is a promising potential substitute for petroleum-based building blocks. The effects of reaction time, temperature, catalyst loading, and reusability of the catalytic system were studied. It was found that a 94.3% yield of HMF could be achieved in only 10 min at 100 °C under mild conditions. The reusability study of the LS-IL catalytic system after removal of HMF by ethyl acetate extraction demonstrated that the catalytic activity decreased from 77.4 to 62.9% after five cycles and the catalytic activity could be recovered after simply removing the accumulated humins by filtration after adding ethanol to the LS-ILs. The integrated utilization of a biorenewable feedstock, catalyst, and ILs is an example of an ideal green chemical process. PMID:22517537

  10. Glucose transformation to 5-hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study.

    Arifin; Puripat, Maneeporn; Yokogawa, Daisuke; Parasuk, Vudhichai; Irle, Stephan

    2016-01-30

    Isomerization and transformation of glucose and fructose to 5-hydroxymethylfurfural (HMF) in both ionic liquids (ILs) and water has been studied by the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method coupled with ab initio electronic structure theory, namely coupled cluster single, double, and perturbative triple excitation (CCSD(T)). Glucose isomerization to fructose has been investigated via cyclic and open chain mechanisms. In water, the calculations support the cyclic mechanism of glucose isomerization; with the predicted activation free energy is 23.8 kcal mol(-1) at experimental condition. Conversely, open ring mechanism is more favorable in ILs with the energy barrier is 32.4 kcal mol(-1) . Moreover, the transformation of fructose into HMF via cyclic mechanism is reasonable; the calculated activation barriers are 16.0 and 21.5 kcal mol(-1) in aqueous and ILs solutions, respectively. The solvent effects of ILs could be explained by the decomposition of free energies and radial distribution functions of solute-solvent that are produced by RISM-SCF-SEDD. PMID:26453901

  11. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. PMID:26917388

  12. Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide

    Gabriel Morales; Juan A.Melero; Marta Paniagua; Jose Iglesias; Blanca Hernández; María Sanz

    2014-01-01

    Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydra-tion of C6 monosaccharides into 5-hydroxymethylfurfural (HMF) using dimethyl sulfoxide (DMSO) as solvent. Sulfonic commercial resin Amberlyst-70 was the most active catalyst, which was as-cribed to its higher concentration of sulfonic acid sites as compared with the other catalysts, and it gave 93 mol%yield of HMF from fructose in 1 h. With glucose as the starting material, which is a much more difficult reaction, the reaction conditions (time, temperature, and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology, which gave a maximum HMF yield of 33 mol%at 147°C with 23 wt%catalyst loading based on glucose and 24 h reaction time. DMSO promotes the dehydration of glucose into anhydroglucose, which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions. Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.

  13. Influence of Salts on the Partitioning of 5-Hydroxymethylfurfural in Water/MIBK.

    Mohammad, Sultan; Held, Christoph; Altuntepe, Emrah; Köse, Tülay; Sadowski, Gabriele

    2016-04-28

    This study investigates the influence of electrolytes on the performance of extracting 5-hydroxymethylfurfural (HMF) from aqueous media using methyl isobutyl ketone (MIBK). For that purpose, liquid-liquid phase equilibria (LLE) of quaternary systems containing HMF, water, MIBK and salts were measured at atmospheric pressure and 298.15 K. The salts under investigation were composed of one of the anions NO(3-), SO4(2-), Cl(-), or CH3COO(-) and of one of the alkali cations Li(+), Na(+), or K(+). On the basis of these LLE data, the partition coefficient of HMF between the aqueous and the MIBK phase KHMF was determined. It could be shown that KHMF significantly depends on the kind and concentration of the added salt. Weak electrolytes (e.g., sulfates, acetates) caused salting-out, whereas nitrates caused salting-in of HMF to the aqueous phase. Unexpectedly, LiCl caused salting-out at low LiCl concentrations and salting-in at LiCl concentrations higher than 3 mol/kgH2O. The model electrolyte perturbed-chain SAFT (ePC-SAFT) was used to predict the salt influence on the LLE in the quaternary systems water/MIBK/HMF/salt in good agreement with the experimental data. On the basis of ePC-SAFT, it could be concluded that the different salting-out/salting-in behavior of the various salts is mainly caused by their different tendency to form ion pairs in aqueous solutions. PMID:27027570

  14. Dehydration of Carbohydrates to 5-Hydroxymethylfurfural in Ionic Liquids Catalyzed by Hexachlorotriphosphazene

    宋金良; 张斌斌; 史敬华; 马珺; 杨冠英; 韩布兴

    2012-01-01

    Development of efficient catalysts for the dehydration of carbohydrates to produce 5-hydroxymethylfurfural (HMF) is a very attractive topic. In this work, dehydration of fructose catalyzed by three organic molecules, includ- ing hexachlorotriphosphazene (N3P3CI6), trichloromelamine (C3N6H3CI3) and N-bromosuccinimide (NBS), was studied in ionic liquids. It was discovered that the three organic molecules had high activity in accelerating the de- hydration of fructose and N3P3C16 was the most efficient catalyst among them. The effects of amount of catalysts, temperature, solvents, reaction time, and substrate/solvent weight ratio on the reaction were investigated using N3P3C16 as the catalyst and 1-butyl-3-methylimidazolium chloride ([Bmim]C1) as the solvent. It was demonstrated that the N3P3C16/[Bmim]CI catalytic system was very effective for catalyzing the reaction. The yield of HMF could reach 92.8% in 20 rain at the optimized conditions and the N3P3C16/[Bmim]C1 system could be reused. Further study indicated that the N3P3C16/[Bmim]CI system was also effective for the dehydration of sucrose and inulin and satisfactory yield could be obtained at suitable conditions.

  15. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid.

    Wang, Pan; Yu, Hongbing; Zhan, Sihui; Wang, Shengqiang

    2011-03-01

    Production of 5-hydroxymethylfurfural (HMF) from cellulose catalyzed by solid acids and metal chlorides was studied in the 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) under microwave irradiation. Among the applied catalysts, the use of CrCl(3)/LiCl resulted in the highest yield of HMF. The effects of catalyst dosage (mole ratio of catalyst to glucose units in the feedstock) and reaction temperature on HMF yields were investigated to obtain optimal process conditions. With the 1:1 mol ratio of catalyst to glucose unit, the HMF yield reached 62.3% at 160°C for 10 min. Untreated wheat straw was also investigated as feedstock to produce HMF for the practical use of raw biomass, in which the HMF yield was comparable to that from pure cellulose. After the extraction of HMF, [BMIM]Cl and CrCl(3)/LiCl could be reused and exhibited no activity loss after three successive runs. PMID:21232942

  16. Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams.

    Ordomsky, Vitaly V; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander

    2013-09-01

    A solid acid foam-structured catalyst based on a binderless zirconium phosphate (ZrPO) coating on aluminum foam was prepared. The catalyst layer was obtained by performing a multiple washcoating procedure of ZrPO slurry on the anodized aluminum foam. The effect of the pretreatment of ZrPO, the concentration of the slurry, and the amount of coating on the properties of the foam was studied. The catalytic properties of the prepared foams have been evaluated in the dehydration of glucose to 5-hydroxymethylfurfural (HMF) in a biphasic reactor. The catalytic behavior of ZrPO foam-based catalysts was studied in a rotating foam reactor and compared with that of bulk ZrPO. The effect of a silylation procedure on the selectivity of the process was shown over bulk and foam catalysts. This treatment resulted in a higher selectivity due to the deactivation of unselective Lewis acid sites. Addition of methylisobutylketone leads to extraction of HMF from the aqueous phase and stabilization of the selectivity to HMF over bulk ZrPO. A more intensive contact of the foam with the aqueous and organic phases leads to an increase in the selectivity and resistance to deactivation of the foam in comparison with a bulk catalyst. PMID:23616489

  17. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year.

    Khalil, M I; Sulaiman, S A; Gan, S H

    2010-01-01

    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type. PMID:20595027

  18. Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection.

    Chen, Zhijun; Yan, Xiaomei

    2009-10-14

    This article describes the development of a simple analytical approach for the simultaneous determination of melamine and 5-hydroxymethylfurfural (HMF) in milk samples using capillary electrophoresis (CE) with diode array detection (DAD) for the first time. Ultraviolet absorption at wavelengths of 214 and 280 nm was applied for the detection of melamine and HMF, respectively. Milk samples were extracted with 1% trichloroacetic acid using a high-speed blender and ultrasonication. After centrifugation and filtration, the extract was analyzed by CE-DAD directly. Micellar electrokinetic capillary chromatography was employed as the separation mode by adding sodium dodecyl sulfate (SDS) to the electrolyte. Under optimal separation conditions, melamine, HMF, and interferents were well resolved. The linear dynamic ranges were 0.05-100 microg/mL for melamine (R(2) = 0.9996) and 0.1-100 microg/mL for HMF (R(2) = 0.9997). The assay detection limits were 0.047 microg/mL and 0.067 microg/mL for melamine and HMF, respectively. Satisfactory results were obtained for the assay recovery rate and repeatability. The proposed method was successfully applied for the analysis of melamine and HMF in real milk samples, and the results of melamine were comparable to those obtained using HPLC-UV reference method. PMID:19761188

  19. Bifunctional polyacrylonitrile fiber-mediated conversion of sucrose to 5-hydroxymethylfurfural in mixed-aqueous systems.

    Shi, Xian-Lei; Zhang, Min; Lin, Huikun; Tao, Minli; Li, Yongdan; Zhang, Wenqin

    2015-03-01

    A highly efficient catalytic system composed of a bifunctional polyacrylonitrile fiber (PANF-PA[BnBr]) and a metal chloride was employed to produce 5-hydroxymethylfurfural (HMF) from sucrose in mixed-aqueous systems. The promoter of PANF-PA[BnBr] incorporates protonic acid groups that promote the hydrolysis of the glycosidic bond to convert sucrose into glucose and fructose, and then catalyzes fructose dehydration to HMF, while the ammonium moiety may promote synergetically with the metal chloride the isomerization of glucose to fructose and transfer HMF from the aqueous to the organic phase. The detailed characterization by elemental analysis, FTIR spectroscopy, and SEM confirmed the rangeability of the fiber promoter during the modification and utilization processes. Excellent results in terms of high yield (72.8%) of HMF, superior recyclability (6 cycles) of the process, and effective scale-up and simple separation procedures of the catalytic system were obtained. Moreover, the prominent features (high strength, good flexibility, etc.) of the fibers are very attractive for fix-bed reactor. PMID:25573698

  20. Over-expression of NADH-dependent oxidoreductase (fucO) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Miller, Elliot N.; Zhang, Xueli; Yomano, Lorraine P.; Wang, Xuan; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2015-10-13

    The subject invention pertains to the discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural. This allows for a new approach to improve furfural tolerance in bacterial and/or yeast cells used to produce desired products. Thus, novel biocatalysts (bacterial, fungal or yeast cells) exhibiting increased tolerance to furfural and 5-hydroxymethylfurfural (5-HMF) are provided as are methods of making and using such biocatalysts for the production of a desired product.

  1. Bioactivation of food genotoxicants 5-hydroxymethylfurfural and furfuryl alcohol by sulfotransferases from human, mouse and rat: a comparative study.

    Sachse, Benjamin; Meinl, Walter; Sommer, Yasmin; Glatt, Hansruedi; Seidel, Albrecht; Monien, Bernhard H

    2016-01-01

    5-Hydroxymethylfurfural (HMF) and furfuryl alcohol (FFA) are moderately potent rodent carcinogens that are present in thermally processed foodstuffs. The carcinogenic effects were hypothesized to originate from sulfotransferase (SULT)-mediated bioactivation yielding DNA-reactive and mutagenic sulfate esters, a confirmed metabolic pathway of HMF and FFA in mice. It is known that orthologous SULT forms substantially differ in substrate specificity and tissue distribution. This could influence HMF- and FFA-induced carcinogenic effects. Here, we studied HMF and FFA sulfoconjugation by 30 individual SULT forms of humans, mice and rats. The catalytic efficiencies (k cat/K M) of HMF sulfoconjugation of human SULT1A1 (13.7 s(-1) M(-1)), mouse Sult1a1 (15.8 s(-1) M(-1)) and 1d1 (4.8 s(-1) M(-1)) and rat Sult1a1 (5.3 s(-1) M(-1)) were considerably higher than those of all other SULT forms investigated (≤0.73 s(-1 )M(-1)). FFA sulfoconjugation was monitored using adenosine as a nucleophilic scavenger for the reactive 2-sulfoxymethylfuran (t 1/2 = 20 s at 37 °C). The resulting adduct N (6)-((furan-2-yl)methyl)-adenosine (N (6)-MF-A) was quantified by isotope-dilution UPLC-MS/MS. The rates of N (6)-MF-A formation showed that hSULT1A1 and its orthologues in mice and rats were also the most important contributors to FFA sulfoconjugation in each of the species. Taken together, the catalytic capacity of hSULT1A1 is comparable to that of mSult1a1 in mice, the species in which carcinogenic effects of HMF and FFA were detected. This is of primary concern due to the expression of hSULT1A1 in many different tissues. PMID:25370010

  2. Organocatalyzed One-Step Synthesis of Functionalized N-Alkyl-Pyridinium Salts from Biomass Derived 5-Hydroxymethylfurfural.

    Sowmiah, Subbiah; Veiros, Luís F; Esperança, José M S S; Rebelo, Luís P N; Afonso, Carlos A M

    2015-11-01

    An efficient and scalable method has been developed for the synthesis of N-alkylpyridinium salts from biomass derived 5-hydroxymethylfurfural and alkyl amines using a catalytic amount of formic acid. This protocol is also extended to various diamines providing the exclusive formation of mono-N-alkylpyridinium salts. In addition, the mechanism for the formation of pyridinium salts was studied by DFT and using H2(18)O isotope labeled experiments showing no incorporation of (18)O in the product. PMID:26493742

  3. Base-Free Aqueous-Phase Oxidation of 5-Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks.

    Artz, Jens; Palkovits, Regina

    2015-11-01

    The base-free aqueous-phase oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxilic acid (FDCA) was performed at 140 °C and 20 bar of synthetic air as the oxidant. Ru clusters supported on covalent triazine frameworks (CTFs) enabled superior conversion (99.9%) and FDCA yields in comparison to other support materials such as activated carbon and γ-Al2O3 after only 1 h. The properties of the CTFs such as pore volume, specific surface area, and polarity could be tuned by using different monomers. These material properties influence the catalytic activity of Ru/CTF significantly as mesoporous CTFs showed superior activity compared to microporous materials, whereas high polarities provide further beneficial effects. The recyclability of the prepared Ru/CTF catalysts was comparable to that of Ru/C at high conversions and product yields. Nevertheless, minor deactivation in five successive recycling experiments was observed. PMID:26482331

  4. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. PMID:26213045

  5. Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis.

    Galkin, Konstantin I; Krivodaeva, Elena A; Romashov, Leonid V; Zalesskiy, Sergey S; Kachala, Vadim V; Burykina, Julia V; Ananikov, Valentine P

    2016-07-11

    Spectral studies revealed the presence of a specific arrangement of 5-hydroxymethylfurfural (5-HMF) molecules in solution as a result of a hydrogen-bonding network, and this arrangement readily facilitates the aging of 5-HMF. Deterioration of the quality of this platform chemical limits its practical applications, especially in synthesis/pharma areas. The model drug Ranitidine (Zantac®) was synthesized with only 15 % yield starting from 5-HMF which was isolated and stored as an oil after a biomass conversion process. In contrast, a much higher yield of 65 % was obtained by using 5-HMF isolated in crystalline state from an optimized biomass conversion process. The molecular mechanisms responsible for 5-HMF decomposition in solution were established by NMR and ESI-MS studies. A highly selective synthesis of a 5-HMF derivative from glucose was achieved using a protecting group at O(6) position. PMID:27271823

  6. Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis.

    Kim, Jae Hyung; Na, Jeong-Geol; Yang, Ji-Won; Chang, Yong Keun

    2013-07-01

    A two-stage membrane process for the separation of galactose, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) has been proposed. The first step of nanofiltration (NF) is to remove 5-HMF and LA from galactose solution obtained by the hydrolysis of agarose, the main component of red algal galactan for the reduction of its microbial toxicity. 5-HMF and LA are inhibitory to fermentation but at the same time useful compounds themselves with many applications. The second step of electrodialysis (ED) is to separate 5-HMF and LA in the permeate from NF. More than 91% of 5-HMF and up to 62% of LA could be removed from agarose hydrolysate, while galactose was almost completely retained by NF. Further removal of LA was expected to be possible with no loss of galactose by operating the NF process in a diafiltration mode. 5-HMF and LA could be effectively separated from each other by ED. PMID:23672940

  7. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo;

    2013-01-01

    The renewable chemical building block 5-hydroxymethylfurfural (HMF) was oxidized to 2,5-diformylfuran by an oxidation system consisting of the radical 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) and CuCl. The system was optimized by exploring several reaction conditions and by employing nitrogen...

  8. From 5-Hydroxymethylfurfural (HMF) to Polymer Precursors : Catalyst Screening Studies on the Conversion of 1,2,6-hexanetriol to 1,6-hexanediol

    Buntara, Teddy; Noel, Sébastien; Phua, Pim Huat; Melián-Cabrera, Ignacio; Vries, Johannes G. de; Heeres, Hero J.

    2012-01-01

    1,6-hexanediol (1) is an important polymer precursor for the polyester industry. In this paper, exploratory catalyst screening studies on the synthesis of 1 from 1,2,6-hexanetriol (2) are described via two different routes. The latter is available by a two-step procedure from 5-hydroxymethylfurfural

  9. Microbial PAH-Degradation in Soil: Degradation Pathways and Contributing Factors

    ZHANG Xu-Xiang; CHENG Shu-Pei; ZHU Cheng-Jun; SUN Shi-Lei

    2006-01-01

    Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.

  10. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2006-01-01

    Levulinic acid (LA), accessible by the acid catalyzed degradation of biomass, is potentially a very versatile green intermediate chemical for the synthesis of various (bulk) chemicals for applications like fuel additives, polymers, and resin precursors. We report here a kinetic study on one of the k

  11. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red ...

  12. Metabolic pathway engineering of the toluene degradation pathway

    Regan, L.

    1995-01-01

    This thesis addresses the problem of how to examine a metabolic pathway and identify what are the key elements, specifically with respect to rate-limitation. The aim is to be able to analyze a pathway, identify the bottlenecks and implement genetic modifications to remove these bottlenecks. This is done by defining the system of interest and developing a predictive model using kinetic data. The model predictions can then be verified using fermentation data and genetic technique...

  13. Phenanthrene-degrading pathway of Agrobacterium sp. Phx1

    ZHANG Lei; YUAN Hongli; WANG Shuangqing; HUANG Huaizeng

    2005-01-01

    The metabolic pathway of phenanthrene-degrading strain Agrobacterium sp. Phx1 was investigated. Phx1 almost was able to transform 100 υg/mL of phenanthrene completely in 1 day in broth media of beef extract-peptone (BP), Luria-Bertani (LB) and mineral salts media (MS), and LB and BP could promote the growth and degradation efficiency of Phx1. The GC-MS was employed to analyze the metabolites of the 1st, 3rd, 7th days of phenanthrene degradation in MS. As a result, the 1-Hydroxy-2-naphthoic acid (1H2N) and 1-naphthol (NOL) were detected in the metabolites of the 1st day. Only NOL was observed on the 3rd day and it disappeared on the 7th day. The accumulated NOL did not pertain to the defined pathway of phenanthrene degradation by bacteria. The further HPLC study confirmed the finding in GC-MS analysis and found the production of catechol (CAT) from o-phthalic acid (OPA) in the phenanthrene metabolizing, which has never been reported in the defined degrading pathways. This production was also evidenced by the production of CAT using OPA as substrate. All of our results showed that the Agrobacterium sp. Phx1 had a novel phenanthrene-degrading pathway.

  14. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32054, Taiwan (China)

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  15. Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.

    Atanda, Luqman; Shrotri, Abhijit; Mukundan, Swathi; Ma, Qing; Konarova, Muxina; Beltramini, Jorge

    2015-09-01

    A water-THF biphasic system containing N-methyl-2-pyrrolidone (NMP) was found to enable the efficient synthesis of 5-hydroxymethylfurfural (HMF) from a variety of sugars (simple to complex) using phosphated TiO2 as a catalyst. Fructose and glucose were selectively converted to HMF resulting in 98 % and 90 % yield, respectively, at 175 °C. Cellobiose and sucrose also gave rise to high HMF yields of 94 % and 98 %, respectively, at 180 °C. Other sugar variants such as starch (potato and rice) and cellulose were also investigated. The yields of HMF from starch (80-85 %) were high, whereas cellulose resulted in a modest yield of 33 %. Direct transformation of cellulose to HMF in significant yield (86 %) was assisted by mechanocatalytic depolymerization-ball milling of acid-impregnated cellulose. This effectively reduced cellulose crystallinity and particle size, forming soluble cello-oligomers; this is responsible for the enhanced substrate-catalytic sites contact and subsequent rate of HMF formation. During catalyst recyclability, P-TiO2 was observed to be reusable for four cycles without any loss in activity. We also investigated the conversion of the cello-oligomers to HMF in a continuous flow reactor. Good HMF yield (53 %) was achieved using a water-methyl isobutyl ketone+NMP biphasic system. PMID:26238933

  16. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed

  17. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Dutta, Saikat; Kao, Hsien-Ming; Wu, Kevin C.-W.

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (-COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  18. Rapid Method for the Determination of 5-Hydroxymethylfurfural and Levulinic Acid Using a Double-Wavelength UV Spectroscopy

    Junhua Zhang

    2013-01-01

    Full Text Available This study reports on a rapid method for the determination of levulinic acid (LA and 5-hydroxymethylfurfural (HMF in acid hydrolyze system of glucose based on UV spectroscopy. It was found that HMF and LA have a maximum absorption at the wavelengths of 284 nm and 266 nm, respectively, in a water medium, and the absorptions of HMF and LA at 284 nm and 266 nm follow Beer’s law very well. However, it was found that a major spectral interference species will arise in the quantification of HMF and LA; nonetheless, this interference can be eliminated through the absorption treatment of charcoal. Therefore, both HMF and LA can be quantified with a double-wavelength technique. The repeatability of the method had a relative standard deviation of less than 4.47% for HMF and 2.25% for LA; the limit of quantification (LOQ was 0.017 mmol/L for HMF and 4.68 mmol/L for LA, and the recovery ranged from 88% to 116% for HMF and from 94% to 105% for LA. The present method is simple, rapid, and accurate. It is suitable to use in the research of the preparation of HMF and LA in biorefinery area.

  19. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-01

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. PMID:26549016

  20. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Saikat Dutta

    2014-11-01

    Full Text Available This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs functionalized with carboxylic acid (–COOH group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  1. Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water

    Boy Arief Fachri

    2015-12-01

    Full Text Available Inulin, a plant polysaccharide consisting of mainly d-fructose units, is considered an interesting feed for 5-hydroxymethylfurfural (HMF, a top 12 bio-based chemical. We here report an exploratory experimental study on the use of a wide range of homogeneous metal salts as catalysts for the conversion of inulin to HMF in water. Best results were obtained using CuCl2. Activity-pH relations indicate that the catalyst activity of CuCl2 is likely related to Lewis acidity and not to Brönsted acidity. The effects of process conditions on HMF yield for CuCl2 were systematically investigated and quantified using a central composite design (160–180 °C, an inulin loading between 0.05 and 0.15 g/mL, CuCl2 concentration in range of 0.005–0.015 M, and a reaction time between 10 and 120 min. The highest experimental HMF yield in the process window was 30.3 wt. % (39 mol %, 180 °C, 0.05 g/mL inulin, 0.005 M CuCl2 and a reaction time of 10 min. The HMF yields were modelled using non-linear, multi variable regression and good agreement between experimental data and model were obtained.

  2. Determination of 5-hydroxymethylfurfural using derivatization combined with polymer monolith microextraction by high-performance liquid chromatography.

    Wu, Jian-Yuan; Shi, Zhi-Guo; Feng, Yu-Qi

    2009-05-27

    A simple and sensitive method for the determination of 5-hydroxymethylfurfural (HMF) in coffee, honey, beer, Coke, and urine by high-performance liquid chromatography (HPLC) is presented. This method is based on the formation of the 2,4-dinitrophenylhydrazone of HMF and subsequent polymer monolith microextraction (PMME) of this derivative. A poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EGDMA) monolithic capillary column was selected as the extraction medium. Several parameters affecting the derivatization of HMF with 2,4-dinitrophenylhydrazine (DNPH) followed by extraction of the derivative were optimized. The procedure is simple and offers high sensitivity and specificity since the derivative of HMF is well preconcentrated by PMME with poly(MAA-co-EGDMA) monolith and well separated from the other components of the samples under examination. The recoveries in coffee, honey, beer, Coke, and urine samples were in the range of 83.9-110.8% spiked at different levels with HMF. The inter- and intraday precisions were less than 10%. The LOD (S/N = 3) and LOQ (S/N = 10) for HMF were 1.0 ng/mL and 3.4 ng/mL, respectively. PMID:19397264

  3. Simultaneous quantitative determination of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in human plasma by gas chromatography-mass spectrometry.

    Wagner, Bernhard M; Donnarumma, Fabrizio; Wintersteiger, Reinhold; Windischhofer, Werner; Leis, Hans J

    2010-04-01

    Alpha-ketoglutaric acid (alpha-KG) and 5-hydroxymethylfurfural (5-HMF) are currently under investigation as promising cancer cell damaging agents. A method for the simultaneous quantitative determination of alpha-KG and 5-HMF in human plasma was established for screening these compounds in human plasma. Plasma samples were directly treated with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride to form the corresponding oximes, thus facilitating subsequent liquid-liquid extraction. After formation of the trimethylsilyl ethers, samples were analyzed by gas chromatography with electron ionization mass spectrometry. Stable isotope labeled standards were used, the preparation of (13)C(6)-5-HMF is described. Limits of quantitation were set to 0.938 microg/mL for alpha-KG and 0.156 microg/mL for 5-HMF. Inter-day accuracy was < or = 93.7% (alpha-KG) and < or = 92.8% (5-HMF). Inter-day precision was < or = 6.0% (alpha-KG) and < or = 4.6% (5-HMF). The method has been successfully applied to pharmacokinetic profiling of the compounds after intravenous application. PMID:20155414

  4. Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure.

    Husøy, T; Haugen, M; Murkovic, M; Jöbstl, D; Stølen, L H; Bjellaas, T; Rønningborg, C; Glatt, H; Alexander, J

    2008-12-01

    5-Hydroxymethylfurfural (HMF) is formed in carbohydrate-rich food during acid-catalysed dehydration and in the Maillard reaction from reducing sugars. HMF is found in mg quantities per kg in various foods. HMF is mainly metabolised to 5-hydroxymethyl-2-furoic acid (HMFA), but unknown quantities of the mutagenic 5-sulphoxymethylfurfural (SMF) may also be formed, making HMF potentially hazardous to humans. We determined the HMF content in Norwegian food items and estimated the dietary intake of HMF in 53 volunteers by means of 24h dietary recall. The estimated intakes of HMF were correlated with urinary excretion of HMFA. Coffee, prunes, dark beer, canned peaches and raisins had the highest levels of HMF. The 95th percentile of the estimated daily dietary intake of HMF and the 24h urinary excretion of HMFA were 27.6 and 28.6mg, respectively. Coffee, dried fruit, honey and alcohol were identified as independent determinants of urinary HMFA excretion. Most participants had lower estimated HMF intake than the amount of HMFA excreted in urine. In spite of this there was a significant correlation (r=0.57, PHMF intake and urinary HMFA. Further studies are needed to reveal alternative sources for HMF exposure. PMID:18929614

  5. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  6. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis-surfactant-combined heteropolyacid catalyst.

    Zhao, Shun; Cheng, Mingxing; Li, Junzi; Tian, Juan; Wang, Xiaohong

    2011-02-21

    A Brønsted-Lewis-surfactant-combined heteropolyacid (HPA) Cr[(DS)H(2)PW(12)O(40)](3) has been synthesized, and is used as a heterogeneous catalyst for the conversion of cellulose to 5-hydroxymethylfurfural in one pot within 2 h at 150 °C with 77.1% conversion and 52.7% yield. This micellar HPA catalyst shows stability and can be recycled by simple separation process. PMID:21203610

  7. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical

    Su, Yu; Brown, Heather M.; Huang, Xiwen; Zhou, Xiao Dong; Amonette, James E.; Zhang, Z. Conrad

    2009-06-20

    The ability to use cellulosic biomass as feedstock for the production of fuels and chemicals currently derived from petroleum depends critically on the development of effective low-temperature processes. While HMF, as a versatile platform chemical suitable for use in polymer synthesis or production of liquid biofuels, can currently be made from fructose and glucose, synthesis of HMF directly from raw natural cellulose represents the last major barrier toward the development of a sustainable HMF platform. Here we report an unprecedented single-step pathway that depolymerizes cellulose rapidly under mild conditions and converts the resulting glucose to hydroxymethylfurfural (HMF). A pair of metal chlorides (CuCl2 and CrCl2) dissolved in 1-ethyl-3-methylimidazolium chloride at temperatures of 80-120°C catalyzes cellulose depolymerization and the subsequent glucose conversion to HMF with 95% selectivity among recoverable products (at 56% HMF yield). Cellulose depolymerization, which can also be catalyzed by other metalchloride pairs such as CuCl2 paired with PdCl2, CrCl3, or FeCl3, occurs at a rate that is more than one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single-metal chlorides at the same total loading showed low activity under similar conditions. Mechanistic studies suggest that the C2 hydrogen of the imidazolium ring is activated by the paired metal-chloride catalysts.

  8. Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid%Rapid conversion of cellulose to5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid

    Hussein Abou-Yousef; El Barbary Hassan; Philip Steele

    2013-01-01

    Direct conversion of cellulose into 5-hydroxymethylfurfural (HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride ([EMIM] Cl) ionic liquid.Our study demonstrated formation of 2-furyl hydroxymethyl ketone (FHMK),and furfural (FF) simultaneously with the formation of HMF.Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature,time,and the type of metal chloride catalyst.Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives (HMF,FHMK,and FF) from cellulose.CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF (35.6%) with less concentrations of FHMK,and FF.Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides.Further optimization was carried out to produce total furans yield 75.9% by using FeC13/CuCl2 combination.CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF (39.9%) with total yield (63.8%) of fttrans produced from the reaction.The temperature and time of the catalytic reaction played an important role in cellulose conversion,and the yields of products.Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals (5 ~ 20 min).

  9. 蔗糖脱水制备5-羟甲基糠醛的研究%Preparation of 5-Hydroxymethylfurfural by Dehydration of Sucrose

    孔珊珊; 刘仕伟; 李露; 于世涛

    2014-01-01

    研究了BrÖnsted-Lewis复合催化体系催化蔗糖脱水制备5-羟甲基糠醛,考察了反应条件对5-羟甲基糠醛收率的影响,最佳反应条件为:蔗糖2.0 g,复合催化体系HCl-CrCl3(质量比5:1)0.8 g,二甲基亚砜20 mL,反应时间30 min,反应温度200℃。在上述较佳反应条件下,蔗糖转化率为100%,5-羟甲基糠醛的收率达72.7%。此外,CrCl3对产物5-羟甲基糠醛具有良好的稳定性,在一定程度上可避免产物继续发生水合/脱羧反应而生成甲酸和乙酰丙酸。%The preparation of 5-hydroxymethylfurfural ( HMF ) from sucrose was studied in the presence of Br nsted-Lewis composite catalytic system. The effects of reaction conditions on the yield of 5-hydroxymethylfurfural were examined. The optimal reaction conditions were obtained as follows: sucrose 2. 0 g, composite catalytic system HCl-CrCl3(mass ratio 5:1) 0. 8 g , dimethyl sulfoxide 20 mL, reaction time 30 min and reaction temperature 200 ℃. Under the above conditions, the conversion of sucrose was 100 %, and the yield of 5-hydroxymethylfurfural reached 72. 7 %. Moreover, CrCl3 had a good stability on the product 5-hydroxymethylfurfural. It could avoid 5-hydroxymethylfurfural over-reacting to form formic acid and levulinic acid by the hydration/decarboxylation reaction to a certain extent.

  10. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  11. Comparison of an HPTLC method with the Reflectoquant assay for rapid determination of 5-hydroxymethylfurfural in honey.

    Hošťálková, Anna; Klingelhöfer, Ines; Morlock, Gertrud E

    2013-11-01

    5-Hydroxymethylfurfural (HMF) was analyzed in 17 botanical varieties of honey from 12 countries. A recently developed high-performance thin-layer chromatographic (HPTLC) method was limited because of increased matrix effects at higher honey sample loading. Therefore, the method was modified to achieve higher sensitivity and eliminate matrix interference by use of rectangular application combined with a focusing step. The HPTLC results were compared with results from the new spectrophotometric Reflectoquant hydroxymethylfurfural assay. Both methods had quantification limits of 4 mg kg(-1) and were suitable for rapid quantification of HMF in honey at the strictest regulated level of 15 mg kg(-1). Comparable results were obtained for the 17 honey samples, with a mean deviation of 2.9 mg kg(-1) (15%). The optimized HPTLC method was proved to be highly matrix-robust and was validated for the 17 different honey matrices (correlation coefficients ≥0.9994 (n = 6), mean intra-day precision 3.2% (n = 3 within a plate; n = 2 repeated within a day), mean inter-day precision 3.7% (n = 3), mean reproducibility over the whole procedure including sample preparation 4.1% (n = 2), and mean recovery 106.9% (n = 5 different concentrations; n = 4 different honey matrices). Recovery for a range of different application volumes, and thus for different honey matrix loading, differed by only ≤4.2%. HMF results when calculated by use of external calibration and by use of the standard addition method varied by 8.8%. Both revealed that any matrix effect was minor and that the original matrix interference problem was successfully solved. PMID:24091734

  12. Simultaneous determination of furfural, acetic acid, and 5-hydroxymethylfurfural in corncob hydrolysates using liquid chromatography with ultraviolet detection.

    Dong, Bo-Yu; Chen, Ye-Fu; Zhao, Chang-Chun; Zhang, Shi-Jie; Guo, Xue-Wu; Xiao, Dong-Guang

    2013-01-01

    A single-laboratory validation study was conducted using HPLC for detecting and quantifying acetic acid, furfural, and 5-hydroxymethylfurfural (HMF) in corncob hydrolysates. A pretreatment procedure using dilute sulfuric acid was optimized for corncob hydrolysis. The final hydrolysates were analyzed by HPLC using a C18 RP column with aqueous 0.01% (v/v) H2SO4-CH3OH (95 + 5) as the mobile phase at a flow rate of 1 mL/min. The wavelengths for detecting the three compounds were changed to their optimal UV detection wavelengths at the time of elution. The wavelength detection adjustments were as follow: 205 nm (0 to 4 min); 284 nm (4 to 7 min); and 276 nm (7 to 10 min). Separation was achieved with a chromatographic run time of 10 min. The calibration curves for the three compounds had correlation coefficients (r2) > or = 99.8%. The analytical range, as defined by the calibration curves, was 0.5-10 mg/L for acetic acid, 0.4-22 mg/L for furfural, and 0.1-18 mg/L for HMF. The LODs for acetic acid, furfural, and HMF were estimated to be 0.05, 0.03, and 0.02 mg/L, respectively; the LOQs were 0.196, 0.135, and 0.074 mg/L, respectively. The RSD values for the intraday precision study ranged from 0.31 to 2.22%, and from 0.57 to 2.43% for the interday study. The mean recovery rates in all compounds were between 100.08 and 101.49%. PMID:24645500

  13. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134.

    Harker, A R; Kim, Y.

    1990-01-01

    The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent p...

  14. Preparation of 5-hydroxymethylfurfural from cellulose catalyzed by composite catalyst%复合催化剂降解纤维素制备5-羟甲基糠醛

    袁玉国; 王景芸; 王强; 付霓虹; 周明东; 臧树良

    2016-01-01

    The degradation of microcrystalline cellulose(MCC) to 5-hydroxymethylfurfural in ionic liquid 1-allyl-3-methylimidazolium chloride([Amim]Cl) was studied with sulfoacid type cation exchange resin and CrCl3·6H2O as composite catalyst and microwave-assisted heating. The effects of catalyst dosage,reaction temperature,time and water dosage on the degradation were investigated. The results indicated that,MCC could be completely converted with the total reducing sugar yield of 75.2% and the highest 5-hydroxymethylfurfural yield of 53.0% under the conditions of sulfoacid type cation exchange resin and CrCl3·6H2O as the composite catalyst,ionic liquid[Amim]Cl as the solvent 2 g,MCC 0.1 g,m(resin):m(MCC) 1:1,n(CrCl3·6H2O):n(MCC) 1:10,reaction temperature 160℃ by microwave-assisted heating and reaction time 30 min.%以离子液体1-烯丙基-3-甲基咪唑氯盐([Amim]Cl)为溶剂,以磺酸型阳离子交换树脂和CrCl3·6H2O为复合催化剂,在微波辅助加热条件下采用一锅法降解微晶纤维素制备5-羟甲基糠醛,考察了催化剂加入量、反应温度、反应时间、加水量等反应条件对微晶纤维素降解反应的影响.实验结果表明,当[Amim]Cl用量为2 g、微晶纤维素质量为0.1 g、m(磺酸型阳离子交换树脂):m(微晶纤维素)=1:1、n(CrCl3·6H2O):n(微晶纤维素)=1:10、反应温度为160℃、反应时间为30 min、加水量为50 μL时,微晶纤维素可完全转化,同时总还原糖收率为75.2%,5-羟甲基糠醛收率最高可达53.0%.

  15. Autophagy: a pathway that contributes to connexin degradation

    Lichtenstein, Alexandra; Minogue, Peter J.; Beyer, Eric C.; Berthoud, Viviana M.

    2011-01-01

    The function of connexins, which form gap junctions, can be rapidly modulated by degradation, because they have half-lives of only a few hours. Autophagy is a degradation pathway that has been implicated in several diseases and can be induced by cellular stresses such as starvation. We investigated the involvement of autophagy in proteolysis of the wild-type connexins CX50 and CX43, and a cataract-associated connexin mutant, CX50P88S, which forms cytoplasmic accumulations. We observed that cy...

  16. Vacuole import and degradation pathway:Insights into a specialized autophagy pathway

    Abbas; A; Alibhoy; Hui-Ling; Chiang

    2011-01-01

    Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. However, following glucose replenishment,these gluconeogenic enzymes are inactivated and de-graded. Studies have characterized the mechanismsby which these enzymes are inactivated in response toglucose. The site of degradation of these proteins hasalso been ascertained to be dependent on the dura-tion of starvation. Glucose replenishment of short-termstarved cells results in these proteins being degradedin the proteasome. In contrast, addition of glucose tocells starved for a prolonged period results in theseproteins being degraded in the vacuole. In the vacuoledependent pathway, these proteins are sequestered inspecialized vesicles termed vacuole import and degra-dation (Vid). These vesicles converge with the endo-cytic pathway and deliver their cargo to the vacuolefor degradation. Recent studies have identified thatinternalization, as mediated by actin polymerization, isessential for delivery of cargo proteins to the vacuolefor degradation. In addition, components of the targetof rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissoci-ates from cargo proteins following glucose replenish-ment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.

  17. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.

    Jordan, Douglas B; Braker, Jay D; Bowman, Michael J; Vermillion, Karl E; Moon, Jaewoong; Liu, Z Lewis

    2011-12-01

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerevisiae, has been shown to mitigate the toxicity of FFA and HMF by catalyzing the NADPH-dependent conversion to corresponding alcohols, furfuryl alcohol (FFOH) and 5-hydroxymethylfurfuryl alcohol (HMFOH). At pH 7.0 and 25°C, purified Ari1p catalyzes the NADPH-dependent reduction of substrates with the following values (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFA (23.3, 1.82, 12.8), HMF (4.08, 0.173, 23.6), and dl-glyceraldehyde (2.40, 0.0650, 37.0). When acting on HMF and dl-glyceraldehyde, the enzyme operates through an equilibrium ordered kinetic mechanism. In the physiological direction of the reaction, NADPH binds first and NADP(+) dissociates from the enzyme last, demonstrated by k(cat) of HMF and dl-glyceraldehyde that are independent of [NADPH] and (K(ia)(NADPH)/k(cat)) that extrapolate to zero at saturating HMF or dl-glyceraldehyde concentration. Microscopic kinetic parameters were determined for the HMF reaction (HMF+NADPH↔HMFOH+NADP(+)), by applying steady-state, presteady-state, kinetic isotope effects, and dynamic modeling methods. Release of products, HMFOH and NADP(+), is 84% rate limiting to k(cat) in the forward direction. Equilibrium constants, [NADP(+)][FFOH]/[NADPH][FFA][H(+)]=5600×10(7)M(-1) and [NADP(+)][HMFOH]/[NADPH][HMF][H(+)]=4200×10(7)M(-1), favor the physiological direction mirrored by the slowness of hydride transfer in the non-physiological direction, NADP(+)-dependent oxidation of alcohols (k(cat) (s(-1)), k(cat)/K(m) (s(-1)mM(-1)), K(m) (mM)): FFOH (0.221, 0.00158, 140) and HMFOH (0.0105, 0.000104, 101). PMID:21890004

  18. Enzymatic description of the anhydrofructose pathway of glycogen degradation. I

    Yu, Shukun; Refdahl, Charlotte; Lundt, Inge

    2004-01-01

    The anhydrofructose pathway describes the degradation of glycogen and starch to metabolites via 1,5-anhydro-D-fructose (1,5AnFru). The enzyme catalyzing the first reaction step of this pathway, i.e., a-1,4-glucan lyase (EC 4.2.1.13), has been purified, cloned and characterized from fungi and red...... algae in our laboratory earlier. In the present study, two 1,5AnFru metabolizing enzymes were discovered in the fungus Anthracobia melaloma for the formation of ascopyrone P (APP), a fungal secondary metabolite exhibiting antibacterial and antioxidant activity. These are 1,5AnFru dehydratase (AFDH) and...

  19. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    Barry, Sandra

    2009-05-01

    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  20. Preparation of 5-hydroxymethylfurfural by dehydration of glucose%葡萄糖脱水制备5-羟甲基糠醛的研究

    孔珊珊; 刘仕伟; 李露; 于世涛

    2013-01-01

    研究了Br(o)nsted-Lewis复合催化体系催化葡萄糖脱水制备5-羟甲基糠醛,详细考察了溶剂种类和用量、催化体系种类和用量、反应时间和反应温度等因素对5-羟甲基糠醛收率的影响,得到最佳工艺条件:葡萄糖2.0g,复合催化体系HCl-CrCl3[m(HCl)∶m(CrCl3·6H2O)=5∶1]0.6 g,正丁醇20 mL,反应时间15 min,反应温度200℃.在该反应条件下,5-羟甲基糠醛的收率达42.5%.结果表明,同单酸型的催化剂相比,复合催化体系更有利于葡萄糖脱水制备5-羟甲基糠醛.%The preparation of 5-hydroxymethylfurfural from glucose was studied in the presence of Br(o)nsted-Lewis composite catalytic system.The effects of reaction conditions,such as solvents,catalysts,reaction time and reaction temperature,on the yield of 5-hydroxymethylfurfural were examined.The optimum reaction conditions were obtained as follow:glucose 2.0 g,composite catalytic system HC1-CrCl3 (mass ratio 5 ∶ 1) 0.6 g,n-butyl alcohol 20 mL,reaction time 15 min and reaction temperature 200 ℃.Under above optimum conditions,the conversion of glucose was 90.4 %,and the yield of 5-hydroxymethylfurfural reached 42.5 %.The results indicated that,composite catalytic system is more conducible to preparation of 5-hydroxymethylfurfural by dehydration of glucose compared with the single-acid catalyst.

  1. 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Nadine Essayem; Franck Rataboul; Rodrigo Lopes de Souza; Hao Yu

    2012-01-01

    5-Hydroxymethylfurfural (5-HMF) is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/gluco...

  2. Iodinated contrast media electro-degradation: Process performance and degradation pathways

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe, E-mail: giuseppe.mascolo@ba.irsa.cnr.it

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm{sup 2} with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm{sup 2} with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm{sup 2} with energy consumption higher than 370 kWh/m{sup 3}. Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. - Highlights: • The electrochemical degradation of six iodinated contrast media were investigated. • Treatment feasibility as well as reaction by-products and toxicity were investigated. • In all the investigated cases, the removal efficiency was higher than 80%. • Two main degradation pathways were identified.

  3. Iodinated contrast media electro-degradation: Process performance and degradation pathways

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm2 with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm2 with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm2 with energy consumption higher than 370 kWh/m3. Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. - Highlights: • The electrochemical degradation of six iodinated contrast media were investigated. • Treatment feasibility as well as reaction by-products and toxicity were investigated. • In all the investigated cases, the removal efficiency was higher than 80%. • Two main degradation pathways were identified

  4. E1AF degradation by a ubiquitin-proteasome pathway

    E1AF is a member of the ETS family of transcription factors. In mammary tumors, overexpression of E1AF is associated with tumorigenesis, but E1AF protein has hardly been detected and its degradation mechanism is not yet clear. Here we show that E1AF protein is stabilized by treatment with the 26S protease inhibitor MG132. We found that E1AF was modified by ubiquitin through the C-terminal region and ubiquitinated E1AF aggregated in nuclear dots, and that the inhibition of proteasome-activated transcription from E1AF target promoters. These results suggest that E1AF is degraded via the ubiquitin-proteasome pathway, which has some effect on E1AF function

  5. Photo-fenton degradation of diclofenac: identification of main intermediates and degradation pathway.

    Pérez-Estrada, Leónidas A; Malato, Sixto; Gernjak, Wolfgang; Agüera, Ana; Thurman, E Michael; Ferrer, Imma; Fernández-Alba, Amadeo R

    2005-11-01

    In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety

  6. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  7. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. PMID:25433384

  8. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments. PMID:27079576

  9. Research Progress on Production of 5-Hydroxymethylfurfural from Carbohydrates%碳水化合物制备5-羟甲基糠醛研究进展

    罗家凤; 吴剑; 张钰萍; 杨松

    2012-01-01

    5-羟甲基糠醛(5-HMF)是一种基于生物质的重要平台小分子,综述了近几年从葡萄糖或者纤维素等制备5-HMF的方法及研究进展,阐述了5-HMF制备收率的影响因素.最后展望了固体酸催化葡萄糖或者纤维素制备5-HMF的发展趋势.%5-Hydroxylmethylfurfural (5-HMF) is a key intermediate in the biomass chemistry and petrochemical industry. The research progress on the conversion of cellulose or glucose to 5-HMF is reviewed, and the effects of different parameters are also discussed. Finally, the development tendency of solid acid catalyzed production of 5-hydroxymethylfurfural is proposed.

  10. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+

    Wang, Enze; Zhou, Yanmei; Huang, Qi; Pang, Lanfang; Qiao, Han; Yu, Fang; Gao, Bin; Zhang, Junli; Min, Yinghao; Ma, Tongsen

    2016-01-01

    A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu2+ in Tris-HCl (10 mM, pH = 7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu2+ in real water samples.

  11. 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu(2+).

    Wang, Enze; Zhou, Yanmei; Huang, Qi; Pang, Lanfang; Qiao, Han; Yu, Fang; Gao, Bin; Zhang, Junli; Min, Yinghao; Ma, Tongsen

    2016-01-01

    A dual-function optical chemosensor (RBF) was designed and easily synthesized by condensation reaction of 5-Hydroxymethylfurfural and rhodamine B hydrazide. RBF exhibited highly sensitive, highly selective and quick response to acidic pH. The fluorescence intensity of RBF exhibited a more than 41-fold increase within the pH range from 7.50 to 3.73 with a pKa value of 5.02, which could be successfully applied to monitor intracellular pH in living PC12 cells and HeLa cells. Additionally, the spectroscopy of UV-Vis and EDTA-adding experiments indicated that RBF was a highly selective and reversible colorimetric chemosensor for Cu(2+) in Tris-HCl (10mM, pH=7.2) aqueous buffer solution as well as other metal ions had no obvious interference. Moreover, RBF has been successfully applied to detect Cu(2+) in real water samples. PMID:26232576

  12. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.

    Zhang, Ya; Li, Jianhua; Zhou, Lei; Wang, Guoqing; Feng, Yanhong; Wang, Zunyao; Yang, Xi

    2016-04-01

    The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain. PMID:26705756

  13. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway

    During the ozonation of tetracycline (TC) in aqueous media at pHs 2.2 and 7.0, the effects of pH variations, protonation and dissociation of functional groups and variation in free radical exposure were investigated to elucidate the transformation pathway. Liquid chromatography-triple quadrupole mass spectrometry detected around 15 ozonation products, and uncovered their production and subsequent degradation patterns. During ozonation at pH 2.2, the TC degradation pathway was proposed on the basis of the structure, ozonation chemistry and mass spectrometry data of TC. Ozonation of TC at the C11a-C12 and C2-C3 double bonds, aromatic ring and amino group generated products of m/z 461, 477, 509 and 416, respectively. Further ozonation at the above mentioned sites gave products of m/z 432, 480, 448, 525 and 496. The removal of TOC reached a maximum of ∼40% after 2 h of ozonation, while TC was completely removed within 4-6 min at both pHs. The low TOC removal efficiency might be due to the generation of recalcitrant products and the low ozone supply for high TC concentration. Ozonation decreased the acute toxicity of TC faster at pH 7.0 than pH 2.2, but the maximum decrease was only about 40% at both pHs after 2 h of ozonation. In this study, attempts were made to understand the correlation between the transformation products, pathway, acute toxicity and quantity of residual organics in solution. Overall, ozonation was found to be a promising process for removing TC and the products initially generated.

  14. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway

    Khan, M. Hammad; Bae, Hyokwan [Water Environment Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of); Jung, Jin-Young, E-mail: jinjung@ynu.ac.kr [Department of Environmental Engineering, Yeungnam University, 214-1 Dae-Dong, Gyeongsan-Si, Gyeongsangbuk-Do 712-749 (Korea, Republic of)

    2010-09-15

    During the ozonation of tetracycline (TC) in aqueous media at pHs 2.2 and 7.0, the effects of pH variations, protonation and dissociation of functional groups and variation in free radical exposure were investigated to elucidate the transformation pathway. Liquid chromatography-triple quadrupole mass spectrometry detected around 15 ozonation products, and uncovered their production and subsequent degradation patterns. During ozonation at pH 2.2, the TC degradation pathway was proposed on the basis of the structure, ozonation chemistry and mass spectrometry data of TC. Ozonation of TC at the C11a-C12 and C2-C3 double bonds, aromatic ring and amino group generated products of m/z 461, 477, 509 and 416, respectively. Further ozonation at the above mentioned sites gave products of m/z 432, 480, 448, 525 and 496. The removal of TOC reached a maximum of {approx}40% after 2 h of ozonation, while TC was completely removed within 4-6 min at both pHs. The low TOC removal efficiency might be due to the generation of recalcitrant products and the low ozone supply for high TC concentration. Ozonation decreased the acute toxicity of TC faster at pH 7.0 than pH 2.2, but the maximum decrease was only about 40% at both pHs after 2 h of ozonation. In this study, attempts were made to understand the correlation between the transformation products, pathway, acute toxicity and quantity of residual organics in solution. Overall, ozonation was found to be a promising process for removing TC and the products initially generated.

  15. 5-Hydroxymethylfurfural (5-HMF Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Nadine Essayem

    2012-09-01

    Full Text Available 5-Hydroxymethylfurfural (5-HMF is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

  16. 食品中5-羟甲基糠醛的形成与控制%Formation and mitigation of 5-hydroxymethylfurfural in foods

    裴珂晗; 欧仕益

    2016-01-01

    5-羟甲基糠醛(5-hydroxymethylfurfural,HMF)是食品热加工和贮藏过程中产生的内源性污染物,主要通过美拉德反应和己糖在酸性条件下脱水产生,其形成过程受反应底物种类、加热温度、反应体系pH、水分活度及金属离子等影响.HMF具有一定神经毒性、遗传毒性;摄入后在磺基转移酶作用下可转化为具有致癌毒性的羟甲基糠醛次硫酸,因而近年来HMF受到了国内外的广泛关注.本文综述了HMF形成的途径、影响因素和控制措施.

  17. Short-term supplementation with alpha-ketoglutaric acid and 5-hydroxymethylfurfural does not prevent the hypoxia induced decrease of exercise performance despite attenuation of oxidative stress.

    Gatterer, H; Greilberger, J; Philippe, M; Faulhaber, M; Djukic, R; Burtscher, M

    2013-01-01

    Reactive oxygen species are thought to partly be responsible for the hypoxia induced performance decrease. The present study evaluated the effects of a broad based antioxidant supplementation or the combined intake of alpha-ketoglutaric acid (α-KG) and 5-hydroxymethylfurfural (5-HMF) on the performance decrease at altitude. 18 healthy, well-trained males (age: 25±3 years; height: 179±6 cm; weight: 76.4±6.8 kg) were randomly assigned in a double-blind fashion to a placebo group (PL), a α-KG and 5-HMF supplementation group (AO1) or a broad based antioxidant supplementation group (AO2). Participants performed 2 incremental exercise tests to exhaustion on a cycle ergometer; the first test under normoxia and the second under hypoxia conditions (simulated altitude, FiO2=13% ~ 4 300 m). Supplementation started 48 h before the hypoxia test. Maximal oxygen uptake, maximal power output, power output at the ventilatory and lactate threshold and the tissue oxygenation index (NIRS) were measured under both conditions. Oxidative stress markers were measured before the supplementation and after the hypoxia test. Under hypoxia conditions all performance parameters decreased in the range of 19-39% with no differences between groups. A significant change from normoxia to hypoxia (pextraction, as indicated by the tissue oxygenation index, might indicate that mitochondrial functioning was actually influenced by the supplementation. PMID:22893323

  18. Simultaneous determination of pesticides and 5-hydroxymethylfurfural in honey by the modified QuEChERS method and liquid chromatography coupled to tandem mass spectrometry.

    Tomasini, Débora; Sampaio, Maicon R F; Caldas, Sergiane S; Buffon, Jaqueline G; Duarte, Fábio A; Primel, Ednei G

    2012-09-15

    Nowadays, bee products are being produced in an environment polluted by different sources of contamination, such as pesticides, which can be transported by honey bees to the hive and incorporated into honey. In addition, the increasing consumption of honey has demanded efficient quality control for this product. In this study, the determination of the pesticides fipronil, imidacloprid, thiamethoxam, dimethoate, carbendazin, tebuconazole, amitraz, τ-fluvalinate and 5-hydroxymethylfurfural (HMF) which are used as indicators of honey quality, was carried out simultaneously. For the sample preparation, the optimized QuEChERS method was used and the determinations were done by LC-APCI-MS/MS. The LOQs of the method ranged between 0.005 and 1.0 mg kg(-1). For the recovery calculations and method evaluation a working curve was drawn. All the analytical curves showed r values higher than 0.99. The recoveries ranged between 70% and 112%, with RSD lower than 20% for all compounds. The matrix effect was evaluated, and most of the compounds showed signal enrichment. The applicability of the method for honey from different flowers was verified, and the method showed robustness and recoveries in the range 70-120% established for all compounds in samples belonging to different blossoms. HMF was detected in all samples, with concentrations ranging between 4.6 and 51.7 mg kg(-1); it was below the maximum concentration allowed by the legislation. PMID:22967568

  19. A rapid gas chromatographic injection-port derivatization method for the tandem mass spectrometric determination of patulin and 5-hydroxymethylfurfural in fruit juices.

    Marsol-Vall, Alexis; Balcells, Mercè; Eras, Jordi; Canela-Garayoa, Ramon

    2016-07-01

    A novel method consisting of injection-port derivatization coupled to gas chromatography-tandem mass spectrometry is described. The method allows the rapid assessment of 5-hydroxymethylfurfural (HMF) and patulin content in apple and pear derivatives. The chromatographic separation of the compounds was achieved in a short chromatographic run (12.2min) suitable for routine controls of these compounds in the fruit juice industry. The optimal conditions for the injection-port derivatization were at 270°C, 0.5min purge-off, and a 1:2 sample:derivatization reagent ratio (v/v). These conditions represent an important saving in terms of derivatization reagent consumption and sample preparation time. Quality parameters were assessed for the target compounds, giving LOD of 0.7 and 1.6μg/kg and LOQ of 2 and 5μg/kg for patulin and HMF, respectively. These values are below the maximum patulin concentration in food products intended for infants and young children. Repeatability (%RSD n=5) was below 12% for both compounds. In addition, the method linearity ranged between 25 and 1000μg/kg and between 5 and 192μg/kg for HMF and patulin, respectively. Finally, the method was applied to study HMF and patulin content in various fruit juice samples. PMID:27240947

  20. Separation and determination of 4-methylimidazole, 2-methylimidazole and 5-hydroxymethylfurfural in beverages by amino trap column coupled with pulsed amperometric detection.

    Xu, Xian-Bing; Liu, Ding-Bo; Yu, Shu-Juan; Yu, Pei; Zhao, Zhen-Gang

    2015-02-15

    A method for simultaneous determination of 4-methylimidazole (4-MeI), 2-methylimidazole (2-MeI) and 5-hydroxymethylfurfural (HMF) in beverages was developed using solid-phase extraction (SPE) and amino trap column coupled with pulsed amperometric detection (AMTC-PAD). A single amino trap column (P/N: 046122) was first applied to separate the targeted analytes in samples after SPE pretreatment. This method demonstrated low limit of quantification (0.030mg/L for methylimidazoles and 0.300mg/L for HMF) and excellent linearity with correlation of determination (R(2)=0.999 for 2-MeI, 0.997 for 4-MeI and 0.998 for HMF). Nearly no 2-MeI was found in all soft drinks. However, 4-MeI could be detected in cola drinks and soft drinks containing caramel colour (ranging from 0.13 to 0.34mg/L), whereas HMF were only found in cola drinks (ranging from 1.07 to 4.47mg/L). Thus, AMTC-PAD technique would be a valid and inexpensive alternative to analysis of 4-MeI, 2-MeI and HMF. PMID:25236220

  1. An improved method for the determination of 5-hydroxymethylfurfural in Shenfu injection by direct analysis in real time-quadrupole time-of-flight mass spectrometry.

    Gao, Wen; Qi, Lian-Wen; Liu, Charles C; Wang, Rui; Li, Ping; Yang, Hua

    2016-07-01

    The emergence of direct analysis in real time (DART) ion source provides the great possibility for rapid analysis of hazardous substance in drugs. DART mass spectrometry (DART-MS) enabled the conducting of a fast and non-contact analysis of various samples, including solid or liquid ones, without complex sample preparation or chromatographic separation. In this study, a modified DART-quadrupole time-of-flight mass spectrometry (DART-QTOF-MS) method was developed for identification and determination of 5-hydroxymethylfurfural (5-HMF) in Shenfu (SF) injection. The quantitative transfer of sample solution was introduced to the glass tips of DIP-it sampler at a fixed volume, which significantly increases the repeatability and accuracy of analytical results. The protonated ion of dibutyl phthalate in the atmosphere was used as the reference mass for TOF-MS recalibration during the data acquisition for constant high accuracy mass measurements. Finally, the developed DART-MS method was used to determine 5-HMF in seven batches of SF injection, and the contents of 5-HMF were not higher than 100 µg/mL. The results obtained were further confirmed by an ultra-high performance liquid chromatography combined with triple quadrupole mass spectrometer (UHPLC-QQQ-MS). The overall results demonstrated that the DART-QTOF-MS method could be applied as an alternative technique for rapid monitoring 5-HMF in herbal medicine injection. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26197974

  2. Theoretical Elucidation of Glucose Dehydration to 5-Hydroxymethylfurfural Catalyzed by a SO3H-Functionalized Ionic Liquid.

    Li, Jingjing; Li, Jinghua; Zhang, Dongju; Liu, Chengbu

    2015-10-22

    While the catalytic conversion of glucose to 5-hydroxymethyl furfural (HMF) catalyzed by SO3H-functioned ionic liquids (ILs) has been achieved successfully, the relevant molecular mechanism is still not understood well. Choosing 1-butyl-3-methylimidazolium chloride [C4SO3HmimCl] as a representative of SO3H-functioned IL, this work presents a density functional theory (DFT) study on the catalytic mechanism for conversion of glucose into HMF. It is found that the conversion may proceed via two potential pathways and that throughout most of elementary steps, the cation of the IL plays a substantial role, functioning as a proton shuttle to promote the reaction. The chloride anion interacts with the substrate and the acidic proton in the imidazolium ring via H-bonding, as well as provides a polar environment together with the imidazolium cation to stabilize intermediates and transition states. The calculated overall barriers of the catalytic conversion along two potential pathways are 32.9 and 31.0 kcal/mol, respectively, which are compatible with the observed catalytic performance of the IL under mild conditions (100 °C). The present results provide help for rationalizing the effective conversion of glucose to HMF catalyzed by SO3H-functionalized ILs and for designing IL catalysts used in biomass conversion chemistry. PMID:26434955

  3. Conversion of the common food constituent 5-hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo.

    Monien, Bernhard H; Frank, Heinz; Seidel, Albrecht; Glatt, Hansruedi

    2009-06-01

    5-Hydroxymethylfurfural (HMF), formed by acid-catalyzed dehydration and in the Maillard reaction from reducing sugars, is found at high levels in numerous foods. It was shown to initiate colon aberrant crypt foci in rats and skin papillomas and hepatocellular adenomas in mice. HMF is inactive in in vitro genotoxicity tests using standard activating systems but is activated to a mutagen by sulfotransferases. The product, 5-sulfoxymethylfurfural (SMF), is a stronger carcinogen than HMF. SMF has not been detected in the biotransfomation experiments conducted on HMF in humans and animals in vivo up to date. Here, we report pharmacokinetic properties of HMF and SMF in FVB/N mice. Sensitive assays for the quantification of HMF and SMF by LC-MS/MS multiple reaction monitoring were devised. SMF, intravenously injected (4.4 micromol/kg body mass), showed first-order elimination kinetics in blood plasma (t(1/2) = 7.9 min). HMF, injected intravenously (793 micromol/kg body mass), demonstrated biphasic kinetics in plasma (t(1/2) = 1.7 and 28 min for the initial and terminal elimination phases, respectively); the volume of distribution of the central compartment corresponded approximately to the total body water. The maximum SMF plasma level was observed at the first sampling time, 2.5 min after HMF administration. On the basis of these kinetic data, it was estimated that between 452 and 551 ppm of the initial HMF dose was converted to SMF and reached the circulation. It is likely that additional SMF reacted with cellular structures at the site of generation and thus is ignored in this balance. Our work supports the hypothesis that HMF-related carcinogenicity may be mediated by its reactive metabolite SMF. PMID:19382817

  4. Conversion of Suspected Food Carcinogen 5-Hydroxymethylfurfural by Sulfotransferases and Aldehyde Dehydrogenases in Postmitochondrial Tissue Preparations of Humans, Mice, and Rats.

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-01-01

    The food contaminant 5-hydroxymethylfurfural (HMF) is formed by heat- and acid-catalyzed reactions from carbohydrates. More than 80% of HMF is metabolized by oxidation of the aldehyde group in mice and rats. Sulfo conjugation yields mutagenic 5-sulfoxymethylfurfural, the probable cause for the neoplastic effects observed in HMF-treated rodents. Considerable metabolic differences between species hinder assessing the tumorigenic risk associated with human dietary HMF uptake. Here, we assayed HMF turnover catalyzed by sulfotransferases or by aldehyde dehydrogenases (ALDHs) in postmitochondrial preparations from liver, kidney, colon, and lung of humans, mice, and rats. The tissues-specific clearance capacities of HMF sulfo conjugation (CL(SC)) and ALDH-catalyzed oxidation (CL(OX)) were concentrated to the liver. The hepatic clearance CL(SC) in mice (males: 487 µl/min/kg bw, females: 2520 µl/min/kg bw) and rats (males: 430 µl/min/kg bw, females: 198 µl/min/kg bw) were considerably higher than those in humans (males: 21.2 µl/min/kg bw, females: 32.2 µl/min/kg bw). The ALDH-related clearance rates CLOX in mice (males: 3400 ml/min/kg bw, females: 1410 ml/min/kg bw) were higher than those of humans (males: 436 ml/min/kg bw, females: 646 ml/min/kg bw) and rats (males: 627 ml/min/kg bw, females: 679 ml/min/kg bw). The ratio of CL(OX) to CL(SC) was lowest in female mice. This finding indicated that HMF sulfo conjugation was most substantial in the liver of female mice, a target tissue for HMF-induced neoplastic effects, and that humans may be less sensitive regarding HMF sulfo conjugation compared with the rodent models. PMID:26454887

  5. 葡萄糖脱水制备5-羟甲基糠醛的研究进展%Advances in production of 5-hydroxymethylfurfural from glucose

    胡磊; 孙勇; 林鹿

    2011-01-01

    5-羟甲基糠醛(5-HMF)是一种重要的平台化合物,具有非常广泛的应用价值和市场前景。葡萄糖的选择性脱水是制备5-HMF的主要方法之一,也是碳水化合物降解研究中的重点和难点,现在已经受到了人们越来越广泛的重视。本文综述了近年来葡萄糖制备5-HMF的研究成果,着重介绍了5-HMF的形成机理以及制备5-HMF的催化体系与溶剂体系,并对葡萄糖制备5-HMF的研究前景进行了展望,以期为5-HMF的进一步研究提供思路和参考。%5-Hydroxymethylfurfural(5-HMF)is a kind of important platform chemical compound and possesses wide application value and market prospect.Selective dehydration of glucose is one of main synthesis methods for 5-hydroxymethylfurfural and has attracted increasingly more attention.In this paper,the recent research achievements in the dehydration of glucose for preparation of 5-HMF are summarized,including formation mechanisms,catalyst systems and solvent systems,and the future research trends of 5-HMF from dehydration of glucose are prospected.

  6. Determination of 5-Hydroxymethylfurfural in Liuweidihuang Pills by HPLC%HPLC测定六味地黄浓缩丸中5-HMF的含量

    蔡银燕; 石婷婷; 黄巧玲

    2012-01-01

    OBJECTIVE To establish an HPLC method for the determination of 5-hydroxymethylfurfural(5-HMF) in Liuweidihuang pills. METHODS The HPLC method was performed on an Agilent Zorbax C18column(250 mm×4.6 mm, 5 urn) with 284 nm as the detection wavelength, and methanol-water(20 : 80) was used as mobile phase. The column temperature was 30 ℃, and the flow rate was 1.0 mL·min‐1. RESULTS The regression results which was based on weighted least square method showed a good linearity within the range of 0.026 2-2.62 mg·nL‐1, and the average recovery was 99.7% with R.SD of 0.57%. CONCLUSION The HPLC method was accurate, sensitive and suitable for determining the content of 5-HMF in Liuweidihuang pills.%目的 建立六味地黄浓缩丸中5-羟甲基糠醛(5-HMF)的含量测定方法.方法 采用Agilent Zorbax C18色谱柱(250 mm×4.6 mm,5 μm);流动相为甲醇-水(20∶80);流速:1.0 mL·min-1;检测波长:280 nm;柱温:30℃.结果 5-HMF在0.026 2~2.62 mg·mL-1内线性关系良好,平均回收率为99.7%,RSD为0.57%.结论 该方法简便、快速、准确度好,可有效控制该制剂中5-羟甲基糠醛含量.

  7. HPLC法检测乳品中5-羟甲基糠醛和糠醛%Detection of 5-Hydroxymethylfurfural and Furfural in Dairy Products by HPLC

    赵贞; 李翠枝; 岳虹; 万鹏; 吕海燕; 邵建波

    2015-01-01

    A method for detecting of 5-Hydroxymethylfurfural (5-HMF) and furfural in dairy products by HPLC is described. The samples were precipitated and filtered at first, then separated on a C18 column with the mobile phase (water-methanol solution), and detected with UV detector at 280 nm. The result showed that 5-HMF and furfural were completely separated. The method has good linearity relationship in the range of(0.03~100) mg/kg, and high recovery rate at (83.3~113.3)%. This method is simple, accurate and good reproducibility for detecting of 5-HMF and furfural in dairy products.%建立了乳制品中5-羟甲基糠醛和糠醛的高效液相色谱分析方法。样品用沉淀剂沉淀过滤后,以水-甲醇溶液为流动相,C18反相色谱柱分离,紫外检测器280nm检测。结果表明,5-羟甲基糠醛和糠醛可以完全分离。在0.03~100.00mg/kg范围内,该方法呈良好的线性关系,回收率为83.3%~113.3%。本方法用于乳制品中5-羟甲基糠醛和糠醛的测定,操作简单、定量准确、重复性好。

  8. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia;

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date....

  9. ORGANOPHOSPHORUS PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    The objective of this work was to investigate organophosphorus (OP) pesticide transformation pathways as a class in the presence of aqueous chlorine. Seven priority OP pesticides were examined for their reactivity with aqueous chlorine: chlorpyrifos (CP), parathion (PA), diazino...

  10. 3'-5' RNA degradation pathways in human cells

    Lubas, Michal Szymon

    revealed the interaction network of the main 3'-5' RNA degradation machinery – the RNA exosome complex. One of the key findings was the identification and characterisation of the Nuclear Exosome Targeting (NEXT) complex, important for nuclear functions of the exosome. Michal Lubas also studied the role...

  11. Tissue factor pathway inhibitor relates to fibrin degradation in patients with acute deep venous thrombosis

    Sidelmann, Johannes J; Bladbjerg, Else-Marie; Gram, Jørgen;

    2008-01-01

    studied the association between inflammation, endothelial cell perturbation, fibrin degradation and the concentration of tissue factor pathway inhibitor in patients suspected for acute deep venous thrombosis. We determined the tissue factor pathway inhibitor -33T/C polymorphism, free and total tissue....... The significant relationship is not associated with the -33T/C polymorphism, inflammation or endothelial cell perturbation, but is most likely related to release of tissue factor pathway inhibitor from fibrin deposits....

  12. HPLC determination of 5-hydroxymethylfurfural in Shengqifuzheng injection and preliminary study on the generation approach of 5-hydroxymethylfurfural%HPLC法测定参芪扶正注射液中5-羟甲基糠醛的含量及其来源的初步探讨

    刘潇潇; 杨立伟; 于江泳; 林锦锋

    2012-01-01

    目的:建立己糖降解产物5-羟甲基糠醛的含量测定方法,对参芪扶正注射液中的5-羟甲基糠醛进行测定,并对其来源进行初步探讨.方法:采用Diamonsil C18(250 mm ×4.6 mm,5μmm,)色谱柱,以乙腈-0.5%醋酸溶液(3∶97)为流动相,检测波长284 nm,流速1.0 mL·min-1,柱温30℃.结果:5-羟甲基糠醛在浓度为0.94~18.8 μg· mL-1范围内与峰面积具有良好的线性关系(r =0.9999),精密度和重复性的RSD分别为0.7%和2.2%.在模拟高温灭菌的过程中发现仅有果糖受热后转化生成5-羟甲基糠醛及其相关物质.结论:该方法操作简便,结果准确可靠,可用于参芪扶正注射液中5-羟甲基糠醛的含量测定,为进一步评价中药注射液的安全性提供参考.%Objective:To establish a method for the detenninantion of 5 - hydroxymethylfurfural in Shengqifuzheng injection. Methods;The HPLC separation was performed on a Diamonsil C18 reversed -phase column with the mobile phase of acetonitrile -0.5% acetic acid(3:97) ,and the determination wavelength was 284 run. The column temperature was kept at 30℃,and the mobile phase flow rate was 1.0mL·min-1. Results:The calibration curves showed good linear regression (r =0.9999) within 0. 94 and 18. 8 μg o mL-1. Precisions and repeatabilities of the methods were 0. 7% and 2. 2% .respectively. Otherwise,only fructose generated 5 - hydroxymethylfurfural after high -temperature sterilization. Conclusion:The method was simple,reliable and suitable for the quality control of the products, supplying helpful information to the further study on the safety evaluation of traditional Chinese medicine injection.

  13. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  14. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway.

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng

    2016-03-01

    Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions. PMID:26623933

  15. Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp. SPG

    Arora, Pankaj Kumar; Mohanta, Tapan Kumar; Srivastava, Alok; Bae, Hanhong; Singh, Vijay Pal

    2014-01-01

    A degradation pathway of 2-chloro-4-aminophenol (2C4AP) was studied in an Arthrobacter sp. SPG that utilized 2C4AP as its sole source of carbon and energy. The 2C4AP degradation was initiated by a 2C4AP-deaminase that catalyzed the conversion of 2C4AP into chlorohydroquinone (CHQ) with removal of ammonium ion. In the next step, a CHQ-dehalogenase dehalogenated CHQ to hydroquinone (HQ) that cleaved into γ-hydroxymuconic semialdehyde by a HQ-dioxygenase. The 2C4AP degradation was also investiga...

  16. Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways

    The photocatalytic degradation of triazophos in aqueous TiO2 suspension has been studied in a photoreactor operating with simulated solar radiation. The decrease in triazophos concentration followed first-order kinetics with a half-life of 4.76 ± 0.42 h at a TiO2 suspension concentration of 10 mg/L. Seventeen degradation products were identified using HPLC-UV, HPLC/MS/MS, GC/MS/MS and IC, and by comparing retention times and spectra with commercially available authentic standards. On the basis of the observed transformation products, two routes were proposed, one based on the initial oxidative cleavage of P = S bond to P = O bond, and the other on initial cleavage of the ester P-O bonds. Photocatalysis holds promise for the solar treatment of pesticide-contaminated waters

  17. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC. PMID:26452660

  18. Nuclear mRNA degradation pathway(s are implicated in Xist regulation and X chromosome inactivation.

    Constance Ciaudo

    2006-06-01

    Full Text Available A critical step in X-chromosome inactivation (XCI, which results in the dosage compensation of X-linked gene expression in mammals, is the coating of the presumptive inactive X chromosome by the large noncoding Xist RNA, which then leads to the recruitment of other factors essential for the heterochromatinisation of the inactive X and its transcriptional silencing. In an approach aimed at identifying genes implicated in the X-inactivation process by comparative transcriptional profiling of female and male mouse gastrula, we identified the Eif1 gene involved in translation initiation and RNA degradation. We show here that female embryonic stem cell lines, silenced by RNA interference for the Eif1 gene, are unable to form Xist RNA domains upon differentiation and fail to undergo X-inactivation. To probe further an effect involving RNA degradation pathways, the inhibition by RNA interference of Rent1, a factor essential for nonsense-mediated decay and Exosc10, a specific nuclear component of the exosome, was analysed and shown to similarly impair Xist upregulation and XCI. In Eif1-, Rent1-, and Exosc10-interfered clones, Xist spliced form(s are strongly downregulated, while the levels of unspliced form(s of Xist and the stability of Xist RNA remain comparable to that of the control cell lines. Our data suggests a role for mRNA nuclear degradation pathways in the critical regulation of spliced Xist mRNA levels and the onset of the X-inactivation process.

  19. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-03-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin- or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  20. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway

    When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression

  1. Catalytic thermolysis in treating Cibacron Blue in aqueous solution: Kinetics and degradation pathway.

    Su, Claire Xin-Hui; Teng, Tjoon-Tow; Wong, Yee-Shian; Morad, Norhashimah; Rafatullah, Mohd

    2016-03-01

    A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model. PMID:26741557

  2. Determination of 5-Hydroxymethylfurfural in Yangyin Qingfei Pills by HPLC%HPLC法测定养阴清肺丸中5-羟甲基糠醛的含量

    康强; 孔令峰

    2013-01-01

    目的:建立养阴清肺丸中5-羟甲基糠醛含量的测定方法,考察不同企业养阴清肺丸中5-羟甲基糠醛的含量差异.方法:采用高效液相色谱法.色谱柱为Agilent C18 (250 mm×4.6 mm,5μm)柱,柱温为30℃,流动相为甲醇-水(10∶90),流速0.8 ml· min-1,检测波长:284 nm,进样量为10μl.结果:5-羟甲基糠醛进样量在0.020 2 ~0.404 0 μg范围内与峰面积积分值呈良好的线性关系(r=1.000 0);平均加样回收率为101.52%,RSD=2.7%(n=6).结论:该方法简便、准确、灵敏度高、重复性好,可用于养阴清肺丸中5-羟甲基糠醛的含量测定.%Objective:To establish a method for the content determination of 5-hydroxymethylfurfural in Yangyin Qingfei pills,and study the content difference in Yangyin Qingfei pills from different enterprises.Method:The determination was performed on an Agilent C18 (250 mm × 4.6 mm,5μm) column at 30℃ with the mobile phase consisted of methanol-water (10∶ 90) at the flow rate of 0.8ml · min-1.The detection wavelength was set at 284nm and the injection volume was 10 μl.Result:The linear range of 5-hydroxymethylfurfural was 0.020 2-0.404 0 μg (r =1.000 0) with the average recovery of 101.52% (RSD =2.7%,n =6).Conclusion:The method is simple,accurate,sensitive and reproducible in the content determination of 5-hydroxymethylfurfural in Yangyin Qingfei pills.

  3. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways.

    Kim, S G; Bae, H S; Lee, S T

    2001-10-01

    The aerobic and anaerobic degradation of trimethylamine by a newly isolated denitrifying bacterium from an enrichment culture with trimethylamine inoculated with activated sludge was studied. Based on 16S rDNA analysis, this strain was identified as a Paracoccus sp. The isolate, strain T231, aerobically degraded trimethylamine, dimethylamine and methylamine and released a stoichiometric amount of ammonium ion into the culture fluid as a metabolic product, indicating that these methylated amines were completely degraded to formaldehyde and ammonia. The strain degraded trimethylamine also under denitrifying conditions and consumed a stoichiometric amount of nitrate, demonstrating that complete degradation of trimethylamine was coupled with nitrate reduction. Cell-free extract prepared from cells grown aerobically on trimethylamine exhibited activities of trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase, dimethylamine mono-oxygenase, and methylamine mono-oxygenase. Cell-free extract from cells grown anaerobically on trimethylamine and nitrate exhibited activities of trimethylamine dehydrogenase and dimethylamine dehydrogenase. These results indicate that strain T231 had two different pathways for aerobic and anaerobic degradation of trimethylamine. This is a new feature for trimethylamine metabolism in denitrifying bacteria. PMID:11685371

  4. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Pankaj Kumar Arora

    2015-06-01

    Full Text Available Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis, cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10-12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil.

  5. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway.

    Liu, Xitao; Zhang, Xiaohui; Zhang, Kunlun; Qi, Chengdu

    2016-05-01

    In recent years, activated persulfate (PS) oxidation has been developed as a new advanced oxidation process for the degradation of organic pollutants. On the other hand, the mechanochemical method has exhibited a unique advantage in dealing with chemical wastes. The degradation of tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant (BFR), in wastes has attracted considerable attention. In this study, the efficacy of a CaO-mechanochemical (CaO-MC) treatment system assisted by the addition of PS for the degradation of TBBPA was investigated. Under the optimum reaction conditions with a mole ratio of PS:CaO = 1:4 and less than 12.5% of TBBPA by mass, the degradation and debromination of TBBPA were completed within 2 h, while the mineralization was completed within 4 h. Characterization of the milled sample by XRD revealed that CaSO4 crystallization occurred. The TG results illustrate that there was little organic matter left after 4 h of milling. Raman and FT-IR spectra exhibited the TBBPA destruction process and disappearance of the organic groups. Through analysis by LC/MS/MS, seventeen intermediates were identified. The mechanism of TBBPA degradation by the PS-assisted CaO-MC treatment system was explained from two aspects, the course of crystallization and the degradation of TBBPA by activated PS, and two parallel initiation pathways were proposed. PMID:26359264

  6. Molecular and biochemical characterization of the tetralin degradation pathway in Rhodococcus sp. strain TFB

    Tomás‐Gallardo, Laura; Santero, Eduardo; Camafeita, Emilio; Calvo, Enrique; Schlömann, Michael; Floriano, Belén

    2009-01-01

    Summary The tetralin biodegradation pathway in Rhodococcus sp. strain TFB, a Gram‐positive bacterium resistant to genetic manipulation, was characterized using a proteomic approach. Relative protein expression in cell free extracts from tetralin‐ and glucose‐grown cells was compared using the 2D‐DIGE technique. Identification of proteins specifically expressed in tetralin‐grown cells was used to characterize a complete set of genes involved in tetralin degradation by reverse genetics. We prop...

  7. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms.

    Lee, Sun Bok; Kim, Jeong Ah; Lim, Hyun Seung

    2016-05-01

    Complete hydrolysis of κ-carrageenan produces two sugars, D-galactose and 3,6-anhydro-D-galactose (D-AnG). At present, however, we do not know how carrageenan-degrading microorganisms metabolize D-AnG. In this study, we investigated the metabolic pathway of D-AnG degradation by comparative genomic analysis of Cellulophaga lytica LIM-21, Pseudoalteromonas atlantica T6c, and Epulopiscium sp. N.t. morphotype B, which represent the classes Flavobacteria, Gammaproteobacteria, and Clostridia, respectively. In this bioinformatic analysis, we found candidate common genes that were believed to be involved in D-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the D-AnG cluster. In all three microorganisms, D-AnG metabolizing genes were clustered and organized in operon-like arrangements, which we named as the dan operon (3,6-d-anhydro-galactose). Combining bioinformatic analysis and experimental data, we showed that D-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via four enzyme-catalyzed reactions in the following route: 3,6-anhydro-D-galactose → 3,6-anhydro-D-galactonate → 2-keto-3-deoxy-D-galactonate (D-KDGal) → 2-keto-3-deoxy-6-phospho-D-galactonate → pyruvate + D-glyceraldehyde-3-phosphate. The pathway of D-AnG degradation is composed of two parts: transformation of D-AnG to D-KDGal using two D-AnG specific enzymes and breakdown of D-KDGal to two glycolysis intermediates using two DeLey-Doudoroff pathway enzymes. To our knowledge, this is the first report on the metabolic pathway of D-AnG degradation. PMID:26875872

  8. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1.

    Felux, Ann-Katrin; Spiteller, Dieter; Klebensberger, Janosch; Schleheck, David

    2015-08-01

    Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium. PMID:26195800

  9. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. PMID:27208995

  10. Enhanced degradation in soil of the herbicide EPTC and determination of its degradative pathway by an isolated soil microorganism

    A series of experiments was conducted to examine the ability of Ohio soils to develop enhanced degradation of the herbicide EPTC (s-ethyl N,N-dipropyl carbamothiaote) and to determine its metabolism by an isolated soil microorganism. Three soils selected to obtain an range in pH, texture, and organic carbon were treated with EPTC for 4 consecutive applications (6 weeks between applications). EPTC concentrations as measured by gas chromatography, decreased 80% or more one week after the second application in all three soils. Metabolism of unlabelled and labelled EPTC by an isolated soil microbe was followed by GC/MS and TLC/LSC analysis, respectively. Rapid decrease in 14-C activity in the organic fraction corresponded with rapid 14CO2 evolution and transient increase in 14-C activity in the aqueous fraction. Four metabolites were observed in the TLC analysis. Two were identified as EPTC-sulfoxide and N-depropyl EPTC with N-depropyl EPTC being confirmed by GC/MS analysis. The availability of different pathways for EPTC metabolism by soil microbes after repeated applications to the soil results in its very rapid degradation and loss of efficacy

  11. Cadmium interferes with the degradation of ATF5 via a post-ubiquitination step of the proteasome degradation pathway

    ATF5 is a member of the CREB/ATF family of transcription factors. In the current study, using a transient transfection system to express FLAG epitope fusion proteins of ATF5, we have shown that CdCl2 or NaAsO3 increases the protein levels of ATF5 in cells, and that cadmium stabilizes the ATF5 protein. Proteasome inhibitors had a similar effect to cadmium on the cellular accumulation of ATF5. Proteasome inhibition led to an increase in ubiquitinated ATF5, while cadmium did not appear to reduce the extent of ATF5 ubiquitination. ATF5 contains a putative nuclear export signal within its N-terminus. We demonstrated that whereas deletion of N-terminal region resulted in a increase of ATF5 levels, this region does not appear to be involved in the ubiquitination of ATF5. These results indicate that ATF5 is targeted for degradation by the ubiquitin-proteasome pathway, and that cadmium slows the rate of ATF5 degradation via a post-ubiquitination mechanism.

  12. Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp. SPG.

    Arora, Pankaj Kumar; Mohanta, Tapan Kumar; Srivastava, Alok; Bae, Hanhong; Singh, Vijay Pal

    2014-01-01

    A degradation pathway of 2-chloro-4-aminophenol (2C4AP) was studied in an Arthrobacter sp. SPG that utilized 2C4AP as its sole source of carbon and energy. The 2C4AP degradation was initiated by a 2C4AP-deaminase that catalyzed the conversion of 2C4AP into chlorohydroquinone (CHQ) with removal of ammonium ion. In the next step, a CHQ-dehalogenase dehalogenated CHQ to hydroquinone (HQ) that cleaved into γ-hydroxymuconic semialdehyde by a HQ-dioxygenase. The 2C4AP degradation was also investigated in sterile and non-sterile soil microcosms using strain SPG. The results show that the SPG cells degraded 2C4AP more rapidly in sterile soil than non-sterile soil. Our studies showed that strain SPG may be used for bioremediation of 2C4AP-contaminated sites. This is the first report of the 2C4AP degradation by any bacteria. PMID:25427856

  13. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation. PMID:26733013

  14. Effects of reforesting degraded grassland on hydrological flow pathways on Leyte, the Philippines

    van Meerveld, Ilja; Zhang, Jun; Bruijnzeel, Sampurno

    2014-05-01

    Reforestation of degraded land in the tropics is promoted for a wide range of expected benefits, including carbon sequestration and streamflow regulation. However, how reforestation of degraded land affects runoff generation mechanisms and catchment water yield is still poorly understood as most experimental work pertains to non-degraded terrain. We set out to study the differences in hydrological functioning of a small degraded grassland catchment and a similar catchment that was reforested 15 years ago. Both catchments are located near Tacloban, Leyte, the Philippines. Stream stage, EC and temperature are measured continuously since June 2013. Precipitation, soil moisture content, and groundwater levels are monitored as well. Samples are taken from streamflow, precipitation, groundwater, and soil water prior to and during rainfall events for geochemical and stable isotope analysis to elucidate source contributions to storm runoff. Streamflow and event water contributions increase rapidly during almost every rainfall event in the grassland. In the reforested catchment, event water contributions to streamflow are much smaller and only increase during large events. These tracer results suggest that overland flow occurs much less frequently and is much less widespread in the reforested catchment compared to the grassland catchment. Our results thus indicate that the dominant flow pathways have changed as a result of reforestation and suggest that reforestation can largely restore the hydrological functioning of degraded sites if the forest is allowed to develop over a sufficiently long period without subsequent disturbance.

  15. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  16. Identification of the degradation pathways of alkanolamines with TiO{sub 2} photocatalysis

    Lu, Chung-Shin, E-mail: cslu6@ntcnc.edu.tw [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China); Chen, Chiing-Chang [Department of Science Application and Dissemination, National Taichung University, Taichung 403, Taiwan (China); Mai, Fu-Der [Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Li, Hua-Kuang [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China)

    2009-06-15

    The present study deals with the photocatalytic degradation of the alkanolamine, 2-dimethylamino-2-methyl-1-propanol (DMAMP), in the presence of TiO{sub 2} particles and UV-A ({lambda} = 365 nm) radiation. The obtained results show complete oxidation of DMAMP after 20 h, and a little over 90% of DMAMP was mineralization after 64-h of treatment. The effects of the solution pH, catalyst loading, and anions on the photocatalytic degradation of DMAMP were investigated, as well as the reaction intermediates that were formed during treatment. To the best of our knowledge, this is the first time that reports the degradation pathways of DMAMP. A number of intermediates were identified by GC/MS techniques during the treatment of DMAMP, following three tentative degradation routes. The first one is based on the oxidation of the primary alcohol group leading to the formation of corresponding aldehyde and carboxylic acid. The second route is based on the rupture of the N-C bond to form 2-methylpropanal and acetone. The last degradation route is based on the cyclization of the {beta}-amino alcohol group to form the oxazolidine derivatives.

  17. Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis

    The present study deals with the photocatalytic degradation of the alkanolamine, 2-dimethylamino-2-methyl-1-propanol (DMAMP), in the presence of TiO2 particles and UV-A (λ = 365 nm) radiation. The obtained results show complete oxidation of DMAMP after 20 h, and a little over 90% of DMAMP was mineralization after 64-h of treatment. The effects of the solution pH, catalyst loading, and anions on the photocatalytic degradation of DMAMP were investigated, as well as the reaction intermediates that were formed during treatment. To the best of our knowledge, this is the first time that reports the degradation pathways of DMAMP. A number of intermediates were identified by GC/MS techniques during the treatment of DMAMP, following three tentative degradation routes. The first one is based on the oxidation of the primary alcohol group leading to the formation of corresponding aldehyde and carboxylic acid. The second route is based on the rupture of the N-C bond to form 2-methylpropanal and acetone. The last degradation route is based on the cyclization of the β-amino alcohol group to form the oxazolidine derivatives.

  18. 食品中糠醛和5-羟甲基糠醛的产生机理、含量检测及安全性评价研究进展%A Review on Formation Mechanism, Determination and Safety Assessment of Furfural and 5-Hydroxymethylfurfural (HMF) in Foods

    张玉玉; 宋弋; 李全宏

    2012-01-01

    Sugar-rich foods could generate large amounts of furfural and 5-hydroxymethylfurfural during thermal processing. During these different processes, the contents of furfural and 5-hydroxymethylfurfural were also different in foods. When the contents of furfural and 5-hydroxymethylfurfural exceeded a certain limit, it would harm human health. In this paper, the mechanisms, determination methods and safety of furfural and 5-hydroxymethylfurfural have been reviewed.%含糖丰富的食品在热加工过程中会产生大量的糠醛和5-羟甲基糠醛(HMF),不同食品加工后所产生的糠醛及HMF的含量有所差异,但当含量超过标准时就会对人体产生危害。因此,本文对食品中糠醛和HMF的产生机理、含量检测分析及安全性评价进行综述。

  19. KCTD1 suppresses canonical Wnt signaling pathway by enhancing β-catenin degradation.

    Xinxin Li

    Full Text Available The canonical Wnt signaling pathway controls normal embryonic development, cellular proliferation and growth, and its aberrant activity results in human carcinogenesis. The core component in regulation of this pathway is β-catenin, but molecular regulation mechanisms of β-catenin stability are not completely known. Here, our recent studies have shown that KCTD1 strongly inhibits TCF/LEF reporter activity. Moreover, KCTD1 interacted with β-catenin both in vivo by co-immunoprecipitation as well as in vitro through GST pull-down assays. We further mapped the interaction regions to the 1-9 armadillo repeats of β-catenin and the BTB domain of KCTD1, especially Position Ala-30 and His-33. Immunofluorescence analysis indicated that KCTD1 promotes the cytoplasmic accumulation of β-catenin. Furthermore, protein stability assays revealed that KCTD1 enhances the ubiquitination/degradation of β-catenin in a concentration-dependent manner in HeLa cells. And the degradation of β-catenin mediated by KCTD1 was alleviated by the proteasome inhibitor, MG132. In addition, KCTD1-mediated β-catenin degradation was dependent on casein kinase 1 (CK1- and glycogen synthase kinase-3β (GSK-3β-mediated phosphorylation and enhanced by the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP. Moreover, KCTD1 suppressed the expression of endogenous Wnt downstream genes and transcription factor AP-2α. Finally, we found that Wnt pathway member APC and tumor suppressor p53 influence KCTD1-mediated downregulation of β-catenin. These results suggest that KCTD1 functions as a novel inhibitor of Wnt signaling pathway.

  20. Degradation of retinoid X receptor α by TPA through proteasome pathway in gastric cancer cells

    Xiao-Feng Ye; Su Liu; Qiao Wu; Xiao-Feng Lin; Bing Zhang; Jia-Fa Wu; Ming-Qing Zhang; Wen-Jin Su

    2003-01-01

    AIM: To investigate and determine the mechanism and signal pathway of tetradecanoylphorbol-1, 3-acetate (TPA) in degradation of RXRα.METHODS: Gastric cancer cell line, BGC-823 was used in the experiments. The expression level of R XRα protein was detected by Western blot. Nuclear and cytoplasmic protein fractions were prepared through lysis of cell and centrifugation.Localization and translocation of RXRα were observed under laser-scanning confocal microscope through labeling specific anti-RXRα antibody and corresponding immunofiuorescent antibody as secondary antibody. Different inhibitors were used as required.RESULTS: In BGC-823 cells, RXRα was expressed in the nucleus. When cells were treated with TPA, expression of RXRα was repressed in a time-dependent and TPAconcentration-dependent manner. Meanwhile, translocation of RXR from the nucleus to the cytoplasm occurred, also in a time-dependent manner. When cells were pre-incubated with proteasome inhibitor MG132 for 3 hrs, followed by TPA for another 12 hrs, TPA-induced RXRα degradation was inhibited. Further observation of RXRα translocation in the presence of MG132 showed that MG-132 could block TPAinduced RXRα redistribution. Conversely, when RXRαtranslocation was inhibited by LMB, an inhibitor for blocking protein export from the nucleus, TPA could not repress expression of RXRα.CONCLUSION: TPA could induce the degradation of RXRα protein in BGC-823 cells, and this degradation is time-and TPA-concentration-dependent. Furthermore, the degradation of RXRα by TPA is via a proteasome pathway and associated with RXRα translocation from the nucleus to the cytoplasm.

  1. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin.

    Liebl, Martina P; Hoppe, Thorsten

    2016-08-01

    Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. PMID:27225656

  2. Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening.

    Horrer, Daniel; Flütsch, Sabrina; Pazmino, Diana; Matthews, Jack S A; Thalmann, Matthias; Nigro, Arianna; Leonhardt, Nathalie; Lawson, Tracy; Santelia, Diana

    2016-02-01

    Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of β-amylase 1 (BAM1) and α-amylase 3 (AMY3)-enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H(+)-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light. PMID:26774787

  3. Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells.

    Aichinger, N; Lütz-Meindl, U

    2005-08-01

    Summary Organelle interactions, although essential for both anabolic and catabolic pathways in plant cells have not been examined in detail so far. In the present study the structure of different organelle-organelle, organelle-vesicle and organelle-membrane interactions were investigated in growing and nongrowing cells of the green alga Micrasterias denticulata by use of high pressure freeze fixation and energy filtering transmission electron microscopy. It became clear that contacts between mitochondria always occur by formation of a cone-shaped protuberance of one of the mitochondria which penetrates into its fusion partner. In the same way, structural interactions between mitochondria and mucilage vesicles and between microbodies and mucilage vesicles are achieved. Lytic compartments contact mitochondria or mucilage vesicles again by forming protuberances and by extending their contents into the respective compartment. Detached portions of mitochondria are found inside lytic compartments as a consequence of such interactions. Mitochondria found in contact with the plasma membrane reveal structural disintegration. Our study shows that interactions of organelles and vesicles are frequent events in Micrasterias cells of different ages. The interactive contacts between lytic compartments and organelles or vesicles suggest a degradation pathway different from autophagy processes described in the literature. Both the interactions between vesicles and organelles and the degradation pathways occur independently from cytoskeleton function as demonstrated by use of cytochalasin D and the microtubule inhibitor amiprophos-methyl. PMID:16159344

  4. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Cytotoxic CD8+ T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8+ T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8+ T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4+ T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8+ T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  5. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Chou, Bin [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Murata, Shigeo; Tanaka, Keiji [Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  6. Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways

    Wu, R.-J. [Department of Applied Chemistry, Providence University, Taichung 433, Taiwan (China); Chen, C.-C. [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China); Chen, M.-H. [Department of Applied Chemistry, Providence University, Taichung 433, Taiwan (China); Lu, C.-S. [Department of General Education, National Taichung Nursing College, Taichung 403, Taiwan (China)], E-mail: cslu6@ntcnc.edu.tw

    2009-03-15

    The photocatalytic degradation of terbufos in aqueous suspensions was investigated by using titanium dioxide (TiO{sub 2}) as a photocatalyst. About 99% of terbufos was degraded after UV irradiation for 90 min. Factors such as pH of the system, TiO{sub 2} dosage, and presence of anions were found to influence the degradation rate. Photodegradation of terbufos by TiO{sub 2}/UV exhibited pseudo-first-order reaction kinetics, and a reaction quantum yield of 0.289. The electrical energy consumption per order of magnitude for photocatalytic degradation of terbufos was calculated and showed that a moderated efficiency (E{sub EO} = 71 kWh/(m{sup 3} order)) was obtained in TiO{sub 2}/UV process. To obtain a better understanding of the mechanistic details of this TiO{sub 2}-assisted photodegradation of terbufos with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. The probable photodegradation pathways were proposed and discussed.

  7. Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways

    The photocatalytic degradation of terbufos in aqueous suspensions was investigated by using titanium dioxide (TiO2) as a photocatalyst. About 99% of terbufos was degraded after UV irradiation for 90 min. Factors such as pH of the system, TiO2 dosage, and presence of anions were found to influence the degradation rate. Photodegradation of terbufos by TiO2/UV exhibited pseudo-first-order reaction kinetics, and a reaction quantum yield of 0.289. The electrical energy consumption per order of magnitude for photocatalytic degradation of terbufos was calculated and showed that a moderated efficiency (EEO = 71 kWh/(m3 order)) was obtained in TiO2/UV process. To obtain a better understanding of the mechanistic details of this TiO2-assisted photodegradation of terbufos with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. The probable photodegradation pathways were proposed and discussed

  8. Dysfunction of two lysosome degradation pathways of α-synuclein in Parkinson's disease: potential therapeutic targets?

    Tian-Fang Jiang; Sheng-Di Chen

    2012-01-01

    Parkinson's disease (PD) is pathologically characterized by the presence of α-synuclein (α-syn)-positive intracytoplasmic inclusions named Lewy bodies in the dopaminergic neurons of the substantia nigra.A series of morbid consequences are caused by pathologically high amounts or mutant forms of α-syn,such as defects of membrane trafficking and lipid metabolism.In this review,we consider evidence that both point mutation and overexpression of α-syn result in aberrant degradation in neurons and microglia,and this is associated with the autophagy-lysosome pathway and endosomelysosome system,leading directly to pathological intracellular aggregation,abnormal externalization and re-internalization cycling (and,in turn,internalization and re-externalization),and exocytosis.Based on these pathological changes,an increasing number of researchers have focused on these new therapeutic targets,aiming at alleviating the pathological accumulation of α-syn and re-establishing normal degradation.

  9. Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents

    Liebgott, Pierre-Pol; Labat, Marc; Amouric, Agnès; Tholozan, Jean-Luc; LORQUIN, Jean

    2008-01-01

    To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. A moderately halophilic Gram-negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2-(p-hydroxyphenyl)-ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4-hydrox...

  10. Insulin-degrading enzyme is exported via an unconventional protein secretion pathway

    Leissring Malcolm A

    2009-01-01

    Full Text Available Abstract Insulin-degrading enzyme (IDE is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ, and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD. Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA, monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoylbenzoyl-ATP (Bz-ATP. The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit.

  11. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.

    Ahner, Annette; Gong, Xiaoyan; Frizzell, Raymond A

    2013-09-01

    Defining the significant checkpoints in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis should identify targets for therapeutic intervention with CFTR folding mutants such as F508del. Although the role of ubiquitylation and the ubiquitin proteasome system is well established in the degradation of this common CFTR mutant, the part played by SUMOylation is a novel aspect of CFTR biogenesis/quality control. We identified this post-translational modification of CFTR as resulting from its interaction with small heat shock proteins (Hsps), which were found to selectively facilitate the degradation of F508del through a physical interaction with the SUMO (small ubiquitin-like modifier) E2 enzyme, Ubc9. Hsp27 promoted the SUMOylation of mutant CFTR by the SUMO-2 paralogue, which can form poly-chains. Poly-SUMO chains are then recognized by the SUMO-targeted ubiquitin ligase, RNF4, which elicited F508del degradation in a Hsp27-dependent manner. This work identifies a sequential connection between the SUMO and ubiquitin modifications of the CFTR mutant: Hsp27-mediated SUMO-2 modification, followed by ubiquitylation via RNF4 and degradation of the mutant via the proteasome. Other examples of the intricate cross-talk between the SUMO and ubiquitin pathways are discussed with reference to other substrates; many of these are competitive and lead to different outcomes. It is reasonable to anticipate that further research on SUMO-ubiquitin pathway interactions will identify additional layers of complexity in the process of CFTR biogenesis and quality control. PMID:23809253

  12. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway

    Scheuring David

    2012-09-01

    Full Text Available Abstract Background In yeast and mammals, many plasma membrane (PM proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. Results Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. Conclusions Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route

  13. Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway

    ANANTHA N. SUBBA RAO

    2013-11-01

    Full Text Available The trypan blue (TB dye synthetic wastewater was treated in presence of chloride ions by electrochemical method. The effect of current density, pH, initial concentration of dye and supporting electrolyte on color and COD removal were investigated. The UV-Vis ab­sorption intensity, chemical oxygen demand (COD, cyclic voltammetry (CV, Fourier transform- infrared spectroscopy (FT-IR, gas chromatography – mass spectrometry (GC-MS analysis were conducted to investigate the kinetics and degradation pathway of TB dye.

  14. Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans.

    Zhou, Qinghua; Li, Haimin; Xue, Ding

    2011-12-01

    In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell biological analyses indicate that in wild-type animals paternal mitochondria and mtDNA are destroyed within two hours after fertilization. In animals with compromised lysosomes, paternal mitochondria persist until late embryonic stages. Therefore, the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization. Our study indicates that C. elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction. PMID:22105480

  15. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  16. Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation

    Ting Tao; Hui Shi; Yihong Guan; Delai Huang; Ye Chen; David P Lane; Jun Chen

    2013-01-01

    p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however,little is known about p53 turnover through proteasome-independent pathway(s).The digestive organ expansion factor (Def) protein is essential for the development of digestive organs.In zebrafish,loss of function of defselectively upregulates the expression of p53 response genes,which raises a question as to what is the relationship between Def and p53.We report here that Def is a nucleolar protein and that loss of function of defleads to the upregulation of p53 protein,which surprisingly accumulates in the nucleoli.Our extensive studies have demonstrated that Def can mediate the degradation of p53 protein and that this process is independent of the proteasome pathway,but dependent on the activity of Calpain3,a cysteine protease.Our findings define a novel nucleolar pathway that regulates the turnover function of p53,which will advance our understanding of p53's role in organogenesis and tumorigenesis.

  17. Pathways and Determinants of Early Spontaneous Vegetation Succession in Degraded Lowland of South China

    Wen-Jun Duan; Hai Ran; Sheng-Lei Fu; Qin-Feng Guo; Jun Wang

    2008-01-01

    Continuous and prolonged human disturbances have caused severe degradation of a large portion of lowland in South China, and how to restore such degraded ecosystems becomes an increasing concern. The process and mechanisms of spontaneous succession, which plays an important role in vegetation restoration, have not been adequately examined. To identify the pathways of early spontaneous vegetation succession, 41 plots representing plant communities abandoned over different times were established and Investigated. The communities and indicator species of the vegetation were classified by analyzing the important values of plant species using multivariate analyses. The reaults indicated that the plant species could be classified into nine plant communities repreaenting six succession staages. The pathway and species composition alao changed in the process of succession. We also meaeurad 13 environmental variables of microtopography, soil structure and soil nutrition in each plot to examine the driving forces of auccession and the vegetation-environment relationships. Our resulta ahowed that the environmental variables changed in diverse directions, and that aoil bulk density, soil water capacity and soU acidity were the most important factors.

  18. Preparation of 5-Hydroxymethylfurfural with Sucrose Catalyzed by In-situ Iodine%原位合成碘催化蔗糖制备5-羟甲基糠醛

    胡宁播; 董喜恩; 罗根祥; 刘春生; 韩春玉

    2011-01-01

    着重研究以原位合成碘(即三氯化铬和碘化钠发生氧化还原反应产生的碘)为催化剂,蔗糖为原料制备羟甲基糠醛.考察了反应时间、反应温度、催化剂用量(以三氯化铬和碘化钠质量计)、蔗糖质量百分数对羟甲基糠醛收率的影响.得到以原位合成碘为催化剂的优化条件:时间45min、温度130℃、催化剂用量0.25g、蔗糖质量百分数8%.在此优化条件下,用单质碘做催化剂制备羟甲基糠醛,把两者的结果相比较.以原位合成碘为催化剂,收率达到79.5%(根据果糖部分计算);以碘为催化剂,收率达到51.1%.产物经紫外可见分光光度计检测.%The preparation of 5-hydroxymethylfurfural was studied which used in-situ iodine as catalyst (in-situ iodine was generated by redox reaction of chromium trichloride and sodium iodide) and sucrose as raw materials.The effects of reaction time, temperature, the catalyst amount, the sucrose mass percentage on the yield of 5-hydroxymethyffurfural were investigated.The most suitable condition for the reaction were as follows: the reaction time was 45 min, temperature was 130℃, the catalyst amount was 0.25g, the sucrose mass percentage was 8%.Under these conditions, the yield of 5-hydroxymethylfurfural was 79.5% and 51.1% respectively which used in-situ iodine and iodine as catalyst respectively.The products were examined with UV-Vis spectrophotometer.

  19. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment.

    Wu, Yanlin; Shi, Jin; Chen, Hongche; Zhao, Jianfu; Dong, Wenbo

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC-MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO) was also studied and H2O2 was added to produce HO. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16h irradiation. PMID:27213674

  20. Degradation pathway of quinolines in a biofilm system under denitrifying conditions

    Johansen, S.S.; Arvin, E.; Mosbaek, H. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Science and Engineering; Hansen, A.B. [National Environmental Research Inst., Roskilde (Denmark). Dept. of Environmental Chemistry

    1997-09-01

    This article reports for the first time the degradation pathways of quinoline, isoquinoline, and methylquinolines by a mixed culture in a biofilm under nitrate-reducing conditions. A simple reverse-phase high-performance liquid chromatography method using ultraviolet detection at 223 nm for determination of seven quinoline analogues and 15 metabolites was developed, and gas chromatography--mass spectrometry and thin-layer chromatography analyses were used for identification. The inhibition of nitrification by the parent compounds and their degradation products was assessed by a nitrification toxicity test called MINNTOX. Quinoline and 3-, 4-, 6-, and 8-methylquinoline were all transformed by hydroxylation into their 2-hydroxyquinoline analogues (2-quinolinones), and isoquinoline was transformed into 1-hydroxyisoquinoline. 2-Methylquinoline was not transformed by this microcosm, likely due to the blockage at position 2 by the methyl group. The hydroxylated metabolites of isoquinoline and quinolines methylated at the heterocyclic ring were not transformed further, whereas metabolites of quinoline and quinolines methylated at the homocyclic ring were hydrogenated at position 3 and 4, and the resulting 3,4-dihydro-2-quinolinone analogues accumulated. Of these metabolites, only 3,4-dihydro-2-quinolinone from the degradation of quinoline was further transformed into unidentified products. All quinolines and their metabolites had inhibiting effects on the nitrifying bacteria at the same level (ppm) in the applied bioassay, indicating that the inhibition of the compounds was not influenced by the initial transformation reactions.

  1. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater

    Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911

  2. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  3. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    Lüddeke Frauke

    2012-09-01

    Full Text Available Abstract Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S-(+-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes

  4. 5-羟甲基糠醛在 F-55果葡糖浆贮存过程中的变化研究%Research changes of 5-hydroxymethylfurfural in F55-fructose syrup storage

    李惠安; 伍伯良; 许永苗; 叶晓蕾; 黄智钧

    2014-01-01

    5-羟甲基糠醛(HMF)作为影响果葡糖浆风味的异味化合物之一,在贮存过程中的变化很可能直接影响到果葡糖浆制成品口感的好坏。研究了 HMF 在 F-55果葡糖浆贮存过程中的变化情况,结果表明温度升高会导致 HMF 含量在40 d 后达到最高峰。果葡糖浆在低温条件下贮存,且贮存期控制在40 d 内,可减少 HMF 对糖浆质量的影响。%5-hydroxymethylfurfural is one of the off-odor compounds that influence the flavor of high fructose syrup. Its changes in storage can influence the taste of fructose syrup. The changing situations in storage of F-55 fructose syrup were researched. Results showed when temperature raised and the storage time reached 40 days, the F-55 content increased to the peak; when temperature was controlled low and the storage time was within 40 days, the F-55 quality was less influ-enced by HMF.

  5. CrCl3催化果糖制备5-羟甲基糠醛的研究%CrCl3 Catalyzed Preparation of 5-Hydroxymethylfurfural from Fructose

    李向阳; 郑志锋; 宁静; 郑云武

    2012-01-01

    以CrCl3 · 6H2O为催化剂,考察溶剂种类、反应温度、反应时间、催化剂用量等条件对果糖制备5-羟甲基糠醛(HMF)产率的影响.结果表明,二甲基亚砜(DMSO)是果糖制备HMF的优良溶剂;以DMSO为溶剂,当反应温度为180℃、反应时间140 min、CrCl3·6H2O催化剂用量为果糖质量5%时,果糖制备HMF的产率可达49.2%.%Taking CrCl3 · 6H2O as catalyst, the effect of the solvent type, reaction temperature, reaction time and the amount of catalyst on the yield of 5 - hydroxymethylfurfural( HMF) from fructose was studied. The results showed that dimethyl sulfoxide (DMSO) was an ideal solvent to prepare HMF with fructose. The yield of HMF could be up to 49. 2% under the conditions of using DMSO as the solvent, taking 5% of CrCl3 · 6H2O as catalyst based on the weight of fructose to react for 140 min at 180℃

  6. Determination of 5- hydroxymethylfurfural (5-HMF) in over mature vinegar by HPLC%高效液相色谱法测定老陈醋中的5-羟甲基糠醛

    周婷婷; 杨瑞学; 宋弋; 张玉玉; 吕茜; 倪元颖; 李全宏

    2012-01-01

    利用高效液相色谱法测定老陈醋中5-羟甲基糠醛(5-HMF)的含量,以5%甲醇水溶液为流动相,采用C18色谱柱,在284nm波长条件下检测样品中的5-HMF。结果表明,该方法快速、准确,在0.0143~0.1001μg范围内线性相关系数为R2=0.9994,平均回收率88.27%~96.69%,相对标准偏差为2.09%~4.70%。%A method for the determination of 5-hydroxymethylfurfural by high-performance liquid chromatography in old mature vinegar was developed.Samples were analyzed on a Cls column at 284nm using a mixture of methanol and water(5:95, v/v)as the mobile phase.Within the linear range of 0.0143 - 0.1001μg , the method was accurate with the range of average recoveries rate and relative standard deviation of 88.27%-96.69% and 2.09% 4.70%, respectively.

  7. 离子液体中葡萄糖催化转化为5-羟甲基糠醛%Preparation of 5-hydroxymethylfurfural from glucose in ionic liquid

    徐英钊; 漆新华; 郭海心; 李陆杨

    2011-01-01

    以绿色溶剂离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl)作为溶剂,六水合氯化铬(CrCl3.6H2O)为催化剂,研究了最重要的生物质衍生糖类葡萄糖向平台化合物5-羟甲基糠醛(HMF)的转化.该催化反应体系十分有效,在130℃下反应20min,HMF的产率可达到70%以上.并且该催化体系可以循环使用,经过5次的重复使用后仍保持稳定的活性.%An efficient process for preparation of 5-hydroxymethylfurfural ( HMF ) from glucose was developed with ionic liquid 1-butyl-3-methyl imidazolium chloride ([BMIM][Cl])as solvent and CrCl3 as catalyst. A HMF yield of above 70% could be obtained at 130 ℃ in 20 min. Recycle of the ionic liquid and CrCl3 demonstrated constant activity after 5 cycles of use.

  8. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  9. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account. PMID:27108173

  10. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO{sub 2}-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    Abramovic, Biljana, E-mail: biljana.abramovic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Kler, Sanja, E-mail: sanja.kler@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Sojic, Daniela, E-mail: daniela.sojic@dh.uns.ac.rs [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Lausevic, Mila, E-mail: milal@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Radovic, Tanja, E-mail: tradovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Vione, Davide, E-mail: davide.vione@unito.it [Dipartimento di Chimica Analitica, Universita di Torino, Via Pietro Giuria 5, 10125 Torino (Italy)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Kinetics and efficiency of photocatalytic degradation of the {beta}{sub 1}-blocker metoprolol tartrate (MET). Black-Right-Pointing-Pointer Two TiO{sub 2} specimens employed. Black-Right-Pointing-Pointer Faster degradation of MET, but slower mineralization, obtained with the TiO{sub 2} specimen having lower surface area. Black-Right-Pointing-Pointer Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used {beta}{sub 1}-blocker, in TiO{sub 2} suspensions of Wackherr's 'Oxyde de titane standard' and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO{sub 2} Wackherr induced a significantly faster MET degradation compared to TiO{sub 2} Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals ({center_dot}OH), it was shown that the reaction with {center_dot}OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO{sub 2} and H{sub 2}O, while the nitrogen was predominantly present as NH{sub 4}{sup +}. Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO{sub 2} specimen.

  11. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways

    Highlights: ► Kinetics and efficiency of photocatalytic degradation of the β1-blocker metoprolol tartrate (MET). ► Two TiO2 specimens employed. ► Faster degradation of MET, but slower mineralization, obtained with the TiO2 specimen having lower surface area. ► Photocatalytic transformation pathways of MET including mineralization. - Abstract: This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used β1-blocker, in TiO2 suspensions of Wackherr's “Oxyde de titane standard” and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01–0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO2 Wackherr induced a significantly faster MET degradation compared to TiO2 Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals (·OH), it was shown that the reaction with ·OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO2 and H2O, while the nitrogen was predominantly present as NH4+. Reaction intermediates were studied in detail and a number of them were identified using LC–MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO2 specimen.

  12. The histamine degradative uptake pathway in human vascular endothelial cells and skin fibroblasts is dependent on extracellular Na+ and Cl-

    We have previously reported that human vascular endothelial cells and skin fibroblasts carry out degradation of [3H]histamine by a mechanism involving two successive enzymatic steps: imidazole ring tele-methylation by the cells' endogenous methyltransferase and subsequent amine oxidation by an exogenous diamine oxidase. Both histamine and the exogenous second enzyme in the pathway associate with the cells via separate binding sites or receptors. The enzymatic degradation process results in cellular accumulation of the proximal and distal metabolites tele-methylhistamine and 1-methyl-4-imidazoleacetic acid (MIAA). We have now demonstrated that this two-stage histamine degradative pathway is dependent on Na+ and Cl- in the extracellular environment. Accumulation of [3H] histamine-derived products is partially inhibited under conditions of Na+ deprivation and more substantially when Cl- is also withdrawn. The individual tele-methylation and amine oxidation enzymatic reactions themselves are unaffected or actually facilitated under these conditions. This indicates that it is the cellular mechanism for uptake coupled to the degradative pathway which reflects the cation and anion dependency. Restoration of degradative uptake displays a biphasic Na+ concentration curve, suggesting that the uptake process may be driven by multiple components. These findings indicate a role for both inward Na+ and Cl- ion movement in this cellular degradative uptake mechanism

  13. Catalytic conversion of glucose to 5-hydroxymethylfurfural by metal halides%金属氯化物催化葡萄糖制备5-羟甲基糠醛

    朱萍; 范文元; 陈慧

    2015-01-01

    Using metal halides as catalyst and alkali metal halides as co-catalyst catalyzed glucose to dehydrate to make 5-hydroxymethylfurfural(5-HMF).Under the condition that the mass ratio of the material and catalyst is 10∶1 and the mass ratio of the material and co-catalyst is 1∶1,the following observations and studies were made on the influence of the metal halides、co-catalyst、solvent、temperature and time on the yield of 5-HMF.The results showed that,when NaI was used as co-catalyst for the AlCl3-catalyzed conversion of glucose at 130℃for 15 min in N,N-Dimethylacetamide (DMAC) the yield of 5-HMF is up to 30.6%.%用金属氯化物做催化剂,碱金属卤化物做助剂,催化葡萄糖脱水制备5-羟甲基糠醛(5-HMF).在原料与催化剂的质量比为10∶1,原料与助催化剂的质量比为1∶1的情况下,考察金属氯化物、助剂、溶剂、温度、时间对5-HMF收率的影响.结果显示:AlCl3做催化剂、NaI做助剂、溶剂为N,N-二甲基乙酰胺(DMAC)、反应温度为130℃、反应时间为15 min时5-HMF收率可达30.6%.

  14. Determination of 5-hydroxymethylfurfural in Zhenjiang Vinegar by HPLC%高效液相色谱法测定镇江香醋中5-羟甲基糠醛的含量

    张玉玉; 宋弋; 周婷婷; 吕茜; 杨瑞学; 李全宏

    2012-01-01

    A method for determination of 5-hydroxymethylfurfural by high-performance liquid chromatography in Zhenjiang vinegar was developed.Samples were analyzed on a Venusil XBP-C18 column with oven temperature of 30 ℃,using a mixture of methanol and water(5∶95,v/v) as the mobile phase with the flow rate of 1.0 mL/min,and detected at 284 nm.Within the linear range of 0.014 3~0.085 8 μg,the correlation coefficient was 0.999 9.The method was accurate with the average recoveries rate and relative standard deviation of 98.66% and 5.53%,respectively.%采用高效液相色谱法,对镇江香醋中5-羟甲基糠醛进行了定量分析.样品中的HMF含量的测定条件为:以甲醇-水溶液(体积比为5∶95)为流动相,流速为1.0 mL/min,采用Venusil XBP-C18色谱柱分离,柱温为30℃,UV检测器的检测波长为284 nm.定量分析结果表明,镇江香醋中HMF的含量为8.01 mg/kg.高效液相色谱法分析镇江香醋中HMF含量的方法测定准确,稳定性高,HMF在0.014 3~0.085 8μg的进样范围内线性相关系数为R2=0.999 9,平均回收率98.66%,相对标准偏差为5.53%.

  15. Study on the Generation of 5-Hydroxymethylfurfural in Chinese Medicine Injection%中药注射液中5-羟甲基糠醛来源探讨

    杨立伟; 刘潇潇; 李泳雪

    2012-01-01

    目的:通过对中药注射液中的5-羟甲基糠醛(5-HMF,5-Hydroxymethylfurfural)来源的初步探讨,为提高中药注射液的质量控制水平提供参考依据.方法:利用HPLC方法对注射液、中间体中的5-HMF和寡糖(葡萄糖、果糖及蔗糖)分别进行含量测定,确定5-HMF的来源;通过模拟生产过程考察不同寡糖的受热不稳定情况,来探讨5-HMF的生成机制.结果:只有在含有果糖的中间体中含有5 -HMF.模拟高温灭菌过程发现仅有果糖受热后转化生成5-羟甲基糠醛及其相关物质,而葡萄糖和蔗糖均没有转化.结论:并不是所有的寡糖在高温下都易转化5-HMF.在常见的三种糖中,只有果糖在高温下易转化生成5-HMF,而葡萄糖和蔗糖不易转化.建议对含果糖的中药注射液进行5-HMF的限度检查,而含葡萄糖和蔗糖的可以不控制该项目.

  16. 棉秆水热法制备5-羟甲基糠醛的动力学研究%Dynamics of 5-Hydroxymethylfurfural Preparation From Cotton Stalk with Hydrothermal Method

    周涛; 廖孝艳; 蒋崇文; 周礼超

    2013-01-01

    为了提高生物质中纤维素的降解率和5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)的产率,对棉杆水热法降解生成5-HMF的过程进行了研究.通过分析各因素对纤维素降解和5-HMF合成的影响,确定最佳操作工艺条件;在催化剂SO42-/ZrO2存在与不存在时,对棉秆水热法制备5-HMF的过程进行了动力学分析.研究结果表明,催化剂SO42-/ZrO2添加质量分数为20%,在230℃下反应90 min时,纤维素降解率可达94.43%,5-HMF产率可达25.3%,相同条件下较无催化剂可提高79.4%.动力学研究表明催化剂SO42-/ZrO2对纤维素降解和5-HMF合成都具有正向催化效果.加入催化剂后,纤维素降解反应活化能由106.0 kJ·mol-1降低至96.7 kJ·mol-1,5-HMF合成反应活化能由119.4 kJ·mol-1降低至84.2 kJ·mol-1.

  17. Advances in Selective Hydrogenation of 5-Hydroxymethylfurfural into 2,5-Dimethylfuran%5-羟甲基糠醛选择性加氢制备2,5-二甲基呋喃的研究进展

    胡磊; 吴真; 许家兴; 孙勇; 林鹿; 徐宁; 戴本林

    2015-01-01

    The renewable liquid fuel,2,5-dimethylfuran (DMF),which can be produced by the selective hydrogenation of 5-hydroxymethylfurfural ( HMF ) with high energy density, high boiling point, high octane number, and water insolubility, has attracted more attention all over the world. According to its excellent physicochemical properties, the momentous application values, and the broad market prospects, the various catalytic systems and the latest research progress for the selective hydrogenation of HMF into DMF from the point of the diversity of hydrogen donors such as molecular hydrogen, formic acid, alcohols,and water are systematically summarized. The future research trends are prospected to offer the valuable ideas and advices for the selective hydrogenation of HMF and provide the theoretical references and technical supports for the industrial production and practical application of DMF.%鉴于2,5-二甲基呋喃(DMF)优良的理化性质、重要的应用价值和广阔的市场前景,着重从氢气、甲酸、醇类和水等不同氢供体的角度入手,系统归纳和总结了自2007年以来5-羟甲基糠醛(HMF)选择性加氢制备DMF 的催化反应体系及其最新的研究进展,并对今后HMF 选择性加氢制备DMF 的研究前景进行了展望。

  18. Catalytic Dehydration of Fructose to 5-hydroxymethylfurfural by Lanthanum Salt in Ethanol%乙醇中镧盐催化果糖脱水制备5-羟甲基糠醛的研究

    李秉正; 吴学众

    2011-01-01

    A preliminary study of catalytic dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) was carried out by using ethanol as solvent and lanthanum salt as catalyst. A comparison study indicated that the yields of 5-HMF in ethanol was much larger than those in water. LaCl3 had higher catalytic activity than La(NO3)3. Increasing the catalyst concentration can accelerate the reaction of dehydration of fructose to 5-HMF, but had little effect on increasing the maximum yield of 5-HMF. The yield of 5-HMF,as well as the reaction rate of dehydration of fructose to 5-HMF,increased along with the increase in temperature. The yield of 5-HMF up to 41.6 % was achieved after 20 min at 140℃.%以乙醇为反应溶剂,镧盐为催化剂催化果糖制备5-羟甲基糠醛(5-HMF)进行了初步研究.乙醇作为反应溶剂时,5-HMF产率远高于以水作为反应溶剂.氯化镧与硝酸镧相比具有更好的催化活性.提高催化剂浓度可以增大果糖转化为5-HMF的速率,但是对5-HMF的最大产率影响较小.随着反应温度的提高,果糖转化为5-HMF的速率增大,5-HMF的产率也明显提高.当反应温度为140℃时,反应20 min产率即可达到41.6%.

  19. Preparation of 5-Hydroxymethylfurfural From Glucose With Mesoporus Aluminophosphate as Catalyst%介孔磷酸铝催化葡萄糖制备5-羟甲基糠醛

    陈浩凤; 刘军; 刘春霞

    2015-01-01

    AlPO catalyst was synthesized from Al(NO3)3 and H3PO4 in the presence of citric acid. The samples were characterized by BET, XRD, FT-IR. The AlPO catalyst was evaluated for synthesis of 5-hydroxymethylfurfural from glucose. The effect of n(P)/n(Al), reaction temperature, reaction time, catalyst dosage and glucose quality on the synthesis was investigated. The results show that,under the condition of 10%(wt) catalyst, n(P)/n(Al)=1:1 and 10 mL DMSO as solvent, temperature 150 ℃,time 5 h,HMF yield can reach to 35%.%以硝酸铝和磷酸为原料,采用柠檬酸法制备了介孔磷酸铝材料 AlPO,利用 BET、XRD 和 FT-IR等分析方法对材料的物化性能进行了表征。通过催化葡萄糖转化制备5-羟甲基糠醛(HMF)的反应研究了其催化活性。对材料 P/Al 物质的量比,反应温度,反应时间,催化剂用量和反应底物浓度的考察表明,当n(P)/n(Al)=1:1时,10%(wt)的催化剂用量,在150℃条件下催化葡萄糖反应5 h 后,HMF 的收率可达35%。

  20. 酸性离子液体催化蔗糖转化合成5-羟甲基糠醛%Synthesis of 5-hydroxymethylfurfural from sucrose with acidic ionic liquids as the catalysts

    仝新利; 李梦然

    2011-01-01

    研究了离子液体催化蔗糖合成5-羟甲基糠醛的反应过程.合成并表征了N-甲基吡咯烷酮甲磺酸盐和N-甲基吡咯烷酮硫氢酸盐两种离子液体,并考察了两种离子液体在N,N-二甲基甲酰胺-溴化锂(DMF-LiBr)溶剂体系中催化蔗糖合成5-羟甲基糠醛的反应情况.结果表明,N-甲基吡咯烷酮甲磺酸盐催化效果较好,氮气保护下,在反应温度85℃、反应时间60 min和加入催化剂N-甲基吡咯烷酮甲磺酸盐占蔗糖物质的量的10.0%条件下,蔗糖脱水生成5-羟甲基糠醛的收率可达48.2%.%The synthesis of 5-hydroxymethylfurfural was studied using sucrose as mw material and ionic liquids as the catalysts. The ionic liquids including N-methyl-2-pyrrolidonium methyl sulfonate and N-methyl-2-pyrrolidonium hydrogen suffate was synthesized and characterized, and the catalytic dehydration of sucrose by these ionic liquids was investigated. The results indicated that N-methyl-2-pyrrolidonium methyl sulfonate exhibited better catalytic properties and 5-hydroxymethyffuffural yield of 48.2% was obtained under the condition as follows: reaction time 60 rain, reaction temperature 85 ℃, N2 atmosphere,N-methyl-2-pyrrolidonium methyl sulfonate dosage 10.0% (mole fraction) of sucrose and N, N-dimethylformamide-lithium bromide (DMF-LiBr) as the solvent.

  1. 蜜环菌发酵液中5-羟甲基糠醛提取工艺优化%Optimization of Extracting Process of 5-Hydroxymethylfurfural from Armillaria mellea Fermentation Broth

    陈楠; 焦连庆; 郑毅男; 于敏; 刘晓杰

    2012-01-01

    以蜜环菌发酵液为原料,通过正交试验优选5-羟甲基糠醛的提取工艺.超声提取蜜环菌发酵液中5-羟甲基糠醛,运用高效液相色谱法测定其含量,并用L9(33)正交试验设计,考察提取溶剂量(mLg)、提取时间、提取次数对提取率的影响.蜜环菌发酵液中5-羟甲基糠醛的最佳提取条件为:提取溶剂量6倍量、提取时间20min、提取次数2次.在最佳提取条件下,5-羟甲基糠醛提取率为6.12%.%The orthogonal experimental design method was used to optimize the extracting process of 5-Hydroxymethylfurfural (5-HMF) in the sample of A rmillaria mellea fermentation broth. 5-HMF was extracted by supersonic wave from Armillaria mellea fermentation broth. Then the content of 5-HMF was determined by high performance liquid chromatography. The L, (3s) orthogonal experimental design was used to study the influence of different dosage of extraction solvent (mL: g), extraction time, and the number of extraction on the extraction rate of 5-HMF. The optimum extraction condition: the dosage of extraction solvent was 6 times, extraction time was 20 min, and the number of extraction times was 2. 5-HMF's extraction rate was 6.12% in the best extraction conditions.

  2. 磷钨酸盐催化果糖水解制备5-羟甲基糠醛%Conversion of fructose to 5-hydroxymethylfurfural catalyzed by heteropolyacid salts

    曲永水; 黄崇品; 宋彦磊; 张傑; 陈标华

    2012-01-01

    The dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) catalyzed by a variety of heteropolyacid salts has been studied. The highest 5-HMF yield was 99. 2% , obtained using a CePW12O40 catalyst in DMSO with 5% (mass fraction) of catalyst at 160℃ with reaction time 8 h. Furthermore, the conversion of fructose to 5-HMF catalyzed by heteropolyacid salts was conducted under microwave conditions. Compared with the conventional heating method, microwave heating showed a remarkable ability to both accelerate the reaction rate and improve the yield of 5-HMF. Moreover, the catalyst could be separated from the reaction mixture by a simple process at the end of the reaction and the catalyst could be reused six times without loss of activity.%以磷钨酸盐为催化剂,研究了其对果糖水解过程的影响,考察了反应时间、温度、催化剂种类及用量等因素 对5-羟甲基糠醛(5-HMF)收率的影响.实验结果表明:160℃时在二甲基亚砜(DMSO)中,以CePW12O40为催化剂,反应8h,5-HMF的收率最高为99.2%;该催化剂循环使用6次,仍能保持较高活性,5-HMF的收率仍能保持90.5%.与传统加热方法相比,微波加热可明显加快反应速率,缩短反应时间.

  3. Characteristics of the Thermal Degradation of Glucose and Maltose Solutions

    Woo, Koan Sik; Kim, Hyun Young; Hwang, In Guk; Lee, Sang Hoon; Jeong, Heon Sang

    2015-01-01

    In order to investigate the thermal degradation of glucose and maltose solutions after high temperature and high pressure (HTHP) treatment, the samples were treated at temperatures of 110, 120, 130, 140, and 150°C for 1, 2, 3, 4, and 5 h in an apparatus for HTHP treatment. Glucose and maltose solutions (20% w/w) were prepared by weighing glucose and maltose and adding distilled water in the desired proportion. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugar contents...

  4. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  5. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator

    Wei eWang

    2014-05-01

    Full Text Available To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose and lignin, through pretreatment and hydrolysis (both enzymatic and chemical, and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pretreatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB, a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pretreated corn stover slurry as well as individually in the presence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pretreated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF, benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  6. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    Copley, Shelley D. [University of Colorado; Rokicki, Joseph [University of Colorado; Turner, Pernilla [University of Colorado; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

  7. Insights from 14C into C loss pathways in degraded peatlands

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  8. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    Chai, Fan; Liang, Yan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Bi, Jiong [Laboratory of General Surgery, First Affiliated Hospital, Sun Yet-sen University, Guangzhou 510080 (China); Chen, Li; Zhang, Fan [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cui, Youhong [Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Jiang, Jun, E-mail: jcbd@medmail.com.cn [Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  9. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation.

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography mass spectrometry (LC-MS/MS) provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP) while the second proceeds through formation of 4-aminoparathion (4-APar), 4-aminophenol (4-AP) and parabenzoquinone (PBQ). This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium. PMID:26587344

  10. Degradative intracellular transport of antisecretory component in cultured hepatocytes. An alternate pathway for the immunoglobulin A receptor

    The liver efficiently transports dimeric immunoglobulin A (dIgA) from blood to bile in a direct, nonlysosomal pathway involving smooth-surfaced vesicles. Secretory component (SC), the plasma membrane receptor for dIgA, is released into bile still bound to its ligand by disulfide bridges. Rabbit IgG antirat SC binds specifically to plasma membrane SC, yet the biliary secretion of anti-SC is markedly lower than that of dIgA, suggesting that the IgG antibodies utilize an alternate transhepatocellular pathway. Uptake of commercially available antihuman SC conjugated to horseradish peroxidase was examined by quantitative electron microscopic immunocytochemistry using primary rat hepatocyte monolayer cultures. Coincubation with human polymeric IgA, rabbit antiserum to rat SC, free human SC, human secretory IgA, and rat bile, all significantly suppressed uptake of anti-SC-horseradish peroxidase, thus demonstrating the specificity of the labeled antibody. Coated vesicles accounted for greater than 70% of the total uptake of either the anti-SC-horseradish peroxidase preparation or colloidal gold-labeled IgG antirat SC. Both compounds could also be observed in other structures associated with the degradative pathway, i.e., multivesicular bodies and lysosomes. Moreover, the extent to which 125I-anti-SC was degraded was significantly greater than that of 125I-dIgA. These data demonstrate that dIgA and anti-SC utilize different intracellular pathways, with anti-SC undergoing lysosomal degradation

  11. Androgens upregulate Cdc25C protein by inhibiting its proteasomal and lysosomal degradation pathways.

    Yu-Wei Chou

    Full Text Available Cdc25C is a cell cycle protein of the dual specificity phosphatase family essential for activating the cdk1/Cyclin B1 complex in cells entering into mitosis. Since altered cell cycle is a hallmark of human cancers, we investigated androgen regulation of Cdc25C protein in human prostate cancer (PCa cells, including androgen-sensitive (AS LNCaP C-33 cells and androgen-independent (AI LNCaP C-81 as well as PC-3 cells. In the regular culture condition containing fetal bovine serum (FBS, Cdc25C protein levels were similar in these PCa cells. In a steroid-reduced condition, Cdc25C protein was greatly decreased in AS C-33 cells but not AI C-81 or PC-3 cells. In androgen-treated C-33 cells, the Cdc25C protein level was greatly elevated, following a dose- and a time-dependent manner, correlating with increased cell proliferation. This androgen effect was blocked by Casodex, an androgen receptor blocker. Nevertheless, epidermal growth factor (EGF, a growth stimulator of PCa cells, could only increase Cdc25C protein level by about 1.5-fold. Altered expression of Cdc25C in C-33 cells and PC-3 cells by cDNA and/or shRNA transfection is associated with the corresponding changes of cell growth and Cyclin B1 protein level. Actinomycin D and cycloheximide could only partially block androgen-induced Cdc25C protein level. Treatments with both proteasomal and lysosomal inhibitors resulted in elevated Cdc25C protein levels. Immunoprecipitation revealed that androgens reduced the ubiquitination of Cdc25C proteins. These results show for the first time that Cdc25C protein plays a role in regulating PCa cell growth, and androgen treatments, but not EGF, greatly increase Cdc25C protein levels in AS PCa cells, which is in part by decreasing its degradation. These results can lead to advanced PCa therapy via up-regulating the degradation pathways of Cdc25C protein.

  12. Porcine arterivirus activates the NF-κB pathway through IκB degradation

    Nuclear factor-kappaB (NF-κB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-κB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-κB activation was characterized by translocation of NF-κB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-κB-regulated gene expression. NF-κB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-κB activation. Degradation of IκB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα (IκBαDN) significantly suppressed NF-κB activation induced by PRRSV. However, IκBαDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-κB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-κB was activated by PRRSV infection. Moreover, NF-κB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-κB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV

  13. Study on antioxidation capability of fructose-oligosaccharide and 5- hydroxymethylfurfural%低聚蔗果糖及其5-羟甲基糠醛抗氧化能力研究

    宋玉蓉; 刘云; 乐国伟; 张蓉; 施用晖

    2010-01-01

    目的:研究微渡辅助合成低聚蔗果糖(W-FOS)及其在合成过程中产生的5-HMF(5-hydroxymethylfurfural)抗氧化能力.方法:测定W-FOS及5-HMF清除DPPH、ABTS~+能力;清洁级昆明小鼠60只,随机分6组:对照组、高脂组(脂肪含量20%)、高脂+0.5%E-FOS(酶法合成低聚果糖)组、高脂+0.5%W-FOS+5-HMF组(5-HMF含量分别为0.20%、0.02%、0.0%).饲喂5w后测定机体抗氧化指标水平.结果:W-FOS具有清除DPPH、ABTS~+能力,且5-HMF能提高其清除力;E-FOS、W-FOS+5-HMF组能使高脂日粮小鼠血脂水平得到显著恢复(P<0.05);W-FOS+5-HMF组能使高脂日粮小鼠血脂水平显著降低(P<0.05);添加含中低、高水平5-HMF的W-FOS分别能显著恢复高脂日粮小鼠血浆T-AOC、CAT、MDA、ROS和CAT、ROS水平;含中低水平5-HMF的W-FOS对高脂日粮小鼠肝脏GSH-Px、MDA、ROS的保护作用优于高水平5-HMF的W-FOS.结论:W-FOS和5-HMF都具有清除DPPH、ABTS~+的能力;0.5%W-FOS及其5-HMF水平为0.00%~0.02%对,对高脂日粮小鼠的血脂水平、血浆、肝脏的抗氧化能力均具有良好的保护作用.

  14. Determination of the Contents of 5-hydroxymethylfurfural in DangShen by HPLC%HPLC法测定党参中5-羟甲基糠醛的含量

    王宇; 张玉兰

    2014-01-01

    目的:建立党参中己糖降解产物5-羟甲基糠醛(5-HMF)的含量测定方法,对党参药材中的5-羟甲基糠醛进行含量测定。方法:采用Agilent Extend-C18(250 mm×4.6 mm,5μm)色谱柱,以乙腈-0.3%醋酸溶液(3∶97)为流动相,检测波长284 nm,流速1.0 mL/min,柱温30℃。结果:5-羟甲基糠醛在浓度为2.538~63.45μg/mL范围内与峰面积具有良好的线性关系(r=0.9998),精密度和重复性的RSD分别为0.8%和2.5%。结论:该方法操作简便,结果准确可靠,可用于党参中5-羟甲基糠醛的含量测定,为进一步评价党参的安全性提供参考。%Objective:To establish the determination method for 5-hydroxymethylfurfural (5-HMF) in Dang-Shen (Radix Codonopsis Pilosulae) and determine its contents. Methods:Agilent Extend-C18 (250 mm×4.6 mm, 5μm) chromatographic column was adopted with the mobile phase of acetonitrile-0.3% acetum (3:97), detection wave-length was 284nm, flow rate was 1.0mL/min, column temperature was 30℃. Results:It showed better linear rela-tionship in the range between 2.538 and 63.45μg/mL and peak area (r=0.999 8), accuracy and repeatability RSD were 0.8%and 2.5%respectively. Conclusion:The method, simple and reliable, could be used to the determination of 5-HMF contained in DangShen, which could provide reference for further assessment of the safety of DangShen.

  15. Determination of 5-hydroxymethylfurfural in fruit juice concentrate and fruit fructose by HPLC%高效液相色谱法测定浓缩果汁及水果果糖中5-羟甲基糠醛

    孔祥虹; 李小军; 何强; 高军刚; 吴双民

    2012-01-01

    A HPLC method was established for the determination of 5-hydroxymethylfurfural(5-HMF)in fruit juice concentrate and fruit fructose.The sample was diluted with water, separated by using Inetrsil ODS-3 C18 (250mm × 4.6mm,5μm) chromatographic column.The method showed that a good linearity within the range of 1.0-25.0mg/L( r = 9998).The LOD of 5-HMF was 0.2mg/kg, the average recoveries from 82.2% to 103.3%, the relative standard deviation(RSD) from 0.62% to 1.25%.The HPLC method is quick, accurate, sensitive and suitable for determining the content of 5-HMF in fruit juice concentrate.%建立了浓缩苹果汁、浓缩梨汁和水果果糖中的5-羟甲基糠醛的高效液相色谱(HPLC)检测方法。样品用甲醇溶解后,经水稀释,Inetrsil ODS-3 C18(250mm×4.6mm,5μm)色谱柱分离,紫外检测器在282nm处进行检测;5-羟甲基糠醛在1.0-25.0mg/L范围内线性关系良好,相关系数为0.9998,回收率为82.2%~103.3%,精密度(RSD)为0.62%-1.25%,方法的检出限(LOD)为0.2mg/kg。本方法具有快速、简单、灵敏度高、适用范围广等特点,可以满足果汁中5-羟甲基糠醛的分析要求。

  16. Different pathways of degradation of SP-A and saturated phosphatidylcholine by alveolar macrophages.

    Baritussio, A; Alberti, A; Armanini, D; Meloni, F; Bruttomesso, D

    2000-07-01

    Alveolar macrophages degrade surfactant protein (SP) A and saturated phosphatidycholine [dipalmitoylphosphatidylcholine (DPPC)]. To clarify this process, using rabbit alveolar macrophages, we analyzed the effect of drugs known to affect phagocytosis, pinocytosis, clathrin-mediated uptake, caveolae, the cytoskeleton, lysosomal pH, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) on the degradation of SP-A and DPPC. We found the following: 1) SP-A binds to the plasma membrane, is rapidly internalized, and then moves toward degradative compartments. Uptake could be clathrin mediated, whereas phagocytosis, pinocytosis, or the use of caveolae are less likely. An intact cytoskeleton and an acidic milieu are necessary for the degradation of SP-A. 2) Stimulation of protein kinase C increases the degradation of SP-A. 3) PI3K influences the degradation of SP-A by regulating both the speed of internalization and subsequent intracellular steps, but its inhibition does not prevent SP-A from reaching the lysosomal compartment. 4) The degradation of DPPC is unaffected by most of the treatments able to influence the degradation of SP-A. Thus it appears that DPPC is degraded by alveolar macrophages through mechanisms very different from those utilized for the degradation of SP-A. PMID:10893207

  17. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus.

    Goszczynski, S; Paszczynski, A; Pasti-Grigsby, M B; Crawford, R L; Crawford, D. L.

    1994-01-01

    Pathways for the degradation of 3,5-dimethyl-4-hydroxy-azobenzene-4'-sulfonic acid (I) and 3-methoxy-4-hydroxyazobenzene-4'-sulfonamide (II) by the manganese peroxidase and ligninase of Phanerochaete chrysosporium and by the peroxidase of Streptomyces chromofuscus have been proposed. Twelve metabolic products were found, and their mechanisms of formation were explained. Preliminary oxidative activation of the dyes resulted in the formation of cationic species, making the molecules vulnerable ...

  18. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.

    Hopper, D. J.; Kemp, P D

    1980-01-01

    Constitutive synthesis of enzymes responsible for methyl group oxidation in 3,5-xylenol degradation and an associated p-cresol methylhydroxylase in Pseudomonas putida NCIB 9869 was shown by their retention at high specific activities in cells transferred from 3,5-xylenol medium to glutamate medium. The specific activities of other enzymes of the 3,5-xylenol pathway declined upon removal of aromatic substrate, consistent with their inducible control. Specific activities of the methyl-oxidizing...

  19. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Alberto Scoma; Marta Barbato; Emma Hernandez-Sanabria; Francesca Mapelli; Daniele Daffonchio; Sara Borin; Nico Boon

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivora...

  20. TRIM22 Inhibits the TRAF6-stimulated NF-κB Pathway by Targeting TAB2 for Degradation

    Hui Qiu; Fang Huang; Han Xiao; Binlian Sun; Rongge Yang

    2013-01-01

    Tripartite motif containing 22 (TRIM22),a member of the TRIM/RBCC family,has been reported to activate the nuclear factor-kappa B (NF-κB) pathway in unstimulated macrophage cell lines,but the detailed mechanisms governing this activation remains unclear.We investigated this mechanism in HEK293T cells.We found that overexpression of TRIM22 could activate the NF-κB pathway and conversely,could inhibit the tumor necrosis factor receptor-associated factor 6 (TRAF6)-stimulated NF-κB pathway in HEK293T cells.Further experiments showed that TRIM22 could decrease the self-ubiquitination of TRAF6,and interact with and degrade transforming growth factor-β activated kinase 1 binding protein 2 (TAB2),and that these effects could be partially rescued by a TRIM22 RING domain deletion mutant.Collectively,our data indicate that overexpression of TRIM22 may negatively regulate the TRAF6-stimulated NF-κB pathway by interacting with and degrading TAB2.

  1. Adsorption and Photocatalytic Decomposition of the β-Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    Violette Romero

    2013-01-01

    Full Text Available This study reports the photocatalytic degradation of the β-blocker metoprolol (MET using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different initial pH were studied to evaluate noncatalytic degradation for this pharmaceutical. MET adsorption onto titania was fitted to two-parameter Langmuir isotherm. From adsorption results it appears that the photocatalytic degradation can occur mainly on the surface of TiO2. MET removed by photocatalysis was 100% conditions within 300 min, while only 26% was achieved by photolysis at the same time. TiO2 photocatalysis degradation of MET in the first stage of the reaction followed approximately a pseudo-first-order model. The major reaction intermediates were identified by LC/MS analysis such as 3-(propan-2-ylaminopropane-1,2-diol or 3-aminoprop-1-en-2-ol. Based on the identified intermediates, a photocatalytic degradation pathway was proposed, including the cleavage of side chain and the hydroxylation addition to the parent compounds.

  2. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  3. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    Fazlurrahman Khan

    Full Text Available 2-chloro-4-nitroaniline (2-C-4-NA is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP, which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.

  4. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  5. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  6. Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation

    Tao, Ting; Hui SHI; Guan, Yihong; Huang, Delai; Chen, Ye; Lane, David P; Chen, Jun; Peng, Jinrong

    2013-01-01

    p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however, little is known about p53 turnover through proteasome-independent pathway(s). The digestive organ expansion factor (Def) protein is essential for the development of digestive organs. In zebrafish, loss of function of def selectively upregulates the expression of p53 response genes, which raises a question as to what is the relationship between Def and p53. W...

  7. The Rtr1p CTD phosphatase autoregulates its mRNA through a degradation pathway involving the REX exonucleases

    Hodko, Domagoj; Ward, Taylor; Chanfreau, Guillaume

    2016-01-01

    Rtr1p is a phosphatase that impacts gene expression by modulating the phosphorylation status of the C-terminal domain of the large subunit of RNA polymerase II. Here, we show that Rtr1p is a component of a novel mRNA degradation pathway that promotes its autoregulation through turnover of its own mRNA. We show that the 3′UTR of the RTR1 mRNA contains a cis element that destabilizes this mRNA. RTR1 mRNA turnover is achieved through binding of Rtr1p to the RTR1 mRNP in a manner that is dependent on this cis element. Genetic evidence shows that Rtr1p-mediated decay of the RTR1 mRNA involves the 5′-3′ DExD/H-box RNA helicase Dhh1p and the 3′-5′ exonucleases Rex2p and Rex3p. Rtr1p and Rex3p are found associated with Dhh1p, suggesting a model for recruiting the REX exonucleases to the RTR1 mRNA for degradation. Rtr1p-mediated decay potentially impacts additional transcripts, including the unspliced BMH2 pre-mRNA. We propose that Rtr1p may imprint its RNA targets cotranscriptionally and determine their downstream degradation mechanism by directing these transcripts to a novel turnover pathway that involves Rtr1p, Dhh1p, and the REX family of exonucleases. PMID:26843527

  8. The regulatory role of reversible phosphorylation in the chlorophyll degradation pathway

    Senescence represents the final stage of plant development and is characterized by several processes including the systematic degradation of the photosynthetic apparatus and chlorophyll molecules inside chloroplasts. Normally, chlorophyll is catabolized to colorless compounds through a series of enz...

  9. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2013-01-01

    R hodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the napht...

  10. Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway

    Da Li; Ji-Jun Shi; Cheng-Jie Mao; Sha Liu; Jian-Da Wang; Jing Chen; Fen Wang; Ya-Ping Yang; Wei-Dong Hu; Li-Fang Hu; Chun-Feng Liu

    2013-01-01

    Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of misfolded proteins and damaged organells. Previous studies reported that dynein dysfuntion was associated with aberrant aggregation of α-synuclein, which is a major component of inclusion bodies in...

  11. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  12. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Suryawan, Agus; Davis, Teresa A.

    2014-01-01

    Background The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) e...

  13. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins.

    Desautels, M; Goldberg, A L

    1982-01-01

    A large fraction (30-50%) of the various proteins synthesized within isolated rat liver mitochondria were degraded to amino acids within 60 min after synthesis. Incomplete mitochondrial polypeptides resulting from the incorporation of puromycin were degraded even more extensively (80% per hr). Protein breakdown was measured by the appearance of acid-soluble radioactivity and by the disappearance of labeled polypeptides detected on NaDodSO4/polyacrylamide gel electrophoresis. The amino acids g...

  14. 不同热作用条件下牛乳中5-HMF生成量的变化研究%Study on the Quantities Change of the 5-Hydroxymethylfurfural in Milk under the Different Heat Treatments

    高萌; 葛武鹏; 张小军; 崔璐璐; 秦立虎

    2012-01-01

    : To discuss the 5-HMF as the milk heat degree validation of target sensitivity and direct the scientific of determine the different heat treatment processes. A high performance liquid chromatographic (HPLC) method was developed for the quantities change of 5-Hydroxymethylfurfural (5-HMF) in milk under the different heating temperature and time, revealed its regularity changes. The results showed that: First, with increasing the heating temperature and heating time, the 5-HMF quantities in pasteurizing milk and instantaneous ultra high temperature sterilizing (UHT) milk all had changed. The higher the heating temperature and the longer the heating time the UHT was, the higher quantities of 5-HMF had. Second, Using this method could rapid determined the rule in quantities of 5-HMF and existed a well linear relationship between peak area and content, the determination results had high accuracy and reproducibility, and the recovery percent of 5-HMF was 90.63%-96.23%. The conclusion was that: 5-HMF as mark was scientific and feasible, based on this, establishment of the liquid milk for process parameters was: the pasteurization dairy temperature should be controlled at ( 85±2 ) ℃, the time for 15 s; the UHT dairy temperature should be controlled at ( 137±2 ) ℃, the time for 4 s.%旨在探讨5-羟甲基糠醛(5-HMF)作为牛乳中热作用程度标示物的可行性并指导不同热处理工艺参数确定的科学性。采用高效液相色谱(HPLC)法对不同温度和时间处理条件下牛乳中的5-HMF生成量变化进行分析比较,揭示其规律性变化。结果表明:(1)随着加热温度的升高和时间的延长,巴杀乳和超高温瞬时灭菌(UHT)乳中5-HMF的生成量均有相应变化,且加热温度越高,时间越长,5-HMF的生成量越高,表明5-HMF作为牛乳受热作用程度标示物可行。(2)可以快速测定牛乳中5-HMF生成量变化,结果具有

  15. Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment

    Liu, Yafeng; Ren, Jing; Wang, Xiangrong; Fan, Zhengqiu

    2016-01-01

    Microcystin-LR (MCLR) is the most common cyanotoxin in contaminated aquatic systems. MCLR inhibits protein phosphatases 1 and 2A, leading to liver damage and tumor formation. MCLR is relatively stable owing to its cyclic structures. The combined UV/H2O2 technology can degrade MCLR efficiently. The second-order rate constant of the reaction between MCLR and hydroxyl radical (·OH) is 2.79(±0.23)×1010 M−1 s−1 based on the competition kinetics model using nitrobenzene as reference compound. The probable degradation pathway was analyzed through liquid chromatography mass spectrometry. Results suggested that the major destruction pathways of MCLR were initiated by ·OH attack on the benzene ring and diene of the Adda side chain. The corresponding aldehyde or ketone peptide residues were formed through further oxidation. Another minor destruction pathway involved ·OH attack on the methoxy group of the Adda side chain, followed by complete removal of the methoxy group. The combined UV/H2O2 system is a promising technology for MCLR removal in contaminated aquatic systems. PMID:27281173

  16. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway.

    Laurence M Wood

    Full Text Available Ataxia Telangiectasia (A-T is an inherited immunodeficiency disorder wherein mutation of the ATM kinase is responsible for the A-T pathogenesis. Although the precise role of ATM in A-T pathogenesis is still unclear, its function in responding to DNA damage has been well established. Here we demonstrate that in addition to its role in DNA repair, ATM also regulates proteasome-mediated protein turnover through suppression of the ISG15 pathway. This conclusion is based on three major pieces of evidence: First, we demonstrate that proteasome-mediated protein degradation is impaired in A-T cells. Second, we show that the reduced protein turnover is causally linked to the elevated expression of the ubiquitin-like protein ISG15 in A-T cells. Third, we show that expression of the ISG15 is elevated in A-T cells derived from various A-T patients, as well as in brain tissues derived from the ATM knockout mice and A-T patients, suggesting that ATM negatively regulates the ISG15 pathway. Our current findings suggest for the first time that proteasome-mediated protein degradation is impaired in A-T cells due to elevated expression of the ISG15 conjugation pathway, which could contribute to progressive neurodegeneration in A-T patients.

  17. Researching in different activated carbon for absorption of 5-hydroxymethylfurfural and decolorization of fructose syrup%不同活性炭对果葡糖浆脱色性能及5-羟甲基糠醛吸附力的比较

    伍伯良; 许永苗; 叶晓蕾; 黄智钧; 杨曦宇

    2014-01-01

    5-羟甲基糠醛是影响果葡糖浆风味的异味物质之一,在果葡糖浆的生产工艺上无法完全去除,需要通过调节工艺参数得以控制。通过分析活性炭对5-羟甲基糠醛的吸附力及对糖浆的脱色效果,得出了不同工艺制造的粉状活性炭的优劣性,为果葡糖浆生产厂家活性炭的选择及添加比例提供参考。%5-hydroxymethylfurfural is one of the off-odor compounds that influence the flavor of high fructose syrup, it can't be completely wiped up in fructose production process and can be controlled by adjusting experimental operating parameters. By analyzing the effects of activated carbon for absorption of 5-hydroxymethylfurfural by and decolorization of fructose syrup, the advantages and disadvantages of different activated carbon were found out. This result is available for the reference to choose and use activated carbon in producing fructose syrup.

  18. Gamma radiolytic eradication of methoxychlor in aqueous media. The degradation pathways using HPLC and SPME-GC-MS

    Butt, S.B.; Zafar, A. [PINSTECH, Nilore, Islamabad (Pakistan). Central Analytical Facility Div.; Riaz, M. [PINSTECH, Nilore, Islamabad (Pakistan). Chemistry Div.

    2013-08-01

    The gamma radiation-induced degradation of environmental pollutant methoxychlor in water was investigated. A {sup 60}Co gamma radiation source with a dose rate of 372 Gy h{sup -1} was used for gamma irradiation of 1 mg L{sup -1} and 10 mg L{sup -1} methoxychlor in water with a varied absorbed dose of 1-5 kGy. A single step clean up and pre-concentration procedure based on solid phase micro-extraction was optimized. The extent of radiolytic degradation was monitored by reversed phase HPLC-UV and GC-ECD. The trace and ultra trace level degradation products were identified using GC-MS-SPME by comparing their mass spectra with the NIST 98 m mass spectral library. Most of the generated products for 4 kGy dose are substituted chlorophenols. The reaction pathways of these substituted chlorophenols and benzophenone formation are also proposed. However, generated chlorophenols disappeared along with methoxychlor for an absorbed dose of 5 kGy. The attained degradation of methoxychlor is {proportional_to} 95% that reflects the potential use of ionization radiation for wastewater treatment. (orig.)

  19. Gamma radiolytic eradication of methoxychlor in aqueous media. The degradation pathways using HPLC and SPME-GC-MS

    The gamma radiation-induced degradation of environmental pollutant methoxychlor in water was investigated. A 60Co gamma radiation source with a dose rate of 372 Gy h-1 was used for gamma irradiation of 1 mg L-1 and 10 mg L-1 methoxychlor in water with a varied absorbed dose of 1-5 kGy. A single step clean up and pre-concentration procedure based on solid phase micro-extraction was optimized. The extent of radiolytic degradation was monitored by reversed phase HPLC-UV and GC-ECD. The trace and ultra trace level degradation products were identified using GC-MS-SPME by comparing their mass spectra with the NIST 98 m mass spectral library. Most of the generated products for 4 kGy dose are substituted chlorophenols. The reaction pathways of these substituted chlorophenols and benzophenone formation are also proposed. However, generated chlorophenols disappeared along with methoxychlor for an absorbed dose of 5 kGy. The attained degradation of methoxychlor is ∝ 95% that reflects the potential use of ionization radiation for wastewater treatment. (orig.)

  20. Bis(2-chloroethoxy)methane degradation by TiO2 photocatalysis: Parameter and reaction pathway investigations

    Haloethers are widely used in industry, and the release of these species into the environment is of great concern because of their toxicity and carcinogenicity. The present study deals with the photocatalytic degradation of the haloether, bis(2-chloroethoxy)methane (BCEXM), in the presence of TiO2 particles and UV-A (λ = 365 nm) radiation. About 99.5% of BCEXM was degraded after UV irradiation for 16 h. Factors such as solution pH, TiO2 dosage, and the presence of anions were found to influence the degradation rate. To obtain a better understanding of the mechanistic details of this TiO2-assisted photodegradation of BCEXM with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. To the best of our knowledge, this is the first report on the degradation pathways of BCEXM. The first step in the destruction of BCEXM is thought to be abstraction of a hydrogen by ·OH to form a carbon-centered radical which then reacts with O2 to form a peroxyl radical. Peroxyl radicals react with one another and produce an alkoxy radical. The β-bond fragmentation of the alkoxy radical produces different intermediates.

  1. Bis(2-chloroethoxy)methane degradation by TiO{sub 2} photocatalysis: Parameter and reaction pathway investigations

    Chen, Chiing-Chang [Department of Science Application and Dissemination, National Taichung University, Taichung 403, Taiwan (China); Wu, Ren-Jang; Yao, I.-Chun [Department of Applied Chemistry, Providence University, Taichung 433, Taiwan (China); Lu, Chung-Shin, E-mail: cslu6@ntcnc.edu.tw [Department of General Education, National Taichung Nursing College, No. 193, Sec. 1, San-Min Road, Taichung 403, Taiwan (China)

    2009-12-30

    Haloethers are widely used in industry, and the release of these species into the environment is of great concern because of their toxicity and carcinogenicity. The present study deals with the photocatalytic degradation of the haloether, bis(2-chloroethoxy)methane (BCEXM), in the presence of TiO{sub 2} particles and UV-A ({lambda} = 365 nm) radiation. About 99.5% of BCEXM was degraded after UV irradiation for 16 h. Factors such as solution pH, TiO{sub 2} dosage, and the presence of anions were found to influence the degradation rate. To obtain a better understanding of the mechanistic details of this TiO{sub 2}-assisted photodegradation of BCEXM with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. To the best of our knowledge, this is the first report on the degradation pathways of BCEXM. The first step in the destruction of BCEXM is thought to be abstraction of a hydrogen by {sup {center_dot}}OH to form a carbon-centered radical which then reacts with O{sub 2} to form a peroxyl radical. Peroxyl radicals react with one another and produce an alkoxy radical. The {beta}-bond fragmentation of the alkoxy radical produces different intermediates.

  2. SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis.

    Germani, A; Bruzzoni-Giovanelli, H; Fellous, A; Gisselbrecht, S; Varin-Blank, N; Calvo, F

    2000-12-01

    SIAH-1, a human homologue of the Drosophila seven in absentia (Sina), has been implicated in ubiquitin-mediated proteolysis of different target proteins through its N-terminal RING finger domain. SIAH-1 is also induced during p53-mediated apoptosis. Furthermore, SIAH-1-transfected breast cancer cell line MCF-7 exhibits an altered mitotic process resulting in multinucleated giant cells. Now, using the two-hybrid system, we identified two new SIAH interacting proteins: Kid (kinesin like DNA binding protein) and alpha-tubulin. We demonstrate that SIAH is involved in the degradation of Kid via the ubiquitin-proteasome pathway. Our results suggest that SIAH-1 but not its N-terminal deletion mutant, affects the mitosis by an enhanced reduction of kinesin levels. Our results imply, for the first time, SIAH-1 in regulating the degradation of proteins directly implicated in the mitotic process. PMID:11146551

  3. 乙酸、糠醛和5-羟甲基糠醛对产酸克雷伯氏菌发酵生产2,3-丁二醇的影响%Effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca

    吴晶; 程可可; 李文英; 冯杰; 张建安

    2013-01-01

    To get the tolerability and consumption of Klebsiella oxytoca on major inhibitors in lignocelluloses hydrolysate, we studied the effect of acetic acid, furfural and 5-hydroxymethylfurfural on production of 2,3-butanediol by Klebsiella oxytoca. The metabolites of furfural and 5-hydroxymethylfurfural were measured. The results show that when acetic acid, furfural and 5-hydroxymethylfurfural was individually added, tolerance threshold for Klebsiella oxytoca was 30 g/L, 4 g/L and 5 g/L, respectively. Acetic acid was likely used as substrate to produce 2,3-butanediol. The yield of 2,3-butanediol increased when acetic acid concentration was lower than 30 g/L. In the fermentation, more than 70% 5-hydroxymethylfurfural was converted to 2,5-furandimethanol. All furfural and the rest of 5-hydroxymethylfurfural were metabolized by Klebsiella oxytoca. It showed that in the detoxification process of 2,3-butanediol production using lignocelluloses hydrolysate, furfural should be given priority to remove and a certain concentration of acetic acid is not need to removal.%为了解产酸克雷伯氏菌对木质纤维素水解液中主要抑制物的耐受和代谢,考察了产酸克雷伯氏菌发酵生产2,3-丁二醇(2,3-butanediol,2,3-BDO)过程中对3种发酵抑制物乙酸、糠醛和5-羟甲基糠醛(5-hydroxymethylfurfural HMF)的耐受以及抑制物浓度的变化,检测了糠醛和HMF的代谢产物.结果表明:产酸克雷伯氏菌对乙酸、糠醛和HMF的耐受浓度分别为30 g/L、4 g/L和5 g/L.并且部分乙酸可作为生产2,3-丁二醇的底物,在0~30 g/L浓度范围内可提高2,3-丁二醇的产量.发酵过程中产酸克雷伯氏菌可将HMF和糠醛全部转化,其中约70%HMF被转化为2,5-呋喃二甲醇,30%HMF和全部糠醛被菌体代谢.研究表明在木质纤维素水解液生产2,3-丁二醇的脱毒过程中可优先考虑脱除糠醛,一定浓度的乙酸可以不用脱除.

  4. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment. PMID:26891361

  5. Elucidating the Pseudomonas aeruginosa Fatty Acid Degradation Pathway: Identification of Additional Fatty Acyl-CoA Synthetase Homologues

    Zarzycki-Siek, Jan; Norris, Michael H.; Kang, Yun (Kenneth); Sun, Zhenxin; Bluhm, Andrew P.; McMillan, Ian A.; Hoang, Tung T.

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. T...

  6. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure

    This is the first detailed study of metabolite production during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenil). Degradation of dichlobenil and three potential metabolites: 2,6-dichlorobenzamide (BAM), 2,6-dichlorobenzoic acid (2,6-DCBA) and ortho-chlorobenzamide (OBAM) was studied in soils either previously exposed or not exposed to dichlobenil using a newly developed HPLC method. Dichlobenil was degraded in all four soils; BAM and 2,6-DCBA were only degraded in soils previously exposed to dichlobenil (100% within 35-56 days and 85-100% in 56 days, respectively), and OBAM in all four soils (25-33% removal in 48 days). BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid. BAM was rapidly mineralized in previously exposed soils only. All potential metabolites and the finding that BAM was a dead-end metabolite of dichlobenil in soils not previously exposed to dichlobenil needs to be included in risk assessments of the use of dichlobenil. - BAM produced from dichlobenil was either hydrolyzed to 2,6-DCBA or dechlorinated to OBAM, which was further hydrolyzed to ortho-chlorobenzoic acid

  7. (13)C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H.

    Ostermann, Steffen; Richhardt, Janine; Bringer, Stephanie; Bott, Michael; Wiechert, Wolfgang; Oldiges, Marco

    2015-01-01

    Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner-Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP). Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically (13)C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from (13)C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with (13)C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments. PMID:26404385

  8. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    Steffen Ostermann

    2015-09-01

    Full Text Available Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP and the pentose phosphate pathway (PPP. Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments.

  9. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. PMID:26468606

  10. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  11. Electrochemical treatment of trypan blue synthetic wastewater and its degradation pathway

    ANANTHA N. SUBBA RAO; ENKATESHA T. VENKATARANGAIAH

    2013-01-01

    The trypan blue (TB) dye synthetic wastewater was treated in presence of chloride ions by electrochemical method. The effect of current density, pH, initial concentration of dye and supporting electrolyte on color and COD removal were investigated. The UV-Vis ab­sorption intensity, chemical oxygen demand (COD), cyclic voltammetry (CV), Fourier transform- infrared spectroscopy (FT-IR), gas chromatography – mass spectrometry (GC-MS) analysis were conducted to investigate the kinetics and degrad...

  12. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na2SO4. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test

  13. Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway

    Andersen, Gorm

    2006-01-01

    Det første skridt i nedbrydningen af pyrimidiner er enten en reduktiv eller en oxidativ reaktion! Er der virkelig ingen alternativer? Nedbrydningen af pyrimidiner har stor betydning i mennesket. Genetiske defekter i den tilhørende pathway medfører alvorlige symptomer og specielt i for kræftpatien...

  14. Determination of the hydrothermal degradation products of D-(U-14C) glucose and D-(U-14C) fructose by TLC

    Hydrothermal degradation was examined using D-(U-14C) glucose and D-(U-14C) fructose. By thin layer chromatography with methylene chloride, tetrahydrofuran (THF), acetic acid - 60:20:20 as a mobile phase; it was possible to separate and identify the carbohydrates and their reaction products, glyceraldehyde, dihydroxyacetone, methylglyoxal, glycolaldehyde, 5-hydroxymethylfurfural and furfural. Up to 99% of the initial activity was determined by scintillation counting of the TL-chromatograms. A reaction scheme for the hydrothermal degradation of glucose and fructose was obtained from these results. (author)

  15. HPLC Determination of 5-Hydroxymethylfurfural and Ecdysterone in Granules of Radix Achyranthis Bidentatae%高效液相色谱法测定牛膝颗粒中5-羟甲基糠醛和蜕皮甾酮的含量

    赵变; 郭红云; 常珍珍; 孙祥德

    2012-01-01

    提出了高效液相色谱法同时测定牛膝配方颗粒中5-羟甲基糠醛和蜕皮甾酮的含量的方法。采用SHIMADZU shim-packVP—ODS(4.6mm×250mm,4.6μm)柱;用两种不同配比的乙腈和水混合溶液作为流动相,梯度洗脱;检测波长为279nm(5-羟甲基糠醛)和245nm(蜕皮甾酮)。5-羟甲基糠醛和蜕皮甾酮的质量浓度分别在0.390-100mg·L-1和3.125~100mg·L-1范围内与峰面积呈线性关系,方法的检出限(3S/N)分别为1.95,2.01ng。5-羟甲基糠醛和蜕皮甾酮的平均回收率分别为99.7%,99.1%;相对标准偏差(n=5)分别为0.80%,0.67%。%HPLC was applied to the simultaneous determination of 5-hydroxymethylfurfural and ecdysterone in granules of radix achyranthis bientatae for making up prescriptions. SHIMADZU shira pack VP-ODS column (4. 6 nm×250 mm,4.6μm) was used for separation. Mixtures containing acetonitrile and water mixed in different ratio were used as the mobile phase in gradient elution. UV-detection at the wavelengths of 279 nm (for 5-hydroxymethylfurfural) and 245 nm (for ecdysterone) was adopted in the determination. Linear relationships between values of peak area and mass concentration of 5-hydroxymethylfurfural and ecdysterone were obtained in the ranges of 0. 390--100 mg·L-1 and 3. 125-100 mg·L-1 , with detection limits (3S/N) of 1.95 ng and 2.01 ng respectively. Results of recovery and precision found were: values of average recovery of 99. 7% for 5-hydroxymethylfurfural and 99.1% for ecdysteronen with values of RSD's (n = 5) 0.80% and 0.67% respectively.

  16. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.

    Jan Zarzycki-Siek

    Full Text Available The fatty acid (FA degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300, which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924 were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617 contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h.

  17. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.

    Zarzycki-Siek, Jan; Norris, Michael H; Kang, Yun; Sun, Zhenxin; Bluhm, Andrew P; McMillan, Ian A; Hoang, Tung T

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h. PMID:23737986

  18. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease.

    Son, Sung Min; Cha, Moon-Yong; Choi, Heesun; Kang, Seokjo; Choi, Hyunjung; Lee, Myung-Shik; Park, Sun Ah; Mook-Jung, Inhee

    2016-05-01

    The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology. PMID:26963025

  19. Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans

    Zhou, Qinghua; Li, Haimin; Xue, Ding

    2011-01-01

    In mammals, the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal, despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization. The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown. We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans, and that the lysosomal pathway actively participates in this process. Molecular and cell ...

  20. Population sinks resulting from degraded habitats of an obligate life-history pathway.

    Hickford, Michael J H; Schiel, David R

    2011-05-01

    Many species traverse multiple habitats across ecosystems to complete their life histories. Degradation of critical, life stage-specific habitats can therefore lead to population bottlenecks and demographic deficits in sub-populations. The riparian zone of waterways is one of the most impacted areas of the coastal zone because of urbanisation, deforestation, farming and livestock grazing. We hypothesised that sink populations can result from alterations of habitats critical to the early life stages of diadromous fish that use this zone, and tested this with field-based sampling and experiments. We found that for Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, obligate riparian spawning habitat was very limited and highly vulnerable to disturbance across 14 rivers in New Zealand. Eggs were laid only during spring tides, in the highest tidally influenced vegetation of waterways. Egg survival increased to >90% when laid in three riparian plant species and where stem densities were great enough to prevent desiccation, compared to no survival where vegetation was comprised of other species or was less dense. Experimental exclusion of livestock, one of the major sources of riparian degradation in rural waterways, resulted in quick regeneration, a tenfold increase in egg laying by fish and a threefold increase in survival, compared to adjacent controls. Overall, there was an inverse relationship between river size and egg production. Some of the largest rivers had little or no spawning habitat and very little egg production, effectively becoming sink populations despite supporting large adult populations, whereas some of the smallest pristine streams produced millions of eggs. We demonstrate that even a wide-ranging species with many robust adult populations can be compromised if a stage-specific habitat required to complete a life history is degraded by localised or more diffuse impacts. PMID:21076966

  1. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  2. Finely Tuned Regulation of the Aromatic Amine Degradation Pathway in Escherichia coli

    Zeng, Ji; Spiro, Stephen

    2013-01-01

    FeaR is an AraC family regulator that activates transcription of the tynA and feaB genes in Escherichia coli. TynA is a periplasmic topaquinone- and copper-containing amine oxidase, and FeaB is a cytosolic NAD-linked aldehyde dehydrogenase. Phenylethylamine, tyramine, and dopamine are oxidized by TynA to the corresponding aldehydes, releasing one equivalent of H2O2 and NH3. The aldehydes can be oxidized to carboxylic acids by FeaB, and (in the case of phenylacetate) can be further degraded to...

  3. Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation.

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr; Stolte, Stefan; Siedlecka, Ewa Maria

    2014-09-15

    The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na2SO4. The intermediates identified by LC-MS and GC-MS analysis suggested that the hydroxyl radicals attack mainly the SN bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test. PMID:25215656

  4. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  5. CO2-高温液态水体系下果糖分解制备5-羟甲基糠醛的研究%Study on the reaction of fructose dehydration to 5-hydroxymethylfurfural by CO2-high temperature liquid water system

    黎演明; 李秉正; 吴学众; 黄日波

    2012-01-01

    5-Hydroxymethylfurfural (5-HMF)is a kind of important chemical intermediates which has wide application value and market prospect. The initial CO2 pressure, reaction temperature and initial fructose concentration were discussed for the influence on the reaction of fructose dehydration to 5-hydroxymethylfurfural under CO2-high temperature liquid water system. The results indicated that CO2-high temperature liquid water catalytic system exhibited high catalyst activity on fructose dehydration to 5-hydroxymethylfurfural, good recovery of 5-HMF was obtained even the initial fructose concentration up to 10%. Yield of 5-HMF and selectivity generation of 5-HMF ware respectively 54.3% and 57.7%,under the condition of 5 MPa CO2 pressure, 160 ℃, and 100 minutes in 3% initial fructose concentration, and catalyst activity was 2-3 times comparing to high temperature liquid water which does no exist C02. The reaction of fructose dehydration to 5-hydroxymethylfurfural was remarkably influenced by CO2 pressure. With the increase of CO2 pressure, the yield of 5-HMF increased, but the selectivity generation to 5-HMF decreased.%5-羟甲基糠醛(5-HMF)是一种重要的化工中间体,具有非常广泛的应用价值和市场前景.在CO2-高温液态水体系下,探讨了二氧化碳初始压力、反应温度以及果糖初始浓度等因素对果糖制备5-HMF的影响.结果表明,CO2-高温液态水催化体系对果糖脱水分解制备5-HMF具有较高的催化活性,在果糖初始浓度高达10%时也可获得较好的5-HMF收率.在果糖浓度为3%,CO2压力为5.0 MPa,160℃的条件下反应100 min,5-HMF的收率为54.3%,反应生成5-HMF的选择性高达57.7%,催化活性为无CO2的高温液态水的2~3倍.CO2压力对果糖分解制备5-HMF有重要影响,随着体系中CO2压力的增加,5-HMF的收率也逐渐增加,但生成5-HMF的选择性有所下降.

  6. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    Hicks, Katherine A.; Ealick, Steven E.

    2016-05-25

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide further insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.

  7. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  8. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway

    Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius;

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent...... advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase-dependent manner and was subsequently...... routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the...

  9. Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum

    SHEN Xihui; LIU Shuangjiang

    2005-01-01

    Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C.glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.

  10. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  11. Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus.

    Hughes, E J; Bayly, R C; Skurray, R A

    1984-01-01

    A study of the degradation of phenol, p-cresol, and m- and p-toluate by Alcaligenes eutrophus 345 has provided evidence that these compounds are metabolized via separate catechol meta-cleavage pathways. Analysis of the enzymes synthesized by wild-type and mutant strains and by strains cured of the plasmid pRA1000, which encodes m- and p-toluate degradation, indicated that two or more isofunctional enzymes mediated several steps in the pathway. The formation of three catechol 2,3-oxygenases an...

  12. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  13. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO4(3-) uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  14. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43‑ uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  15. Characterization of the KstR2 regulator responsible of the lower cholesterol degradative pathway in Mycobacterium smegmatis.

    García-Fernández, Julia; Galán, Beatriz; Medrano, Francisco J; García, José L

    2015-02-01

    The interaction of KstR2-dependent promoters of the divergon constituted by the MSMEG_6000-5999 and MSMEG_6001-6004 operons of Mycobacterium smegmatis which encode the genes involved in the lower cholesterol degradative pathway has been characterized. Footprint analyses have demonstrated experimentally for the first time that KstR2 specifically binds to an operator region of 29 nucleotides containing the palindromic sequence AAGCAAGNNCTTGCTT. This region overlaps with the -10 and -35 boxes of the putative P(6000) and P(6001) divergent promoters, suggesting that KstR2 represses their transcription by preventing the binding of the ribonucleic acid polymerase. A three-dimensional model of the KstR2 protein revealed a typical TetR-type regulator folding with two domains, a deoxyribonucleic acid (DNA)-binding N-terminal domain and a regulator-binding C-terminal domain composed by three and six helices respectively. KstR2 is an all alpha protein as confirmed by circular dichroism. We have determined that M. smegmatis is able to grow using sitolactone (HIL) as the only carbon source and that this compound induces the kstR2 regulon in vivo. HIL or its open form 5OH-HIP were unable to release in vitro the KstR2-DNA operator interaction, suggesting that 5OH-HIP-CoA or a further derivative would induce the lower cholesterol catabolic pathway. PMID:25511435

  16. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  17. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  18. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.

    Van Durme, J; Dewulf, J; Sysmans, W; Leys, C; Van Langenhove, H

    2007-08-01

    Indoor air concentrations of volatile organic compounds often exceed outdoor levels by a factor of 5. There is much interest in developing new technologies in order to improve indoor air quality. In this work non-thermal plasma (DC positive corona discharge) is explored as an innovative technology for indoor air purification. An inlet gas stream of 10 l min(-1) containing 0.50+/-0.02 ppm toluene was treated by the plasma reactor in atmospheric conditions. Toluene removal proved to be achievable with a characteristic energy density epsilon(0) of 50 J l(-1). Removal efficiencies were higher for 26% relative humidity (epsilon(0)=35 J l(-1)), compared with those at increased humidities (50% relative humidity, epsilon(0)=49 J l(-1)). Reaction products such as formic acid, benzaldehyde, benzyl alcohol, 3-methyl-4-nitrophenol, 4-methyl-2-nitrophenol, 4-methyl-2-propyl furan, 5-methyl-2-nitrophenol, 4-nitrophenol, 2-methyl-4,6-dinitrophenol are identified by means of mass spectrometry. Based on these by-products a toluene degradation mechanism is proposed. PMID:17490711

  19. Cx31 is assembled and trafficked to cell surface by ER-Golgi pathway and degraded by proteasomal or lysosomal pathways

    Li Qiang HE; Zhi Gao LONG; He Ping DAI; Kun XIA; Jia Hui XIA; Zhuo Hua ZHANG; Fang CAI; Yu LIU; Mu Jun LIU; Zhi Ping TAN; Qian PAN; Fai Yan FANG; De Sheng LIANG; Ling Qian WU

    2005-01-01

    Gap junctions, consisting of connexins, allow the exchange of small molecules (<1 kD) between adjacent cells, thus providing a mechanism for synchronizing the responses of groups of cells to environmental stimuli. Connexin 31 is a member of the connexin family. Mutations on connexin 31 are associated with erythrokeratodermia variabilis, hearing impairment and peripheral neuropathy. However, the pathological mechanism for connexin 31 mutants in these diseases are still unknown. In this study, we analyzed the assembly, trafficking and metabolism of connexin 31 in HeLa cells stably expressing connexin 31. Calcein transfer assay showed that calcein transfer was inhibited when cells were treated with Brefeldin A or cytochalasin D, but not when treated with nocodazole or α-glycyrrhetinic acid, suggesting that Golgi apparatus and actin filaments, but not microtubules, are crucial to the trafficking and assembly of connexin 31, as well as the formation of gap junction intercellular communication by connexin 31. Additionally, α-glycyrrhetinic acid did not effectively inhibit gap junctional intercellular communication formed by connexin 31. Pulse-chase assay revealed that connexin 31 had a half-life of about 6 h. Moreover, Western blotting and fluorescent staining demonstrated that in HeLa cells stably expressing connexin 31, the amount of connexin 31 was significantly increased after these cells were treated with proteasomal or lysosomal inhibitors. These findings indicate that connexin 31 was rapidly renewed,and possibly degraded by both proteasomal and lysosomal pathways.

  20. Degradation of γ-HCH spiked soil using stabilized Pd/Fe0 bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    Highlights: ► This study explores the potential of CMC-Pd/nFe0 to degrade γ-HCH in spiked soil. ► Sorption–desorption characteristics and partitioning of γ-HCH is investigated. ► Three degradation pathways has been proposed and discussed. ► γ-HCH degradation mechanism and kinetics is elucidated. ► Activation energy reveals that γ-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane (γ-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe0 bimetallic nanoparticles (CMC-Pd/nFe0). GC–MS analysis of γ-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of γ-HCH has been proposed. Batch studies showed complete γ-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe0 within 6 h of incubation. The surface area normalized rate constant (kSA) was found to be 7.6 × 10−2 L min−1 m−2. CMC-Pd/nFe0 displayed ∼7-fold greater efficiency for γ-HCH degradation in comparison to Fe0 nanoparticles (nFe0), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe0 loading and reaction temperature facilitates γ-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial γ-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that γ-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of γ-HCH contaminated soil using CMC-Pd/nFe0 has been discussed.

  1. Degradation of {gamma}-HCH spiked soil using stabilized Pd/Fe{sup 0} bimetallic nanoparticles: Pathways, kinetics and effect of reaction conditions

    Singh, Ritu [Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP (India); Misra, Virendra, E-mail: virendra_misra2001@yahoo.co.in [Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Mudiam, Mohana Krishna Reddy [Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Chauhan, Lalit Kumar Singh [Petroleum Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, UP (India); Singh, Rana Pratap [Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Lucknow 226 025, UP (India)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer This study explores the potential of CMC-Pd/nFe{sup 0} to degrade {gamma}-HCH in spiked soil. Black-Right-Pointing-Pointer Sorption-desorption characteristics and partitioning of {gamma}-HCH is investigated. Black-Right-Pointing-Pointer Three degradation pathways has been proposed and discussed. Black-Right-Pointing-Pointer {gamma}-HCH degradation mechanism and kinetics is elucidated. Black-Right-Pointing-Pointer Activation energy reveals that {gamma}-HCH degradation is a surface mediated reaction. - Abstract: This study investigates the degradation pathway of gamma-hexachlorocyclohexane ({gamma}-HCH) in spiked soil using carboxymethyl cellulose stabilized Pd/Fe{sup 0} bimetallic nanoparticles (CMC-Pd/nFe{sup 0}). GC-MS analysis of {gamma}-HCH degradation products showed the formation of pentachlorocyclohexene, tri- and di-chlorobenzene as intermediate products while benzene was formed as the most stable end product. On the basis of identified intermediates and final products, degradation pathway of {gamma}-HCH has been proposed. Batch studies showed complete {gamma}-HCH degradation at a loading of 0.20 g/L CMC-Pd/nFe{sup 0} within 6 h of incubation. The surface area normalized rate constant (k{sub SA}) was found to be 7.6 Multiplication-Sign 10{sup -2} L min{sup -1} m{sup -2}. CMC-Pd/nFe{sup 0} displayed {approx}7-fold greater efficiency for {gamma}-HCH degradation in comparison to Fe{sup 0} nanoparticles (nFe{sup 0}), synthesized without CMC and Pd. Further studies showed that increase in CMC-Pd/nFe{sup 0} loading and reaction temperature facilitates {gamma}-HCH degradation, whereas a declining trend in degradation was noticed with the increase in pH, initial {gamma}-HCH concentration and in the presence of cations. The data on activation energy (33.7 kJ/mol) suggests that {gamma}-HCH degradation is a surface mediated reaction. The significance of the study with respect to remediation of {gamma}-HCH contaminated soil using

  2. Novel small molecule binders of human N-glycanase 1, a key player in the endoplasmic reticulum associated degradation pathway.

    Srinivasan, Bharath; Zhou, Hongyi; Mitra, Sreyoshi; Skolnick, Jeffrey

    2016-10-01

    Peptide:N-glycanase (NGLY1) is an enzyme responsible for cleaving oligosaccharide moieties from misfolded glycoproteins to enable their proper degradation. Deletion and truncation mutations in this gene are responsible for an inherited disorder of the endoplasmic reticulum-associated degradation pathway. However, the literature is unclear whether the disorder is a result of mutations leading to loss-of-function, loss of substrate specificity, loss of protein stability or a combination of these factors. In this communication, without burdening ourselves with the mechanistic underpinning of disease causation because of mutations on the NGLY1 protein, we demonstrate the successful application of virtual ligand screening (VLS) combined with experimental high-throughput validation to the discovery of novel small-molecules that show binding to the transglutaminase domain of NGLY1. Attempts at recombinant expression and purification of six different constructs led to successful expression of five, with three constructs purified to homogeneity. Most mutant variants failed to purify possibly because of misfolding and the resultant exposure of surface hydrophobicity that led to protein aggregation. For the purified constructs, our threading/structure-based VLS algorithm, FINDSITE(comb), was employed to predict ligands that may bind to the protein. Then, the predictions were assessed by high-throughput differential scanning fluorimetry. This led to the identification of nine different ligands that bind to the protein of interest and provide clues to the nature of pharmacophore that facilitates binding. This is the first study that has identified novel ligands that bind to the NGLY1 protein as a possible starting point in the discovery of ligands with potential therapeutic applications in the treatment of the disorder caused by NGLY1 mutants. PMID:27567076

  3. The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation

    Charni-Ben Tabassi, N; Desmarais, S; Jensen, Anne-Christine Bay;

    2008-01-01

    OBJECTIVE: Cartilage degradation in osteoarthritis (OA) generates the type II collagen fragments, Helix-II and CTX-II that can be used as clinical biological markers. Helix-II and C-telopeptide of type II collagen (CTX-II) levels are associated independently with progression of OA suggesting that...... they may be generated through different collagenolytic pathways. In this study we analyzed the release of Helix-II and CTX-II from human cartilage collagen by the proteinases reported to play a role in cartilage degradation. METHODS: In vitro, human articular cartilage extract was incubated with...... enzymatic pathways. Helix-II and CTX-II alone reflect only partially overall cartilage collagen degradation. These findings may explain why these two biological markers could provide complementary information on disease progression in OA....

  4. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    Mosedale, Merrie [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wu, Hong [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Kurtz, C. Lisa [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Schmidt, Stephen P. [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Adkins, Karissa, E-mail: Karissa.Adkins@pfizer.com [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Harrill, Alison H. [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); University of Arkansas for Medical Sciences, Little Rock, AR72205 (United States)

    2014-10-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  5. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  6. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  7. Characteristics of the Thermal Degradation of Glucose and Maltose Solutions.

    Woo, Koan Sik; Kim, Hyun Young; Hwang, In Guk; Lee, Sang Hoon; Jeong, Heon Sang

    2015-06-01

    In order to investigate the thermal degradation of glucose and maltose solutions after high temperature and high pressure (HTHP) treatment, the samples were treated at temperatures of 110, 120, 130, 140, and 150°C for 1, 2, 3, 4, and 5 h in an apparatus for HTHP treatment. Glucose and maltose solutions (20% w/w) were prepared by weighing glucose and maltose and adding distilled water in the desired proportion. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugar contents, electron donating ability (EDA), and ascorbic acid equivalent antioxidant capacity (AEAC) were evaluated. With increasing heating temperatures and times, the L-, a-, and b-values decreased. The pH and free sugar contents decreased, and organic acids and HMF contents increased with greater temperatures and times. EDA (%) and the AEAC of the heating sugars increased with the increases in temperatures and times. PMID:26175997

  8. Influence of inorganic acids on the dehydration of fructose to 5-hydroxymethylfurfural over AlCl3 catalyst%无机酸对 AlCl3催化果糖脱水制备5-羟甲基糠醛的影响

    李振斌; 顾运江; 王维; 魏作君; 刘迎新

    2014-01-01

    The dehydration of fructose to 5-hydroxymethylfurfural is the research hotspot of the compre-hensive utilization of biomass resources. Using AlCl3 as the catalyst,the influence of reaction conditions on the dehydration of fructose to 5-hydroxymethylfurfural,especially the addition of different inorganic acids on the catalytic performance of AlCl3 was investigated. Using inorganic acid and AlCl3 as the co-catalyst, the effects of different solvents(1,4-dioxane,N,N-dimethylformamide,2-dimethyl sulfoxide),reaction temperature and the mass ratio of sulphuric acid to phosphoric acid(1: 2、2: 3、3: 2、2: 1)were tested. The results showed that 5-hydroxymethylfurfural yield of 92. 1% was attained under the condition as follows:N,N-dimethylformamide as the solvent,AlCl3 dosage 7. 5 mmol,sulphuric acid concentration 20 mmol·L -1 , phosphoric acid concentration 30 mmol·L - 1 and reaction temperature 120 ℃.%果糖脱水降解为5-羟甲基糠醛是生物质资源综合利用的研究热点。以 AlCl3为催化剂,考察反应条件对果糖脱水制备5-羟甲基糠醛的影响,重点研究不同无机酸对 AlCl3催化果糖降解生成5-羟甲基糠醛反应的影响。以 AlCl3和无机酸为共催化剂,考察在不同溶剂(1,4-二氧六环、N,N -二甲基甲酰胺、2-甲基亚砜)、反应温度和硫酸与磷酸质量比(1:2、2:3、3:2、2:1)条件下对果糖脱水降解制5-羟甲基糠醛的影响。结果表明,以温和的 N,N -二甲基甲酰胺为溶剂,在反应温度120℃、AlCl3用量为7.5 mmol、硫酸为20 mmol·L -1和磷酸为30 mmol·L -1共催化剂条件下,5-羟甲基糠醛收率达92.1%。

  9. An endogenous calcium-dependent, caspase-independent intranuclear degradation pathway in thymocyte nuclei: Antagonism by physiological concentrations of K+ ions

    Calcium ions have been implicated in apoptosis for many years, however the precise role of this ion in the cell death process remains incomplete. We have extensively examined the role of Ca2+ on nuclear degradation in vitro using highly purified nuclei isolated from non-apoptotic rat thymocytes. We show that these nuclei are devoid of CAD (caspase-activated DNase), and DNA degradation occurs independent of caspase activity. Serine proteases rather than caspase-3 appear necessary for this Ca2+-dependent DNA degradation in nuclei. We analyzed nuclei treated with various concentrations of Ca2+ in the presence of both a physiological (140 mM) and apoptotic (40 mM) concentration of KCl. Our results show that a 5-fold increase in Ca2+ is required to induce DNA degradation at the physiological KCl concentration compared to the lower, apoptotic concentration of the cation. Ca2+-induced internucleosomal DNA degradation was also accompanied by the release of histones, however the apoptotic-specific phosphorylation of histone H2B does not occur in these isolated nuclei. Interestingly, physiological concentrations of K+ inhibit both Ca2+-dependent DNA degradation and histone release suggesting that a reduction of intracellular K+ is necessary for this apoptosis-associated nuclear degradation in cells. Together, these data define an inherent caspase-independent catabolic pathway in thymocyte nuclei that is sensitive to physiological concentrations of intracellular cations

  10. Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia

    Oh, Eun-Taex; Kim, Chan Woo; Kim, Soo Jung; Lee, Jae-Seon; Hong, Soon-Sun; Park, Heon Joo

    2016-01-01

    HIF-1 (hypoxia-inducible factor-1) regulates the expression of more than 70 genes involved in angiogenesis, tumor growth, metastasis, chemoresistance, and radioresistance. Thus, there is growing interest in using HIF-1 inhibitors as anticancer drugs. Docetaxel, a Food and Drug Administration-approved anticancer drug, is reported to enhance HIF-1α degradation. Here, we investigated the molecular mechanism underlying docetaxel-induced HIF-1α degradation and cancer cell death under hypoxic conditions. Docetaxel pretreatment enhanced the polyubiquitination and proteasome-mediated degradation of HIF-1α, and increased cancer cell death under hypoxic conditions. Docetaxel also activated the prolyl hydroxylase, PHD1, in hypoxia, and pharmacological inhibition or siRNA-mediated knockdown of PHD1 prevented docetaxel-induced HIF-1α degradation and cancer cell death. Additionally, siRNA-mediated JNK2 knockdown blocked docetaxel-induced HIF-1α degradation and cancer cell death by inhibiting PHD1 activation. A luciferase reporter assay revealed that inhibition of the JNK2/PHD1 signaling pathway significantly increased the transcriptional activity of HIF-1 in docetaxel-treated cancer cells under hypoxia. Consistent with these results, docetaxel-treated JNK2-knockdown tumors grew much faster than control tumors through inhibition of docetaxel-induced PHD1 activation and degradation of HIF-1α. Our results collectively show that, under hypoxic conditions, docetaxel induces apoptotic cell death through JNK2/PHD1 signaling-mediated HIF-1α degradation. PMID:27263528

  11. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degrad...

  12. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.

    Laquitaine, L; Durimel, A; de Alencastro, L F; Jean-Marius, C; Gros, O; Gaspard, S

    2016-01-01

    Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae. PMID:26686518

  13. Genetic associations of type 2 diabetes with islet amyloid polypeptide processing and degrading pathways in asian populations.

    Vincent Kwok Lim Lam

    Full Text Available Type 2 diabetes (T2D is a complex disease characterized by beta cell dysfunctions. Islet amyloid polypeptide (IAPP is highly conserved and co-secreted with insulin with over 40% of autopsy cases of T2D showing islet amyloid formation due to IAPP aggregation. Dysregulation in IAPP processing, stabilization and degradation can cause excessive oligomerization with beta cell toxicity. Previous studies examining genetic associations of pathways implicated in IAPP metabolism have yielded conflicting results due to small sample size, insufficient interrogation of gene structure and gene-gene interactions. In this multi-staged study, we screened 89 tag single nucleotide polymorphisms (SNPs in 6 candidate genes implicated in IAPP metabolism and tested for independent and joint associations with T2D and beta cell dysfunctions. Positive signals in the stage-1 were confirmed by de novo and in silico analysis in a multi-centre unrelated case-control cohort. We examined the association of significant SNPs with quantitative traits in a subset of controls and performed bioinformatics and relevant functional analyses. Amongst the tag SNPs, rs1583645 in carboxypeptidase E (CPE and rs6583813 in insulin degrading enzyme (IDE were associated with 1.09 to 1.28 fold increased risk of T2D (P Meta = 9.4×10(-3 and 0.02 respectively in a meta-analysis of East Asians. Using genetic risk scores (GRS with each risk variant scoring 1, subjects with GRS≥3 (8.2% of the cohort had 56% higher risk of T2D than those with GRS = 0 (P = 0.01. In a subcohort of control subjects, plasma IAPP increased and beta cell function index declined with GRS (P = 0.008 and 0.03 respectively. Bioinformatics and functional analyses of CPE rs1583645 predicted regulatory elements for chromatin modification and transcription factors, suggesting differential DNA-protein interactions and gene expression. Taken together, these results support the importance of dysregulation of IAPP

  14. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.

    Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

    2013-01-01

    Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein. PMID:23155000

  15. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor.

    Asha, Raju C; Kumar, Mathava

    2015-01-01

    The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater. PMID:26121016

  16. Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater.

    Palau, Jordi; Jamin, Pierre; Badin, Alice; Vanhecke, Nicolas; Haerens, Bruno; Brouyère, Serge; Hunkeler, Daniel

    2016-04-01

    Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. PMID:26874254

  17. Use of 13C NMR and ftir for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation

    Wershaw, R. L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I.

    1996-01-01

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols.

  18. Use of 13C NMR and FTIR for elucidation of degradation pathways during natural litter decomposition and composting. I. Early stage leaf degradation

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols. (author)

  19. Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures.

    Borrega, Marc; Nieminen, Kaarlo; Sixta, Herbert

    2011-11-01

    Hot water extraction of wood at elevated temperatures may be a suitable method to produce hemicellulose-lean pulps and to recover xylan-derived products from the water extract. In this study, water extractions of birch wood were conducted at temperatures between 180 and 240 °C in a batch reactor. Xylan was extensively removed, whereas cellulose was partly degraded only at temperatures above 180 °C. Under severe extraction conditions, acetic acid content in the water extract was higher than the corresponding amount of acetyl groups in wood. In addition to oligo- and monosaccharides, considerable amounts of furfural and 5-hydroxymethylfurfural (HMF) were recovered from the extracts. After reaching a maximum, the furfural yield remained constant with increasing extraction time. This maximum slightly decreased with increasing extraction temperature, suggesting the preferential formation of secondary degradation products from xylose. Kinetic models fitting experimental data are proposed to explain degradation and conversion reactions of xylan and glucan. PMID:21967712

  20. Cloning and expression of meta-cleavage enzyme (CarB of carbazole degradation pathway from Pseudomonas stutzeri

    Ariane Leites Larentis

    2005-06-01

    Full Text Available In this work, the 1082bp PCR product corresponding to carBaBb genes that encode the heterotetrameric enzyme 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarB, involved in the Pseudomonas stutzeri ATCC 31258 carbazole degradation pathway, was cloned using the site-specific recombination system. Recombinant clones were confirmed by PCR, restriction enzyme digestion and sequencing. CarB dioxygenase was expressed in high levels and in active form in Escherichia coli BL21-SI using the His-tagged expression vector pDEST TM17 and salt induction for 4h.Carbazol e seus derivados são compostos nitrogenados aromáticos, presentes comumente em petróleo e potencialmente poluentes. A rota de biodegradação de carbazol a ácido antranílico em Pseudomonas sp. é composta por três enzimas responsáveis, respectivamente, pelas reações de dioxigenação angular, meta-clivagem e hidrólise. A segunda enzima da rota, 2'-aminobifenil-2,3-diol 1,2-dioxigenase (CarB, codificada por dois genes (carBa e carBb, é um heterotetrâmero com atividade catalítica na quebra do anel catecol do susbtrato na posição meta. Neste trabalho, foi clonado o produto de PCR de 1082pb correspondente aos genes carBaBb da bactéria degradadora de carbazol Pseudomonas stutzeri ATCC 31258. A estratégia de clonagem empregada foi a de recombinação sítio-específica e a construção dos plasmídeos foi confirmada por PCR, digestão com enzima de restrição e seqüenciamento. A enzima ativa foi expressa em altas concentrações em vetor pDEST TM17 com cauda de histidina e promotor T7 em Escherichia coli BL21-SI com indução por NaCl durante 4h.

  1. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

    Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar

    2004-01-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Wherea...

  2. A combined experimental and computational study of the mechanism of fructose dehydration to 5-hydroxymethylfurfural in dimethylsulfoxide using Amberlyst 70, PO43-/niobic acid, or sulfuric acid catalysts

    Zhang, Jing [Northwestern Univ., Evanston, IL (United States); Das, Anirban [Northwestern Univ., Evanston, IL (United States); Assary, Rajeev S. [Argonne National Lab. (ANL), Argonne, IL (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States); Weitz, Eric [Northwestern Univ., Evanston, IL (United States)

    2016-02-01

    We report on a combined experimental and theoretical study of the acid catalyzed dehydration of d-fructose in dimethylsulfoxide (DMSO) using; Amberlyst 70, PO43-/niobic acid, and sulfuric acid as catalysts. The reaction has been studied and intermediates characterized using; 13C, 1H, and 17O NMR, and high resolution electrospray ionization mass spectrometry (HR ESI–MS). High level G4MP2 theory calculations are used to understand the thermodynamic landscape for the reaction mechanism in DMSO. We have experimentally identified two key intermediates in the dehydration of fructose to form HMF that were also identified, using theory, as local minima on the potential surface for reaction. A third intermediate, a species capable of undergoing keto–enol tautomerism, was also experimentally detected. However, it was not possible to experimentally distinguish between the keto and the enol forms. These data with different catalysts are consistent with common intermediates along the reaction pathway from fructose to HMF in DMSO. The role of oxygen in producing acidic species in reactions carried out in DMSO in presence of air is also discussed.

  3. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways.

    Yamamoto, Naoki; Fujii, Yoko; Kasahara, Rika; Tanida, Mamoru; Ohora, Kentaro; Ono, Yoko; Suzuki, Kenji; Sobue, Kazuya

    2016-06-01

    One of the major neuropathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ) in the brain. Aβ accumulation seems to arise from an imbalance between Aβ production and clearance. Neprilysin (NEP) and insulin-degrading enzyme (IDE) are the important Aβ-degrading enzymes in the brain, and deficits in their expression may promote Aβ deposition in patients with sporadic late-onset AD. Statins, which are used clinically for reducing cholesterol levels, can exert beneficial effects on AD. Therefore, we examined whether various statins are associated with Aβ degradation by inducing NEP and IDE expression, and then evaluating the relation between activation of intracellular signaling transduction, inhibition of cholesterol production, and morphological changes to astrocytes. Treating cultured rat astrocytes with simvastatin and atorvastatin significantly decreased the expression of NEP but not IDE in a concentration- and time-dependent manner. The decrease in NEP expression was a result of activation of extracellular signal-regulated kinase (ERK) but not the reduction of cholesterol synthesis pathway. This NEP reduction was achieved by the release to the extracellular space of cultured astrocytes. Furthermore, the cultured medium prepared from simvastatin- and atorvastatin-treated astrocytes significantly induced the degradation of exogenous Aβ. These results suggest that simvastatin and atorvastatin induce the increase of Aβ degradation of NEP on the extracellular of astrocytes by inducing ERK-mediated pathway activity and that these reagents regulate the differential mechanisms between the secretion of NEP, the induction of cholesterol reduction, and the morphological changes in the cultured astrocytes. GLIA 2016;64:952-962. PMID:26875818

  4. WO3/ZrO2 as Solid Acid Catalyst for the Dehydration of Fructose to 5-hydroxymethylfurfural%WO3/ZrO2固体酸催化果糖制备5-羟甲基糠醛的工艺研究

    张迎周; 张玉军; 刘玄; 任亚辉; 许元栋

    2013-01-01

      通过偏钨酸铵水溶液浸渍氢氧化锆制备了 WO3/ZrO2固体酸催化剂,并考察其在果糖脱水制备5-羟甲基糠醛过程中的催化性能。考察了 WO3负载量、催化剂用量、反应时间、反应温度、果糖添加量对 HMF 产率的影响。实验结果表明:WO3负载量为30%,以二甲基亚砜(DMSO)为溶剂,120℃下反应2 h 时,催化剂表现出较高的反应活性,相应 HMF 收率为65.4%。该催化剂循环使用5次,HMF 收率仍能保持62.1%。%WO3/ZrO2 catalysts were prepared by impregnation of zirconium hydroxide with ammonium metatungstate. The WO3/ZrO2 was evaluated as catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. The effects of WO3 loading, the amount of catalyst, reaction time, reaction temperature and the amount of fructose were investigated in detail. With the catalyst of 30 wt% WO3 loading, HMF yield of 65.4 % could be attained at 120 ℃ for 2 h using DMSO as solvent. Moreover, the catalyst could be reused five times without loss of activity.

  5. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4).

    Don, R H; Weightman, A J; Knackmuss, H J; Timmis, K N

    1985-01-01

    Plasmid pJP4 permits its host bacterium, strain JMP134, to degrade and utilize as sole sources of carbon and energy 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981). Mutagenesis of pJP4 by transposons Tn5 and Tn1771 enabled localization of five genes for enzymes involved in these catabolic pathways. Four of the genes, tfdB, tfdC, tfdD, and tfdE, encoded 2,4-dichlorophenol hydroxylase, dichlorocatechol 1,2-dioxygenase, chlorom...

  6. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. PMID:22770942

  7. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.

    Zhenxin Sun

    Full Text Available Pseudomonas aeruginosa can grow to very high-cell-density (HCD during infection of the cystic fibrosis (CF lung. Phosphatidylcholine (PC, the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase. Through mutagenesis and growth analyses, we showed that three (fadBA145 of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels. This further supports the hypothesis that lung surfactant PC serves as an

  8. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Feil Helene

    2009-08-01

    Full Text Available Abstract Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC genes (responsible for fumarate addition to toluene and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively. Conclusion Analysis of the D. aromatica genome indicates there is much to be

  9. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial

  10. Degradation of 2,4-dihydroxibenzoic acid by vacuum UV process in aqueous solution: Kinetic, identification of intermediates and reaction pathway

    Azrague, Kamal [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Department for Water and Environment, SINTEF, Klaebuveien 153, Trondheim 7465 (Norway); Pradines, Vincent; Bonnefille, Eric [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Claparols, Catherine [Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, Service Commun de Spectrometrie de Masse, 118 route de Narbonne, F31062 Toulouse Cedex 9 (France); Maurette, Marie-Therese [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Benoit-Marquie, Florence, E-mail: florence@chimie.ups-tlse.fr [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Degradation of 2,4-dihydroxybenzoic acid (DHBA) by vacuum UV photolysis of water. Black-Right-Pointing-Pointer V-UV Xe-excimer lamps produced essentially hydroxyl radicals (HO Degree-Sign ). Black-Right-Pointing-Pointer Identification of all intermediates formed allowed us to propose a reaction pathway. Black-Right-Pointing-Pointer This reaction pathway showed that DHBA reacts differently with HO Degree-Sign and h+. Black-Right-Pointing-Pointer DHBA would be used as a probe to determine which of these entities were involved. - Abstract: 2,4-Dihydroxybenzoic acid (2,4-DHBA) is found frequently as a pollutant in natural waters and represents a threat to water quality because it is a precursor to the formation of quinones which are highly toxic. The degradation of 2,4-DHBA using the vacuum UV photolysis of water has been investigated. Irradiation was carried out in an annular photoreactor equipped with a Xe-excimer lamp situated in the centre and emitting at 172 nm. The degradation kinetic followed a pseudo first order and the reaction has been found to be very heterogeneous, especially at low concentration. Impacts of oxygen or temperature have also been investigated but no effect has been shown. LC-MS and HPLC-UV combined with other analytical techniques allowed the identification of the formation of trihydroxybenzoiec acids and trihydroxybenzenes which underwent a ring opening, conducting to the formation of aliphatic products named {alpha}, {beta}, {delta} and {gamma}. These products were in turn degraded successively into maleiec acid, malic and succinic acid, malonic acid, glyoxalic acid and oxalic acid before reaching the complete mineralization in about 180 min. The proposed reaction pathway has shown to be very different from the one observed for the TiO{sub 2} photocatalysis which involves only holes (h{sup +}) without any formation of aromatic intermediates. The different behaviours of 2,4-DHBA towards the h

  11. Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural.

    Assary, R. S.; Redfern, P. C.; Hammond, J. R.; Greeley, J.; Curtiss, L. A.; Northwestern Univ.

    2010-09-10

    The thermochemistry of various chemical transformations of 5-hydroxy methyl furfural (HMF) were investigated using highly accurate Gaussian-4 (G4) theory. The conversion of HMF to nonane through aldol condensation, hydrogenation, and hydrogenolysis reactions was found to be thermodynamically favorable. The hydrogenation reactions involving the keto groups in the nonane reaction sequence were found to be enhanced at low temperatures and high pressures of H{sub 2}. The hydrogenation, selective oxidation, and hydration of HMF were also found to be thermodynamically favorable. Gas phase enthalpies of formation of all the intermediate compounds were calculated at the G4 level of theory and compared against existing experimental data.

  12. Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural

    Assary, Rajeev S.; Redfern, Paul C.; Hammond, Jeff R.; Greeley, Jeffrey; Curtiss, Larry A.

    2010-09-01

    The thermochemistry of various chemical transformations of 5-hydroxy methyl furfural (HMF) were investigated using highly accurate G AUSSIAN-4 (G4) theory. The conversion of HMF to nonane through aldol condensation, hydrogenation, and hydrogenolysis reactions was found to be thermodynamically favorable. The hydrogenation reactions involving the keto groups in the nonane reaction sequence were found to be enhanced at low temperatures and high pressures of H 2. The hydrogenation, selective oxidation, and hydration of HMF were also found to be thermodynamically favorable. Gas phase enthalpies of formation of all the intermediate compounds were calculated at the G4 level of theory and compared against existing experimental data.

  13. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway.

    Zhu, Zhexin; Chen, Yi; Gu, Yan; Wu, Fei; Lu, Wangyang; Xu, Tiefeng; Chen, Wenxing

    2016-04-15

    Iron (II) phthalocyanine (FePc) molecules were isolated in polyacrylonitrile (PAN) nanofibers by electrospinning to prevent the formation of dimers and oligomers. Carbamazepine (CBZ) and Rhodamine B (RhB) degradation was investigated during a Fenton-like process with FePc/PAN nanofibers. Classical quenching tests with isopropanol and electron paramagnetic resonance tests with 5,5-dimethyl-pyrroline-oxide as spin-trapping agent were performed to determine the formation of active species during hydrogen peroxide (H2O2) decomposition by FePc/PAN nanofibers. After eight recycles for CBZ degradation over the FePc/PAN nanofibers/H2O2 system, the removal ratios of CBZ remained at 99%. Seven by-products of RhB and twelve intermediates of CBZ were identified using ultra-performance liquid chromatography and high-resolution mass spectrometry. Pathways of CBZ and RhB degradation were proposed based on the identified intermediates. As the reaction proceeded, all CBZ and RhB aromatic nucleus intermediates decreased and were transformed to small acids, but also to potentially toxic epoxide-containing intermediates and acridine, because of the powerful oxidation ability of •OH in the catalytic system. PMID:26949842

  14. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59.

    Choi, Eun Jin; Jin, Hyun Mi; Lee, Seung Hyeon; Math, Renukaradhya K; Madsen, Eugene L; Jeon, Che Ok

    2013-01-01

    Pseudoxanthomonas spadix BD-a59, isolated from gasoline-contaminated soil, has the ability to degrade all six BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) compounds. The genomic features of strain BD-a59 were analyzed bioinformatically and compared with those of another fully sequenced Pseudoxanthomonas strain, P. suwonensis 11-1, which was isolated from cotton waste compost. The genome of strain BD-a59 differed from that of strain 11-1 in many characteristics, including the number of rRNA operons, dioxygenases, monooxygenases, genomic islands (GIs), and heavy metal resistance genes. A high abundance of phage integrases and GIs and the patterns in several other genetic measures (e.g., GC content, GC skew, Karlin signature, and clustered regularly interspaced short palindromic repeat [CRISPR] gene homology) indicated that strain BD-a59's genomic architecture may have been altered through horizontal gene transfers (HGT), phage attack, and genetic reshuffling during its evolutionary history. The genes for benzene/toluene, ethylbenzene, and xylene degradations were encoded on GI-9, -13, and -21, respectively, which suggests that they may have been acquired by HGT. We used bioinformatics to predict the biodegradation pathways of the six BTEX compounds, and these pathways were proved experimentally through the analysis of the intermediates of each BTEX compound using a gas chromatograph and mass spectrometry (GC-MS). The elevated abundances of dioxygenases, monooxygenases, and rRNA operons in strain BD-a59 (relative to strain 11-1), as well as other genomic characteristics, likely confer traits that enhance ecological fitness by enabling strain BD-a59 to degrade hydrocarbons in the soil environment. PMID:23160122

  15. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-14

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  16. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-21

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  17. Jak-STAT3 pathway triggers DICER1 for proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) to promote colon cancer development.

    Ren, Weiguo; Shen, Shourong; Sun, Zhenqiang; Shu, Peng; Shen, Xiaohua; Bu, Chibin; Ai, Feiyan; Zhang, Xuemei; Tang, Anliu; Tian, Li; Li, Guiyuan; Li, Xiayu; Ma, Jian

    2016-06-01

    Chronic intestinal inflammation is closely associated with colon cancer development and STAT3 seems to take center stage in bridging chronic inflammation to colon cancer progress. Here, we discovered that DICER1 was significantly downregulated in response to IL-6 or LPS stimulation and identified a novel mechanism for DICER1 downregulation via proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) in colon cancer cells. Meanwhile, PI3K-AKT signaling pathway phosphorylated DICER1 and contributed to its proteasomal degradation. The regulation of DICER1 by CUL4A(DCAF1) affected cell growth and apoptosis which is controlled by IL-6 activated Jak-STAT3 pathway. Intervention of CUL4A(DCAF1) ubiquitin ligase complex led to fluctuation in expression levels of DICER1 and microRNAs, and thus affected tumor growth in a mouse xenograft model. A panel of microRNAs that were downregulated by IL-6 stimulation was rescued by siRNA-CUL4A, and their predicated functions are involved in regulation of cell proliferation, apoptosis and motility. Furthermore, clinical specimen analysis revealed that decreased DICER1 expression was negatively correlated with STAT3 activation and cancer progression in human colon cancers. DICER1 and p-STAT3 expression levels correlated with 5-year overall survival of colon cancer patients. Consequently, this study proposes that inflammation-induced Jak-STAT3 signaling leads to colon cancer development through proteasomal degradation of DICER1 by ubiquitin ligase complex of CUL4A(DCAF1), which suggests a novel therapeutic opportunity for colon cancer. PMID:26965998

  18. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis

  19. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis

  20. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...

  1. AB044. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation

    Bao, Jiming; Bao, Yawei; Zhao, Shanchao; He, Minyi; Luo, Haihua; Ren, Zhonglu; Lv, Yongjie; Hong, Yingqia

    2016-01-01

    Objective Metabolomic research has revealed that metabolites play an important role in prostate cancer development and progression. Previous studies have suggested that prostate cancer cell proliferation is induced by advanced glycation end products (AGEs) exposure, but the mechanism of this induction remains unknown. This study aim to investigate the molecular mechanisms underlying the proliferative response of prostate cancer cell to the interaction of AGEs and the receptor for advanced glycation end products (RAGE). Methods To investigate this mechanism, we used Western blotting to evaluate the responses of the retinoblastoma (Rb), p-Rb and PI3K/Akt pathway to AGEs stimulation. We also examined the effect of knocking down Rb and blocking the PI3K/Akt pathway on AGEs induced PC-3 cell proliferation. Results Our results indicated that AGE-RAGE interaction enhanced Rb phosphorylation and subsequently decreased total Rb levels. Bioinformatics analysis further indicated a negative correlation between RAGE and RB1 expression in prostate cancer tissue. Furthermore, we observed that AGEs stimulation activated the PI3K/Akt signaling pathway and that blocking PI3K/Akt signaling abrogated AGEs-induced cell proliferation. Conclusions We report, for the first time, that AGE-RAGE interaction enhances prostate cancer cell proliferation by phosphorylation of Rb via the PI3K/Akt signaling pathway.

  2. Sonochemical degradation of ethyl paraben in environmental samples: Statistically important parameters determining kinetics, by-products and pathways.

    Papadopoulos, Costas; Frontistis, Zacharias; Antonopoulou, Maria; Venieri, Danae; Konstantinou, Ioannis; Mantzavinos, Dionissios

    2016-07-01

    The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20kHz and liquid bulk temperature of 30°C in the following range of experimental conditions: EP concentration 250-1250μg/L, ultrasound (US) density 20-60W/L, reaction time up to 120min, initial pH 3-8 and sodium persulfate 0-100mg/L, either in ultrapure water or secondary treated wastewater. A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration)×(US density), (EP concentration)×(pHo) and (EP concentration)×(time). Experiments at an increased EP concentration of 3.5mg/L were also performed to identify degradation by-products. LC-TOF-MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound. PMID:26964924

  3. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  4. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways.

    Li, Dan; Wei, Jin; Yang, Fan; Liu, Hua-Nan; Zhu, Zi-Xiang; Cao, Wei-Jun; Li, Shu; Liu, Xiang-Tao; Zheng, Hai-Xue; Shu, Hong-Bing

    2016-01-01

    Foot-and-mouth disease is a highly contagious viral disease of cloven-hoofed animals that is caused by foot-and-mouth disease virus (FMDV). To replicate efficiently in vivo, FMDV has evolved methods to circumvent host antiviral defense mechanisms, including those induced by interferons (IFNs). Previous research has focused on the effect of FMDV L(pro) and 3C(pro) on type I IFNs. In this study, FMDV VP3 was found to inhibit type II IFN signaling pathways. The overexpression of FMDV VP3 inhibited the IFN-γ-triggered phosphorylation of STAT1 at Tyr701 and the subsequent expression of downstream genes. Mechanistically, FMDV VP3 interacted with JAK1/2 and inhibited the tyrosine phosphorylation, dimerization and nuclear accumulation of STAT1. FMDV VP3 also disrupted the assembly of the JAK1 complex and degraded JAK1 but not JAK2 via a lysosomal pathway. Taken together, the results reveal a novel mechanism used by which FMDV VP3 counteracts the type II IFN signaling pathways. PMID:26901336

  5. 固体酸WO3/ZrO2催化果糖脱水合成5-羟甲基糠醛%WO3/ZrO2 for fructose dehydration to 5-hydroxymethylfurfural as a solid acid catalyst

    刘彦丽; 王福余; 王崇; 赵振波

    2014-01-01

    用共沉淀-热回流处理法制备了系列WO3/ZrO2固体酸催化剂,通过调节W与Zr的摩尔比优化其对果糖脱水制备5-羟甲基糠醛(5-HMF)的催化活性。利用X射线衍射(XRD)、N2吸脱附、氨气程序升温脱附(NH3-TPD)对材料的结构和酸性质进行了表征,并在以二甲基亚砜(DMSO)为溶剂、果糖为原料的催化体系中,考察催化剂的用量、反应时间、反应温度等对5-HMF收率的影响。研究发现,热回流处理大大增加了样品的比表面积,增强了样品的酸强度,当n(W)∶n(Zr)=0.1∶1时,样品比表面积最大,催化活性最好,以其为催化剂,在130℃下反应3 h条件下,5-HMF收率最高可达80.29%。%Catalytic dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) was studied and improved by synthesizing series of solid acid catalyst WO3/ZrO2 with different mole ratio of W to Zr using co-precipitation with hot reflux method. The structure and properties of the catalysts thus synthesized were investigated by X-ray diffraction(XRD),N2 sorption,temperature -programmed desorption of (NH3-TPD),and then the influence of temperature,mass ration of fructose/catalyst and reaction time on the yield of 5-HMF from fructose were studied in dimethyl sulfoxide. These studies showed that specific surface area and acid strength of the catalysts were increased greatly by hot reflux method,and an optimized 5-HMF yield of 80.29%was obtained with 3 h at 130 ℃ in the presence of the sample WO3/ZrO2 with W-Zr mole ratio of 0.1∶1,which had a largest specific surface area and best catalytic activity.

  6. 对-香豆酸和绿原酸对美拉德反应体系中5-羟甲基糠醛形成的影响%Effects ofp-Coumaric Acid and Chlorogenic Acid on Formation of 5-Hydroxymethylfurfural in Different Maillard Reaction Systems

    江姗姗; 梁恩; 于淼; 欧仕益

    2012-01-01

    The effects ofp-coumaric acid and chlorogenic acid on the formation of 5-hydroxymethylfurfural (5-HMF) was investigated in the Maillard reaction models of glucose with glutamate, lysine, glycine, and cysteine respectively. The results showed that the production of 5-HMF in different amino acid-glucose reaction systems decreased in the order: glutamate, lysine, glycine and cysteine. Both phenolic acids played a dual role of inhibition and promotion in the formation of 5-HMF in Maillard reaction systems. Various concentrations of phenolic acids had different effects on the formation of 5-HMF and constant concentrations in different Maillard reaction systems also revealed different effects on the formation of 5-HMF.%以谷氨酸、赖氨酸、甘氨酸、半胱氨酸分别与葡萄糖反应构建美拉德反应体系,研究5-羟甲基糠醛(5-HMF)的形成量随时间的变化规律及对-香豆酸和绿原酸对5.HMF形成量的影响。结果表明:在相同反应时间内,模拟体系中5-HMF形成量由高到低排列依次是:谷氨酸-葡萄糖模拟体系〉赖氨酸-葡萄糖模拟体系〉甘氨酸.葡萄糖模拟体系〉半胱氨酸-葡萄糖模拟体系;对-香豆酸、绿原酸对美拉德反应中5-HMF形成均表现出抑制和促进的“双重作用”;不同质量浓度的对-香豆酸、绿原酸对5-HMF的影响趋势不同,相同质量浓度的同种酚酸对不同模拟反应体系中5-HMF的影响也有差异。

  7. 磺酸官能化的磁性核壳结构的纳米材料用于果糖脱水制备5-羟甲基糠醛%Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylfurfural

    张晓辰; 王敏; 王业红; 张超峰; 张哲; 王峰; 徐杰

    2014-01-01

    通过反相微乳液法制备了以Fe3O4为核,磺酸官能化的硅基材料为壳层的磁性酸性催化剂.首先制备纳米Fe3O4磁核,然后涂层包覆苯基修饰的纳米级硅层,最后进行苯基磺化修饰,制得固体酸催化剂Fe3O4@Si/Ph-SO3H.在果糖脱水制备5-羟甲基糠醛反应中,该催化剂表现出较好的催化活性,优于传统催化剂A-15,且与均相无机酸催化活性相当.当采用二甲基亚砜作溶剂,在110 oC下反应3 h,果糖转化率达到99%,5-羟甲基糠醛收率为82%.另外,该催化剂经磁法回收后可多次重复使用.%A magnetically recyclable acid catalyst composed of an Fe3O4 core and sulfonic acid functionalized silica shell has been prepared using the reverse microemulsion method. The Fe3O4 core was coated with a phenyl modified silica shell nanolayer, and the phenyl groups were subsequently sulfonated to generate a solid sulfonic acid catalyst. The resulting acid catalyst showed higher activity than the conventional A-15 catalyst and comparable activity to several homogeneous sulfonic acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural (HMF). This process gave a fructose conversion of 99%with an HMF yield of 82%following 3 h in dimethylsulfoxide at 110 °C. Fur-thermore, the catalyst could be magnetically separated and recycled several times without losing its activity.

  8. Adsorption and Photocatalytic Decomposition of the -Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways

    Violette Romero; Pilar Marco; Jaime Giménez; Santiago Esplugas

    2013-01-01

    This study reports the photocatalytic degradation of the β-blocker metoprolol (MET) using TiO2 suspended as catalyst. A series of photoexperiments were carried out by a UV lamp, emitting in the 250–400 nm range, providing information about the absorption of radiation in the photoreactor wall. The influence of the radiation wavelength on the MET photooxidation rate was investigated using a filter cutting out wavelengths shorter than 280 nm. Effects of photolysis and adsorption at different ini...

  9. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  10. Murrayafoline A attenuates the Wnt/β-catenin pathway by promoting the degradation of intracellular β-catenin proteins

    Molecular lesions in Wnt/β-catenin signaling and subsequent up-regulation of β-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3β (GSK-3β), and promoted the degradation of intracellular β-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known β-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  11. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    Fazlurrahman Khan; Deepika Pal; Surendra Vikram; Swaranjit Singh Cameotra

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium...

  12. Microbial degradation of furanic compounds: biochemistry, genetics, and impact

    Wierckx, N.; Koopman, F.; Ruijssenaars, H.J.; De Winde. J.H.

    2011-01-01

    Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds ar

  13. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment

  14. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  15. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis.

    Pulido, Pablo; Llamas, Ernesto; Llorente, Briardo; Ventura, Salvador; Wright, Louwrance P; Rodríguez-Concepción, Manuel

    2016-01-01

    The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid. PMID:26815787

  16. Degradation pathway, toxicity and kinetics of 2,4,6-trichlorophenol with different co-substrate by aerobic granules in SBR.

    Khan, Mohammad Zain; Mondal, Pijush Kanti; Sabir, Suhail; Tare, Vinod

    2011-07-01

    The present study deals with cultivation of 2,4,6-trichlorophenol (TCP) degrading aerobic granules in two SBR systems based on glucose and acetate as co-substrate. Biodegradation of TCP containing wastewater starting from 10 to 360 mg L(-1) with more than 90% efficiency was achieved. Sludge volume index decreases as the operation proceeds to stabilize at 35 and 30 mL g(-1) while MLVSS increases from 4 to 6.5 and 6.2 g L(-1) for R1 (with glucose as co-substrate) and R2 (with sodium acetate as co-substrate), respectively. FTIR, GC and GC/MS spectral studies shows that the biodegradation occurred via chlorocatechol pathway and the cleavage may be at ortho-position. Haldane model for inhibitory substrate was applied to the system and it was observed that glucose fed granules have a high specific degradation rate and efficiency than acetate fed granules. Genotoxicity studies shows that effluent coming from SBRs was non-toxic. PMID:21565491

  17. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways

    Oshima, Ryuji; Hasegawa, Takafumi; Tamai, Keiichi; Sugeno, Naoto; Yoshida, Shun; Kobayashi, Junpei; Kikuchi, Akio; Baba, Toru; Futatsugi, Akira; Sato, Ikuro; Satoh, Kennichi; Takeda, Atsushi; Aoki, Masashi; Tanaka, Nobuyuki

    2016-01-01

    Endosomal sorting required for transport (ESCRT) complexes orchestrate endo-lysosomal sorting of ubiquitinated proteins, multivesicular body formation and autophagic degradation. Defects in the ESCRT pathway have been implicated in many neurodegenerative diseases, but the underlying molecular mechanisms that link them to neurodegeneration remain unknown. In this study, we showed that forebrain-specific ablation of ESCRT-0/Hrs induced marked hippocampal neuronal cell loss accompanied by the accumulation of ubiquitinated proteins, including α-synuclein, TDP-43 and huntingtin as well as the autophagic substrate SQSTM1/p62. Consistent with this, silencing of Hrs in cultured cells not only led to α-synuclein and TDP-43 accumulation in addition to impaired autophagic flux but also suppressed cell viability through the induction of ER stress followed by the activation of JNK and RIPK1, a key regulator of necroptosis. Moreover, necrostatin-1, a specific inhibitor of RIPK1, and pan-caspase inhibitors partially reduced the neurotoxicity in the Hrs-silenced cells. Altogether, these findings suggest that the disruption of ESCRT-0/Hrs in the nervous system compromises autophagic/lysosomal degradation of neurodegenerative disease-related proteins, which thereby triggers ER stress-mediated apoptotic and necroptotic cell death. PMID:27112194

  18. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis

    Pulido, Pablo; Llamas, Ernesto; Llorente, Briardo; Ventura, Salvador; Wright, Louwrance P.; Rodríguez-Concepción, Manuel

    2016-01-01

    The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid. PMID:26815787

  19. Electroacupuncture inhibits apoptosis in annulus fibrosis cells through suppression of the mitochondria-dependent pathway in a rat model of cervical intervertebral disc degradation

    Jun Liao

    2012-01-01

    Full Text Available The purpose of this study was to investigate whether treatment with electroacupuncture (EA inhibited mitochondria-dependent apoptosis in annulus fibrosis (AF cells in a rat model of cervical intervertebral disc degradation induced by unbalanced dynamic and static forces. Forty Sprague-Dawley rats were used in this study, of which 30 underwent surgery to induce cervical intervertebral disc degradation, 10 rats received EA at acupoints Dazhui (DU 14 and Shousanli (LI 10. TUNEL staining was measured to assess apoptosis in AF cells, immunohistochemistry was used to examine Bcl-2 and Bax expression, colorimetric assays were used to determine caspase 9 and caspase 3 activities and RT-PCR and western blotting were used to assess the mRNA and protein expression of Crk and ERK2. Treatment with EA reduced the number of AF-positive cells in TUNEL staining, increased Bcl-2-positive cells and decreased Bax-positive cells in immunohistochemical staining, significantly inhibited the activation of caspases-9 and -3, and enhanced the mRNA and protein expression of Crk and ERK2. Our data show that EA inhibits AF cell apoptosis via the mitochondria-dependent pathway and up-regulates Crk and ERK2 expression. These results suggest that treatment with may be a good alternative therapy for preventing cervical spondylosis.

  20. Stimulatory effects of the degradation products from Mg-Ca-Sr alloy on the osteogenesis through regulating ERK signaling pathway

    Li, Mei; He, Peng; Wu, Yuanhao; Zhang, Yu; Xia, Hong; Zheng, Yufeng; Han, Yong

    2016-01-01

    The influence of Mg-1Ca-xwt.% Sr (x = 0.2, 0.5, 1.0, 2.0) alloys on the osteogenic differentiation and mineralization of pre-osteoblast MC3T3-E1 were studied through typical differentiation markers, such as intracellular alkaline phosphatase (ALP) activity, extracellular collagen secretion and calcium nodule formation. It was shown that Mg-1Ca alloys with different content of Sr promoted cell viability and enhanced the differentiation and mineralization levels of osteoblasts, and Mg-1Ca-2.0Sr alloy had the most remarkable and significant effect among all. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the mRNA expression level of osteogenesis-related genes and intracellular signaling pathways involved in osteogenesis, respectively. RT-PCR results showed that Mg-1Ca-2.0Sr alloy significantly up-regulated the expressions of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), Integrin subunits, as well as alkaline phosphatase (ALP), Bone sialoprotein (BSP), Collagen I (COL I), Osteocalcin (OCN) and Osteopontin (OPN). Western Blotting results suggested that Mg-1Ca-2.0Sr alloy rapidly induced extracellular signal-regulated kinase (ERK) activation but showed no obvious effects on c-Jun N terminal kinase (JNK) and p38 kinase of MAPK. Taken together, our results demonstrated that Mg-1Ca-2.0Sr alloy had excellent biocompatibility and osteogenesis via the ERK pathway and is expected to be promising as orthopedic implants and bone repair materials. PMID:27580744

  1. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.

    Bolaños, Luis M; Rosenblueth, Mónica; Castillo-Ramírez, Santiago; Figuier-Huttin, Gilles; Martínez-Romero, Esperanza

    2016-05-01

    Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species. PMID:26058415

  2. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide.

    Feng, Yong; Liao, Changzhong; Shih, Kaimin

    2016-07-01

    To evaluate the heterogeneous degradation of sulfanilamide by external energy-free Fenton-like reactions, magnetic CuFe2O4 spinel nanoparticles (NPs) were synthesized and used as catalysts for activation of hydrogen peroxide (H2O2). The physicochemical properties of the CuFe2O4 NPs were characterized with several techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and magnetometry. In the catalytic experiments, CuFe2O4 NPs/H2O2 oxidation showed the best degradation performance in the circumneutral conditions that resulted from the presence of Cu(II) on the surface of the CuFe2O4 NPs. The surface area-normalized pseudo-first-order rate constants were calculated as 2.60 × 10(-2) L m(-1) min(-1), 2.58 × 10(-3) L m(-1) min(-1), 1.92 × 10(-3) L m(-1) min(-1), and 7.30 × 10(-4) L m(-1) min(-1) for CuO, CuFe2O4 NPs, Fe3O4, and α-Fe2O3 catalysts, respectively. Thus, solid state Cu(II) was more reactive and efficient than Fe(III) in the circumneutral activation of H2O2; this finding was further supported by the results regarding the stoichiometric efficiency of H2O2. The effects of experimental parameters such as the oxidant dosage and catalyst loading were investigated. The mechanism for H2O2 activation on the spinel surface was explored and could be explained by the solid redox cycles of Fe(II)/Fe(III) and Cu(II)/Cu(I). Based on the products detected, a degradation pathway via the CS bond cleavage is proposed for the degradation of sulfanilamide. The findings of this study suggest that copper can be used as a doping metal to improve the reactivity and expand the effective pH range of iron oxides. PMID:27085318

  3. Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intermediates suggest different degradative pathways for Citrus fruit and parsley leaves.

    Amir-Shapira, D; Goldschmidt, E E; Altman, A

    1987-04-01

    High-pressure liquid chromatography was used to separate chlorophyll derivatives in acetone extracts from senescing Citrus fruit peel, autumnal Melia azedarach L. leaves, and dark-held detached parsley (Petroselinum sativum L.) leaves. Chlorophyllide a and another polar, dephytylated derivative accumulated in large amounts in senescing Citrus peel, particularly in fruit treated with ethylene. Ethylene also induced a 4-fold increase in the specific activity of Citrus chlorophyllase (chlorophyll chlorophyllidohydrolase, EC 3.1.1.14). Detailed kinetics based on a hexane/acetone solvent partition system showed that the in vivo increase in dephytylated derivatives coincided with the decrease in total chlorophyll. Polar, dephytylated derivatives accumulated also in senescing Melia leaves. Senescing parsley leaves revealed a very different picture. The gradual disappearance of chlorophyll a was accompanied by an increase in pheophytin a and by the transient appearance of several phytylated derivatives. Only pheophytin a and an adjacent peak were left when all the chlorophyll a had disappeared. The pathways for breakdown of chlorophyll in the Citrus and parsley senescence systems are discussed. PMID:16593821

  4. 右旋糖酐40葡萄糖注射液 pH 值与5-羟甲基糠醛、糠醛含量的相关性分析%Correlation Analysis of Furfural, 5-hydroxymethylfurfural Content and pH Value of Dextran 40 and Glucose Injection

    郭欢迎; 耿庆光; 王嫦鹤

    2015-01-01

    Objective To analyze the correlation of furfural, 5-hydroxymethylfurfural (5-HMF) content and pH value of dextran 40 and glucose injection, and to provide reasonable suggestions for the production, transportation and use. Methods High performance liquid chromatography method was used to determine the content of 5- HMF and furfural of 90 batches of dextran 40 and glucose Injection. The pH value of the solution was determined by acidometer. Correlation of furfural, 5-HMF content and pH value was analyzed by SPASS 17.0. The destructive tests were carried out to verify the conclusion. Results There is a negative correlation between the value of pH and content of 5- HMF, and the content of furfural was positively correlated with 5- HMF. Destructive test results show that, the decrease of pH value will lead to the generation of 5- HMF and furfural. Conclusion Through the strict control of pH value, the stability of dextran 40 and glucose injection can be increased. And the increase 5- HMF and furfural content of the preparation could be suppressed too.%目的:对右旋糖酐40葡萄糖注射液的 pH 值与5-羟甲基糠醛、糠醛含量进行相关性分析,为其生产、运输和使用提供合理化建议。方法采用高效液相色谱法对所有90批右旋糖酐40葡萄糖注射液中的5-羟甲基糠醛、糠醛进行测定,同时采用酸度计测定溶液的 pH 值,并用 SPASS 17.0对测定结果的 pH 值与5-羟甲基糠醛、糠醛进行相关性分析,并采用破坏性试验对结论进行验证。结果右旋糖酐40葡萄糖注射液的 pH 值与5-羟甲基糠醛的含量负相关,5-羟甲基糠醛的含量与糠醛的含量呈正相关。破坏性试验结果证明,pH 值的降低会导致5-羟甲基糠醛和糠醛的生成。结论通过严格控制该制剂的 pH 值,可以增加右旋糖酐40葡萄糖注射液的稳定性,抑制制剂中5-羟甲基糠醛和糠醛含量的增加。

  5. 五味子提取过程中5-羟甲基糠醛的变化规律及影响因素研究%Research of the Variation Rule and Influencing Factors of 5-hydroxymethylfurfural in the Extraction Pro-cess of Schisandra chinensis

    李越; 慕升君; 李德坤; 杨悦武; 余伯阳; 叶正良; 鞠爱春

    2015-01-01

    目的:探究五味子药材提取过程中5-羟甲基糠醛(5-HMF)的含量变化规律和影响因素,提高五味子提取物的监控质量。方法:采用高效液相色谱法测定五味子药材提取过程(煎煮、减压浓缩、醇沉、减压干燥、调碱)中各提取液中5-HMF含量,找出其含量变化规律,并针对5-HMF含量明显降低的减压干燥过程,研究该过程中干燥温度和时间对5-HMF含量的影响,同时比较减压干燥和冷冻干燥对5-HMF含量的影响变化。结果:五味子提取过程中5-HMF的含量变化趋势为药材煎煮的过程中产生大量5-HMF,浓缩时5-HMF的含量升高,醇沉和三次浓缩液减压干燥时5-HMF的含量均降低,调碱时5-HMF的含量基本不变;减压干燥时随干燥温度的升高和时间的延长,5-HMF含量降低;冷冻干燥对5-HMF含量的降低效果不如减压干燥。结论:建议适当采用较高的温度减压干燥五味子三次浓缩液,可得到5-HMF含量更低的五味子提取物,提高五味子提取物的质量。%OBJECTIVE:To explore the content variation rule and influencing factors of 5-hydroxymethylfurfural(5-HMF)in the extraction process of the herbs Schisandra chinensis and improve the quality of monitoring the extract of Schisandra chinensis. METHODS:High performance liquid chromatography was adopted to determine the contents of 5-HMF in the extracts during the extraction process (decoction,vacuum concentration,alcohol precipitation,vacuum drying,alkali adjustment),and the content variation rule was found out. For vacuum drying during which the content of 5-HMF reduced obviously,the effects of the tempera-ture and time of drying on the content of 5-HMF were studied,and the effects of vacuum drying and freeze drying on the 5-HMF contents were compared. RESULTS:The content variation trend in the extraction process of Schisandra chinensis was as follows as a large amount of 5-HMF was produced in the

  6. IL-1-induced ERK1/2 activation up-regulates p21Waf1/Cip1 protein by inhibition of degradation via ubiquitin-independent pathway in human melanoma cells A375

    IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21Waf1/Cip1 (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059. These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.

  7. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties.

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L9(3)(4), only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg(-1) were found to be a 1:10 soil: water ratio, 40 mW cm(-2) light intensity, 5% TiO2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO2 in soil slurry. This study suggests that TiO2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. PMID:26410709

  8. UV/H2O2degradation of the antidepressants venlafaxine and O-desmethylvenlafaxine: Elucidation of their transformation pathway and environmental fate.

    García-Galán, Ma Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Rodríguez-Mozaz, Sara; Comas, Joaquim

    2016-07-01

    The aim of the present work is to investigate the removal and transformation of the antidepressants venlafaxine (VFX) and its main metabolite O-desmethylvenlafaxine (DVFX) upon advanced oxidation with UV/H2O2 under lab conditions. High-resolution mass spectrometry (HRMS) analyses were carried out by means of ultra-high pressure liquid chromatography (UHPLC)-linear ion trap high resolution Orbitrap instrument (LTQ-Orbitrap-MS) in order to elucidate the different transformation products (TPs) generated. The depletion of both VFX and DVFX was very significant, with the 99.9% of both compounds eliminated after 5 and 30 min of reaction, respectively. Eleven TPs for VFX and six for DVFX were detected and their molecular structures elucidated by means of MS(2) and MS(3) scans, and the corresponding degradation pathways were proposed. The combined ecotoxicity at different treatment times was evaluated by means of bioluminescence inhibition assays with the marine bacteria Vibrio fischeri. Results showed an increase in the ecotoxicity during the UV/H2O2 experiment, especially at those reaction times where the total abundance of TPs was higher. PMID:26954478

  9. c-IAP1 Binds and Processes PCSK9 Protein: Linking the c-IAP1 in a TNF-α Pathway to PCSK9-Mediated LDLR Degradation Pathway

    David Hornby

    2012-10-01

    Full Text Available Recent genetic studies have shown that PCSK9, one of the key genes in cholesterol metabolism, plays a critical role by controlling the level of low-density lipoprotein receptor. However, how PCSK9 mediates LDLR degradation is still unknown. By combining a shotgun proteomic method and differential analysis of natural occurring mutations of the PCSK9 gene, we found that an E3 ubiquitin ligase c-IAP1 binds and processes PCSK9 protein. One of the ‘gain-of-function’ mutations, S127R, is defective with respect to binding to c-IAP1, and thus has defective autocatalytic activity. Knockdown of c-IAP1 impairs PCSK9 processing and autocatalytic cleavage. In c-IAP1 null mouse embryonic fibroblasts (MEFs, there is a dramatic decrease in secreted mature PCSK9 protein accompanied by a significant increase in LDLR protein levels compared with matched wild-type MEF cells. c-IAP1 also acts as an E3 ligase for ubiquitination of PCSK9. Ubiquitin containing only lysine-27 mediated PCSK9 ubiquitination by c-IAP1. Given K27-linked polyubiquitination promotes lysosomal localization, the finding indicates the c-IAP1 acts on both secretion of PCSK9 and its lysosomal localization. The novel pathway described here will open new avenues for exploring novel disease treatments.

  10. Reprogrammed Glucose Metabolic Pathways of Inhibitor-Tolerant Yeast

    Representative inhibitory compounds such as furfural and 5-hydroxymethylfurfural generated from lignocellulosic biomass pretreatment inhibit yeast growth and interfere with the subsequent ethanol fermentation. Evolutionary engineering under laboratory settings is a powerful tool that can be used to ...

  11. Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis.

    Uhía, Iria; Galán, Beatriz; Medrano, Francisco Javier; García, José Luis

    2011-09-01

    The KstR-dependent promoter of the MSMEG_5228 gene of Mycobacterium smegmatis, which encodes the 3-β-hydroxysteroid dehydrogenase (3-β HSD(MS)) responsible for the first step in the cholesterol degradative pathway, has been characterized. Primer extension analysis of the P₅₂₂₈ promoter showed that the transcription starts at the ATG codon, thus generating a leaderless mRNA lacking a 5' untranslated region (5'UTR). Footprint analyses demonstrated experimentally that KstR specifically binds to an operator region of 31 nt containing the quasi-palindromic sequence AACTGGAACGTGTTTCAGTT, located between the -5 and -35 positions with respect to the transcription start site. This region overlaps with the -10 and -35 boxes of the P₅₂₂₈ promoter, suggesting that KstR represses MSMEG_5228 transcription by preventing the binding of RNA polymerase. Using a P₅₂₂₈-β-galactosidase fusion we have demonstrated that KstR is able to work as a repressor in a heterologous system like Escherichia coli. A 3D model of the KstR protein revealed folding typical of TetR-type regulators, with two domains, i.e. a DNA-binding N-terminal domain and a regulator-binding C-terminal domain composed of six helices with a long tunnel-shaped hydrophobic pocket that might interact with a putative highly hydrophobic inducer. The finding that similar P₅₂₂₈ promoter regions have been found in all mycobacterial strains examined, with the sole exception of Mycobacterium tuberculosis, provides new clues about the role of cholesterol in the pathogenicity of this micro-organism. PMID:21565928

  12. DHA Inhibits Protein Degradation More Efficiently than EPA by Regulating the PPARγ/NFκB Pathway in C2C12 Myotubes

    Yue Wang; Qiao-wei Lin; Pei-pei Zheng; Jian-song Zhang; Fei-ruo Huang

    2013-01-01

    This study was conducted to evaluate the mechanism by which n-3 PUFA regulated the protein degradation in C2C12 myotubes. Compared with the BSA control, EPA at concentrations from 400 to 600 µM decreased total protein degradation (P < 0.01). However, the total protein degradation was decreased when the concentrations of DHA ranged from 300 µM to 700 µM (P < 0.01). DHA (400 µM, 24 h) more efficiently decreased the I κ B α phosphorylation and increased in the I κ B α protein level than 400 µM E...

  13. Ordered bulk degradation via autophagy

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what is...

  14. 计算机重构石油烃降解的微生物代谢途径%Computational Reconstruction of Microbial Pathways for Degradation of Petroleum Hydrocarbons

    王东; 何涛; 邵卫东; 汪莉; 王玉民

    2012-01-01

    目的:用计算机重构石油烃降解通路,为石油污染的生物修复提供理论依据.方法:利用KEGG反应、化合物数据提取反应等式,过滤掉所有反应中的通用化合物及小分子化合物并构建反应矩阵,然后利用广度优先搜索算法在反应矩阵中搜索降解石油烃的代谢途径.结果:计算机分别重构了256 132条链烷烃降解途径和44条环己烷降解途径,以酿酒酵母作为降解石油烃的基因工程菌为例,通过限制改构菌整合的关键酶数目,分别得到了213条不需要转入关键酶的链烷烃降解通路和6条以氧化还原酶、松柏醇脱氢酶或环己醇脱氢酶和环己酮单氧酶为关键酶的环己烷降解通路,并构建相应的降解网络图,标注每个反应的酶.结论:应用计算机重构了2种石油烃降解途径,可为利用微生物对石油污染进行生物修复提供理论依据.%Objective: Metabolic pathways for degradation of petroleum hydrocarbons were reconstructed by computational skills to provide theoretical basis for the bioremediation of oil polution. Methods: At first, the reaction equations were extracted from the KEGC reaction database and the compound database. And then current metabolites and micromolecule compounds in all the reactions were filtered out. Finally, the reaction matrix was constructed to search metabolic pathways for degrading petroleum hydrocarbons by the breadth first search approach. Results: 256 132 pathways for degrading alkanes and 44 pathways for degrading cyclohexane were reconstructed by computational skills. Taking Saccharomyces cerevisiae as the genetic engineering bacteria, we picked out 219 pathways by limiting the number of pivotal enzymes to construct the metabolic network, including 213 pathways without key enzymes and 6 pathways with oxidoreductases, coniferyl alcohol dehydrogenase or cyclohexanol dehydroge-nase and cyclohexanone monooxygenase as key enzymes. Catalytic enzymes of every reaction

  15. Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin.

    Villegas-Guzman, Paola; Silva-Agredo, Javier; González-Gómez, Duván; Giraldo-Aguirre, Ana L; Flórez-Acosta, Oscar; Torres-Palma, Ricardo A

    2015-01-01

    The photocalytic degradation of dicloxacillin (DXC) using TiO2 was studied in synthetic and natural waters. The degradation route and the effect of different experimental variables such as pH, applied power, and the initial concentrations of DXC and the catalyst were investigated. The best performances were achieved at a natural pH 5.8 and using 2.0 g L(-1) of TiO2 with 150 W of applied power. The photodegradation process followed Langmuir-Hinshelwood kinetics. The water matrix effect was evaluated in terms of degradation efficiency in the presence of organic compounds (oxalic acid, glucose), Fe(2+) ion and natural water. An increase in degradation was observed when ferrous ion was part of the solution, but the process was inhibited with all evaluated organic compounds. Similarly, inhibition was observed when natural water was used instead of distilled water. The extent of degradation of the process was evaluated following the evolution of chemical oxygen demand (COD), antimicrobial activity (AA), total organic carbon (TOC) and biochemical oxygen demand (BOD5). Total removal of DXC was achieved after 120 min of treatment and 95% mineralization was observed after 480 min of treatment. Additionally, the total removal of antimicrobial activity and a high level of biodegradability were observed after the photocalytical system had been operating for 240 min. PMID:25438130

  16. Degradation of endogenous hepatic heme by pathways not yielding carbon monoxide. Studies in normal rat liver and in primary hepatocyte culture.

    Bissell, D. M.; Guzelian, P S

    1980-01-01

    The conversion of endogenous hepatic heme to bilirubin and CO is established. However, it is unknown whether this process is quantitative or whether heme may be degraded to other products as well. To study this question, we administered the heme precursor, delta-amino-[5-14C]levulinic acid to rats in vivo. In liver, [14C]heme was predominately associated with microsomal cytochromes, and its degradation was examined over a period of 12--14 h; concurrently, excretion of labeled carbon monoxide ...

  17. The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies

  18. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways

    Regelmann, J.; Schüle, T.; Josupeit, F. S.; Horák, Jaroslav; Rose, M.; Entian, K. D.; Thumm, M.; Wolf, D. H.

    2003-01-01

    Roč. 14, č. 4 (2003), s. 1652-1663. ISSN 1059-1524 R&D Projects: GA ČR GA204/01/0272; GA ČR GA204/02/1240 Institutional research plan: CEZ:AV0Z5011922 Keywords : degradation * fructose -1 * 6-bisphosphatase * GID genes Subject RIV: CE - Biochemistry Impact factor: 7.454, year: 2003

  19. Degradation of aromatic compounds through the beta-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici.

    C.B. Michielse; L. Reijnen; C. Olivain; C. Alabouvette; M. Rep

    2012-01-01

    Plant roots react to pathogen attack by the activation of general and systemic resistance, including the lignification of cell walls and increased release of phenolic compounds in root exudate. Some fungi have the capacity to degrade lignin using ligninolytic extracellular peroxidases and laccases.

  20. The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Lipkowitz, Stan

    2002-01-01

    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulat...

  1. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Feil Helene; Feil William S; Keller Keith; Salinero Kennan; Trong Stephan; Di Bartolo Genevieve; Lapidus Alla

    2009-01-01

    Abstract Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "centra...

  2. Deficiency of ATP2C1, a golgi ion pump, induces secretory pathway defects in endoplasmic reticulum ( ER)-associated degradation and sensitivity to ER stress

    Ramos-Castaneda, J; Park, YN; Liu, M; Hauser, K; Rudolph, H; Shull, GE; Jonkman, MF; Mori, K; Ikeda, S; Ogawa, H; Arvan, P

    2005-01-01

    Relatively few clues have been uncovered to elucidate the cell biological role(s) of mammalian ATP2C1 encoding an inwardly directed secretory pathway Ca2+/Mn2+ pump that is ubiquitously expressed. Deficiency of ATP2C1 results in a human disease ( Hailey-Hailey), which primarily affects keratinocytes

  3. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180

    Engelholm, Lars H; Melander, Maria C; Hald, Andreas;

    2016-01-01

    In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen...... capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our...

  4. Chemotaxis to furan compounds by furan-degrading Pseudomonas strains

    Two Pseudomonas strains known to utilize furan derivatives were shown to be attracted to furfural, 5-hydroxymethylfurfural, furfuryl alcohol, and 2-furoic acid in the absence of furan metabolism. In addition, a LysR-family regulatory protein known to regulate furan metabolic genes was found to be i...

  5. Identification and characterization of xcpR encoding a subunit of the general secretory pathway necessary for dodecane degradation in Acinetobacter calcoaceticus ADP1.

    Parche, S; Geissdörfer, W.; Hillen, W

    1997-01-01

    A mutant of Acinetobacter calcoaceticus ADP1 unable to grow on alkanes was complemented for growth on hexadecane with a DNA fragment encoding a protein with homology to XcpR, a subunit of the general secretion pathway for exoproteins in Pseudomonas aeruginosa. Insertional inactivation of xcpR in A. calcoaceticus ADP1 by transcriptional fusion to lacZ abolishes secretion of lipase and esterase and leads to lack of growth on dodecane and slower growth on hexadecane. We, therefore, propose the p...

  6. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    Perry, Randal L. [DuPont

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  7. Microbial Degradation of Indole and Its Derivatives

    Pankaj Kumar Arora

    2015-01-01

    Full Text Available Indole and its derivatives, including 3-methylindole and 4-chloroindole, are environmental pollutants that are present worldwide. Microbial degradation of indole and its derivatives can occur in several aerobic and anaerobic pathways; these pathways involve different known and characterized genes. In this minireview, we summarize and explain the microbial degradation of indole, indole-3-acetic acid, 4-chloroindole, and methylindole.

  8. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water.

    Porras, Jazmín; Bedoya, Cristina; Silva-Agredo, Javier; Santamaría, Alexander; Fernández, Jhon J; Torres-Palma, Ricardo A

    2016-05-01

    This study focuses on the photo-transformation, in presence of humic substances (HSs), of ciprofloxacin (CIP), a commonly-used fluoroquinolone antibiotic whose presence in aquatic ecosystems is a health hazard for humans and other living organisms. HSs from the International Humic Substances Society (Elliott humic acid and fulvic acid, Pahokee peat humic acid and Nordic lake) and a humic acid extracted from modified coal (HACM) were tested for their ability to photodegrade CIP. Based on kinetic and analytical studies, it was possible to establish an accelerating effect on the rate of CIP decomposition caused by the humic substances. This effect was associated with the photosensitized capacity of the HSs to facilitate energy transfer from an excited humic state to the ground state of ciprofloxacin. Except for Nordic lake, which experienced a lower positive effect, no significant differences in the CIP transformation were found among the different humic acids examined. The photochemistry of CIP can be modified by parameters such as pH, CIP or oxygen concentration. The irradiation of this antibiotic in the presence of HACM showed that antimicrobial activity was negligible after 14 h for E. coli and 24 h for S. aureus. In contrast, the antimicrobial activity was only slightly decreased after 24 h of irradiation by direct photolysis. Although mineralization of CIP irradiation in the presence of a HACM solution was not achieved, biodegradability was achieved after 12 h of irradiation, indicating that microorganisms within the environment can easily degrade CIP photochemical by-products. PMID:26921708

  9. Rationally rewiring the connectivity of the XylR/Pu regulatory node of the m-xylene degradation pathway in Pseudomonas putida.

    de Las Heras, Aitor; Martínez-García, Esteban; Domingo-Sananes, Maria Rosa; Fraile, Sofia; de Lorenzo, Víctor

    2016-04-18

    The XylR/Pu regulatory node of the m-xylene biodegradation pathway of Pseudomonas putida mt-2 is one of the most intricate cases of processing internal and external cues into a single controlling element. Despite this complexity, the performance of the regulatory system is determined in vivo only by the occupation of Pu by m-xylene-activated XylR and σ(54)-RNAP. The stoichiometry between these three elements defines natural system boundaries that outline a specific functional space. This space can be expanded artificially following different strategies that involve either the increase of XylR or σ(54) or both elements at the same time (each using a different inducer). In this work we have designed a new regulatory architecture that drives the system to reach a maximum performance in response to one single input. To this end, we first explored using a simple mathematical model whether the output of the XylR/Pu node could be amended by simultaneously increasing σ(54) and XylR in response to only natural inducers. The exacerbation of Pu activity in vivo was tested in strains bearing synthetic transposons encoding xylR and rpoN (the σ(54) coding gene) controlled also by Pu, thereby generating a P. putida strain with the XylR/Pu output controlled by two intertwined feed forward loops (FFLs). The lack of a negative feedback loop in the expression node enables Pu activity to reach its physiological maximum in response to a single input. Only competition for cell resources might ultimately check the upper activity limit of such a rewired m-xylene sensing device. PMID:26961967

  10. Degradation of connexins and gap junctions

    Falk, Matthias M.; Kells, Rachael M.; Berthoud, Viviana M.

    2014-01-01

    Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting f...

  11. An optimized capillary electrophoresis method for the simultaneous analysis of biomass degradation products in ionic liquid containing samples.

    Aid, Tiina; Paist, Loore; Lopp, Margus; Kaljurand, Mihkel; Vaher, Merike

    2016-05-20

    An indirect capillary electrophoresis method for a quantitative determination of mono-, di- and oligosaccharides was developed to investigate biomass degradation, the isomerization of glucose into fructose and conversion of fructose to 5-hydroxymethylfurfural (5-HMF) in ionic liquids (ILs). Three chromophores, namely 2,6-pyridinedicarboxylic acid (PDC), maleic acid and phthalic acid, were used to perform indirect detection. The electroosmotic flow (EOF) was reversed to reduce analysis time, using 1-tetradecyl-3-methylimidazolium chloride (C14MImCl). The simultaneous separation of the underivatized mono-, di- and oligosaccharides was performed using four cellodextrin oligomers (cellotriose, cellotetraose, cellopentaose, cellohexaose), eight carbohydrates (xylose, fructose, glucose, galactose, lactose, cellobiose, raffinose, sucrose), two organic acids (acetic acid, levulinic acid) and 5-HMF. The best performance was obtained using background electrolyte (BGE) composed of 138.2mM NaOH, 40mM maleic acid and 5mMC14MImCl, the applied voltage was -21.7kV. The linear ranges for analyzed compounds were following: organic acids, raffinose and sucrose from 0.20 to 7mM, cellodextrin oligomers from 0.25 to 5mM, other analyzed carbohydrates from 0.25 to 7mM and 5-HMF from 0.05 to 7mM. The relative standard deviations (RSD) of peak areas varied from 3.47 to 9.62% during a 5-day analysis period and 0.58-5.29% during one day. PMID:27095128

  12. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione.

    Janzowski, C; Glaab, V; Samimi, E; Schlatter, J; Eisenbrand, G

    2000-09-01

    5-(hydroxymethyl)-2-furfural (HMF), a common product of the Maillard reaction, occurs in many foods in high concentrations, sometimes exceeding 1 g/kg (in certain dried fruits and caramel products). The toxicological relevance of this exposure has not yet been clarified. Induction of aberrant colonic crypt foci had been reported for HMF, in vitro studies on genotoxicity/mutagenicity have given controversial results. To elucidate the toxic potential of HMF, cytotoxicity (trypan blue exclusion), growth inhibition (SRB assay), mutagenicity (HPRT assay), DNA damage (single-cell gel electrophoresis) and depletion of cellular glutathione were investigated in mammalian cells. Genotoxicity (SOS repair) was monitored in Salmonella typhimurium (umu assay). HMF induced moderate cytotoxicity in V79 cells (LC(50): 115 mM, 1 hr incubation) and in Caco-2 cells (LC(50): 118 mM, 1 hr incubation). Growth inhibition was monitored following 24 hr of incubation (V79, IC(50): 6.4 mM). DNA damage was detectable neither in these cell lines nor in primary rat hepatocytes up to the cytotoxic threshold concentration (75% absolute viability). Likewise, in primary human colon cells, obtained from biopsy material, DNA damage was not measurable. At 120 mM, already exhibiting some reduction in cell viability, HMF was weakly mutagenic at the hprt-locus in V79 cells (mutants/10(6) cells: HMF 120 mM: 16 vs control: 3). Intracelluar glutathione was depleted by HMF (>/=50 mM) in V79 cells, in the human colon adenocarcinoma cell line Caco-2 and in primary rat hepatocytes down to approximately 30% of control (120 mM). Genotoxicity was observed with HMF in the umu assay without external activation (16 mM: 185 rel. umu units, %, P<0.001). The genotoxic potential was not altered by addition of rat liver microsomes. By comparison, the natural flavour constituent (E)-2-hexenal (HEX) was already cytotoxic, mutagenic and depleted glutathione at about 1000-fold lower concentrations. It induced DNA damage in mammalian cells (200-400 microM). These results suggest that HMF does not pose a serious health risk, even though the highest concentrations in specific foods approach the biologically effective concentration range in cell systems. PMID:10930701

  13. The Catalytic Conversion of D-Glucose to 5-Hydroxymethylfurfural in DMSO Using Metal Salts

    Rasrendra, C. B.; Soetedjo, J. N. M.; Makertihartha, I. G. B. N.; Adisasmito, S.; Heeres, H. J.; Albrecht, Karl O.; Holladay, Johnathan E.

    2012-01-01

    A wide range of metal halides and triflates were examined for the conversion of d-glucose to HMF in DMSO. Chromium and aluminium salts were identified as the most promising catalysts. The effect of process variables like initial d-glucose concentration (0.1-1.5 M), reaction time (5-360 min) and reac

  14. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol

    Hansen, Thomas Søndergaard; Barta, Katalin; Anastas, Paul T.;

    2012-01-01

    Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions. The hyd...

  15. Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5-Hydroxymethylfurfural in Water.

    Perret, Noémie; Grigoropoulos, Alexios; Zanella, Marco; Manning, Troy D; Claridge, John B; Rosseinsky, Matthew J

    2016-03-01

    The catalytic response of Ni on Al2O3 obtained from Ni-Al layered double hydroxides was studied for the liquid-phase hydrogenation of hydroxymethyl furfural to tetrahydrofuran-2,5-diyldimethanol (THFDM) in water. The successive calcination and reduction of the precursors caused the removal of interlayer hydroxyl and carbonate groups and the reduction of Ni(2+) to Ni(0). Four reduced mixed oxide catalysts were obtained, consisting of different amount of Ni metal contents (47-68 wt%) on an Al-rich amorphous component. The catalytic activity was linked to Ni content whereas selectivity was mainly affected by reaction temperature. THFDM was formed in a stepwise manner at low temperature (353 K) whereas 3-hydroxymethyl cyclopentanone was generated at higher temperature. Coke formation caused deactivation; however, the catalytic activity can be regenerated using heat treatment. The results establish Ni on Al2O3 as a promising catalyst for the production of THFDM in water. PMID:26870940

  16. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose-fructose mixtures

    Pedersen, Asbjørn Toftgaard; Ringborg, Rolf Hoffmeyer; Grotkjær, Thomas;

    2015-01-01

    allowing the use of the cheapest available source of fructose: high fructose corn syrup. The dehydration was catalyzed by hydrochloric acid and conducted in acetone-water mixtures, which ensured good selectivity towards HMF and eliminated precipitation of polymer by-products (insoluble humins). Through...

  17. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  18. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural

    Zhao, Haibo; Holladay, John E.; Brown, Heather M.; Zhang, Z. Conrad

    2007-06-15

    Sugars were converted to hydroxymethylfurfural (HMF) at high yield in ionic liquids without the addition of Bronsted acids. Very small amount of certain metal halides significantly reduced the fructose dehydration barrier in ionic liquids producing HMF at high yields. Most remarkably, glucose, a common sugar molecule, was selectively converted to HMF in good yield in ionic liquids containing a small amount of CrCl2. Thus CrCl2 is unique among metal chlorides tested for its effectiveness in both isomerizing glucose as well as dehydrating fructose. Only negligble amount of levulinic acid was formed in the reactions. The catalytic activity of metal chlorides for sugar conversion in ionic liquids is perhaps related to hydroxyl group of the sugar forming metal complexes with the unsaturated metal center.

  19. Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves

    Herrero, Miguel; Castro-Puyana, M.; Rocamora-Reverte, Lourdes; Ferragut, José A.; Cifuentes, Alejandro; Ibáñez, Elena

    2012-01-01

    Although subcritical water extraction (SWE) has already shown its great potential for the attainment of natural bioactive extracts, concerns still remain on possible unexpected reactions that can arise during the extraction process, usually taking place at high pressure and temperature. It is already well-known that different components might be formed during the SWE extraction protocol due e.g. to Maillard reaction, which can improve the bioactivity of the obtained extracts. On the other han...

  20. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing.

    Kowalski, Stanisław

    2013-11-15

    The paper presents the results of microwave irradiation and conventional heating of honey. These two kinds of thermal treatment result in the formation of 5-hydroxymethyl-2-furfural (HMF), and changes in the antioxidant potential of honeys, which were studied as well. Four types of honey (honeydew, lime, acacia, buckwheat) were analyzed. Honey samples were subjected to conventional heating in a water bath (WB) at 90°C up to 60min or to the action of a microwave field (MW) with constant power of 1.26W/g of the sample up to 6min. Changes in the antioxidant capacity of honeys were measured as a percentage of free radical (ABTS(+)and DPPH) scavenging ability. Changes in the total polyphenols content (TPC) (equivalents of gallic acid mg/100g of honey) were also determined. Formation of HMF in honey treated with a microwave field was faster in comparison with the conventional process. Changes in the antioxidant properties of honey subjected to thermal or microwave processing might have been botanical origin dependent. PMID:23790927

  1. Metabolic Pathway Involved in 2-Methyl-6-Ethylaniline Degradation by Sphingobium sp. Strain MEA3-1 and Cloning of the Novel Flavin-Dependent Monooxygenase System meaBA

    Dong, Weiliang; Chen, Qiongzhen; Hou, Ying; Li, Shuhuan; Zhuang, Kai; Huang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Jue; Fu, Lei; Zhang, Zhengguang; Huang, Yan; Wang, Fei

    2015-01-01

    2-Methyl-6-ethylaniline (MEA) is the main microbial degradation intermediate of the chloroacetanilide herbicides acetochlor and metolachlor. Sphingobium sp. strain MEA3-1 can utilize MEA and various alkyl-substituted aniline and phenol compounds as sole carbon and energy sources for growth. We isolated the mutant strain MEA3-1Mut, which converts MEA only to 2-methyl-6-ethyl-hydroquinone (MEHQ) and 2-methyl-6-ethyl-benzoquinone (MEBQ). MEA may be oxidized by the P450 monooxygenase system to 4-hydroxy-2-methyl-6-ethylaniline (4-OH-MEA), which can be hydrolytically spontaneously deaminated to MEBQ or MEHQ. The MEA microbial metabolic pathway was reconstituted based on the substrate spectra and identification of the intermediate metabolites in both the wild-type and mutant strains. Plasmidome sequencing indicated that both strains harbored 7 plasmids with sizes ranging from 6,108 bp to 287,745 bp. Among the 7 plasmids, 6 were identical, and pMEA02′ in strain MEA3-1Mut lost a 37,000-bp fragment compared to pMEA02 in strain MEA3-1. Two-dimensional electrophoresis (2-DE) and protein mass fingerprinting (PMF) showed that MEA3-1Mut lost the two-component flavin-dependent monooxygenase (TC-FDM) MeaBA, which was encoded by a gene in the lost fragment of pMEA02. MeaA shared 22% to 25% amino acid sequence identity with oxygenase components of some TC-FDMs, whereas MeaB showed no sequence identity with the reductase components of those TC-FDMs. Complementation with meaBA in MEA3-1Mut and heterologous expression in Pseudomonas putida strain KT2440 resulted in the production of an active MEHQ monooxygenase. PMID:26386060

  2. Single gene retrieval from thermally degraded DNA

    Lianwen Zhang; Lianwen Zhang

    2005-12-01

    To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence, mainly represented by temperature and heating time, affects the DNA degradation via DNA depurination followed by cleavage of nearby phosphodiesters. The heating time influence is temperature-dependent. By reactive oxygen species (ROS) scavenging and 1,3-diphenyl-isobenzofuran (DPBF) bleaching experiments the influence of oxygen on DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the thermal degradation of cellular DNA and isolated DNA showed that cellular lipids can aggravate DNA thermal degradation. These results confirm the possibility of gene amplification from thermally degraded DNA. They can be used to evaluate the feasibility of the retrieval of single gene from ancient remains.

  3. Polysaccharide Degradation

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  4. Mono-chlorophenol degradation by pseudomonas putida CP1 and a mixed microbial population

    Farrell, Alan

    2000-01-01

    A commercial mixed culture, Biolyte HAB, degraded mono-chlorophenols using a metci- cleavage pathway. 2- and 3-chlorophenol degradation was incomplete, leading to the accumulation of dead-end metabolites. Biolyte HAB was capable of the complete degradation of 2.34 mM 4-chlorophenol, via the intermediate 5-chloro-2- hydroxymuconic semialdehyde, using the meta- cleavage pathway. Pseudomonas putida CPI degraded mono-chlorophenols to completion via an orthocleavage pathway. The ability of P. ...

  5. Degradation of ascorbic acid in ethanolic solutions.

    Hsu, Hsin-Yun; Tsai, Yi-Chin; Fu, Chi-Chang; Wu, James Swi-Bea

    2012-10-24

    Ascorbic acid occurs naturally in many wine-making fruits. The industry also uses ascorbic acid as an antioxidant and color stabilizer in the making of alcoholic beverages including white wine, wine cooler, alcopop, and fruit liqueur. However, the degradation of ascorbic acid itself may cause browning and the deterioration of color quality. This study was aimed to monitor the degradation of ascorbic acid, the formation of degradation products, and the browning in storage of ascorbic acid containing 0-40% (v/v) ethanolic solutions buffered at pH 3.2 as models of alcoholic beverages. The results show that ascorbic acid degradation in the ethanolic solutions during storage follows first-order reaction, that the degradation and browning rates increase with the increase of ethanol concentration, that the activation energy for the degradation of ascorbic acid is in the range 10.35-23.10 (kcal/mol), that 3-hydroxy-2-pyrone is an indicator and a major product of ascorbic acid degradation, and that aerobic degradation pathway dominants over anaerobic pathway in ascorbic acid degradation in ethanolic solutions. PMID:22994409

  6. Sonolytic degradation of 2-chlorobiphenyl

    张光明; 华天星; 常爱敏

    2004-01-01

    The sonolytic degradation of 2-chlorobiphenyl was investigated. Mass spectroscopy was used to detect the products of sonolytic degradation of 2-chlorobiphenyl. The results show that the products of sonolytic degradation, such as biphenyl, ethyl benzene, diethylbiphenyl, dibutylbiphenyl, phenol, propylphenol and di-tert-butyl phenol are produced by thermolysis and hydroxyl free radical reactions, in which biphenyl counts for almost 40%(mole fraction) of the mother compound and others are at trace level. Rapid accumulation of chloride ion shows quick dechlorination, and 78% organic chlorine is converted into chloride ion. Free radical scavengers, bicarbonate and carbonate, decrease the reaction rate of sonolytic degradation of 2-chlorobiphenyl significantly, and the pseudo 1st order rate constant of sonolytic degradation of 2-chlorobiphenyl decreases linearly with the natural logarithm of the concentration of the added free radical scavenger, showing that the pyrolysis and hydroxyl free radical reaction are the two major pathways for the sonolytic degradation of 2-chlorobiphenyl, in which the hydroxyl radical concentration is estimated to be 1 × 10 10mol/L.

  7. Thermal battery degradation mechanisms

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  8. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds.

    1988-01-01

    Trichloroethylene (TCE) was metabolized by the natural microflora of three different environmental water samples when stimulated by the addition of either toluene or phenol. Two different strains of Pseudomonas putida that degrade toluene by a pathway containing a toluene dioxygenase also metabolized TCE. A mutant of one of these strains lacking an active toluene dioxygenase could not degrade TCE, but spontaneous revertants for toluene degradation also regained TCE-degradative ability. The re...

  9. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d. PMID:26364219

  10. A Superoxide-Mediated Mitogen-Activated Protein Kinase Phosphatase-1 Degradation and c-Jun NH2-Terminal Kinase Activation Pathway for Luteolin-Induced Lung Cancer Cytotoxicity

    Bai, Lang; Xu, Xiuling; Wang, Qiong; Xu, Shanling; Ju, Wei; Wang, Xia; Chen, Wenshu; He, Weiyang; Tang, Hong; Lin, Yong

    2012-01-01

    Although luteolin is identified as a potential cancer therapeutic and preventive agent because of its potent cancer cell-killing activity, the molecular mechanisms by which its cancer cell cytotoxicity is achieved have not been well elucidated. In this report, luteolin-induced cellular signaling was systematically investigated, and a novel pathway for luteolin's lung cancer killing was identified. The results show that induction of superoxide is an early and crucial step for luteolin-induced ...

  11. Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR.

    Harker, A R; Olsen, R H; Seidler, R J

    1989-01-01

    Plasmid pJP4 enables Alcaligenes eutrophus JMP134 to degrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD). Plasmid pRO101 is a derivative of pJP4 obtained by insertion of Tn1721 into a nonessential region of pJP4. Plasmid pRO101 was transferred by conjugation to several Pseudomonas strains and to A. eutrophus AEO106, a cured isolate of JMP134. AEO106(pRO101) and some Pseudomonas transconjugants grew on TFD. Transconjugants with a chromosomally encoded phenol hydroxylase also degr...

  12. Plasmids and aromatic degradation in Sphingomonas for bioremediation : Aromatic ring cleavage genes in soil and rhizosphere

    SipilÀ, Timo

    2009-01-01

    Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biode...

  13. TRICHLOROETHYLENE METABOLISM BY MICROORGANISMS THAT DEGRADE AROMATIC COMPOUNDS

    Trichloroethylene (TCE) was metabolized by the natural microflora of three different environmental water samples when stimulated by the addition of either toluene or phenol. Two different strains of Pseudomonas putida that degrade toluene by a pathway containing a toluene dioxyge...

  14. ROLE OF FUNGAL LIGNINOLYTIC ENZYMES IN POLLUTANT DEGRADATION

    Lignin-degrading fungi have potential applications in programs for organopollutant biotreatment. he metabolic pathways that they employ for ligninolysis appear to have unusual xenobiotic capabilities, and there is some preliminary evidence that their extracellular lignin peroxida...

  15. Comparative genetic organization of incompatibility group P degradative plasmids.

    Burlage, R S; Bemis, L A; Layton, A C; Sayler, G. S.; Larimer, F

    1990-01-01

    Plasmids that encode genes for the degradation of recalcitrant compounds are often examined only for characteristics of the degradative pathways and ignore regions that are necessary for plasmid replication, incompatibility, and conjugation. If these characteristics were known, then the mobility of the catabolic genes between species could be predicted and different catabolic pathways might be combined to alter substrate range. Two catabolic plasmids, pSS50 and pSS60, isolated from chlorobiph...

  16. Protein degradation and iron homeostasis.

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  17. Bacterial Degradation of Aromatic Compounds

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  18. Investigating the control of chlorophyll degradation by genomic correlation mining

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulat...

  19. Synthesis and degradation behavior of poly(ethyl cyanoacrylate)

    Poly(ethyl cyanoacrylate) was synthesized using N, N'-dimethyl-p-toulidine (DMPT) as an initiator through anionic/zwitterionic pathway. The degradability and the degradation mechanism of the prepared polymers were carefully examined from various points of views. It was found that the polymers were...

  20. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Yan Li; Bing Li; Cui-Ping Wang; Jun-Zhao Fan; Hong-Wen Sun

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached ...

  1. Bacterial degradation of monocyclic aromatic amines

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  2. Over-expression of a putative oxidoreductase (UcpA) for increasing furfural or 5-hydroxymethylfurfural tolerance

    Wang, Xuan; Miller, Elliot N.; Yomano, Lorraine P.; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    2016-05-24

    The subject invention pertains to overexpression of a putative oxidoreductase (ucpA) for increasing furfural tolerance in genetically modified microorganisms. Genetically modified microorganisms capable of overexpressing UcpA are also provided. Increased expression of ucpA was shown to increase furfural tolerance by 50%, and to permit the fermentation of sugars to products in the presence of 15 mM furfural.

  3. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid.

    Yi, Guangshun; Teong, Siew Ping; Li, Xiukai; Zhang, Yugen

    2014-08-01

    A simple and effective water extraction method is presented for the purification 5-hydroxylmethylfurfural (HMF) obtained from a biomass dehydration system. Up to 99% of the HMF can be recovered and the HMF in aqueous solution is directly converted to 2,5-furandicarboxylic acid (FDCA) as the sole product. This purification technique allows an integrated process to produce FDCA from fructose via HMF prepared in an isopropanol monophasic system, with an overall FDCA yield of 83% obtained. From Jerusalem raw artichoke biomass to FDCA via HMF prepared in a water/MIBK (methyl isobutyl ketone) biphasic system, an overall FDCA yield of 55% is obtained. PMID:24889713

  4. Molecular pathways

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection of...... fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  5. Targeted polypeptide degradation

    Church, George M.; Janse, Daniel M.

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  6. DNA degradation and Apoptosis : DNA degradation

    Torriglia, Alicia; Padron, Laura

    2005-01-01

    Apoptosis, is a form of programmed cell death essential for the development and maintenance of multicellular organisms. DNA degradation is one of the hallmarks of apoptosis. The central component of the apoptotic machinery is a proteolytic system involving caspases and non-caspases proteases. CAD, a caspase-activated DNase, is the endonuclease responsible for DNA degradation during caspase-dependent apoptosis. The relationship between non-caspase proteases and endonucleases is less clear and ...

  7. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    Andersen, Gorm; Merico, A.; Bjornberg, O.; Andersen, Birgit; Schnackerz, K.D.; Dobritzsch, D.; Piskur, Jure; Compagno, C.

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides....../antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway was...

  8. A luminal flavoprotein in endoplasmic reticulum-associated degradation

    Riemer, Jan; Appenzeller-Herzog, Christian; Johansson, Linda; Bodenmiller, Bernd; Hartmann-Petersen, Rasmus; Ellgaard, Lars

    2009-01-01

    The quality control system of the endoplasmic reticulum (ER) discriminates between native and nonnative proteins. The latter are degraded by the ER-associated degradation (ERAD) pathway. Whereas many cytosolic and membrane components of this system are known, only few luminal players have been...... identified. In this study, we characterize ERFAD (ER flavoprotein associated with degradation), an ER luminal flavoprotein that functions in ERAD. Upon knockdown of ERFAD, the degradation of the ERAD model substrate ribophorin 332 is delayed, and the overall level of polyubiquitinated cellular proteins is...

  9. Heat Shock Proteins Regulate Activation-induced Proteasomal Degradation of the Mature Phosphorylated Form of Protein Kinase C*

    Lum, Michelle A.; Balaburski, Gregor M; Murphy, Maureen E.; Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    Background: Mechanisms of activation-induced PKC down-regulation are poorly understood. A characterized pathway involves priming site dephosphorylation and degradation of the dephosphorylated species.

  10. Valve actuator motor degradation

    Valve actuator motor degradation and failure has been a significant, but little studied, problem in the nuclear industry. This study provides a discussion of the primary failure mode --thermal degradation-- and reviews the basis for the solution to thermal degradation -- thermal protection. The study also provides reviews of various industry data bases, discusses effects of other failure modes such as corrosion, and provides a review of other considerations the user should entertain when assessing thermal protection

  11. INTERMITTENT DEGRADATION AND SCHIZOTYPY

    Roché, Matthew W.; Silverstein, Steven M.; Lenzenweger, Mark F.

    2015-01-01

    Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy) is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-repo...

  12. Degradation of indole by Alcaligenes spec.

    Claus, G; Kutzner, H J

    1983-01-01

    Alcaligenes spec. strain In 3 was isolated from an enrichment culture with indole inoculated with activated sludge. The organism was able to grow with indole as sole source of carbon and nitrogen. During growth with this substrate indigo and anthranilate accumulated in the culture broth. By measurement of the oxidation of intermediates (O(2)-uptake) and determination of the activity of enzymes responsible for ring cleavage the following pathway for indole degradation could be established: indole → indoxyl → isatin → anthranilate → gentisate → maleyl pyruvate → fumaryl pyruvate → fumarate + pyruvate. - Alcaligenes spec. strain In 3 was also able to grow with various aromatic compounds; these were degraded by ortho- or meta-cleavage or via the gentisinic acid pathway. PMID:23194589

  13. Minireview: Selective Degradation of Mitochondria by Mitophagy*

    Kim, Insil; Rodriguez-Enriquez, Sara; Lemasters, John J.

    2007-01-01

    Mitochondria are the essential site of aerobic energy production in eukaryotic cells. Reactive oxygen species (ROS) are an inevitable by-product of mitochondria metabolism and can cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the consequence of disease processes. Therefore, maintaining a healthy population of mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the major degradative pathway in mitochondrial turnover, a...

  14. Prediction of drug degradants using DELPHI: an expert system for focusing knowledge.

    Pole, David L; Ando, Howard Y; Murphy, Sean T

    2007-01-01

    DELPHI is an expert system that has been developed to predict possible degradants of pharmaceutical compounds under stress testing conditions. It has been programmed with the objective of finding relevant degradation pathways, identifying degradant structures, and providing tools to the analytical chemist to assist in degradation identification. The system makes degradant predictions based on the chemical structure of the drug molecule and precedent from a broad survey of the literature. A description of DELPHI's treatment of molecular perception is described as are many features of the heuristic degradation rules it uses to capture and apply chemical degradation knowledge. DELPHI's utility for capturing institutional knowledge is discussed in relation to an analysis of degradation prediction results for 250 molecules of diverse chemical structure collected over 5 years of use. As such, it provides a reliable, convenient, and rapid tool for evaluating potential pathways of chemical instability of pharmaceuticals. PMID:17602568

  15. Designing pathways

    Scheuer, John Damm

    2010-01-01

    The theoretical background in this chapter is organizational studies and especially theories about design and design processes in organizations. The concept of design is defined as a particular kind of work aimed at making arrangements in order to change existing situations into desired ones. The...... illustrative case example is the introduction of clinical pathways in a psychiatric department. The contribution to a general core of design research is the development of the concept of design work and a critical discussion of the role of technological rules in design work....

  16. Degradations and Rearrangement Reactions

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  17. Rate of NDF degradation

    Weisbjerg, Martin Riis; Koukolová, V; Lund, Peter

    2007-01-01

    Degradation profiles for NDF were estimated for 83 samples of grass/grass-clover, 27 samples of cereal whole crop and 14 samples of maize whole crop.......Degradation profiles for NDF were estimated for 83 samples of grass/grass-clover, 27 samples of cereal whole crop and 14 samples of maize whole crop....

  18. Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini

    Schnell, Sylvia; Schink, Bernhard

    1991-01-01

    The initial reactions involved in anaerobic aniline degradation by the sulfate-reducing Desulfobacterium anilini were studied. Experiments for substrate induction indicated the presence of a common pathway for aniline and 4-aminobenzoate, different from that for degradation of 2-aminobenzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, or phenol. Degradation of aniline by dense cell suspensions depended on CO2 whereas 4-aminobenzoate degradation did not. If acetyl-CoA oxidation was inhibited by cy...

  19. Updates on p53: modulation of p53 degradation as a therapeutic approach

    Dey, A; Verma, C S; LANE, D. P.

    2008-01-01

    The p53 pathway is aberrant in most human tumours with over 50% expressing mutant p53 proteins. The pathway is critically controlled by protein degradation. Here, we discuss the latest developments in the search for small molecules that can modulate p53 pathway protein stability and restore p53 activity for cancer therapy.

  20. Degradation of Chlorinated Aromatic Compounds in UASB Reactors

    Christiansen, Nina; Hendriksen, Hanne Vang; Järvinen, Kimmo T.;

    1995-01-01

    Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded...... in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do...... not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules....

  1. Silk structure and degradation.

    Liu, Bin; Song, Yu-wei; Jin, Li; Wang, Zhi-jian; Pu, De-yong; Lin, Shao-qiang; Zhou, Chan; You, Hua-jian; Ma, Yan; Li, Jin-min; Yang, Li; Sung, K L Paul; Zhang, Yao-guang

    2015-07-01

    To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk. PMID:25982316

  2. The stability and degradation mechanism of sulforaphene in solvents.

    Tian, Guifang; Tang, Pingwah; Xie, Rui; Cheng, Li; Yuan, Qipeng; Hu, Jing

    2016-05-15

    Sulforaphene, a natural compound, has been investigated as a potential anticancer agent. However, the stability of sulforaphene, in various solvents, and its degradation pathway have not been appropriately reported. This instability impairs the preparation process, the biological evaluation experiments, and the applications of sulforaphene. In this study, the stability of sulforaphene stored at 26°C was investigated in each of the following six solvents: two kinds of protic solvents (methanol and ethanol) and four kinds of aprotic solvents (acetonitrile, dichloromethane, ethyl acetate and acetone). Sulforaphene was found to be stable in aprotic solvents and unstable in the protic solvents. The degradation products of sulforaphene in protic solvents (methanol and ethanol) were purified by the preparative HPLC and identified by ESI/MS and NMR ((1)H NMR). The degradation pathways of sulforaphene in methanol and ethanol were proposed. It was found that sulforaphene was degraded into two kinds of structural isomer in alcohols. PMID:26775975

  3. SPECIFIC DEGRADATION OF WATERSHEDS

    Boubacar KANE; Pierre Y.JULIEN

    2007-01-01

    An extensive database of reservoir sedimentation surveys throughout continental United States is compiled and analyzed to determine specific degradation SD relationships as function of mean annual rainfall R, drainage area A, and watershed slope S. The database contains 1463 field measurements and specific degradation relationships are defined as function of A, R and S. Weak trends and significant variability in the data are noticeable. Specific degradation measurements are log normally distributed with respect to R, A, and S and 95% confidence intervals are determined accordingly. The accuracy of the predictions does not significantly increase as more independent variables are added to the regression analyses.

  4. Static analysis of a Model of the LDL degradation pathway

    Pilegaard, Henrik; Nielson, Flemming; Nielson, Hanne Riis

    2005-01-01

    BioAmbients is a derivative of mobile ambients that has shown promise of describing interesting features of the behaviour of biological systems. As for other ambient calculi static program analysis can be used to compute safe approximations of the behavior of modelled systems. We use these tools to...... model and analyse the production of cholesterol in living cells and show that we are able to pinpoint the difference in behaviour between models of healthy systems and models of mutated systems giving rise to known diseases....

  5. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    Amjad Ali; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected...

  6. IL-1β enhances cell adhesion to degraded fibronectin

    Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2012-01-01

    IL-1β is a prominent proinflammatory cytokine that mediates degradation of extracellular matrix proteins through increased expression of matrix metalloproteinases, which involves a signaling pathway in adherent cells that is restricted by focal adhesions. Currently, the mechanism by which IL-1β affects cell adhesion to matrix proteins is not defined, and it is not known whether degraded matrix proteins affect IL-1β signaling. We examined adhesion-related IL-1β signaling in fibroblasts attachi...

  7. Tryptophan-Degrading Enzymes in Tumoral Immune Resistance

    van Baren, Nicolas; Van den Eynde, Benoît J

    2015-01-01

    Tryptophan is required for T lymphocyte effector functions. Its degradation is one of the mechanisms selected by tumors to resist immune destruction. Two enzymes, tryptophan-2,3-dioxygenase and indoleamine 2,3-dioxygenase 1, control tryptophan degradation through the kynurenine pathway. A third protein, indoleamine 2,3-dioxygenase 2, was identified more recently. All three enzymes were reported to be expressed in tumors, and are candidate targets for pharmacological inhibition aimed at restor...

  8. Purex diluent degradation

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO2) molecule, not HNO3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO3 concentration and the temperature. The rate was decreased by argon sparging to remove NO2 and by the addition of butanol, which probably acts as a NO2 scavenger. 13 references, 11 figures

  9. Conceptualizing Forest Degradation.

    Ghazoul, Jaboury; Burivalova, Zuzana; Garcia-Ulloa, John; King, Lisa A

    2015-10-01

    Forest degradation is a global environmental issue, but its definition is problematic. Difficulties include choosing appropriate reference states, timescales, thresholds, and forest values. We dispense with many such ambiguities by interpreting forest degradation through the frame of ecological resilience, and with reference to forest dynamics. Specifically, we define forest degradation as a state of anthropogenically induced arrested succession, where ecological processes that underlie forest dynamics are diminished or severely constrained. Metrics of degradation might include those that reflect ecological processes shaping community dynamics, notably the regeneration of plant species. Arrested succession implies that management intervention is necessary to recover successional trajectories. Such a definition can be applied to any forest ecosystem, and can also be extended to other ecosystems. PMID:26411619

  10. Failed fuel degradation

    Failed fuel degradation is the term used to describe the post-defect deterioration of a fuel rod which can occur under continued operation in certain circumstances. Two mechanisms are generally postulated for failed fuel degradation in light water reactors. The first of these attributes degradation susceptibility (axial split formation) to the inherently low fracture toughness of the zircaloy cladding exacerbated by hydrogen embrittlement. The second mechanism attributes the degradation to the reduced relative corrosion resistance of the zirconium liner present in barrier fuel. This leads to a greater fuel rod internal inventory of embrittling hydrogen in conjunction with increased cladding stresses caused by closure of the pellet-cladding gap due to liner corrosion. Key observations relating to these mechanisms are reviewed and the development of mitigating actions to address them described. Commercial irradiation experience gained with subsequently improved fuel designs is discussed. (5 figures; 7 references) (UK)

  11. Bacteria and lignin degradation

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  12. [Degradation of succinylcholine chloride].

    Németh, G; Török, I; Paál, T

    1993-05-01

    Quantitative thin-layer chormatographic method has been developed for the investigation of the degradation of injection formulations containing succinylcholinium chloride. The method is based on the denistometric determination of the main degradation product, choline at 430 nm after visualization with iodine vapour. The stability of the injection was investigated under various storage conditions and it has been stated that considerable decomposition takes place during as short a period as one week. PMID:8362654

  13. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions

    The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium

  14. Kinetics and characteristics of phenanthrene degradation by a microbial consortium

    Wang Jin; Xu Hongke; An Mingquan; Yan Guiwen

    2008-01-01

    The kinetics and characteristics of phenanthrene degradation by a microbial consortium W4 isolated from Henan Oilfield were investigated. The degradation percentage of solid phenanthrene at 200 mg/L in liquid medium after 6 days of incubation was higher than 95% under the condition of 37 ℃ and 120 r/min by this microbial consortium. The degradation of phenanthrene could be fitted to a first-order kinetic model with the half-life of 1.25 days. The optimum conditions for degradation of phenanthrene by consortium W4 were as follows: temperature about 37 ℃, pH from 6.0 to 7.0 and salinity about 8.0 g/L.It was concluded that microbial consortium W4 might degrade phenanthrene via both salicylic acid and o-phthalic acid pathways by analyzing products with GC-MS.

  15. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  16. Drift Degradation Analysis

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  17. Drift Degradation Analysis

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  18. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  19. Motor degradation prediction methods

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  20. Motor degradation prediction methods

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  1. PWR degraded core analysis

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  2. Degradation effects in polymers

    The extremely long molecular chains of polymers can be broken easily by the absorption of a quantum of energy above the energy of the covalent bond of the main carbon chain, which typically is in the range of 5-10 eV. The energy of beta and gamma photons of 1 to 10 MeV surpasses by many orders of magnitude this minimum value, representing a high risk of degradation to all kind of polymers, naturals and synthetics alike. The protection of polymers against high doses (20 - 1000 kGy) requires efficient additives preventing and/or stopping chain reaction type oxidative degradation. Primary and secondary antioxidants work well here in synergy. Commercial raw materials are available for radiation-sterilizable medical devices made out of polyolefins and other thermoplastics. Similarly, polymer compounds of suitable formulae are offered commercially for high-dose applications of polymers in nuclear installations. The controlled degradation of polymers of large molecular mass - or even of cross-linked molecular structures - is a promising field of radiation application. One area here is related to recycling non-accessible polymers such as fluorinated plastics of cross-linked rubber products. Another large possible area is the controlled radiation degradation of natural polymer systems. Radiation may facilitate the access to cross-linked natural polymer systems, such as wood, plant cellulose and biomass in general, decreasing to use of aggressive chemicals. The result is energetically favorable, environmentally friendly new procedures and raw materials of natural origin. A limited dose applied to polymers - although may cause some degradation - however may initiate new bonds on the 'wounded' chain. The popular graft-copolymerization technique can be applied in new, up-coming polymer processing technologies such as alloying, composite processing and reconstitutive recycling. By this way, even those polymers described earlier as radiation-degrading types, can be cross

  3. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh, E-mail: ssc@imtech.res.in

    2013-06-15

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO{sub 2} substituent) and deamination (release of NH{sub 2} substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway.

  4. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO2 substituent) and deamination (release of NH2 substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway

  5. Photovoltaic Degradation Risk: Preprint

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  6. Antifoam degradation testing

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  7. Degradation of fluorotelomer alcohols

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O;

    2004-01-01

    atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs...... significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important...

  8. Chlorophyll Degradation in Horticultural Crops

    Kaewsuksaeng, Samak

    2011-01-01

    One of the symptoms of senescence in harvested horticultural crops is the loss of greenness that comes with the degradation of chlorophyll. With senescence, the chlorophyll-degrading enzyme activities such as chlorophyllase, Mg-dechelatase or Mg-dechelation activity, a new chlorophyll-degrading enzyme, pheophytinase, pheophorbidase and chlorophyll-degrading peroxidase, which are involved in chlorophyll degradation, affected greatly in stored horticultural crops. The chlorophyll derivatives, e...

  9. 40 CFR 125.122 - Determination of unreasonable degradation of the marine environment.

    2010-07-01

    ... ELIMINATION SYSTEM Ocean Discharge Criteria § 125.122 Determination of unreasonable degradation of the marine... potential impacts on human health through direct and indirect pathways; (7) Existing or...

  10. Drift Degradation Analysis

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  11. Radiation degradation of silk

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  12. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs. PMID:27263934

  13. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders.

    Vogt, Carsten; Lueders, Tillmann; Richnow, Hans H; Krüger, Martin; von Bergen, Martin; Seifert, Jana

    2016-01-01

    Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using 13C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation. PMID:26959525

  14. Changes in collagen synthesis and degradation during skeletal muscle growth

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  15. Plant enhanced degradation of phenanthrene in the contaminated soil

    LIAO Min; XIE Xiao-mei

    2006-01-01

    The degradative characteristics ofphenanthrene, microbial biomass carbon, plate counts of heterotrophic bacteria and most probable number (MPN) of phenanthrene degraders in non-rhizosphere or rhizosphere soils with uninoculating or inoculating phenanthrene degraders were measured. At the initial concentration of 20 mg phenanthrene/kg soil, the half-lives of phenanthrene in uninoculated non-rhizosphere soil, uninoculated rhizosphere soil, inoculated non-rhizosphere soil, and inoculated rhizosphere soil were measured to be 81.5, 47.8, 15.1 and 6.4 d, respectively, and corresponding kinetic data fitted first-order kinetics. The highest degradation rate of phenanthrene was observed in inoculated rhizosphere soil. The degradative characteristics of phenanthrene were closely related to the effects of vegetation on soil microbial process. Vegetation could enhance the magnitude ofrhizosphere microbial communities, microbial biomass content, and heterotrophic bacterial community, but barely influence those community components responsible for phenanthrene degradation. Results suggested that combination of vegetation and inoculation with degrading microorganisms of target organic contaminants was a better pathway to enhance degradation of the organic contaminants in soil.

  16. Detection of pump degradation

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  17. Detection of pump degradation

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  18. SUMO modulation of protein aggregation and degradation

    Marco Feligioni

    2015-09-01

    Full Text Available Small ubiquitin-like modifier (SUMO conjugation and binding to target proteins regulate a wide variety of cellular pathways. The functional aspects of SUMOylation include changes in protein-protein interactions, intracellular trafficking as well as protein aggregation and degradation. SUMO has also been linked to specialized cellular pathways such as neuronal development and synaptic transmission. In addition, SUMOylation is associated with neurological diseases associated with abnormal protein accumulations. SUMOylation of the amyloid and tau proteins involved in Alzheimer's disease and other tauopathies may contribute to changes in protein solubility and proteolytic processing. Similar events have been reported for α-synuclein aggregates found in Parkinson's disease, polyglutamine disorders such as Huntington's disease as well as protein aggregates found in amyotrophic lateral sclerosis (ALS. This review provides a detailed overview of the impact SUMOylation has on the etiology and pathology of these related neurological diseases.

  19. Metagenomic insights into RDX-degrading potential of the ovine rumen microbiome

    The ovine rumen is capable of rapid degradation of nitroaromatic compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While ruminal RDX-degrading bacteria have been identified, genes and biological pathways responsible for the biochemical processes in the rumen have yet to be character...

  20. Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1.

    Fang, Lian-Cheng; Chen, Yi-Fei; Zhou, Yan-Long; Wang, Dao-Sheng; Sun, Le-Ni; Tang, Xin-Yun; Hua, Ri-Mao

    2016-06-10

    Cupriavidus nantongensis X1 is a chlorpyrifos degrading bacterium, which was isolated from sludge collected at the drain outlet of a chlorpyrifos manufacture plant. It is the first time to report the complete genome sequence of C. nantongensis species, which has been reported as a novel species of Cupriavidus genus. It could provide further pathway information in chlorpyrifos degradation. PMID:27063140

  1. Auxin-induced degradation dynamics set the pace for lateral root development

    Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unr...

  2. Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis.

    Stevenson, Julian; Huang, Edmond Y; Olzmann, James A

    2016-07-17

    The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells. PMID:27296502

  3. Identification of Degradant Impurity in Gefitinib by Using Validated RRLC Method

    Madireddy Venkataramanna; Indukuri Venkata Somaraju; Kondra Sudhakar Babu

    2011-01-01

    Degradation pathway for gefitinib is established as per ICH recommendations by validated and stability in-dicating reverse phase liquid chromatographic method. Gefitinib is subjected to stress conditions of acid, base, oxidation, thermal and photolysis. Significant degradation is observed in acid and base stress condi-tions. Two impurities are studied among which one impurity is found prominent degradant. The stress sam-ples are assayed against a qualified reference standard and the mass bala...

  4. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism

    Highlights: • A novel Al doped PbO2 electrode was successfully prepared. • Electrochemical method is proved to be a useful way for the treatment of CAP. • The CAP degradation mechanism was discussed and a possible reaction pathway was proposed. - Abstract: This study presents an electrochemical method for the degradation of chloramphenicol (CAP) in aqueous solution with a novel Al doped PbO2 electrode. The Al-doped PbO2 electrode showed high electrochemical activity, oxygen evolution potential, radical utilization rate, reusability and safety. The influence factors on CAP degradation with the Al-doped PbO2 electrode were investigated in detail, and under the optimal conditions the removal rates of CAP and TOC reached 87.30% and 52.06% in acid conditions after 2.5 h electrolysis with a 0.2 mol dm−3 Na2SO4 at a current density of 30 mA cm−2, respectively. The electrochemical degradation of CAP at Al-doped PbO2 electrode electrode followed pseudo-first-order kinetics. The degradation mechanism was proposed by cyclic voltammograms tests and it was deduced that hydroxyl radicals generated in the electrochemical process played a key role in oxidizing CAP. Finally, based on the reaction products identified, a possible degradation pathway including radical reaction, ring open and mineralization was proposed

  5. Thermal degradation reaction mechanism of xylose: A DFT study

    Huang, Jinbao; He, Chao; Wu, Longqin; Tong, Hong

    2016-08-01

    The thermal degradation reaction mechanism of xylose as hemicellulose model compound was investigated by using density functional theory methods M062X with the 6-31++G(d,p) basis set. Eight possible pyrolytic reaction pathways were proposed and the standard kinetic and thermodynamic parameters in all reaction pathways were calculated at different temperatures. In reaction pathway (1), xylose is first transformed into acyclic containing-carbonyl isomer, and then the isomer further decomposes through four possible pyrolysis pathways (1-1)-(1-4). Pathways (2) and (3) depict an immediate ring-opening process through the simultaneous breaking of C-O and C-C bonds. Pathways (4)-(7) describe the pyrolysis processes of various anhydro-xyloses through a direct ring-opening process. Pathway (8) gives the evolutionary process of pyranones. The calculation results show that reaction pathways (1), (2) and (5) are the major reaction channels and reaction pathways (3), (4), and (6)-(8) are the competitive reaction channels in pyrolysis of xylose. The major products of xylose pyrolysis are low molecular products such as 2-furaldehyde, glycolaldehyde, acetaldehyde, methylglyoxal and acetone, and the main competitive products are formaldehyde, formic acid, acetic acid, CO2, CH4, acetol, pyranone, and so on.

  6. Endocytic collagen degradation

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe;

    2012-01-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it...... crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...

  7. Prolamin degradation in sourdoughs

    Loponen, Jussi

    2006-01-01

    This thesis examines protein behaviours that occur during cereal fermentations. The focus is on the prolamin degradation in sourdoughs. The thesis also looks at what happens to the oat globulins during an oat bran acidification process. The cereal prolamins are unique proteins in many respects. The wheat prolamins (glutenins and gliadins) are responsible for the formation of the gluten that provides the viscoelastic properties to wheat doughs whereas the rye prolamins (secalins) are unab...

  8. Studying lipids involved in the endosomal pathway.

    Bissig, Christin; Johnson, Shem; Gruenberg, Jean

    2012-01-01

    Endosomes along the degradation pathway exhibit a multivesicular appearance and differ in their lipid compositions. Association of proteins to specific membrane lipids and presumably also lipid-lipid interactions contribute to the formation of functional membrane platforms that regulate endosome biogenesis and function. This chapter provides a brief review of the functions of endosomal lipids in the degradation pathway, a discussion of techniques that allow studying lipid-based mechanisms and a selection of step-by-step protocols for in vivo and in vitro methods commonly used to study lipid roles in endocytosis. The techniques described here have been used to elucidate the function of the late endosomal lipid lysobisphosphatidic acid and allow the monitoring of lipid distribution, levels and dynamics, as well as the characterization of lipid-binding partners. PMID:22325596

  9. Detection of pump degradation

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  10. Detection of pump degradation

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  11. Enrichment and characterization of sulfate reducing, naphthalene degrading microorganisms

    Steffen, Kümmel; Florian-Alexander, Herbst; Márcia, Duarte; Dietmar, Pieper; Jana, Seifert; Bergen Martin, von; Hans-Hermann, Richnow; Carsten, Vogt

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAH) are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. PAH are widely distributed in the environment by accidental discharges during the transport, use and disposal of petroleum products, and during forest and grass fires. Caused by their hydrophobic nature, PAH basically accumulate in sediments from where they are slowly released into the groundwater. Although generally limited by the low water solubility of PAH, microbial degradation is one of the major mechanisms leading to the complete clean-up of PAH-contaminated sites. Whereas organisms and biochemical pathways responsible for the aerobic breakdown of PAH are well known, anaerobic PAH biodegradation is less understood; only a few anaerobic PAH degrading cultures have been described. We studied the anaerobic PAH degradation in a microcosm approach to enrich anaerobic PAH degraders. Anoxic groundwater and sediment samples were used as inoculum. Groundwater samples were purchased from the erstwhile gas works facility and a former wood impregnation site. In contrast, sources of sediment samples were a former coal refining area and an old fuel depot. Samples were incubated in anoxic mineral salt medium with naphthalene as sole carbon source and sulfate as terminal electron acceptor. Grown cultures were characterized by feeding with 13C-labeled naphthalene, 16S rRNA gene sequencing using an Illumina® approach, and functional proteome analyses. Finally, six enrichment cultures able to degrade naphthalene under anoxic conditions were established. First results point to a dominance of identified sequences affiliated to the freshwater sulfate-reducing strain N47, which is a known anaerobic naphthalene degrader, in four out of the six enrichments. In those enrichments, peptides related to the pathway of anoxic naphthalene degradation in N47 were abundant. Overall the data underlines the importance of Desulfobacteria for natural

  12. 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes.

    Fulthorpe, R R; McGowan, C; Maltseva, O V; Holben, W E; Tiedje, J M

    1995-01-01

    DNA from 32 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria from diverse locations was probed with the first three genes of the well-known 2,4-D degradation pathway found in Alcaligenes eutrophus JMP134(pJP4). The majority of strains did not show high levels of homology to the first three genes of the 2,4-D degradation pathway, tfdA, -B, and -C. Most strains showed combinations of tfdA-, B-, and C-like elements that exhibited various degrees of homology to the gene probes. Strains h...

  13. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from β-H abstraction overlap with those from high temperature pyrolysis, the effect of β-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: ► Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O2 saturation. ► The major degradation pathways were proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. ► The effect of β-H abstraction was not observed possibly because of 1,5 H-transfer inside cavitating bubbles. ► Formation

  14. Degradation analysis of REBCO coils

    RE-Ba-Cu-O (REBCO) layer-wound coils were operated to investigate their properties under electromagnetic forces in an external magnetic field of up to 17.2 T. While REBCO coils were successfully operated under electromagnetic forces over 200 MPa, some showed degradation after quenching. To develop high-temperature superconducting (HTS) magnets, the reasons for the degradation of REBCO coils should be investigated. In this study, the degraded REBCO coils were carefully rewound. The critical current (Ic) of the rewound REBCO conductor was measured to check the damaged parts in the degraded REBCO coils, and the possible causes for the degradation were discussed. (paper)

  15. Biogas production through the syntrophic acetate-oxidising pathway

    Westerholm, Maria

    2012-01-01

    Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the energy-rich component of biogas, and is formed as the end product during degradation of organic material without oxygen (anaerobic). Acetate is an important intermediate in anaerobic degradation and can be converted to methane through two pathways: aceticlastic methanogenesis and syntrophic acetate oxidation (SAO). SAO is a two-st...

  16. Outdoor PV Degradation Comparison

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  17. Bacterial Degradation of Pesticides

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  18. Degradation of copepod fecal pellets

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    Copepod fecal pellets are often degraded at high rates within the upper part of the water column. However, the identity of the degraders and the processes governing the degradation remain unresolved. To identify the pellet degraders we collected water from Oresund (Denmark) approximately every...... second month from July 2004 to July 2005. These water samples were divided into 5 fractions (<0.2, <2, <20, <100, <200 mu m) and total (unfractionated). We determined fecal pellet degradation rate and species composition of the plankton from triplicate incubations of each fraction and a known, added...... amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  19. Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS

    Degradation of Congo Red (CR) dye in aqueous solutions was investigated by means of photocatalysis of TiO2 which was hydrothermally synthesized at 200 deg. C in 2 h, in anatase phase with 8 nm crystallite size. Efficiency of TiO2 in photocatalytic degradation under visible irradiation was studied by investigating the effects of amount of TiO2, irradiation time, initial CR concentration and pH. It was found that complete decolorization is achieved within 30 min of irradiation. Effects of nitrate and sulphate ions and humic acid on the degradation were also tested. The results were compared with Degussa P-25 TiO2 at the same degradation conditions. Degradation products were detected using LC-MS technique. The probable pathways for the formation of degradation products were proposed

  20. [Stress and the kynurenine pathway].

    Majláth, Zsófia; Vécsei, László

    2015-08-30

    The kynurenine pathway is the main route of tryptophan degradation which gives rise to several neuroactive metabolites. Kynurenic acid is an endogenous antagonist of excitatory receptors, which proved to be neuroprotective in the preclinical settings. Kynurenines have been implicated in the neuroendocrine regulatory processes. Stress induces several alterations in the kynurenine metabolism and this process may contribute to the development of stress-related pathological processes. Irritable bowel disease and gastric ulcer are well-known disorders which are related to psychiatric comorbidity and stress. In experimental conditions kynurenic acid proved to be beneficial by reducing inflammatory processes and normalizing microcirculation in the bowel. Further investigations are needed to better understand the relations of stress and the kynurenines, with the aim of developing novel therapeutic tools for stress-related pathologies. PMID:26299831

  1. A comprehensive review of the process on hexachlorobenzene degradation

    Ji Xiyan

    2015-01-01

    Full Text Available This paper describes the chemical, physical property of the pollution source along with its perniciousness. In addition, with the recent treatment or degradation of the hexachlorobenzene (HCB, it talks about the research developments on the HCB. Of the many options available for treatment of municipal and industrial HCB pollution, the anaerobic biological treatment process is unique because of its potential for producing usable energy. It focuses on the biodegradation pathway which is intent to finish the steps of dechlorination. Moreover, the future study on the HCB degradation is prospected in this paper from the author’s angle.

  2. Ecosystems degradation on Romania’s Territory

    Giani GRĂDINARU

    2010-01-01

    The paper presents results of 20 developing econometric models on which were determined and analyzed ecosystem degradation rates in Romania: air quality degradation rates, soil quality degradation rates and biodiversity degradation rates.

  3. [Degradation and adsorption behavior of napropamide in soils].

    Guo, Hua; Zhu, Hong-mei; Yang, Hong

    2008-06-01

    Chromatography (HPLC and GC-MS) and spectroscopy (UV and FT-IR) methods were conducted to study the degradation and adsorption behavior of napropamide in soils. Influence factors of degradation, degradation products and adsorption mechanism were analyzed. The results showed that degradation rate of napropamide increased with enhancing temperature (15-35 degrees C) and organic matter content in soil was the most important factor which influenced the degradation half-life of napropamide in soil, and their relative coefficient (r) reached 0.9794. The degradation half-life of napropamide in sterilized soil was almost 3-fold of that in non-sterilized soil, and soil microorganisms were contributed to the degradation of napropamide. The probable degradation products were N-methyl-2-(1-naphthoxy)-propionamide and N-ethyl-2-(1-naphthoxy)-propionamide. The possible degradation pathways were dealkylation. Adsorption isoterms of napropamide on three soils such as Yellow-brown soil, Latersol and Black Soil could be described by Freundlich equation with the corresponding adsorption coefficient (Kf) of 1.29, 3.43 and 13.36, and the adsorption free energy (delta G) of napropamide on the three soils was less than 40 kJ x mol(-1) which largely resulted from the physical adsorption involving in hydrogen-bonding, hydrophobic bonding, coordination and van der waal force. Comparison to the FT-IR spectra of the three soils, the results certificated that the sorption capacity of three soils was Black Soil > Latersol > Yellow-brown Soil. PMID:18763531

  4. Caffeine degradation by Rhizopus delemar in packed bed column bioreactor using coffee husk as substrate Degradação de cafeína por Rhizopus delemar em biorreator de colunas usando casca de café como substrato

    Cristiane Vanessa Tagliari; Raquel K. Sanson; André Zanette; Telma Teixeira Franco; Carlos Ricardo Soccol

    2003-01-01

    Various microorganisms including bacteria, yeast and fungi can degrade caffeine. There are few publications about caffeine degradation pathway in filamentous fungi, mainly by solid-state fermentation (SSF). Studies were carried out on degradation of caffeine and their metabolites by filamentous fungi in SSF using coffee husk as substrate. The purpose of this work was to investigate the caffeine degradation pathway by Rhizopus delemar in packed bed column fermenter and to compare this degradat...

  5. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.

    Sahinkaya, Erkan; Dilek, Filiz B

    2007-08-01

    Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds. PMID:17091347

  6. Radiation degradation of cellulose

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  7. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques

    Dheeraj Kaushik

    2015-10-01

    Full Text Available Forced degradation study on doxorubicin (DOX was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH guidelines Q1(R2. It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I–O-IV in oxidative condition, and to single product (A-I in acid hydrolytic condition. These products were resolved on a C8 (150 mm×4.6 mm, 5 µm column with isocratic elution using mobile phase consisting of HCOONH4 (10 mM, pH 2.5, acetonitrile and methanol (65:15:20, v/v/v. Liquid chromatography–photodiode array (LC–PDA technique was used to ascertain the purity of the products noted in LC–UV chromatogram. For their characterization, a six stage mass fragmentation (MS6 pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography–time of flight mass spectrometry (LC–MS–TOF on degraded drug solutions. Based on it, O-I–O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed.

  8. Determinants of Swe1p Degradation in Saccharomyces cerevisiae

    McMillan, John N.; Theesfeld, Chandra L.; Harrison, Jacob C.; Bardes, Elaine S. G.; Lew, Daniel J.

    2002-01-01

    Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCFMet30 acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCFMet30) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist. PMID:12388757

  9. Sonolytic and sonophotolytic degradation of Carbamazepine: Kinetic and mechanisms.

    Rao, Yongfang; Yang, Haisong; Xue, Dan; Guo, Yang; Qi, Fei; Ma, Jun

    2016-09-01

    An in-depth investigation on the ultrasonic decomposition of Carbamazepine (CBZ), one of the most regularly identified drugs in the environment, was conducted. The effects of diverse variables were evaluated, such as frequency, power, solution pH, initial CBZ concentration and varied inorganic anions. Reaction order was determined on the basis of analyzing reaction kinetics of CBZ degradation. The sonophotolysis and photolysis of CBZ was also examined in this contribution. The influence of water composition on the sonolytic and sonophotolytic elimination of CBZ was analyzed. Additionally, 21 intermediates were identified during sonolytic degradation of CBZ based on LC/ESI-MS/MS analysis, among which two escaped from the detection in previous studies. Possible decay pathways were proposed accordingly. The epoxidation, cleavage of double bond, hydration, hydroxylation, ring contraction and intramolecular cyclization were believed to be involved in sonochemical degradation of CBZ. PMID:27150783

  10. Degradation and mineralization of chitin in an estuary

    A method for measuring microbial degradation and mineralization of radiolabeled native chitin is described. 14C-labeled chitin was synthesized in vivo by injecting shed blue crabs (Callinectes sapidus) with N-acetyl-D-[14C]-glucosamine, allowing for its incorporation into the exoskeleton. Rates of chitin degradation and mineralization in estuarine water and sediments were determined as functions of temperature, inoculum source, and oxygen condition. Significant differences in rates between temperature treatments were evident. Q10 values ranged from 1.2 to 2.5 for water and sediment, respectively. Increased incubation temperature also resulted in decreased lag times before onset of chitinoclastic bacterial growth and chitin degradation. The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other bacterial types. Actively growing chitinoclastic bacterial isolates produced primarily acetate, hydrogen, and carbon dioxide in broth culture

  11. Degradation kinetics and metabolites in continuous biodegradation of isoprene.

    Srivastva, Navnita; Singh, Ram S; Upadhyay, Siddh N; Dubey, Suresh K

    2016-04-01

    The kinetic parameters of isoprene biodegradation were studied in a bioreactor, comprising of bioscrubber and polyurethane foam packed biofilter in series and inoculated with Pseudomonas sp., using a Michaelis-Menten type model. The maximum elimination capacity, ECmax; substrate constant, Ks and ECmax/Ks values for bioscrubber were found to be 666.7gm(-3)h(-1), 9.86gm(-3) and 67.56h(-1), respectively while those for biofilter were 3333gm(-3)h(-1), 13.96gm(-3) and 238.7h(-1), respectively. The biofilter section exhibited better degradation efficiency compared to the bioscrubber unit. Around 62-75% of the feed isoprene got converted to carbon dioxide, indicating the efficient capability of bacteria to mineralize isoprene. The FTIR and GC-MS analyses of degradation products indicated oxidative cleavage of unsaturated bond of isoprene. These results were used for proposing a plausible degradation pathway for isoprene. PMID:26883059

  12. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.

    Zafra, German; Taylor, Todd D; Absalón, Angel E; Cortés-Espinosa, Diana V

    2016-11-15

    In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation. PMID:27484946

  13. Degradation of norgestrel by bacteria from activated sludge: comparison to progesterone.

    Liu, Shan; Ying, Guang-Guo; Liu, You-Sheng; Peng, Fu-Qiang; He, Liang-Ying

    2013-09-17

    Natural and synthetic progestagens in the environment have become a concern due to their adverse effects on aquatic organisms. Laboratory studies were performed to investigate aerobic biodegradation of norgestrel by bacteria from activated sludge in comparison with progesterone, and to identify their degradation products and biotransformation pathways. The degradation of norgestrel followed first order reaction kinetics (T1/2 = 12.5 d), while progesterone followed zero order reaction kinetics (T1/2 = 4.3 h). Four and eight degradation products were identified for norgestrel and progesterone, respectively. Six norgestrel-degrading bacterial strains (Enterobacter ludwigii, Aeromonas hydrophila subsp. dhakensis, Pseudomonas monteilii, Comamonas testosteroni, Exiguobacterium acetylicum, and Chryseobacterium indologenes) and one progesterone-degrading bacterial strain (Comamonas testosteroni) were successfully isolated from the enrichment culture inoculated with aerobic activated sludge. To our best knowledge, this is the first report on the biodegradation products and degrading bacteria for norgestrel under aerobic conditions. PMID:23952780

  14. Polycarbonate radiolytic degradation and stabilization

    Polycarbonate Durolon, useful for medical supplies fabrication, is submitted to gamma radiation for sterilization purposes. Scissions in main chain occur, in carbonyl groups, producing molecular degradations and yellowness. The radiolytic stabilization is obtained through additive to the polymer. In this work some degradation and stabilization aspects are presented. (L.C.J.A.). 7 refs, 7 figs, 2 tabs

  15. Proteolytic processing in the secretory pathway of Aspergillus niger

    Jalving, R.

    2005-01-01

    A number of filamentous fungi are saprophytes and they secrete a wide spectrum of enzymes to degrade their complex substrates. Many secreted proteins enter the secretory pathway as proproteins and need some form of proteolytic processing before they obtain their mature active state. As described in

  16. Degradation of polychlorinated biphenyls

    Polychlorinated biphenyls (PCB) are generally disposed of by incineration, an expensive and hazardous method. Moreover, in cases where the PCBs are a minor component of a nontoxic fluid, such as a dielectric fluid, incineration causes loss of the nontoxic fluid as well as the PCB. An alternative method for destroying PCBs is disclosed which is not only capable of detoxification of PCB-contaminated soils, sludges, and sediments, but can also remove PCBs from solution in a wide range of concentrations, permitting full recovery of the bulk of the solution free of PCBs. The process of the invention may be operated in a batch, continuous, or semicontinuous mode, and is advantageously used to detoxify organic liquids such as transformer oils. According to the invention, PCBs are chemically degraded by contact with a Lewis acid catalyst in a nonaqueous liquid medium, in the presence of a cation which combines with the chlorine on the PCB to form a solid chloride of the cation which will precipitate out from the liquid medium. Preferred Lewis acids are metal halides, particularly a combination of aluminum chloride and ferric chloride, and the preferred cation is potassium in the form of KOH. The Lewis acids may be supplied to the process by the adventitious corrosion of a vessel containing the PCB-contaminated matter. Experiments are described to illustrate the process of the invention. 3 figs

  17. Studies about behavior of microbial degradation of organic compounds

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na+ and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  18. Immunomodulatory Pathways and Metabolism

    Bhargava, Prerna

    2012-01-01

    Energy metabolism plays a vital role in normal physiology, adaptive responses and host defense mechanisms. Research throughout the last decade has shown evidence that immune pathways communicate with metabolic pathways to alter the metabolic status in response to physiological or pathological signals. In this thesis, I will explore how immunomodulatory molecules affect metabolic homeostasis and conversely, how metabolic sensing pathways modulate immune responses. The first part my work utiliz...

  19. Photocatalytic degradation of hexazinone and its determination in water via UPLC–MS/MS

    Highlights: ► Photocatalysis of nano-TiO2 is applied for degradation of hexazinone in water. ► Influences of various parameters for the photocatalytic degradation are studied. ► Small photocatalytic degradation by-products are identified ► Total and nontoxic degradation pathway is proposed. ► UPLC–MS/MS analysis method is developed. - Abstract: Degradation of hexazinone has been investigated by means of photocatalysis of mixed-phase crystal nano-TiO2. Influences of adsorption, amount of nano-TiO2, pH and irradiation time on the photocatalytic process are studied. Results show that hexazinone is totally degraded within 40 min of irradiation under pH neutral conditions. This compares favorably with Degussa P25 TiO2 when conducted under the same experimental conditions. Preliminary photocatalytic kinetic information for hexazinone degradation is proposed. First order kinetics is obtained for the adsorption and photocatalytic degradation reactions, which fit the Langmuir–Hinshelwood model. A rapid, sensitive and accurate UPLC–MS/MS technique is developed and utilized to determine the level of hexazinone in water in support of the degradation kinetics study. The results indicate a limit of detection (LOD) at 0.05 μg/l and the recoveries between 90.2 and 98.5% with relative standard deviations (RSD) lower than 12%. A LC–MS/MS technique is used to trace the degradation process. Complete degradation is achieved into final products including nontoxic water, carbon dioxide and urea. A probable pathway for the total photocatalytic degradation of hexazinone is proposed.

  20. Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO{sub 2} particles

    Zhang Yanlin, E-mail: zhangyl@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, J.W.C. [Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Liu Peihong [School of Chemistry and Environment, South China Normal University, Guangzhou (China); Yuan Min [Research Resources Center, South China Normal University, Guangzhou (China)

    2011-07-15

    Highlights: {yields} Degradation of phenanthrene in surfactant solution and the role of surfactant have been elucidated. {yields} Possible pathway of phenanthrene degradation in surfactant solution is proposed. {yields} The degradation of phenanthrene follows pseudo-second-order kinetics. {yields} It is proved that applying the surfactants as solubilizing agents to remove contaminants from soils followed by photocatalytic degradation is a promising strategy for soil remediation. - Abstract: Photocatalytic degradation of phenanthrene (PHE) over TiO{sub 2} in aqueous solution containing nonionic surfactant micelles was investigated. All photocatalytic experiments were conducted using a 253.7 nm mercury monochromatic ultraviolet lamp in a photocatalytic reactor. The surfactant micelles could provide a nonaqueous 'cage' to result in a higher degradation rate of PHE than in an aqueous solution, but the higher Triton X-100 concentration (more than 2 g/L) lowered the degradation ratio of PHE because the additional surfactant micelles hindered the movement of micelles containing PHE so as to reduce their adsorption onto titania. Pseudo-second-order kinetics was observed for the photocatalytic degradation of PHE. Alkaline solution environment was beneficial to the photocatalytic degradation of PHE. PHE degradation could mainly be attributed to the formation of hydroxyl radicals as evident from the comparison of degradation efficiencies when O{sub 2}, H{sub 2}O{sub 2} and tert-butyl alcohol (TBA) were applied as oxidants or hydroxyl radical scavenger. Based on the GC/MS analysis of the intermediates, the possible pathways of the photocatalytic degradation of PHE were proposed.