WorldWideScience

Sample records for 5-ht4 serotonin receptor

  1. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny;

    2007-01-01

    Current antidepressants are clinically effective only after several weeks of administration. Here, we show that serotonin(4) (5-HT(4)) agonists reduce immobility in the forced swimming test, displaying an antidepressant potential. Moreover, a 3 day regimen with such compounds modifies rat brain p...... intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action. Udgivelsesdato: 2007-Sep-6...

  2. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg−1·day−1, days 36-42), tegaserod (1 mg·kg−1·day−1, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level

  3. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    Olsen, Inge C; Kjekshus, John K; Torp-Pedersen, Christian;

    2009-01-01

    AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...... weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0...... of life, or exercise tolerance. Patients on piboserod reported more adverse events, but numbers were too small to identify specific safety issues. CONCLUSION: Although patients with chronic HF had a small but significant improvement in LVEF when treated with piboserod for 24 weeks, the result...

  4. Modulation by serotonin 5-HT(4) receptors of long-term potentiation and depotentiation in the dentate gyrus of freely moving rats.

    Kulla, Alexander; Manahan-Vaughan, Denise

    2002-02-01

    Tetanization-induced long-term potentiation (LTP) in the hippocampus can be depotentiated by low-frequency stimulation. 5-HT(4) receptors are expressed in the hippocampus and are suggested to be involved in hippocampus-dependent cognitive processes. Since the role of these receptors in the dentate gyrus has yet not been characterized, this study investigated the effects of 5-HT(4) receptors on basal synaptic transmission, LTP and depotentiation in the dentate gyrus of freely moving rats. Male Wistar rats were chronically implanted with a recording electrode in the dentate gyrus granule cell layer, a stimulation electrode in the medial perforant path and a cannula for drug administration in the ipsilateral ventricle. The 5-HT(4) agonist methoxytryptamine dose-dependently inhibited basal synaptic transmission and LTP. Priming of receptors by a dose of this agonist which elicited no significant change of basal synaptic transmission inhibited depotentiation. These effects could be prevented by the 5-HT(4) antagonist RS 39604, which did not produce independent effects on synaptic transmission, LTP or depotentiation. The effects of methoxytryptamine were confirmed with the highly selective 5-HT(4) agonist, RS 67333. These results strongly support a role for 5-HT(4) receptors in hippocampal synaptic plasticity and provide an important link to findings with regard to the involvement of 5-HT in processes related to learning and memory. PMID:11739263

  5. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus;

    2013-01-01

    the 5-HT4R binding in hippocampus in relation to memory acquisition and consolidation in healthy young volunteers. We found significant, negative associations between the immediate recall scores and left and right hippocampal BP(ND) , (p = 0.009 and p = 0.010 respectively) and between the right......The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes in...... hippocampal BP(ND) and delayed recall (p = 0.014). These findings provide evidence that the 5-HT(4) R is associated with memory functions in the human hippocampus and potentially pharmacological stimulation of the receptor may improve episodic memory. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc....

  6. Effects of the 5-HT(4) receptor agonist RS67333 and paroxetine on hippocampal extracellular 5-HT levels

    Licht, Cecilie Löe; Knudsen, Gitte Moos; Sharp, Trevor

    2010-01-01

    The 5-HT(4) receptor modulates activity of serotonergic neurons and is a new potential target for antidepressant treatment. This microdialysis study evaluated the effect of the 5-HT(4) receptor agonist, RS67333, on extracellular serotonin (5-hydroxytryptamine, 5-HT) and 5-HIAA levels in rat ventr...

  7. Inhibitory activity of antibodies against the human atrial 5-HT(4)receptor.

    Sallé, L; Eftekhari, P; Aupart, M; Cosnay, P; Hoebeke, J; Argibay, J A

    2001-03-01

    Antibodies directed against the second extracellular loop of G protein-coupled receptors have been shown to exert "agonist-like" activities. In order to test the hypothesis that this is a general phenomenon, antibodies were raised in rabbits against a synthetic peptide corresponding to the second extracellular loop of the newly sequenced human cardiac 5-HT(4)receptor. The antibodies were affinity-purified and shown to recognize the 5-HT(4)receptor in immunoblots of Chinese hamster ovary (CHO) cells expressing the receptor. The antibodies had no intrinsic effect but could depress the activation of L -type calcium channel induced by serotonin in human atrial cells. This antagonist-like effect was exerted both by intact IgG and by Fab fragments. These results are physiologically important since it has been shown that the 5-HT(4)receptor could be a target for autoantibodies in mothers at risk of giving birth to children with neonatal atrio-ventricular block. PMID:11181010

  8. The Cardiac Ventricular 5-HT4 Receptor Is Functional in Late Foetal Development and Is Reactivated in Heart Failure

    Brattelid, Trond; Qvigstad, Eirik; Moltzau, Lise R; Bekkevold, Silje V. S.; Sandnes, Dagny L; Birkeland, Jon Arne K.; Skomedal, Tor; Osnes, Jan-Bjørn; Sjaastad, Ivar; Levy, Finn Olav

    2012-01-01

    A positive inotropic responsiveness to serotonin, mediated by 5-HT4 and 5-HT2A receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness. Wistar rat hearts were collected day 3 and 1 before expe...

  9. Characterization of the 5-HT4 receptor mediating tachycardia in piglet isolated right atrium.

    Medhurst, A. D.; Kaumann, A J

    1993-01-01

    1. In order to explore whether 5-HT4 receptor subtypes exist, we have characterized further the 5-HT4 receptor that mediates tachycardia in the piglet isolated right atrium. All experiments were carried out in the presence of propranolol (400 nM) and cocaine (6 microM). We used tryptamine derivatives, substituted benzamides and benzimidazolone derivatives as pharmacological tools. 2. Tachycardia responses to 5-hydroxytryptamine (5-HT) were mimicked by other tryptamine derivatives with the fol...

  10. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley;

    2012-01-01

    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT kno......). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT4 receptor levels which are directly linked to alterations in 5-HT availability.......Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT...

  11. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established. PMID:18821249

  12. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    The 5-HT(4) receptor is a new potential target for antidepressant treatment and may be implicated in the pathogenesis of depression. This study investigated differences in 5-HT(4) receptor and 5-HT transporter (5-HTT) binding by quantitative autoradiography of [(3)H]SB207145 and (S)-[N-methyl-(3)...

  13. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen....... In comparison, GR(+/-) mice had increased 5-HT(4) receptor (11%) binding in the caudal caudate putamen and decreased 5-HTT binding in the frontal caudate putamen but no changes in dorsal and ventral hippocampus. Post hoc analysis showed increased 5-HT(4) receptor binding in the olfactory tubercles of GR...

  14. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth;

    2011-01-01

    study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  15. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers;

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiograph...

  16. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth; Keller, Sune H; Baaré, William F; Svarer, Claus; Hasselbalch, Steen G; Knudsen, Gitte M

    2011-01-01

    Experimental studies indicate that the 5-HT(4) receptor activation influence cognitive function, affective symptoms, and the development of Alzheimer's disease (AD). The prevalence of AD increases with aging, and women have a higher predisposition to both AD and affective disorders than men. This...... study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  17. Synergistic effect between 5-HT4 receptor agonist and phosphodiesterase 4-inhibitor in releasing acetylcholine in pig gastric circular muscle in vitro.

    Lefebvre, Romain A; Van Colen, Inge; Pauwelyn, Vicky; De Maeyer, Joris H

    2016-06-15

    5-HT4 receptor agonists have a gastroprokinetic effect by facilitating acetylcholine release from cholinergic nerves innervating gastrointestinal smooth muscle. The role of phosphodiesterase (PDE) 4 in the signal transduction pathway of the 5-HT4 receptors located on the cholinergic neurons towards the circular muscle layer in pig stomach was investigated by analysis of acetylcholine release. Circular muscle strips were prepared from pig proximal stomach and tritium outflow, induced by electrical field stimulation, was studied as a marker for acetylcholine release after incubation with [(3)H]-choline. The PDE4-inhibitor roflumilast concentration-dependently (0.1-1µM) enhanced the facilitating effect of a submaximally effective concentration of the 5-HT4 receptor agonist prucalopride (0.01µM) on electrically induced acetylcholine release. Roflumilast (0.3µM) enhanced acetylcholine release per se but in the combined presence of roflumilast and prucalopride, acetylcholine release was enhanced more than the sum of the effect of the 2 compounds alone. The 5-HT4 receptor agonist velusetrag concentration-dependently (0.01-0.1µM) enhanced acetylcholine release; the effect of the minimally effective concentration (0.01µM) was significantly enhanced by 1µM of the PDE4-inhibitor rolipram, again to a level higher than the sum of the effect of the 2 compounds alone. The synergistic effect between 5-HT4 receptor agonists and PDE4-inhibitors demonstrates that the intracellular pathway of the 5-HT4 receptors located on cholinergic neurons towards pig gastric circular muscle is controlled by PDE4. Combining a 5-HT4 receptor agonist with a PDE4-inhibitor might thus enhance its gastroprokinetic effect. PMID:27060014

  18. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  19. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease. PMID:26497809

  20. Mass dose effects and in vivo affinity in brain PET receptor studies — a study of cerebral 5-HT4 receptor binding with [11C]SB207145

    Attention to tracer dose principles is crucial in positron emission tomography (PET), and deviations can induce serious errors. In this study, we devise a method for determining receptor occupancy of the mass dose of the radioligand itself and the in vivo affinity. Methods: The approach was used for [11C]SB207145, a new PET radioligand for imaging the cerebral 5-HT4 receptors in humans. Test–retest PET studies with varying specific activities of [11C]SB207145 were conducted in seven healthy subjects, and the output parameter regional BPND was modeled. Individual occupancy plots were first computed to estimate the mass dose that saturates 50% of receptors (ID50), and subsequently, the maximal mass dose that can be injected (arbitrarily set at an occupancy D. Results: Increasing the mass dose resulted in a decrease in BPND, whilst the relative cerebellar uptake was unchanged. The ID50 was 85.4±30.2 μg, and the upper mass dose limit was 4.5±1.6 μg, which does not require ultrahigh specific activity. The estimated in vivo KD was 2.8 nM (range 1.0–4.8), without any regional differences. Conclusion: The presented method for estimating the upper mass dose limit is suggested as part of validation of PET radioligands.

  1. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer's disease.

    Yahiaoui, Samir; Hamidouche, Katia; Ballandonne, Céline; Davis, Audrey; de Oliveira Santos, Jana Sopkova; Freret, Thomas; Boulouard, Michel; Rochais, Christophe; Dallemagne, Patrick

    2016-10-01

    5-HT4 receptor (5-HT4R) activation and blockade of the 5-HT6 receptor (5-HT6R) are known to enhance the release of numerous neurotransmitters whose depletion is implicated in Alzheimer's disease (AD). Furthermore, 5-HT4R agonists seem to favor production of the neurotrophic soluble amyloid protein precursor alpha (sAPPα). Consequently, combining 5-HT4R agonist/5-HT6R antagonist activities in a single chemical compound would constitute a novel approach able to display both a symptomatic and disease-modifying effect in AD. Seventeen novel derivatives of RS67333 (1) were synthesized and evaluated as potential dual-target compounds. Among them, four agents showed nanomolar and submicromolar affinities toward 5-HT4R and 5-HT6R, respectively; one of them, 7m, was selected on the basis of its in vitro affinity (Ki5-HT4R = 5.3 nM, Ki5-HT6R = 219 nM) for further in vivo experiments, where 7m showed an antiamnesic effect in the mouse at 1 mg/kg ip. PMID:27266998

  2. Anxiolytic-like actions of the selective 5-HT4 receptor antagonists SB 204070A and SB 207266A in rats.

    Kennett, G A; Bright, F; Trail, B; Blackburn, T P; Sanger, G J

    1997-01-01

    The highly selective 5-HT4 receptor antagonists, SB 204070A (0.001-0.1 mg/kg s.c., 30 min pretest) and SB 207266A (0.01, 1 and 10 mg/kg p.o., 1 hr pre-test), increased time spent in social interaction without affecting locomotor activity, in a rat 15 min social interaction test under high light, unfamiliar conditions. At 1 and 10 mg/kg s.c., SB 204070A was no longer active. These results are consistent with the profile expected of anxiolytic treatments in this procedure. In a rat 5 min elevated x-maze test, SB 204070A (0.01 and 1 mg/kg s.c., 30 min pre-test) significantly increased the percentage of time spent on the open arms. SB 204070A (0.01 mg/kg s.c.) and SB 207266A (1 mg/kg p.o., 1 hr pre-test) also increased percentage entries to the open arms. Neither compound affected locomotion at any dose tested in the procedure. The effects of both compounds in this procedure are also consistent with anxiolysis. Neither SB 204070A (0.1 or 1 mg/kg s.c., 30 min pre-test) nor SB 207266A (0.1 or 1 mg/kg p.o., 1 hr pre-test) affected either unpunished or punished responding, in a rat Geller-Seifter conflict model of anxiety. The maximal efficacy of both SB 204070A and SB 207266A in the rat social interaction test was similar to that of the benzodiazepine anxiolytic chlordiazepoxide (5 mg/kg s.c. or p.o.) used as a positive control, but was considerably less in the elevated x-maze procedure. The results suggest that 5-HT4 receptor antagonists may have modest anxiolytic-like actions in rats. PMID:9225297

  3. Synthesis and SAR of Imidazo[1,5-a]pyridine derivatives as 5-HT4 receptor partial agonists for the treatment of cognitive disorders associated with Alzheimer's disease.

    Nirogi, Ramakrishna; Mohammed, Abdul Rasheed; Shinde, Anil K; Bogaraju, Narsimha; Gagginapalli, Shankar Reddy; Ravella, Srinivasa Rao; Kota, Laxman; Bhyrapuneni, Gopinadh; Muddana, Nageswara Rao; Benade, Vijay; Palacharla, Raghava Chowdary; Jayarajan, Pradeep; Subramanian, Ramkumar; Goyal, Vinod Kumar

    2015-10-20

    Alzheimer's disease (AD) is a neurodegenerative disease which has a higher prevalence and incidence in older people. The need for improved AD therapies is unmet. The 5-hydroxytryptamine4 receptor (5-HT4R) partial agonists may be of benefit for both the symptomatic and disease-modifying treatment of cognitive disorders associated with AD. Herein, we report the design, synthesis and SAR of imidazo[1,5-a] pyridine derivatives as 5-HT4R partial agonists. The focused SAR, optimization of ADME properties resulted the discovery of compound 5a as potent, selective, brain penetrant 5-HT4 partial agonist as a lead compound with good ADME properties and efficacy in both symptomatic and disease modifying animal models of cognition. PMID:26363507

  4. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia; Knudsen, Gitte M

    2011-01-01

    CPA caused average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A...

  5. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.;

    2012-01-01

    The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved in...... food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association...... between body mass index and the 5-HT4R density bilaterally in the two reward ‘hot spots’ nucleus accumbens and ventral pallidum, and additionally in the left hippocampal region and orbitofrontal cortex.These findings suggest that the 5-HT4R is critically involved in reward circuits that regulate people...

  6. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete;

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of...... hypothalamic-pituitary-adrenal (HPA)-axis output dynamics. Here, we investigated in healthy individuals if cerebral serotonin 4 receptor (5-HT4r) binding, reported to be a proxy for serotonin levels, is associated with CAR. Thirty healthy volunteers (25 males, age range 20-56 years) underwent 5-HT4r PET...

  7. The Serotonin-6 Receptor as a Novel Therapeutic Target

    Yun, Hyung-Mun; Rhim, Hyewhon

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that is found in both the central and peripheral nervous systems. 5-HT mediates its diverse physiological responses through 7 different 5-HT receptor families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors. Among them, the 5-HT6 receptor (5-HT6R) is the most recently cloned serotonin receptor and plays important roles in the central nervous system (CNS) and in the etiology of neurological diseases. Compared...

  8. Serotonin receptor modulators in the treatment of irritable bowel syndrome

    Mohammad Fayyaz

    2008-03-01

    Full Text Available Mohammad Fayyaz, Jeffrey M LacknerDivision of Gastroenterology, Department of Medicine, University at Buffalo School of Medicine, SUNY, Buffalo, NY, USAAbstract: The aim of this article is to review the pathophysiology and clinical role of serotonin receptor modulators used in the treatment of irritable bowel syndrome. Serotonin is an important monoamine neurotransmitter that plays a key role in the initiation of peristaltic and secretory reflexes, and in modulation of visceral sensations. Several serotonin receptor subtypes have been characterized, of which 5HT3, 5HT4, and 5HT1b are the most important for GI function. 5HT4 agonists (eg, tegaserod potentiate peristalsis initiated by 5HT1 receptor stimulation. 5HT4 agonists are therefore useful in constipation predominant form of IBS and in chronic constipation. 5HT3 antagonists (Alosetron and Cilansetron prevent the activation of 5HT3 receptors on extrinsic afferent neurons and can decrease the visceral pain associated with IBS. These agents also retard small intestinal and colonic transit, and are therefore useful in diarrhea-predominant IBS. Tegaserod has been demonstrated in several randomized, placebo controlled trials to relieve global IBS symptoms as well as individual symptoms of abdominal discomfort, number of bowel movements and stool consistency. Several randomized, controlled trials have shown that alosetron relieves pain, improves bowel function, and provides global symptom improvement in women with diarrhea-predominant irritable bowel syndrome. However, ischemic colitis and severe complications of constipation have been major concerns leading to voluntary withdrawal of Alosetron from the market followed by remarketing with a comprehensive risk management program.Keywords: serotonin, irritable bowel syndrome, tegaserod

  9. Expression of serotonin receptors in human lower esophageal sphincter

    LI, HE-FEI; Liu, Jun-feng; Zhang, Ke; Feng, Yong

    2014-01-01

    Serotonin (5-HT) is a neurotransmitter and vasoactive amine that is involved in the regulation of a large number of physiological functions. The wide variety of 5-HT-mediated functions is due to the existence of different classes of serotonergic receptors in the mammalian gastrointestinal tract and nervous system. The aim of this study was to explore the expression of multiple types of 5-HT receptor (5-HT1AR, 5-HT2AR, 5-HT3AR, 5-HT4R, 5-HT5AR, 5-HT6R and 5-HT7R) in sling and clasp fibers from...

  10. Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat.

    Guillaume Lucas

    Full Text Available BACKGROUND: We have recently reported that serotonin(4 (5-HT(4 receptor agonists have a promising potential as fast-acting antidepressants. Here, we assess the extent to which this property may be optimized by the concomitant use of conventional antidepressants. METHODOLOGY/PRINCIPAL FINDINGS: We found that, in acute conditions, the 5-HT(4 agonist prucalopride was able to counteract the inhibitory effect of the selective serotonin reuptake inhibitors (SSRI fluvoxamine and citalopram on 5-HT neuron impulse flow, in Dorsal Raphé Nucleus (DRN cells selected for their high (>1.8 Hz basal discharge. The co-administration of both prucalopride and RS 67333 with citalopram for 3 days elicited an enhancement of DRN 5-HT neuron average firing rate, very similar to what was observed with either 5-HT(4 agonist alone. At the postsynaptic level, this translated into the manifestation of a tonus on hippocampal postsynaptic 5-HT(1A receptors, that was two to three times stronger when the 5-HT(4 agonist was combined with citalopram. Similarly, co-administration of citalopram synergistically potentiated the enhancing effect of RS 67333 on CREB protein phosphorylation within the hippocampus. Finally, in the Forced Swimming Test, the combination of RS 67333 with various SSRIs (fluvoxamine, citalopram and fluoxetine was more effective to reduce time of immobility than the separate administration of each compound. CONCLUSIONS/SIGNIFICANCE: These findings strongly suggest that the adjunction of an SSRI to a 5-HT(4 agonist may help to optimize the fast-acting antidepressant efficacy of the latter.

  11. Serotonin Receptors in Hippocampus

    Laura Cristina Berumen; Angelina Rodríguez; Ricardo Miledi; Guadalupe García-Alcocer

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a fu...

  12. Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation in vivo.

    Hotta, Ryo; Cheng, Lily S; Graham, Hannah K; Nagy, Nandor; Belkind-Gerson, Jaime; Mattheolabakis, George; Amiji, Mansoor M; Goldstein, Allan M

    2016-05-01

    Cell therapy offers an innovative approach for treating enteric neuropathies. Postnatal gut-derived enteric neural stem/progenitor cells (ENSCs) represent a potential autologous source, but have a limited capacity for proliferation and neuronal differentiation. Since serotonin (5-HT) promotes enteric neuronal growth during embryonic development, we hypothesized that serotonin receptor agonism would augment growth of neurons from transplanted ENSCs. Postnatal ENSCs were isolated from 2 to 4 week-old mouse colon and cultured with 5-HT4 receptor agonist (RS67506)-loaded liposomal nanoparticles. ENSCs were co-cultured with mouse colon explants in the presence of RS67506-loaded (n = 3) or empty nanoparticles (n = 3). ENSCs were also transplanted into mouse rectum in vivo with RS67506-loaded (n = 8) or blank nanoparticles (n = 4) confined in a thermosensitive hydrogel, Pluronic F-127. Neuronal density and proliferation were analyzed immunohistochemically. Cultured ENSCs gave rise to significantly more neurons in the presence of RS67506-loaded nanoparticles. Similarly, colon explants had significantly increased neuronal density when RS67506-loaded nanoparticles were present. Finally, following in vivo cell delivery, co-transplantation of ENSCs with 5-HT4 receptor agonist-loaded nanoparticles led to significantly increased neuronal density and proliferation. We conclude that optimization of postnatal ENSCs can support their use in cell-based therapies for neurointestinal diseases. PMID:26922325

  13. Synthesis and evaluation of novel serotonin 4 receptor radiotracers for single photon emission computed tomography.

    Lalut, Julien; Tournier, Benjamin B; Cailly, Thomas; Lecoutey, Cédric; Corvaisier, Sophie; Davis, Audrey; Ballandonne, Céline; Since, Marc; Millet, Philippe; Fabis, Frédéric; Dallemagne, Patrick; Rochais, Christophe

    2016-06-30

    Despite its implication in several physiological and pathological processes the serotonin subtype-4 receptor (5-HT4R) has seen limited effort for the development of radiolabeling agent especially concerning single photon emission computed tomography (SPECT). Bearing an ester function, the available ligands are rapidly susceptible to hydrolysis which limits their use in vivo. In this study the synthesis of iodinated benzamide and ketone analogs were described. Their affinity for the 5-HT4R and their lipophilicity were evaluated and the most promising derivatives were evaluated ex vivo for their binding to the receptor and for their ability to displace the reference ligand [(125)I]-SB207710. PMID:27060761

  14. Serotonin receptors as cardiovascular targets

    Villalón, Carlos; De Vries, Peter; Saxena, Pramod Ranjan

    1997-01-01

    textabstractSerotonin exerts complex effects in the cardiovascular system, including hypotension or hypertension, vasodilatation or vasoconstriction, and/or bradycardia or tachycardia; the eventual response depends primarily on the nature of the 5-HT receptors involved. In the light of current 5-HT receptor classification, the authors reanalyse the cardiovascular responses mediated by 5-HT receptors and discuss the established and potential therapeutic applications of 5-HT ligands in the trea...

  15. Serotonin receptors as cardiovascular targets

    C.M. Villalón (Carlos); P.A.M. de Vries (Peter); P.R. Saxena (Pramod Ranjan)

    1997-01-01

    textabstractSerotonin exerts complex effects in the cardiovascular system, including hypotension or hypertension, vasodilatation or vasoconstriction, and/or bradycardia or tachycardia; the eventual response depends primarily on the nature of the 5-HT receptors involved. In the light of current 5-HT

  16. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer's disease

    Madsen, Karine; Neumann, Wolf-Julian; Holst, Klaus Kähler;

    2011-01-01

    The 5-HT4 receptor may play a role in memory and learning and 5-HT4 receptor activation has been suggested to modulate acetylcholine release and to reduce amyloid-ß (Aß) accumulation. The aim of this study was for the first time to investigate the in vivo cerebral 5-HT4 receptor binding in early...... Alzheimer disease (AD) patients in relation to cortical Aß burden. Eleven newly diagnosed untreated AD patients (mean MMSE 24, range 19–27) and twelve age- and gender-matched healthy controls underwent a two-hour dynamic [11C]SB207145 PET scan to measure the binding potential of the 5-HT4 receptor. All AD...

  17. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald;

    2016-01-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels...... BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low...... of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145 for...

  18. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    Full text: Having shown changed 5HT2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [3H]8OH-DPAT (1 nM) binding (5HT1A receptors) and [3H]GR113808 (2.4nM) binding (5HT4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [3H]muscimol (100 nM) binding (GABAA receptors), [3H]TCP (20nM) binding (NMDA receptors), [3H]SCH 23390 (3nM) binding (DA D1like receptors) and [3H]YM-09151-2 (4nM) binding (DA D2-like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABAA receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society

  19. Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT4 agonist – tegaserod

    Shaffer Eldon

    2006-02-01

    Full Text Available Abstract Background Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT4 receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. Methods The effects of a high cholesterol (1% diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX. Two groups of animals, fed either low (0.03% or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. Results The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod

  20. Structure and Function of Serotonin G protein Coupled Receptors

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a...

  1. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  2. Expression of serotonin receptor genes in cranial ganglia.

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  3. The serotonin 5-HT7 receptors: two decades of research.

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking. PMID:24042216

  4. Whole-body biodistribution and dosimetry estimates of a novel radiotracer for imaging of serotonin 4 receptors in brain: [18F]MNI-698

    Introduction: A new radiotracer for imaging the serotonin 4 receptors (5-HT4) in brain, [18F]MNI-698, was recently developed by our group. Evaluation in nonhuman primates indicates the novel radiotracer holds promise as an imaging agent of 5-HT4 in brain. This paper aims to describe the whole-body biodistribution and dosimetry estimates of [18F]MNI-698. Methods: Whole-body positron emission tomography (PET) images were acquired over 240 minutes after intravenous bolus injection of [18F]MNI-698 in adult rhesus monkeys. Different models were investigated for quantification of radiation absorbed and effective doses using OLINDA/EXM 1.0 software. Results: The radiotracer main elimination route was found to be urinary and the critical organ was the urinary bladder. Modeling of the urinary bladder voiding interval had a considerable effect on the estimated effective dose. Normalization of rhesus monkeys’ organs and whole-body masses to human equivalent reduced the calculated dosimetry values. The effective dose ranged between 0.017 and 0.027 mSv/MBq. Conclusion: The dosimetry estimates, obtained when normalizing organ and whole-body weights and applying the urinary bladder model, indicate that the radiation doses from [18F]MNI-698 comply with limits and guidelines recommended by key regulatory authorities that govern the translation of radiotracers to human clinical trials. The timing of urinary bladder emptying should be considered when designing future clinical protocols with [18F]MNI-698, in order to minimize the subject absorbed doses

  5. Structure and function of serotonin G protein-coupled receptors.

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  6. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia; Knudsen, Gitte M

    2011-01-01

    CPA caused average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT₄ receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A...

  7. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  8. Dual role of endogenous serotonin in 2,4,6-trinitrobenzene sulfonic acid-induced colitis

    Alberto eRapalli

    2016-03-01

    Full Text Available Background and Aims: Changes in gut serotonin content have been described in Inflammatory Bowel Disease and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous serotonin through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of Inflammatory Bowel Disease. Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135, 5-HT2A (Ketanserin, 5-HT3 (Ondansetron, 5-HT4 (GR125487, 5-HT7 (SB269970 receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylaminotetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4 and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it.Conclusions: The prevailing deleterious contribution given by endogenous serotonin to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders.

  9. Structural Basis for Molecular Recognition at Serotonin Receptors

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Gao, Xiang; Zhou, Edward X.; Melcher, Karsten; Zhang, Chenghai

    2013-01-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist anti-migraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserv...

  10. 四磨汤对慢传输结肠五羟色胺兴奋性受体的干预研究%Effect of Simo Decoction on the Expressions of Excitatory Receptors of Serotonin in Slow Transit Colon

    廖秀军; 茅伟明; 武文静; 邓群; 杨关根

    2013-01-01

    Objective:To study the effect of Simo Decoction on the expression of excitatory receptors of serotonin in slow transit colon. Method: The animal model with slow transit colon was made by SD rats from gavage with rheum offici-nale. 36 SD rats with slow transit colon were divided into 3 groups: control group, treatment group with high dosage Simo decoction and treatment group with low dosage Simo Decoction. The control group were given distilled water,the treatment group were given Simo decoction. 2 weeks later,the promote rate of carbon powder was measured and the colon specimen was obtained. 5 - HT3 and 5 - HT4 receptors mRNA and protein expression were detected by real - time PCR and immu-nohistochemistry,differently. Result;The promote rate of carbon powder of the two treatment groups were higher than that of the control group (P <0. 05) . The ct value of 5 - HT3 and 5 - HT4 receptors mRNA of the two treatment groups were higher than those in the control group( P < 0.05 ). The gray values of 5 - HT3 and 5 - HT4 receptors protein of the two treatment groups were higher than those in the control group(P <0. 05). There was on significant difference of the 5 -HT3 and 5 - HT4 receptors expression between treatment group with high dosage Simo Decoction and treatment group with low dosage. Conclusion: Simo decoction can increase the expressions of 5 - HT3 and 5 - HT4 receptors. It seems that Simo Decoction can improve the motive power of colon from upregulating the excitatory receptors of serotonin.%目的:研究四磨汤对慢传输结肠5-HT信号系统兴奋性受体5-HT3、4的影响,探索理气中药改善结肠动力的作用机制.方法:选取SD大鼠,采用大黄灌胃法制造结肠慢传输型便秘模型,造模成功后,将36只大鼠再随机分为3组,一组为对照组灌蒸馏水,另两组为四磨汤干预高剂量组和低剂量组.中药干预组灌服四磨汤,连续灌服2周后处死,测炭末推进率,取出标本.Realtime-PCR检测5-HT3、4

  11. Structural basis for molecular recognition at serotonin receptors.

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs. PMID:23519210

  12. Radiohalogenated amphetamine analogs for blood flow and serotonin receptor studies

    The 4-radiohalo-2,5-dimethoxyamphetamine hallucinogens were first utilized in the 1970's for cerebral imaging studies by T. Sargent and A.T. Shulgin. Subsequently, other radioiodinated amphetamine analogs and distantly related diamines have been synthesized and used for clinical single photon studies of cerebral blood flow. A generator system for the production of the short-lived positron emitter 122I (3.5 min half-life) was developed, and several amphetamine and diamine compounds have been labeled with 122I for positron emission tomography (PET) studies of regional cerebral blood flow in animals and humans. The short half-life of 122I requires that the radiochemical syntheses be rapid and efficient. Both electrophilic deprotonation and demetallation reactions have been utilized to achieve this goal. Recently, there has been considerable evidence that some 4-halo-2,5-dimethoxyamphetamine analogs are highly specific serotonin receptor agonists. This has lead to the speculation that the binding of these agonists to a serotonin 5-HT2 receptor sub-type may be involved in hallucinogenesis. In an effort to help elucidate the role of these agents, several radioiodinated and radiobrominated 4-halo-2,5-dimethoxyamphetamine analogs have been synthesized for in vitro binding studies. Studies examining the in vivo interaction of these analogs with serotonin 5-HT2 receptors have been initiated with the synthesis of 4-(18F)fluoroalkyl-2,5-dimethoxyamphetamines

  13. Functional Significance of Serotonin Receptor Dimerization

    Herrick-Davis, Katharine

    2013-01-01

    The original model of G protein activation by a single G-protein-coupled receptor (GPCR) is giving way to a new model wherein two protomers of a GPCR dimer interact with a single G protein. This article will review the evidence suggesting that 5-HT receptors form dimers/oligomers and will compare the findings with results obtained from studies with other biogenic amine receptors. Topics to be covered include the origin or biogenesis of dimer formation, potential dimer interface(s), and oligomer size (dimer versus tetramer or higher order). The functional significance will be discussed in terms of G-protein activation following ligand binding to one or two protomers in a dimeric structure, the formation of heterodimers and the development of bivalent ligands. PMID:23811735

  14. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K;

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  15. Studies on central nervous system serotonin receptors in mood disorders.

    Young, A; Goodwin, G M

    1991-01-01

    The evidence from studies of central nervous system serotonin (5-HT) receptors is reviewed and the role of these in the pathogenesis of mood disorders is discussed. Clinical evidence indicates that 5-HT function is abnormal in mood disorders. 5-HT precursors and selective inhibitors of 5-HT uptake are effective antidepressives and inhibition of 5-HT synthesis can block the action of antidepressives. Studies of 5-HT in experimental animals after chronic administration of antidepressive treatments suggest that intact 5-HT neurons are necessary for the action of these treatments. Multiple 5-HT receptor subtypes have recently been identified and the effects of chronic antidepressive treatment on some receptor subtypes function in experimental animals have been established. The increasing availability of powerful new in vivo imaging techniques like single photon emission tomography (SPET), and positron emission tomography (PET) may make possible a more direct examination of 5-HT receptor function in patients suffering from mood disorders. PMID:2029163

  16. 5-HT2A : a serotonin receptor with a possible role in joint diseases

    Kling, Anders

    2013-01-01

    Background Serotonin (5-HT), an amino acid derivative and neurotransmitter, has for long been studied in relation to inflammation. It is an endogenous ligand for several different types of serotonin receptors. The serotonin receptor 5-HT2A has been reported to have a role in the pathophysiology of arthritis in animal experiment models. However, no studies into this subject have been reported in man. Objective The objectives of this project were firstly, to examine possible associations for th...

  17. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W. G. M.; Kettenmann, Helmut

    2012-01-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disea

  18. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  19. Heterologously expressed serotonin 1A receptors couple to muscarinic K+ channels in heart

    Karschin, A; Ho, B Y; Labarca, C; Elroy-Stein, O; Moss, B; Davidson, N.; Lester, H A

    1991-01-01

    In cardiac atrial cells, muscarinic acetylcholine receptors activate a K+ current directly via a guanine nucleotide-binding protein (G protein). Serotonin type 1A receptors may activate a similar pathway in hippocampal neurons. To develop a system in which receptor/G protein/K+ channel coupling can be experimentally manipulated, we have used a highly efficient recombinant vaccinia virus vector system to express human serotonin 1A receptors in primary cultures of rat atrial myocytes. The expre...

  20. Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist.

    Dwyer, D; Browning, J

    2000-11-01

    There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 +/- 729 to 6640 +/- 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 +/- 69-712 +/- 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance. PMID:11167306

  1. Serotonin2C receptors and drug addiction: focus on cocaine.

    Devroye, Céline; Filip, Malgorzata; Przegaliński, Edmund; McCreary, Andrew C; Spampinato, Umberto

    2013-10-01

    This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human. PMID:23748692

  2. Serotonin 2a Receptor and serotonin 1a receptor interact within the medial prefrontal cortex during recognition memory in mice

    Juan Facundo Morici

    2015-12-01

    Full Text Available Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a -/- with wild type (htr2a+/+ littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

  3. Action of serotonin in the medial prefrontal cortex: mediation by serotonin3-like receptors.

    Ashby, C R; Edwards, E; Wang, R Y

    1992-01-01

    In the present study, we investigated the effects of various serotonin (5-HT) antagonists on 5-HT's action on medial prefrontal cortical cells (mPFc) using the techniques of single cell recording and microiontophoresis. The microiontophoretic application of 5-HT (10-80 nA) produced a current-dependent suppression of mPFc cell firing and this effect was blocked by the selective 5-HT3 receptor antagonists (+/-)-zacopride, ICS 205930 and granisetron at currents of 5-20 nA. Furthermore, the intravenous (i.v.) administration of (+/-)-zacopride (5-50 micrograms/kg) markedly attenuates the suppressive action of 5-HT on mPFc cell firing. In contrast, the microiontophoresis of 5-HT1 and 5-HT2 receptor antagonists such as (+/-)-pindolol, spiperone, metergoline, and ritanserin (10-20 nA) failed to block 5-HT's effect. In fact, in some cells, spiperone and ritanserin potentiated 5-HT's action and prolonged neuronal recovery. In addition, the intravenous administration of either ritanserin (5-2,000 micrograms/kg) or metergoline (4-2,400 micrograms/kg) failed to alter 5-HT's action. The electrical stimulation of the caudal linear raphe nucleus (CLi) suppressed the spontaneous activity of 83% of the mPFc cells tested by 45 +/- 2%. This suppression was significantly attenuated by the iontophoresis of granisetron (2.5-5 nA) but not by the 5-HT2 and 5-HT1C receptor antagonist ritanserin or the relatively selective 5-HT2 receptor antagonist (+)-MDL 11,939 (10-40 nA). However, the i.v. administration of ritanserin (0.5-1.5 mg/kg) or S-zacopride (0.1 mg/kg) significantly blocked the suppression of mPFc cell firing produced by CLi stimulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1536032

  4. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  5. Studies on the development of 99mTc labelled serotonin receptor avid molecules

    Among the central nervous system (CNS) receptors, serotonin is reported to be very important with respect to the study of brain disorders. Hence this work focuses on serotonin. A summary of the studies that were carried out is given. These include: (a) standardization of the method of serotonin receptor preparation from rat brains and development of a radioreceptor assay using radio-iodinated serotonin, (b) standardization of the method of radio-iodination of serotonin using a tyrosylmethyl ester derivative of serotonin and the preparation of 14C labelled serotonin, (c) synthesis of the SNS tridentate ligand (following the procedure developed by the Democritos National Centre of Scientific Research (NCSR), Athens) and evaluation of a 99mTc complex formed with the tridentate SNS ligand and thiocresol for use as a CNS receptor imaging agent and (d) evaluation of the 99mTc complex formed with a SNS piperazine based tridentate ligand and a monodentate co-ligand (thiophenol obtained from NCSR). This limited study on brain uptake of the complex in rats showed that more structural modification of the ligand is required for preparation of a complex suitable for CNS receptor imaging. Also included is a design for synthesis of a novel complex based on the reported information on the 5-iodo-2-[(2-dimethyl)aminomethylphynoxy]benzyl alcohol compound, which is reported to have a binding affinity for serotonin re-uptake sites. (author)

  6. Expression of serotonin, chromogranin-A, serotonin receptor-2B, tryptophan hydroxylase-1, and serotonin reuptake transporter in the intestine of dogs with chronic enteropathy.

    Bailey, Candice; Ruaux, Craig; Stang, Bernadette V; Valentine, Beth A

    2016-05-01

    Serotonin regulates many intestinal motor and sensory functions. Altered serotonergic metabolism has been described in human gastrointestinal diseases. The objective of our study was to compare expression of several components of the serotonergic system [serotonin (5-HT), serotonin reuptake transporter protein (SERT), tryptophan hydroxylase-1 (TPH-1), 5-HT receptor2B (5-HT2B)] and the enterochromaffin cell marker chromogranin-A (CgA) in the intestinal mucosa between dogs with chronic enteropathy and healthy controls. Serotonin and CgA expression were determined by immunohistochemistry using banked and prospectively obtained, paraffin-embedded canine gastrointestinal biopsies (n = 11), and compared to a control group of canine small intestinal sections (n = 10). Expression of SERT, TPH-1, and 5-HT2B were determined via real-time reverse transcription (qRT)-PCR using prospectively collected endoscopic duodenal biopsies (n = 10) and compared to an additional control group of control duodenal biopsies (n = 8, control group 2) showing no evidence of intestinal inflammation. Dogs with chronic enteropathies showed strong staining for both 5-HT and CgA. Mean positive cells per high power field (HPF) were significantly increased for both compounds in dogs with chronic enteropathies (p system show altered expression in the intestinal mucosa of dogs with chronic enteropathy. These changes may contribute to nociception and clinical signs in these patients. PMID:27026108

  7. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.;

    2011-01-01

    assess the differential effects of MDMA and hallucinogen use on cerebral serotonin transporter (SERT) and serotonin(2A) receptor binding.Design: A positron emission tomography study of 24 young adult drug users and 21 nonusing control participants performed with carbon 11 (C-11)-labeled 3-amino-4-[2-[(di(methyl...

  8. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell; Hietala, Jarmo

    2015-01-01

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy...... subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples and...... radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals with...

  9. Serotonin (2C) receptor regulation of cocaine-induced conditioned place preference and locomotor sensitization

    Craige, Caryne P.; Unterwald, Ellen M.

    2012-01-01

    Previous studies have identified an inhibitory regulatory role of the 5-HT2C receptor in serotonin and dopamine neurotransmission. As cocaine is known to enhance serotonin and dopamine transmission, the ability of 5-HT2C receptors to modulate cocaine-induced behaviors was investigated. Alterations in cocaine reward behavior were assessed in the conditioned place preference (CPP) paradigm. Mice were injected with a selective 5-HT2C receptor agonist, Ro 60-0175 (0, 1, 3, 10 mg/kg, i.p.) prior t...

  10. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; Zhang, X.-W.; Hashimoto, J; WIREN, K.; C. Chenu

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistr...

  11. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    Passchier, Jan; van Waarde, A

    2001-01-01

    The 5-HT1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic beha

  12. Serotonin2A receptor blockade and clinical effect in first-episode schizophrenia patients treated with quetiapine

    Rasmussen, Hans; Ebdrup, Bjorn H; Erritzoe, David; Aggernaes, Bodil; Oranje, Bob; Kalbitzer, Jan Gustav Martin; Pinborg, Lars H; Baaré, William F C; Svarer, Claus; Lublin, Henrik; Knudsen, Gitte Moos; Glenthøj, Birte Yding

    2011-01-01

    -episode antipsychotic-naïve schizophrenia patients have reported on the relationship between serotonin2A receptor occupancy and treatment effect after sustained treatment with a specific atypical antipsychotic compound. OBJECTIVES: Here, we measured serotonin2A receptor occupancy with [(18)F]altanserin PET in 15 first......-episode antipsychotic-naïve schizophrenia patients before and after 6 months of quetiapine treatment. Moreover, we investigated possible relationships between clinical efficacy, oral dose, and plasma levels of quetiapine RESULTS: Significant nonlinear relationships were found between serotonin2A receptor occupancy...... whereas no additional serotonin2A receptor associated treatment effect was obtained above a receptor occupancy of 70%. CONCLUSIONS: Taken together, the data point to a therapeutic role of the serotonin2A receptor in the treatment of subgroups of patients with schizophrenia. Specifically, the study...

  13. Evaluation of the serotonin receptor blockers ketanserin and methiothepin on the pulmonary hypertensive responses of broilers to intravenously infused serotonin.

    Chapman, M E; Wideman, R F

    2006-04-01

    The pathogenesis of pulmonary hypertension remains incompletely understood. Many factors have been implicated; however, there has been great interest in the potent pulmonary vasoconstrictor serotonin (5-HT) due to episodes of primary pulmonary hypertension in humans triggered by serotoninergic appetite-suppressant drugs. Pulmonary hypertensive patients have elevated blood 5-HT levels and pulmonary vasoconstriction induced by 5-HT is believed to be mediated through 5-HT1B/1D and 5-HT2A receptors that are expressed by pulmonary smooth muscle cells. The vascular remodeling associated with pulmonary hypertension also appears to require the serotonin transporter. We investigated the roles of 5-HT receptor blockers on the development of pulmonary hypertension induced by infusing 5-HT i.v. in broilers. For this purpose, we treated broilers with the selective 5-HT2A receptor antagonist ketanserin (5 mg/ kg of BW) or with the nonselective 5-HT1/2 receptor antagonist methiothepin (3 mg/kg of BW). Receptor blockade was followed by infusion of 5-HT while recording pulmonary arterial pressure and pulmonary arterial blood flow. The results demonstrate that methiothepin, but not ketanserin, eliminated the 5-HT-induced pulmonary hypertensive responses in broilers. The 5-HT2A receptor does not, therefore, appear to play a role in the 5-HT-induced pulmonary hypertensive responses in broilers. Methiothepin did not inhibit pulmonary vascular contractility per se, because the pulmonary hypertensive response to the thromboxane A2 mimetic U44069 remained intact in methiothepin-treated broilers. Methiothepin will be a useful tool for evaluating the role of 5-HT in the pathogenesis of pulmonary hypertension syndrome (ascites) as well as the onset of pulmonary hypertension triggered by inflammatory stimuli such as bacterial lipolysaccharide. PMID:16615363

  14. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    Nakayama H

    2014-02-01

    Full Text Available Hiroto Nakayama,1,* Sumiyo Umeda,2,* Masashi Nibuya,3 Takeshi Terao,4 Koichi Nisijima,5 Soichiro Nomura3 1Yamaguchi Prefecture Mental Health Medical Center, Yamaguchi, Japan; 2Department of Psychiatry, NTT West Osaka Hospital, Osaka, Japan; 3Department of Psychiatry, National Defense Medical College, Saitama, Japan; 4Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan; 5Department of Psychiatry, Jichi University School of Medicine, Tochigi, Japan  *These authors contributed equally to this work Abstract: We propose the possibility of 5-hydroxytryptamine (5-HT1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day. She also complained of depressed mood and was prescribed paroxetine (10 mg/day. She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day. Depressive symptoms appeared and paroxetine (10 mg/day was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects

  15. Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum

    M. Oostland; J. Sellmeijer; J.A. van Hooft

    2011-01-01

    The serotonin 5-HT3 receptor is the only ligand-gated ion channel activated by serotonin and is expressed by GABAergic interneurons in many brain regions, including the cortex, amygdala and hippocampus. Furthermore, 5-HT3 receptors are expressed by glutamatergic Cajal-Retzius cells in the cerebral c

  16. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus.

    Paluzzi, Jean-Paul V; Bhatt, Garima; Wang, Chang-Hui J; Zandawala, Meet; Lange, Angela B; Orchard, Ian

    2015-01-01

    In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus. PMID:26041983

  17. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    central nervous system (CNS). We have recently demonstrated that 5-HT4 receptor couples to G13 protein to induce RhoA-dependent gene transcription, neurite retraction, and neuronal cell rounding (Ponimaskin et al, 2002). Although multiple studies were focused on the function of the 5-HT4 receptor in the...

  18. Characterization, solubilization and partial purification of serotonin 5-HT1C receptors

    125I-Lysergic acid diethylamide (125I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of the solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-[125I]lysergic acid diethylamide (125I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. 125I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. 125I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using 125I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific 125I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist

  19. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  20. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [3H]serotonin, [3H]lysergic acid diethylamide or [3H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  1. Serotonin 5HT1A receptor availability and pathological crying after stroke

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible by...

  2. Serotonergic Projections and Serotonin Receptor Expression in the Reticular Nucleus of the Thalamus in the Rat

    Rodríguez Arellano, Jose Julio; Noristani, H. N.; Hoover, W. B.; Linley, S. B.; Vertes, R. P.

    2011-01-01

    Roč. 65, č. 9 (2011), s. 919-928. ISSN 0887-4476 R&D Projects: GA ČR GA309/09/1696 Institutional research plan: CEZ:AV0Z50390703 Keywords : reticular nucleus * thalamus * serotonin receptors Subject RIV: FH - Neurology Impact factor: 2.945, year: 2011

  3. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    Wang Tzu-Yun

    2012-07-01

    Full Text Available Abstract Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR and serotonin 1 B receptor (5-HT1B, may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD [antisocial alcoholism (AS-ALC group (n = 120 and antisocial non-alcoholism (AS-N-ALC group (n = 153] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  4. Development of a high specific activity radioligand, 125I-LSD, and its application to the study of serotonin receptors

    125I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized 125I-lysergic acid diethylamide (125I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of 125I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT2 receptors in rat cortex. The high specific activity of 125I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotonin receptor distribution. We have found that 125I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica

  5. Serotonin Receptors in Rat Jugular Vein: Presence and Involvement in the Contraction

    Linder, A. Elizabeth; Gaskell, Geri L.; Szasz, Theodora; Thompson, Janice M; Watts, Stephanie W.

    2010-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is released during platelet aggregation, a phenomenon commonly observed in blood clot formation and venous diseases. Once released, 5-HT can interact with its receptors in the peripheral vasculature to modify vascular tone. The goal of this study was to perform a detailed pharmacological characterization of the 5-HT receptors involved in the contractile response of the rat jugular vein (RJV) using recently developed drugs with greater selectivity toward 5...

  6. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice

    Halberstadt, Adam L.; Koedood, Liselore; Powell, Susan B.; GEYER, Mark A

    2010-01-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT1A, 5-HT2A, and 5-HT2C receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR)...

  7. Relevance of dorsal raphe nucleus firing in serotonin 5-HT2C receptor blockade-induced augmentation of SSRIs effects

    Sotty, Florence; Folgering, Joost H. A.; Brennum, Lise T.; Hogg, Sandra; Mork, Arne; Hertel, Peter; Cremers, Thomas I. F. H.

    2009-01-01

    Selective serotonin reuptake inhibitors are the most widely prescribed antidepressant drugs. However, they exhibit a slow onset of action, putatively due to the initial decrease in serotonin cell firing mediated via somato-dendritic autoreceptors. Interestingly, blockade of 5-HT2C receptors signific

  8. Serotonin 2A receptor antagonists for treatment of schizophrenia

    Ebdrup, Bjørn Hylsebeck; Rasmussen, Hans; Arnt, Jørn; Glenthøj, Birte Yding

    2011-01-01

    receptor antagonists is evaluated. Moreover, the investigational pipeline of major pharmaceutical companies is examined and an Internet search conducted to identify other pharmaceutical companies investigating 5-HT2A receptor antagonists for the treatment of schizophrenia. Expert opinion: 5-HT2A receptor...

  9. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  10. Serotonin Receptor 2B Mediates Mechanical Hyperalgesia by Regulating Transient Receptor Potential Vanilloid 1.

    Su, Yeu-Shiuan; Chiu, Yuan-Yi; Lin, Shih-Yuan; Chen, Chih-Cheng; Sun, Wei-Hsin

    2016-05-01

    Serotonin [5-hydroxytryptamine (5-HT)], an inflammatory mediator, contributes to inflammatory pain. The presence of multiple 5-HT subtype receptors on peripheral and central nociceptors complicates the role of 5-HT in pain. Previously, we found that 5-HT2B/2C antagonist could block 5-HT-induced mechanical hyperalgesia. However, the types of neurons or circuits underlying this effect remained unsolved. Here, we demonstrate that the Gq/11-phospholipase Cβ-protein kinase Cε (PKCε) pathway mediated by 5-HT2B is involved in 5-HT-induced mechanical hyperalgesia in mice. Administration of a transient receptor potential vanilloid 1 (TRPV1) antagonist inhibited the 5-HT-induced mechanical hyperalgesia. 5-HT injection enhanced 5-HT- and capsaicin-evoked calcium signals specifically in isolectin B4 (IB4)-negative neurons; signals were inhibited by a 5-HT2B/2C antagonist and PKCε blocker. Thus, 5-HT2B mediates 5-HT-induced mechanical hyperalgesia by regulating TRPV1 function. PMID:26635025

  11. Polymorphism in serotonin receptor 3B is associated with pain catastrophizing.

    Emilia Horjales-Araujo

    Full Text Available Pain catastrophizing, a coping style characterized by excessively negative thoughts and emotions in relation to pain, is one of the psychological factors that most markedly predicts variability in the perception of pain; however, only little is known about the underlying neurobiology. The aim of this study was to test for associations between psychological variables, such as pain catastrophizing, anxiety and depression, and selected polymorphisms in genes related to monoaminergic neurotransmission, in particular serotonin pathway genes. Three hundred seventy-nine healthy participants completed a set of psychological questionnaires: the Pain Catastrophizing Scale (PCS, the State-Trait Anxiety Inventory and Beck's Depression Inventory, and were genotyped for 15 single nucleotide polymorphisms (SNPs in nine genes. The SNP rs1176744 located in the serotonin receptor 3B gene (5-HTR3B was found to be associated with pain catastrophizing scores: both the global score and the subscales of magnification and helplessness. This is the first study to show an association between 5-HTR3B and PCS scores, thus suggesting a role of the serotonin pathway in pain catastrophizing. Since 5-HTR3B has previously been associated with descending pain modulation pathways, future studies will be of great interest to elucidate the molecular pathways involved in the relation between serotonin, its receptors and pain catastrophizing.

  12. Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac)

    Ni, Y. G.; Miledi, R

    1997-01-01

    Fluoxetine (Prozac) inhibited the membrane currents elicited by serotonin (5-hydroxytryptamine; 5HT) in Xenopus oocytes expressing either cloned 5HT2C receptors or 5HT receptors encoded by rat cortex mRNA. Responses of 5HT2C receptors, elicited by nM concentrations of 5HT, were rapidly and reversibly blocked by micromolar concentrations of fluoxetine. For responses elicited by 1 μM 5HT, the IC50 of fluoxetine inhibition was ≈20 μM. In accord with the electrophysiological results, fluoxetine i...

  13. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    Marie Elizabeth Gibbs; Leif eHertz

    2014-01-01

    Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5-HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5-HT receptor antagonist methiothepin and the selective 5-HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least two different receptor subtypes. The 5-HT2B/...

  14. Serotonin type-1A receptor imaging in depression

    Regional 5-hydroxytryptamine1A (5-HT1A) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl-11C]WAY-100635 {[11C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide}. The mean 5-HT1A receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT1A receptor BP are consistent with in vivo evidence that 5-HT1A receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT1A receptor expression in primary mood disorders

  15. Serotonin 2A receptors contribute to the regulation of risk-averse decisions

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina;

    2013-01-01

    risk-averse choice behavior was abolished by 5-HT2A receptor blockade. The results provide the first evidence for a critical role of 5-HT2A receptor function in regulating risk-averse behavior. We suggest that the 5-HT2A receptor system facilitates risk-taking behavior by modulating the outcome......Pharmacological studies point to a role of the neurotransmitter serotonin (5-HT) in regulating the preference for risky decisions, yet the functional contribution of specific 5-HT receptors remains to be clarified. We used pharmacological fMRI to investigate the role of the 5-HT2A receptors in...... processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were...

  16. PET imaging of cortical S2 serotonin receptors after stroke: lateralized changes and relationship to depression

    Patients with right-hemisphere strokes (N = 9) more than 1 year after injury had greater cortical binding of (3-N-[11C]methyl)spiperone than a similar group of patients with left-hemisphere strokes (N = 8) or normal control subjects (N = 17). The higher S2 serotonin receptor binding occurred in uninjured regions of the right parietal and temporal cortex. The ratio of binding in the ipsilateral to contralateral cortex showed a significant negative correlation with severity of depression scores in the left temporal cortex. These findings suggest that the biochemical response of the brain may be different depending on which hemisphere is injured and that some depressions may be a consequence of the failure to upregulate serotonin receptors after stroke

  17. Microchemical synthesis of the serotonin receptor ligand, 125I-LSD

    The synthesis and properties of 2-[125I]-lysergic acid diethylamide, the first 125I-labeled serotonin receptor ligand, are described. A novel microsynthesis apparatus was developed for this synthesis. The apparatus employs a micromanipulator and glass micro tools to handle microliter to nanoliter volumes on a microscope stage. This apparatus should be generally useful for the synthesis of radioligands and other compounds when limited amounts of material must be handled in small volumes

  18. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.; Wood, Jackie D.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells i...

  19. Genetic Variation of the Serotonin 2a Receptor Affects Hippocampal Novelty Processing in Humans

    Schott, B. H.; Seidenbecher, C. I.; Richter, S.; Wustenberg, T.; Debska-Vielhaber, G.; Schubert, H.; Heinze, H J; Richardson-Klavehn, A; Duzel, E.

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neuromodulator in learning and memory processes. A functional genetic polymorphism of the 5-HT 2a receptor (5-HTR2a His452Tyr), which leads to blunted intracellular signaling, has previously been associated with explicit memory performance in several independent cohorts, but the underlying neural mechanisms are thus far unclear. The human hippocampus plays a critical role in memory, particularly in the detection and encoding of novel infor...

  20. SEROTONIN RECEPTOR INVOLVEMENT IN EFFECTS OF RESTRAINT ON FEMALE RAT LORDOSIS BEHAVIOR

    Uphouse, Lynda; Hiegel, Cindy; Perez, Erika; Guptarak, Jutatip

    2007-01-01

    Ovariectomized Fischer (CDF-344) rats, with bilateral cannulae in the mediobasal hypothalamus (MBH) near the ventromedial nucleus of the hypothalamus (VMN), were used to test the hypothesis that serotonin receptors in the VMN contribute to the lordosis-inhibiting effects of mild restraint. Rats were hormonally primed with 10 μg estradiol benzoate (EB) followed 48 h later with sesame seed oil. Four to six h later (during the dark portion of the light-dark cycle), rats were pretested for sexual...

  1. Structural features for functional selectivity at serotonin receptors.

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L; Stevens, Raymond C

    2013-05-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities. PMID:23519215

  2. Structural Features for Functional Selectivity at Serotonin Receptors

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L.; Stevens, Raymond C.

    2013-01-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or non-canonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies that show that the hallucinogen lysergic acid diethylamide (LSD), its precursor ergotamine (ERG) and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-hydroxytryptamine (5-HT) receptor 5-HT2B, while being relatively unbiased...

  3. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-01-01

    Abstract An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the...

  4. Serotonin 5-HT2A Receptor Function as a Contributing Factor to Both Neuropsychiatric and Cardiovascular Diseases

    Charles D. Nichols

    2009-01-01

    Full Text Available There are high levels of comorbidity between neuropsychiatric and cardiovascular disorders. A key molecule central to both cognitive and cardiovascular function is the molecule serotonin. In the brain, serotonin modulates neuronal activity and is actively involved in mediating many cognitive functions and behaviors. In the periphery, serotonin is involved in vasoconstriction, inflammation, and cell growth, among other processes. It is hypothesized that one component of the serotonin system, the 5-HT2A receptor, is a common and contributing factor underlying aspects of the comorbidity between neuropsychiatric and cardiovascular disorders. Within the brain this receptor participates in processes such as cognition and working memory, been implicated in effective disorders such as schizophrenia, and mediate the primary effects of hallucinogenic drugs. In the periphery, 5-HT2A receptors have been linked to vasoconstriction and hypertension, and to inflammatory processes that can lead to atherosclerosis.

  5. Serotonin type-1A receptor imaging in depression

    Drevets, Wayne C. E-mail: drevets@pet.upmc.edu; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-07-01

    Regional 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl-{sup 11}C]WAY-100635 {l_brace}[{sup 11}C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide{r_brace}. The mean 5-HT{sub 1A} receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT{sub 1A} receptor BP are consistent with in vivo evidence that 5-HT{sub 1A} receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT{sub 1A} receptor expression in primary mood disorders.

  6. The effect of serotonin 1A receptor polymorphism on the cognitive function of premenstrual dysphoric disorder.

    Yen, Ju-Yu; Tu, Hung-Pin; Chen, Cheng-Sheng; Yen, Cheng-Fang; Long, Cheng-Yu; Ko, Chih-Hung

    2014-12-01

    Estrogen and serotonin play vital roles in the mechanism of premenstrual dysphoric disorder (PMDD). Cognitive deficit in the premenstrual phase contributes to impaired life function among women with PMDD. The aim of this study was to evaluate the difficulties in cognitive control and working memory (WM) in PMDD and to explore the effects of gonadotropic hormone and polymorphism of serotonin 1A receptor (HTR1A; rs6295) on cognitive deficit in PMDD. Women with PMDD completed diagnostic interviewing, questionnaire assessment, the Go/Nogo task, 2-back and 3-back tasks, and gonadotropic hormone analysis in the premenstrual and follicular phases. Further, they were followed up for two menstrual cycles to confirm two consecutive symptomatic cycles. A total of 59 subjects with PMDD and 74 controls completed all evaluation, fulfilled the criteria, and entered into the final analysis. The results demonstrated cognitive control and WM decline in the premenstrual among women with PMDD. The G/G genotype of HTR1A (rs6295) was found to be associated with impaired WM in the premenstrual phase and premenstrual decline of cognitive function. It also contributed to the vulnerability of cognitive function to the menstrual cycle effect and PMDD effect. As the G/G genotype of HTR1A (rs6295) involves in reducing serotonin neurotransmission, our results provide insight into the serotonin mechanism of cognitive function among women with PMDD. PMID:24158751

  7. Brain serotonin 2A receptor binding: Relations to body mass index, tobacco and alcohol use

    Erritzoe, D.; Frokjaer, V. G.; Haugbol, S.;

    2009-01-01

    to increased food and alcohol intake, and conversely, stimulation of the serotonergic system induces weight reduction and decreased food/alcohol intake as well as tobacco smoking. To investigate whether body weight, alcohol intake and tobacco smoking were related to the regulation of the cerebral serotonin 2A...... receptor (5-HT(2A)) in humans, we tested in 136 healthy human subjects if body mass index (BMI), degree of alcohol consumption and tobacco smoking was associated to the cerebral in vivo 5-HT(2A) receptor binding as measured with (18)F-altanserin PET. The subjects' BMI's ranged from 18.4 to 42.8 (25...

  8. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor

    Wu, Xiaojun; Hsuchou, Hung; Kastin, Abba J; He, Yi; Khan, Reas S.; Stone, Kirsten P.; Cash, Michael S.; Pan, Weihong

    2010-01-01

    Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had decreased mRNA for 5-HT1A, increased mRNA for 5-HT2C, and region-specific changes of serotonin reuptake transporter (SERT) immunoreactivit...

  9. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    Madsen, Karine; Torstensen, Eva; Holst, Klaus Kähler;

    2015-01-01

    BACKGROUND: The 5-HT4 receptor provides a novel potential target for antidepressant treatment. No studies exist to elucidate the 5-HT4 receptor's in vivo distribution in the depressed state or in populations that may display trait markers for major depression disorder (MDD). The aim of this study...... was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which...... depression, and that lower striatal 5-HT4 receptor binding is associated with increased risk for developing MDD. The finding is intriguing considering that the 5-HT4 receptor has been suggested to be an effective target for antidepressant treatment....

  10. Functional characterization of serotonin receptor subtypes in human duodenal secretion

    Engelmann, Bodil Elisabeth; Bindslev, Niels; Poulsen, Steen Seier;

    2006-01-01

    dyspeptic patients with or without Helicobacter pylori infection, and to determine the 5-HT receptor subtypes functionally involved. Biopsies from the second part of duodenum were obtained from 43 dyspeptic patients during routine endoscopy. Biopsies were mounted in modified Ussing chambers with air suction...

  11. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.;

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...

  12. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT2a receptors. (orig.)

  13. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    Eun Ju Oh

    2016-04-01

    Full Text Available BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2 and microphthalmia-associated transcription factor (MITF in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA and cAMP response element-binding protein (CREB activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.

  14. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent.

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  15. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT. PMID:16945110

  16. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 3A and 6 receptor subtypes

    Vitalis Tania

    2013-06-01

    Full Text Available Cortical circuits control higher-order cognitive processes and their function is highly dependant on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we will focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders.

  17. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    Zdzisław Chilmonczyk

    2015-08-01

    Full Text Available Serotonin (5-HT is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems, which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  18. Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice

    Zhang, Gongliang; Asgeirsdottir, Herborg N.; Cohen, Sarah J.; Munchow, Alcira H.; Barrera, Mercy P.; Stackman, Robert W.

    2012-01-01

    Excessive fear is a hallmark of several emotional and mental disorders such as phobias and panic disorders. Considerable attention is focused on defining the neurobiological mechanisms of the extinction of conditioned fear memory in an effort to identify mechanisms that may hold clinical significance for remediating aberrant fear memory. Serotonin modulates the acquisition and retention of conditioned emotional memory, and the serotonin 2A receptor (5HT2AR) may be one of the postsynaptic targ...

  19. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  20. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Introduction: Serotonin-1A receptor (5-HT1AR) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT1AR agonists in vivo and to 5-HT1AR binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT1AR binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-11C]WAY-100635, and we have demonstrated reduced 5-HT1AR BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-11C]WAY-100635, 5-HT1AR BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT1AR BP was reduced by 26% in the MTC (P 1AR binding were similar to those found postmortem in 5-HT1AR mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT1AR-binding capacity in the raphe in depressed suicide victims [Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892-903]. There exists disagreement

  1. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using ph

  2. Neocortical serotonin2A receptor binding predicts quetiapine associated weight gain in antipsychotic-naive first-episode schizophrenia patients

    Rasmussen, Hans; Ebdrup, Bjørn H; Oranje, B; Pinborg, Lars H; Knudsen, Gitte M; Glenthøj, Birte

    2014-01-01

    to treatment and subsequent increase in BMI (rho = 0.59, p = 0.022). At follow-up, the serotonin2A receptor occupancy was positively correlated with BMI increase (rho = 0.54, p = 0.038). To our knowledge, these are the first in vivo receptor imaging data in initially antipsychotic-naive first...

  3. D 2 dopamine and 5HT2 serotonin receptors occupancy with perospirone in schizophrenic patients. A PET study

    Positive and negative symptoms in schizophrenia may be related to hyperactivity of the dopaminergic system in the mesolimbic regions and hypoactivity of the dopaminergic system in the cortical cortex, respectively. Serotonin-dopamine antagonist (SDA) binds to dopamine D 2 receptor and serotonin 5-HT2 receptor, and treatment with SDA improves both symptoms. The aims of the present study was to determine D 2 dopamine and 5-HT2 serotonin receptors occupancy with a novel SDA, perospirone in ten schizophrenic patients using positron emission tomography and [11C]N-methyl-spiperone. Positive and negative symptoms in all patients were improved after treatment with SDA. The mean D 2 dopamine and 5-HT2 serotonin receptors occupancy was 22% and 24%, respectively. Both occupancies were correlated with plasma drug concentrations. The present study demonstrated that perospirone improves positive and negative symptoms in schizophrenic patients with lower occupancy for D 2 dopamine and 5-HT2 serotonin receptors morphology in premature rabbit fetuses. (author)

  4. 125I-LSD: a high sensitivity ligand for serotonin receptors

    125I-labeled receptor ligands offer unique advantages over their 3H-labeled counterparts. Carrier-free 125I-labeled ligands can be synthesized with specific activities of up to 2170 Ci/mmol while (mono) tritium labeled ligands are limited to 29 Ci/mmol. Therefore, 125I-labeled ligands can be approximately 70-fold more sensitive than 3H-labeled ligands in detecting receptor sites. In addition, 125I-labeled ligands emit relatively energetic X-rays and γ-rays which are readily detected by gamma counting equipment. The authors report here the serotonergic binding properties of 125I-LSD the first reported 125I-labeled ligand for serotonin receptors. (Auth.)

  5. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    The 5-HT1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-11C] WAY-100635 (WAY), [carbonyl-11C]desmethyl-WAY-100635 (DWAY), p-[18F]MPPF and [11C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  6. Serotonin Syndrome

    Harold Muñoz Cortés

    2004-08-01

    Full Text Available The serotonin syndrome is a clinical condition associated with serotonin agonists, prescribed to treat some psychiatric and non psychiatric diseases like affective, anxiety and pain disorders. Is due to an excessive stimulation of central and peripheral serotonin receptors that leads to mental, autonomic and neuromuscular changes. Usually the disorder resolves within the first 24 hours after the medications are discontinued, however some patients progress to a multiple organ failure and die. This paper is a theoretical review of the fundamental aspects of the serotonin syndrome, beginning with a brief review of the anatomic and physiologic features of serotonin system, to continue to examine the most relevant historic, diagnosis, clinical and treatment aspects of the syndrome.

  7. Changes in sensitivity of brain dopamine and serotonin receptors during long-term treatment with carbidine

    Zharkovskii, A.M.; Allikmets, L.K.; Chereshka, K.S.; Zharkovskaya, T.A.

    1986-04-01

    The authors study the state of the dopamine and serotonin receptors of the brain during chronic administration of carbidine to animals. Parts of the brain from two rats were pooled and binding of tritium-spiperone and tritium-LSD was determined. Statistical analysis of the data for apomorphine sterotypy was carried out and the Student's test was used for analysis of the remaining data. It is shown that after discontinuation of carbidine binding of tritium-spiperone and tritium-LSD in the cortex was reduced.

  8. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease

    Marner, Lisbeth; Frøkjær, Vibe; Kalbitzer, Jan;

    2012-01-01

    and the serotonin transporter binding, the latter as a measure of serotonergic projections and neurons. Twelve patients with AD (average Mini Mental State Examination [MMSE]: 24) and 11 healthy age-matched subjects underwent positron emission tomography (PET) scanning with [(18)F]altanserin and [(11)C...... = .0005). No change in [(11)C]DASB binding was found in the midbrain. We conclude that the prominent reduction in neocortical 5-HT(2A) receptor binding in early AD is not caused by a primary loss of serotonergic neurons or their projections....

  9. Crucial interactions between selective serotonin uptake inhibitors and sigma-1 receptor in heart failure.

    Bhuiyan, Md Shenuarin; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Depression is associated with a substantial increase in the risk of developing heart failure and is independently associated with increased cardiovascular morbidity and mortality. Inversely, cardiovascular disease can lead to severe depression. Thus, therapy with selective serotonin reuptake inhibitors (SSRIs) is strongly recommended to reduce cardiovascular disease-induced morbidity and mortality. However, molecular mechanisms to support evidence-based SSRI treatment of cardiovascular disease have not been elucidated. We recently found very high expression of the sigma-1 receptor, an orphan receptor, in rat heart tissue and defined the cardiac sigma-1 receptor as a direct SSRI target in eliciting cardioprotection in both pressure overload (PO)induced and transverse aortic constriction (TAC)-induced myocardial hypertrophy models in rodents. Our findings suggest that SSRIs such as fluvoxamine protect against PO- and TAC-induced cardiac dysfunction by upregulating sigma-1 receptor expression and stimulating sigma-1 receptor-mediated Akt-eNOS signaling. Here, we discuss the association of depression and cardiovascular diseases, the protective mechanism of SSRIs in heart failure patients, and the pathophysiological relevance of sigma-1 receptors to progression of heart failure. These findings should promote development of clinical therapeutics targeting the sigma-1 receptor in cardiovascular diseases. PMID:23428811

  10. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development. PMID:24158140

  11. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system. PMID:18635693

  12. Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia

    Lee, Yong-Seok; Choi, Sun-Lim; Lee, Seung-Hee; Kim, Hyoung; Park, Hyungju; Lee, Nuribalhae; Lee, Sue-Hyun; Chae, Yeon-Su; Jang, Deok-Jin; Kandel, Eric R.; Kaang, Bong-Kiun

    2009-01-01

    Serotonin (5-HT) plays a critical role in modulating synaptic plasticity in the marine mollusc Aplysia and in the mammalian nervous system. In Aplysia sensory neurons, 5-HT can activate several signal cascades, including PKA and PKC, presumably via distinct types of G protein-coupled receptors. However, the molecular identities of these receptors have not yet been identified. We here report the cloning and functional characterization of a 5-HT receptor that is positively coupled to adenylyl c...

  13. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice.

    Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A

    2011-11-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT(2C) receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT(2A) receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT(1A) antagonist WAY-100635 but were not altered by the selective 5-HT(2C) antagonist SB 242,084 or by 5-HT(2A) receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT(2C) and 5-HT(1A) receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6-9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT(2A) sites but is inactive at the 5-HT(1A) receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin

  14. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  15. The potential role of myocardial serotonin receptor 2B expression in canine dilated cardiomyopathy.

    Fonfara, Sonja; Hetzel, Udo; Oyama, Mark A; Kipar, Anja

    2014-03-01

    Serotonin signalling in the heart is mediated by receptor subtype 2B (5-HTR2B). A contribution of serotonin to valvular disease has been reported, but myocardial expression of 5-HTR2B and its role in canine dilated cardiomyopathy (DCM) is not known. The aim of the present study was to investigate myocardial 5-HTR2B mRNA expression in dogs with DCM and to correlate results with expression of markers for inflammation and remodelling. Myocardial samples from eight healthy dogs, four dogs with DCM, five with cardiac diseases other than DCM and six with systemic non-cardiac diseases were investigated for 5-HTR2B mRNA expression using quantitative PCR (qPCR). The results were compared to mRNA expression of selected cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinase (TIMP). Laser microdissection with subsequent qPCR and immunohistochemistry were employed to identify the cells expressing 5-HTR2B. The myocardium of control dogs showed constitutive 5-HTR2B mRNA expression. In dogs with DCM, 5-HTR2B mRNA values were significantly greater than in all other groups, with highest levels of expression in the left ventricle and right atrium. Myocytes were identified as the source of 5-HTR2B mRNA and protein. A significant positive correlation of 5-HTR2B mRNA with expression of several cytokines, MMPs and TIMPs was observed. The findings suggest that serotonin might play a role in normal cardiac structure and function and could contribute to myocardial remodelling and functional impairment in dogs with DCM. PMID:24440442

  16. Differential effects of vilazodone versus citalopram and paroxetine on sexual behaviors and serotonin transporter and receptors in male rats

    Oosting, Ronald S; Chan, Johnny S; Olivier, Berend; Banerjee, Pradeep; Choi, Yong Kee; Tarazi, Frank

    2016-01-01

    RATIONALE: Sexual side effects are commonly associated with selective serotonin reuptake inhibitor (SSRI) treatment. Some evidence suggest that activation of 5-HT1A receptors attenuates SSRI-induced sexual dysfunction. OBJECTIVE: This study in male rats compared the effects of vilazodone, an antidep

  17. The role of serotonin 5-HT2A receptors in memory and cognition.

    Zhang, Gongliang; Stackman, Robert W

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  18. Experimental study of the role of blocking of 5-HT3 serotonin receptors and D2 dophamin receptors in the mechanism of early radiation vomiting in monkeys

    Specific activity of Latranum and Dimetphramidum is studied using experimental model of early radiation vomiting on 17 monkeys, mass 6-9 kg inherent on usual ration of vivarium. The experiments with M. fasciculata monkeys exposed to 137Cs γ-radiation with a dose of 6.9 Gy showed that Latranum, a blocker of serotonin 5-HT3 receptors, is a more efficient antimetric than Dimetphramidum, a D2 dophamin lytic. This suggested by fewer animals with emetic reaction of by less severe vomiting in case they have any. The results agree well with a hypothesis that serotonin receptors are dominant in the chemoreceptor trigger zone of monkeys

  19. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  20. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives

    Kline, T.B.; Benington, F.; Morin, R.D.; Beaton, J.M.; Glennon, R.A.; Domelsmith, L.N.; Houk, K.N.; Rozeboom, M.D.

    1982-11-01

    Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity, which may have implications concerning the mechanism of receptor binding.

  1. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. PMID:20349263

  2. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  3. Serotonin and dopamine receptors in cognitive and motivational disturbances of psychiatric disorders

    Tomiki eSumiyoshi

    2014-12-01

    Full Text Available Negative symptoms (e.g. decreased spontaneity, social withdrawal, blunt affect and disturbances of cognitive function (e.g. several types of memory, attention, processing speed, executive function, fluency provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as a moderator of cognitive performance in schizophrenia and related disorders, and also a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA, affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other DA-related genes, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT receptors may also play a key role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Taken together, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences.

  4. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia.

    Sumiyoshi, Tomiki; Kunugi, Hiroshi; Nakagome, Kazuyuki

    2014-01-01

    Negative symptoms (e.g., decreased spontaneity, social withdrawal, blunt affect) and disturbances of cognitive function (e.g., several types of memory, attention, processing speed, executive function, fluency) provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as (1) a moderator of cognitive performance in schizophrenia and related disorders, and (2) a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA), affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls)-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other genes encoding DA-related substrates, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT) receptors may also play a significant role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Thus, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences. PMID:25538549

  5. [Role of serotonin receptors in vascular tone in the pithed rat].

    Sánchez-López, Araceli; Centurión, David; Lozano-Cuenca, Jair; Muñoz-Islas, Enriqueta; Cobos-Puc, Luis E; Villalón, Carlos M

    2009-12-01

    Serotonin (5-hydroxytryptamine; 5-HT) has been shown to produce vascular sympatho-inhibition in a wide variety of isolated blood vessels by activation of prejunctional 5-HT1 receptors. After considering the mechanisms involved in modulating neuroeffector transmission, the present review analyzes the experimental findings identifying the pharmacological profile of the 5-HT receptors that inhibit the sympathetically-induced vasopressor responses in pithed rats. Thus, 5-HT-induced sympatho-inhibition has been shown to be: (i) unaffected by physiological saline or by the selective antagonists ritanserin (5-HT2), MDL72222 (5-HT3) or tropisetron (5-HT3/4); (ii) blocked by methysergide, a non-selective 5-HT1/2 receptor antagonist; and (iii) potently mimicked by 5-carboxamidotryptamine (5-CT), a non-selective 5-HT1 receptor agonist, as well as by the selective agonists 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP93,129 (5-HT1B), and sumatriptan (5-HT1B/1D). These findings show the involvement of prejunctional 5-HT1 receptors. With the use of selective antagonists, it has been shown subsequently that the sympatho-inhibition induced by indorenate, CP93, 129, and sumatriptan was selectively antagonized by WAY100635 (5-HT1A), cyanopindolol (5-HT1A/1B), and GR127935 (5-HT1B/1D), respectively. These results demonstrate that the 5-HT1 receptors mediating sympatho-inhibition on the systemic vasculature of pithed rats resemble the pharmacological profile of the 5-HT1A, 5-HT1B, and 5-HT1D subtypes. PMID:20361490

  6. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  7. Comparative analysis of calcium spikes upon activation of serotonin(1A and purinergic receptors.

    Roopali Saxena

    Full Text Available Calcium signaling represents one of the most important signaling cascades in cells and regulates diverse processes such as exocytosis, muscle contraction and relaxation, gene expression and cell growth. G protein-coupled receptors (GPCRs are the most important family of receptors that activate calcium signaling. Since calcium signaling regulates a large number of physiological responses, it is intriguing that how changes in cytosolic calcium levels by a wide range of stimuli lead to signal-specific physiological responses in the cellular interior. In order to address this issue, we have analyzed temporal calcium profiles induced by two GPCRs, the serotonin(1A and purinergic receptors. In this work, we have described a set of parameters for the analysis of calcium transients that could provide novel insight into mechanisms responsible for maintaining signal specificity by shaping calcium transients. An interesting feature of calcium signaling that has emerged from our analysis is that the profile of individual transients in a calcium response could play an important role in maintaining downstream signal specificity. In summary, our analysis offers a novel approach to identify differences in calcium response patterns induced by various stimuli.

  8. The serotonin receptor 7 and the structural plasticity of brain circuits

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  9. The serotonin receptor 7 and the structural plasticity of brain circuits

    Floriana eVolpicelli

    2014-09-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT modulates numerous physiological processes in the nervous system. Together with its function as neurotrasmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration.

  10. Design of a new serotonin receptor 5-HT1A imaging agent based on 99mTc

    Serotonin is one of the neurotransmitters found in the brain and mediates brain functions. It is very well known that serotonin related brain abnormalities are exerted mainly via serotonin receptors in a similar manner to other neurotransmitters found in the brain. Recently, it has also been found that serotonin is involved in Alzheimer's disease either directly or indirectly by its actions on serotonergic neurons. To understand and treat the diseases caused by abnormalities in the serotonergic system in the brain, it is certain that its mechanism of function has to be well investigated. So far several 5-HT receptors and receptor subtypes have been well characterized. Moreover, serotonin agonists and antagonists acting on specific receptors are chemically synthesized and are now available for the prevention or treatment of serotonergic related diseases. In recent years, a great demand for developing neuroimaging agents has emerged for the diagnosis of abnormal brain functions in the area of nuclear medicine. Since arylpiperazine, WAY 100635, in the present investigation, has been recognized as a highly selective ligand for the 5-HT1A receptor, it has been used for the development of brain imaging agents based on serotonin receptors. First, S,S'-bis(trityl) monoamide monoamine (MAMA-Tr2) was synthesized, followed by synthesis of an arylpiperazine ligand. The synthesis of the analogue of WAY 100635 was completed and it lead to successful labelling with 99mTc without a by-product. Deprotection of the S,S-Tr2 group of MAMA-Tr2 was efficiently conducted by incubation at 100 deg. C for 1 h under acidic conditions (pH2-3), followed by labelling with 99mTc. Its radiochemical purity was checked by high performance liquid chromatography, and a labelled compound of >99% radiochemical purity was used for an in vivo bioavailability study using a gamma ray camera. An animal biodistribution study was also conducted to ascertain the serotonergic neuronal imaging effect of 99m

  11. Radiochemical and biological evaluation of a new brain serotonin1A receptor imaging agent

    Radiochemical and biological evaluations are made of a new bidentate radioligand as a potential brain serotonin1A (5-HT1A) receptor imaging agent. The bidentate part of the complex was a derivative of the well known serotonin1A receptor antagonist molecule, namely WAY 100635; the monodentate parts were thiocresol, thiosalicylic acid and thio-2-naphthol. The labelling procedure was performed through the 99mTc(V)-glucoheptonate precursor. The bidentate + monodentate complex formed during the reaction in the case of thiocresol was identified as 99TcO(o-CH3-C6H4-N(CH2-CH2)2N-CH2CH2S)( p-C6H4CH3)2 (99mTc-1). Its labelling efficiency and stability were determined by thin layer chromatography, the organic solvent extraction method and high performance liquid chromagraphy. The biodistribution of the labelled compound was found by using male Wistar rats. On the basis of these data, kinetic curves were constructed for different organs and the dosimetry for humans was calculated. The brain uptake and pharmacokinetics were followed by planar and single photon emission computed tomography (SPECT) imaging in rats. Average brain count density was calculated and different regional count densities (counts/gram tissue) were obtained for the hippocampus and other receptor-rich regions. A detailed SPECT study was carried out after administration of 99mTc-1 to a cynomolgus monkey (Macaca cynomolgus). The results found show that, of three investigated aromatic thiol compounds, the labelling efficiency was the highest in the case of thiocresol as the monodentate part. Therefore all further studies were carried out using thiocresol. The labelling efficiency of this bidentate complex was about 80%, and the molecule was stable for up to one hour. The biodistribution data show that more than 0.1% of the injected dose is present in the rat brains a few minutes after administration, and the metabolic pathway is through the hepatobiliary system. From the results obtained with the study of the

  12. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    Olivia A Lin

    Full Text Available There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and

  13. Enhanced central serotonin release from slices of rat hypothalamus following repeated nialamide administration: evidence supporting the overactive serotonin receptor theory of depression

    Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT1 receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT1 type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced 3H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT1 type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors

  14. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  15. Evaluation of the serotonin receptor blocker methiothepin in broilers injected intravenously with lipopolysaccharide and microparticles.

    Chapman, M E; Wideman, R F

    2006-12-01

    There has been considerable interest in the role of serotonin (5-hydroxytryptamine, 5-HT) in the pathogenesis of pulmonary hypertension due to episodes of primary pulmonary hypertension in humans linked to serotoninergic appetite-suppressant drugs. In this study, we investigated the effect of 5-HT on the development of pulmonary hypertension induced by injecting bacterial lipopolysaccharide (LPS; endotoxin) and cellulose microparticles intravenously, using the nonselective 5-HT(1/2)receptor, antagonist methiothepin. In Experiment 1, broilers selected for ascites susceptibility or resistance under conditions of hypobaric hypoxia were treated with methiothepin or saline, followed by injection of LPS, while recording pulmonary arterial pressure (PAP). In Experiment 2 ascites-susceptible broilers were treated with methiothepin or saline, followed by injection of cellulose microparticles, while recording PAP. In Experiment 3, an i.v. microparticle injection dose shown to cause 50% mortality was injected into ascites-susceptible and ascites-resistant broilers after methiothepin or saline treatment. Injecting methiothepin reduced PAP below baseline values in ascites-susceptible and ascites-resistant broilers, suggesting a role for 5-HT in maintaining the basal tone of the pulmonary vasculature in broilers. Injecting microparticles into the wing vein had no affect on the PAP in the broilers treated with methiothepin, suggesting that 5-HT is an important mediator in the pulmonary hypertensive response of broilers to microparticles. Furthermore, injecting an 50% lethal dose of microparticles into ascites-susceptible and ascites-resistant broilers pretreated with methiothepin resulted in reduced mortality. Serotonin appears to play a less prominent role in the pulmonary hypertensive response of broilers to intravenously injected LPS, indicating that other mediators within the innate response to inflammatory stimuli may also be involved. These results are consistent with our

  16. Serotonin receptor expression is dynamic in the liver during the transition period in Holstein dairy cows.

    Laporta, J; Hernandez, L L

    2015-04-01

    Nonneuronal serotonin (5-HT) participates in glucose metabolism, but little is known regarding the actions of 5-HT in the liver during the transition period in dairy cattle. Here, we explore circulating patterns of 5-HT and characterize the hepatic 5-HT receptor and glucose transporter profiles around calving in multiparous Holstein dairy cows (n = 6, average lactation = 4 ± 1.9). Concentrations of serum 5-HT decreased on day -3 compared with -5 and -7 precalving (167.7 ± 80 vs 1511.1 ± 602 ng/mL). 5-HT nadir was on day -1 precalving and remained low postcalving (481.4 ± 49 ng/mL). Plasma glucose concentrations decreased precalving (P = 0.008) and were positively correlated with 5-HT during the precalving period (r = 0.55, P = 0.043). On day 1, postcalving hepatic messenger RNA expression of 5-HT1D, 2B, 3C, 6, and 7 receptors were decreased compared with day -7 (P transition from pregnancy to lactation. PMID:25528206

  17. Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Russell, Megan; Jozwiak, Krzysztof

    2010-07-13

    We compared the interaction of fluoxetine and paroxetine, two selective serotonin reuptake inhibitors (SSRIs), with the human (h) alpha4beta2, alpha3beta4, and alpha7 nicotinic acetylcholine receptors (AChRs) in different conformational states, using Ca(2+) influx, radioligand binding, and molecular docking approaches. The results established that (1) fluoxetine was more potent than paroxetine in inhibiting agonist-activated Ca(2+) influx on halpha4beta2 and halpha7 AChRs, whereas the potency of both SSRIs was practically the same in the halpha3beta4 AChR. [corrected] (2) SSRIs bind to the [(3)H]imipramine locus with a [corrected] higher affinity when the AChRs are in the desensitized states compared to the resting states. (3) The different receptor specificity for fluoxetine determined by their inhibitory potencies or binding affinities suggests different modes of interaction when the AChR is in the closed or activated state. (4) Neutral and protonated fluoxetine interacts with a binding domain located in the middle of the AChR ion channel. In conclusion, SSRIs inhibit the most important neuronal AChRs with potencies and affinities that are clinically relevant by binding to a luminal site that is shared with tricyclic antidepressants. PMID:20527991

  18. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. PMID:24916076

  19. 5HT2A and 5HT2B Receptors Contribute to Serotonin-Induced Vascular Dysfunction in Diabetes

    Peter M. Nelson

    2012-01-01

    Full Text Available Although 5HT2A receptors mediate contractions of normal arteries to serotonin (5HT, in some cardiovascular diseases, other receptor subtypes contribute to the marked increase in serotonin contractions. We hypothesized that enhanced contractions of arteries from diabetics to 5HT are mediated by an increased contribution from multiple 5HT receptor subtypes. We compared responses to selective 5HT receptor agonists and expression of 5HT receptor isoforms (5HT1B, 5HT2A, and 5HT2B in aorta from nondiabetic (ND compared to type 2 diabetic mice (DB, BKS.Cg-Dock7m+/+Leprdb/J. 5HT, 5HT2A (TCB2 and BRL54443, and 5HT2B (norfenfluramine and BW723C86 receptor agonists produced concentration-dependent contractions of ND arteries that were markedly increased in DB arteries. Neither ND nor DB arteries contracted to a 5HT1B receptor agonist. MDL11939, a 5HT2A receptor antagonist, and LY272015, a 5HT2B receptor antagonist, reduced contractions of arteries from DB to 5HT more than ND. Expression of 5HT1B, 5HT2A, and 5HT2B receptor subtypes was similar in ND and DB. Inhibition of rho kinase decreased contractions to 5HT and 5HT2A and 5HT2B receptor agonists in ND and DB. We conclude that in contrast to other cardiovascular diseases, enhanced contraction of arteries from diabetics to 5HT is not due to a change in expression of multiple 5HT receptor subtypes.

  20. THE SEROTONIN (5-HT) 5-HT2A RECEPTOR: ASSOCIATION WITH INHERENT AND COCAINE-EVOKED BEHAVIORAL DISINHIBITION IN RATS

    Anastasio, Noelle C.; Stoffel, Erin C.; Fox, Robert G.; Bubar, Marcy J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2011-01-01

    Alterations in the balance of functional activity within the serotonin (5-HT) system are hypothesized to underlie impulse control. Cocaine-dependent subjects consistently demonstrate greater impulsivity relative to non-drug using control subjects. Preclinical studies suggest that the 5-HT2A receptor (5-HT2AR) contributes to the regulation of impulsive behavior and also mediates some of the behavioral effects of cocaine. We hypothesized that the selective 5-HT2AR antagonist M100907 would reduc...

  1. Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice

    Mistlberger, Ralph; Hsu, Jennifer; Yu, Lisa; Bowman, Melody; Tecott, Laurence; Sullivan, Elinor

    2010-01-01

    The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity). However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin2C receptor (5-HT2CR) null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanc...

  2. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors

    Carter, Olivia L.; Burr, David C.; Pettigrew, John D.; Wallis, Guy M; Hasler, Felix; Vollenweider, Franz X

    2005-01-01

    Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were tested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo...

  3. Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice

    Hsu, Jennifer L.; Lisa Yu; Elinor Sullivan; Melodi Bowman; Mistlberger, Ralph E.; Tecott, Laurence H.

    2010-01-01

    The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity). However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C) receptor (5-HT2CR) null mutant mice subjected to a daytime restricted feeding schedule exhibit enha...

  4. Roles of Adenosine and Serotonin Receptors on the Antinociception of Sildenafil in the Spinal Cord of Rats

    Lee, Hyung Gon; Kim, Woong Mo; Park, Cheon Hee; Yoon, Myung Ha

    2010-01-01

    Purpose The phosphodiesterase 5 inhibitor sildenafil has antinociceptive effects, mediated by an increase in cGMP. This study examined the role of spinal adenosine and serotonin receptors played in the antinociceptive effects of intrathecal sildenafil. Materials and Methods Intrathecal catheters were inserted into the subarachnoid space of Sprague-Dawley male rats as a drug delivery device. Pain was induced by injecting formalin into the plantar surface of rats and observing nociceptive behav...

  5. Serotonin receptor 3A polymorphism c.-42C > T is associated with severe dyspepsia

    Grobbee Diederick E

    2011-10-01

    Full Text Available Abstract Background The association between anxiety and depression related traits and dyspepsia may reflect a common genetic predisposition. Furthermore, genetic factors may contribute to the risk of having increased visceral sensitivity, which has been implicated in dyspeptic symptom generation. Serotonin (5-HT modulates visceral sensitivity by its action on 5-HT3 receptors. Interestingly, a functional polymorphism in HTR3A, encoding the 5-HT3 receptor A subunit, has been reported to be associated with depression and anxiety related traits. A functional polymorphism in the serotonin transporter (5-HTT, which terminates serotonergic signalling, was also found associated with these psychiatric comorbidities and increased visceral sensitivity in irritable bowel syndrome, which coexistence is associated with higher dyspeptic symptom severity. We investigated the association between these functional polymorphisms and dyspeptic symptom severity. Methods Data from 592 unrelated, Caucasian, primary care patients with dyspepsia participating in a randomised clinical trial comparing step-up and step-down antacid drug treatment (The DIAMOND trial were analysed. Patients were genotyped for HTR3A c.-42C > T SNP and the 44 bp insertion/deletion polymorphism in the 5-HTT promoter (5-HTTLPR. Intensity of 8 dyspeptic symptoms at baseline was assessed using a validated questionnaire (0 = none; 6 = very severe. Sum score ≥20 was defined severe dyspepsia. Results HTR3A c.-42T allele carriers were more prevalent in patients with severe dyspepsia (OR 1.50, 95% CI 1.06-2.20. This association appeared to be stronger in females (OR 2.05, 95% CI 1.25-3.39 and patients homozygous for the long (L variant of the 5-HTTLPR genotype (OR 2.00, 95% CI 1.01-3.94. Females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95% CI = 1.37-8.90. Conclusions The HTR3A c.-42T allele is associated with severe dyspeptic symptoms. The stronger association among

  6. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders. PMID:25721336

  7. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  8. Mifepristone modulates serotonin transporter function

    Chaokun Li; Linlin Shan; Xinjuan Li; Linyu Wei; Dongliang Li

    2014-01-01

    Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glu-cocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly un-derstood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the se-rotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression.

  9. Dopaminergic neuron destruction reduces hippocampal serotonin 1A receptor uptake of trans-[18F]Mefway

    The purpose of the present study is to investigate the relationship between dopaminergic neuron destruction and 5-HT system changes in a hemiparkinsonian rat model. We performed PET imaging studies with trans-[18F]Mefway in a hemiparkinsonian model of unilateral 6-hydroxydopamine (6-OHDA) rats. Region-of-interests (ROIs) were drawn in the hippocampus (HP) and cerebellum (CB). HP uptake, the ratios of specific binding to non-specific binding in the HP, and non-displaceable binding potential (BPND) in the HP were compared between 6-OHDA and control rats. As a result, unilateral 6-OHDA-lesioned rats exhibited significant bilateral reduction of HP uptake and trans-[18F]Mefway BPND compared to the intact control group. Therefore, the results demonstrate that destruction of the dopaminergic system causes the reduction of the serotonergic system. - Graphical abstract: Serotonin PET after destruction of dopaminergic system. - Highlights: • The 5-HT system is implicated in mood related-non-motor symptoms of parkinson's disease. • We examine changes of 5-HT1A receptor in a hemiparkinsonian rat model. • The non-displaceable binding potential of HP and were calculated. • The destruction of dopaminergic system causes the reduction of the serotonergic system

  10. Are serotonin 3A and 3B receptor genes associated with suicidal behavior in schizophrenia subjects?

    Souza, Renan P; De Luca, Vincenzo; Manchia, Mirko; Kennedy, James L

    2011-02-11

    Suicide is a major contributor to the morbidity and mortality of schizophrenia, accounting for approximately 10% of deaths in these patients. Genetic factors have been reported to modulate the risk for suicide, although the precise mechanism and magnitude of the genetic contribution are unknown. Further, suicide attempters present abnormalities in the serotonergic system. We evaluated whether genetic variants in the serotonin receptors HTR3A (rs897692, rs1150226, rs1176724, rs2276302, rs3737457, rs897687 and rs1176713) and HTR3B (rs3758987, rs10502180, rs11606194, rs17116121, rs1176744, rs17116138, rs2276307, rs3782025 and rs1176761) were susceptibility components for suicidal behavior in 154 Caucasians schizophrenia subjects (20.1% of suicide attempters). In a second step, we compared haplotype and gene-gene interaction approaches because both genes are located in the chromosome 11q23 approximately 28Kbp apart. We did not observe allelic or genotypic associations. Six haplotypes were nominally significant associated with suicide. Gene-gene interaction using Helix Tree software showed two nominally significant interactions reproduced by haplotype association. Likewise, haplotypes composed by the markers included in the best multidimensional reduction three-locus model were nominally significant. Our results suggest that HTR3A and HTR3B polymorphisms may not play a major role in the susceptibility for suicidal behavior in schizophrenia subjects. Moreover, gene-gene interaction and haplotype association may have consistent results for genes located in the same chromosome. PMID:21184810

  11. Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors.

    Wang, Yunfei; Cao, Shu-e; Tian, Jianmin; Liu, Guozhe; Zhang, Xiaoran; Li, Pingfa

    2013-01-01

    Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05-0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain. PMID:24287473

  12. Serotonin discovery and stepwise disclosure of 5-HT receptor complexity over four decades. Part I. General background and discovery of serotonin as a basis for 5-HT receptor identification.

    Göthert, Manfred

    2013-01-01

    This review contains background information on the serotonin system, furthermore the suggestion to introduce the term Contemporary Witness Report (CWR) for a novel type of review and, as the main part, an overview over the history of serotonin discovery as a basis for the identification of its receptor heterogeneity and the increase in complexity by genetic and allosteric variation. The present article conforms to CWRs in historical and autobiographical elements, in more emphasis on the author's work than in conventional reviews and in aspects neglected in previous reviews, but not in the main feature namely the work of a scientist with comprehensive expertise in a field in which, over long time, he/she continuously performed research and published. A scientist complying with these requirements is a contemporary witness in that field. His report on the scientific achievements in that period, a CWR, comprises confirmation and putative re-interpretation of data from a superior viewpoint. Identification of serotonin's vascular properties (publication year: 1912) as an "adrenaline mimicking substance" (without attempt to isolate it) by O'Connor preceded the discovery of serotonin in the gastrointestinal tract by Erspamer [1937] and in blood by Rapport [1948, 1949], who identified its structure as 5-hydroxytryptamine [1949]. Detection as a neurotransmitter in invertebrates suggested its occurrence in vertebrate CNS as well. This was verified by finding it in dog, rat and rabbit brain [1953]. The Falck-Hillarp technique [1962] visualized serotonin neurones as fluorescent structures. The neurotoxin 5,7-dihydroxytryptamine [1972] indirectly proved the involvement of 5-HT in multiple CNS functions. PMID:24145072

  13. Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS)

    Austgen, James R.; Kline, David D.

    2013-01-01

    Serotonin (5-Hydroxytryptamine, 5-HT) and the 5-HT2 receptor modulate cardiovascular and autonomic function in part through actions in the nTS, the primary termination and integration point for cardiorespiratory afferents in the brainstem. In other brain regions, 5-HT2 receptors (5-HT2R) modify synaptic transmission directly, as well as through 5-HT2AR-induced endocannabinoid release. This study examined the role of 5-HT2AR as well as their interaction with endocannabinoids on neurotransmissi...

  14. The effect of chronic selective serotonin reuptake inhibitor treatment on serotonin(1B) receptor sensitivity and HPA axis activity

    Jongsma, M.E.; Bosker, F.J; Cremers, T.I.F.H.; Westerink, B.H.C.; Den Boer, J.A.

    2005-01-01

    The authors have investigated 5-HT1B receptor function in prefrontal cortex and dorsal hippocampus as well as the HPA axis response after subchronic (24 h) and chronic (15 days) treatment with the SSRI citalopram. All experiments were carried out in presence of citalopram to prevent rapid resensitiz

  15. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    Murphy, T.J.

    1988-01-01

    Alpha-2 adrenergic and serotonin-1B (5HT{sub 1B}) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, ({sup 3}H)yohimbine and ({sup 3}H)rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using ({sup 125}I)({minus})-cyanopindolol indicate that a 5HT{sub 1B} receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH{sub 1B} receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol.

  16. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    Alpha-2 adrenergic and serotonin-1B (5HT1B) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, [3H]yohimbine and [3H]rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using [125I](-)-cyanopindolol indicate that a 5HT1B receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH1B receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol

  17. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    Marie Elizabeth Gibbs

    2014-04-01

    Full Text Available Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5HT receptor antagonist methiothepin and the selective 5HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least 2 different receptor subtypes. The 5HT2B/C and astrocyte-specific 5-HT receptor agonists, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

  18. In vivo binding of 125I-LSD to serotonin 5-HT2 receptors in mouse brain

    The binding of 125I-LSD (2-[125I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125I-LSD. Serotonergic compounds potently inhibited 125I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that 125I-LSD labels serotonin 5-HT2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125I-LSD labeling occurs predominantly or entirely at serotonic 5-HT2 sites. In the striatum, 125I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that 125I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT2 receptors in the mammalian cortex

  19. Physical Interaction of Jab1 with Human Serotonin 6 G-protein-coupled Receptor and Their Possible Roles in Cell Survival*

    Yun, Hyung-Mun; Baik, Ja-Hyun; Kang, Insug; Jin, Changbae; Rhim, Hyewhon

    2010-01-01

    The 5-HT6 receptor (5-HT6R) is one of the most recently cloned serotonin receptors, and it plays important roles in Alzheimer disease, depression, and learning and memory disorders. However, unlike the other serotonin receptors, the cellular mechanisms of 5-HT6R are poorly elucidated relative to its significance in human brain diseases. Here, using a yeast two-hybrid assay, we found that the human 5-HT6R interacts with Jun activation domain-binding protein-1 (Jab1). We also confirmed a physic...

  20. Layer II/III of the prefrontal cortex: inhibition by the serotonin 5-HT1A receptor in development and stress

    Goodfellow, Nathalie M.; Benekareddy, Madhurima; Vaidya, Vidita A.; Lambe, Evelyn K.

    2009-01-01

    The modulation of the prefrontal cortex by the neurotransmitter serotonin (5-HT) is thought to play a key role in determining adult anxiety levels. Layer II/III of the prefrontal cortex, which mediates communication across cortical regions, displays a of high level 5-HT1A receptor binding in normal individuals and a significantly lower level in patients with mood and anxiety disorders. Here, we examine how serotonin modulates pyramidal neurons in layer II/III of the rat prefrontal cortex thro...

  1. Inhibitory mechanisms and binding site location for serotonin selective reuptake inhibitors on nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Bhumireddy, Pankaj; Ortells, Marcelo O

    2010-05-01

    Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit h alpha1beta1 gammadelta AChR-induced Ca(2+) influx with higher potencies than dizocilpine. The potency of fluoxetine is increased approximately 10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-(3)H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [(3)H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13') and leucine (position 9') rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20', 21', and 24'. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20') rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization. PMID:20079457

  2. Serotonin Receptors and Heart Valve Disease – it was meant 2B

    Hutcheson, Joshua D.; Setola, Vincent; Roth, Bryan L.; Merryman, W. David

    2011-01-01

    Carcinoid heart disease was one of the first valvular pathologies studied in molecular detail, and early research identified serotonin produced by oncogenic enterochromaffin cells as the likely culprit in causing changes in heart valve tissue. Researchers and physicians in the mid-1960s noted a connection between the use of several ergot-derived medications with structures similar to serotonin and the development of heart valve pathologies similar to those observed in carcinoid patients. The ...

  3. Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis.

    El Oussini, Hajer; Bayer, Hanna; Scekic-Zahirovic, Jelena; Vercruysse, Pauline; Sinniger, Jérôme; Dirrig-Grosch, Sylvie; Dieterlé, Stéphane; Echaniz-Laguna, Andoni; Larmet, Yves; Müller, Kathrin; Weishaupt, Jochen H; Thal, Dietmar R; van Rheenen, Wouter; van Eijk, Kristel; Lawson, Roland; Monassier, Laurent; Maroteaux, Luc; Roumier, Anne; Wong, Philip C; van den Berg, Leonard H; Ludolph, Albert C; Veldink, Jan H; Witting, Anke; Dupuis, Luc

    2016-03-01

    Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear

  4. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  5. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD

  6. Dopamine and serotonin receptors measured in vivo in Huntington's Disease with C-11 n-methylspiperone PET imaging

    Thirteen patients with the clinical diagnosis of Huntington's Disease (HD) and nine persons at risk to develop the disease were studied by positron emission tomography (PET) after administration of 11C-n-methylspiperone (NMSP), a tracer with a high affinity for D2 dopamine and, to a lesser degree, for S2 serotonin receptors. All subjects had an X-ray CT scan for positioning and to assess caudate size. Dopamine and serotonin receptor binding (D2 and S2) were estimated by the caudate/cerebellum activity ratio at 43 min. post injection (CA/CB), and frontal cortex/cerebellum (FR/CB), respectively. CA/CB's of HD pts. were lower than age and sex matched controls. However, when corrected by recovery coefficients (RC) for our PET using CT dimensions of the caudate, CA/CB's were higher than normal. The relative total number of D2 receptors (estimated by CA/CB x CT caudate volume) was lower than the controls without or with RC correction

  7. The extracellular entrance provides selectivity to serotonin 5-HT7 receptor antagonists with antidepressant-like behavior in vivo.

    Medina, Rocío A; Vázquez-Villa, Henar; Gómez-Tamayo, José C; Benhamú, Bellinda; Martín-Fontecha, Mar; de la Fuente, Tania; Caltabiano, Gianluigi; Hedlund, Peter B; Pardo, Leonardo; López-Rodríguez, María L

    2014-08-14

    The finding that ergotamine binds serotonin receptors in a less conserved extended binding pocket close to the extracellular entrance, in addition to the orthosteric site, allowed us to obtain 5-HT7R antagonist 6 endowed with high affinity (Ki=0.7 nM) and significant 5-HT1AR selectivity (ratio>1428). Compound 6 exhibits in vivo antidepressant-like effect (1 mg/kg, ip) mediated by the 5-HT7R, which reveals its interest as a putative research tool or pharmaceutical in depression disorders. PMID:25073094

  8. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  9. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe;

    2009-01-01

    Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together w...

  10. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L.; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/inte...

  11. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study.

    Becker, G; Bolbos, R; Costes, N; Redouté, J; Newman-Tancredi, A; Zimmer, L

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  12. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  13. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  14. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E

    Kapeller, Johannes; Möller, Dorothee; Lasitschka, Felix; Autschbach, Frank; Hovius, Ruud; Rappold, Gudrun; Brüss, Michael; Gershon, Michael D.; Niesler, Beate

    2011-01-01

    Since the first description of 5-HT3 receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed...

  15. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    Borg, J; Cervenka, S; Kuja-Halkola, R; Matheson, G J; Jönsson, E G; Lichtenstein, P; Henningsson, S; Ichimiya, T; Larsson, H; Stenkrona, P; Halldin, C; Farde, L

    2016-01-01

    and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the......The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for...

  16. 5-HT1B receptors and serotonin function : microdialysis studies in rats and knockout mice

    Groote, Lotte de

    2002-01-01

    The serotonergic system is an important target in the treatment of psychiatric disorders. Selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but a clinical problem is the delayed therapeutic effect. This delayed onset of action sugge

  17. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  18. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis.

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  19. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  20. Serotonin effects in the crab Neohelice granulata: Possible involvement of two types of receptors in peripheral tissues.

    Inohara, Elen Thegla Sander; Pinto, Charles Budazewsky; Model, Jorge Felipe Argenta; Trapp, Márcia; Kucharski, Luiz Carlos; Da Silva, Roselis Silveira Martins; Vinagre, Anapaula Sommer

    2015-07-01

    In crustaceans, serotonin (5-HT) controls various physiological processes, such as hormonal secretion, color changes, reproduction, and metabolism. Since 5-HT injections cause hyperglycemia, this study was designed to further investigate this action of 5-HT in the crab Neohelice granulate, fed with a high-carbohydrate (HC) or a high-protein (HP) diet. The effects of pre-treatment with mammalian 5-HT receptor antagonists, cyproheptadine and methiothepin, were also investigated. A series of in vivo experiments with (3)H-5-HT was carried out in order to investigate the presence of putative receptors in peripheral tissues. Since gills were the tissue with the highest labeling in in vivo experiments, in vitro studies with isolated anterior and posterior gills were also conducted. Cyproheptadine blocked the hyperglycemic effect of 5-HT in HP-fed crabs. Methiothepin reduced glycogen levels in the anterior gills of HP crabs and partially blocked the 5-HT-like posture. The injection of (3)H-5-HT identified specific binding sites in all the tissues studied and revealed that the binding can be influenced by the type of diet administered to the crabs. Incubation of the anterior and posterior gills with (3)H-5-HT and 5-HT confirmed the specificity of the binding sites. Both antagonists inhibited (3)H-5-HT binding. In conclusion, this study highlights the importance of serotonin in the control of glucose homeostasis in crustaceans and provides evidences of at least two types of 5-HT binding sites in peripheral tissues. Further studies are necessary to identify the structure of these receptors and their signaling pathways. PMID:25810362

  1. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (...

  2. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    Santini, Martin; Klein, A B; El-Sayed, M;

    2011-01-01

    Many psychiatric disorders are characterized by cognitive and emotional alterations that are related to abnormal function of the frontal cortex (FC). FC is involved in working memory and decision making and is activated following exposure to a novel environment. The serotonin 2A receptor (5-HT(2A...

  3. Norepinephrine and Serotonin Receptors in the Paraventricular Nucleus Interactively Modulate Ethanol Consumption

    Hodge, Clyde W.; Slawecki, Craig J.; Aiken, Amy S.

    1996-01-01

    The homeostatic function of the hypothalamus has long been recognized. In particular, the role of the paraventricular nucleus (PVN) in regulating ingestive behavior has been of interest. Infusions of serotonin and norepinephrine Into the PVN are correlated with nutrient selective decreases and increases in consumatory behavior, respectively. Given the wide range of homeostatic functions of the hypothalamus, it is plausible that similar hypothalamic mechanisms may also be involved in the regul...

  4. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  5. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    In the presence of a 30 nM prazosin mask, [3H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([3H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [3H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [3H]WB4101-binding sites in the presence of 30 nM prazosin and [3H] lysergic acid diethylamide ([3H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [3H]WB4101 is significantly lower than the Bmax of [3H]LSD in various brain regions. WB4101 competition for [3H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [3H]WB4101 binding derived from saturation experiments. This suggests that [3H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [3H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [3H]WB4101 but compete for multiple [3H]LSD 5-HT1 binding sites. These data indicate that [3H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [3H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [3H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [3H]WB4101 binding

  6. Increase in serotonin 5-HT1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia

    Binding studies with [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT), a specific serotonin1A (5-HT1A) receptor agonist, were done on the autopsied brains from control subjects and from patients with chronic schizophrenia. In the controls, representative Scatchard plots for the specific [3H]8-OH-DPAT bindings in the prefrontal cortex and hippocampus revealed a single component of high affinity binding site. The [3H]8-OH-DPAT bindings to the prefrontal cortex and hippocampus were potently inhibited by serotonin and 5-HT1A agonists, while other neurotransmitters, 5-HT2 and 5-HT3 related compounds did not inhibit the binding. The bindings were decreased in the presence of 0.1mM GTP and 0.1mM GppNHp but not in the presence of 0.1mM GMP. In the prefrontal and temporal cortices of schizophrenics, there was a significant increase in the specific [3H]8-OH-DPAT binding, by 40% and 60%, respectively, with no change in the hippocampus, amygdala, cingulum, motor cortex, parietal or occipital cortex, as compared to findings in the controls

  7. Antiproliferative effects of the serotonin type 2 receptor antagonist, ketanserin, on smooth muscle cell growth in rats

    The authors defined the role of a serotonin type 2 receptor antagonist, ketanserin, in the growth of aortic vascular smooth muscle cells (VSMCs) from Wistar rats, using cell culture and cell synchrony methods. Deoxyribonucleic acid (DNA) replication in the G0/G1- or G1/S-synchronized VSMCs was assessed by [3H]thymidine uptake into DNA. Ketanserin at 2 x 10(-5) M significantly decreased the thymidine uptake by 48% in the proliferating VSMCs, whereas methysergide, a nonspecific serotonin inhibitor, unaffected the thymidine uptake. Ketanserin at 10(-5) M did not influence the duration of the G1 resting period. However, this dose of ketanserin significantly lowered DNA replication in the DNA synthetic (S) period in a dose-dependent manner. Neither methysergide nor the alpha 1-adrenoceptor antagonist, prazosin, affected DNA synthesis in the S period. Ketanserin exhibits antiproliferative effects on rat VSMC growth probably through the suppression of DNA replication in the S phase. This property would also contribute to the vascular protective effects of ketanserin with its well-documented antihypertensive action

  8. Food restriction and streptozotocin differentially modify sensitivity to the hypothermic effects of direct- and indirect-acting serotonin receptor agonists in rats

    Li, Jun-Xu; Koek, Wouter; France, Charles P.

    2009-01-01

    Food restriction and experimentally-induced diabetes (streptozotocin) can modify serotonin (5-HT) neurotransmission and sensitivity to drugs acting on 5-HT systems. This study examined the effects of food restriction and streptozotocin on the hypothermic effects of the 5-HT1A receptor agonist (+)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT), the 5-HT2 receptor agonist (±)-2,5-dimethoxy-4-methylamphetamine hydrochloride (DOM), the 5-HT releaser fenfluramine, and the selective 5...

  9. Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase.

    Montastruc, François; Palmaro, Aurore; Bagheri, Haleh; Schmitt, Laurent; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse

    2015-10-01

    Pharmacodynamic mechanisms of diabetes induced by antipsychotic drugs remain unclear, while numerous receptors have been suspected to be involved in the genesis of this Adverse Drug Reaction (ADR). We investigated potential relationships between antipsychotics׳ receptor occupancy (serotonin 5-HT1A, 5-HT2A, 5-HT2C, histamine H1, muscarinic M3, adrenergic α1, α2 or dopaminergic D2 D3 occupancies) and reports of diabetes using VigiBase(®), the World Health Organization (WHO) global Individual Case Safety Report (ICSR) database. All ADR reports from 15 first and second generation antipsychotic drugs recorded in VigiBase(®) were extracted. Logistic regression models, completed by disproportionality analysis, were used to determine the associations between antipsychotics׳ receptor occupancy and ICSRs of diabetes on VigiBase(®). During the study period, 94,460 ICSRs involved at least one of the 15 antipsychotics of interest. Diabetes was reported in 1799 (1.9%) patients. Clozapine was the most frequently suspected drug (n=953; 53.0%). A significant and positive association was found between histamine H1, muscarinic M3 and serotonin 5-HT2C, 5-HT2A receptor occupancies and reports of diabetes. A multivariable stepwise regression model showed that only serotonin 5-HT2c (AOR=2.13, CI 95% 1.72-2.64) and histamine H1 (AOR=1.91, CI 95% 1.38-2.64) predicted the risk for diabetes mellitus (p<0.001). Using an original pharmacoepidemiology-pharmacodynamic (PE-PD) approach, our study supports that antipsychotic drugs blocking simultaneously histamine H1 and serotonin 5-HT2C receptors are more frequently associated with diabetes reports in VigiBase(®) than other antipsychotics. These findings should encourage investigation of histamine H1 and serotonin 5-HT2C properties for predicting the risk of glycemic effects in candidate antipsychotics. PMID:26256010

  10. Serotonin in human skin

    Jianguo Huang; Qiying Gong; Guiming Li

    2005-01-01

    In this review the authors summarize data of a potential role for serotonin in human skin physiology and pathology. The uncovering of endogenous serotonin synthesis and its transformation to melatonin underlines a putative important role of this pathway in melanocyte physiology and pathology. Pathways of the biosynthesis and biodegradation of serotonin have been characterized in human beings and its major cellular populations. Moreover, receptors of serotonin are expressed on keratinocytes, melanocytes, and fibroblasts and these mediate phenotypic actions on cellular proliferation and differentiation. And the widespread expression of a cutaneous seorotoninergic system indicates considerable selectivity of action to facilitate intra-, auto-, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner. Melatonin, in turn, can also act as a hormone, neurotransmitter, cytokine, biological modifier and immunomodulator. Thus, Serotonin local synthesis and cellular localization could thus become of great importance in the diagnosis and management of cutaneous pathology.

  11. The 5-HT2A receptor and serotonin transporter in Asperger’s Disorder: a PET study with [11C]MDL 100907 and [11C]DASB

    Girgis, Ragy R.; Slifstein, Mark; Xu, Xiaoyan; Frankle, W. Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-01-01

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [11C]MDL 100907 and [11C]DASB to characterize the 5-HT2A receptor and serotonin transporter in Asperger’s Disorder. 17 individuals with Asperger’s Disorder (age = 34.3 ± 11.1 yr) and 17 healthy controls (age = 33.0 ± 9.6 yr) were scanned with [11C]MDL 100907. Of the 17 patients, eight (a...

  12. Adaptations in pre- and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats.

    Homberg, J.R.; Boer, SF De; Raaso, H.S.; Olivier, J.D.A.; Verheul, M.; Ronken, E.; Cools, A.R.; Ellenbroek, B.A.; Schoffelmeer, A.N.; Schuren, L.J. van der; Vries, TJ De; Cuppen, E.

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  13. Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats

    Homberg, Judith R; De Boer, Sietse F; Raasø, Halfdan S; Olivier, Jocelien D A; Verheul, Mark; Ronken, Eric; Cools, Alexander R; Ellenbroek, Bart A; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J; De Vries, Taco J; Cuppen, Edwin

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  14. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R. PMID:25926782

  15. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  16. 5-HT1A receptors mediate the effect of the bulbospinal serotonin system on spinal dorsal horn nociceptive neurons.

    Zemlan, F P; Murphy, A Z; Behbehani, M M

    1994-01-01

    The present study examined whether the effect of stimulation of the nucleus raphe magnus (NRM) is mediated by spinal cord dorsal horn serotonin1A (5-HT1A) receptors in the rat. This hypothesis predicts that nociceptive dorsal horn units inhibited by NRM stimulation or iontophoretic 5-HT application would also be inhibited by iontophoresis of the selective 5-HT1A agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and buspirone. A total of 78 dorsal horn wide-dynamic-range neurons were recorded. Overall, 62% of the cells tested (48/78) were responsive to electrical stimulation of the NRM with the predominant response being inhibitory (38/48; 79%). Fifty-eight cells were tested for their response to both NRM stimulation and 8-OH-DPAT iontophoresis: 20/58 cells were inhibited by NRM stimulation and 50% of the cells inhibited by NRM stimulation were also inhibited by 8-OH-DPAT. Fifty-two cells were tested for their response to both NRM stimulation and buspirone iontophoresis: 14/52 cells were inhibited by NRM stimulation with 9/14 similarly inhibited by buspirone. To examine whether exogenously applied serotonin produced an effect through 5-HT1A receptors, the effect of both 5-HT and 8-OH-DPAT iontophoresis was tested on 57 dorsal horn neurons. The majority of cells (25/57) were inhibited by 5-HT application; 15/25 were similarly inhibited by 8-OH-DPAT. The response of 48 dorsal horn cells to 5-HT and buspirone iontophoresis was compared. Forty-four percent (21/48) of the cells were inhibited by 5-HT; 16/21 were also inhibited by buspirone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8309982

  17. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome

    Bianca eDe Filippis

    2015-04-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2 cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R. This member of the serotonin receptor family – crucially involved in the regulation of brain structural plasticity and cognitive processes – can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days rescues RTT-related phenotypic alterations, motor coordination (Dowel test, spatial reference memory (Barnes maze test and synaptic plasticity (hippocampal long-term-potentiation in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to two months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  18. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  19. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway.

    Li, Xianxian; Ma, Yuanyuan; Wu, Xiangnan; Hao, Zhichao; Yin, Jian; Shen, Jiefei; Li, Xiaoyu; Zhang, Ping; Wang, Hang

    2013-11-29

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. PMID:24211588

  20. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David; Haugbol, Steven; Madsen, Jacob; Baaré, William; Aznar, Susana; Knudsen, Gitte M

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding.......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...

  1. Carbon-11 and radioiodinated derivatives of lysergic acid diethylamide: Ligands for the study of serotonin S2 receptors in vivo

    2-[1251]-LSD binds selectively and with high affinity to serotonin S2 receptors in vitro. In the present study, the authors prepared 2-[1231]-LSD as well as a carbon-11 labeled analog. They also characterized the in vivo binding of these tracers to receptor sites in mouse brain to assess their potential for tomographic imaging of S2 receptors in man. The temporal distribution of 2-[1251]-LSD paralleled the density of S2 receptors. Regional selectivity was maximal after 15 minutes when tissue to cerebellum ratios were: frontal cortex (2.6), olfactory tubercles (2.4), striatum (2.3), and cortex (2.0). Preinjection of ketanserin, a potent S2 antagonist, inhibited binding. 2-[1231]-LSD, prepared in 20% yield from LSD and electrophilic I-123, gave similar results in vivo and may be useful for SPECT studies. The authors then synthesized N1-([11C]-Me)-2-Br-LSD (11C-MBL) from [11C]-methyl iodide and 2-Br-LSD for PET imaging trials. 11C-MBL was isolated by HPLC in high chemical and radiochemical purity within 30 minutes from E.O.B. The average radiochemical yield was 20% and the specific activity was determined by U.V. spectroscopy to be up to 1300Ci/mMol (E.O.S.). 11C-MBL showed greater regional selectivity in vivo in mouse brain than 2-[1251]-LSD. After 30 minutes, peak tissue to cerebellum ratios were: frontal cortex (5.4), olfactory tubercles (4.2), striatum (3.0), and cortex (2.8). Preinjection of ketanserin markedly inhibited 11C-MBL binding. 11C-MBL is a promising candidate for PET studies of S2 receptors

  2. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats.

    Han, Ling Na; Zhang, Li; Sun, Yi Na; Du, Cheng Xue; Zhang, Yu Ming; Wang, Tao; Zhang, Jin; Liu, Jian

    2016-08-01

    Preclinical studies indicate that serotonin7 (5-HT7) receptors may regulate depressive-like behaviors. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT7 receptors in the lateral habenular nucleus (LHb) involve in the regulation of PD-related depression. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-LHb injection of 5-HT7 receptor agonist AS19 (1, 2 and 4μg/rat) induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-LHb injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6μg/rat) produced antidepressant effects in the two groups of rats. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-LHb injection of AS19 (4μg/rat) decreased dopamine and 5-HT levels in the medial prefrontal cortex, habenula and hippocampus in sham-operated and the lesioned rats; whereas SB269970 (6μg/rat) increased dopamine and 5-HT levels in these structures. In addition, noradrenaline levels in these structures were not changed after intra-LHb injection of AS19 or SB269970 in the two groups of rats. These findings suggest that activation or blockade of 5-HT7 receptors in the LHb may change the activity of LHb glutamate neurons, and then decreases or increases dopamine and 5-HT levels in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors. PMID:27178363

  3. Strategies for improved modeling of GPCR-drug complexes: blind predictions of serotonin receptors bound to ergotamine.

    Rodríguez, David; Ranganathan, Anirudh; Carlsson, Jens

    2014-07-28

    The recent increase in the number of atomic-resolution structures of G protein-coupled receptors (GPCRs) has contributed to a deeper understanding of ligand binding to several important drug targets. However, reliable modeling of GPCR-ligand complexes for the vast majority of receptors with unknown structure remains to be one of the most challenging goals for computer-aided drug design. The GPCR Dock 2013 assessment, in which researchers were challenged to predict the crystallographic structures of serotonin 5-HT(1B) and 5-HT(2B) receptors bound to ergotamine, provided an excellent opportunity to benchmark the current state of this field. Our contributions to GPCR Dock 2013 accurately predicted the binding mode of ergotamine with RMSDs below 1.8 Å for both receptors, which included the best submissions for the 5-HT(1B) complex. Our models also had the most accurate description of the binding sites and receptor-ligand contacts. These results were obtained using a ligand-guided homology modeling approach, which combines extensive molecular docking screening with incorporation of information from multiple crystal structures and experimentally derived restraints. In this work, we retrospectively analyzed thousands of structures that were generated during the assessment to evaluate our modeling strategies. Major contributors to accuracy were found to be improved modeling of extracellular loop two in combination with the use of molecular docking to optimize the binding site for ligand recognition. Our results suggest that modeling of GPCR-drug complexes has reached a level of accuracy at which structure-based drug design could be applied to a large number of pharmaceutically relevant targets. PMID:25030302

  4. The time course of serotonin 2C receptor expression after spinal transection of rats

    Ren, Li-Qun; Wienecke, Jacob; Chen, Meng;

    2013-01-01

    of spasticity after spinal cord injury. In conjunction with our 5-HT2A receptor study, using a same sacral spinal transection rat model we have in this study examined 5-HT2C receptor immunoreactivity (5-HT2CR-IR) changes at seven different time intervals after spinal injury. We found that 5-HT2CR......In the spinal cord 5-HT systems modulate the spinal network via various 5-HT receptors. 5-HT2A and 2C receptors are likely the most important 5-HT receptors for enhancing the motoneuron excitability by facilitating the persistent inward current, and thus play an important role for the pathogenesis...

  5. CB-1 receptors modulate the effect of the selective serotonin reuptake inhibitor, citalopram on extracellular serotonin levels in the rat prefrontal cortex

    Kleijn, Jelle; Cremers, Thomas I. F. H.; Hofland, Corry M.; Westerink, Ben H. C.

    2011-01-01

    A large percentage of depressed individuals use drugs of abuse, like cannabis. This study investigates the impact of cannabis on the pharmacological effects of the antidepressant citalopram. Using microdialysis in the prefrontal cortex of rats we monitored serotonin levels before and after cannabino

  6. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis

    Klejbor, Ilona; Kucinski, Aaron; Wersinger, Scott R.; Corso, Thomas; Spodnik, Jan H.; Dziewiątkowski, Jerzy; Moryś, Janusz; Hesse, Renae A.; Rice, Kenner C.; Miletich, Robert; Stachowiak, Ewa K.; Stachowiak, Michal K.

    2009-01-01

    The role of fibroblast growth factor receptors (FGFR) in normal brain development has been well-documented in transgenic and knock-out mouse models. Changes in FGF and its receptors have also been observed in schizophrenia and related developmental disorders. The current study examines a transgenic th(tk-)/th(tk-) mouse model with FGF receptor signaling disruption targeted to dopamine (DA) neurons, resulting in neurodevelopmental, anatomical, and biochemical alterations similar to those obser...

  7. Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors

    Fluoxetine administration to rats dose of 10mg/kg i.p. daily up to 12 or 24 days failed to change the concentration-dependent binding of [3H]WB4101, [3H]clonidine and [3H]dihydroalprenolol to α1-, α2- and β-adrenergic receptors, respectively; [3H]quinuclidinyl benzilate to muscarinic receptors; [3H]pyrilamine to histamine H1 receptors and [3H]naloxone to opiate receptors. Persistent and significant decreases in receptor number (Bsub(max) value) without changes in the dissociation constant (Ksub(D) value) of [3H]5-HT binding in cortical membranes were observed upon chronic treatment with fluoxetine administered either by intraperitoneal injection or incorporation in the diet. A detectable reduction of 5-HT1 receptor number occured after once-daily injections of fluoxetine at 10mg/kg i.p. within 49 hours. After pretreatment for 3 days with p-chlorophenylalanine, an inhibitor of 5-HT synthesis, followed by repeated administration of fluoxetine, 5-HT1 receptor numbers were higher than those of normal rats, suggesting a dependence on synaptic concentration of 5-HT for fluoxetine to affect a receptor down-regulation. These studies provide further evidence for the selectivity of fluoxetine as an inhibitor of 5-HT reuptake, resulting in a selective down-regulation of 5-HT1 receptors in the cerebal cortex of rat brain. (Author)

  8. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors

    Chakravarthi Narla

    2015-05-01

    Full Text Available The piriform cortex (PC is richly innervated by Corticotropin-releasing factor (CRF and Serotonin (5-HT containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC either mimicked or blocked CRF modulation respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of layer II pyramidal neurons. CRF had highly variable effects on interneurons within layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and serotonin, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviours mediated through the olfactory cortex.

  9. Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand [(11)C]P943 in humans.

    Gallezot, Jean-Dominique; Nabulsi, Nabeel; Neumeister, Alexander; Planeta-Wilson, Beata; Williams, Wendol A; Singhal, Tarun; Kim, Sunhee; Maguire, R Paul; McCarthy, Timothy; Frost, J James; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E

    2010-01-01

    [(11)C]P943 is a new radioligand recently developed to image and quantify serotonin 5-Hydroxytryptamine (5-HT(1B)) receptors with positron emission tomography (PET). The purpose of this study was to evaluate [(11)C]P943 for this application in humans, and to determine the most suitable quantification method. Positron emission tomography data and arterial input function measurements were acquired in a cohort of 32 human subjects. Using arterial input functions, compartmental modeling, the Logan graphical analysis, and the multilinear method MA1 were tested. Both the two tissue-compartment model and MA1 provided good fits of the PET data and reliable distribution volume estimates. Using the cerebellum as a reference region, BP(ND) binding potential estimates were computed. [(11)C]P943 BP(ND) estimates were significantly correlated with in vitro measurements of the density of 5-HT(1B) receptors, with highest values in the occipital cortex and pallidum. To evaluate noninvasive methods, two- and three-parameter graphical analyses, Simplified Reference Tissue Models (SRTM and SRTM2), and Multilinear Reference Tissue Models (MRTM and MRTM2) were tested. The MRTM2 model provided the best correlation with MA1 binding-potential estimates. Parametric images of the volume of distribution or binding potential of [(11)C]P943 could be computed using both MA1 and MRTM2. The results show that [(11)C]P943 provides quantitative measurements of 5-HT(1B) binding potential. PMID:19773803

  10. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636

  11. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Maria Martí-Solano

    Full Text Available Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  12. Differential responses to serotonin receptor ligands in an impulsive-aggressive phenotype.

    Cervantes, M Catalina; Biggs, Emily A; Delville, Yvon

    2010-08-01

    Offensive aggression in golden hamsters is inhibited by 5-hydroxytryptamine (5-HT)1A receptors and facilitated by 5-HT3 receptor activation. As such, we sought to determine whether these receptors function similarly between animals expressing an impulsive-aggressive phenotype, as compared to normal animals. Animals were screened for aggressive and impulsive choice behaviors and categorized into Low-Aggression (L-Agg) and High-Aggression (H-Agg) groups, and then tested for behavior under effective doses of 5-HT1A receptor agonist 8-hydroxy-N, N-dipropyl-2-aminotetralin (DPAT; 0.1 mg/kg and 0.3 mg/kg) or 5-HT3 receptor antagonist tropisetron (0.3 mg/kg) treatment. Low-dose DPAT treatment inhibited both behaviors in H-Agg animals, however yielding more modest effects in L-Agg animals; while high-dose DPAT effects were confounded by side effects on locomotion. Tropisetron, on the other hand, had differential effects between groups, as aggression and impulsive choice were both inhibited in H-Agg animals, while enhanced in L-Agg individuals. In addition, while the effects of the 5-HT1A receptor were limited, the broad effects of 5-HT3 receptor included repetitive and impulsive elements of behavior, pointing to the importance of the receptor's role in the modulation of these particular aspects within the phenotype. PMID:20695645

  13. Drug: D06396 [KEGG MEDICUS

    Full Text Available D06396 Drug Renzapride (INN) C16H22ClN3O2 323.1401 323.8178 D06396.gif 5-HT4-recept...r08310] G Protein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Renzapride D06396 Renzapride

  14. A Dynamic View of Molecular Switch Behavior at Serotonin Receptors: Implications for Functional Selectivity

    Mart?? Solano, Maria; Sanz, Ferran; Pastor Maeso, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and ??-arrestin signaling at the 5-HT1B receptor but clearly favoring ??-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structu...

  15. Serotonin receptor subtype mediation of the interoceptive discriminative stimuli induced by 5-methoxy-N,N-dimethyltryptamine.

    Spencer, D G; Glaser, T; Traber, J

    1987-01-01

    Male Wistar rats were trained to discriminate the interoceptive effects of 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT; 1.25 mg/kg, IP) from saline in a two-lever operant chamber. Following discrimination learning, the following drugs (with ED50 dose in mg/kg IP) dose-dependently generalized: lysergic acid diethylamide (LSD, 0.04), 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.11), 6-methoxy-4-(dipropyl-amino)-1,3,4,5-tetrahydrobenz(c,d)indole hydrochloride (BAY R 1531, 0.15), 5-OMe-DMT itself (0.63), ipsapirone (TVX Q 7821, 2.7), and buspirone (3.8). The potencies of these drugs in generalization tests were best correlated with their binding affinities for the 5-HT1A serotonin receptor subtype (as measured by displacement of 3H-ipsapirone in the hippocampus). Drugs not, or only partially generalizing included quipazine, bufotenin, m-trifluoromethylphenylpiperazine (TFMPP), 5-methoxy-3(1,2,3,6-tetrahydropyridine-4-yl)-1H-indole succinate (RU 24969), citalopram, clomipramine, 1,4-dihydro-2,6-dimethyl-3-nitro-4(2-trifluoromethylphenyl)-pyridine-5- carboxylate (BAY K 8644), the buspirone metabolite 1-pyrimidinyl-piperazine (1-PP), methysergide, metergoline, and metitepine. Of the last three compounds with antagonistic activity at 5-HT receptors, as well as ketanserin, pizotifen, and ritanserin, only metitepine and pindolol could fully block the 5-OMe-DMT stimulus. Pizotifen blocked the generalization of quipazine fully, that of 5-OMe-DMT only partially, and that of ipsapirone not at all. These data indicate that the 5-HT1A receptor subtype is strongly involved in the transduction of the interoceptive discriminative stimuli induced by 5-OMe-DMT, with 5-HT2 agonism also playing a possible role. PMID:3122248

  16. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin

    Giniatullin Rashid

    2006-03-01

    Full Text Available Abstract Background Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. Results Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X3 and TRPV1 receptors after 1–4 days in culture (together with their more frequent co-localization, while P2X2 ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca2+ imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist α, β-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X3 receptors (selectively antagonized by A-317491 and heteromeric P2X2/3 receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X3 receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X3 receptors. Conclusion Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception

  17. Effect of the 5-HT{sub 4} receptor and serotonin transporter on visceral hypersensitivity in rats

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan [Department of Gastroenterology, Peking University First Hospital, Beijing (China)

    2012-07-27

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT{sub 4} receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT{sub 4} receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT{sub 4} receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg{sup −1}·day{sup −1}, days 36-42), tegaserod (1 mg·kg{sup −1}·day{sup −1}, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT{sub 4} receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT{sub 4} receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT

  18. Serotonin3 receptor agonists attenuate glutamate-induced firing in rat hippocampal CA1 pyramidal cells.

    Zhang, J Y; Zeise, M L; Wang, R Y

    1994-01-01

    The techniques of extracellular single cell recording and microiontophoresis were used to study the effect of 5-HT3 receptor agonists on glutamate-activated firing of CA1 hippocampal pyramidal cells. Iontophoretic application of 5-HT3 receptor agonists 2-methyl-5-HT and SR 57227A produced a current (dose)-dependent suppression of the firing of CA1 pyramidal cells; SR 57227A was more effective than 2-methyl-5-HT. The suppressant action of 2-methyl-5-HT and SR 57227A had a slow onset and showed little or no desensitization. This effect was markedly attenuated or completely blocked by the 5-HT3 receptor antagonist BRL 46470A but not by the nonspecific 5-HT1 and 5-HT2 receptor antagonist metergoline or by the 5-HT1A antagonist WAY 100478. Intravenous administration of SR 57227A was effective in reducing the firing rate of CA1 pyramidal cells and this effect was prevented by BRL 46470A administered either i.v. or iontophoretically. Iontophoresis of 2-methyl-5-HT also diminished CA1 postsynaptic field potentials evoked by electrical stimulation of the Schaffer collaterals. Again, BRL 46470A but not metergoline prevented the suppressant action of 2-methyl-5-HT. Taken together, our results indicate that activation of 5-HT3-like receptors in the hippocampal CA1 region effectively reduces the efficacy of glutamatergic neurotransmission. PMID:7984287

  19. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder

    Aim: The characteristics of 5HT2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p2 receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.)

  20. In vivo assessment of dopamine and serotonin receptors measured by C-11 n-methylspiperone (NMSP) in patients with schizophrenia

    The authors carried out PET imaging with C-11 NMSP in 13 pts. diagnosed as chronic schizophrenic by (DSM 3) criteria. They had no detectable serum neuroleptics by radioassay at the time of the scan. No pt. had received a neuroleptic for at least 1 week before study, with an avg. abstinence of 7 mo. One had never been on neuroleptics. During the time of scanning, 8/13 had delusions and hallucinations. There was no statistically significant difference from 44 age and sex matched control subjects for the 43 min. Caudate/cerebellar ratio, or the Frontal/Cerebellar ratio, both measures of relative dopamine D2, and serotonin S2 binding. These preliminary studies suggest that these drug free pts. show no large differences in the receptor levels compared to normal data. Differences from in vitro data could be due to: differences in duration of illness (the avg. 10.3) yrs.; difference in age (our pts. vg. 32.7 are much younger than those dying with schizophrenia); drug induced effects at death or persistent neuroleptic effect in our pts.; or difference in method

  1. Impulsive alcohol-related risk-behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon.

    Tikkanen, R; Tiihonen, J; Rautiainen, M R; Paunio, T; Bevilacqua, L; Panarsky, R; Goldman, D; Virkkunen, M

    2015-01-01

    A relatively common stop codon (Q20*) was identified in the serotonin 2B receptor gene (HTR2B) in a Finnish founder population in 2010 and it was associated with impulsivity. Here we examine the phenotype of HTR2B Q20* carriers in a setting comprising 14 heterozygous HTR2B Q20* carriers and 156 healthy controls without the HTR2B Q20*. The tridimensional personality questionnaire, Brown-Goodwin lifetime aggression scale, the Michigan alcoholism screening test and lifetime drinking history were used to measure personality traits, impulsive and aggressive behavior, both while sober and under the influence of alcohol, and alcohol consumption. Regression analyses showed that among the HTR2B Q20* carriers, temperamental traits resembled a passive-dependent personality profile, and the presence of the HTR2B Q20* predicted impulsive and aggressive behaviors particularly under the influence of alcohol. Results present examples of how one gene may contribute to personality structure and behaviors in a founder population and how personality may translate into behavior. PMID:26575222

  2. CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function

    Edvinsson, Lars; Povlsen, Gro Klitgaard; Ahnstedt, Hilda; Waldsee, Roya

    2014-01-01

    BACKGROUND: It has been suggested that transcriptional upregulation of cerebral artery contractile endothelin (ETB) and 5-hydroxytryptamine (5-HT1B) receptors play an important role in the development of late cerebral ischemia and increased vasoconstriction after subarachnoid hemorrhage (SAH). We...... tested the hypothesis that inhibition of calcium calmodulin-dependent protein kinase II (CaMKII) may reduce cerebral vasoconstriction mediated by endothelin and serotonin receptors and improve neurological outcome after experimental SAH. METHODS: SAH was induced in adult rats by injection of 250 μ...

  3. X-ray structure of the mouse serotonin 5-HT3 receptor

    Hassaine, Gherici; Deluz, Cedric; Grasso, Luigino; Wyss, Romain; Tol, Menno B.; Hovius, Ruud; Graff, Alexandra; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Li, Xiao-Dan; Poitevin, Frederic; Vogel, Horst; Nury, Hugues

    2014-01-01

    Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structur

  4. Robust upregulation of serotonin 2A receptors after chronic spinal transection of rats: An immunohistochemical study

    Kong, Xiang-Yu; Wienecke, Jacob; Hultborn, Hans;

    2010-01-01

    that of sham-operated rats. We also found a small number of intraspinal 5-HT neurons and clusters of 5-HT fibers and their varicosities in the spinal cord caudal to the lesion, which may provide an intrinsic source of 5-HT to act upon the upregulated 5-HT2A receptors. These results indicate...

  5. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  6. Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism -1438 A/G on Speed-Dating Success.

    Wu, Karen; Chen, Chuansheng; Moyzis, Robert K; Greenberger, Ellen; Yu, Zhaoxia

    2016-09-01

    We examined an understudied but potentially important source of romantic attraction-genetics-using a speed-dating paradigm. The mu opioid receptor (OPRM1) polymorphism A118G (rs1799971) and the serotonin receptor (HTR2A) polymorphism -1438 A/G (rs6311) were studied because they have been implicated in social affiliation. Guided by the social role theory of mate selection and prior genetic evidence, we examined these polymorphisms' gender-specific associations with speed-dating success (i.e., date offers, mate desirability). A total of 262 single Asian Americans went on speed-dates with members of the opposite gender and completed interaction questionnaires about their partners. Consistent with our prediction, significant gender-by-genotype interactions were found for speed-dating success. Specifically, the minor variant of A118G (G-allele), which has been linked to submissiveness/social sensitivity, predicted greater speed-dating success for women, whereas the minor variant of -1438 A/G (G-allele), which has been linked to leadership/social dominance, predicted greater speed-dating success for men. For both polymorphisms, reverse "dampening" effects of minor variants were found for opposite-gender counterparts. These results support previous research on the importance of the opioid and serotonergic systems in social affiliation, indicating that their influence extends to dating success, with opposite, yet gender-norm consistent, effects for men and women. PMID:27193909

  7. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder. PMID:22079057

  8. Synthesis and Evaluation of Mefway Analogs as Ligands for Serotonin 5HT1A Receptors

    Thio, Joanne P.; Liang, Christopher; Bajwa, Alisha K; Wooten, Dustin W; Christian, Bradley T; Mukherjee, Jogeshwar

    2014-01-01

    18F-Mefway (N-{2-[4-(2′-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(4′-18F-fluoro-methylcyclohexane)carboxamide) was developed and evaluated for use as a PET ligand for imaging 5-HT1A receptors. Ongoing studies of 18F-Mefway have shown it to be an effective PET radiotracer. We have synthesized isomers of Mefway by changing the position of the methyl-group in attempts to evaluate stability for imaging purposes. 2-Methyl-, 3-methyl-, and 4-methyl-cyclohexane-1-carboxylic acids and 3-carbo...

  9. Systematic Screening of the Serotonin Receptor 1A (5-HT1A) Gene in Chronic Tinnitus

    Kleinjung T; Langguth B; Fischer B; Hajak G; Eichhammer P; Sand PG

    2006-01-01

    Objective Chronic tinnitus is a highly prevalent condition and has been hypothesized to result from an innate disturbance in central nervous serotonergic transmission. Given the frequent comorbidity with major depression and anxiety, we argue that candidate genes for these disorders are likely to overlap. The present study addresses the gene encoding for the 5-HT1A receptor as a putative risk factor for tinnitus. Methods In 88 subjects with a diagnosis of chronic subjective tinnitus who underwent a detailed neurootological examination, the entire 5-HT1A gene was amplified using overlapping PCR products. Amplicons were custom sequenced bidirectionally and were screened for variants in multiple alignments against the human genome reference. Results We identified a synonymous C > T exchange at residue 184 (Pro) in 7/88 subjects, but detected no missense variants in the population under study. Specifically, the following residues were fully conserved: 16 (Pro), 22 (Gly), 28 (Ile), 98 (Val), 220(Arg), 267 (Val), 273 (Gly), and 418 (Asn). Discussion The present data count against the causation of chronic tinnitus by a change in the 5-HT1A receptor's amino acid sequence. However, the allele frequency for the 184Pro minor allele (0.04) reached twice the frequency reported in control cohorts from the same ethnicity.Additional investigations are invited to clarify the role of the 5-HT1A polymorphism in larger samples, and to control for comorbid affective disorders.

  10. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments.

    Connors, Kristin A; Valenti, Theodore W; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S; Brooks, Bryan W; Gould, Georgianna G

    2014-06-01

    The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitalizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [(3)H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of similarly Gαi/o-coupled cannabinoid receptors. [(3)H] 8-OH-DPAT specific binding was 176±8, 275±32, and 230±36fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [(3)H] WIN55,212-2 binding density was higher in those same brain regions at 6±0.3, 5.5±0.4 and 7.3±0.3pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50mg/L), or dietary exposure to WIN55,212-2 (7μg/week) zebrafish spent more time in and/or entered white arms more often than controls (pecological risks of azapirones and multimodal antidepressants in the future. PMID:24411165

  11. Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia.

    Devroye, Céline; Cathala, Adeline; Haddjeri, Nasser; Rovera, Renaud; Vallée, Monique; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2016-10-01

    Recent studies suggest that the central serotonin2B receptor (5-HT2BR) could be an interesting pharmacological target for treating neuropsychiatric disorders related to dopamine (DA) dysfunction, such as schizophrenia. Thus, the present study was aimed at characterizing the role of 5-HT2BRs in the control of ascending DA pathway activity. Using neurochemical, electrophysiological and behavioral approaches, we assessed the effects of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on in vivo DA outflow in DA-innervated regions, on mesencephalic DA neuronal firing, as well as in behavioral tests predictive of antipsychotic efficacy and tolerability, such as phencyclidine (PCP)-induced deficit in novel object recognition (NOR) test, PCP-induced hyperlocomotion and catalepsy. Both RS 127445 (0.16 mg/kg, i.p.) and LY 266097 (0.63 mg/kg, i.p.) increased DA outflow in the medial prefrontal cortex (mPFC). RS 127445, devoid of effect in the striatum, decreased DA outflow in the nucleus accumbens, and potentiated haloperidol (0.1 mg/kg, s.c.)-induced increase in mPFC DA outflow. Also, RS 127445 decreased the firing rate of DA neurons in the ventral tegmental area, but had no effect in the substantia nigra pars compacta. Finally, both RS 127445 and LY 266097 reversed PCP-induced deficit in NOR test, and reduced PCP-induced hyperlocomotion, without inducing catalepsy. These results demonstrate that 5-HT2BRs exert a differential control on DA pathway activity, and suggest that 5-HT2BR antagonists could represent a new class of drugs for improved treatment of schizophrenia, with an ideal profile of effects expected to alleviate cognitive and positive symptoms, without eliciting extrapyramidal symptoms. PMID:27260325

  12. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  13. Direct interaction and functional coupling between human 5-HT6 receptor and the light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1.

    Soon-Hee Kim

    Full Text Available Serotonin (5-HT receptors of type 6 (5-HT6R play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer's disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1 subunit of MAP1B protein (MAP1B-LC1, a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain.

  14. A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor

    Ruyun Zhou

    2013-02-01

    Full Text Available Molecular motors are fundamental to neuronal morphogenesis and function. However, the extent to which molecular motors are involved in higher brain functions remains largely unknown. In this study, we show that mice deficient in the kinesin family motor protein KIF13A (Kif13a−/− mice exhibit elevated anxiety-related behavioral phenotypes, probably because of a reduction in 5HT1A receptor (5HT1AR transport. The cell-surface expression level of the 5HT1AR was reduced in KIF13A-knockdown neuroblastoma cells and Kif13a−/− hippocampal neurons. Biochemical analysis showed that the forkhead-associated (FHA domain of KIF13A and an intracellular loop of the 5HT1AR are the interface between the motor and cargo vesicles. A minimotor consisting of the motor and FHA domains is able to transport 5HT1AR-carrying organelles in in vitro reconstitution assays. Collectively, our results suggest a role for this molecular motor in anxiety control.

  15. MDMA-evoked changes in the binding of dopamine D(2) receptor ligands in striatum of rats with unilateral serotonin depletion

    Ostergaard, Søren Dinesen; Alstrup, Aage Kristian Olsen; Gramsbergen, Jan Bert;

    2010-01-01

    2D6. Assuming a single binding-site model, the increased [(3)H]raclopride binding indicated doubling of the apparent equilibrium dissociation constant in vivo (K(app) (d)), revealing a 2-fold increase in competition from endogenous dopamine at [(3)H]raclopride binding sites. The results favor......-challenge nor serotonin lesion had any detectable effect on [(11)C]NMSP binding. In contrast, MDMA challenge increased receptor occupancy by [(3)H]raclopride ex vivo (relative to the B(max) in vitro) from 8% to 12%, and doubled the free ligand concentration in cerebral cortex, apparently by blocking hepatic CYP...

  16. Clozapine functions through the prefrontal cortex serotonin 1A receptor to heighten neuronal activity via calmodulin kinase II-NMDA receptor interactions.

    Purkayastha, Sudarshana; Ford, Jason; Kanjilal, Baishali; Diallo, Souleymane; Del Rosario Inigo, Joseph; Neuwirth, Lorenz; El Idrissi, Abdeslem; Ahmed, Zaghloul; Wieraszko, Andrzej; Azmitia, Efrain C; Banerjee, Probal

    2012-02-01

    Aberrant dopamine release in the prefrontal cortex (PFC) is believed to underlie schizophrenia, but the mechanistic pathway through which a widely used antipsychotic, clozapine (Clz), evokes neurotransmitter-releasing electrical stimulation is unclear. We analyzed Clz-evoked regulation of neuronal activity in the PFC by stimulating axons in layers IV and V and recording the electrical effect in the post-synaptic pyramidal cells of layers II and III. We observed a Clz-evoked increase in population spike (PS), which was mediated by serotonin 1A receptor (5-HT(1A)-R), phospholipase Cβ, and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Immunoblotting demonstrated that the Clz-activation of CaMKII was 5-HT(1A)-R-mediated. Intriguingly, the NMDA receptor (NMDA-R) antagonist (±)2-amino-5-phosphonovaleric acid (APV) eliminated the Clz-mediated increase in PS, suggesting that the 5-HT(1A)-R, NMDA-R and CaMKII form a synergistic triad, which boosts excitatory post-synaptic potential (EPSP), thereby enhancing PS. In corroboration, Clz as well as NMDA augmented field EPSP (fEPSP), and WAY100635 (a 5-HT(1A)-R antagonist), APV, and a CaMKII inhibitor eliminated this increase. As previously shown, CaMKII binds to the NMDA-R 2B (NR2B) subunit to become constitutively active, thereby inducing α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor recruitment to the post-synaptic membrane and an increase in fEPSP. Co-immunoprecipitation demonstrated that Clz potentiates interactions among CaMKII, NR2B, and 5-HT(1A)-R, possibly in the membrane rafts of the post-synaptic density (PSD), because pretreatment with methyl-β-cyclodextrin (MCD), an agent that disrupts rafts, inhibited both co-immunoprecipitation as well as fEPSP. In summary, Clz functions in the PFC by orchestrating a synergism among 5-HT(1A)-R, CaMKII, and NMDA-R, which augments excitability in the PFC neurons of layers II/III. PMID:22044428

  17. Behavioral and electroencephalographic effects of a serotonin receptor agonist (5-methoxy-N,N-dimethyltryptamine) in a feline model of photosensitive epilepsy.

    Wada, Y; Hasegawa, H; Nakamura, M; Yamaguchi, N

    1992-04-13

    The effects of a serotonin (5-HT) receptor agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), on epileptic photosensitivity were studied in the lateral geniculate-kindled cat. 5-MeODMT at 4 mg/kg significantly suppressed photically induced myoclonus, but not paroxysmal EEG activity, at 0.5-1 h after injection. This antiepileptic effect was seen in association with the appearance of behavioral signs similar to those seen in the 5-HT syndrome. The present data provide further evidence that 5-HT plays an important role in photosensitive epilepsy, and suggest that the inhibitory effect of 5-MeODMT on photosensitivity results from its agonist action at 5-HT1 receptors. PMID:1407649

  18. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats

    Palner, Mikael; Underwood, Mark D; Kumar, Dileep J S;

    2011-01-01

    -DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [³H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats...

  19. Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors for Developing Effective Antipsychotics

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia; Brogi, Simone; Trotta, Francesco; Ros, Sindu; Cagnotto, Alfredo; Salmona, Mario; Casagni, Alice; Andreassi, Marco; Saponara, Simona; Gorelli, Beatrice; Weikop, Pia; Mikkelsen, Jens D.; Scheel-Kruger, Jorgen; Sandager-Nielsen, Karin; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2014-01-01

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid of...

  20. Effect of 5-HT1A receptor-mediated serotonin augmentation on Fos immunoreactivity in rat brain

    Jongsma, ME; Sebens, JB; Bosker, FJ; Korf, J

    2002-01-01

    The consequences of pharmacologically evoked augmented serotonin (5-hydroxytryptamine, 5-HT) release on neuronal activity in the brain, as reflected by the cellular expression of the immediate early gene c-fos, were studied. Wistar rats were treated with saline, the 5-HT reuptake inhibitor citalopra

  1. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes

    Kring, Sofia I I; Werge, Thomas; Holst, Claus;

    2009-01-01

    BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these...

  2. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats

    Palner, Mikael; Underwood, Mark D; Kumar, Dileep J S;

    2011-01-01

    [³H]CUMI-101 is a 5-HT(1A) partial agonist, which has been evaluated for use as a positron emission tracer in baboon and humans. We sought to evaluate the properties of [³H]CUMI-101 ex vivo in awake rats and determine if [³H]CUMI-101 can measure changes in synaptic levels of serotonin after diffe...

  3. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders. PMID:26011730

  4. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT(3)A, Histamine H(1), and Histamine H(4) Receptors.

    Schultes, Sabine; Kooistra, Albert J; Vischer, Henry F; Nijmeijer, Saskia; Haaksma, Eric E J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2015-05-26

    In the current study we have evaluated the applicability of ligand-based virtual screening (LBVS) methods for the identification of small fragment-like biologically active molecules using different similarity descriptors and different consensus scoring approaches. For this purpose, we have evaluated the performance of 14 chemical similarity descriptors in retrospective virtual screening studies to discriminate fragment-like ligands of three membrane-bound receptors from fragments that are experimentally determined to have no affinity for these proteins (true inactives). We used a complete fragment affinity data set of experimentally determined ligands and inactives for two G protein-coupled receptors (GPCRs), the histamine H1 receptor (H1R) and the histamine H4 receptor (H4R), and one ligand-gated ion channel (LGIC), the serotonin receptor (5-HT3AR), to validate our retrospective virtual screening studies. We have exhaustively tested consensus scoring strategies that combine the results of multiple actives (group fusion) or combine different similarity descriptors (similarity fusion), and for the first time systematically evaluated different combinations of group fusion and similarity fusion approaches. Our studies show that for these three case study protein targets both consensus scoring approaches can increase virtual screening enrichments compared to single chemical similarity search methods. Our cheminformatics analyses recommend to use a combination of both group fusion and similarity fusion for prospective ligand-based virtual fragment screening. PMID:25815783

  5. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the α subunit of GS protein

    The serotonin type 6 (5-HT6) receptor is a G-protein coupled receptor (GPCR) coupled to a stimulatory G-protein (GS). To identify the structural basis for the interaction of the 5-HT6 receptor with the GS protein, we have dissected the interaction between GST-fusion proteins containing the second intracellular loop (iL2), the third intracellular loop (iL3), or the C-terminal tail of the 5-HT6 receptor and the α subunit of GS (GαS). The direct interaction of iL3 and GαS was demonstrated by co-immunoprecipitation. Furthermore, the kinetic parameters of the interaction between iL3 and GαS were measured by surface plasmon resonance, and the apparent dissociation constant was determined to be 0.9 x 10-6 M. In contrast, the second intracellular loop and C-terminal tail regions showed negligible affinity to GαS. The critical residues within the iL3 region for the interaction with GαS were identified as conserved positively charged residues near the C-terminus of iL3 by measuring the cellular levels of cAMP produced in response to 5-HT stimulation of cells transfected with 5-HT6 receptor mutants

  6. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  7. Distribution of serotonin 5-HT2A and 5-HT7 receptors in the Onuf's nucleus of the rat spinal cord

    Fanqing Zeng; Chen Xu; Ge Xu

    2008-01-01

    BACKGROUND: Motoneurons from the Onuf's nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytryptamine, 5-HT) regulates motoneuron activity from the Onuf's nucleus of the spinal cord.However, few studies exist that describe 5-HT receptor distribution in the Onuf's nucleus. In addition, the nature of the effects of 5-HT receptor on the innervating striated muscle of the pelvic floor is controversial.OBJECTIVE: To investigate the distribution of serotonin 5-HT2A and 5-HT7 receptors in motoneurons of Onuf's nucleus in the spinal cord of male rats, and to analyze the relationship of 5-HT2A and 5-H7 receptors to central modulation of urogenital function.DESIGN, TIME AND SETTING: The neural morphology experiment was performed at the Ultramicrostructure Laboratory of Reproductive Medicine, Basic Medical College, Chongqing Medical University, China from April to December 2007.MATERIALS: Ten adult, Sprague Dawley rats (eight males and two females) were randomly divided into a gender control group (n = 4,50% male and 50% female) and a retrograde tracing group (n = 6, 100% male).Recombinant pseudorabies virus (PRV-152) was provided by Professor LW Enquist from Princeton University, USA. Rabbit anti-5-HT2A and 5-HT7 receptor antibodies were purchased from Diasorin, France.METHODS: In the gender control group, the spinal L5-6segments were harvested, sliced, and then incubated antibodies specific against 5-HT2A or 5-HT7 receptors for immunohistochemical staining. In the retrograde tracing group, PRV-152 was separately injected into the right ischiocavernosus (ischiocavernosus subgroup,n = 3) and the fight external urethral sphincter (external urethral sphincter subgroup, n = 3). Four days after injection, L5-6 segments were harvested, sliced, and incubated with antibodies specific against 5-HT2A or 5-HT7 receptors for double-labeling immunofluoresccnce

  8. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-{sup 11}C]WAY-100635

    Stein, Patrycja; Savli, Markus; Fink, Martin; Spindelegger, Christoph; Moser, Ulrike; Kasper, Siegfried; Lanzenberger, Rupert [Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna (Austria); Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Mitterhauser, Markus; Mien, Leonhard-Key [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Pharmaceutical Technology, Vienna (Austria)

    2008-12-15

    The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT{sub 1A}) receptor. Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl-{sup 11}C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT{sub 1A} receptor BP{sub ND} was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. The 5-HT{sub 1A} receptor BP{sub ND} was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BP{sub ND} values in every region investigated, with a borderline significant sex difference in the hypothalamus (p=0.012, uncorrected). There was a high intersubject variability of the 5-HT{sub 1A} receptor BP{sub ND} within both sexes compared to the small mean differences between men and women. To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT{sub 1A} receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT{sub 1A} receptor expression. (orig.)

  9. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease. PMID:23785166

  10. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-11C]WAY-100635

    The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT1A) receptor. Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl-11C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT1A receptor BPND was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. The 5-HT1A receptor BPND was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BPND values in every region investigated, with a borderline significant sex difference in the hypothalamus (p=0.012, uncorrected). There was a high intersubject variability of the 5-HT1A receptor BPND within both sexes compared to the small mean differences between men and women. To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT1A receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT1A receptor expression. (orig.)

  11. QSAR–CoMSIA applied to antipsychotic drugs with their dopamine D2 and serotonine 5HT2A membrane receptors

    SPERANTA AVRAM

    2011-02-01

    Full Text Available Antipsychotic drugs are psychiatric medication primarily used to manage psychosis (e.g., delusions or hallucinations, particularly in schizophrenia and bipolar disorder. First and second generations of antipshychotics tend to block receptors in the brain's dopamine pathways, but antipsychotic drugs encompass a wide range of receptor targets. The inhibition constant, Ki, at the level of membrane receptors is a major determinant of their pharmacokinetic behavior and, consequently, it can affect their antipsychotic activity. Here, predicted inhibition constants, Ki for 71 antipsychotics, already approved for clinical treatment, as well as representative new chemical structures which exhibit antipsychotic activity, were evaluated using 3D-QSAR–CoMSIA models. Significant values of the cross-validated correlation q2 (higher than 0.70 and the fitted correlation r2 (higher than 0.80 revealed that these models have reasonable power to predict the biological affinity of the 15 new risperidone and 12 new olanzapine derivatives in interactions with dopamine D2 and serotonin 5HT2A receptors; these compounds are suggested for further studies.

  12. Postnatal Serotonin Type 2 Receptor Blockade Prevents the Emergence of Anxiety Behavior, Dysregulated Stress-Induced Immediate Early Gene Responses, and Specific Transcriptional Changes that Arise Following Early Life Stress

    Benekareddy, Madhurima; Vadodaria, Krishna C.; Nair, Amrita R.; Vaidya, Vidita A.

    2011-01-01

    Background Early life adverse experience contributes to an enhanced vulnerability for adult psychopathology. Recent evidence indicates that serotonin type 2 (5-HT2) receptor function, implicated in the pathophysiology of mood and anxiety disorders, is significantly enhanced in the maternal separation model of early life stress. We examined whether postnatal 5-HT2 receptor blockade would prevent the consequences of maternal separation on anxiety behavior and dysregulated gene expression. Metho...

  13. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    Santini, Martin; Klein, A B; El-Sayed, M;

    2011-01-01

    Many psychiatric disorders are characterized by cognitive and emotional alterations that are related to abnormal function of the frontal cortex (FC). FC is involved in working memory and decision making and is activated following exposure to a novel environment. The serotonin 2A receptor (5-HT(2A...... novel environment. As an output of FC activation we measured expression of activity-regulated cytoskeletal-associated protein (Arc). Novelty-exposure (open-field arena) robustly up-regulated FC Arc mRNA expression (~160%) in mice compared to home-cage controls. This response was inhibited with the 5-HT...... hippocampus, indicating that the involvement of 5-HT(2A)R in this response is restricted to the FC. Similarly, the novelty-induced stress as determined by increasing levels of plasma corticosterone, was not influenced by 5-HT(2A)R antagonism suggesting that Arc mRNA and stress are activated via distinct...

  14. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients.

    Buga, Ana-Maria; Ciobanu, Ovidiu; Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-04-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  15. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients

    Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-01-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  16. The time course of serotonin 2A receptor expression after spinal transection of rats: an immunohistochemical study

    Kong, X-Y; Wienecke, Jacob; Chen, M; Hultborn, Hans; Zhang, Mengliang

    2011-01-01

    Hyperexcitability of motoneurons is one of the key mechanism that has been demonstrated to underlie the pathogenesis of spasticity after spinal injury. Serotonin (5-HT) denervation supersensitivity is one of the mechanisms underlying this increased motoneuron excitability. In this study, to examine......-IR increased in the motoneurons and their dendrites, with the density level being 3.4-fold higher in spinalized rats than in sham-operated rats. The upregulation increased progressively until a maximal level was reached at 28 days post-injury. We also investigated 5-HT and 5-HT transporter expressions at five...

  17. Determination of optimal acquisition time of [18F]FCWAY PET for imaging serotonin 1A receptors in the healthy male subjects

    The purpose of this research is to find optimal acquisition time point of [18F]FCWAY PET for the assessment of serotonin 1A receptor (5-HT1A) density. To achieve this goal, we examined the specific-to-nonspecific ratios in various brain regions. The cerebellum has very few 5-HT1A receptors in the brain, so we set this region as the reference tissue. As a result, specific-to-nonspecific binding ratios in the frontal, temporal cortex and the hippocampus were steadily increased at 90 min after injection and remained stable at 120 min. In addition, the binding ratio of the late time was significantly higher than that of the previous time points. From these results, we recommend that 90 min p.i. is a better single time point for the analysis rather than previous time points for assessing [18F]FCWAY binding to 5-HT1A receptors. - Highlights: • For routine clinical study, PET protocol should be conducted on a single time point with short imaging acquisition. • The specific-to-nonspecific ratios in the various brain regions were calculated. • Optimal [18F]FCWAY PET acquisition time point was proposed

  18. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  19. Serotonin Transporter Genotype Affects Serotonin 5-HT1A Binding in Primates

    Christian, Bradley T; Wooten, Dustin W.; Hillmer, Ansel T; Tudorascu, Dana L.; Converse, Alexander K.; Moore, Colleen F.; Ahlers, Elizabeth O.; Barnhart, Todd E; Kalin, Ned H.; Barr, Christina S.; Schneider, Mary L.

    2013-01-01

    Disruption of the serotonin system has been implicated in anxiety and depression and a related genetic variation has been identified that may predispose individuals for these illnesses. The relationship of a functional variation of the serotonin transporter promoter gene (5-HTTLPR) on serotonin transporter binding using in vivo imaging techniques have yielded inconsistent findings when comparing variants for short (s) and long (l) alleles. However, a significant 5-HTTLPR effect on receptor bi...

  20. Intracerebroventricular injections of dronabinol, a cannabinoid receptor agonist, does not attenuate serotonin-induced apnea in Sprague-Dawley rats

    Calik, Michael W.; Carley, David W

    2016-01-01

    Background Evidence suggests that vagal nerve activity may play a role in sleep apnea induction. In anesthetized rats, dronabinol, a cannabinoid (CB) receptor agonist, injected into the nodose ganglia attenuates reflex apnea and increases genioglossus activity, and reflex apnea attenuation is blocked by systemic pre-treatment with cannabinoid type 1 and/or type 2 receptor antagonists. However, it is unclear whether dronabinol has similar effects in the central nervous system; CB receptors are...

  1. Synthesis and structure-affinity relationships of novel small molecule natural product derivatives capable of discriminating between serotonin 5-HT1A, 5-HT2A, 5-HT2C receptor subtypes

    Cummings, David F.; Canseco, Diana C.; Sheth, Pratikkumar; Johnson, James E.; Schetz, John A.

    2010-01-01

    Efforts to develop ligands that distinguish between clinically relevant 5-HT2A and 5-HT2C serotonin receptor subtypes have been challenging, because their sequences have high homology. Previous studies reported that a novel aplysinopsin belonging to a chemical class of natural products isolated from a marine sponge was selective for the 5-HT2C over the 5-HT2A receptor subtype. Our goal was to explore the 5-HT2A/2C receptor structure-affinity relationships of derivatives based on the aplysinop...

  2. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  3. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with 3H-naloxone or 3H-D-Ala2-D-Leu5-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables

  4. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  5. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  6. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples

  7. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  8. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT

  9. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    Saturable [3H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The Bmax values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding KD values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  10. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    Lara eCosta

    2015-03-01

    Full Text Available Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD in wild-type (wt and in Fmr1 KO mice, a mouse model of Fragile X syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices.Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions.The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of

  11. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome.

    Costa, Lara; Sardone, Lara M; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome

  12. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  13. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  14. Synergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the "Two Hit" Hypothesis for the Development of Schizophrenia,

    DALTON, VICTORIA

    2012-01-01

    Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embryonic day 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14 days st...

  15. Association of the Serotonin Receptor 3E Gene as a Functional Variant in the MicroRNA-510 Target Site with Diarrhea Predominant Irritable Bowel Syndrome in Chinese Women

    Zhang, Yu; Li, Yaoyao; Hao, Zhenfeng; Li, Xiangming; Bo, Ping; Gong, Weijuan

    2016-01-01

    Background/Aims The functional variant (rs56109847) in the 3′-untranslated regions (3′-UTR) of the serotonin receptor 3E (HTR3E) gene is associated with female diarrhea predominant irritable bowel syndrome (IBS-D) in British populations. However, the relationship of the polymorphism both to HTR3E expression in the intestine and to the occurrence of Chinese functional gastrointestinal disorders has yet to be examined. Methods Polymerase chain reaction amplification and restriction fragment len...

  16. Synergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the “Two Hit” Hypothesis for the Development of Schizophrenia

    Katerina Zavitsanou; Deborah M. Hodgson; Adam Walker; Mathieu Verdurand; Dalton, Victoria S.

    2012-01-01

    Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embryonic day 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14 days st...

  17. Rational planning of antagonist analogues for imaging serotonin 5-HT1A receptor subtypes based on 99mTc

    Rational planning follows some logical steps in order to reduce the probability of synthesizing chemical compounds that possess low performance. The first step of this kind of procedure is to collect the maximum amount of information available in databases and the literature. Data are normally collected about quantitative structure activity and quantitative structure property studies. The goal is achieved when the main molecular descriptor is discovered in terms of biological activity. This descriptor is then quantified, allowing the choice of the most promising molecular candidates. In this paper, the aim is to convert molecules with high 5-HT1A affinity to 99mTc derivatives. Once such derivatives have to retain receptor affinity, it is very important to find drug-receptor interactions due to: chemical groups with common drug structures, the existence of intra-atomic distances between chemical ligands and physico-chemical properties that drive drug-receptor complexation. (author)

  18. Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat

    Garraway, Sandra M.; Hochman, Shawn

    2001-01-01

    Spinal cord slices and whole-cell patch clamp recordings were used to investigate the effects of serotonergic receptor ligands on dorsal root-evoked synaptic responses in deep dorsal horn (DDH) neurons of the neonatal rat at postnatal days (P) 3 – 6 and P10 – 14.Bath applied 5-hydroxytryptamine (5-HT) potently depressed synaptic responses in most neurons. Similarly, the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (5-CT) depressed synaptic responses. This action was probably mediated by ...

  19. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes. PMID:27270123

  20. Enhanced calcium responses to serotonin receptor stimulation in T-lymphocytes from schizophrenic patients--a pilot study.

    Genius, J; Schellenberg, A; Tchana-Duope, L; Hartmann, N; Giegling, I; Hartmann, A; Benninghoff, J; Rujescu, D

    2015-03-01

    Even if more extensively investigated in affective disorders, the serotonergic system is likely to be also implicated in modulating the pathogenesis of schizophrenia, where it closely interacts with the dopaminergic and glutamatergic system. To substantiate this notion, we studied the intensity and dynamics of cellular Ca(2+) responses to serotonin (5-hydoxytryptamine, 5-HT) in peripheral lymphocytes taken from currently non-psychotic schizophrenic patients. To this aim, peripheral lymphocytes were freshly obtained from healthy controls and a naturalistic collective of patients with schizophrenia in remission. Intracellular Ca(2+) responses were recorded in real-time by ratiometric fluorometry after 5-HT or phythaemagglutinin (PHA) stimulation, which served as an internal reference for Ca(2+) responsivity to non-specific stimulation. The intracellular Ca(2+) peak early after applying the 5-HT trigger was significantly elevated in schizophrenic patients. No significant differences of Ca(2+) peak levels were seen in response to stimulation with the mitogenic agent PHA, although responses to 5-HT and PHA were positively correlated in individual patients or controls. In conclusion, the serotonergic response patterns in peripheral lymphocytes from schizophrenic patients seem to be elevated, if employing sensitive tools like determination of intracellular Ca(2+) responses. Our observations suggest that the participation of serotonergic neurotransmitter system in the pathogenesis of schizophrenia may deserve more interest, even if it should only act as a modulator on the main pathology in the dopaminergic and glutamatergic systems. We hope that this pilot study will prompt further studies with larger patient collectives to revisit this question. PMID:25576705

  1. Central Serotonin-2A (5-HT2A Receptor Dysfunction in Depression and Epilepsy: The Missing Link?

    Bruno Pierre Guiard

    2015-03-01

    Full Text Available 5-Hydroxytryptamine 2A receptors (5-HT2A-Rs are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.

  2. Effect of tandospirone, a serotonin-1A receptor partial agonist, on information processing and locomotion in dizocilpine-treated rats

    Bubeníková-Valešová, V.; Svoboda, Jan; Horáček, J.; Sumiyoshi, T.

    2010-01-01

    Roč. 212, č. 2 (2010), s. 267-276. ISSN 0033-3158 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z50110509 Keywords : Tandospirone * Schizophrenia * NMDA receptor Subject RIV: FH - Neurology Impact factor: 3.817, year: 2010

  3. Pharmacological blockade of serotonin 5-HT₇ receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission.

    Pascal Bonaventure

    Full Text Available The role of 5-HT₇ receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT₇ antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg significantly reversed the deficits induced by MK-801 (0.1 mg/kg but augmented the deficit induced by scopolamine (0.06 mg/kg. The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT₇ receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.

  4. Endogenous plasma estradiol in healthy men is positively correlated with cerebral cortical serotonin 2A receptor binding

    Frokjaer, Vibe G.; Erritzoe, David; Juul, Anders; Nielsen, Finn Årup; Holst, Klaus; Svarer, Claus; Madsen, Jacob; Paulson, Olaf B.; Knudsen, Gitte Moos

    2010-01-01

    = 0.0001), whereas no independent effects of testosterone could be demonstrated. Correction for other factors of importance for 5-HT2A receptor binding did not change the result. A voxel-based analysis suggested that there were no regional differences in the estradiol effect on cortical 5-HT2A...

  5. Elevated expression of serotonin 5-HT2A receptors in the rat ventral tegmental area enhances vulnerability to the behavioral effects of cocaine

    David V. Herin

    2013-02-01

    Full Text Available The dopamine mesocorticoaccumbens pathway which originates in the ventral tegmental area (VTA and projects to the nucleus accumbens and prefrontal cortex is a circuit important in mediating the actions of psychostimulants. The function of this circuit is modulated by the actions of serotonin (5-HT at 5-HT2A receptors (5-HT2AR localized to the VTA. In the present study, we tested the hypothesis that virally-mediated overexpression of 5-HT2AR in the VTA would increase cocaine-evoked locomotor activity in the absence of alterations in basal locomotor activity. A plasmid containing the gene for the 5-HT2AR linked to a synthetic marker peptide (Flag was created and the construct was packaged in an adeno-associated virus vector (rAAV-5-HT2AR-Flag. This viral vector (2 µl; 109-10 transducing units/ml was unilaterally infused into the VTA of male rats, while control animals received an intra-VTA infusion of Ringer’s solution. Virus-pretreated rats exhibited normal spontaneous locomotor activity measured in a modified open-field apparatus at 7, 14, and 21 days following infusion. After an injection of cocaine (15 mg/kg, ip, both horizontal hyperactivity and rearing were significantly enhanced in virus-treated rats (p<0.05. Immunohistochemical analysis confirmed expression of Flag and overexpression of the 5-HT2AR protein. These data indicate that the vulnerability of adult male rats to hyperactivity induced by cocaine is enhanced following increased levels of expression of the 5-HT2AR in the VTA and suggest that the 5-HT2AR receptor in the VTA plays a role in regulation of responsiveness to cocaine.

  6. The bradycardic and hypotensive responses to serotonin are reduced by activation of GABAA receptors in the nucleus tractus solitarius of awake rats

    Callera J.C.

    2005-01-01

    Full Text Available We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A and baclofen (GABA B into the nucleus tractus solitarius (NTS on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8 into the NTS increased basal mean arterial pressure (MAP from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7 into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.

  7. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. PMID:26640169

  8. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue.

    Klotz, J L; Aiken, G E; Johnson, J M; Brown, K R; Bush, L P; Strickland, J R

    2013-09-01

    Pharmacologic profiling of serotonin (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline, 5HT, 5HT2A, and 5HT7 agonists. To determine if 5HT receptor activity of tall fescue alkaloids is affected by grazing endophyte-free (EF), wild-type [Kentucky-31 (KY31)], novel endophyte AR542-infected (MAXQ), or novel endophyte AR584-infected (AR584) tall fescue, contractile responses of lateral saphenous veins biopsied from cattle grazing these different fescue-endophyte combinations were evaluated in presence or absence of antagonists for 5HT2A (ketanserin) or 5HT7 (SB-269970) receptors. Biopsies were conducted over 2 yr on 35 mixed-breed steers (361.5 ± 6.3 kg) grazing EF (n = 12), KY31 (n = 12), MAXQ (n = 6), or AR584 (n = 5) pasture treatments (3 ha) between 84 and 98 d (Yr 1) or 108 to 124 d (Yr 2). Segments (2 to 3 cm) of vein were surgically biopsied, sliced into 2- to 3-mm cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O2/5% CO2; pH = 7.4; 37°C). Veins were exposed to increasing concentrations of 5HT, ergovaline, and ergovaline + 1 × 10(-5) M ketanserin or + 1 × 10(-6) M SB-269970 in Yr 1. In Yr 2, ergotamine and ergocornine were evaluated in presence or absence of 1 × 10(-5) M ketanserin. Contractile response data were normalized to a reference addition of 1 × 10(-4) M norepinephrine. In Yr 1, contractile response to 5HT and ergovaline were least (P ergotamine (P = 0.13) or ergocornine (P = 0.99) across pasture treatments, but ketanserin reduced (P < 0.05) the contractile response to both alkaloids. The 5HT2A receptor is involved in alkaloid-induced vascular contraction and alkaloid binding may be affected by exposure to different endophyte-fescue combinations. PMID:23825335

  9. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    Ripken, Dina; Wielen, van der, F.W.M.; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F. J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects...

  10. Effect of serotonin receptor blockade on endocrine and cardiovascular responses to head-up tilt in humans

    Matzen, S; Secher, N H; Knigge, U;

    1993-01-01

    ) and sympathetic activity (plasma noradrenaline; NA). A moderate increase in pituitary-adrenal hormones (plasma ACTH, beta-END and cortisol) was observed. After a mean tilt time of 30 +/- 5 min (n = 20) presyncopal symptoms associated with decreases in HR, TPR and arterial pressure occurred. At this...... time pituitary hormones, cortisol, adrenomedullary (plasma adrenaline; A) as well as vagal activity (plasma pancreatic polypeptide) were markedly increased, whereas sympathetic activity (plasma NA) decreased. The 5-HT1+2 receptor antagonist methysergide did not significantly interfere with...

  11. PROGESTERONE REDUCES THE EFFECT OF THE SEROTONIN 1B/1D RECEPTOR ANTAGONIST, GR 127935, ON LORDOSIS BEHAVIOR

    Uphouse, Lynda; Hiegel, Cindy; Guptarak, Jutatip; Maswood, Navin

    2008-01-01

    Ovariectomized rats were hormonally primed with 10 μg estradiol benzoate or with estradiol benzoate plus 500 μg progesterone. Rats received a bilateral infusion with 200 ng of the 5-HT1B/1D receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)-1-1′-biphenyl-4-carboxamide hydrochloride (GR 127935), into the ventromedial nucleus of the hypothalamus (VMN), followed by a 5 min restraint or home cage experience. In estrogen-primed females ...

  12. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β. PMID:24788685

  13. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    Oliver eStiedl

    2015-08-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  14. Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction.

    Cunningham, Kathryn A; Anastasio, Noelle C; Fox, Robert G; Stutz, Sonja J; Bubar, Marcy J; Swinford, Sarah E; Watson, Cheryl S; Gilbertson, Scott R; Rice, Kenner C; Rosenzweig-Lipson, Sharon; Moeller, F Gerard

    2013-01-16

    Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT(2A) receptor (5-HT(2A)R) and 5-HT(2C)R; either a selective 5-HT(2A)R antagonist or a 5-HT(2C)R agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT(2A)R antagonist plus 5-HT(2C)R agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT(2A)R antagonist M100907 plus the 5-HT(2C)R agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT(2A)R antagonist plus a 5-HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules. PMID:23336050

  15. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  16. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system.

    Swinford-Jackson, S E; Anastasio, N C; Fox, R G; Stutz, S J; Cunningham, K A

    2016-06-01

    Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity ("incubation") is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective serotonin (5-HT) 5-HT2C​ receptor (5-HT2CR) agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity. PMID:26926963

  17. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation. PMID:27114257

  18. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans. PMID:27039035

  19. Serotonin and the regulation of mammalian energy balance.

    MichaelHDonovan

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms ...

  20. Serotonin and the regulation of mammalian energy balance

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mecha...

  1. (18)F-FCWAY, a serotonin 1A receptor radioligand, is a substrate for efflux transport at the human blood-brain barrier.

    Liow, Jeih-San; Zoghbi, Sami S; Hu, Shuo; Hall, Matthew D; Hines, Christina S; Shetty, H Umesha; Araneta, Maria D; Page, Emily M; Pike, Victor W; Kreisl, William C; Herscovitch, Peter; Gottesman, Michael M; Theodore, William H; Innis, Robert B

    2016-09-01

    Efflux transporters at the blood-brain barrier can decrease the entry of drugs and increase the removal of those molecules able to bypass the transporter. We previously hypothesized that (18)F-FCWAY, a radioligand for the serotonin 5-HT1A receptor, is a weak substrate for permeability glycoprotein (P-gp) based on its very early peak and rapid washout from human brain. To determine whether (18)F-FCWAY is a substrate for P-gp, breast cancer resistance protein (BCRP), and multidrug resistance protein (MRP1) - the three most prevalent efflux transporters at the blood-brain barrier - we performed three sets of experiments. In vitro, we conducted fluorescence-activated cell sorting (FACS) flow cytometry studies in cells over-expressing P-gp, BCRP, and MRP1 treated with inhibitors specific to each transporter and with FCWAY. Ex vivo, we measured (18)F-FCWAY concentration in plasma and brain homogenate of transporter knockout mice using γ-counter and radio-HPLC. In vivo, we conducted positron emission tomography (PET) studies to assess changes in humans who received (18)F-FCWAY during an infusion of tariquidar (2-4mg/kg iv), a potent and selective P-gp inhibitor. In vitro studies showed that FCWAY allowed fluorescent substrates to get into the cell by competitive inhibition of all three transporters at the cell membrane. Ex vivo measurements in knockout mice indicate that (18)F-FCWAY is a substrate only for P-gp and not BCRP. In vivo, tariquidar increased (18)F-FCWAY brain uptake in seven of eight subjects by 60-100% compared to each person's baseline. Tariquidar did not increase brain uptake via some peripheral mechanism, given that it did not significantly alter concentrations in plasma of the parent radioligand (18)F-FCWAY or its brain-penetrant radiometabolite (18)F-FC. These results show that (18)F-FCWAY is a weak substrate for efflux transport at the blood-brain barrier; some radioligand can enter brain, but its removal is hastened by P-gp. Although (18)F-FCWAY is

  2. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. PMID:25130282

  3. Stress-induced release of anterior pituitary hormones: Effect of H3 receptor-mediated inhibition of histaminergic activity or posterior hypothalamic lesion

    Knigge, U.; Søe-Jensen, P.; Jørgensen, Henrik; Kjær, Andreas; Møller, Morten; Warberg, Jørgen

    Histamine receptors, corticotropin, *Gb-endorphin, prolactin, adrenal steroids, stress, endotoxin, serotonin......Histamine receptors, corticotropin, *Gb-endorphin, prolactin, adrenal steroids, stress, endotoxin, serotonin...

  4. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  5. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    Eugen-Olsen, J; Afzelius, P; Andresen, L; Iversen, J; Kronborg, G; Aabech, P; Nielsen, J O; Hofmann, B

    1997-01-01

    lymphocyte proliferation was most likely mediated through the serotonin 5HT1a receptor because similar results could be obtained by using DPAT, a specific activator of this receptor. Changes in the expression of 5HT1a receptors as judged by the expression of mRNA could not explain why serotonin in vitro had...

  6. Association and interaction analyses of 5-HT3 receptor and serotonin transporter genes with alcohol, cocaine, and nicotine dependence using the SAGE data.

    Yang, Jiekun; Li, Ming D

    2014-07-01

    Previous studies have implicated genes encoding the 5-HT3AB receptors (HTR3A and HTR3B) and the serotonin transporter (SLC6A4), both independently and interactively, in alcohol (AD), cocaine (CD), and nicotine dependence (ND). However, whether these genetic effects also exist in subjects with comorbidities remains largely unknown. We used 1,136 African-American (AA) and 2,428 European-American (EA) subjects from the Study of Addiction: Genetics and Environment (SAGE) to determine associations between 88 genotyped or imputed variants within HTR3A, HTR3B, and SLC6A4 and three types of addictions, which were measured by DSM-IV diagnoses of AD, CD, and ND and the Fagerström Test for Nicotine Dependence (FTND), an independent measure of ND commonly used in tobacco research. Individual SNP-based association analysis revealed a significant association of rs2066713 in SLC6A4 with FTND in AA (β = -1.39; P = 1.6E - 04). Haplotype-based association analysis found one major haplotype formed by SNPs rs3891484 and rs3758987 in HTR3B that was significantly associated with AD in the AA sample, and another major haplotype T-T-G, formed by SNPs rs7118530, rs12221649, and rs2085421 in HTR3A, which showed significant association with FTND in the EA sample. Considering the biologic roles of the three genes and their functional relations, we used the GPU-based Generalized Multifactor Dimensionality Reduction (GMDR-GPU) program to test SNP-by-SNP interactions within the three genes and discovered two- to five-variant models that have significant impacts on AD, CD, ND, or FTND. Interestingly, most of the SNPs included in the genetic interaction model(s) for each addictive phenotype are either overlapped or in high linkage disequilibrium for both AA and EA samples, suggesting these detected variants in HTR3A, HTR3B, and SLC6A4 are interactively contributing to etiology of the three addictive phenotypes examined in this study. PMID:24590108

  7. Dissociation of μ-opioid receptor and CRF-R1 antagonist effects on escalated ethanol consumption and mPFC serotonin in C57BL/6J mice.

    Hwa, Lara S; Shimamoto, Akiko; Kayyali, Tala; Norman, Kevin J; Valentino, Rita J; DeBold, Joseph F; Miczek, Klaus A

    2016-01-01

    Both the opioid antagonist naltrexone and corticotropin-releasing factor type-1 receptor (CRF-R1) antagonists have been investigated for the treatment of alcoholism. The current study examines the combination of naltrexone and CP154526 to reduce intermittent access ethanol drinking [intermittent access to alcohol (IAA)] in C57BL/6J male mice, and if these compounds reduce drinking via serotonergic mechanisms in the dorsal raphe nucleus (DRN). Systemic injections and chronic intracerebroventricular infusions of naltrexone, CP154526 or CP376395 transiently decreased IAA drinking. Immunohistochemistry revealed CRF-R1 or μ-opioid receptor immunoreactivity was co-localized in tryptophan hydroxylase (TPH)-immunoreactive neurons as well as non-TPH neurons in the DRN. Mice with a history of IAA or continuous access to alcohol were microinjected with artificial cerebral spinal fluid, naltrexone, CP154526 or the combination into the DRN or the median raphe nucleus (MRN). Either intra-DRN naltrexone or CP154526 reduced IAA in the initial 2 hours of fluid access, but the combination did not additively suppress IAA, suggesting a common mechanism via which these two compounds affect intermittent drinking. These alcohol-reducing effects were localized to the DRN of IAA drinkers, as intra-MRN injections only significantly suppressed water drinking, and continuous access drinkers were not affected by CRF-R1 antagonism. Extracellular serotonin was measured in the medial prefrontal cortex (mPFC) using in vivo microdialysis after intra-DRN microinjections in another group of mice. Intra-DRN CP154526 increased serotonin impulse flow to the mPFC while naltrexone did not. This suggests the mPFC may not be an essential location to intermittent drinking, as evidenced by different effects on serotonin signaling to the forebrain yet similar behavioral findings. PMID:25262980

  8. Fluctuations in [11C]SB207145 PET Binding Associated with Change in Threat-Related Amygdala Reactivity in Humans

    Fisher, Patrick MacDonald; Haahr, Mette Ewers; Jensen, Christian Gaden; Frokjaer, Vibe Gedsoe; Siebner, Hartwig Roman; Knudsen, Gitte Moos

    2015-01-01

    Serotonin critically affects the neural processing of emotionally salient stimuli, including indices of threat; however, how alterations in serotonin signaling contribute to changes in brain function is not well understood. Recently, we showed in a placebo-controlled study of 32 healthy males that brain serotonin 4 receptor (5-HT4) binding, assessed with [11C]SB207145 PET, was sensitive to a 3-week intervention with the selective serotonin reuptake inhibitor fluoxetine, supporting it as an in...

  9. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David;

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2...

  10. Serotonin and its 5-HT2 receptor agonist DOI hydrochloride inhibit the oxidative burst in total leukocytes but not in isolated neutrophils

    Prachařová, Lucie; Okénková, Kateřina; Lojek, Antonín; Číž, Milan

    2010-01-01

    Roč. 86, 13-14 (2010), s. 518-523. ISSN 0024-3205 R&D Projects: GA ČR(CZ) GA524/07/1511 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemiluminescence * oxidative burst * serotonin Subject RIV: BO - Biophysics Impact factor: 2.451, year: 2010

  11. 5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis

    de Boer, SF; Koolhaas, JM; Koolhaas, Jaap M.

    2005-01-01

    More than any other brain neurotransmitter system, the indolamine serotonin (5-HT) has been linked to aggression in a wide and diverse range of species, including humans. The nature of this linkage, however, is not simple and it has proven difficult to unravel the precise role of this amine in the predisposition for and execution of aggressive behavior. The dogmatic view that 5-HT inhibits aggression has dominated both pharmacological research strategies to develop specific and effective nove...

  12. Serotonin (5HT), Fluoxetine, Imipramine and Dopamine Target Distinct 5HT Receptor Signaling to Modulate Caenorhabditis elegans Egg-Laying Behavior

    Dempsey, Catherine M.; MacKenzie, Scott M; Gargus, Andrew; Blanco, Gabriela; Sze, Ji Ying

    2005-01-01

    Drugs that target the serotonergic system are the most commonly prescribed therapeutic agents and are used for treatment of a wide range of behavioral and neurological disorders. However, the mechanism of the drug action remain a conjecture. Here, we dissect the genetic targets of serotonin (5HT), the selective 5HT reuptake inhibitor (SSRI) fluoxetine (Prozac), the tricyclic antidepressant imipramine, and dopamine. Using the well-established serotonergic response in C. elegans egg-laying beha...

  13. Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons.

    Zhao, Xianyang; Zhang, Yuan; Qin, Wenjuan; Cao, Junping; Zhang, Yi; Ni, Jianqiang; Sun, Yangang; Jiang, Xinghong; Tao, Jin

    2016-08-01

    Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons. PMID:27156838

  14. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo. PMID:27318552

  15. The conditioning of intervention effects on early adolescent alcohol use by maternal involvement and dopamine receptor D4 (DRD4) and serotonin transporter linked polymorphic region (5-HTTLPR) genetic variants.

    Cleveland, H Harrington; Schlomer, Gabriel L; Vandenbergh, David J; Feinberg, Mark; Greenberg, Mark; Spoth, Richard; Redmond, Cleve; Shriver, Mark D; Zaidi, Arslan A; Hair, Kerry L

    2015-02-01

    Data drawn from the in-home subsample of the PROSPER intervention dissemination trial were used to investigate the moderation of intervention effects on underage alcohol use by maternal involvement and candidate genes. The primary gene examined was dopamine receptor D4 (DRD4). Variation in this gene and maternal involvement were hypothesized to moderate the influence of intervention status on alcohol use. The PROSPER data used were drawn from 28 communities randomly assigned to intervention or comparison conditions. Participating youth were assessed in five in-home interviews from sixth to ninth grades. A main effect of sixth-grade pretest maternal involvement on ninth-grade alcohol use was found. Neither intervention status nor DRD4 variation was unconditionally linked to ninth-grade drinking. However, moderation analyses revealed a significant three-way interaction among DRD4 status, maternal involvement, and intervention condition. Follow-up analyses revealed that prevention reduced drinking risk, but only for youth with at least one DRD4 seven-repeat allele who reported average or greater pretest levels of maternal involvement. To determine if this conditional pattern was limited to the DRD4 gene, we repeated analyses using the serotonin transporter linked polymorphic region site near the serotonin transporter gene. The results for this supplemental analysis revealed a significant three-way interaction similar but not identical to that found for DRD4. PMID:25640830

  16. Ondansetron reverses anti-hypersensitivity from clonidine in rats following peripheral nerve injury: Role of γ-amino butyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia

    Hayashida, Ken-ichiro; Kimura, Masafumi; Yoshizumi, Masaru; Hobo, Shotaro; Obata, Hideaki; Eisenach, James C.

    2012-01-01

    Introduction Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. Methods Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-amino butyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. Results Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, pre-synaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced anti-hypersensitivity and spinal GABA release in SNL rats. Conclusion These results suggest that spinal GABA contributes to anti-hypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated anti-hypersensitivity via reducing total GABA release. PMID:22722575

  17. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J; Knudsen, Gitte M

    2010-01-01

    reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter...

  18. The Selective Serotonin Reuptake Inhibitor Paroxetine Does Not Alter Consummatory Concentration-Dependent Licking of Prototypical Taste Stimuli by Rats

    Mathes, Clare M.; Spector, Alan C.

    2011-01-01

    Serotonin and the 5HT1A receptor are expressed in a subset of taste receptor cells, and the 5HT3 receptor is expressed on afferent fibers innervating taste buds. Exogenous administration of the selective serotonin reuptake inhibitor, paroxetine, has been shown to increase taste sensitivity to stimuli described by humans as sweet and bitter. Serotonergic agonists also decrease food and fluid intake, and it is possible that modulations of serotonin may alter taste-based hedonic responsiveness; ...

  19. G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations

    Ísberg, Vignir; Balle, Thomas; Sander, Tommy; Jørgensen, Flemming Steen; Gloriam, David Erik Immanuel

    2011-01-01

    A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...... molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability of the...... activated receptor model as well as revealed new information about stabilizing residues and bonds. The active 5-HT(2A) receptor model was further validated by retrospective ligand screening of more than 9400 compounds, whereof 182 were known ligands. The results show that the model can be used in drug...

  20. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  1. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  2. Differential regulation of serotonin-1A receptor stimulated [35S]GTPγS binding in the dorsal raphe nucleus by citalopram and escitalopram

    Rossi, Dania V.; Burke, Teresa F.; Hensler, Julie G.

    2008-01-01

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTPγS binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10μM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G-proteins, whereas citalopram treat...

  3. A new multi-targeted serotonin receptor antagonist:anti-schizophrenia ITI-007%新型多靶点5-羟色胺受体抑制剂ITI-007

    张海枝; 陈会慧; 刘长鹰; 范成鑫

    2016-01-01

    ITI-007 is an atypical antipsychotic drug which is currently under development by Intra-Cellular Therapies Co. Ltd. In pre-clinical and clinical trials to date, ITI-007 combines potent serotonin 5-HT2A receptor antagonism, dopamine receptor phosphoprotein modulation (DPPM), glutamatergic modulation, and serotonin reuptake inhibition into a single drug candidate for the treatment of acute and residual schizophrenia. ITI-007 has demonstrated significantly improvements in quality of sleep, and reducing the negative symptoms of schizophrenia, and has certain effects in treatment of depression, anxiety, and other symptoms associated with impaired social function. Different from many other antipsychotics such as risperidone, ITI-007 may not cause an increase in the risk of diabetes or cardiovascular disease. Therefore ITI-007 may prove to be a significant improvement relative to many existing antipsychotic drugs in terms of long-term safety and tolerability.%ITI-007是Intra-Cellular Therapies有限公司开发的一种非典型抗精神分裂症药物。到目前为止,在已完成的临床前和临床试验中,该药表现出了结合强效5-HT2A受体拮抗剂、多巴胺受体磷酸化调节剂(DPPM)、谷氨酸调节剂以及5-羟色胺再摄取抑制剂于一身的特点,可用于治疗急性及残留型精神分裂症,为上述症状的单一结构候选药物。ITI-007同时还具有改善睡眠质量的效果,并能减少精神分裂症的阴性症状,对抑郁、焦虑以及与受损的社会功能相关的其他症状也有一定效果。与许多其他抗精神病药物如利培酮不同,ITI-007不会导致糖尿病和心血管疾病风险的增加,因此与许多现有抗精神分裂症药物相比,后者在长期的安全性和耐受性方面可能会有明显改善。

  4. Cyclopentadienyl tricarbonyl complexes of 99mTc for the in vivo imaging of the serotonin 5-HT 1a receptor in the brain

    The present interest in the 5-HT 1a receptor is due to its implicated role in several major neuropsychiatric disorders such as depression, eating disorders and anxiety. For the diagnosis of these pathophysiological processes it is important to have radioligands in hand able to specifically bind on the 5-HT 1a receptor in order to allow brain imaging. due to the optimal radiation properties of 99mTc there is a considerable interest in the development of 99mTc radiopharmaceuticals for imaging serotonergic CNS receptors using single-photon emission tomography (SPET). Here we introduce two cyclopentadienyl technitium tricarbonyl conjugates of piperidine derivatives which show high accumulation of radioactivity in brain areas rich in 5-HT 1a receptors

  5. Drug: D09933 [KEGG MEDICUS

    Full Text Available D09933 Drug Naronapride (USAN/INN) C27H41ClN4O5 536.2765 537.0912 D09933.gif Treatm... Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Naronapride D09933 Naronapride (USAN/INN) CAS: 860174-12-5

  6. Drug: D06353 [KEGG MEDICUS

    Full Text Available D06353 Drug Zacopride hydrochloride (USAN) C15H20ClN3O2. HCl. H2O 363.1116 364.2674...amily Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Zacopride D06353 Zacopride hydrochloride (USAN) CAS: 9

  7. Drug: D09934 [KEGG MEDICUS

    Full Text Available D09934 Drug Naronapride dihydrochloride (USAN) C27H41ClN4O5. 2HCl 608.2299 610.0131...s Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Naronapride D09934 Naronapride dihydrochl

  8. [Serotonin and treatment of mental disorders. Present status and future perspectives].

    Sevcík, J; Masek, K

    1997-07-14

    Serotoninergic system is involved in the regulation of diverse biological and psychological functions and a variety of serotonin receptor subtypes represent a possible target for a new generation of medications. 5-HT receptors play an important role in both schizophrenia and depression. Modern strategies for treating schizophrenia profit from the existence of interaction between serotonin and dopamine systems. New drugs called serotonin-dopamine antagonists (SDAs) offer wider spectra of activity and lower extrapyramidal side effects liability. The principle of the SDAs is that the drug should be a potent serotonin 5-HT 2A antagonist, with slightly less potent dopamine D2 receptor-blocking properties. New pharmacological agents with great therapeutic potential and fewer side effects were recently developed also for the treatment of depression. Among these new antidepressives the serotonin selective reuptake inhibitors (SSRIs) currently play the most important role. PMID:9340186

  9. Serotonin blockade delays learning performance in a cooperative fish.

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger. PMID:27107861

  10. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    High (17 nM) and low (603 nM) affinity binding sites for [3]tetrahydrotrazodone ([3] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [3]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [3] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [3]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  11. Polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecol-O-metiltransferase (COMT: fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A and catechol-O-methyltransferase (COMT gene polymorphisms: Triggers of fibromyalgia?

    Josie Budag Matsuda

    2010-04-01

    fatigue, sleep disorders, anxiety, depression, memory loss, and dizziness. Although the physiological mechanisms that control fibromyalgia have not been precisely established, neuroendocrine, genetic or molecular factors may be involved in fibromyalgia. OBJECTIVE: The aim of the present study was to characterize serotonin receptor (5-HT2A and catecholO-methyltransferase (COMT gene polymorphisms in Brazilian patients with fibromyalgia and to evaluate the participation of these polymorphisms in the etiology of the disease. MATERIAL AND METHODS: Genomic DNA extracted from 102 blood samples (51 patients, 51 controls was used for molecular characterization of the 5-HT2A and COMT gene polymorphisms by PCR-RFLP. RESULTS: Analysis of the 5-HT2A polymorphism revealed a frequency of 25.49% C/C, 49.02% T/C and 25.49% T/T in patients, and of 17.65% C/C, 62.74% T/C and 19.61% T/T in the control group, with no differences between the two groups.Analysis of the COMT polymorphism in patients showed a frequency of 17.65% and 45.10% for genotypes H/H and L/H, respectively. In the control group the frequency was 29.42% for H/H and 60.78% for L/H, also with no differences between the two groups. However, there was a significant difference in the frequency of the L/L genotype between patients (37.25% and controls (9.8%, which permitted differentiation between the two groups. CONCLUSION: The L/L genotype was more frequent among fibromyalgia patients. Though considering a polygenic situation and environmental factors, the molecular study of the rs4680 SNP of the COMT gene may be helpful to the identification of susceptible individuals.

  12. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Kaji, Takao [Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Ohba, Yukie; Sumii, Makiko [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Wakameda, Mamoru; Tamari, Tomohiro [Charles River Laboratories Japan, Inc. (Japan)

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  13. Augmentation of SSRI effects on serotonin by 5-HT2C antagonists : Mechanistic studies

    Cremers, Thomas I. F. H.; Rea, Kieran; Bosker, Fokko J.; Wikstrom, Hakan V.; Hogg, Sandra; Mork, Arne; Westerink, Ben H. C.

    2007-01-01

    The treatment of depression may be improved by using an augmentation approach involving selective serotonin reuptake inhibitors (SSRIs) in combination with compounds that focus on antagonism of inhibitory serotonin receptors. Using microdialysis coupled to HPLC, it has recently been shown that the s

  14. Adding 5-hydroxytryptamine receptor type 3 antagonists may reduce drug-induced nausea in poor insight obsessive-compulsive patients taking off-label doses of selective serotonin reuptake inhibitors: a 52-week follow-up case report

    Martino Matteo

    2010-12-01

    Full Text Available Abstract Poor-insight obsessive-compulsive disorder (PI-OCD is a severe form of OCD where the 'typically obsessive' features of intrusive, 'egodystonic' feelings and thoughts are absent. PI-OCD is difficult to treat, often requiring very high doses of serotonergic drugs as well as antipsychotic augmentation. When this occurs, unpleasant side effects as nausea are common, eventually further reducing compliance to medication and increasing the need for pharmacological alternatives. We present the case of a PI-OCD patient who developed severe nausea after response to off-label doses of the selective serotonin reuptake inhibitor (SSRI, fluoxetine. Drug choices are discussed, providing pharmacodynamic rationales and hypotheses along with reports of rating scale scores, administered within a follow-up period of 52 weeks. A slight reduction of fluoxetine dose, augmentation with mirtazapine and a switch from amisulpride to olanzapine led to resolution of nausea while preserving the anti-OCD therapeutic effect. Mirtazapine and olanzapine have already been suggested for OCD treatment, although a lack of evidence exists about their role in the course of PI-OCD. Both mirtazapine and olanzapine also act as 5-hydroxytryptamine receptor type 3 (5-HT3 blockers, making them preferred choices especially in cases of drug-induced nausea.

  15. Synergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the "Two Hit" Hypothesis for the Development of Schizophrenia.

    Dalton, Victoria S; Verdurand, Mathieu; Walker, Adam; Hodgson, Deborah M; Zavitsanou, Katerina

    2012-01-01

    Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embryonic day 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14 days starting on postnatal day (PND) 35. Hippocampal and cortical 5HT1AR binding was quantified autoradiographically using [(3)H]8-OH-DPAT, in late adolescent (PND 55), young adult (PND 65) and adult (PND 90) rats. Descendants of poly I:C treated rats showed significant increases of 15-18% in 5HT1AR in the hippocampus (CA1) compared to controls at all developmental ages. Offspring of poly I:C treated rats exposed to HU210 during adolescence exhibited even greater elevations in 5HT1AR (with increases of 44, 29, and 39% at PNDs 55, 65, and 90). No effect of HU210 alone was observed. Our results suggest a synergistic effect of prenatal infection and adolescent cannabinoid exposure on the integrity of the serotoninergic system in the hippocampus that may provide the neurochemical substrate for abnormal hippocampal-related functions relevant to schizophrenia. PMID:23738203

  16. The excitability and rhythm of medullary respiratory neurons in the cat are altered by the serotonin receptor agonist 5-methoxy-N,N, dimethyltryptamine.

    Lalley, P M

    1994-06-13

    5-Methoxy-N,N-dimethyltryptamine (5-MeODMT) is an indolealkylamine which has agonist activity at 5HT receptors. In the present investigation, 5-MeODMT had two types of effects on medullary respiratory neurons of the cat. Iontophoretic administration or i.v. doses (43 +/- 8.9 micrograms/kg) of 5-MeODMT hyperpolarized respiratory neurons and severely reduced action potential discharges. Cinanserin, a 5HT-2/1 c receptor antagonist, when injected i.v. reduced the inhibition produced by i.v. injection of 5-MeODMT. Iontophoresis of cinanserin did not antagonize inhibition produced by iontophoresis of 5-MeODMT or 5-HT. The depression of respiratory discharge by i.v. injection of 5-MeODMT is attributed to presynaptic effects (network depression) and post-synaptic activation of 5HT-1A receptors on respiratory neurons. 5-MeODMT (27 +/- 2.78 micrograms/kg i.v.) also increased discharge frequency of inspiratory and expiratory neurons. Inspiratory neuron discharges were briefer and expiratory neuron discharges occurred earlier in relation to phrenic nerve activity. It is suggested that the effects of the smaller doses are due to binding of 5-MeODMT to 5HT-1A receptors on early inspiratory neurons of the medulla. PMID:7922531

  17. The Reduction of Baseline Serotonin 2A Receptors in Mild Cognitive Impairment is Stable at Two-year Follow-up

    Marner, Lisbeth; Knudsen, Gitte M; Madsen, Karine;

    2011-01-01

    We previously demonstrated a 20-30% reduction in cortical 5-HT2A receptor binding in patients with mild cognitive impairment (MCI) as compared to healthy subjects. Here we present a two-year follow-up of 14 patients and 12 healthy age-matched subjects. Baseline and follow-up partial volume...

  18. Interação entre as vias de sinalização de receptores serotoninérgicos e Β-adrenérgicos em artéria femoral de ratos

    Maria Andréia Delbin

    2012-01-01

    Full Text Available FUNDAMENTO: A doença coronária tem sido amplamente estudada em pesquisas cardiovasculares. No entanto, pacientes com doença arterial periférica (DAP têm piores resultados em comparação àqueles com doença arterial coronariana. Portanto, os estudos farmacológicos com artéria femoral são altamente relevantes para a melhor compreensão das respostas clínicas e fisiopatológicas da DAP. OBJETIVO: Avaliar as propriedades farmacológicas dos agentes contráteis e relaxantes na artéria femoral de ratos. MÉTODOS: As curvas de resposta de concentração à fenilefrina contrátil (FC e à serotonina (5-HT e os agentes relaxantes isoproterenol (ISO e forskolina foram obtidos na artéria femoral de ratos isolada. Para as respostas ao relaxamento, os tecidos foram contraídos com FC ou 5-HT. RESULTADOS: A potência de classificação na artéria femoral foi de 5-HT > FC para as respostas contráteis. Em tecidos contraídos com 5-HT, as respostas de relaxamento ao isoproterenol foram praticamente abolidas em comparação aos tecidos contraídos com FC. A forskolina, um estimulante da adenilil ciclase, restaurou parcialmente a resposta de relaxamento ao ISO em tecidos contraídos com 5-HT. CONCLUSÃO: Ocorre uma interação entre as vias de sinalização dos receptores β-adrenérgicos e serotoninérgicos na artéria femoral. Além disso, esta pesquisa fornece um novo modelo para estudar as vias de sinalização serotoninérgicas em condições normais e patológicas que podem ajudar a compreender os resultados clínicos na DAP.

  19. Is Serum Serotonin Involved in the Bone Loss of Young Females with Anorexia Nervosa?

    Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Courtet, P; Mariano-Goulart, D; Renard, E; Sultan, C

    2016-03-01

    Recent experimental data suggest that circulating serotonin interacts with bone metabolism, although this is less clear in humans. This study investigated whether serum serotonin interferes with bone metabolism in young women with anorexia nervosa (AN), a clinical model of energy deprivation. Serum serotonin, markers of bone turnover [osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), type I-C telopeptide breakdown products (CTX)], leptin, soluble leptin receptor (sOB-R), and insulin-like growth factor-1 (IGF-1) and its binding protein (IGFBP-3) were assessed. Whole body, spine, hip, and radius areal bone mineral density BMD (aBMD) were assessed by dual-energy X-ray absorptiometry in 21 patients with AN and 19 age-matched controls. Serum serotonin, leptin, IGF-1, IGFBP-3, OC, PINP, and aBMD at all sites, radius excepted, were significantly reduced in AN whereas CTX and sOB-R were increased compared with controls. Serum serotonin levels were positively correlated with weight, body mass index, whole body fat mass, leptin, and IGF-1, and negatively with CTX for the entire population. Low serum serotonin levels are observed in patients with AN. Although no direct link between low serum serotonin levels and bone mass was identified in these patients, the negative relationship between serotonin and markers of bone resorption found in all population nevertheless suggests the implication of serotonin in bone metabolism. Impact of low serum serotonin on bone in AN warrants further studies. PMID:26418163

  20. Serotonin 2A Receptors Differentially Contribute to Abuse-Related Effects of Cocaine and Cocaine-Induced Nigrostriatal and Mesolimbic Dopamine Overflow in Nonhuman Primates

    Murnane, Kevin S.; Winschel, Jake; Schmidt, Karl T.; Stewart, LaShaya M.; Rose, Samuel J.; Cheng, Kejun; Rice, Kenner C.; Howell, Leonard L.

    2013-01-01

    Two of the most commonly used procedures to study the abuse-related effects of drugs in laboratory animals are intravenous drug self-administration and reinstatement of extinguished behavior previously maintained by drug delivery. Intravenous self-administration is widely accepted to model ongoing drug-taking behavior, whereas reinstatement procedures are accepted to model relapse to drug taking following abstinence. Previous studies indicate that 5-HT2A receptor antagonists attenuate the rei...

  1. Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice

    Holm, Peter; Ettrup, Anders; Klein, Anders B;

    2010-01-01

    -HT2A receptor regulation in double transgenic AbetaPPswe/PS1dE9 mice which display excess production of Abeta and age-dependent increase in amyloid plaques. Three different age-groups, 4-month-old, 8- month-old, and 11-month-old were included in the study. [3H]-MDL100907, [3H]-escitalopram, and [11C...

  2. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats.

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-04-01

    We investigated the effects of partial bladder outlet obstruction (BOO) on the function and gene expression of 5-hydroxytryptamine (5-HT) receptor subtypes in rat bladder. Isometric contractions of the isolated bladders from sham-operated control and BOO rats were examined. The contractile responses to 5-HT were significantly increased in BOO rat bladder strips, while the responses to KCl, carbachol, or phenylephrine were not different from the control. The 5-HT-induced hypercontraction in BOO rat bladder strips was inhibited by ketanserin, a 5-HT(2A) receptor antagonist. The contractile responses to 5-HT in bladder strips were not affected by urothelium removal from the intact bladder. The gene expression of 5-HT receptor subtypes in the bladders was analyzed by RT-PCR. The mRNA expression of the 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(4), and 5-HT(7) receptors was detected in both the control and BOO rat bladders. Quantitative RT-PCR analysis showed there was a significant increase of 5-HT(2A) receptor mRNA in the BOO rat bladder compared with the control bladder. On the other hand, the gene expression of the 5-HT(4) receptor was not changed in the BOO rat bladder. These results suggest that the increased contractile responses to 5-HT in BOO rat bladder may be partly caused by 5-HT(2A) receptor upregulation in the detrusor smooth muscles. PMID:23344575

  3. Aggression, suicidality, and serotonin.

    Linnoila, V M; Virkkunen, M

    1992-10-01

    Studies from several countries, representing diverse cultures, have reported an association between violent suicide attempts by patients with unipolar depression and personality disorders and low concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF). Related investigations have documented a similar inverse correlation between impulsive, externally directed aggressive behavior and CSF 5-HIAA in a subgroup of violent offenders. In these individuals, low CSF 5-HIAA concentrations are also associated with a predisposition to mild hypoglycemia, a history of early-onset alcohol and substance abuse, a family history of type II alcoholism, and disturbances in diurnal activity rhythm. These data are discussed in the context of a proposed model for the pathophysiology of a postulated "low serotonin syndrome." PMID:1385390

  4. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish

    Antón Barreiro-Iglesias

    2015-11-01

    Full Text Available In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90% by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.

  5. The serotonin system in autism spectrum disorder: From biomarker to animal models.

    Muller, C L; Anacker, A M J; Veenstra-VanderWeele, J

    2016-05-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  6. Elevated Serotonin 1A Binding in Remitted Major Depressive Disorder: Evidence for a Trait Biological Abnormality

    Miller, Jeffrey M.; Brennan, Kathleen G.; R. Todd Ogden; Oquendo, Maria A.; Sullivan, Gregory M.; John Mann, J; Parsey, Ramin V.

    2009-01-01

    Background Several biological abnormalities in major depressive disorder (MDD) persist during episode remission, including altered serotonin neurotransmission, and may reflect underlying pathophysiology. We previously described elevated brain serotonin 1A (5-HT1A) receptor binding in antidepressant-naïve subjects with MDD within a major depressive episode (MDE) compared to healthy controls using positron emission tomography (PET). In the current study, we measured 5-HT1A receptor binding in u...

  7. Intracolonical administration of protease-activated receptor-2 agonists produced visceral hyperalgesia by up-regulating serotonin in the colon of rats.

    Li, Zhi; Zhang, Xiao-Jun; Xu, Hong-xi; Sung, Joseph J Y; Bian, Zhao-xiang

    2009-03-15

    This study aimed to investigate the underlying mechanism of protease-activated receptor-2 (PAR-2) agonist-induced visceral hyperalgesia. Male Sprague-Dawley rat pups were submitted to colonic injection of PAR-2 agonist for 6 consecutive days. The visceral sensitivity to colorectal distention was evaluated by electromyography. The enterochromaffin (EC) cell number, 5-HT content and tryrptophan hydroxylase (TPH) protein expression were detected with immunohistochemistry, fluorescent measurement and Western blot analysis. PAR-2 agonist induced a significant increase of visceral nociceptive response to colorectal distention and a series of neurochemical changes in rat colon, including proliferation of EC cells, increased 5-HT content and enhanced TPH expression. Expression of PAR-2 in EC cells was reported for the first time. Further, selective 5-HT(3) receptor antagonist alosteron significantly inhibited PAR-2-induced visceral hyperalgesia. The enhanced 5-HT signaling is likely responsible for the visceral hyperalgesia induced by PAR-2 agonist. Interruption of this pathway is a possible target for the treatment of visceral hyperalgesia in gastrointestinal diseases. PMID:19374846

  8. On the role of serotonin and histamine in neurohumoral mechanisms of postirradiation diarrhea in rats

    In experiments with rats exposed to 200 Gy radiation it was shown that the diarrhea effect of serotonin under the effect of radiation is implemented via D- and M-type receptors, and that of histamine via H1 and H2 receptors. Serotonin and histamine, that were released under the effect of radiation from endocrine and mast cells of the digestive tract stimulated the propulsion activity of the intestine whereas histamine, in addition, inhibited the absorption process. It is suggested that serotonin and histamine antagonists should be used as means of preventing of radiation-induced diarrhea

  9. Correlation of 125I-LSD autoradiographic labeling with serotonin voltage clamp responses in Aplysia neurons

    Evans, M.L.; Kadan, M.J.; Hartig, P.R.; Carpenter, D.O. (New York State Department of Health, State University of New York, Albany (USA))

    1991-05-01

    Autoradiographic receptor binding studies using 125I-LSD (2-(125I)lysergic acid diethyamide) revealed intense labelling on the soma of a symmetrically located pair of cells in the abdominal ganglion of Aplysia californica. This binding was blocked by micromolar concentrations of serotonin and lower concentrations of the serotonergic antagonists, cyproheptadine and mianserin. Electrophysiological investigation of responses to serotonin of neurons in the left upper quadrant, where one of the labeled neurons is located, revealed a range of serotonin responses. Cells L3 and L6 have a K+ conductance increase in response to serotonin that is not blocked by cyproheptadine or mianserin. Cells L2 and L4 have a biphasic response to serotonin: a Na+ conductance increase, which can be blocked by cyproheptadine and mianserin, followed by a voltage dependent Ca2+ conductance which is blocked by Co2+ but not the serotonergic antagonists. Cell L1, and its symmetrical pair, R1, have in addition to the Na+ and Ca2+ responses observed in L2 and L4, a Cl- conductance increase blocked by LSD, cyproheptadine and mianserin. LSD had little effect on the other responses. The authors conclude that the symmetrically located cells L1 and R1 have a Cl- channel linked to a cyproheptadine- and mianserin-sensitive serotonin receptor that is selectively labelled by 125I-LSD. This receptor has many properties in common with the mammalian serotonin 1C receptor.

  10. Association of serotonin transporter (SLC6A4 & receptor (5HTR1A, 5HTR2A polymorphisms with response to treatment with escitalopram in patients with major depressive disorder : A preliminary study

    Aniruddha Basu

    2015-01-01

    Full Text Available Background & objectives: Genetic factors have potential of predicting response to antidepressants in patients with major depressive disorder (MDD. In this study, an attempt was made to find an association between response to escitalopram in patients with MDD, and serotonin transporter (SLC6A4 and receptor (5HTR1A, 5HTR2A polymorphisms. Methods: Fifty five patients diagnosed as suffering from MDD, were selected for the study. The patients were treated with escitalopram over a period of 6-8 wk. Severity of depression, response to treatment and side effects were assessed using standardised instruments. Genetic variations from HTR1A (rs6295, HTR2A (rs6311 and rs6313 and SLC6A4 (44 base-pair insertion/deletion at 5-HTTLPR were genotyped. The genetic data of the responders and non-responders were compared to assess the role of genetic variants in therapeutic outcome. Results: Thirty six (65.5% patients responded to treatment, and 19 (34.5% had complete remission. No association was observed for genotype and allelic frequencies of single nucleotide polymorphisms (SNPs among remitter/non-remitter and responder/non-responder groups, and six most common side-effects, except memory loss which was significantly associated with rs6311 ( p0 =0.03. Interpretation & conclusions: No significant association was found between the SNPs analysed and response to escitalopram in patients with MDD though a significant association was seen between the side effect of memory loss and rs6311. Studies with larger sample are required to find out genetic basis of antidepressant response in Indian patients.

  11. Rs6295 promoter variants of the serotonin type 1A receptor are differentially activated by c-Jun in vitro and correlate to transcript levels in human epileptic brain tissue.

    Pernhorst, Katharina; van Loo, Karen M J; von Lehe, Marec; Priebe, Lutz; Cichon, Sven; Herms, Stefan; Hoffmann, Per; Helmstaedter, Christoph; Sander, Thomas; Schoch, Susanne; Becker, Albert J

    2013-03-01

    Many brain disorders, including epilepsy, migraine and depression, manifest with episodic symptoms that may last for various time intervals. Transient alterations of neuronal function such as related to serotonin homeostasis generally underlie this phenomenon. Several nucleotide polymorphisms (SNPs) in gene promoters associated with these diseases have been described. For obvious reasons, their regulatory roles on gene expression particularly in human brain tissue remain largely enigmatic. The rs6295 G-/C-allelic variant is located in the promoter region of the human HTR1a gene, encoding the G-protein-coupled receptor for 5-hydroxytryptamine (5HT1AR). In addition to reported transcriptional repressor binding, our bioinformatic analyses predicted a reduced binding affinity of the transcription factor (TF) c-Jun for the G-allele. In vitro luciferase transfection assays revealed c-Jun to (a) activate the rs6295 C- significantly stronger than the G-allelic variant and (b) antagonize efficiently the repressive effect of Hes5 on the promoter. The G-allele of rs6295 is known to be associated with aspects of major depression and migraine. In order to address a potential role of rs6295 variants in human brain tissue, we have isolated DNA and mRNA from fresh frozen hippocampal tissue of pharmacoresistant temporal lobe epilepsy (TLE) patients (n=140) after epilepsy surgery for seizure control. We carried out SNP genotyping studies and mRNA analyses in order to determine HTR1a mRNA expression in human hippocampal samples stratified according to the rs6295 allelic variant. The mRNA expression of HTR1a was significantly more abundant in hippocampal mRNA of TLE patients homozygous for the rs6295 C-allele as compared to those with the GG-genotype. These data may point to a novel, i.e., rs6295 allelic variant and c-Jun dependent transcriptional 5HT1AR 'receptoropathy'. PMID:23333373

  12. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    Salvo, Nadia; Doble, Brett [Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Canada); Khan, Luluel [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Amirthevasar, Gayathri [Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Canada); Dennis, Kristopher [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Pasetka, Mark; DeAngelis, Carlo [Department of Oncology Pharmacy, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Tsao, May [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2012-01-01

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57-0.86 for emesis; RR 0.84, 95% CI 0.73-0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15-0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at the NK

  13. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57–0.86 for emesis; RR 0.84, 95% CI 0.73–0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15–0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at

  14. Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat

    Huang Yuejun

    2012-02-01

    Full Text Available Abstract Background Many studies have found that stress before or during pregnancy is linked to an increased incidence of behavioural disorders in offspring. However, few studies have investigated hypothalamic-pituitary-adrenal (HPA axis activity and the serotonergic system as a consequence of pregestational stress. In the present study, we investigated the effect of pre-gestational stress on HPA axis activity in maternal rats and their foetuses and examined whether changes in HPA axis activity of maternal rats produced functional changes in the serotonergic system in the brain of foetuses. Results We used the behavioural tests to assess the model of chronic unpredictable stress (CUS in maternal rats. We found the activity in the open field and sucrose consumption was lower for rats with CUS than for the controls. Body weight but not brain weight was higher for control foetuses than those from the CUS group. Serum corticosterone and corticotrophin-releasing hormone levels were significantly higher for mothers with CUS before pregnancy and their foetuses than for the controls. Levels of 5-hydroxytryptamine (5-HT were higher in the hippocampus and hypothalamus of foetuses in the CUS group than in the controls, and 5-hydroxyindoleacetic acid (5-HIAA levels were lower in the hippocampus in foetuses in the CUS group than in the control group. Levels of 5-HIAA in the hypothalamus did not differ between foetuses in the CUS group and in the control group. The ratio of 5-HIAA to 5-HT was significantly lower for foetuses in the CUS group than in the control group. Levels of 5-HT1A receptor were significantly lower in the foetal hippocampus in the CUS group than in the control group, with no significant difference in the hypothalamus. The levels of serotonin transporter (SERT were lower in both the foetal hippocampus and foetal hypothalamus in the CUS group than in the control group. Conclusions Our data demonstrate that pre-gestational stress alters HPA

  15. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression,Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Mei-Yan Liu; Yah-Ping Ren; Wan-Lin Wei; Guo-Xiang Tian; Guo Li

    2015-01-01

    Background:To evaluate whether serotonin (5-HT),5-HT2A receptor (5-HT2AR),and 5-HT transporter (serotonin transporter [SERT]) are associated with different disease states of depression,myocardial infarction (MI) and MI co-exist with depression in Sprague-Dawley rats.Methods:After established the animal model of four groups include control,depression,MI and MI with depression,we measured 5-HT,5-HT2AR and SERT from serum and platelet lysate.Results:The serum concentration of 5-HT in depression rats decreased significantly compared with the control group (303.25 ± 9.99 vs.352.98 ± 13.73;P =0.000),while that in MI group increased (381.78 ± 14.17 vs.352.98 ± 13.73;P =0.000).However,the depression + MI group had no change compared with control group (360.62 ± 11.40 vs.352.98 ± 13.73;P =0.036).The changes of the platelet concentration of 5-HT in the depression,MI,and depression + MI group were different from that of serum.The levels of 5-HT in above three groups were lower than that in the control group (380.40 ± 17.90,387.75 ± 22.28,246.40 ± 18.99 vs.500.29 ± 20.91;P =0.000).The platelet lysate concentration of 5-HT2AR increased in depression group,MI group,and depression + MI group compared with the control group (370.75 ± 14.75,393.47 ± 15.73,446.66 ± 18.86 vs.273.66 ± 16.90;P =0.000).The serum and platelet concentration of SERT in the depression group,MI group and depression + MI group were all increased compared with the control group (527.51 ± 28.32,602.02 ± 23.32,734.76 ± 29.59 vs.490.56 ± 16.90;P =0.047,P =0.000,P =0.000 in each and 906.38 ± 51.84,897.33 ± 60.34,1030.17 ± 58.73 vs.708.62 ± 51.15;P =0.000 in each).Conclusions:The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression.Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  16. On radioprotective action of serotonin

    Tests in vitro were performed to study the effect of serotonin on oxidative phosphorylation in the mitochondria of rat liver. Serotonin (2.10-4 M) was shown to suppress oxidation of α-ketoglutaric acid without significantly changing succinic acid consumption. A comparison of the results obtained with those from the literature allowed to assume that the radioprotective effect of serotonin was based not only on its previously known ability to cause tissue hypoxia, but also on its ability to affect oxidation processes in mitochondria

  17. The effects of glycogen synthase kinase-3beta in serotonin neurons.

    Wenjun Zhou

    Full Text Available Glycogen synthase kinase-3 (GSK3 is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.

  18. Polimorfismos dos genes do receptor de serotonina (5-HT2A) e da catecol-O-metiltransferase (COMT): fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A) and catechol-O-methyltransferase (COMT) gene polymorphisms: Triggers of fibromyalgia?

    Josie Budag Matsuda; Flávia Regina Barbosa; Lucas Junqueira Fernandes Morel; Suzelei de Castro França; Sonia Marli Zingaretti; Lucienir Maria da Silva; Ana Maria Soares Pereira; Mozart Marins; Ana Lúcia Fachin

    2010-01-01

    INTRODUÇÃO: A fibromialgia é uma síndrome reumática caracterizada por dor difusa e crônica associada a fadiga, insônia, ansiedade, depressão, perda de memória e tontura. Embora os mecanismos fisiológicos que controlam a fibromialgia não tenham sido estabelecidos, fatores neuroendócrinos, genéticos ou moleculares podem estar envolvidos. OBJETIVO: O objetivo do presente estudo foi caracterizar os polimorfismos dos genes do receptor de serotonina (5-HT2A) e da catecolO-metiltransferase (COMT) em...

  19. Drug: D08236 [KEGG MEDICUS

    Full Text Available D08236 Drug Mosapride (INN); Mosart (TN) C21H25ClFN3O3 421.1568 421.8929 D08236.gif...cation of drugs [BR:br08310] G Protein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Mosapride... D08236 Mosapride (INN) CAS: 112885-41-3 PubChem: 96024924 LigandBox: D08236 NIKKAJI:

  20. An interesting case of serotonin syndrome precipitated by escitalopram

    Sanyal Debasish

    2010-01-01

    Full Text Available Serotonin syndrome is a known entity, which occurs with multiple drugs acting on serotonergic receptors. A 73-year-old lady presented with a history of agitation, altered sensorium, and autonomic hyperactivity after starting escitalopram on therapeutic dosage for her depressive syndrome who was on selegiline for her parkinsonism. This syndrome with therapeutic dose escitalopram warrants the careful and judicious use of the drug especially with other serotonergic drugs, so that this serious medical complication can be avoided.

  1. Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain

    van der Doelen, Rick H. A.; Calabrese, Francesca; Guidotti, Gianluigi; Geenen, Bram; Riva, Marco A.; Kozicz, Tamás; Homberg, Judith R.

    2014-01-01

    The short allelic variant of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) has been associated with the etiology of major depression by interaction with early life stress (ELS). A frequently observed endophenotype in depression is the abnormal regulation of levels of stress hormones such as glucocorticoids. It is hypothesized that altered central glucocorticoid influence on stress-related behavior and memory processes could underlie the depressogenic interact...

  2. The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling.

    Atanes, Patricio; Lacivita, Enza; Rodríguez, Javier; Brea, José; Burgueño, Javier; Vela, José Miguel; Cadavid, María Isabel; Loza, María Isabel; Leopoldo, Marcello; Castro, Marián

    2013-12-01

    We performed a detailed in vitro pharmacological characterization of two arylpiperazine derivatives, compound N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211) previously identified as a high-affinity brain penetrant ligand for 5-hydroxytryptamine (serotonin) type 7 (5-HT7) receptors, and its analog N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide (MEL-9). Both ligands exhibited competitive displacement of [(3)H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine ([(3)H]-SB-269970) radioligand binding and insurmountable antagonism of 5-carboxamidotryptamine (5-CT)-stimulated cyclic adenosine monophosphate (cAMP) signaling in human embryonic kidney (HEK293) cells stably expressing human 5-HT7 receptors. They also inhibited forskolin-stimulated adenylate cyclase activity in 5-HT7-expressing HEK293 cells but not in the parental cell line. The compounds elicited long-lasting (at least 24 h) concentration-dependent inhibition of radioligand binding at 5-HT7-binding sites in whole-cell radioligand binding assays, after pretreatment of the cells with the compounds and subsequent compound removal. In cAMP assays, pretreatment of cells with the compounds rendered 5-HT7 receptors unresponsive to 5-CT and also rendered 5-HT7-expressing HEK293 cells unresponsive to forskolin. Compound 1-(2-biphenyl)piperazine (RA-7), a known active metabolite of LP-211 present in vivo, was able to partially inhibit 5-HT7 radioligand binding in a long-lasting irreversible manner. Hence, LP-211 and MEL-9 were identified as high-affinity long-acting inhibitors of human 5-HT7 receptor binding and function in cell lines. The detailed in vitro characterization of these two pharmacological tools targeting 5-HT7 receptors may benefit the study of 5-HT7 receptor function and it may lead to the development of novel selective pharmacological tools with defined functional properties at 5-HT7 receptors. PMID:25505568

  3. Serotonergic lesions of the periaqueductal gray, a primary source of serotonin to the nucleus paragigantocellularis, facilitate sexual behavior in male rats

    Normandin, Joseph J.; Murphy, Anne Z.

    2011-01-01

    While selective serotonin reuptake inhibitors (SSRIs) are widely used to treat anxiety and depression, they also produce profound disruptions of sexual function including delayed orgasm/ejaculation. The nucleus paragigantocellularis (nPGi), a primary source of inhibition of ejaculation in male rats, contains receptors for serotonin (5-HT). The ventrolateral periaqueductal gray (vlPAG) provides serotonin to this region, thus providing an anatomical and neurochemical basis for serotonergic regu...

  4. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila;

    2015-01-01

    -HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine...

  5. Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders.

    Fakhoury, Marc

    2016-07-01

    Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression. PMID:25823514

  6. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  7. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Laporta, Jimena; Keil, Kimberly P; Vezina, Chad M; Hernandez, Laura L

    2014-01-01

    Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122

  8. Serotonin release varies with brain tryptophan levels

    Schaechter, Judith D.; Wurtman, Richard J.

    1990-01-01

    This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.

  9. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  10. Modulation of the intrinsic properties of motoneurons by serotonin

    Perrier, Jean-François; Rasmussen, Hanne Borger; Christensen, Rasmus Kordt;

    2013-01-01

    Serotonin (5-HT) is one of the main transmitters in the nervous system. Serotonergic neurons in the raphe nuclei in the brainstem innervate most parts of the central nervous system including motoneurons in the spinal cord and brainstem. This review will focus on the modulatory role that 5-HT exerts...... cationic current. At the same time, 5-HT increases the firing frequency by inhibiting the small Ca2+ activated K+ conductance (SK) responsible for the medium afterhyperpolarization (AHP) following action potentials. 5-HT also promotes persistent inward currents mediated by voltage sensitive Ca2+ and Na......+ conductances, producing a sustained depolarization and an amplification of synaptic inputs. Under pathological conditions, such as after a spinal cord injury, the promotion of persistent inward currents by serotonin and/or the overexpression of autoactive serotonergic receptors may contribute to motoneuronal...

  11. Drug: D00274 [KEGG MEDICUS

    Full Text Available D00274 Drug Cisapride (USAN/INN) C23H29ClFN3O4 465.1831 465.9455 D00274.gif Stimula...L GASTROINTESTINAL DISORDERS A03F PROPULSIVES A03FA Propulsives A03FA02 Cisapride D00274 Cisapride...hodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Cisapride [ATC:A03FA02] D00274 Cisapride (US

  12. Drug: D09205 [KEGG MEDICUS

    Full Text Available D09205 Drug Prucalopride (USAN/INN) C18H26ClN3O3 367.1663 367.8703 D09205.gif Treat...NSTIPATION A06A DRUGS FOR CONSTIPATION A06AX Other drugs for constipation A06AX05 Prucalopride D09205 Prucalopride...mily Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Prucalopride [ATC:A03AE04] D09205 Prucalopride

  13. Tegaserod in the treatment of irritable bowel syndrome (IBS) with constipation as the prime symptom

    Layer, Peter; Keller, Jutta; Loeffler, Helena; Kreiss, Andreas

    2007-01-01

    Irritable bowel syndrome with constipation (IBS-C) as the predominant bowel symptom is a prevalent disorder, characterized by recurring abdominal pain/discomfort, bloating, and constipation, and imposes a significant socio-economic burden. Traditional treatments generally address just one of the multiple IBS symptoms. The efficacy and safety profile of tegaserod, a serotonin 5-HT4 receptor agonist, has been demonstrated in several randomized, placebo-controlled, and open-label trials. This re...

  14. Displacement of specific serotonin and lysergic acid diethylamide binding by Ergalgin, a new antiserotonin drug

    [3H]-serotonin and [3H]-lysergic acid diethylamide (LSD) bind with a high affinity, Ksub(D) = 12 nM and 6 nM, respectively, to distinct receptors of rat caudate membranes in vitro. Displacement experiments with unlabeled serotonin and LSD support the hypothesis of serotonin receptors existing in an agonist and antagonist state. Methysergide and Ergalgin display quite similar potenties in displacing [3H]-serontonin and [3H]-LSD from their specific binding sites (Ksub(i) = 46.7 and 53.4 nM; 22.3 and 36.5 nM, respectively). Contrary to pharmacological findings these binding results are in favour of mixed agonist/antagonist properties of these compounds. (author)

  15. Design and biological evaluation of 99mTc ligands derived from WAY 100635 and desmethyl WAY 100635 for serotonin 5-HT1A and α1-adrenergic receptor binding

    Investigations on Tc labelled ligands for the 5-HT1A receptor carried out at Forschungszentrum Rossendorf from 1999 to 2001 in collaboration with the Karolinska Institute, Stockholm, are reported. The novel Tc labelled receptor ligands basically consist of a Tc chelate unit with the metal in the oxidation state +5 or +3 and 1-(2-methoxyphenyl) piperazine as the receptor targeting domain. Both moieties are linked by alkyl spacers of various chain lengths. Rhenium was used as Tc surrogate for complete chemical characterization and in vitro receptor binding studies. All complexes display in competition experiments not only subnanomolar affinities for the 5-HT1A receptor but also high affinities for the α1-adrenergic receptor. Biodistribution studies in rats show brain uptakes between 0.2 and 0.6% of the injected dose five minutes post-injection. In vitro autoradiographic studies in rat brains and post-mortem human brains indicate the accumulation of the 99mTc complexes in areas which are rich in 5-HT1A receptors and additionally in areas rich in α1-adrenergic receptors. This in vitro enrichment can be blocked respectively by the 5-HT1A receptor agonist 8-OH-DPAT or by prazosin hydrochloride, an α1-adrenergic receptor antagonist. (author)

  16. Serotonin reverts age-related capillarization and failure of regeneration in the liver through a VEGF-dependent pathway

    Furrer, Katarzyna; Rickenbacher, Andreas; Tian, Yinghua; Jochum, Wolfram; Bittermann, Anne Greet; Käch, Andres; Humar, Bostjan; Graf, Rolf; MORITZ, WOLFGANG; Clavien, Pierre-Alain

    2011-01-01

    The function of the liver is well-preserved during the aging process, although some evidence suggests that liver regeneration might be impaired with advanced age. We observed a decreased ability of the liver to restore normal volume after partial hepatectomy in elderly mice, and we identified a pathway that rescued regeneration and was triggered by serotonin. 2,5-dimethoxy-4-iodoamphetamine (DOI), a serotonin receptor agonist, reversed the age-related pseudocapillarization of old liver and im...

  17. A candidate gene study of serotonergic pathway genes and pain relief during treatment with escitalopram in patients with neuropathic pain shows significant association to serotonin receptor2C (HTR2C)

    Brasch-Andersen, Charlotte; Møller, Malik U; Christiansen, Lene;

    2011-01-01

    the association between polymorphisms in genes involved in the serotonergic pathway and the effect of escitalopram on peripheral neuropathic pain. METHODS: We genotyped 34 participants from a placebo-controlled trial of escitalopram in peripheral neuropathic pain for polymorphisms in five genes: the.......047), with 75% carrying the C allele being responders. The same tendency was seen in women. Similarly, carriership of the C allele at rs6318 was associated with better pain relief during treatment with escitalopram [odds ratio (OR) 15.5, p = 0.014)] Furthermore, there was a tendency of better relief with...... increasing number of short alleles for the 5-HTTLPR polymorphism of the serotonin transporter (OR 5.7, p = 0.057). None of the other polymorphisms showed a significant association with treatment response to escitalopram. CONCLUSION: This study indicates that variation in the HTR2C gene is associated to the...

  18. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling.

    Lam, H R; Plenge, P; Jørgensen, O S

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, and subcellular levels. This study investigates the effects of two types of white spirit on 5-hydroxytryptamine (5-HT) transporters (5-HTT), 5-HT(2A) and 5-HT(4) receptor expression in forebrain, and on neural cell adhesion molecule (NCAM) and 25-kDa synaptosomal associated protein (SNAP-25) concentrations when applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days/week for 3 weeks. The 5-HTT B(max) and K(d) were not affected. Both types of white spirit at 800 ppm decreased B(max) for the 5-HT(2A) receptor. The aromatic type decreased the K(d) of the 5-HT(2A) and 5-HT(4) receptors at 800 ppm. Aromatic white spirit did not affect NCAM or SNAP-25 concentrations or NCAM/SNAP-25 ratio in forebrain, whereas NCAM increased in hippocampus and the NCAM/SNAP-25 ratio decreased in entorhinal cortex. Dearomatized white spirit did not affect NCAM, SNAP-25, or NCAM/SNAP-25 ratio in any brain region. The affected 5-HT receptor expression and synaptic plasticity marker proteins indicate that inhalation exposure to high concentrations of white spirit may be neurotoxic to rats, especially the aromatic white spirit type. PMID:11792528

  19. Multiple actions of iontophoretically applied serotonin on motorneurones in the turtle spinal cord in vitro

    Skydsgaard, Morten Arnika; Hounsgaard, J

    1996-01-01

    The effects of focal activation of serotonergic receptors in motorneurones were investigated in a slice preparation of the turtle spinal cord. The test response to glutamate evoked from a dendrite by iontophoresis was attenuated by serotonin or 8-hydroxy-dipropyl-aminotetralin (8-OH-DPAT) applied...

  20. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3 antag

  1. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. PMID:26655822

  2. Modulation of the intrinsic properties of motoneurons by serotonin

    Perrier, Jean-Francois Marie; Rasmussen, Hanne Borger; Christensen, Rasmus Kordt;

    2013-01-01

    Serotonin (5-HT) is one of the main transmitters in the nervous system. Serotonergic neurons in the raphe nuclei in the brainstem innervate most parts of the central nervous system including motoneurons in the spinal cord and brainstem. This review will focus on the modulatory role that 5-HT exerts...... activation of serotonergic receptors induces a general increase of the excitability of motoneurons through the modulation of several classes of ion channels. 5-HT depolarizes motoneurons towards the threshold for action potentials by inhibiting leak conductances and promoting a hyperpolarization activated...

  3. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  4. Serotonin and dopamine play complementary roles in gambling to recover losses

    Campbell-Meiklejohn, Daniel; Cooke, Jennifer; Wakeley, Judi;

    2011-01-01

    Continued gambling to recover losses - 'loss-chasing' - is a prominent feature of social and pathological gambling. However, little is known about which neuromodulators influence this behaviour. In 3 separate experiments, we investigated the role of serotonin activity, D2/D3 receptor activity, and...... losses surrendered. Propranolol markedly reduced heart rate but produced no significant changes in loss-chasing behaviour. Serotonin and dopamine play dissociable roles in the tendency of individuals to gamble to recover losses. Serotonergic activity mediates the persistence of loss-chasing behaviour...

  5. Serotonin gene polymorphisms and bipolar I disorder: focus on the serotonin transporter.

    Mansour, Hader A; Talkowski, Michael E; Wood, Joel; Pless, Lora; Bamne, Mikhil; Chowdari, Kodavali V; Allen, Michael; Bowden, Charles L; Calabrese, Joseph; El-Mallakh, Rif S; Fagiolini, Andrea; Faraone, Stephen V; Fossey, Mark D; Friedman, Edward S; Gyulai, Laszlo; Hauser, Peter; Ketter, Terence A; Loftis, Jennifer M; Marangell, Lauren B; Miklowitz, David J; Nierenberg, Andrew A; Patel, Jayendra; Sachs, Gary S; Sklar, Pamela; Smoller, Jordan W; Thase, Michael E; Frank, Ellen; Kupfer, David J; Nimgaonkar, Vishwajit L

    2005-01-01

    The pathogenesis of bipolar disorder may involve, at least in part, aberrations in serotonergic neurotransmission. Hence, serotonergic genes are attractive targets for association studies of bipolar disorder. We have reviewed the literature in this field. It is difficult to synthesize results as only one polymorphism per gene was typically investigated in relatively small samples. Nevertheless, suggestive associations are available for the 5HT2A receptor and the serotonin transporter genes. With the availability of extensive polymorphism data and high throughput genotyping techniques, comprehensive evaluation of these genes using adequately powered samples is warranted. We also report on our investigations of the serotonin transporter, SLC6A4 (17q11.1-q12). An insertion/deletion polymorphism (5HTTLPR) in the promoter region of this gene has been investigated intensively. However, the results have been inconsistent. We reasoned that other polymorphism/s may contribute to the associations and the inconsistencies may be due to variations in linkage disequilibrium (LD) patterns between samples. Therefore, we conducted LD analyses, as well as association and linkage using 12 polymorphisms, including 5HTTLPR. We evaluated two samples. The first sample consisted of 135 US Caucasian nuclear families having a proband with bipolar I disorder (BDI, DSM IV criteria) and available parents. For case-control analyses, the patients from these families were compared with cord blood samples from local Caucasian live births (n = 182). Our second, independent sample was recruited through the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD, 545 cases, 548 controls). No significant associations were detected at the individual polymorphism or haplotype level using the case-control or family-based analyses. Our analyses do not support association between SLC6A4 and BDI families. Further studies using sub-groups of BDI are worthwhile. PMID:16338761

  6. Delayed pressure urticaria treated with the selective serotonin reuptake inhibitor escitalopram.

    Eskeland, S; Tanum, L; Halvorsen, J A

    2016-07-01

    There is increasing evidence of platelet activation and systemic inflammation in chronic spontaneous urticaria and delayed pressure urticaria (DPU). Inflammation may be central to understanding the high comorbidity of depression and anxiety in patients with chronic urticaria (CU). We report a case of DPU and depression in a patient, which responded favourably to treatment with the selective serotonin reuptake inhibitor (SSRI) escitalopram. Sustained administration of SSRIs is associated with downregulation of serotonin transporters/receptors and depletion of platelet stored serotonin, which may reduce the ability of platelets to aggregate after thrombotic triggers. SSRIs are easier to manage and have significantly less disturbing adverse effects and cardiotoxicity than the tricyclic antidepressants (TCAs). SSRIs may represent an alternative to the traditional use of TCAs in treatment of CU. PMID:27037523

  7. Serotonin syndrome due to fluoxetine and tramadol in renal impaired patient

    Rajnish Raj

    2014-02-01

    Full Text Available Serotonin syndrome causes confusion or altered mental status; other symptoms include myoclonus, shivering, tremors, diaphoresis, hyperreflexia, incoordination, fever and diarrhoea. Tramadol possesses dual pharmacological effects i.e., a weak opiate agonist at mu, kappa and delta opiate receptors along with reuptake inhibition of norepinephrine and serotonin. Risk associated with tramadol increases when co-administered with serotonergic antidepressants or MAOIs (monoamine oxidase inhibitors and in renal impaired. The incidence of this syndrome is less than 1% as most of the cases remain unreported. The case highlights the fact that interaction between serotonergic agents like fluoxetine and tramadol especially in the presence of co-morbid medical illness can lead to serotonin syndrome. [Int J Basic Clin Pharmacol 2014; 3(1.000: 227-229

  8. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  9. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Xiaoning Chen; Ran Ye; J. Jay Gargus; Randy D. Blakely; Kostantin Dobrenis; Ji Ying Sze

    2015-01-01

    Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs) dictates sensory map architecture. Knockout of SERT in TCAs...

  10. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Xiaoning Chen; Ran Ye; J. Jay Gargus; Randy D. Blakely; Kostantin Dobrenis; Ji Ying Sze

    2015-01-01

    © 2015 The Authors. Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs) dictates sensory map architecture. Knoc...

  11. Antagonism by 8-hydroxy-2(di-n-propylamino)tetraline and other serotonin agonists of muscarinic M1-type receptors coupled to inositol phospholipid breakdown in human IMR-32 and SK-N-MC neuroblastoma cells

    IMR-32 and SK-N-MC cells were found to contain [3H]quinuclidinyl benzilate specific binding sites inhibited by pirenzepine in a manner suggesting the presence of both M1-type and M2-type muscarinic receptor recognition sites. Neither cell had detectable [3H]8-OH-DPAT binding sites. Carbachol stimulated the rate of inositol phospholipid breakdown in IMR-32 and SK-N-MC human neuroblastoma cells with an EC50 value of about 50 μM in both cases. Pirenzepine inhibited the carbachol stimulated inositol phospholipid breakdown in both cells with Hill slopes of unity and IC50 values of 15 nM (IMR-32) and 12 nM (SK-N-MC). The 5-HT1A receptor agonist 8-OH-DPAT competitively inhibited carbachol-stimulated inositol phospholipid breakdown with pA2 values of 5.78 (IMR-32) and 5.61 (SK-N-MC). The 5-HT agonists 5-MeODMT and buspirone at micromolar concentrations inhibited carbachol-stimulated breakdown in IMR-32 cells. The inhibition by 8-OH-DPAT and 5-MeODMT was not affected by preincubation with (-)alprenolol. 5-HT was without effect on either basal or carbachol-stimulated breakdown. It is concluded that IMR-32 and SK-N-MC neuroblastoma cells express muscarinic M1-type but not serotoninergic receptors coupled to phosphoinositide-specific phospholipase C. 8-OH-DPAT acts as a weak antagonist at these muscarinic receptors

  12. receptores

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  13. Transient Serotonin Syndrome by Concurrent Use of Electroconvulsive Therapy and Selective Serotonin Reuptake Inhibitor: A Case Report and Review of the Literature

    Nagahisa Okamoto

    2012-01-01

    Full Text Available The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  14. Bupropion Induced Serotonin Syndrome: A Case Report

    Thorpe, Elizabeth L.; Pizon, Anthony F.; Lynch, Michael J.; Boyer, Jessica

    2010-01-01

    Although there are no documented cases of serotonin syndrome (SS) following bupropion ingestion alone in the literature, the ability of bupropion to potentiate serotonin levels and lead to SS is known. A 15-year-old boy was found at home hallucinating. He then developed tonic–clonic activity. Upon arrival in the emergency department, he was confused and restless. On exam, he had tachycardia, hypertension, dilated pupils and dry oral mucosa, normal tone and reflexes in his arms, but rigidity a...

  15. The serotonin transporter in psychiatric disorders

    Spies, Marie; Knudsen, Karen Birgitte Moos; Lanzenberger, Rupert;

    2015-01-01

    of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder......, obsessive-compulsive disorder, and eating disorders. Few studies have shown changes in serotonin transporter activity in schizophrenia and attention deficit hyperactivity disorder. By showing the scarcity of data in these psychiatric disorders, we highlight the potential for further investigation...

  16. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  17. Ligand-gated chloride channels are receptors for biogenic amines in C. elegans

    Ringstad, Niels; Abe, Namiko; Horvitz, H. Robert

    2009-01-01

    Biogenic amines such as serotonin and dopamine are intercellular signaling molecules that function widely as neurotransmitters and neuromodulators. We have identified in the nematode Caenorhabditis elegans three ligand-gated chloride channels that are receptors for biogenic amines: LGC-53 is a high-affinity dopamine receptor, LGC-55 is a high-affinity tyramine receptor, and LGC-40 is a low-affinity serotonin receptor that is also gated by choline and acetylcholine. lgc-55 mutants are defectiv...

  18. Theory-based analysis of clinical efficacy of triptans using receptor occupancy

    Tokuoka, Kentaro; Takayanagi, Risa; Suzuki, Yuji; Watanabe, Masayuki; Kitagawa, Yasuhisa; Yamada, Yasuhiko

    2014-01-01

    Background Triptans, serotonin 5-HT1B/1D receptor agonists, exert their action by targeting serotonin 5-HT1B/1D receptors, are used for treatment of migraine attack. Presently, 5 different triptans, namely sumatriptan, zolmitriptan, eletriptan, rizatriptan, and naratriptan, are marketed in Japan. In the present study, we retrospectively analyzed the relationships of clinical efficacy (headache relief) in Japanese and 5-HT1B/1D receptor occupancy (Φ1B and Φ1D). Receptor occupancies were calcul...

  19. Characterization of the 5-hydroxytryptamine receptors mediating contraction in the pig isolated intravesical ureter

    Hernández, Medardo; Barahona, María Victoria; Simonsen, Ulf; Recio, Paz; Rivera, Luis; Martínez, Ana Cristina; García-Sacristán, Albino; Orensanz, Luis M; Prieto, Dolores

    2003-01-01

    This study was designed to investigate the effect of 5-hydroxytryptamine (5-HT) and to characterize the 5-HT receptors involved in 5-HT responses in the pig intravesical ureter. 5-HT (0.01–10 μM) concentration-dependently increased the tone of intravesical ureteral strips, whereas the increases in phasic contractions were concentration-independent. The 5-HT2 receptor agonist α-methyl 5-HT, mimicked the effect on tone whereas weak or no response was obtained with 5-CT, 8-OH-DPAT, m-chlorophenylbiguanide and RS 67333, 5-HT1, 5-HT1A, 5-HT3 and 5-HT4 receptor agonists, respectively. 5-HT did not induce relaxation of U46619-contracted ureteral preparations. Pargyline (100 μM), a monoaminooxidase A/B activity inhibitor, produced leftward displacements of the concentration-response curves for 5-HT. 5-HT-induced tone was reduced by the 5-HT2 and 5-HT2A receptor antagonists ritanserine (0.1 μM) and spiperone (0.2 μM), respectively. However, 5-HT contraction was not antagonized by cyanopindolol (2 μM), SDZ–SER 082 (1 μM), Y-25130 (1 μM) and GR 113808 (0.1 μM), which are respectively, 5-HT1A/1B, 5-HT2B/2C, 5-HT3, and 5-HT4 selective receptor antagonists. Removal of the urothelium did not modify 5-HT-induced contractions. Blockade of neuronal voltage-activated sodium channels, α-adrenergic receptors and adrenergic neurotransmission with tetrodotoxin (1 μM), phentolamine (0.3 μM) and guanethidine (10 μM), respectively, reduced the contractions to 5-HT. However, physostigmine (1 μM), atropine (0.1 μM) and suramin (30 μM), inhibitors of cholinesterase activity, muscarinic- and purinergic P2-receptors, respectively, failed to modify the contractions to 5-HT. These results suggest that 5-HT increases the tone of the pig intravesical ureter through 5-HT2A receptors located at the smooth muscle. Part of the 5-HT contraction is indirectly mediated via noradrenaline release from sympathetic nerves. PMID:12522083

  20. Role of serotonin in pathogenesis of analgesic induced headache

    Srikiatkhachorn, A.

    1999-12-16

    Analgesic abuse has recently been recognized as a cause of deterioration in primary headache patients. Although the pathogenesis of this headache transformation is still obscure, and alteration of central pain control system is one possible mechanism. A number of recent studies indicated that simple analgesics exert their effect by modulating the endogenous pain control system rather than the effect at the peripheral tissue, as previously suggested. Serotonin (5-hydroxytryptamine ; 5-HT) has long been known to play a pivotal role in the pain modulatory system in the brainstem. In the present study, we investigated the changes in 5-HT system in platelets and brain tissue. A significant decrease in platelet 5-HT concentration (221.8{+-}30.7, 445.3{+-}37.4 and 467.2{+-}38.5 ng/10{sup 9} platelets, for patients with analgesic-induced headache and migraine patients, respectively, p<0.02) were evident in patients with analgesic induced headache. Chronic paracetamol administration induced a decrease in 5-HT{sub 2} serotonin receptor in cortical and brain stem tissue in experimental animals (B{sub max}=0.93{+-}0.04 and 1.79{+-}0.61 pmol/mg protein for paracetamol treated rat and controls, respectively, p<0.05). Our preliminary results suggested that chronic administration of analgesics interferes with central and peripheral 5-HT system and therefore possibly alters the 5-HT dependent antinociceptive system. (author)

  1. Modeling prepolymerization step of a serotonin imprinted polymer.

    Gündeğer, Ersin; Selçuki, Cenk; Okutucu, Burcu

    2016-07-01

    Studies on generating artificial macromolecular receptors by molecular imprinting of synthetic polymers significantly emerged in the literature during last decades. The non-covalent approach, one of the three methods used in MIP synthesis, is more flexible for the choice of functional monomers, possible target molecules, and use of the imprinted materials. This study aims to investigate a serotonin imprinted polymer prepared by non-covalent approach using molecular modeling. The calculations were carried out by using density functional theory at ωB97XD/6-31++G(d,p) level and the polarizable continuum model was used for solvent calculations. Computational results showed that DMSO plays an important role in the MIP formation as it seems to control the size and the shape of the cavity. DMSO performs these tasks through hydrogen bonding and dispersive interactions. Although experimental IR could not verify the specific interaction modes because of broadband structure, computational IR results showed these modes clearly indicating the interactions leading to MIP formation. This model is specific to the studied serotonin-acrylamide-DMSO system but further studies may reveal a general computational protocol for other MIP systems. PMID:27262576

  2. Immunomodulatory Effects Mediated by Serotonin

    Rodrigo Arreola

    2015-01-01

    Full Text Available Serotonin (5-HT induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b downstream signaling transduction proteins; and (c enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.

  3. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model.

    Fei Shen

    Full Text Available Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid

  4. Acute social defeat does not alter cerebral 5-HT2A receptor binding in male Wistar rats

    Visser, Anniek K. D.; Meerlo, Peter; Ettrup, Anders; Knudsen, Gitte M.; Bosker, Fokko J.; den Boer, Johan A.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2014-01-01

    It has been hypothesized that effects of uncontrollable stress on serotonin receptor expression contribute to the etiology of stress-related disorders like depression. While the serotonin-2A receptors (5-HT2AR) are thought to be important in this context, only few studies examined effects of stress

  5. Quantification of the radio-metabolites of the serotonin-1A receptor radioligand [carbonyl-11C]WAY-100635 in human plasma: An HPLC-assay which enables measurement of two patients in parallel

    [Carbonyl-11C]WAY-100635 is a potent and effective antagonist for the 5-HT1A receptor subtype. We aimed to assess the status of [carbonyl-11C]WAY-100635 and its main radio-metabolites, [carbonyl-11C]desmethyl-WAY-100635 and [carbonyl-11C]cyclohexanecarboxylic acid, on the basis of an improved radio-HPLC method. Common methods were characterized by preparative HPLC columns with long runtimes and/or high flow rates. Considering the short half-life of C-11, we developed a more rapid and solvent saving HPLC assay, allowing a fast, efficient and reliable quantification of these major metabolites. - Highlights: ► We developed a HPLC assay which allows the measurement of two patients in parallel. ► It allows a fast and efficient quantification of WAY-100635 and its metabolites. ► Better counting statistics with late samples for modeling the input function is achieved. ► The fastest assay so far is about 40% slower in comparison to the presented method.

  6. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator.

    Maeda, Kenji; Sugino, Haruhiko; Akazawa, Hitomi; Amada, Naoki; Shimada, Jun; Futamura, Takashi; Yamashita, Hiroshi; Ito, Nobuaki; McQuade, Robert D; Mørk, Arne; Pehrson, Alan L; Hentzer, Morten; Nielsen, Vibeke; Bundgaard, Christoffer; Arnt, Jørn; Stensbøl, Tine Bryan; Kikuchi, Tetsuro

    2014-09-01

    Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel drug candidate in clinical development for psychiatric disorders with high affinity for serotonin, dopamine, and noradrenaline receptors. In particular, it bound with high affinity (Ki 1000 nM). Brexpiprazole potently bound to rat 5-HT2A and D2 receptors in vivo, and ex vivo binding studies further confirmed high 5-HT1A receptor binding potency. Brexpiprazole inhibited DOI (2,5-dimethoxy-4-iodoamphetamine)-induced head twitches in rats, suggestive of 5-HT2A antagonism. Furthermore, in vivo D2 partial agonist activity of brexpiprazole was confirmed by its inhibitory effect on reserpine-induced DOPA accumulation in rats. In rat microdialysis studies, brexpiprazole slightly reduced extracellular dopamine in nucleus accumbens but not in prefrontal cortex, whereas moderate increases of the dopamine metabolites, homovanillic acid and DOPAC (3,4-dihydroxy-phenyl-acetic acid), in these areas also suggested in vivo D2 partial agonist activity. In particular, based on a lower intrinsic activity at D2 receptors and higher binding affinities for 5-HT1A/2A receptors than aripiprazole, brexpiprazole would have a favorable antipsychotic potential without D2 receptor agonist- and antagonist-related adverse effects. In conclusion, brexpiprazole is a serotonin-dopamine activity modulator with a unique pharmacology, which may offer novel treatment options across a broad spectrum of central nervous system disorders. PMID:24947465

  7. Temperament, character and serotonin activity in the human brain

    Tuominen, L; Salo, J; Hirvonen, J;

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  8. Serotonin modulates vocalizations and territorial behavior in an amphibian.

    Ten Eyck, Gary R

    2008-11-01

    It is well established that the serotonergic system modulates social and aggressive behaviors. This study employed field experiments to examine the effects of serotonin on male social structure and behavior in the Puerto Rican coquí frog, Eleutherodactylus coqui. This frog displays three types of male behavioral phenotypes: territorial, satellite, and paternal males. Territorial males produce advertisement calls that delineate territories and actively defend these areas. Satellite males typically do not call or defend given areas but are commonly within given conspecific territories. Paternal males brood and defend developing embryos typically in isolation. The objective of this investigation was to focus on territorial and satellite males to determine the impact of the serotonergic system on territorial behavior, specifically with regard to advertisement calling. Serotonin receptor subtype systems 5-HT(1A) and 5-HT(2A/C) were chosen due to their known function in behavioral regulation. Fifteen territorial and satellite males were injected with the 5-HT(1A) agonist 8-OH-DPAT and 15 territorial and satellite males were injected with the 5-HT(2A/C) agonist DOI. Control territorial and satellite males received saline injections. Results indicated that a significant number of territorial males injected with 8-OH-DPAT and DOI failed to emit territorial vocalizations and did not display dominant postural behaviors. It is hypothesized that 8-OH-DPAT and DOI activate 5-HT(1A) and 5-HT(2A/C) receptor systems, respectively, and this activation results in the elimination of territorial behavior resulting in subordinate status. It is concluded that the serotonergic system is essential for the manifestation of male social behavior in E. coqui. PMID:18554729

  9. How do we re-engage the pharmaceutical industry in research on serotonin and psychiatric disorders?

    Green, A Richard; Marsden, Charles A

    2013-01-16

    The Serotonin Club celebrated its silver jubilee in 2012 with a meeting in Montpellier, France. During the past 25 years, great advances have been made in our understanding of the pharmacology of serotonin receptors and the roles of this neurotransmitter in psychiatric disorders. Most of these advances have involved effective collaborations between academic and industrial scientists. In recent years, however, this picture has changed, as many of the major pharmaceutical companies have pulled out of in-house psychopharmacology research into the major psychiatric disorders, despite an increasing worldwide burden of these disorders and a clear need for improved treatment, particularly in terms of improved efficacy. This Viewpoint investigates the reasons for the decline in industrial involvement and makes proposals as to how future academic research on serotonin function in the brain might reawaken industry interest in serotonin-based research. Briefly, academic preclinical scientists need to alter their experimental approach to research into the psychiatric disorders. This will require a move from a single-target approach to understanding the complex neuronal pathways the cause diverse functional and behavioral outputs, using novel technological advances and the development of animal models with enhanced translational values. It is hoped that such an approach will reveal novel drug targets and thus re-engage the pharmaceutical industry in research that will result in improved human health and social well-being. PMID:23336037

  10. Serotonin regulates repolarization of the C. elegans pharyngeal muscle

    Niacaris, Timothy; Avery, Leon

    2003-01-01

    Caenorhabditis elegans feeds by rhythmically contracting its pharynx to ingest bacteria. The rate of pharyngeal contraction is increased by serotonin and suppressed by octopamine. Using an electrophysiological assay, we show that serotonin and octopamine regulate two additional aspects of pharyngeal behavior. Serotonin decreases the duration of the pharyngeal action potential and enhances activity of the pharyngeal M3 motor neurons. Gramine, a competitive serotonin antagonist, and octopamine ...

  11. Serotonin, Amygdala and Fear: Assembling the Puzzle

    Bocchio, Marco; McHugh, Stephen B.; Bannerman, David M.; Sharp, Trevor; Capogna, Marco

    2016-01-01

    The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5

  12. Serotonin regulates osteoblast proliferation and function in vitro

    Dai, S.Q.; Yu, L.P. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Shi, X. [Department of Obstetrics and Gynecology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wu, H. [Emergency Department, The First Affiliated Hospital, Soochow University, Suzhou (China); Shao, P.; Yin, G.Y.; Wei, Y.Z. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-08-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT{sub 1A}, 5-HT{sub 1B}, 5-HT{sub 1D}, 5-HT{sub 2A}, 5-HT{sub 2B}, and 5-HT{sub 2C}) were found to exist in rat osteoblasts. Of these, 5-HT{sub 2A} and 5-HT{sub 1B} receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.

  13. Effect of 5-HT7 receptor blockade on liver regeneration after 60-70% partial hepatectomy

    Tzirogiannis, Konstantinos N; Kourentzi, Kalliopi T; Zyga, Sofia; Papalimneou, Vassiliki; Tsironi, Maria; Grypioti, Agni D; Protopsaltis, Ioannis; Panidis, Dimitrios; Panoutsopoulos, Georgios I

    2014-01-01

    Background Serotonin exhibits a vast repertoire of actions including cell proliferation and differentiation. The effect of serotonin, as an incomplete mitogen, on liver regeneration has recently been unveiled and is mediated through 5-HT2 receptor. The aim of the present study was to investigate the effect of 5-HT7 receptor blockade on liver regeneration after partial hepatectomy. Methods Male Wistar rats were subjected to 60-70% partial hepatectomy. 5-HT7 receptor blockade was applied by int...

  14. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein

  15. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  16. Enzymatic features of serotonin biosynthetic enzymes and serotonin biosynthesis in plants

    Kang, Kiyoon; Kang, Sei; Lee, Kyungjin; Park, Munyoung; Back, Kyoungwhan

    2008-01-01

    Serotonin, a pineal hormone in mammals, is found in a wide range of plant species at detection levels from a few nanograms to a few milligrams, and has been implicated in several physiological roles, such as flowering, morphogenesis and adaptation to environmental changes. Serotonin synthesis requires two enzymes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), with TDC serving as a rate-limiting step because of its high Km relation to the substrate tryptophan (690 µM) and ...

  17. Measuring the serotonin uptake site using (/sup 3/H)paroxetine--a new serotonin uptake inhibitor

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand.

  18. Drug: D10152 [KEGG MEDICUS

    Full Text Available D10152 Drug Prucalopride succinate (USAN); Resolor (TN) C18H26ClN3O3. C4H6O4 485.19... METABOLISM A06 DRUGS FOR CONSTIPATION A06A DRUGS FOR CONSTIPATION A06AX Other drugs for constipation A06AX05 Prucalopride... D10152 Prucalopride succinate (USAN) Target-based classification of drugs [BR:br08310] G Prot...ein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Prucalopride... [ATC:A03AE04] D10152 Prucalopride succinate (USAN) CAS: 179474-85-2 PubChem: 135626870 Li

  19. Drug: D01994 [KEGG MEDICUS

    Full Text Available D01994 Drug Mosapride citrate hydrate (JP16); Mosapride citrate dihydrate; Gasmotin... drugs [BR:br08310] G Protein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Mosapride... D01994 Mosapride citrate hydrate (JP16) CAS: 636582-62-2 PubChem: 7849056 LigandBox: D01994 A...ugs in Japan [BR:br08301] 2 Agents affecting individual organs 23 Digestive organ agents 239 Miscellaneous 2399 Others D01994 Mosapri...de citrate hydrate (JP16) Target-based classification of

  20. A current view of serotonin transporters.

    De Felice, Louis J

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function-to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  1. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-01

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling. PMID:26541069

  2. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  3. Serotonin modulates retinotectal and corticotectal convergence in the superior colliculus.

    Mooney, R D; Huang, X; Shi, M Y; Bennett-Clarke, C A; Rhoades, R W

    1996-01-01

    A dense serotonin (5-HT)-containing projection to the superficial layers of the superior colliculus (SC) has been demonstrated in diverse mammalian species, but how 5-HT may affect visual signals within these laminae is largely unknown. This study undertook to investigate the distribution of 2 types of 5-HT receptors in the SC and to ascertain their physiological effects on transmission of visual signals to the SC from the retinotectal and corticotectual pathways. Autoradiography of tissue sections exposed to [3H]-8-OH-DPAT (8-hydroxy-dipropylaminotetraline) or to [125I]cyanopindolol plus isoproterenol showed that 5-HT1A and 5-HT1B receptors, respectively, were present in the superficial SC layers. In unilaterally enucleated animals, binding of ligand to 5-HT1B receptors was greatly reduced on the deafferented (contralateral) side, which is consistent with the possibility that these receptors are located on preterminal axons. Binding to 5-HT1A receptors was unaltered by enucleation. In recordings of superficial layer neurons from SC slices, application of 5-HT during blockade of 5-HT1A receptors with spiperone reduced the amplitude of EPSPs evoked by stimulation of the optic tract. The 5-HT concentration for a 50% reduction in EPSP amplitude was 6 microM. Under these conditions, there were no significant alterations in either membrane potential or input resistance concurrent with 5-HT mediated reduction in EPSPs. During extracellular in vivo recordings, 5-HT, applied by iontophoresis or micropressure or by endogenous release produced by electrical stimulation of the dorsal raphé nucleus, strongly suppressed visual activity in SC neurons. The effectiveness of 5-HT application was significantly stronger on responses evoked by electrical stimulation of the optic chiasm (an average response decrement of 92.2%) than on these evoked in the same neurons by stimulation of visual cortex (an average response reduction of 32.3%). These results support the following

  4. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa; Marcussen, Anders Bue; Thomsen, Morten Skøtt; Chourbaji, Sabine; Brandwein, Christiane; Ridder, Stephanie; Halldin, Christer; Gass, Peter; Knudsen, Gitte M; Aznar, Susana

    2009-01-01

    Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker of...... depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish an...... effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...

  5. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats.

    Donnelly, William T; Bartlett, Donald; Leiter, J C

    2016-07-01

    What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C

  6. Serotonin dependent masking of hippocampal sharp wave ripples.

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory. PMID:26409781

  7. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  8. 5-羟色胺1受体对酸灌注脊髓损伤猫膀胱排尿的影响%Effect of 5-serotonin 1 receptor agonists on acetic acid stimulated micturition in chronic spinal cord injury cats

    吴刚; 程曙杰; 曹海兵; 陈加生; 俞建军; 谷宝军

    2012-01-01

    Objective To evaluate the effects of 5-serotonin 1 (5-HT1) receptor agonists on acetic acid stimulated micturition in cats with chronic spinal cord injury (SCI).Methods Chloralose-anesthetized SCI cats were catheterized through the bladder dome for filling cystometry during 0.5% acetic acid infusion.Dose-response curves for ( R)-8-OH-DPAT (0.30-30.00 μg/kg,i.v.) or GR 46611 (0.03-300.00 μg/kg,i.v.) were followed by 5-HT1A antagonist WAY-100635 (300.00 μg/kg).Threshold volume,bladder capacity,residual volume,micturition volume,and arterial pressure were measured and the external urethral sphincter electromyogram (EUS-EMG) was recorded.Results Acid-infused SCI cats responded to (R)-8-OH-DPAT but not GR-46611 with dose-dependent increases in threshold volume,capacity,and residual volume,significantly at the dose above 10 μg/kg.Effects of (R)-8-OH-DPAT were largely reversed by WAY 100635.Neither (R)-8-OH-DPAT nor GR-46611 augmented EUS-EMG activity.Conclusion Because 5-HT1A receptor agonists increase bladder capacity under either saline or acid infused conditions,they are promising candidates for reducing bladder hyperactivity and increasing bladder capacity in patients with chronic SCI.%目的 观察5-羟色胺1(5-HT1)受体激动剂对酸灌注脊髓损伤(SCI)猫膀胱排尿的影响.方法 手术彻底离断雌猫脊髓12只,术后饲养2个月,氯醛糖麻醉猫后予膀胱置管,注入0.5%乙酸溶液同时行膀胱压力测定.静脉给与5-HTlA受体激动剂8-OH-DPAT(0.30 ~30.00μg/kg)或GR-46611 (0.03 ~300.00 μg/kg),最后给予5-HT1A受体拮抗剂WAY-100635(300.00 μg/kg),记录膀胱容量阈值、膀胱容量、残尿量、排尿量和血压,同时记录尿道外括约肌肌电图(EUS-EMG).结果 8-OH-DPAT作用酸灌注脊髓损伤猫后,其膀胱容量阈值、膀胱容量、残尿量等均呈剂量依赖性增加,剂量≥10μg/kg时反应明显,差异有统计学意义.而GR-46611无类似效应.WAY-100635能逆转8-OH

  9. Serotonin 2A Receptors, Citalopram and Tryptophan-Depletion

    Macoveanu, Julian; Hornboll, Bettina; Elliott, Rebecca;

    2013-01-01

    neural correlates of inhibition using intravenous citalopram and acute tryptophan depletion during functional magnetic resonance imaging. We adapted the NoGo paradigm to isolate effects on inhibition per se as opposed to other aspects of the NoGo paradigm. Successful NoGo inhibition was associated with...... greater activation of the right IFG compared to control trials with alternative responses, indicating that the IFG is activated with inhibition in NoGo trials rather than other aspects of invoked cognitive control. Activation of the left IFG during NoGo trials was greater with citalopram than acute...

  10. A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters

    Harvey, Marquinta L.; Swallows, Cody L.; Cooper, Matthew A.

    2012-01-01

    Previous research indicates that serotonin enhances the development of stress-induced changes in behavior, although it is unclear which serotonin receptors mediate this effect. 5-HT2 receptors are potential candidates because activation at these receptors is associated with increased fear and anxiety. In this study we investigated whether pharmacological treatments targeting 5-HT2 receptors would alter the acquisition and expression of conditioned defeat. Conditioned defeat is a social defeat...

  11. Serotonin syndrome presenting as pulmonary edema.

    Shah, Nilima Deepak; Jain, Ajay B

    2016-01-01

    Serotonin syndrome (SS) is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline), linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness. PMID:26997733

  12. Serotonin syndrome presenting as pulmonary edema

    Nilima Deepak Shah

    2016-01-01

    Full Text Available Serotonin syndrome (SS is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline, linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness.

  13. [Lipolytic effect of serotonin in vitro].

    Martínez-Conde, A; Mayor de la Torre, P; Tamarit-Torres, J

    1984-06-01

    The lipolytic action of serotonin on isolated adipocytes from the adipose tissue of rats has been studied. The adipocytes were incubated in serotonin 10(-6) M. Changes both in concentration and composition of the free intra and extracellular fatty acids as well as diacylglycerides through liquid gas chromatography were evaluated at different intervals. A lower concentration of free fatty acids and diacylglycerides is produced during the first minutes of incubation as well as a subsequent increase in the concentration of both, which becomes greatest after 20-30 minutes. The composition of both lipidic fractions (FFA and DAG) into fatty acids at 5, 10, 20 and 30 minutes, is related to the composition of the triacylglycerides (TAG), since during the esterification process a decline in the DAG of linoleic and palmitoleic acid is observed, both acids arranging themselves preferably in the TAG 2 position. Whereas the inverse process occurs during lipolysis; i.e. an increase in the proportion of the acids in the 2 position. In the FFA fraction, a higher proportion of fatty acids, preferential by arranged in positions 1 + 3 of the TAG's is observed. Similarly a decrease is observed in the extracellular concentration of FFA in the presence of serotonin with respect to the controls, a fact which has been described by other authors. An analysis of the present data leads us to revise the possible role of "Cahill's cycle" (simultaneous activation of the DAG-acyl-transferase and the HSL-TAG-lipase) in the action of serotonin and other hormones. PMID:6484281

  14. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... induced by intradermal serotonin (10 µl) was evaluated against isotonic saline and Methysergide (10µl); 2) dose-temperature relation of intradermal serotonin with different concentrations (1%, 2%, 4%) at the site of injection was tested; 3) the local vasomotor responses in anaesthetized rats with no...... scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  15. Serotonin, atherosclerosis, and collateral vessel spasm

    Hollenberg, N.

    1988-01-01

    Studies on animal models demonstrate that platelet products contribute to vascular spasm in ischemic syndromes and that this is reversible with administration of ketanserin and thromboxane synthesis inhibitors. Laboratory animals (dogs, rabbits, and rats) that had femoral artery ligations exhibited supersensitivity to serotonin within days in their collateral blood vessels. This supersensitivity lasted at least 6 months. The response to serotonin was reversed by ketanserin, but not by 5HT-1 antagonists. Supersensitivity does not extend to norepinephrine, and alpha blockers do not influence the response to serotonin. It appears that platelet activation by endothelial injury contributes to ischemia through blood vessel occlusion and vascular spasm. When platelet activation occurs in vivo, blood vessel occlusion and vascular spasm are reversible in part by using ketanserin or agents that block thromboxane synthesis or its action. Combining both classes of agents reverses spasm completely. These findings support existing evidence that platelet products contribute to vascular disease, and provide an approach to improved management with currently available pharmacologic agents.

  16. Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats

    McGuire, Michelle; Liu, Chun; Cao, Ying; Ling, Liming

    2008-01-01

    N-methyl-d-aspartate (NMDA) receptor antagonism in the phrenic motonucleus area eliminates phrenic long-term facilitation (pLTF; a persistent augmentation of phrenic nerve activity after episodic hypoxia) in anesthetized rats. However, whether NMDA antagonism can eliminate ventilatory LTF (vLTF) in awake rats is unclear. The role of non-NMDA receptors in LTF is also unknown. Serotonin receptor antagonism before, but not after, episodic hypoxia eliminates pLTF, suggesting that serotonin recept...

  17. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    Christian Scharinger; Ulrich Rabl; Christian H. Kasess; Meyer, Bernhard M.; Tina Hofmaier; Kersten Diers; Lucie Bartova; Gerald Pail; Wolfgang Huf; Zeljko Uzelac; Beate Hartinger; Klaudius Kalcher; Thomas Perkmann; Helmuth Haslacher; Andreas Meyer-Lindenberg

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy...

  18. The two faces of serotonin in bone biology

    Ducy, Patricia; Karsenty, Gerard

    2010-01-01

    The serotonin molecule has some remarkable properties. It is synthesized by two different genes at two different sites, and, surprisingly, plays antagonistic functions on bone mass accrual at these two sites. When produced peripherally, serotonin acts as a hormone to inhibit bone formation. In contrast, when produced in the brain, serotonin acts as a neurotransmitter to exert a positive and dominant effect on bone mass accrual by enhancing bone formation and limiting bone resorption. The effe...

  19. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    Davis, Bruce A.; Anu Nagarajan; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site a...

  20. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    Serotonin (5-hydroxytryptamine, 5-HT) has been implicated to play critical roles in early neural development. Recent reports have suggested that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) resulted in cortical network miswiring, abnormal social behavior, callosal myelin malformation, as well as oligodendrocyte (OL) pathology in rats. To gain further insight into the cellular and molecular mechanisms underlying SSRIs-induced OL and myelin abnormalities, we investigated the effect of 5-HT exposure on OL development, cell death, and myelination in cell culture models. First, we showed that 5-HT receptor 1A and 2A subtypes were expressed in OL lineages, using immunocytochemistry, Western blot, as well as intracellular Ca(2+) measurement. We then assessed the effect of serotonin exposure on the lineage development, expression of myelin proteins, cell death, and myelination, in purified OL and neuron-OL myelination cultures. For pure OL cultures, our results showed that 5-HT exposure led to disturbance of OL development, as indicated by aberrant process outgrowth and reduced myelin proteins expression. At higher doses, such exposure triggered a development-dependent cell death, as immature OLs exhibited increasing susceptibility to 5-HT treatment compared to OL progenitor cells (OPC). We showed further that 5-HT-induced immature OL death was mediated at least partially via 5-HT2A receptor, since cell death could be mimicked by 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride, (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride, but atten-uated by pre-treatment with 5-HT2A receptor antagonist ritanserin. Utilizing a neuron-OL myelination co-culture model, our data showed that 5-HT exposure significantly reduced the number of myelinated internodes. In contrast to cell injury observed in pure OL cultures, 5-HT exposure did not lead to OL death or reduced OL density in neuron-OL co-cultures. However, abnormal

  1. 色氨酸羟化酶1与5-羟色胺2A受体基因对抑郁症患者额叶情绪加工的影响%The impact of tryptophan hydroxylase 1 gene and serotonin receptor 2A gene on emotional process in depressive frontal lobe

    唐勇; 张婧; 姚志剑; 刘海燕

    2011-01-01

    Objective: To explore the genetic impact of tryptophan hydroxylase 1 gene(TPHl) A218C, serotonin receptor 2A gene (HTR2A) T102C on abnormal frontal lobe of depressed patients in emotion recog-nization. Method:28 patients with major depression and 34 healthy controls were recruited in our study, which were equal in sex, age, years of education. They all underwent functional magnetic resonance imaging (fMRl) in emotion recognition and were divided into different genotypes with the method of polymerase chain reaction and restriction fragment length polymorphism. The frontal lobe was extracted as region of interest by WFU software into six subregions to compare differences among different groups. Results :①In recognition of happy facial expression,activation of right middle frontal gyms in patients with TPH1AA genotype was less than other five groups. Activation in patients with HTR2ACC genotype was less than patients and controls with AA or AC genotype (P<0.05).② In recognition of sad facial expression,patients and controls with TPH1AA genotype showed increased activation in left inferior frontal lobe than those with AC or CC genotype. Patients with AA genotype showed increased activation in right inferior frontal gyurs than other five groups as well. Patients with HTR2ACC genotype showed increase activation in right middle frontal gyrus than patients with TT of TC genotype and controls with TT genotype,showing increase activation in right inferior frontal gyrus than those with TT or TC genotype (P<0.05).③Superimposition of TPH1A218C and HTR2AT102C was found in abnormal function of right middle frontal gyrus when recognizing positive emotional stimuli and right inferior grontal gyrus when recognizing negative emotional stimuli (P<0.05). Conclusion:Frontal lobe in depressive disorder has the genetic basis of 5-HT to some extent Different genes in serotonin system can affect brain function through a common 5-HT feature.%目的:分析色氨酸羟化酶1 (TPH1)

  2. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  3. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  4. Effect of serotonin on small intestinal contractility in healthy volunteers

    Hansen, M.B.; Arif, F.; Gregersen, H.; Bruusgaard, H.; Wallin, L.

    2008-01-01

    -lived adverse effects following intraluminal serotonin stimulations. We conclude that exogenous serotonin in the lumen of the upper part of the small intestine does not seem to change antro-duodeno-jejunal contractility significantly in healthy adult volunteers Udgivelsesdato: 2008......The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro...

  5. Serotonin-induced down-regulation of cell surface serotonin transporter

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood....... Here we demonstrate that the substrate 5-HT itself causes acute down-regulation of SERT cell surface expression. To assess surface SERT expression by ELISA, we used a SERT variant (TacSERT) where the N-terminus of SERT was fused to the intracellular tail of the extracellularly FLAG-tagged single...... neurons, indicting that endogenous cell-surface resident SERT likewise is down-regulated in the presence of substrate....

  6. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.;

    2006-01-01

    transporter (SERT) protein, on the other hand, is less liable to metabolism and for that reason we hypothetized that SERT immunostaining is a more stable marker of serotonergic fibers. Rats were pretreated with monoamine oxidase (MAO) inhibitor and compared with placebo treated rats. Brains were double...... was observed in the number of the SERT positive fibers. Colocalization between serotonin and SERT positive fibers was close to 100% in MAO inhibitor treated animals but only 30% in untreated rats. We conclude that the rapid metabolism of serotonin leads to an underestimation of immunodetected serotonergic...

  7. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation

    Zahavi, Arielle Y.; Sabbagh, Mark A.; Dustin Washburn; Raegan Mazurka; R. Michael Bagby; John Strauss; Kennedy, James L.; Arun Ravindran; Harkness, Kate L.

    2016-01-01

    Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) gene...

  8. Depression, osteoporosis, serotonin and cell membrane viscosity between biology and philosophical anthropology

    Gabrielli Fabio

    2011-03-01

    Full Text Available Abstract Due to the relationship between biology and culture, we believe that depression, understood as a cultural and existential phenomenon, has clear markers in molecular biology. We begin from an existential analysis of depression constituting the human condition and then shift to analysis of biological data confirming, according to our judgment, its original (ontological structure. In this way philosophy is involved at the anthropological level, in as much as it detects the underlying meanings of depression in the original biological-cultural horizon of human life. Considering the integration of knowledge it is the task of molecular biology to identify the aforementioned markers, to which the existential aspects of depression are linked to. In particular, recent works show the existence of a link between serotonin and osteoporosis as a result of a modified expression of the low-density lipoprotein receptor-related protein 5 gene. Moreover, it is believed that the hereditary or acquired involvement of tryptophan hydroxylase 2 (Tph2 or 5-hydroxytryptamine transporter (5-HTT is responsible for the reduced concentration of serotonin in the central nervous system, causing depression and affective disorders. This work studies the depression-osteoporosis relationship, with the aim of focusing on depressive disorders that concern the quantitative dynamic of platelet membrane viscosity and interactome cytoskeleton modifications (in particular Tubulin and Gsα protein as a possible condition of the involvement of the serotonin axis (gut, brain and platelet, not only in depression but also in connection with osteoporosis.

  9. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  10. Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration

    Alter, Shawn P.; Stout, Kristen A.; Lohr, Kelly M.; Taylor, Tonya N.; Shepherd, Kennie R.; Wang, Minzheng; Guillot, Thomas S.; Miller, Gary W.

    2016-01-01

    We previously demonstrated that mice with reduced expression of the vesicular monoamine transporter 2 (VMAT2 LO) undergo age-related degeneration of the catecholamine-producing neurons of the substantia nigra pars compacta and locus ceruleus and exhibit motor disturbances and depressive-like behavior. In this work, we investigated the effects of reduced vesicular transport on the function and viability of serotonin neurons in these mice. Adult (4–6 months of age), VMAT2 LO mice exhibit dramatically reduced (90%) serotonin release capacity, as measured by fast scan cyclic voltammetry. We observed changes in serotonin receptor responsivity in in vivo pharmacological assays. Aged (months) VMAT2 LO mice exhibited abolished 5-HT1A autoreceptor sensitivity, as determined by 8-OH-DPAT (0.1 mg/kg) induction of hypothermia. When challenged with the 5HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (1 mg/kg), VMAT2 LO mice exhibited a marked increase (50%) in head twitch responses. We observed sparing of serotonergic terminals in aged mice (18–24 months) throughout the forebrain by SERT immunohistochemistry and [3H]-paroxetine binding in striatal homogenates of aged VMAT2 LO mice. In contrast to their loss of catecholamine neurons of the substantia nigra and locus ceruleus, aged VMAT2 LO mice do not exhibit a change in the number of serotonergic (TPH2 +) neurons within the dorsal raphe, as measured by unbiased stereology at 26–30 months. Collectively, these data indicate that reduced vesicular monoamine transport significantly disrupts serotonergic signaling, but does not drive degeneration of serotonin neurons. PMID:26428905

  11. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are α-[11C]methyltryptophan ([11C]AMT) and 5-hydroxy-L-[β-11C]tryptophan ([11C]5-HTP). Both tracers have advantages and disadvantages. [11C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [11C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain. (orig.)

  12. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    Visser, Anniek K.D.; Waarde, Aren van; Willemsen, Antoon T.M. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Bosker, Fokko J. [University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Luiten, Paul G.M. [University of Groningen, Center for Behavior and Neurosciences, Department of Molecular Neurobiology, Haren (Netherlands); Boer, Johan A. den [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Kema, Ido P. [University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen (Netherlands); Dierckx, Rudi A.J.O. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2011-03-15

    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are {alpha}-[{sup 11}C]methyltryptophan ([{sup 11}C]AMT) and 5-hydroxy-L-[{beta}-{sup 11}C]tryptophan ([{sup 11}C]5-HTP). Both tracers have advantages and disadvantages. [{sup 11}C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [{sup 11}C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain. (orig.)

  13. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera)

    Markus Thamm; Daniel Rolke; Nadine Jordan; Sabine Balfanz; Christian Schiffer; Arnd Baumann; Wolfgang Blenau

    2013-01-01

    BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA...

  14. The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors—Is Pharmacogenetics the Key?

    Daud, Aizati N. A.; Bergman, Jorieke E. H.; Kerstjens-Frederikse, Wilhelmina S.; Groen, Henk; Wilffert, Bob

    2016-01-01

    Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies have reported conflicting results on the association between CHA and SRI use during pregnancy. These discrepancies in the risk estimates can potentially be explained by genetic differences among exposed individuals. In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development. Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a congenital heart anomaly and others do not. PMID:27529241

  15. The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors-Is Pharmacogenetics the Key?

    Daud, Aizati N A; Bergman, Jorieke E H; Kerstjens-Frederikse, Wilhelmina S; Groen, Henk; Wilffert, Bob

    2016-01-01

    Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies have reported conflicting results on the association between CHA and SRI use during pregnancy. These discrepancies in the risk estimates can potentially be explained by genetic differences among exposed individuals. In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development. Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a congenital heart anomaly and others do not. PMID:27529241

  16. Specific uptake of serotonin by murine lymphoid cells

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated 3H-5HT(10-8 to 2.5 x 10-6M) in a saturable manner, at 370C. Specificity of uptake was indicated by competition with excess (10-5M) unlabelled 5HT and with 10-5M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of 3H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10-7M and Vmax of 501 +/- 108 pM/3 x 106 cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific 3H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated

  17. Dietary Precursors of Serotonin and Newborn State Behavior.

    Yogman, Michael W.; Zeisel, Steven

    Although previous research with adult humans and nonhumans has suggested a relationship between sleep behavior and brain serotonin levels, no studies have been made of the relationship of normal children's or infants' sleep patterns to serotonin levels, tryptophan metabolism, or diet. This study investigates the relationship between dietary…

  18. alpha 1-Adrenoceptors modulate citalopram-induced serotonin release

    Rea, Kieran; Folgering, Joost; Westerink, Ben H. C.; Cremers, Thomas I. F. H.

    2010-01-01

    Previous studies suggest that noradrenaline may regulate serotonergic (5-HT) neurotransmission at the serotonin cell body and noradrenaline nerve terminal. Using microdialysis coupled to HPLC, we investigated the effects of alpha 1-adrenoceptor manipulation on extracellular serotonin levels in the v

  19. Hippocampal serotonin responses in short and long attack latency mice

    van Riel, E; Meijer, OC; Veenema, AH; Joels, M

    2002-01-01

    Short and long attack latency mice, which are selected based on their offensive behaviour in a resident-intruder model, differ in their neuroendocrine regulation as well as in aspects of their brain serotonin system. Previous studies showed that the binding capacity and expression of serotonin-1A re

  20. Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa.

    Kaye, W; Gendall, K; Strober, M

    1998-11-01

    Anorexia nervosa (AN) and bulimia nervosa (BN) are disorders characterized by aberrant patterns of feeding behavior and weight regulation, and disturbances in attitudes toward weight and shape and the perception of body shape. Emerging data support the possibility that substantial biologic and genetic vulnerabilities contribute to the pathogenesis of AN and BN. Multiple neuroendocrine and neurotransmitter abnormalities have been documented in AN and BN, but for the most part, these disturbances are state-related and tend to normalize after symptom remission and weight restoration; however, elevated concentrations of 5-hydroxyindoleacetic acid in the cerebrospinal fluid after recovery suggest that altered serotonin activity in AN and BN is a trait-related characteristic. Elevated serotonin activity is consistent with behaviors found after recovery from AN and BN, such as obsessionality with symmetry and exactness, harm avoidance, perfectionism, and behavioral over control. In BN, serotonergic modulating antidepressant medications suppress symptoms independently of their antidepressant effects. Selective serotonin reuptake inhibitors (SSRIs) are not useful when AN subjects are malnourished and under-weight; however, when given after weight restoration, fluoxetine may significantly reduce the extremely high rate of relapse normally seen in AN. Nonresponse to SSRI medication in ill AN subjects could be a consequence of an inadequate supply of nutrients, which are essential to normal serotonin synthesis and function. These data raise the possibility that a disturbance of serotonin activity may create a vulnerability for the expression of a cluster of symptoms that are common to both AN and BN and that nutritional factors may affect SSRI response in depression, obsessive-compulsive disorder, or other conditions characterized by disturbances in serotonergic pathways. PMID:9807638

  1. ROLE OF THE SEROTONIN IN MEMORY PROCESSES IN THE RAT

    Andreea Ioana Hefco

    2005-08-01

    Full Text Available Chronic 5, 7-dihydroxytryptamine (5, 7-DHT, 150 μg,i.c.v. disruption of the central serotonergic function, is able to interfere with learning and memory processes in the rat. Serotonin depletion significantly diminished spontaneous alternation % in Y-maze task, which suggest the impairment of short-term memory. Long-term memory does not undergo significant changes. Parachlorophenylalanine (200μg i.c.v. x 3 days a semichronic serotonin neurotoxin, do not impaired long-term memory. This effect of serotonin depletion was not produced at the level of organism motricity that, in turn, would allow an enhancing efficiency of another neurotransmitters contribution to memory processes, as number of arm entries was not affected by serotonin depletion. It is concluded that learning and memory processes is a multitransmitter system function, in which serotonin play an important role

  2. The role of the serotonergic system and the effects of antidepressants during brain development examined using in vivo PET imaging and in vitro receptor binding

    Shrestha, Stal Saurav

    2014-01-01

    Serotonin (5-HT) and the serotonergic system, which includes the serotonin transporter (SERT) and the two G protein-coupled 5-HT1A and 5-HT1B receptors, are implicated in the pathophysiology and treatment of several neuropsychiatric disorders including major depressive disorder (MDD) and anxiety. Two classes of antidepressants—selective serotonin reuptake inhibitors (SSRIs), which block SERT, and tricyclic antidepressants (TCAs), which block several monoamine transporters...

  3. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...... occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions....... Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in...

  4. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms

    Srinivasan, Supriya; Sadegh, Leila; Elle, Ida C;

    2008-01-01

    We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat...... regulation. Serotonergic fat regulation is dependent on a neurally expressed channel and a G protein-coupled receptor that initiate signaling cascades that ultimately promote lipid breakdown at peripheral sites of fat storage. In turn, intermediates of lipid metabolism generated in the periphery modulate...... feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses of the...

  5. Platelet serotonin concentration and depressive symptoms in patients with schizophrenia.

    Peitl, Vjekoslav; Vidrih, Branka; Karlović, Zoran; Getaldić, Biserka; Peitl, Milena; Karlović, Dalibor

    2016-05-30

    Depressive symptoms seem to be frequent in schizophrenia, but so far they have received less attention than other symptom domains. Impaired serotonergic neurotransmission has been implicated in the pathogenesis of depression and schizophrenia. The objectives of this study were to investigate platelet serotonin concentrations in schizophrenic patients with and without depressive symptoms, and to investigate the association between platelet serotonin concentrations and symptoms of schizophrenia, mostly depressive symptoms. A total of 364 patients were included in the study, 237 of which had significant depressive symptoms. Significant depressive symptoms were defined by the cut-off score of 7 or more on Calgary Depression Rating Scale (CDSS). Platelet serotonin concentrations were assessed by the enzyme-linked immunosorbent assay (ELISA). Prevalence of depression in patients with schizophrenia was 65.1%. Schizophrenic patients with depressive symptoms showed lower platelet serotonin concentrations (mean±SD; 490.6±401.2) compared to schizophrenic patients without depressive symptoms (mean±SD; 660.9±471.5). An inverse correlation was established between platelet serotonin concentration and depressive symptoms, with more severe symptoms being associated with lower platelet serotonin concentrations. Depressive symptoms in schizophrenic patients may be associated with reduced concentrations of platelet serotonin. PMID:27137969

  6. Serotonin syndrome:case report and current concepts.

    Fennell, J

    2005-05-01

    Selective serotonin reuptake inhibitors (SSRI\\'s) are increasingly being used as the first line therapeutic agent for the depression. It is therefore not unusual to see a case of overdose with these agents. More commonly an adverse drug reaction may be seen among the older patients who are particularly vulnerable to the serotonin syndrome due to multiple co-morbidity and polypharmacy. The clinical picture of serotonin syndrome (SS) is non-specific and there is no confirmatory test. SS may go unrecognized because it is often mistaken for a viral illness, anxiety, neurological disorder or worsening psychiatric condition.

  7. Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina

    Ghai, Kanika; Zelinka, Christopher; Fischer, Andy J.

    2009-01-01

    The neurotransmitter serotonin is synthesized in the retina by one type of amacrine neuron but accumulates in bipolar neurons in many vertebrates. The mechanisms, functions and purpose underlying of serotonin in bipolar cells remain unknown. Here, we demonstrate that exogenous serotonin transiently accumulates in a distinct type of bipolar neuron. KCl-mediated depolarization causes the depletion of serotonin from amacrine neurons and, subsequently, serotonin is taken-up by bipolar neurons. Th...

  8. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder

    Oliveira J.R.M.

    1999-01-01

    Full Text Available Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD, the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE gene (on chromosome 19 is the major susceptibility locus for the most common late onset AD (LOAD. Serotonin (5-hydroxytryptamine or 5-HT is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s of this 5-HTT gene-linked polymorphic region (5-HTTLPR is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  9. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  10. Effects of methiothepin on changes in brain serotonin release induced by repeated administration of high doses of anorectic serotoninergic drugs

    Gardier, A. M.; Kaakkola, S.; Erfurth, A.; Wurtman, R. J.

    1992-01-01

    We previously observed, using in vivo microdialysis, that the potassium-evoked release of frontocortical serotonin (5-HT) is suppressed after rats receive high doses (30 mg/kg, i.p., daily for 3 days) of fluoxetine, a selective blocker of 5-HT reuptake. We now describe similar impairments in 5-HT release after repeated administration of two other 5-HT uptake blockers, zimelidine and sertraline (both at 20 mg/kg, i.p. for 3 days) as well as after dexfenfluramine (7.5 mg/kg, i.p. daily for 3 days), a drug which both releases 5-HT and blocks its reuptake. Doses of these indirect serotonin agonists were about 4-6 times the drug's ED50 in producing anorexia, a serotonin-related behavior. In addition, methiothepin (20 microM), a non-selective receptor antagonist, locally perfused through the dialysis probe 24 h after the last drug injection, enhanced K(+)-evoked release of 5-HT at serotoninergic nerve terminals markedly in control rats and slightly in rats treated with high doses of dexfenfluramine or fluoxetine. On the other hand, pretreatment with methiothepin (10 mg/kg, i.p.) one hour before each of the daily doses of fluoxetine or dexfenfluramine given for 3 days, totally prevented the decrease in basal and K(+)-evoked release of 5-HT. Finally, when methiothepin was injected systemically the day before the first of 3 daily injections of dexfenfluramine, it partially attenuated the long-term depletion of brain 5-HT and 5-HIAA levels induced by repeated administration of high doses of dexfenfluramine. These data suggest that drugs which bring about the prolonged blockade of 5-HT reuptake - such as dexfenfluramine and fluoxetine - can, by causing prolonged increases in intrasynaptic 5-HT levels as measured by in vivo microdialysis, produce receptor-mediated long-term changes in the processes controlling serotonin levels and dynamics.

  11. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  12. Modulation of [3H]-glutamate binding by serotonin in the rat hippocampus: An autoradiographic study

    Serotonin (5-HT) added in vitro increased [3H]-glutamate specific binding in the rat hippocampus, reaching statistical significance in layers rich in N-Methyl-D-Aspartate sensitive glutamate receptors. This effect was explained by a significant increase in the apparent affinity of [3H]-glutamate when 5-HT is added in vitro. Two days after lesion of serotonergic afferents to the hippocampus with 5,7- Dihydroxytryptamine [3H]-glutamate binding was significantly decreased in the CA3 region and stratum lacunosum moleculare of the hippocampus, this reduction being reversed by in vitro addition of 10 μM 5-HT. The decrease observed is due to a significant reduction of quisqualate-insensitive (radiatum CA3) and kainate receptors (strata oriens, radiatum, pyramidal of CA3). Five days after lesion [3H]-glutamate binding increased significantly in the CA3 region of the hippocampus but was not different from sham animals in the other hippocampal layers. Two weeks after lesion [3H]-glutamate binding to quisqualate-insensitive receptors was increased in all the hippocampal layers, while kainate and quisqualate-sensitive receptors were not affected. These data are consistent with the possibility that 5-HT is a direct positive modulator of glutamate receptor subtypes

  13. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na+, Cl- and K+ to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na+. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na+ and Cl-, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na+ binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl-. Cl- enhances the transporters affinity for imipramine, as well as for Na+. At concentrations in the range of its KM for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na+-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [3H]imipramine binding and [3H]serotonin transport

  14. Serotonin binding in vitro by releasable proteins from human blood platelets

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [125I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [14C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  15. Principles of agonist recognition in Cys-loop receptors

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to......Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning...

  16. [Effect of phenibut on the respiratory arrest caused by serotonin].

    Tarakanov, I A; Tarasova, N N; Belova, E A; Safonov, V A

    2006-01-01

    The role of the GABAergic system in mechanisms of the respiratory arrest caused by serotonin administration was studied in anaesthetized rats. Under normal conditions, the systemic administration of serotonin (20-60 mg/kg, i.v.) resulted in drastic changes of the respiratory pattern, whereby the initial phase of increased respiratory rate was followed by the respiratory arrest. The preliminary injection of phenibut (400 mg/kg, i.p.) abolished or sharply reduced the duration of the respiratory arrest phase induced by serotonin. Bilateral vagotomy following the phenibut injection potentiated the anti-apnoesic effect of phenibut, which was evidence of the additive action of vagotomy and phenibut administration. The mechanism of apnea caused by serotonin administration is suggested to include a central GABAergic element, which is activated by phenibut so as to counteract the respiratory arrest. PMID:16579056

  17. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  18. [Serotonin syndrome and pain medication : What is relevant for practice?].

    Schenk, M; Wirz, S

    2015-04-01

    Serotonin syndrome is a dangerous and rare complication of a pharmacotherapy and can lead to death. Caused by unwanted interactions of serotonergic drugs, it is characterised by a neuroexcitatory triad of mental changes, neuromuscular hyperactivity and autonomic instability. Opioids with serotonergic effects include the phenylpiperidine series opioids fentanyl, methadone, meperidine and tramadol and the morphine analogues oxycodone and codeine. In combination with certain serotonergic drugs, e.g. antidepressants, they can provoke serotonin syndrome. In patients with such combinations, special attention should be paid to clinical signs of serotonergic hyperactivity. Higher risk combinations (e.g. monoamine oxidase inhibitors with tramadol) must be avoided. Treatment with serotonergic agents must be stopped in moderate or severe serotonin syndrome. Patients with a severe serotonin syndrome require symptomatic intensive care and specifically a pharmacological antagonism with cyproheptadine or chlorpromazine. PMID:25860200

  19. Multiple messengers in descending serotonin neurons: localization and functional implications.

    Hökfelt, T; Arvidsson, U; Cullheim, S; Millhorn, D; Nicholas, A P; Pieribone, V; Seroogy, K; Ulfhake, B

    2000-02-01

    In the present review article we summarize mainly histochemical work dealing with descending bulbospinal serotonin neurons which also express a number of neuropeptides, in particular substance P and thyrotropin releasing hormone. Such neurons have been observed both in rat, cat and monkey, and may preferentially innervate the ventral horns of the spinal cord, whereas the serotonin projections to the dorsal horn seem to lack these coexisting peptides. More recent studies indicate that a small population of medullary raphe serotonin neurons, especially at rostral levels, also synthesize the inhibitory neurotransmitter gamma-amino butyric acid (GABA). Many serotonin neurons contain the glutamate synthesizing enzyme glutaminase and can be labelled with antibodies raised against glutamate, suggesting that one and the same neuron may release several signalling substances, causing a wide spectrum of post- (and pre-) synaptic actions. PMID:10708921

  20. Specific uptake of serotonin by murine lymphoid cells

    Jackson, J.C.; Walker, R.F.; Brooks, W.H.; Roszman, T.L.

    1986-03-01

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated /sup 3/H-5HT(10/sup -8/ to 2.5 x 10/sup -6/M) in a saturable manner, at 37/sup 0/C. Specificity of uptake was indicated by competition with excess (10/sup -5/M) unlabelled 5HT and with 10/sup -5/M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of /sup 3/H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10/sup -7/M and Vmax of 501 +/- 108 pM/3 x 10/sup 6/ cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific /sup 3/H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated.