WorldWideScience

Sample records for 5-fluorouracil inhibits endothelial

  1. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  2. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  3. Synthesis of hybrid 4-deoxypodophyllotoxin-5-fluorouracil compounds that inhibit cellular migration and induce cell cycle arrest.

    Guan, Xiao-Wen; Xu, Xiao-Hui; Feng, Shi-Liang; Tang, Zhen-Bo; Chen, Shi-Wu; Hui, Ling

    2016-03-15

    A series of deoxypodophyllotoxin-5-fluorouracil hybrid compounds were synthesized, and their cytotoxic activity was evaluated using four human cancer cell lines (HeLa, A549, HCT-8, and HepG2) and the human normal cell line WI-38. The synthesized compounds exhibited greater cytotoxic activity in tumor cells and reduced toxicity in the normal cell line compared with the anticancer drug VP-16 and 5-FU. Additionally, the most potent of these compounds-4'-O-demethyl-4-deoxypodophyllotoxin-4'-yl 4-((6-(2-(5-fluorouracil-yl) acetamido) hexyl) amino)-4-oxobutanoate (compound 22)-induced cell-cycle arrest in the G2/M phase by regulating levels of cdc2, cyclinB1, and p-cdc2 in A549 cells. Furthermore, compound 22 may inhibited the migration of A549 cells via down-regulation of MMP-9 and up-regulation of TIMP-1. PMID:26873416

  4. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer.

    Li, Xin; Xun, Zhe; Yang, Yong

    2016-09-01

    Most colorectal cancer (CRC) cell lines are identified to overexpress phosphoserine phosphatase (PSPH), which regulates the intracellular synthesis of serine and glycine, and supports tumor growth. In this study, the effect of PSPH on 5-fluorouracil (5-FU) efficacy was evaluated. CRC cells exposed to 5-FU acquire metabolic remodeling, resulting in increased glucose flux for PSPH-mediated serine synthesis. Then serine is converted into GSH, which promotes cell survival through the detoxification of 5-FU-induced reactive oxygen species (ROS). Consequently, repression of PSPH by the use of shRNAs for PSPH impaired the defense against drug-induced oxidative stress, thereby sensitizing cells to 5-FU. The importance of the PSPH in supporting tumor growth during 5-FU treatment was also demonstrated in an in vivo tumor model of CRC. These findings indicate that the PSPH could serve as a target for increasing the anticancer efficacy of conventional therapy in patients with CRC. PMID:27349874

  5. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB

    CHUANG-XIN, LU; WEN-YU, WANG; Yao, Cui; Xiao-yan, Li; Yun, Zhou

    2012-01-01

    Despite its limited success, 5-fluorouracil (5-FU) remains the primary chemotherapy agent for the treatment of esophageal cancer. Quercetin has been demonstrated to inhibit the growth of transformed cells. The present study was conducted to examine whether quercetin combined with conventional chemotherapeutic agents would improve the therapeutic strategy for esophageal cancer. In this study, an MTT assay was used to determine the effects of quercetin on the proliferation of EC9706 and Eca109 ...

  6. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death. PMID:25622112

  7. Inhibition by oxonic acid of gastrointestinal toxicity of 5-fluorouracil without loss of its antitumor activity in rats.

    Shirasaka, T; Shimamoto, Y; Fukushima, M

    1993-09-01

    The possibility of decreasing the gastrointestinal (GI) toxic effects of 5-fluorouracil (5-FU) on the digestive tract such as its injury of cells and induction of diarrhea, without reducing its antitumor activity, was investigated in rats. Oxonic acid was found to inhibit the phosphorylation of 5-FU to 5-fluorouridine-5'-monophosphate catalyzed by pyrimidine phosphoribosyl-transferase in a different manner from allopurinol in cell-free extracts and intact cells in vitro. On p.o. administration of 5-FU (2 mg/kg) and a potent inhibitor of 5-FU degradation to Yoshida sarcoma-bearing rats, oxonic acid (10 mg/kg) was found to inhibit the formation of 5-fluorouridine-5'-monophosphate from 5-FU and its subsequent incorporation into the RNA fractions of small and large intestine but not of tumor and bone marrow tissues. This selective inhibition of 5-FU phosphorylation in the GI tract was due to the much higher concentrations of oxonic acid in GI tissues than in other tissues and the blood. On p.o. administration with the 5-FU derivative, UFT, which is a combined form of 1 M tegafur and 4 M uracil and usually administered p.o. to cancer patients in Japan, oxonic acid (10-50 mg/kg) markedly reduced injury of GI tissues and/or severe diarrhea without influencing the antitumor effect of UFT. These findings suggest that coadministration of oxonic acid suppresses the GI toxicity of 5-FU and its derivatives without affecting their antitumor activity and thus prolongs the life span of cancer-bearing rats. PMID:7689420

  8. Application of 5-Fluorouracil-Polycaprolactone Sustained-Release Film in Ahmed Glaucoma Valve Implantation Inhibits Postoperative Bleb Scarring in Rabbit Eyes

    Xiu-Zeng Bi; Wei-Hua Pan; Xin-Ping Yu; Zong-Ming Song; Zeng-Jin Ren; Min Sun; Cong-Hui Li; Kai-Hui Nan

    2015-01-01

    This study was designed to investigate whether 5-fluorouracil (5-Fu)-polycaprolactone sustained-release film in Ahmed glaucoma valve implantation inhibits postoperative bleb scarring in rabbit eyes. Eighteen New Zealand white rabbits were randomly divided into three groups (A, B and C; n = 6 per group). Group A received combined 5-Fu-polycaprolactone sustained-release film application and Ahmed glaucoma valve implantation, group B received local infiltration of 5-Fu and Ahmed glaucoma valve i...

  9. Inhibition of Bcl-2 expression by a novel tumor-specific RNA interference system increases chemosensitivity to 5-fluorouracil in Hela cells

    Sheng-lin HUANG; Yi WU; Hai YU; Ping ZHANG; Xing-qian ZHANG; Lei YING; Han-fang ZHAO

    2006-01-01

    Aim: RNA interference (RNAi) has been proposed as a potential treatment for cancer, but the lack of cellular targets limits its use in cancer gene therapy. No current technology has achieved direct tumor-specific gene silencing using RNAi.In the present study we attempt to develop a tumor-specific RNAi system using the human telomerase reverse transcriptase (hTERT) promoter; furthermore, we analyzed its inhibitive effect on Bcl-2 expression. Methods: The vectors containing a small hairpin RNA (shRNA) to target exogenous reporters [firefly luciferase and enhanced green fluorescent protein (EGFP)] and endogenous gene (Bcl-2)were constructed. Luciferase expression was determined by dual luciferase assay.Reverse transcription-polymerase chain reaction (RT-PCR), fluorescence microscopy and fluorescence-activated cell sorting (FACS) were used to measure EGFP expression. Inhibition of Bcl-2 was evaluated by RT-PCR and Western blotting.Cell proliferation and viability were measured by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. FACS was used to analyze the cell cycle distribution profile. Results: We showed that with the hTERT promoter directly driving shRNA transcription, expression of the exogenous reporters (LUC and EGFP) in tumor cells, but not normal cells, was specifically inhibited in vitro. The hTERT promoter-driven shRNA also depressed the expression of Bcl-2. Inhibition of Bcl-2 did not affect cell proliferation, but increased the chemosensitivity of HeLa cells to 5-fluorouracil. Conclusion: The present study describes an efficient RNAi system for gene silencing that is specific to tumor cells using the hTERT promoter. Suppression of Bcl-2 by using this system sensitized HeLa cells to 5-fluorouracil. This system may be useful for RNAi therapy.

  10. Aminopeptidase N inhibitor 4cc synergizes antitumor effects of 5-fluorouracil on human liver cancer cells through ROS-dependent CD13 inhibition.

    Sun, Zhi-Peng; Zhang, Jian; Shi, Li-Hong; Zhang, Xiu-Rong; Duan, Yu; Xu, Wen-Fang; Dai, Gong; Wang, Xue-Jian

    2015-12-01

    Aminopeptidase N (APN, also known as CD13) is involved in cellular processes of various types of tumors and a potential anti-cancer therapeutic target. Here, we report the effect of an APN inhibitor 4cc in enhancing sensitivity of hepatocellular carcinoma (HCC) cell lines and xenograft model in response to 5-fluorouracil (5-FU) in vivo and in vitro. The treatment of the combination of 4cc with 5-FU, compared to the combination of bestain with 5-FU, markedly suppressed cell growth and induced apoptosis of HCC cells, accompanying the increase in the level of reactive oxygen species (ROS) and followed by a decrease in the mitochondrial membrane potential (ΔΨM). Furthermore, the combination of 4cc and 5-FU showed a significant inhibitory effect on the growth of HCC xenograft tumors. In addition, following the treatment of 4cc, APN activity and clonogenic formation and the number of CD13-positive cells in PLC/PRF/5 cells were significantly decreased, suggesting that 4cc may also inhibit liver cancer stem cells by CD13 inhibition. These results showed that the APN inhibitor 4cc synergizes antitumor effects of 5-FU on human liver cancer cells via ROS-mediated drug resistance inhibition and concurrent activation of the mitochondrial pathways of apoptosis. PMID:26653552

  11. Preventive effect of Daiokanzoto (TJ-84 on 5-fluorouracil-induced human gingival cell death through the inhibition of reactive oxygen species production.

    Kaya Yoshida

    Full Text Available Daiokanzoto (TJ-84 is a traditional Japanese herbal medicine (Kampo formulation. While many Kampo formulations have been reported to regulate inflammation and immune responses in oral mucosa, there is no evidence to show that TJ-84 has beneficial effects on oral mucositis, a disease resulting from increased cell death induced by chemotherapeutic agents such as 5-fluorouracil (5-FU. In order to develop effective new therapeutic strategies for treating oral mucositis, we investigated (i the mechanisms by which 5-FU induces the death of human gingival cells and (ii the effects of TJ-84 on biological events induced by 5-FU. 5-FU-induced lactate dehydrogenase (LDH release and pore formation in gingival cells (Sa3 cell line resulted in cell death. Incubating the cells with 5-FU increased the expression of nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3 and caspase-1. The cleavage of caspase-1 was observed in 5-FU-treated cells, which was followed by an increased secretion of interleukin (IL-1β. The inhibition of the NLRP3 pathway slightly decreased the effects of 5-FU on cell viability and LDH release, suggesting that NLRP3 may be in part involved in 5-FU-induced cell death. TJ-84 decreased 5-FU-induced LDH release and cell death and also significantly inhibited the depolarization of mitochondria and the up-regulation of 5-FU-induced reactive oxygen species (ROS and nitric oxide (NO production. The transcriptional factor, nuclear factor-κB (NF-κB was not involved in the 5-FU-induced cell death in Sa3 cells. In conclusion, we provide evidence suggesting that the increase of ROS production in mitochondria, rather than NLRP3 activation, was considered to be associated with the cell death induced by 5-FU. The results also suggested that TJ-84 may attenuate 5-FU-induced cell death through the inhibition of mitochondrial ROS production.

  12. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells

    Qiyu Wang; Shuhong Huang; Ling Yang; Ling Zhao; Yuxia Yin; Zhongzhen Liu; Zheyu Chen; Hongwei Zhang

    2008-01-01

    The Sonic hedgehog (SHh) pathway plays a critical role in normal embryogenesis and carcinogenesis, but its function in cancer cells treated with 5-fluorouracil (5-FU) remains unknown. We examined the expression of a subset of SHh signaling pathway genes, including SHh, SMO, PTC1, Su(Fu) and HIP in human hepatocellular carcinoma (HCC) cell lines,Hep3B and HepG2, treated with 5-FU by reverse transcriptionpolymerase chain reaction. Using trypan blue analysis,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assay, we also detected the apoptosis of Hep3B cells resulting from the transfection of pCS2-Gli1 expression vector combined with 5-FU treatment.The motility of the cells was detected by scratch wound closure assay. The expression and subcellular location of PTC1 protein in Hep3B cells treated by 5-FU were also investigated by Western blot analysis and immunofluorescent microscopy. The results indicated that the expression of SHh pathway target molecules at both messenger RNA and protein levels are evidently down-regulated in Hep3B cells treated with 5-FU. The overexpression of Gli1 restores cell viability and, to some extent, the migration abilities inhibited by 5-FU.Furthermore, 5-FU treatment affects the subcellular localization of PTC1 protein, a key member in SHh signaling pathway. Our data showed that the down-regulation of SHh signaling pathway activity was involved in 5-FU-induced apoptosis and the inhibition of motility in hedgehog-activated HCC cell lines. This implies that the combination of SHh signaling pathway inhibitor and 5-FU-based chemotherapy might represent a more promising strategy against HCC.

  13. Targeting the DNA replication checkpoint by pharmacologic inhibition of Chk1 kinase: a strategy to sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy

    Martino-Echarri, Estefania; Henderson, Beric R.; Brocardo, Mariana G.

    2014-01-01

    5-fluorouracil (5-FU) is the first line component used in colorectal cancer (CRC) therapy however even in combination with other chemotherapeutic drugs recurrence is common. Mutations of the adenomatous polyposis coli (APC) gene are considered as the initiating step of transformation in familial and sporadic CRCs. We have previously shown that APC regulates the cellular response to DNA replication stress and recently hypothesized that APC mutations might therefore influence 5-FU resistance. T...

  14. Water extract of Hedyotis Diffusa Willd suppresses proliferation of human HepG2 cells and potentiates the anticancer efficacy of low-dose 5-fluorouracil by inhibiting the CDK2-E2F1 pathway.

    Chen, Xu-Zheng; Cao, Zhi-Yun; Chen, Tuan-Sheng; Zhang, You-Quan; Liu, Zhi-Zhen; Su, Yin-Tao; Liao, Lian-Ming; Du, Jian

    2012-08-01

    Hedyotis Diffusa Willd (HDW), a Chinese herbal medicine, has been widely used as an adjuvant therapy against various cancers, including hepatocellular carcinoma (HCC). However, the underlying anticancer mechanisms are yet to be elucidated. In the present study, the anticancer effects of HDW were evaluated and the efficacy and safety of HDW combined with low-dose 5-fluorouracil (5-FU) were investigated. HepG2 cells were cultured in vitro and nude mouse xenografts were established in vivo. The proliferation of HepG2 cells was measured using the MTT method and flow cytometry. The mRNA and protein expression levels of cyclin-dependent kinase 2 (CDK2), cyclin E and E2F1 were examined using relative quantitative real-time PCR and western blot analysis, respectively. The results showed that water extract of HDW remarkably inhibited HepG2 cell proliferation in a dose-dependent manner via arrest of HepG2 cells at the G0/G1 phase and induction of S phase delay. This suppression was accompanied by a great decrease of E2F1 and CDK2 mRNA expression. In addition, HDW remarkably potentiated the anticancer effect of low-dose 5-FU in the absence of overt toxicity by downregulating the mRNA and protein levels of CDK2, cyclin E and E2F1. Our findings support the use of HDW as adjuvant therapy of chemotherapy and suggest that HDW may potentiate the efficiency of low-dose 5-FU in treating HCC. PMID:22641337

  15. Epithelial Downgrowth after Intraocular Surgery Treated with Intracameral 5-Fluorouracil

    Nina Ni

    2015-01-01

    Full Text Available Purpose. To present the clinical and histopathologic correlation of two cases of epithelial downgrowth (EDG after prior intraocular surgery. Methods. Observational case reports. Results. We present two cases of EDG occurring after intraocular surgery. In both cases, after two anterior chamber injections of 5-fluorouracil (5FU, the area of EDG initially regressed. In Case 1, a limited area of EDG eventually recurred, and penetrating keratoplasty with cryotherapy was curative. In Case 2, subsequent corneal edema required Descemet-stripping automated endothelial keratoplasty, and the patient remained clinically free of EDG without further treatment. Conclusion. Intracameral 5FU may have a role in the treatment of EDG after intraocular surgery, though its precise utilization and impact remain to be defined.

  16. Symptomatic 5-fluorouracil-induced sinus bradycardia.

    Lee, A D; McKay, M J

    2011-07-01

    5-Fluorouracil (5-FU) is a commonly used anti-neoplastic agent. 5-FU has been not uncommonly associated with cardiotoxicity, although the many potentially causative mechanisms are yet to be established. Here, we present the case of a 61-year-old gemstone miner who developed symptomatic sinus bradycardia while receiving a continuous 5-FU infusion combined with radiotherapy for locally advanced rectal cancer. This dysrhythmia is an unusual type of 5-FU toxicity, our case being the second described. We review the actions of 5-FU and the various proposed mechanisms of its cardiotoxic effects. PMID:21762335

  17. The Synthesis of 6-Alkyl-5-Fluorouracil Derivatives

    2000-01-01

    6-alkyl-5-fluorouracil derivatives (5a~5f) were synthesized by facile alkylation of lithiation of 5-fluorouracil derivatives with mthyl iodide (MeI) or alkyl trifluoromethanesulfonate (ROTf) in yield of 42~58%. We found that the methylated product was ethyl-substituted derivatives, not methyl-substituted derivatives.

  18. 5-Fluorouracil-resistant strain of Methanobacterium thermoautortrophicum

    Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wilt type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype

  19. Abdominal irradiation modulates 5-Fluorouracil pharmacokinetics

    Shueng Pei-Wei

    2010-03-01

    Full Text Available Abstract Background Concurrent chemoradiation with 5-fluorouracil (5-FU is widely accepted for treatment of abdominal malignancy. Nonetheless, the interactions between radiation and 5-FU remain unclear. We evaluated the influence of abdominal irradiation on the pharmacokinetics of 5-FU in rats. Methods The radiation dose distributions of cholangiocarcinoma patients were determined for the low dose areas, which are generously deposited around the intrahepatic target volume. Then, corresponding single-fraction radiation was delivered to the whole abdomen of Sprague-Dawley rats from a linear accelerator after computerized tomography-based planning. 5-FU at 100 mg/kg was intravenously infused 24 hours after radiation. A high-performance liquid chromatography system equipped with a UV detector was used to measure 5-FU in the blood. Ultrafiltration was used to measure protein-unbound 5-FU. Results Radiation at 2 Gy, simulating the daily human treatment dose, reduced the area under the plasma concentration vs. time curve (AUC of 5-FU by 31.7% compared to non-irradiated controls. This was accompanied by a reduction in mean residence time and incremental total plasma clearance values, and volume of distribution at steady state. Intriguingly, low dose radiation at 0.5 Gy, representing a dose deposited in the generous, off-target area in clinical practice, resulted in a similar pharmacokinetic profile, with a 21.4% reduction in the AUC. This effect was independent of protein binding capacity. Conclusions Abdominal irradiation appears to significantly modulate the systemic pharmacokinetics of 5-FU at both the dose level for target treatment and off-target areas. This unexpected and unwanted influence is worthy of further investigation and might need to be considered in clinical practice.

  20. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (VD, 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our model

  1. Internal radiation dosimetry of F-18-5 fluorouracil

    18F-5-fluorouracil is currently used in a few nuclear centers as a diagnostic aid in predicting response to 5-fluorouracil chemotherapy. The advantage of this radiopharmaceutical, which has a radionuclide with a short physical half-life (tsub(1/2) = 110 minutes), in addition to its permitting a non-invasive diagnostic technique is balanced by the fact that high doses of the drug must be administered in order to obtain a good scan 12 hours after its administration. This is the optimal time for obtaining a high tumor:blood ratio and involves doses of up to 20 mCi of the drug injected intravenously as a bolus. Assuming the same distribution of the label in humans as in the investigated rat models, we calculated the radiation-dose to the various organs in millirad per mCi injected, according to the MIRD system. This was estimated to 12 main target organs of a reference-man, as if injected with 18F-5-fluorouracil. The organs are: liver, muscle, kidneys, blood, bone, lungs, pancreas, spleen, heart, genitals, thyroid and adrenals. The calculated values suggest that diagnostic doses of up to 20 mCi 18F-5-fluorouracil emit internal absorbed radiation which is within the doses experienced in similar procedures of Nuclear Medicine. (author)

  2. The surprising activities of APOBEC3B and 5-fluorouracil

    Emma L Walton

    2015-04-01

    Full Text Available In this mini-special issue on cancer, we learn how DNA editing enzymes can accelerate the development of cancer and we discover some remarkable effects of the chemotherapeutic agent, 5-fluorouracil, on the immune system. We also discuss a study revealing the continuing problem of vitamin B deficiencies in children in developing countries, and we determine how to distinguish two near-identical forms of necrotizing fasciitis.

  3. Cytotoxic action of bisabololoxide A of German chamomile on human leukemia K562 cells in combination with 5-fluorouracil.

    Ogata-Ikeda, Ikuko; Seo, Hakaru; Kawanai, Takuya; Hashimoto, Erika; Oyama, Yasuo

    2011-03-15

    German chamomile (Matricaria recutita L.) is a popular ingredient in herbal teas. In previous study, micromolar bisabololoxide A, one of main constituents in German chamomile, exerted cytotoxic action on rat thymocyte, a normal non-proliferative cell. This result prompted us to study the effect of bisabololoxide A on proliferative cancer cells and to seek the possibility of its use with 5-fluorouracil, an anticancer agent. In this study, the effect of micromolar bisabololoxide A on human leukemia K562 cells was cytometrically examined. Although the incubation of K562 cells with 10 μM bisabololoxide A for 72h did not significantly increase the percentage populations of dead cells and shrunken cells, the inhibitory action on the growth was obviously observed. It was not the case for the concentrations of less than 5 μM. The threshold concentration of bisabololoxide A to exert the cytotoxic action on K562 cells was ascertained to be 5-10 μM. Bisabololoxide A at 5-10 μM did not exert cytotoxic action on normal non-proliferative cells (rat thymocytes) in our previous study. Since the antiproliferative action of micromolar bisabololoxide A on cancerous cells was expected to be beneficial to cancer treatment, the modification of antiproliferative action of 5-fluorouracil (3-30 μM) by bisabololoxide A was studied. The combination of 5-fluorouracil and bisabololoxide further inhibited the growth of K562 cells although the additive inhibition of growth by bisabololoxide A became smaller as the concentration of 5-fluorouracil increased. Therefore, it is suggested that the simultaneous application of German chamomile containing bisabololoxide A may reduce the dose of 5-fluorouracil. PMID:20863677

  4. Distinct TRPV1- and TRPA1-based mechanisms underlying enhancement of oral ulcerative mucositis-induced pain by 5-fluorouracil.

    Yamaguchi, Kiichiro; Ono, Kentaro; Hitomi, Suzuro; Ito, Misa; Nodai, Tomotaka; Goto, Tetsuya; Harano, Nozomu; Watanabe, Seiji; Inoue, Hiromasa; Miyano, Kanako; Uezono, Yasuhito; Matoba, Motohiro; Inenaga, Kiyotoshi

    2016-05-01

    In many patients with cancer, chemotherapy-induced severe oral ulcerative mucositis causes intractable pain, leading to delays and interruptions in therapy. However, the pain mechanism in oral ulcerative mucositis after chemotherapy has not been extensively studied. In this study, we investigated spontaneous pain and mechanical allodynia in a preclinical model of oral ulcerative mucositis after systemic administration of the chemotherapy drug 5-fluorouracil, using our proprietary pain assay system for conscious rats. 5-Fluorouracil caused leukopenia but did not induce pain-related behaviors. After 5-fluorouracil administration, oral ulcers were developed with topical acetic acid treatment. Compared with saline-treated rats, 5-fluorouracil-exposed rats showed more severe mucositis with excessive bacterial loading due to a lack of leukocyte infiltration, as well as enhancements of spontaneous pain and mechanical allodynia. Antibacterial drugs, the lipid A inhibitor polymyxin B and the TRPV1/TRPA1 channel pore-passing anesthetic QX-314, suppressed both the spontaneous pain and the mechanical allodynia. The cyclooxygenase inhibitor indomethacin and the TRPV1 antagonist SB-366791 inhibited the spontaneous pain, but not the mechanical allodynia. In contrast, the TRPA1 antagonist HC-030031 and the N-formylmethionine receptor FPR1 antagonist Boc MLF primarily suppressed the mechanical allodynia. These results suggest that 5-fluorouracil-associated leukopenia allows excessive oral bacterial infection in the oral ulcerative region, resulting in the enhancement of spontaneous pain through continuous TRPV1 activation and cyclooxygenase pathway, and mechanical allodynia through mechanical sensitization of TRPA1 caused by neuronal effects of bacterial toxins. These distinct pain mechanisms explain the difficulties encountered with general treatments for oral ulcerative mucositis-induced pain in patients with cancer and suggest more effective approaches. PMID:26808144

  5. Hyperthermia combined with 5-fluorouracil promoted apoptosis and enhanced thermotolerance in human gastric cancer cell line SGC-7901

    Liu T

    2015-05-01

    Full Text Available Tao Liu,* Yan-Wei Ye,* A-li Zhu, Zhen Yang, Yang Fu, Chong-Qing Wei, Qi Liu, Chun-Lin Zhao, Guo-Jun Wang, Xie-Fu Zhang Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China *These authors contributed equally to this work Abstract: This study was designed to investigate the proliferation inhibition and apo­ptosis-promoting effect under hyperthermia and chemotherapy treatment, at cellular level. Human gastric cancer cell line SGC-7901 was cultivated with 5-fluorouracil at different temperatures. Cell proliferation and apoptosis were determined, and expression of Bcl-2 and HSP70 was measured at different treatments. Cell survival rates and inhibition rates in chemotherapy group, thermotherapy group, and thermo-chemotherapy group were drastically lower than the control group (P<0.05. For tumor cells in the thermo-chemotherapy group, survival rates and inhibition rates at three different temperatures were all significantly lower than those in chemotherapy group and thermotherapy group (P<0.05. 5-Fluorouracil induced apoptosis of SGC-7901 cells with a strong temperature dependence, which increased gradually with increase in temperature. At 37°C and 43°C there were significant differences between the thermotherapy group and chemotherapy group and between the thermo-chemotherapy group and thermotherapy group (P<0.01. The expression of Bcl-2 was downregulated and HSP70 was upregulated, with increase in temperature in all groups. Cell apoptosis was not significant at 46°C (P>0.05, which was probably due to thermotolerance caused by HSP70 accumulation. These results suggested that hyperthermia combined with 5-fluorouracil had a synergistic effect in promoting apoptosis and enhancing thermotolerance in gastric cancer cell line SGC-7901. Keywords: gastric cancer, thermotherapy, 5-fluorouracil, Bcl-2, HSP70, thermotolerance

  6. Total body topical 5-fluorouracil for extensive non-melanoma skin cancer

    van Ruth, Serge; Jansman, Frank G.A.; Sanders, Cornelis J.

    2006-01-01

    Background Topical 5-fluorouracil 5% cream is one of␣the treatment modalities for non-melanoma skin cancer (NMSC). There is a lack of suitable therapies to treat patients with extensive NMSC. In this paper we report two patients with extensive NMSC treated by total body application of topical 5-fluorouracil 5% cream. Observations Topical 5-fluorouracil 5% cream was applied twice daily to the total body, including normal appearing skin. During the treatment, weekly blood samples were taken for...

  7. Incorporation and excision of 5-fluorouracil from deoxyribonucleic acid in Escherichia coli.

    Warner, H. R.; Rockstroh, P A

    1980-01-01

    When Escherichia coli are grown in the presence of 5-fluorouracil, the 5-fluorouracil is incorporated almost exclusively into ribonucleic acid as fluorouridylate. In this study, small but detectable amounts were incorporated into ribonucleic acid as fluorocytidylate and into deoxyribonucleic acid as fluorodeoxyuridylate and fluorodeoxycytidylate. The amount of 5-fluorouracil found in deoxyribonucleic acid as fluorodeoxyuridylate increased 50-fold when the cells were deficient in both deoxyuri...

  8. Treatment of verruca plana with 5% 5-fluorouracil ointment.

    Lee, S; Kim, J G; Chun, S I

    1980-01-01

    11 patients with verruca plana were treated with 5% 5-Fluorouracil ointment as a twice daily topical application with open dressing. The patients were chosen among those who failed to be cured with avrious topical agents such as salicylic acid, vitamin A acid and dinitrochlorobenzene (DNCB), or even with carbon dioxide cryotherapy, oral administration of methotrexate and intramuscular injection of sodium cacodylate. In 9 patients, all the treated warts completely disappeared within 3--5 weeks. 2 of these patients had recurrence after 3 weeks and 2 months, respectively. In 2 patients, some lesions disppeared while others failed to be healed. The major clinical adverse reactions were hyperpigmentation (8 cases), erythema (5 cases) and erosion (5 cases). PMID:7389971

  9. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  10. Pharmacological Study on Antitumor Activity of 5-Fluorouracil-1-Acetic Acid and Its Rare Earth Complexes

    2000-01-01

    The antitumor activity of 5-fluorouracil-1-acetic acid(HFAA) and its lanthanide complexes(La(FAA)3, Eu(FAA)3) were studied. The results show that HFAA, La(FAA)3 and Eu(FAA)3 with the concentrations of 1.0×10-5~1.0×10-2 μg·ml-1 inhibit the colony formation of leukemia cells(L1210) and the growth of transplanted tumor sarcoma 180(S180), hepatic carcinoma(HEPA) and ehrlich ascites tumor(EC) as well. The maximum inhibitory rate of Eu(FAA)3 for S180 is 38.4%, that HFAA and La(FAA)3 for EC are 22.4% and 43.4%, respectively. The life prolongation rate of Eu(FAA)3 for HEPA bearing mice is as long as 284%.

  11. 5-fluorouracil-induced leukoencephalopathy in patients with breast cancer.

    Choi, S M; Lee, S H; Yang, Y S; Kim, B C; Kim, M K; Cho, K H

    2001-06-01

    The purpose of this study is to determine the characteristic clinical features, radiologic findings, and precipitating and prognostic factors in the patients with breast cancer and with 5-Fluorouracil (5-FU)-induced leukoencephalopathy. We reviewed the medical records of six breast cancer patients who developed leukoencephalopathy after chemotherapy which included 5-FU and also evaluated thorough neurological examinations including mini-mental status examination, cerebrospinal fluid studies, brain images and brain biopsies. Six patients exhibited slowly progressing neurologic symptoms characterized by the impairment of cognitive function, abulia, ataxic gait, and/or akinetic mutism. None of the patients had any specific causes or etiologic factors for leukoencephalopathy. Brain MRI in all patients showed diffuse periventricular white matter changes in the T2-weighted MR image. Brain biopsy in Patient 1 showed fragmented axonal fiber and minimally deprived myelination with many scattered macrophages. Five patients who treated with steroids at the onset of neurological symptoms showed clinical improvement, regardless of their age, sex, the pathology and stage of breast cancer, or the total dosage of chemotherapeutic agents. We conclude that leukoencephalopathy in these cases could be attributable to 5-FU neurotoxicity and suggest that the administration of steroids might be the treatment of choice. PMID:11410695

  12. Postoperative adjuvant radiotherapy and 5-fluorouracil chemotherapy for rectal carcinoma

    Postoperative combined modality therapy with radiotherapy and 5-fluorouracil (5FU) chemotherapy is an effective adjuvant approach that reduces locoregional and distant metastatic disease in patients with high-risk rectal carcinoma. However, this approach results in a treatment regimen of at least 6 months' duration. The present prospective study investigates the integration of radiotherapy and 5FU chemotherapy in a protocol designed to minimize toxicity and reduce the overall treatment time. A total of 40 patients with TNM stage 11 or 111 disease receives postoperative radiotherapy at four fractions per week with weekly 5FU bolus injections delivered on the fifth non radiotherapy day. Patients also received systemic chemotherapy with leucovorin both before and after pelvic irradiation, with the total treatment duration extending for only 18 weeks. Patients were able to complete radiotherapy in 90% of cases, while the delivery of full-dose chemotherapy was achievable in the vast majority. The incidence of haematologic and gastrointestinal toxicities requiring the cessation of treatment was acceptable. With a median follow-up of 20.9 months among surviving patients, the estimated progression-free and overall survival at 2 years were 71% and 79%, respectively. Copyright (1998) Blackwell Science Pty Ltd

  13. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells

    Guang-fa WANG; Shao-yu WU; Jin-jun RAO; Lin L(U); Wei XU; Jian-xin PANG; Zhong-qiu LIU; Shu-guang WU; Jia-jie ZHANG

    2009-01-01

    Aim: Exocytosis of endothelial Weibel-Palade bodies, which contain von Willebrand factor (VWF), P-selectin and other modulators, plays an important role in both inflammation and thrombosis. The present study investigates whether genipin,an aglycon of geniposide, inhibits endothelial exocytosis.Methods: Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords and cultured. The concentration of VWF in cell supernatants was measured using an ELISA Kit. P-selectin translocation on the cell surface was analyzed by cell surface ELISA. Cell viability was measured using a Cell Counting Kit-8. Mouse bleeding times were measured by amputating the tail tip. Western blot analysis was used to determine the amount of endothelial nitric oxide synthase (eNOS) and phospho-eNOS present. Nitric oxide (NO) was measured in the cell supernatants as nitrite using an NO Colorimetric Assay.Results: Genipin inhibited thrombin-induced VWF release and P-selectin translocation in HUVECs in a dose- and time-dependent manner. The drug had no cytotoxic effect on the cells at the same doses that were able to inhibit exocytosis. The functional study that demonstrated that genipin inhibited exocytosis in vivo also showed that genipin prolonged the mouse bleeding time. Furthermore, genipin activated eNOS phosphorylation, promoted enzyme activation and increased NO production. L-NAME, an inhibitor of NOS, reversed the inhibitory effects of genipin on endothelial exocytosis.Conclusion: Genipin inhibits endothelial exocytosis in HUVECs. The mechanism by which this compound inhibits exocytosis may be related to its ability to stimulate eNOS activation and NO production. Our findings suggest a novel antiinflammatory mechanism for genipin. This compound may represent a new treatment for inflammation and/or thrombosis in which excess endothelial exocytosis plays a pathophysiological role.

  14. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Donatella Del Bufalo; Daniela Trisciuoglio; Marco Scarsella; Giulia D'Amati; Antonio Candiloro; Angela Iervolino; Carlo Leonetti; Gabriella Zupi

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  15. Prolonged cyclic strain inhibits human endothelial cell growth.

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  16. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles.

    Du, Bin; Yan, Ying; Li, Ying; Wang, Shuyu; Zhang, ZhenZhong

    2010-01-01

    This work studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with 5-fluorouracil (5-FU). The goal was to design longer drug residence in vivo and passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects. Based on the optimized results of uniform design experiment, 5-FU-SLNs were prepared by multiple emulsion-ultrasonication (w/o/w). The SLNs were found to be relatively uniform in size (182.1 +/- 25.8 nm) with a negative zeta potential (-27.89 +/- 5.1 mV). The average drug entrapment efficiency and loading were 74% and 10%, respectively. Compared with the 5-FU solution (t(1/2beta), 0.593h; MRT, 0.358h) after intravenous injection to rats, the pharmacokinetic parameters of 5-FU-SLNs exhibited a longer retention time. (t(1/2beta), 4.0628h; MRT, 3.5321h). The area under curve of plasma concentration-time (AUC) of 5-FU-SLNs was 1.48 times greater than that of free drugs. The overall targeting efficiency (TE(C)) of the 5-FU-SLNs was enhanced from 13.25-20.45% in the lung and from 11.48-23.16% in kidney while the spleen distribution of 5-FU was significantly reduced as compared with that of the 5-FU solution. These results indicated that 5-FU-SLNs were promising passive targeting therapeutic agents for curing primary lung carcinoma. PMID:19769532

  17. Studies of hematopoietic stem cells spared by 5-fluorouracil

    Mouse marrow cells were exposed to 5-fluorouracil (FU) either in vivo or in vitro and the effects on the hematopoietic stem cell compartment were studied. The drug was highly toxic to bone marrow cells including the spleen colony-forming unit (CFU-S) population. The small population of stem cells surviving FU, however, caused a different pattern of spleen colony growth when injected into lethally irradiated mice. Whereas numbers of spleen colonies caused by normal marrow cells remained constant during an 8-14 d period after transplantation, spleen colonies derived from FU-treated marrow cells increased by as much as 100-fold during this time. This effect on stem cells was dose dependent both in vitro and in vivo. When FU was given in vivo, the day 14/day 8 ratio of colonies was greatest 1 d after injection and, over the next 7 d, returned to a near-normal value, that is, unity. A number of studies have shown that the stem cell compartment is heterogeneous with respect to self-replicative capacity and developmental potential. An age structure for the stem cell compartment has been proposed wherein cells with a short mitotic history are more likely to self-replicate than they are to differentiate; hence they are more primitive. I propose that the delayed spleen colony appearance in normal hosts is the result of developmental maturation of the primitive stem cell compartment that survives FU and is responsible for spleen colonies arising around day 14. This maturation, at least initially, occurs in the marrow and leads to the replenishment of the more differentiated CFU-S subsets ablated by FU, which are normally responsible for spleen colonies appearing earlier after transplantation

  18. Neoadjuvant Bevacizumab, Oxaliplatin, 5-Fluorouracil, and Radiation for Rectal Cancer

    Dipetrillo, Tom; Pricolo, Victor; Lagares-Garcia, Jorge; Vrees, Matt; Klipfel, Adam; Cataldo, Tom; Sikov, William; McNulty, Brendan; Shipley, Joshua; Anderson, Elliot; Khurshid, Humera; Oconnor, Brigid; Oldenburg, Nicklas B.E.; Radie-Keane, Kathy; Husain, Syed [Brown University Oncology Group, Providence, RI (United States); Safran, Howard, E-mail: hsafran@lifespan.org [Brown University Oncology Group, Providence, RI (United States)

    2012-01-01

    Purpose: To evaluate the feasibility and pathologic complete response rate of induction bevacizumab + modified infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX) 6 regimen followed by concurrent bevacizumab, oxaliplatin, continuous infusion 5-fluorouracil (5-FU), and radiation for patients with rectal cancer. Methods and Materials: Eligible patients received 1 month of induction bevacizumab and mFOLFOX6. Patients then received 50.4 Gy of radiation and concurrent bevacizumab (5 mg/kg on Days 1, 15, and 29), oxaliplatin (50 mg/m{sup 2}/week for 6 weeks), and continuous infusion 5-FU (200 mg/m{sup 2}/day). Because of gastrointestinal toxicity, the oxaliplatin dose was reduced to 40 mg/m{sup 2}/week. Resection was performed 4-8 weeks after the completion of chemoradiation. Results: The trial was terminated early because of toxicity after 26 eligible patients were treated. Only 1 patient had significant toxicity (arrhythmia) during induction treatment and was removed from the study. During chemoradiation, Grade 3/4 toxicity was experienced by 19 of 25 patients (76%). The most common Grade 3/4 toxicities were diarrhea, neutropenia, and pain. Five of 25 patients (20%) had a complete pathologic response. Nine of 25 patients (36%) developed postoperative complications including infection (n = 4), delayed healing (n = 3), leak/abscess (n = 2), sterile fluid collection (n = 2), ischemic colonic reservoir (n = 1), and fistula (n = 1). Conclusions: Concurrent oxaliplatin, bevacizumab, continuous infusion 5-FU, and radiation causes significant gastrointestinal toxicity. The pathologic complete response rate of this regimen was similar to other fluorouracil chemoradiation regimens. The high incidence of postoperative wound complications is concerning and consistent with other reports utilizing bevacizumab with chemoradiation before major surgical resections.

  19. Lupeol enhances inhibitory effect of 5-fluorouracil on human gastric carcinoma cells.

    Liu, Yan; Bi, Tingting; Dai, Wei; Wang, Gang; Qian, Liqiang; Shen, Genhai; Gao, Quangen

    2016-05-01

    Lupeol, a dietary triterpene present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects in vitro and in vivo. Here, we investigated the anti-cancer efficacy and adjuvant chemotherapy action of lupeol in gastric cancer (GC) cells (SGC7901 and BGC823) and explored the underlying mechanisms. Cells were treated with lupeol and/or 5-fluorouracil (5-Fu) and subjected to cell viability, colony formation, apoptosis, western blot, semiquantitative RT-PCR, and xenograft tumorigenicity assay. Our results showed that lupeol and 5-Fu inhibited the proliferation of SGC7901 and BGC823 cells, and combination treatment with lupeol and 5-Fu resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with lupeol and 5-Fu induced apoptosis through up-regulating the expressions of Bax and p53 and down-regulating the expressions of survivin and Bcl-2. Furthermore, co-treatment displayed more efficient inhibition of tumor weight and volume on BGC823 xenograft mouse model than single-agent treatment with 5-Fu or lupeol. Taken together, our findings highlight that lupeol sensitizes GC to 5-Fu treatment, and combination treatment with lupeol and 5-Fu would be a promising therapeutic strategy for human GC treatment. PMID:26892272

  20. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  1. Targeting the microRNA-21/AP1 axis by 5-fluorouracil and pirarubicin in human hepatocellular carcinoma

    He, Xiaodong; Li, Jingjing; Guo, Weidong; Liu, Wei; Yu, Jia; Song, Wei; Dong, Lei; Wang, Fang; Yu, Shuangni; Zheng, Yi; Chen, Songsen; Kong, Yan; Liu, Changzheng

    2015-01-01

    MicroRNAs function as oncomiRs and tumor suppressors in diverse cancers. However, the utility of specific microRNAs in predicting the clinical benefit of chemotherapy has not been well-established. Here, we investigated the correlation between microRNA-21 expression and hepatic arterial infusion chemotherapy with 5-fluorouracil and pirarubicin (HAIC) for hepatocellular carcinoma (HCC). We found that HCC patients with low microRNA-21 levels in tumors tended to have a longer time to recurrence and disease-free survival. We demonstrated that microRNA-21 suppression in combination with 5-fluorouracil and pirarubicin treatment inhibited tumor growth in subcutaneous xenograft mice models. Mechanistically, the AP-1 and microRNA-21-mediated axis was verified to be a therapeutic target of cytotoxic drugs and deregulation of this axis led to an enhanced cell growth in HCC. Taken together, our findings demonstrate that microRNA-21 is a chemotherapy responsive microRNA and can serve as a prognostic biomarker for HCC patients undergoing HAIC. Targeting microRNA-21 enhances the effect of chemotherapeutic drugs, thereby suggesting that microRNA-21 suppression in combination with HAIC may be a novel approach for HCC treatment. PMID:25544773

  2. Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

    Nong, Lidan; Ma, Jue; Zhang, Guangyan; Deng, Chunyu; Mao, Songsong; Li, Haifeng

    2016-01-01

    Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (α2-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of 10–8~10–6 mol/L, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or 3×10–9 mmol/L) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial α2-adrenoceptor and nitric oxide synthase. PMID:27610030

  3. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode.

    Bukkitgar, Shikandar D; Shetti, Nagaraj P

    2016-08-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4×10(-5)-1×10(-7)M and detection limit and quantification limit were calculated to be 2.04nM and 6.18nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. PMID:27157751

  4. Thermodynamic and spectrographic studies on the interactions of ct-DNA with 5-fluorouracil and tegafur

    The interactions of calf thymus deoxyribonucleic acid (ct-DNA) with two antitumour drugs (5-fluorouracil and tegafur) in aqueous buffer solution (pH 7.40) have been investigated using nano-watt-scale isothermal titration calorimetry (ITC), circular dichroism (CD), ultraviolet absorption (UV) and fluorescence spectroscopy. Thermodynamic parameters, i.e., binding proportions and constants, standard changes of enthalpy (ΔHo), Gibbs free energy (ΔGo) and entropy (ΔSo) have been derived from the calorimetric data. The binding ratios of 5-fluorouracil and tegafur with base pairs in ct-DNA are 1:3 and 1:4, respectively. The thermodynamic parameters have been discussed according to the influence of drugs on molecular structure of the DNA shown spectrogram. The results indicate that molecule of 5-fluorouracil or tegafur can intercalate itself into the intra-molecular space formed by DNA double helix and cause some changes in the secondary structure of DNA molecule.

  5. Pharmacokinetic properties and antitumor efficacy of the 5-fluorouracil loaded PEG-hydrogel

    We have studied the in vitro and in vivo utility of polyethylene glycol (PEG)-hydrogels for the development of an anticancer drug 5-fluorouracil (5-FU) delivery system. A 5-FU-loaded PEG-hydrogel was implanted subcutaneously to evaluate the drug retention time and the anticancer effect. For the pharmacokinetic study, two groups of male rats were administered either an aqueous solution of 5-FU (control group)/or a 5-FU-loaded PEG-hydrogel (treated group) at a dose of 100 mg/kg. For the pharmacodynamic study, a human non-small-cell lung adenocarcinoma (NSCLC) cell line, A549 was inoculated to male nude mice with a cell density of 3 × 106. Once tumors start growing, the mice were injected with 5-FU/or 5-FU-loaded PEG-hydrogel once a week for 4 weeks. The growth of the tumors was monitored by measuring the tumor volume and calculating the tumor inhibition rate (IR) over the duration of the study. In the pharmacokinetic study, the 5-FU-loaded PEG-hydrogel gave a mean residence time (MRT) of 8.0 h and the elimination half-life of 0.9 h; these values were 14- and 6-fold, respectively, longer than those for the free solution of 5-FU (p < 0.05). In the pharmacodynamic study, A549 tumor growth was significantly inhibited in the 5-FU-loaded PEG-hydrogel group in comparison to the untreated group beginning on Day 14 (p < 0.05-0.01). Moreover, the 5-FU-loaded PEG-hydrogel group had a significantly enhanced tumor IR (p < 0.05) compared to the free 5-FU drug treatment group. We suggest that 5-FU-loaded PEG-hydrogels could provide a useful tool for the development of an anticancer drug delivery system

  6. p14ARF upregulation of p53 and enhanced effects of 5-fluorouracil in pancreatic cancer

    张群华; 倪泉兴; 甘军; 沈兆忠; 罗建民; 金忱; 张妞; 张延龄

    2003-01-01

    Objective To investigate the synergistic antitumor effects of combined use of p14ARF gene and 5-fluorouracil (5-Fu) in pancreatic cancer.Methods A human pancreatic cancer cell line PC-3 was transfected with lipofectin-mediated recombinant p14ARF gene, and was then administered with 5-Fu. Cell growth, morphological changes, cell cycle, apoptosis, and molecular changes were measured using the MTT assay, flow cytometry, RT-PCR, Western blotting, and immunocytochemical assays.Results After transfection of p14ARF, cell growth was obviously inhibited, resulting in an accumulation of cells in the G1 phase. The proportion of cells in the G1 phase was significantly increased from 58.51% to 75.92 %, and in the S and G2/M phases decreased significantly from 20.05% to 12.60%, and from 21.44% to 11.48 %, respectively, as compared with those of the control groups. PC-3/p14ARF cells that underwent 5-Fu treatment had significantly greater G2/M phase accumulation, from 11.48% to 53.47 %. The apoptopic index was increased in PC-3/p14ARF cells from 3.64% to 19.62%. The MTT assay showed p14ARF-expressing cells were significantly more sensitive to 5-Fu (0.01-10 mg/L) than those devoid of p14ARF expression (P<0.01). Western blotting showed p14ARF upregulates p53 expression. Conclusion Combined use of p14ARF gene and 5-Fu acts synergistically to inhibit pancreatic cancer cell proliferation, suggesting a new anticancer strategy.

  7. Clinical Efficacy of Short Contact Topical 5-Fluorouracil in the Treatment of Keratoacanthomas: A Retrospective Analysis

    Thompson, Bobbye J.; Ravits, Margaret; Silvers, David N.

    2014-01-01

    Objective: To determine the efficacy of treating patients with a recent onset, biopsy-proven keratoacanthoma with short-contact topical 5% 5-fluorouracil cream twice daily until resolution. Design: Chart review of 10 patients who applied 5% 5-fluorouracil for the treatment of biopsy-proven keratoacanthoma. Setting: Outpatient clinic of a board-certified dermatologist. Participants: The study population was 90-percent women (9/10), 10-percent men (1/10) and ranged in ages from 52 to 92 years o...

  8. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells [Retraction

    Cheng M

    2014-07-01

    Full Text Available Cheng M, Xu H, Wang Y, et al. Drug Des Devel Ther. 2013;7:1287–1299. It has come to the notice of this journal that the published paper:Cheng M, Xu H, Wang Y, et al. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells. Drug Des Devel Ther. 2013;7:1287–1299. Plagiarised the work of:Cheng M, Gao X, Wang Y, et al. Synthesis of Glycyrrhetinic Acid-Modified Chitosan 5-Fluorouracil Nanoparticles and Its Inhibition of Liver Cancer Characteristics in Vitro and in Vivo. Marine Drugs. 2013;11(9:3517–3536.The first author, Mingrong Cheng, brought this to our attention, has admitted the fault was his own, due to lack of experience and understanding, and apologized.                    Accordingly Dove Medical Press issue the retraction for Cheng M, Xu H, Wang Y, et al. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells. Drug Des Devel Ther. 2013;7:1287–1299.

  9. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells

    Chloroquine (CQ), the worldwide used anti-malarial drug, has recently being focused as a potential anti-cancer agent as well as a chemosensitizer when used in combination with anti-cancer drugs. It has been shown to inhibit cell growth and/or to induce cell death in various types of cancer. 5-Fluorouracil (5-FU) is the chemotherapeutic agent of first choice in colorectal cancer, but in most cases, resistance to 5-FU develops through various mechanisms. Here, we focused on the combination of CQ as a mechanism to potentiate the inhibitory effect of 5-FU on human colon cancer cells. HT-29 cells were treated with CQ and/or 5-FU, and their proliferative ability, apoptosis and autophagy induction effects, and the affection of the cell cycle were evaluated. The proliferative ability of HT-29 was analyzed by the MTS assay. Apoptosis was quantified by flow-cytometry after double-staining of the cells with AnnexinV/PI. The cell cycle was evaluated by flow-cytometry after staining of cells with PI. Autophagy was quantified by flow-cytometry and Western blot analysis. Finally, to evaluate the fate of the cells treated with CQ and/or 5-FU, the colony formation assay was performed. 5-FU inhibited the proliferative activity of HT-29 cells, which was mostly dependent on the arrest of the cells to the G0/G1-phase but also partially on apoptosis induction, and the effect was potentiated by CQ pre-treatment. The potentiation of the inhibitory effect of 5-FU by CQ was dependent on the increase of p21Cip1 and p27Kip1 and the decrease of CDK2. Since CQ is reported to inhibit autophagy, the catabolic process necessary for cell survival under conditions of cell starvation or stress, which is induced by cancer cells as a protective mechanism against chemotherapeutic agents, we also analyzed the induction of autophagy in HT-29. HT-29 induced autophagy in response to 5-FU, and CQ inhibited this induction, a possible mechanism of the potentiation of the anti-cancer effect of 5-FU. Our

  10. Pharmacokinetic properties and antitumor efficacy of the 5-fluorouracil loaded PEG-hydrogel

    Kim Bokyung

    2010-05-01

    Full Text Available Abstract Background We have studied the in vitro and in vivo utility of polyethylene glycol (PEG-hydrogels for the development of an anticancer drug 5-fluorouracil (5-FU delivery system. Methods A 5-FU-loaded PEG-hydrogel was implanted subcutaneously to evaluate the drug retention time and the anticancer effect. For the pharmacokinetic study, two groups of male rats were administered either an aqueous solution of 5-FU (control group/or a 5-FU-loaded PEG-hydrogel (treated group at a dose of 100 mg/kg. For the pharmacodynamic study, a human non-small-cell lung adenocarcinoma (NSCLC cell line, A549 was inoculated to male nude mice with a cell density of 3 × 106. Once tumors start growing, the mice were injected with 5-FU/or 5-FU-loaded PEG-hydrogel once a week for 4 weeks. The growth of the tumors was monitored by measuring the tumor volume and calculating the tumor inhibition rate (IR over the duration of the study. Results In the pharmacokinetic study, the 5-FU-loaded PEG-hydrogel gave a mean residence time (MRT of 8.0 h and the elimination half-life of 0.9 h; these values were 14- and 6-fold, respectively, longer than those for the free solution of 5-FU (p Conclusion We suggest that 5-FU-loaded PEG-hydrogels could provide a useful tool for the development of an anticancer drug delivery system.

  11. Reduction of Orc6 expression sensitizes human colon cancer cells to 5-fluorouracil and cisplatin.

    Elaine J Gavin

    Full Text Available Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53 and HCT116 (null-p53 colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt treatment. Decreased Orc6 expression in HCT-116 (wt-p53 cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53 cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53 cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53 cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45beta and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.

  12. Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges

    Jia-Cheng Tang; Yi-Li Feng; Xiao Liang; Xiu-Jun Cai

    2016-01-01

    Objective: 5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice.This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system.Data Sources: All articles published in English from 1996 to date those assess the synergistic effect ofautophagy and 5-FU in gastrointestinal cancer therapy were identified through a systematic online search by use of PubMed.The search terms were "autophagy" and "5-FU" and ("colorectal cancer" or"hepatocellular carcinoma" or"pancreatic adenocarcinoma" or"esophageal cancer" or"gallbladder carcinoma" or "gastric cancer").Study Selection: Critical reviews on relevant aspects and original articles reporting in vitro and/or in vivo results regarding the efficiency ofautophagy and 5-FU in gastrointestinal cancer therapy were reviewed, analyzed, and summarized.The exclusion criteria for the articles were as follows: (1) new materials (e.g., nanomaterial)-induced autophagy;(2) clinical and experimental studies on diagnostic and/or prognostic biomarkers in digestive system cancers;and (3) immunogenic cell death for anticancer chemotherapy.Results: Most cell and animal experiments showed inhibition ofautophagy by either pharmacological approaches or via genetic silencing of autophagy regulatory gene, resulting in a promotion of 5-FU-induced cancer cells death.Meanwhile, autophagy also plays a pro-death role and may mediate cell death in certain cancer cells where apoptosis is defective or difficult to induce.The dual role of autophagy complicates the use of autophagy inhibitor or inducer in cancer chemotherapy and generates inconsistency to an extent in clinic trials.Conclusion: Autophagy might be a therapeutic target that sensitizes the 5-FU treatment in gastrointestinal cancer.

  13. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil.

    Copur, S; Aiba, K; Drake, J C; Allegra, C J; Chu, E

    1995-05-17

    A series of 5-fluorouracil (5-FU)-resistant human colon H630 cancer cell lines were established by continuous exposure of cells to 5-FU. The concentration of 5-FU required to inhibit cell proliferation by 50% (IC50) in the parent colon line (H630) was 5.5 microM. The 5-FU IC50 values for the resistant H630-R1, H630-R10, and H630-R cell lines were 11-, 29-, and 27-fold higher than that for the parent H630 cell line. Using both the radioenzymatic 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP) binding and catalytic assays for measurement of thymidylate synthase (TS) enzyme activity, there was significantly increased TS activity in resistant H630-R1 (13- and 23-fold), H630-R10 (37- and 40-fold), and H630-R (24- and 34-fold) lines, for binding and catalytic assays, respectively, compared with the parent H630 line. The level of TS protein, as determined by western immunoblot analysis, was increased markedly in resistant H630-R1 (23-fold), H630-R10 (33-fold), and H630-R (26-fold) cells. Northern analysis revealed elevations in TS mRNA levels in H630-R1 (18-fold), H630-R10 (39-fold), and H630-R (36-fold) cells relative to parent H630 cells. Although no major rearrangements of the TS gene were noted by Southern analysis, there was significant amplification of the TS gene in 5-FU-resistant cells, which was confirmed by DNA slot blot analysis. These studies demonstrate that continuous exposure of human colon cancer cells to 5-FU leads to TS gene amplification and overexpression of TS protein with resultant development of fluoropyrimidine resistance. PMID:7763285

  14. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  15. Genotype-phenotype correlations in 5-fluorouracil metabolism: a candidate DPYD haplotype to improve toxicity prediction.

    Gentile, G; Botticelli, A; Lionetto, L; Mazzuca, F; Simmaco, M; Marchetti, P; Borro, M

    2016-08-01

    5-Fluorouracil is among the most widely used anticancer drug, but a fraction of treated patients develop severe toxicity, with potentially lethal injuries. The predictive power of the available pretreatment assays, used to identify patients at risk of severe toxicity, needs improvements. This study aimed to correlate a phenotypic marker of 5-fluorouracil metabolism (the individual degradation rate of 5-fluorouracil-5-FUDR) with 15 functional polymorphisms in the dihydropyrimidine dehydrogenase gene (DPYD). Single SNP (single-nucleotide polymorphism) analysis revealed that the SNPs rs1801160, rs1801265, rs2297595 and rs3918290 (splice site variant IVS14+1G>A) were significantly associated with a decreased value of 5-FUDR, and the rs3918290 causing the larger decrease. Multi-SNP analysis showed that a three-SNP haplotype (Hap7) involving rs1801160, rs1801265 and rs2297595 causes a marked decrease in 5-FUDR, comparable to that caused by the splice site variant rs3918290, which is the main pharmacogenetic marker associated with severe fluorouracil toxicity. The similar effect played by Hap7 and by the splice site variant rs3918290 upon individual 5-FUDR suggests that Hap7 could also represent a similar determinant of fluorouracil toxicity. Haplotype assessment could improve the predictive value of DPYD genetic markers aimed at the pre-emptive identification of patients at risk of severe 5-fluorouracil toxicity.The Pharmacogenomics Journal advance online publication, 28 July 2015; doi:10.1038/tpj.2015.56. PMID:26216193

  16. Hematopoiesis in 5-Fluorouracil-Treated Adenosine A(3) Receptor Knock-Out Mice

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 64, č. 2 (2015), s. 255-262. ISSN 0862-8408 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor knock-out mice * Hematopoiesis * 5-fluorouracil-induced hematotoxicity Subject RIV: BO - Biophysics Impact factor: 1.293, year: 2014

  17. FLOW CYTOMETRIC DETECTION OF ABNORMAL FETAL ERYTHROPOIESIS: APPLICATION TO 5-FLUOROURACIL-INDUCED ANEMIA

    Previously, we observed that administration of 20-40 mg/kg 5-fluorouracil (5-FU) to pregnant rats on gestational day (GD) 14 produced fetal anemia on GD 16-17, as evidenced by dose-dependent decreases in the cell counts, hematocrit, and hemoglobin content of fetal blood obtained ...

  18. The structural changes of the rat's lung induced by intraperitoneal injection of 5-fluorouracil

    Objective: To record the main structural changes in the rat's lung induced by administration of 5-fluorouracil. Methods: The case-control study was conducted at College of Medicine, Mosul, Iraq, from December 2012 to June 2013. Two groups of 6 rats each were used. The experimental group was given 20mg of 5-fluorouracil in 2ml normal saline per kg body weight by intraperitoneal injection for 7 consecutive days, while the other group was given 2ml normal saline per kg body weight intraperitoneally for 7 days and served as the control group. Specimens of lung tissue of the two groups were taken and prepared for light microscopic examination. Result: Structural changes were found in the experimental (5-fluorouracil) group compared to the controls, including abnormal alveolar duct, sac, and terminal bronchioles with emphysematous changes in most of the alveoli in addition to peribronchiolitis, perivasculitis, inflammatory cells infiltration and interstitial fibrosis. Conclusion: 5-fluorouracil has toxic effects on the lung tissue resulting in emphysema and interstitial fibrosis. (author)

  19. Extensive hepatic replacement due to liver metastases has no effect on 5-fluorouracil pharmacokinetics

    Maring, JG; Piersma, H; van Dalen, A; Groen, HJM; Uges, DRA; DeVries, EGE

    2003-01-01

    Purpose: The influence of liver metastases on the pharmacokinetics of 5-fluorouracil (5-FU) and its metabolite 5,6-dihydrofluorouracil (DHFU) was studied in patients with liver metastases from gastrointestinal cancer (n = 16) and compared with a control group of patients with nonmetastatic gastroint

  20. CHEMOIMMUNOTHERAPY OF MURINE LIVER METASTASES WITH 5-FLUOROURACIL IN COMBINATION WITH LIPOSOME-ENCAPSULATED MURAMYL DIPEPTIDE

    DAEMEN, T; DONTJE, BHJ; REGTS, J; SCHERPHOF, GL

    1993-01-01

    The therapeutic effect of a combination of liposomal muramyl dipeptide (MDP) and 5-fluorouracil (5FU) was studied in a murine tumor model of hepatic metastases of the tumor cell line C26, a colon adenocarcinoma. Liposomal MDP (250 mug/kg body wt) and a low, nontoxic, dose of 5FU (10 mg/kg body wt) w

  1. Dose escalation of cisplatin with 5-fluorouracil in concurrent chemoradiotherapy for esophageal carcinoma

    Objective: To define the maximum-tolerated dose (MTD) and observe the side effect of escalating cisplatin with 5-fluorouracil in concurrent chemoradiotherapy for esophageal carcinoma in Chinese, with toxicity studied. Methods: Previously untreated fifteen Chinese patients suffering from esophageal carcinoma received conventional fractionation radiotherapy, with 5 daily fractions of 2.0 Gy per week. The total radiation dose was 60 Gy. Concurrent chemotherapy dose escalation was given by the relatively safe and kidney-sparing modified Fibonacci sequence. The starting dose was cisplatin 37.5 mg/m2 D1 and 5-fluorouracil 500 mg/m2 D1-5, respectively. This regimen was repeated 4 times every 28 days. Escalation dose was cisplatin 7.5 mg/m2 and 5- fluorouracil 100 mg/m2. Every. cohort contained at least 3 patients. If no dose-limiting toxicity(DLT) was observed, the next dose level was opened for entry. These courses were repeated until DLT appeared. MTD was declared as one dose level below which DLT appeared. Results: DLT was defined as grade 3 radiation-induced esophagitis at the level of cisplatin 60 mg/m2, 5-fluorouracil 700 mg/m2. MTD was defined as cisplatin 52.5 mg/m2, 5- fiuorouracil 700 mg/m2. The major side effect were radiation-induced esophagitis, leucopenia, nausea, vomiting and anorexia. Conclusion: Maximun tolerated dose of cisplatin with 5-fiuorouracil in concurrent ehemoradiotherapy in the Chinese people with esophageal carcinoma were eisplatin 52.5 mg/m2 D1,5-fluorouracil 700 mg/m2 D1-5, repeated 4 times every 28 days. (authors)

  2. Anti-hepatocarcinoma effects of 5-fluorouracil encapsulated by galactosylceramide liposormes in vivo and in vitro

    Yong Jin; Jun Li; Long-Fu Rong; Yuan-Hai Li; Lin Guo; Shu-Yun Xu

    2005-01-01

    AIM: To study the anti-hepatocarcinoma effects of 5fluorouracil (5-Fu) encapsulated by galactosylceramide liposomes (5-Fu-GCL)in vivo and in vitro. METHODS: Tumor-bearing animal model and HepA cell line were respectively adopted to evaluate the anti-tumor effects of 5-Fu-GCL in vivo and in vitro. Tumor cell growth inhibition effects of 5-Fu-GCL in vitro were assessed bycell viability assay and MTT assay. In vivo experiment, the inhibitory effects on tumor growth were evaluated by tumor inhibition rate and animal survival days. High performance liquid chromatography was used to detect the concentration-time course of 5-Fu-GCL in intracellular fluidin vitro and the distribution of 5-Fu-GCL in liver tumor tissues in vivo. Apoptosis and cell cycle of tumor cells were demonstrated by flow cytometry.RESULTS: In vitro experiment, 5-Fu-GCL (6.25-100 μmol/L) and free 5-Fu significantly inhibited HepA cell growth. Furthermore, IC50 of 5-Fu-GCL (34.5 μmol/L) was lower than that of free 5-Fu (51.2 μrnol/L). In vivo experiment, 5-Fu-GCL (20, 40, 80 mg/kg) significantly suppressed the tumor growth in HepA bearing mice model. Compared with free 5-Fu, the area under curve of 5-Fu-GCL in intracellular fluid increased 2.6 times. Similarly, the distribution of 5-Fu-GCL in liver tumor tissues was significantly higher than that of free 5-Fu. After being treated with 5-Fu-GCL, the apoptotic rate and the proportion of HepA cells in the S phase increased, while the proportion in the G0/G1 and G2/M phases decreased. CONCLUSION: 5-Fu-GCL appears to have anti-hepatocarcinoma effects and its drug action is better than free 5-Fu. Its mechanism is partly related to increased drug concentrations in intracellular fluid and liver tumor tissues, enhanced tumor cell apoptotic rate and arrest of cell cycle in S phase.

  3. Enhancement of 5-fluorouracil-induced cytotoxicity by leucovorin in 5-fluorouracil-resistant gastric cancer cells with upregulated expression of thymidylate synthase

    Nakamura, Ayako; Nakajima, Go; Okuyama, Ryuji; Kuramochi, Hidekazu; Kondoh, Yurin; Kanemura, Toshinori; Takechi, Teiji; Yamamoto, Masakazu; Hayashi, Kazuhiko

    2013-01-01

    Background Elucidation of the mechanisms by which gastric cancer cells acquire resistance to 5-fluorouracil (5FU) may provide important clues to the development of effective chemotherapy for 5FU-resistant gastric cancer Methods Four 5FU-resistant cell lines (MKN45/5FU, MKN74/5FU, NCI-N87/5FU, and KATOIII/5FU) were established by continuous exposure of the cells to progressively increasing concentrations of 5FU for about 1 year. Then, mRNA expression levels of four genes associated with 5FU me...

  4. Schedule-dependent antitumor effects of 5-fluorouracil combined with sorafenib in hepatocellular carcinoma

    Recently, a phase II clinical trial in hepatocellular carcinoma (HCC) has suggested that the combination of sorafenib and 5-fluorouracil (5-FU) is feasible and side effects are manageable. However, preclinical experimental data explaining the interaction mechanism(s) are lacking. Our objective is to investigate the anticancer efficacy and mechanism of combined sorafenib and 5-FU therapy in vitro in HCC cell lines MHCC97H and SMMC-7721. Drug effects on cell proliferation were evaluated by cell viability assays. Combined-effects analyses were conducted according to the median-effect principle. Cell cycle distribution was measured by flow cytometry. Expression levels of proteins related to the RAF/MEK/ERK and STAT3 pathways and to cell cycle progression (cyclin D1) were determined by western blot analysis. Sorafenib and 5-FU alone or in combination showed significant efficacy in inhibiting cell proliferation in both cell lines tested. However, a schedule-dependent combined effect, associated with the order of compound treatments, was observed. Efficacy was synergistic with 5-FU pretreatment followed by sorafenib, but it was antagonistic with the reverse treatment order. Sorafenib pretreatment resulted in a significant increase in the half inhibitory concentration (IC50) of 5-FU in both cell lines. Sorafenib induced G1-phase arrest and significantly decreased the proportion of cells in S phase when administrated alone or followed by 5-FU. The RAF/MEK/ERK and STAT3 pathways were blocked and cyclin D1 expression was down regulated significantly in both cell lines by sorafenib; whereas, the kinase pathways were hardly affected by 5-FU, and cyclin D1 expression was up regulated. Antitumor activity of sorafenib and 5-FU, alone or in combination, is seen in HCC cell lines. The nature of the combined effects, however, depends on the particular cell line and treatment order of the two compounds. Sorafenib appears to reduce sensitivity to 5-FU through down regulation of cyclin

  5. FORMULATION AND EVALUATION OF PULSED DRUG DELIVERY OF 5- FLUOROURACIL IN TREATING COLO-RECTAL CANCER

    Joshi V.G; Sutar P.S; Sutar K.P; Patil Prakash; Karigar A.A

    2012-01-01

    The proposed work aimed to develop a time dependent programmable pulsatile drug delivery system of 5-Fluorouracil, intended for chronotherapy in colorectal cancer. Various batches of tablets were prepared by direct compression method using microcrystalline cellulose (MCC). These tablets were coated with pH sensitive polymers like Eudragit S-100, cellulose acetate succinate(CAS) and Ethyl Cellulose (EC) at fixed concentration with different coating level (10% & 20%).The prepared tablets were e...

  6. Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges

    Jia-Cheng Tang; Yi-Li Feng; Xiao Liang; Xiu-Jun Cai

    2016-01-01

    Objective: 5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice. This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system. Data Sources: All articles published in English from 1996 to date those assess the synergistic effect of autophagy and 5-...

  7. Eudragit S100 Coated Citrus Pectin Nanoparticles for Colon Targeting of 5-Fluorouracil

    M. Biswaranjan Subudhi; Ankit Jain; Ashish Jain; Pooja Hurkat; Satish Shilpi; Arvind Gulbake; Jain, Sanjay K.

    2015-01-01

    In the present study, Eudragit S100 coated Citrus Pectin Nanoparticles (E-CPNs) were prepared for the colon targeting of 5-Fluorouracil (5-FU). Citrus pectin also acts as a ligand for galectin-3 receptors that are over expressed on colorectal cancer cells. Nanoparticles (CPNs and E-CPNs) were characterized for various physical parameters such as particle size, size distribution, and shape etc. In vitro drug release studies revealed selective drug release in the colonic region in the case of ...

  8. Enthalpy of formation of 5-fluoro-1,3-dimethyluracil: 5-Fluorouracil revisited

    Highlights: • Enthalpies of formation measured by rotating bomb combustion calorimetry. • Sublimation enthalpies determined by the Knudsen mass-loss effusion technique. • Quantum chemical calculations allowed estimation of ΔfHmo (g). • New values of enthalpies of formation for 5-fluorouracil are recommended. - Abstract: In the present work, a re-determination of thermochemical data for 5-fluorouracil was performed and a new determination of thermochemical parameters for 5-fluoro-1,3-dimethyluracil are presented. The standard (po = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of 5-fluorouracil and 5-fluoro-1,3-dimethyluracil, at T = 298.15 K, were derived from the standard molar energies of combustion in oxygen, measured by rotating bomb combustion calorimetry. For these compounds, the standard molar enthalpies of sublimation, at T = 298.15 K, were determined from the temperature-vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. Using the values for the heat capacity differences between the gas and the crystalline phases of the compounds studied, the standard (po = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were derived. From the experimentally determined values, the standard molar enthalpies of formation, in the gas phase, at T = 298.15 K, of 5-fluorouracil and 5-fluoro-1,3-dimethyluracil were calculated as −(454.5 ± 1.6) and −(478.5 ± 1.3) kJ · mol−1, respectively. These values were compared with estimates obtained from very accurate theoretical calculations using the G3(MP2)//B3LYP composite method and appropriately chosen reactions

  9. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

    Cheng M

    2014-01-01

    Full Text Available Mingrong Cheng,1,2,* Houxiang Chen,3,* Yong Wang,4,* Hongzhi Xu,5 Bing He,5 Jiang Han,1 Zhiping Zhang1 1Department of General Surgery, 2Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai, People's Republic of China; 3Zhejiang Huafon Fiber Research Institute, Zhejiang Huafon Spandex Co, Ltd, Wenzhou, People's Republic of China; 4School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People’s Republic of China; 5Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The nanoparticle drug delivery system, which uses natural or synthetic polymeric material as a carrier to deliver drugs to targeted tissues, has a broad prospect for clinical application for its targeting, slow-release, and biodegradable properties. Here, we used chitosan (CTS and hepatoma cell-specific binding molecule glycyrrhetinic acid to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS. The synthetic product was confirmed by infrared (IR spectra and hydrogen-1 nuclear magnetic resonance. The GA-CTS/5-fluorouracil (5-FU nanoparticles were synthesized by combining GA-CTS and 5-FU and conjugating 5-FU onto the GA-CTS nanomaterial. The central composite design was performed to optimize the preparation process as CTS:tripolyphosphate sodium (TPP weight ratio =5:1, 5-FU:CTS weight ratio =1:1, TPP concentration =0.05% (w/v, and cross-link time =50 minutes. GA-CTS/5-FU nanoparticles had a mean particle size of 193.7 nm, a polydispersity index of 0.003, a zeta potential of +27.4 mV, and a drug loading of 1.56%. The GA-CTS/5-FU nanoparticle had a protective effect on the drug against plasma degrading enzyme, and provided a sustained release system comprising three distinct phases of quick, steady, and slow release. Our study showed that the peak time, half-life time, mean residence time and area under

  10. Automated quantification reveals hyperglycemia inhibits endothelial angiogenic function.

    Anthony R Prisco

    Full Text Available Diabetes Mellitus (DM has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia. One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM.Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3 to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose.Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.

  11. Magnetic glass ceramics for sustained 5-fluorouracil delivery: Characterization and evaluation of drug release kinetics

    In the present study, magnetic glass ceramics in the system Fe2O3 ∙ TiO2 ∙ P2O5 ∙ SiO2 ∙ MO (M = Mg, Ca, Mn, Cu, Zn or Ce) are prepared. The effect of adding different cations on the thermal behavior, developed phases, microstructure and magnetic properties is studied using differental thermal analysis (DTA), X-ray diffraction analysis (XRD), transmission electron microscope (TEM), FT-infrared transmission (FT-IR) and vibrating sample magnetometer (VSM) respectively. The magnetic glass ceramics are tested as delivery systems for 5-fluorouracil. Modeling and analysis of release kinetics are addressed. The application of Higuchi square root of time model and the first order release model indicated that, 5-FU is released by diffusion controlled mechanisms, and that its released rate depends greatly on the concentration of loaded drug during the loading stage. The obtained results suggested that, the prepared magnetic glass ceramics can be used for cancer treatment by hyperthermia and/or by localized delivery of therapeutic doses of 5-fluorouracil. - Highlights: • Preparation of magnetic glass ceramics in the system Fe2O3 ∙ TiO2 ∙ P2O5 ∙ SiO2 ∙ MO • The magnetic glass ceramics were tested as delivery systems for 5-fluorouracil. • Drug release profiles follow Higuchi square root of time and first order model

  12. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C

    Our recent study showed that tetrathiomolybdate (TM), a drug to treat copper overload disorders, can sensitize drug-resistant endometrial cancer cells to reactive oxygen species (ROS)-generating anticancer drug doxorubicin. To expand these findings in the present study we explore TM efficacy in combination with a spectrum of ROS-generating anticancer drugs including mitomycin C, fenretinide, 5-fluorouracil and doxorubicin in ovarian cancer cells as a model system. The effects of TM alone or in combination with doxorubicin, mitomycin C, fenretinide, or 5-fluorouracil were evaluated using a sulforhodamine B assay. Flow cytometry was used to detect the induction of apoptosis and ROS generation. Immunoblot analysis was carried out to investigate changes in signaling pathways. TM potentiated doxorubicin-induced cytotoxicity and modulated key regulators of apoptosis (PARP, caspases, JNK and p38 MAPK) in SKOV-3 and A2780 ovarian cancer cell lines. These effects were linked to the increased production of ROS, as shown in SKOV-3 cells. ROS scavenging by ascorbic acid blocked the sensitization of cells by TM. TM also sensitized SKOV-3 to mitomycin C, fenretinide, and 5-fluorouracil. The increased cytotoxicity of these drugs in combination with TM was correlated with the activity of ROS, loss of a pro-survival factor (e.g. XIAP) and the appearance of a pro-apoptotic marker (e.g. PARP cleavage). Our data show that TM increases the efficacy of various anticancer drugs in ovarian cancer cells in a ROS-dependent manner

  13. Cytotoxicity and radiosensitising activity of synthesized dinitrophenyl derivatives of 5-fluorouracil

    Khoshayand Mohammad

    2012-07-01

    Full Text Available Abstract Background and the purpose of the study Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In the present investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions was investigated. Methods 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substituted benzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29 cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively. Results and major conclusion Findings of the present study

  14. Crystallization and preliminary X-ray diffraction analysis of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil

    Lashkov, A. A.; Gabdoulkhakov, A. G.; Shtil, A. A.; Mikhailov, A. M.

    2009-01-01

    Uridine phosphorylase from S. typhimurium was expressed and purified and cocrystallized with the drug 5-fluorouracil. The crystals diffracted X-rays to 2.2 Å resolution using synchrotron radiation.

  15. The association of polymorphisms in 5-fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer

    Shoaib, Afzal; Gusella, Milena; Jensen, Søren Astrup;

    2011-01-01

    The purpose of this study was to investigate whether specific combinations of polymorphisms in 5-fluorouracil (5-FU) metabolism-related genes were associated with outcome in 5-FU-based adjuvant treatment of colorectal cancer....

  16. A Phase II Study of Docetaxel, Cisplatin and 5- Fluorouracil (TPF) In Patients with Locally Advanced Head and Neck Carcinomas

    Ansari, M.; Omidvari, S; Mosalaei, A.; Ahmadloo, N; Mosleh-Shirazi, M. A.; Mohammadianpanah, M.

    2011-01-01

    Background The combination of cisplatin and 5-fluorouracil (PF) is currently considered a standard and effective regimen for the treatment of advanced head and neck carcinomas. The aim of this study was to evaluate the efficacy and safety of docetaxel, cisplatin and 5-fluorouracil (TPF) in patients with unresectable head and neck carcinomas. Methods Forty-six patients with previously untreated non-metastatic stage IV head and neck carcinomas were enrolled. All patients received three cycles o...

  17. Cilengitide inhibits proliferation and differentiation of human endothelial progenitor cells in vitro

    Bone marrow derived hematopoietic stem cells can function as endothelial progenitor cells. They are recruited to malignant tumors and differentiate into endothelial cells. This mechanism of neovascularization termed vasculogenesis is distinct from proliferation of pre-existing vessels. To better understand vasculogenesis we developed a cell culture model with expansion and subsequent endothelial differentiation of human CD133+ progenitor cells in vitro. αvβ3-integrins are expressed by endothelial cells and play a role in the attachment of endothelial cells to the extracellular matrix. We investigated the effect of Cilengitide, a peptide-like, high affinity inhibitor of αvβ3- and αvβ5-integrins in our in vitro system. We could show expression of αvβ3-integrin on 60 ± 9% of non-adherent endothelial progenitors and on 91 ± 7% of differentiated endothelial cells. αvβ3-integrin was absent on CD133+ hematopoietic stem cells. Cilengitide inhibited proliferation of CD133+ cells in a dose-dependent manner. The development of adherent endothelial cells from expanded CD133+ cells was reduced even stronger by Cilengitide underlining its effect on integrin mediated cell adhesion. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was decreased by Cilengitide. In summary, Cilengitide inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects

  18. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity

    Masataka Yokoyama

    2014-06-01

    Full Text Available Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.

  19. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting

    Paharia, Amol; Yadav, Awesh K.; Rai, Gopal; Sunil K. Jain; PANCHOLI, SHYAM S.; Agrawal, Govind P.

    2007-01-01

    An objective of the present investigation was to prepare and evaluate Eudragit-coated pectin microspheres for colon targeting of 5-fluorouracil (FU). Pectin microspheres were prepared by emulsion dehydration method using different ratios of FU and pectin (1:3 to 1:6), stirring speeds (500–2000 rpm) and emulsifier concentrations (0.75%–1.5% wt/vol). The yield of preparation and the encapsulation efficiencies were high for all pectin microspheres. Microspheres prepared by using drug:polymer rat...

  20. A Randomized Trial Comparing Cisplatin Plus 5-fluorouracil With or Without Levamisole in Operable Gastric Cancer

    Choi, Jong Soo; Lee, Kyoo Hyung; Ahn, Myung Ju; Lee, Jung Shin; Lee, Je Han; ZANG, DAE YOUNG; Suh, Chel Won; Kim, Sang We; Kim, Woo Gun; Kim, Jin Cheon; Kim, SukKoo; Park, Kun Choon; Lee, Moo Song; Kim, Sang-Hee

    1997-01-01

    Objectives To determine the effectiveness and toxicity when levamisole was added to the adjuvant combination chemotherapy in patients with operable gastric cancer. Methods After en bloc resection of gastric cancer without gross or microscopic evidence of residual disease from April 1991 to December 1992, 100 patients were randomized to 6 months of 5-fluorouracil 1,000mg/m2/day administered as continous infusion for 5 days, cisplatin 60mg/m2/day as intravenous infusion for 1 day with or withou...

  1. Development of Novel Ionic Liquid-Based Microemulsion Formulation for Dermal Delivery of 5-Fluorouracil

    Goindi, Shishu; Arora, Prabhleen; Kumar, Neeraj; Puri, Ashana

    2014-01-01

    The present study was aimed at synthesizing an imidazole-based ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) and subsequent development of a novel ionic liquid-in-oil (IL/o) microemulsion (ME) system for dermal delivery of a poorly permeating drug 5-fluorouracil (5-FU). A significant enhancement in the solubility of 5-FU was observed in BMIMBr. IL/o MEs of 5-FU were prepared using isopropyl myristate, Tween 80/Span 20, and BMIMBr. Results of ex vivo skin permeation studies through...

  2. Cytotoxicity and Radiosensitising Activity of Synthesized Dinitrophenyl Derivatives of 5-Fluorouracil

    Khosrou Abdi

    2012-07-01

    Full Text Available Background and the purpose of the study: Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In thepresent investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide,and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions wasinvestigated.Methods: 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substitutedbenzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking,group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively.Results and major conclusion: Findings of the present study showed that

  3. Novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cells with dihydropyrimidine dehydrogenase overexpression

    Kikuchi, Osamu; Ohashi, Shinya; Nakai, Yukie; Nakagawa, Shunsaku; Matsuoka, Kazuaki; Kobunai, Takashi; Takechi, Teiji; Amanuma, Yusuke; Yoshioka, Masahiro; Ida, Tomomi; Yamamoto, Yoshihiro; Okuno, Yasushi; Miyamoto, Shin’ichi; Nakagawa, Hiroshi; Matsubara, Kazuo

    2015-01-01

    5-Fluorouracil (5-FU) is a key drug for the treatment of esophageal squamous cell carcinoma (ESCC); however, resistance to it remains a critical limitation to its clinical use. To clarify the mechanisms of 5-FU resistance of ESCC, we originally established 5-FU-resistant ESCC cells, TE-5R, by step-wise treatment with continuously increasing concentrations of 5-FU. The half maximal inhibitory concentration of 5-FU showed that TE-5R cells were 15.6-fold more resistant to 5-FU in comparison with...

  4. Synthesis and Antitumor Activity of Amino Acid Ester Derivatives Containing 5-Fluorouracil

    Jing Xiong

    2009-08-01

    Full Text Available A series of amino acid ester derivatives containing 5-fluorouracil were synthesized using 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDC•HCl and N-hydroxybenzotriazole (HOBt as a coupling agent. The structures of the products were assigned by NMR, MS, IR etc. The in vitro antitumor activity tests against leukaemia HL-60 and liver cancer BEL-7402 indicated that (R-ethyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H-ylacetamido-3-(4-hydroxyphenyl propanoate showed more inhibitory effect against BEL-7402 than 5-FU.

  5. Oxidative damage to guanine nucleosides following combination chemotherapy with 5-fluorouracil and oxaliplatin

    Afzal, Shoaib; Jensen, Søren Astrup; Sørensen, Jens Benn;

    2011-01-01

    PURPOSE: Recent in vitro and animal studies have suggested that the cytotoxicity of 5-fluorouracil and oxaliplatin is linked to increased formation of reactive oxygen species (ROS). This prospective study was undertaken to examine the generation of oxidative stress, in 106 colorectal cancer patie...... concentrations of 8-oxoGuo and 8-oxodG and the treatment effect and the other variables. RESULTS: The analysis showed that chemotherapy increased the excretion of 8-oxoGuo and 8-oxodG around 15% (P ...

  6. [A case of 5-fluorouracil-induced hyperammmonia after chemotherapy for metastatic colon cancer].

    Nakamura, Masamoto; Kobashikawa, Kasen; Tamura, Jiro; Takaki, Ryo; Ohshiro, Masaru; Matayoshi, Ryoji; Hirata, Tetsuo; Kinjyo, Fukunori; Fujita, Jiro

    2009-12-01

    A 79-year-old woman with colon cancer and multiple liver metastases was admitted to our hospital for systemic chemotherapy. She underwent first cycle of modified FOLFOX6 chemotherapy. She was confused on treatment day 5. Blood test revealed her serum ammonia level to be 121 microg/dl. We diagnosed 5-fluorouracil (5FU)-induced hyperammonemia. Conservative treatment resulted in improvement of metal status. The reason for hyperammonemia after administration of 5FU was the excess production of ammonium from metabolites of 5FU. PMID:19966516

  7. 5-Fluorouracil “Chemowraps” in the Treatment of Multiple Actinic Keratoses: A Norwich Experience

    Goon, Peter K. C.; Clegg, Rachel; Yong, Adrian S. W.; Lee, Ava S. W.; Lee, Kevin Y.C.; Levell, Nick J.; Tan, Eunice K. H.; Shah, Syed N

    2015-01-01

    Introduction Topical 5-fluorouracil (5-FU) has been used to treat actinic keratosis for decades. It has been an important and effective treatment which the patient can self-administer, but is limited by the surface area of skin to be treated (according to the manufacturer’s guidelines) of 500 cm2. Other topical treatments can be painful, or require hospital/health care professional input. The use of 5-FU under occlusion (chemowraps) for large areas of sun-damaged skin on the arms or legs has ...

  8. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity

    Polk, Anne; Vistisen, Kirsten; Vaage-Nilsen, Merete;

    2014-01-01

    Med for articles in English using the search terms: 5-FU OR 5-fluorouracil OR capecitabine AND cardiotoxicity. Papers evaluating the pathophysiology of this cardiotoxicity were included. RESULTS: We identified 27 articles of 26 studies concerning the pathophysiology of 5-FU-induced cardiotoxicity. The...... transfer oxygen resulting in myocardial ischemia. CONCLUSIONS: There is no evidence for a single mechanism responsible for 5-FU-induced cardiotoxicity, and the underlying mechanisms might be multifactorial. Further research is needed to elucidate the pathogenesis of this side effect....

  9. Oral ftorafur versus intravenous 5-fluorouracil. A comparative study in patients with colorectal cancer

    Andersen, E; Pedersen, H

    1987-01-01

    The toxicities of oral Ftorafur (1 g/m2/day 1-21) and intravenous 5-fluorouracil (5-FU) (500 mg/m2/day 1-5) were compared in a prospective randomized study in patients with colorectal cancer. The treatment courses were repeated every 6th week. Leucopenia was more common after 5-FU. Leucocyte nadir...... in connection with first treatment cycle was on average seen on day 15 in patients receiving 5-FU and on day 28 in patients receiving Ftorafur. Significantly more patients on 5-FU developed stomatitis. There was no difference in the number of patients with diarrhea or nausea/vomiting. Median survival...

  10. Development of Sulfadiazine-Decorated PLGA Nanoparticles Loaded with 5-Fluorouracil and Cell Viability

    Pedro Pires Goulart Guimarães; Sheila Rodrigues Oliveira; Gabrielle de Castro Rodrigues; Savio Morato Lacerda Gontijo; Ivana Silva Lula; Maria Esperanza Cortés; Ângelo Márcio Leite Denadai; Rubén Dario Sinisterra

    2015-01-01

    The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We fou...

  11. Uso do 5-fluorouracil no intra-operatório da cirurgia do pterígio Intra-operative use of 5-fluorouracil in pterygium surgery

    Silvana A. Schellini

    2000-04-01

    Full Text Available Objetivo: Avaliar a efetividade e as complicações com a aplicação do 5- fluorouracil (5-FLU no intra-operatório da cirurgia do pterígio. Método: Foram avaliados 28 olhos de 26 indivíduos quanto ao tipo e tamanho do pterígio, cirurgias prévias e a resposta ao tratamento cirúrgico (no 7º , 21º , 60º e 90º dia de pós-operatório. Logo após a exerese do pterígio, aplicou-se 5-FLU (25 mg/ml no leito cirúrgico, durante cinco minutos; a seguir, realizou-se a técnica de deslizamento de retalho conjuntival. Resultados: A maioria dos pacientes tinha mais de 50 anos de idade e apresentava pterígio primário (70,0%, grau II (60,7%, do tipo involutivo (60,7%. No pós-operatório observaram-se: isquemia (10,7%, deiscência da conjuntiva (7,1%, ceratite (3,5%, conjuntivite (3,5% e recidiva da lesão em 1 olho (3,5%.Conclusão: O 5-FLU se mostrou droga segura e efetiva na prevenção das recidivas, podendo ser usado como coadjuvante no tratamento do pterígio para prevenir recidivas.Purpose: To evaluate the effectiveness and the complications on intraoperative application of 5-fluorouracil (5FLU in pterygium surgery. Method: We studied 28 eyes of 26 patients with pterygium, evaluating the type and size of the pterygium, previous surgeries and the response to surgical treatment (on the 7th, 21st, 60th, 90th postoperative day. The application of 5-FLU (25 mg/ml was done soon after resection, for five minutes, followed by the sliding flap technique.Results: Most of the patients were more than 50 years old, presented with primary (70.0%, degree II (60.7%, involu-tionary type (60.7% pterygium. After surgery ischemic area (10.7%, conjunctival deiscence (7.1%, keratitis (3.5%, conjunctivitis (3.5% and lesion relapse (3.5% were observed.Conclusion: 5-FLU is a safe and effective drug and could be of help in the treatment of pterygium to prevent relapse.

  12. Influence of Spray-dried Hydroxyapatite-5-Fluorouracil Granules on Cell Lines Derived from Tissues of Mesenchymal Origin

    Tim Scharnweber

    2008-11-01

    Full Text Available In our previous work we described the preparation and characterization of spray dried hydroxyapatite micro granules loaded with 5-fluorouracil (5-FU. These loaded particles are used as a model drug delivery system (DDS. In this study we examined the in vitro response of two cell lines derived from different tissues to 5-FU loaded granules (LG. Both cell lines, either L929 cells of a mouse fibroblast lineage or cells originating from a rat osteosarcoma (ROS 17/2.8 showed a dose dependent decrease in cell proliferation in response to 5-FU-, either dissolved in the culture medium or loaded onto particles. The response of the two cell lines to loaded and nonloaded particles was different. The effect of LG and of a corresponding concentration of free 5-FU was practically the same for the ROS 17/2.8 cells indicating that ROS 17/2.8 cells were not affected by the carrier material. In contrast, L929 cells showed a slight decrease in cell proliferation also in the presence of granules not loaded with 5-FU. This is thought to be attributed to the inhibition of mitogenesis by phosphocitrates, already demonstrated in fibroblasts. In summary, we found that the loaded 5-FU kept its effectivity after the spray drying process and that the response towards the granules varied with cell type. This is the first step towards a tissue specific DDS.

  13. Does radiation prevent 5-fluorouracil-induced colitis in the early phase of radiochemotherapy? A case report and literature review

    Rischke, H.C.; Momm, F.; Henke, M.; Frommhold, H. [University Hospital Freiburg (Germany). Dept. of Radiotherapy; Wiech, T. [University Hospital Freiburg (Germany). Dept. of General Pathology and Pathologic Anatomy

    2007-08-15

    Case Report: A 43-year-old man with T3 N2 M0 adenocarcinoma of the lower rectum was admitted for preoperative radiochemotherapy (RCT). Daily fractions of 1.8 Gy (planned total dose: 50.4 Gy) and concomitant chemotherapy consisting of 5-fluorouracil (5-FU), leucovorin, and mitomycin C (MMC) were administered. On day 10, the patient developed abdominal pain and massive diarrhea. Computed tomography, endoscopy, histopathologic and serologic tests revealed severe colitis confined to the upper abdomen and most probably related to 5-FU. Unexpectedly, the bowel inflammation was restricted to areas not irradiated. 4 months later, during the course of disease, relapse with pulmonary metastases occurred. A palliative chemotherapy with 5-FU, oxaliplatin, and leucovorin was started. Again, the patient suffered from severe diarrhea and dose reduction was necessary. Discussion: It was speculated that in the early phase of RCT the well-known anti-inflammatory nature of low-dose radiation prevented exacerbation of colitis. To the authors' knowledge, this observation has not been published before. With respect to the current literature and the clinical findings it is discussed that both increased leukocyte/endothelial cell adhesion and altered release of reactive oxygen species or inducible nitric oxide synthase (iNOS) may play a role in 5-FU-induced colitis. Conclusion: This observation led to the hypothesis that the anti-inflammatory effect of low-dose irradiation may attenuate 5-FU-induced colitis in the very early phase of RCT. It appears worthwhile to separate side effects of RCT into radiation- and chemotherapy-induced effects, which requires a detailed diagnostic work-up. This differentiation has an impact on planning individual therapy: the authors did not saw conclusive evidence of an increased radiosensitivity but chemosensitivity in their patient and therefore continued radiotherapy. This assumption was confirmed when the patient received palliative 5-FU

  14. Does radiation prevent 5-fluorouracil-induced colitis in the early phase of radiochemotherapy? A case report and literature review

    Case Report: A 43-year-old man with T3 N2 M0 adenocarcinoma of the lower rectum was admitted for preoperative radiochemotherapy (RCT). Daily fractions of 1.8 Gy (planned total dose: 50.4 Gy) and concomitant chemotherapy consisting of 5-fluorouracil (5-FU), leucovorin, and mitomycin C (MMC) were administered. On day 10, the patient developed abdominal pain and massive diarrhea. Computed tomography, endoscopy, histopathologic and serologic tests revealed severe colitis confined to the upper abdomen and most probably related to 5-FU. Unexpectedly, the bowel inflammation was restricted to areas not irradiated. 4 months later, during the course of disease, relapse with pulmonary metastases occurred. A palliative chemotherapy with 5-FU, oxaliplatin, and leucovorin was started. Again, the patient suffered from severe diarrhea and dose reduction was necessary. Discussion: It was speculated that in the early phase of RCT the well-known anti-inflammatory nature of low-dose radiation prevented exacerbation of colitis. To the authors' knowledge, this observation has not been published before. With respect to the current literature and the clinical findings it is discussed that both increased leukocyte/endothelial cell adhesion and altered release of reactive oxygen species or inducible nitric oxide synthase (iNOS) may play a role in 5-FU-induced colitis. Conclusion: This observation led to the hypothesis that the anti-inflammatory effect of low-dose irradiation may attenuate 5-FU-induced colitis in the very early phase of RCT. It appears worthwhile to separate side effects of RCT into radiation- and chemotherapy-induced effects, which requires a detailed diagnostic work-up. This differentiation has an impact on planning individual therapy: the authors did not saw conclusive evidence of an increased radiosensitivity but chemosensitivity in their patient and therefore continued radiotherapy. This assumption was confirmed when the patient received palliative 5-FU

  15. Treatment of Advanced Gastric Carcinoma Patients with Calcium Folinate, a 5-Fluorouracil Bolus and Continous Infusion with 5-Infusion with 5-Fluorouracil Combined with Oxaliplatin

    Qilian Liang; Saihong Chen; Dachao Pan; Jierong Xie; Liangzhen Cai; Shujun Li

    2008-01-01

    OBJECTIVE To examine the therapeutic effects and toxicity of high-dose-folinic acid plus a 5-fluorouracil (5-FU) bolus and continuous infusion with 5-FU combined with locally produced oxaliplatin (L-HOP)in treating advanced gastric carcinoma patients.METHODS Sixty-five patients with advanced gastric carcinoma were treated with high-dose-folinic acid plus a 5-FU bolus and a 48-h continuous infusion of 5-FU combined with oxaliplatin. The effects of treatment and toxicity were observed.RESULTS There were 4 complete responses, 26 partial responses,30 with no change and 5 with progressive disease. The overall effective response rate was 46.2% (30/65). The median duration was 7 months, with the main side effects including nausea and vomiting, peripheral phlebitis, alopecia, leukopenia, dental ulcers,peripheral neuritis and diarrhea. All the side effects were tolerated and minimal.CONCLUSION The results showed that high-dose folinic acid plus a 5-FU bolus and continuous infusion of 5-FU combined with oxaliplatin appears to be a safe and effective therapy for patients with advanced gastric carcinoma. This therapeutic regimen is of value for these patients.

  16. Enhanced in Vivo Delivery of 5-Fluorouracil by Ethosomal Gels in Rabbit Ear Hypertrophic Scar Model

    Wo, Yan; Zhang, Zheng; Zhang, Yixin; Zhang, Zhen; Wang, Kan; Mao, Xiaohui; Su, Weijie; Li, Ke; Cui, Daxiang; Chen, Jun

    2014-01-01

    Applying Ethosomal Gels (EGs) in transdermal drug delivery systems has evoked considerable interest because of their good water-solubility and biocompatibility. However, there has not been an explicit description of applying EGs as a vehicle for hypertrophic scars treatment. Here, a novel transdermal EGs loaded with 5-fluorouracil (5-FU EGs) was successfully prepared and characterized. The stability assay in vitro revealed that 5-FU EGs stored for a period of 30 days at 4 ± 1 °C had a better size stability than that at 25 ± 1 °C. Furthermore, using confocal laser scanning microscopy, EGs labeled with Rhodamine 6 G penetrated into the deep dermis of the hypertrophic scar within 24 h in the rabbit ear hypertrophic model suggested that the EGs were an optional delivery carrier through scar tissues. In addition, the value of the Scar Elevation Index (SEI) of 5-FU EGs group in the rabbit ear scar model was lower than that of 5-FU Phosphate Buffered Saline gel and Control groups. To conclude, these results suggest that EGs delivery system loaded 5-fluorouracil is a perfect candidate drug for hypertrophic scars therapy in future. PMID:25501333

  17. Effects of 5-fluorouracil on the secretory process of the rat parotid gland

    Experimental animals were injected intraperitoneally with 100 mg/kg 5-fluorouracil for three days. The total volume, amylase and protein content of cannulated parotid saliva were determined following stimulation with either 5 mg/kg pilocarpine or 5 mg/kg isoproterenol in experimental, pair-fed , and control animals. Saliva from experimental animals was significantly lower in volume, amylase and protein content than both control groups. 5-fluorouracil treatment reduced the total glandular amylase per unit DNA in both unstimulated and isoproterenol-stimulated parotid glands. Decreased protein synthesis may be the mechanism underlying depleted secretory protein stores since the contents of isolated secretory granules from experimental parotid glands contained less radiolabelled protein than either control group and whole gland homogenates showed marked reductions in the activities of three lysosomal enzymes and total RNA content. Experimental animals contained less labelled protein in their secretory granules than controls, but secreted a greater proportion of their total glandular radiolabelled secretory protein into saliva relative to amylase suggesting that newly synthesized secretory proteins are preferentially secreted

  18. FORMULATION AND EVALUATION OF PULSED DRUG DELIVERY OF 5- FLUOROURACIL IN TREATING COLO-RECTAL CANCER

    Joshi V.G

    2012-09-01

    Full Text Available The proposed work aimed to develop a time dependent programmable pulsatile drug delivery system of 5-Fluorouracil, intended for chronotherapy in colorectal cancer. Various batches of tablets were prepared by direct compression method using microcrystalline cellulose (MCC. These tablets were coated with pH sensitive polymers like Eudragit S-100, cellulose acetate succinate(CAS and Ethyl Cellulose (EC at fixed concentration with different coating level (10% & 20%.The prepared tablets were evaluated for lag time and in vitro drug release. FTIR studies revealed that there was no interaction between drug and polymer. Lag time with Eudragit S-100 at (20% coating level was 5 hrs, Cumulative drug released from the formulation ranged from 91-96% within 8-10 hrs. Drug released followed first order kinetics. The rapid release of the drug after a lag time consistent with requirement for chronotherapeutics was achieved. This approach provides a useful means for pulsatile/programmable release (with single pulse of 5-Fluorouracil and may be helpful for patients suffering from cancer.

  19. [Evaluation of acute cardiotoxicity from the combination cyclophosphamide-mitoxantrone-5-fluorouracil (CMF) with Holter ECG].

    Doria, G; Cangemi, F; Tosto, A; Platania, F; Circo, A; Motta, S; Tralongo, P; Aiello, R A; Failla, G

    1990-05-01

    By making use of a twenty-four hour Holter monitoring, it as been possible to compute the acute cardiotoxicity of the cyclophosphamide + mitoxantrone + 5-fluorouracil (CNF) association in twenty oncologic patients (pts) each of whom being immune from organic cardiopathy emerging clinically and at their first cycle of chemotherapy. The following parameters have been computed: meaningful changes in the heart frequency; premature atrial and ventricular depolarizations, both as a first appearance and as a clear growth in the number; the ST dislocation entity; malignant ventricular arrhythmias. The administration of CNF at the doses of: 600 mg/m2 of cyclophosphamide, 12 mg/m2 of mitoxantrone and 600 mg/m2 of 5-fluorouracil , has caused a meaningful increase in the heart frequency on 6 pts (30%), an increase of premature atrial depolarization on 4 pts (20%) with an appearance ex novo on 2 pts (10%), an increase of premature ventricular depolarization, without any passing to superior Lown classes, on 2 pts (10%) with an appearance ex novo on 3 pts (15%). Although the results in the study point out a frequency percentage of simple hyperkinetic arrhythmias equal to the 55%, the lack of more serious hyperkinetic arrhythmias and of intense disorders of ventricular repolarization testified to a synergic effect as a determining factor on the acute cardiotoxicity of the previously discussed association, in our opinion. PMID:2234455

  20. Enhanced in Vivo Delivery of 5-Fluorouracil by Ethosomal Gels in Rabbit Ear Hypertrophic Scar Model

    Yan Wo

    2014-12-01

    Full Text Available Applying Ethosomal Gels (EGs in transdermal drug delivery systems has evoked considerable interest because of their good water-solubility and biocompatibility. However, there has not been an explicit description of applying EGs as a vehicle for hypertrophic scars treatment. Here, a novel transdermal EGs loaded with 5-fluorouracil (5-FU EGs was successfully prepared and characterized. The stability assay in vitro revealed that 5-FU EGs stored for a period of 30 days at 4 ± 1 °C had a better size stability than that at 25 ± 1 °C. Furthermore, using confocal laser scanning microscopy, EGs labeled with Rhodamine 6 G penetrated into the deep dermis of the hypertrophic scar within 24 h in the rabbit ear hypertrophic model suggested that the EGs were an optional delivery carrier through scar tissues. In addition, the value of the Scar Elevation Index (SEI of 5-FU EGs group in the rabbit ear scar model was lower than that of 5-FU Phosphate Buffered Saline gel and Control groups. To conclude, these results suggest that EGs delivery system loaded 5-fluorouracil is a perfect candidate drug for hypertrophic scars therapy in future.

  1. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  2. A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells.

    Jiang Yin

    Full Text Available The polycomb group transcriptional modifier Bmi1 is often upregulated in numerous cancers and is intensely involved in normal and cancer stem cells, and importantly is as a prognostic indicator for some cancers, but its role in breast cancer remains unclear. Here, we found Bmi1 overexpression in 5-Fu (5-fluorouracil-resistant MCF-7 cells (MCF-7/5-Fu derived from MCF-7 breast cancer cells, MDA-MB-231 and MDA-MB-453 breast cancer cells compared to MCF-7 cells, was related with 5-Fu resistance and enrichment of CD44(+/CD24(- stem cell subpopulation. Bmi1 knockdown enhanced the sensitivity of breast cancer cells to 5-Fu and 5-Fu induced apoptosis via mitochondrial apoptotic pathway, and decreased the fraction of CD44(+/CD24(- subpopulation. In addition, our analysis showed inverse expression pattern between Bmi1 and miR-200c and miR-203 in selected breast cancer cell lines, and miR-200c and miR-203 directly repressed Bmi1 expression in protein level confirmed by luciferase reporter assay. MiR-200c and miR-203 overexpression in breast cancer cells downregulated Bmi1 expression accompanied with reversion of resistance to 5-Fu mediated by Bmi1. Inversely, Bmi1 overexpression inhibited miR-200c expression in MCF-7 cells, but not miR-203, however ectopic wild-type p53 expression reversed Bmi1 mediated miR-200c downregulation, suggesting the repressive effect of Bmi1 on miR-200c maybe depend on p53. Thus, our study suggests a cross-talk between Bmi1 and miR-200c mediated by p53, and Bmi1 interference would improve chemotherapy efficiency in breast cancer via susceptive apoptosis induction and cancer stem cell enrichment inhibition.

  3. Investigations on the interactions of 5-fluorouracil with bovine serum albumin: Optical spectroscopic and molecular modeling studies

    Chinnathambi, Shanmugavel [Department of Medical Physics, Anna University, Chennai 600025 (India); Velmurugan, Devadasan [Bioinformatics Infrastructure Facility, University of Madras, Chennai 600025 (India); Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600025 (India); Hanagata, Nobutaka [Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Graduate School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0812 (Japan); Aruna, Prakasa Rao [Department of Medical Physics, Anna University, Chennai 600025 (India); Ganesan, Singaravelu, E-mail: sganesan@annauniv.edu [Department of Medical Physics, Anna University, Chennai 600025 (India)

    2014-07-01

    5-Fluorouracil is clinically used as antitumor drug to treat many types of cancer, which is made available to the target tissues in conjugation with transport protein serum albumin. 5-Fluorouracil which is low toxic when compared to the other drugs of this family and hence its binding characteristics are therefore of prime interest. The steady state and time resolved fluorescence studies, Fourier transform infrared spectroscopy and circular dichroism studies were employed to explain the mode and the mechanism of interaction of 5FU with BSA. 5-Fluorouracil binding is characterized with one high affinity binding site, with the binding constant of the order of 10{sup 4}. The molecular distance r (∼1.5 nm) between donor (bovine serum abumin) and acceptor (5-fluorouracil) was estimated according to Forster's theory of non-radiative energy transfer. The feature of 5-fluorouracil induced structural changes of bovine serum albumin has been studied in detail by circular dichroism and Fourier transform infrared spectroscopy analysis. The binding dynamics was expounded by synchronous fluorescence spectroscopy, florescence lifetime measurements and molecular modeling elicits that hydrophobic interactions and hydrogen bonding, stabilizes the 5-fluorouracil interaction with BSA. - Highlights: • The fluorescence quenching of BSA induced by 5-FU is static at lower concentration and dynamic at higher concentration. • 5-FU binding with BSA results, there is no considerable changes in α-helix. • 5-FU binds with hydrophobic cavity in BSA (site I). • The distance between the donor and acceptor is 1.5 nm. • The main force of attraction between 5-FU in BSA are hydrophobic and hydrogen bonding.

  4. Investigations on the interactions of 5-fluorouracil with bovine serum albumin: Optical spectroscopic and molecular modeling studies

    5-Fluorouracil is clinically used as antitumor drug to treat many types of cancer, which is made available to the target tissues in conjugation with transport protein serum albumin. 5-Fluorouracil which is low toxic when compared to the other drugs of this family and hence its binding characteristics are therefore of prime interest. The steady state and time resolved fluorescence studies, Fourier transform infrared spectroscopy and circular dichroism studies were employed to explain the mode and the mechanism of interaction of 5FU with BSA. 5-Fluorouracil binding is characterized with one high affinity binding site, with the binding constant of the order of 104. The molecular distance r (∼1.5 nm) between donor (bovine serum abumin) and acceptor (5-fluorouracil) was estimated according to Forster's theory of non-radiative energy transfer. The feature of 5-fluorouracil induced structural changes of bovine serum albumin has been studied in detail by circular dichroism and Fourier transform infrared spectroscopy analysis. The binding dynamics was expounded by synchronous fluorescence spectroscopy, florescence lifetime measurements and molecular modeling elicits that hydrophobic interactions and hydrogen bonding, stabilizes the 5-fluorouracil interaction with BSA. - Highlights: • The fluorescence quenching of BSA induced by 5-FU is static at lower concentration and dynamic at higher concentration. • 5-FU binding with BSA results, there is no considerable changes in α-helix. • 5-FU binds with hydrophobic cavity in BSA (site I). • The distance between the donor and acceptor is 1.5 nm. • The main force of attraction between 5-FU in BSA are hydrophobic and hydrogen bonding

  5. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol.

    Angana G Rajapakse

    Full Text Available Mammalian target of rapamycin (mTOR/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months as compared to the young animals (1-3 months. Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.

  6. Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

    Honavar, Jaideep; Samal, Andrey A.; Bradley, Kelley M.; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L.; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M.; Matalon, Sadis; Patel, Rakesh P.

    2010-01-01

    Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-depe...

  7. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro

    Bone-marrow-derived, circulating endothelial precursor cells contribute to neoangiogenesis in various diseases. Rapamycin has recently been shown to have anti-angiogenic effects in an experimental tumor model. Our group has developed a culture system that allows expansion and endothelial differentiation of human CD133+ precursor cells. We could show by PCR analysis that mTOR, the rapamycin-binding protein, was expressed in fresh CD133+ cells, in expanded cells after 28 days, and in differentiated endothelial cells. Rapamycin inhibited proliferation of CD133+ cells dose dependently at similar concentrations as hematopoietic Jurkat or HL-60 cells. Apoptosis was induced by rapamycin after 48 h of treatment, which could be reduced by preincubation with FK 506. Furthermore, the development of adherent endothelial cells from expanded CD133+ cells was dose dependently inhibited. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was reduced by rapamycin. In summary, rapamycin inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects

  8. Treatment of laser resistant granuloma faciale with intralesional triamcinolone acetonide and 5-fluorouracil combination therapy

    Diana L Norris

    2015-01-01

    Full Text Available This report describes a sixty year old male with biopsy proven Granuloma Faciale (GF. The patient had been unsuccessfully treated with multiple therapies. A mixture 0.8 ml 5-Fluorouracil (5FU and 0.2 ml Kenacort-A was trialled initially to treat this patient, followed by a more varied mixture ratio. These were given at intervals ranging from two weeks to two months. The patient received a total of twenty injections over a period of more than three years. An excellent response was noted and the patient is now able to tolerate long treatment free periods of between nine and twelve months. 5FU is a simple injection material and can be considered by clinicians as an option for treatment of GF.

  9. Electronic structure of uracil-like nucleobases adsorbed on Si(001): uracil, thymine and 5-fluorouracil

    Molteni, Elena; Onida, Giovanni; Cappellini, Giancarlo

    2016-04-01

    We study the electronic properties of the Si(001):Uracil, Si(001):Thymine, and Si(001):5-Fluorouracil systems, focusing on the Si dimer-bridging configuration with adsorption governed by carbonyl groups. While the overall structural and electronic properties are similar, with small differences due to chemical substitutions, much larger effects on the surface band dispersion and bandgap show up as a function of the molecular orientation with respect to the surface. An off-normal orientation of the molecular planes is favored, showing larger bandgap and lower total energy than the upright position. We also analyze the localization of gap-edge occupied and unoccupied surface states. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70011-1

  10. A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes

    Soltani, Alireza; Baei, Mohammad T.; Tazikeh Lemeski, E.; Kaveh, Sara; Balakheyli, Hanzaleh

    2015-11-01

    The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications.

  11. Metabolism of 5-fluorouracil in human liver: an in vivo 19F NMR study

    In vivo fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy was used to study the metabolism and pharmacokinetics of 5-fluorouracil (5-FU) in human liver. Nine patients received 5-FU, and additional chemotherapeutic agents (methotrexate, leucovorin, or levamisole) either prophylactically after breast cancer surgery or for colorectal cancer. The time constant for the disappearance of 5-FU from the liver in vivo varied from 5 to 17 min, while the time constant for the appearance of α-fluoro-β-alanine (the major catabolite of 5 FU) varied from 7 to 86 min. The modulators of 5-FU metabolism did not appear to affect the time constant for the disappearance of 5-FU from the liver or for the appearance of α-fluoro-β-alanine. Results obtained indicate that the pharmacokinetics of 5-FU and α-fluoro-β-alanine may vary substantially at different times in a given individual. (author)

  12. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  13. Interactions of radiation and 5-fluorouracil, cyclophosphamide or methotrexate in intestinal crypt cells

    The interactions of radiation and 5-fluorouracil (5-FU), cyclophosphamide (CTX), or methotrexate (MTX) in mouse jejunal crypt cells were studied using the microcolony survival assay. 5-FU given from 48 hr before to 24 hr after irradiation resulted in an almost constant, increased cell kill except at injection 6 hr after irradiation, which resulted in a more pronounced effect. CTX enhanced the radiation effect only when given simultaneously with or up to 3 hr after irradiation. The effect of MTX, extremely dependent on the sequence and interval between drug administration and irradiation, was most prominent when administered 1 hr before irradiation. At this drug-radiation interval, the D0 surprisingly increased by a factor of 2.4, whereas MTX 15 min before irradiation displaced the survival curve to the left without changing the D0. The influence of MTX on the radiation response disappeared when the drug was given either 96 hr before or 3 hr after irradiation

  14. The determination of 5-fluorouracil in human plasma by a gas chromatography-mass spectrometry

    A gas chromatography-mass spectrometry method for the determination of 5-fluorouracil in human plasma is described. The method involves a single extraction procedure with 10 ml of isopropanol-eth-er(20:80) solution and pentafluoro-benzylation. Samples were injected using an automatic injector, followed by separation on a nonpolar capillary column and detection with a mass selective detector(MSD). No en-dogeneous compounds were found to interfere. The detection limit, based upon an assayed plasma volume of 0.5, was 3 ng/ml. The extraction yield was found to be above 80%. Plasma 5-FU concentrations were det-ermined by this method in about 500 plasma samples from cancer patients undergoing treatment with 5-FU. This method is suitable for monitoring of 5-FU in plasma of cancer patients

  15. Nedaplatin and 5-fluorouracil combined with radiotherapy for advanced esophageal cancer

    We conducted a pilot study of nedaplatin+5-fluorouracil (5-FU) combined with radiotherapy for 29 patients with primary advanced (stage IV) esophageal cancer. A complete remission (CR) was obtained in 4 (14%) and a partial response in 13 patients (response rate: 59%). The median survival time and one-year survival rate were 238 days and 34.5%, respectively. Of the 29 patients, 24 (83%) completed the treatment schedule and toxicity of stomatitis and the like was infrequent. In conclusion, these results suggest that the efficacy of nedaplatin+5-FU combined with radiotherapy might not differ from that of cisplatin+5-FU combined with radiotherapy. Clearly, the usefulness of this combined therapy needs to be assessed in multicenter phase III trials. (author)

  16. 5-Fluorouracil cardiotoxicity: reversible left ventricular systolic dysfunction with early detection.

    Iskandar, Muhammad Zaid; Quasem, Wahid; El-Omar, Magdi

    2015-01-01

    A 33-year-old man presented to hospital with acute shortness of breath and evolving ST segment changes on ECG 3 days following a cycle of 5-fluorouracil (5-FU) for colon cancer. Despite no cardiac history, subsequent echocardiogram showed severe left ventricular systolic dysfunction. The patient was initially treated with heart failure medications and his coronary angiogram was normal. Chemotherapy was stopped and he was started on nitrates and calcium channel blockers. A repeat echocardiogram and cardiac MRI a week later showed complete resolution of his left ventricular dysfunction and he was discharged home. This case report summarises 5-FU cardiotoxicity, and emphasises the importance of early recognition and correct treatment, as left ventricular systolic dysfunction in this context is potentially reversible. PMID:25935919

  17. Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery

    Pardis Kalantarian

    2010-09-01

    Full Text Available Pardis Kalantarian1,2, Abdolhosein Rouholamini Najafabadi1, Ismaeil Haririan2, Alireza Vatanara1, Yadollah Yamini3, Majid Darabi1, Kambiz Gilani11Aerosol Research Laboratory and 2Pharmaceutical Laboratory, School of Pharmacy, Tehran University of Medical Sciences, 3Department of Chemistry, Tarbiat Modarres University, Tehran, IranAbstract: This study concerns the supercritical antisolvent process which allows single-step production of 5-fluorouracil (5-FU nanoparticles. This process enhances the physical characteristics of 5-FU in order to deliver it directly to the respiratory tract. Several mixtures of methanol with dichloromethane, acetone, or ethanol were used for particle preparation, and their effects on the physical characteristics of the final products were studied. The conditions of the experiment included pressures of 100 and 150 bar, temperature of 40°C, and a flow rate of 1 mL/min. The particles were characterized physicochemically before and after the process for their morphology and crystallinity. In spite of differences in size, the particles were not very different regarding their morphology. The resulting particles were of a regular shape, partly spherical, and appeared to have a smooth surface, whereas the mechanically milled particles showed less uniformity, had surface irregularities and a high particle size distribution, and seemed aggregated. Particles of 5-FU precipitated from methanol-dichloromethane 50:50 had a mean particle size of 248 nm. In order to evaluate the aerodynamic behavior of the nanoparticles, six 5-FU dry powder formulations containing mixtures of coarse and fine lactose of different percentages were prepared. Deposition of 5-FU was measured using a twin-stage liquid impinger and analyzed using a validated high pressure liquid chromatography method. Addition of fine lactose improved the aerodynamic performance of the drug, as determined by the fine particle fraction.Keywords: supercritical antisolvent, 5

  18. 5-Fluorouracil loaded guar gum microspheres for colon delivery:preparation, characterization and in vitro release

    KAUSHIK Dinesh; SARDANA Satish; MISHRA DN

    2009-01-01

    The present investigation is aimed to develop a new formulation containing chemically cross-linked guar gum microspheres loaded with 5-fluorouracil for targeting colorectal cancer. The emulsification polymerization method involving the dispersion of aqueous phase of guar gum in castor oil was used to prepare spherical microspheres. Various processing parameters were studied in order to optimize the formulation. Particle size and surface morphology of the microspheres were determined using optical microscopy and scanning electron microscopy. The in vitro drug release studies performed in simulated gastric fluid (SGF) for 2 h followed by intestinal fluid for 3 h, revealed the retention of the drug inside the microspheres from which only (15.27±0.56)% of the drug was released in 5 h. In vitro release rate studies were also carried out in simulated colonic fluid (SCF) in the presence of rat caecal contents, which showed improved drug release. The drug release from the formulation was found to be (41.6±3.5) % with 2% (w/v) caecal matter in 24 h as compared to control study where (25.2±3.5) % of drug was released. The drug release from the formulation with 2% and 4% rat caecal contents medium after 2 days of enzyme induction was found to be (56.3±4.1) % and (78.9±2.8) % in 24 h respectively. Similarly, (61.3±5.4) % and (90.2±2.9) % drug was released respectively with 2% and 4% rat caecal matter after 4 days of enzyme induction and (72.1±2.9) % and (90.2±3.2) % after 6 days of enzyme induction. In this way, 5-fluorouracil loaded guar gum microspheres have shown promising results in the management of colorectal cancer, warranting thorough in vivo study for scale up technology.

  19. Short-term health-related quality of life and symptom control with docetaxel, cisplatin, 5-fluorouracil and cisplatin (TPF), 5-fluorouracil (PF) for induction in unresectable locoregionally advanced head and neck cancer patients (EORTC 24971/TAX 323).

    Herpen, C.M.L. van; Mauer, M.E.; Mesia, R.; Degardin, M.; Jelic, S.; Coens, C.; Betka, J.; Bernier, J.; Remenar, E.; Stewart, J.S.; Preiss, J.H.; Weyngaert, D. van den; Bottomley, A.; Vermorken, J.B.

    2010-01-01

    BACKGROUND: The EORTC 24971/TAX 323, a phase III study of 358 patients with unresectable locoregionally advanced squamous cell carcinoma of the head and neck, showed an improved progression-free and overall survival (OS) with less toxicity when docetaxel (T) was added to cisplatin and 5-fluorouracil

  20. Intravital imaging of the effects of 5-fluorouracil on the murine liver microenvironment using 2-photon laser scanning microscopy

    OKIGAMI, MASATO; TANAKA, KOJI; INOUE, YASUHIRO; SAIGUSA, SUSUMU; OKUGAWA, YOSHINAGA; TOIYAMA, YUJI; MOHRI, YASUHIKO; KUSUNOKI, MASATO

    2016-01-01

    5-fluorouracil (5FU) is often used in the treatment of colorectal cancer. 5FU improves the median overall and disease-free survival rates and reduces recurrence rates in patients who have undergone curative surgical resection. However, in the adjuvant setting, whether 5FU eradicates clinically undetectable micrometastases in target organs such as the liver, or whether 5-FU inhibits the adhesion of circulating tumor cells has not yet been established. In the present study, 5FU was administered following the inoculation of red fluorescent protein-expressing HT29 cells into green fluorescent protein (GFP)-transgenic nude mice to examine its inhibitory effect. 2-photon laser scanning microscopy was performed at selected time points for time-series imaging of liver metastasis of GFP-transgenic mice. The cell number in vessels was quantified to evaluate the response of the tumor microenvironment to chemotherapy. HT29 cells were visualized in hepatic sinusoids at the single-cell level. A total of 2 hours after the injection (early stage), time-series imaging revealed that the number of caught tumor cells gradually reduced over time. In the 5FU treatment group, no significant difference was observed in the cell number in the early stage. One week after the injection (late stage), a difference in morphology was observed. The results of the present study indicated that 5FU eradicated clinically undetectable micrometastases in liver tissues by acting as a cytotoxic agent opposed to preventing adhesion. The present study indicated that time-series intravital 2-photon laser scanning microscopic imaging of metastatic tumor xenografts may facilitate the screening and evaluation of novel chemotherapeutic agents with less interindividual variability. PMID:27073493

  1. Antineoplastic Effect of Calcium Channel Blocker-Verapamil and 5-Fluorouracil Intraperitoneal Chemotherapy on Hepatocarcinoma-Bearing Rats

    2002-01-01

    Objective To study the antineoplastic effect of the calcium channel blocker verapamil and 5-fluorouracil intraperitoneal chemotherapy on hepatocarcinoma-bearing rats,and examine the action between calcium channel blockers and cytotoxic drugs. Methods We adopted the method of subcapsular implantation of carcinoma tissues of walker-256 in the left liver lobe as a model of liver carcinoma-bearing rats.All experimental animals were divided into four groups.On the sixth day post implantation,in group A (control group) 6ml of saline was injected intraperitoneally once a day for 3 days.In group B(single chemotherapy group) 6ml of 5-Fu 75 mg/kg was injected intraperitoneally once a day for 3 days.In group C(combination of treatment group)both 5-Fu(75mg/kg) and verapamil (25mg/kg) were administered simultaneously as in A and B.In group D(simple verapamil group)only 6ml of verapamil(25mg/kg)was administered as above. Results Compared with groups A, B and D,The volume of cancer and the contents of liver cancer DNA and protein were significantly reduced.The rates of inhibiting cancer(89.9% in group C and 35.4% in group B)were significantly increased in groupC. Group C had significantly long survival time compared to groups A, B and D(P<0.05).By light microscopy, a number of focal necroses were found in cancer tissue in group C.Conclusion Calcium channel blockers can enhance the antineoplastic effect of 5-Fu intraperitonea chemotherapy to liver cancer;The use of verapamil can not increase the toxicity of 5-Fu.

  2. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; d'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  3. Pharmacokinetics and tissue distribution of intraperitoneal 5-fluorouracil with a novel carrier solution in rats

    Zhi-Gang Wei; Guo-Xin Li; Xiang-Cheng Huang; Li Zhen; Jiang Yu; Hai-Jun Deng; Shan-Hua Qing; Ce Zhang

    2008-01-01

    AIM: To compare the pharmacokinetics and tissue distribution of 5-fluorouracil administered intraperitoneally with two isotonic carrier solutions: HAES-steri (neotype 6% hydroxyethyl starch), a novel carrier solution with middle molecular weight and physiologic saline (0.9%sodium chloride solution), a traditional carrier solution for intraperitoneal chemotherapy, in rats.METHODS: A total of 60 Sprague Dawley rats were randomized into groups according to the carrier solution administered. Each group was further randomized according to the intraperitoneal dwell period (1, 3, 6, 12,18 and 24 h). At the end of the procedure the rats were killed, the peritoneal fluid was withdrawn completely and quantitated. Drug concentrations in peritoneal fluid, plasma, and tissues were determined by highperformance liquid chromatography.RESULTS: The mean volumes remaining in the peritoneal cavity were significantly higher with HAESsteri than those with physiologic saline at 1, 6, 12, 18,and 24 h (P=0.047, 0.009, 0.005, 0.005 and 0.005respectively, the percentages of remaining peritoneal fluid volume were 89.9 ± 5.6 vs 83.4 ± 4.9, 79.9 ± 2.8 vs 56.2 ± 15.7, 46.8 ± 5.5 vs 24.7± 9.7, 23.0 ± 2.8 0.0 ± 0.0 and 4.2 ± 1.7 vs 0.0 ± 0.0 respectively). Mean concentrations in peritoneal fluid were significantly higher with HAES-steri than those with physiologic saline at 3,12 and 18 h (P = 0.009, 0.009 and 0.005 respectively,the concentrations were 139.2768 ± 28.2317 mg/L vs mg/L, 11.5427 ± 3.0976 mg/L vs 0.0000 ± 0.0000 mg/L and 4.7724 ± 1.0936 mg/L vs 0.0000 ± 0.0000 mg/L respectively). Mean plasma 5-fiuorouracil concentrations in portal vein were significantly higher with HAES-steri at 3, 12, 18 and 24 h (P = 0.009, 0.034, 0.005 and 0.019 respectively, the concentrations were 3.3572 ± 0.8128 mg/L vs 0.8794 ± 0.2394 mg/L, 0.6203 ± 0.9935 mg/L vs 0.0112 ± 0.0250 mg/L, 0.3725 ± 0.3871 mg/L vs 0.0000 ± 0.0000 mg/L, and 0.2469 ± 0.1457 mg/L 0.0000 ± 0.0000 mg

  4. Manganese Superoxide Dismtase Polymorphism and Breast Cancer Recurrence: A Danish Population-Based Case-Control Study of Breast Cancer Patients Treated with Cyclophosphamide Epirubicin and 5-fluorouracil

    Ording, Anne Gulbech; Cronin Fenton, Deirdre; Christensen, Mariann;

    2013-01-01

    Manganese Superoxide Dismtase Polymorphism and Breast Cancer Recurrence: A Danish Population-Based Case-Control Study of Breast Cancer Patients Treated with Cyclophosphamide Epirubicin and 5-fluorouracil......Manganese Superoxide Dismtase Polymorphism and Breast Cancer Recurrence: A Danish Population-Based Case-Control Study of Breast Cancer Patients Treated with Cyclophosphamide Epirubicin and 5-fluorouracil...

  5. Rapamycin Inhibits Lymphatic Endothelial Cell Tube Formation by Downregulating Vascular Endothelial Growth Factor Receptor 3 Protein Expression

    Yan Luo

    2012-03-01

    Full Text Available Mammalian target of rapamycin (mTOR controls lymphangiogenesis. However, the underlying mechanism is not clear. Here we show that rapamycin suppressed insulin-like growth factor 1 (IGF-1- or fetal bovine serum (FBS-stimulated lymphatic endothelial cell (LEC tube formation, an in vitro model of lymphangiogenesis. Expression of a rapamycin-resistant and kinase-active mTOR (S2035T, mTOR-T, but not a rapamycin-resistant and kinase-dead mTOR (S2035T/D2357E, mTOR-TE, conferred resistance to rapamycin inhibition of LEC tube formation, suggesting that rapamycin inhibition of LEC tube formation is mTOR kinase activity dependent. Also, rapamycin inhibited proliferation and motility in the LECs. Furthermore, we found that rapamycin inhibited protein expression of VEGF receptor 3 (VEGFR-3 by inhibiting protein synthesis and promoting protein degradation of VEGFR-3 in the cells. Down-regulation of VEGFR-3 mimicked the effect of rapamycin, inhibiting IGF-1- or FBS-stimulated tube formation, whereas over-expression of VEGFR-3 conferred high resistance to rapamycin inhibition of LEC tube formation. The results indicate that rapamycin inhibits LEC tube formation at least in part by downregulating VEGFR-3 protein expression.

  6. Schedule-selective biochemical modulation of 5-fluorouracil in advanced colorectal cancer – a phase II study

    Savage Paul

    2002-05-01

    Full Text Available Abstract Background 5-fluorouracil remains the standard therapy for patients with advanced/metastatic colorectal cancer. Pre-clinical studies have demonstrated the biological modulation of 5-fluorouracil by methotrexate and leucovorin. This phase II study was initiated to determine the activity and toxicity of sequential methotrexate – leucovorin and 5-fluorouracil chemotherapy in patients with advanced colorectal cancer. Methods Ninety-seven patients with metastatic colorectal cancer were enrolled onto the study. Methotrexate – 30 mg/m2 was administered every 6 hours for 6 doses followed by a 2 hour infusion of LV – 500 mg/m2. Midway through the leucovorin infusion, patients received 5-fluorouracil – 600 mg/m2. This constituted a cycle of therapy and was repeated every 2 weeks until progression. Results The median age was 64 yrs (34–84 and the Eastern Cooperative Group Oncology performance score was 0 in 37%, 1 in 55% and 2 in 8% of patients. Partial and complete responses were seen in 31% of patients with a median duration of response of 6.4 months. The overall median survival was 13.0 months. The estimated 1-year survival was 53.7%. Grade III and IV toxic effects were modest and included mucositis, nausea and vomiting. Conclusions This phase II study supports previously reported data demonstrating the modest clinical benefit of 5-FU modulation utilizing methotrexate and leucovorin in patients with metastatic colorectal cancer. Ongoing studies evaluating 5-fluorouracil modulation with more novel agents (Irinotecan and/or oxaliplatin are in progress and may prove encouraging.

  7. Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells

    Rárová, L.; Zahler, S.; Liebl, J.; Kryštof, Vladimír; Sedlák, David; Bartůněk, Petr; Kohout, Ladislav; Strnad, Miroslav

    2012-01-01

    Roč. 77, č. 13 (2012), s. 1502-1509. ISSN 0039-128X R&D Projects: GA MŠk(CZ) LC06077 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : Angiogenesis * Human umbilical vein endothelial cells * Migration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.803, year: 2012

  8. 5-Fluorouracil, epirubicin, and mitomycin C versus 5-fluorouracil, epirubicin, mitomycin C, and leucovorin in advanced gastric carcinoma. A randomized trial.

    Tsavaris, N B; Tentas, K; Kosmidis, P; Mylonakis, N; Sakelaropoulos, N; Kosmas, C; Lisaios, B; Soumilas, A; Mandrekois, D; Tsetis, A; Klonaris, C

    1996-10-01

    Leucovorin (LV) enhances the activity of 5-fluorouracil (5FU). Based on these data, we performed a randomized trial with 5FU, epirubicin (EPI), mitomycin C(MMC) with/ without LV in advanced gastric cancer (AGC). The purpose of our study was to investigate if the addition of LV improved the response rate of the combination 5FU EPI, MMC (FEM) over FEM. From January 1988 until April 1994, 88 patients with recurrent or metastatic AGC were randomly received 5FU, EPI, MMC with (group A) or without (group B) LV. Between the two arms of the study no difference was noticed in sex, performance status, primary site of tumor, and lymph node metastases. Therapy included group A (5FU 600 mg/m2/day, i.v. bolus, on days 1, 8, 29, 36, and EPI 45 mg/m2/day, i.v. bolus, on days 1 and 29, MMC 10 mg/m2/day, i.v. bolus, on day 1) and group B (the same as group A plus LV 200 mg/m2/day by 2 h intravenous infusion with 5FU intravenous push at midinfusion). No significant difference in response rate was noticed between the two treatment arms; there were two (5%) patients with complete response in group A, and five (12%) in A and 11 (26%) partial responders in group B (p < 0.1). A significantly higher number of patients achieving stable disease was observed in group B; 19 (44%) in comparison to group A 10 (24%) (p < 0.048). There were more patients with progressive disease in group A 25 (59%) than in group B 12 (28%) (p < 0.003) (Table 2). No difference was noted in mean duration of response: group A, 15.8 (6-31) weeks; and group B, 17.6 (6-28) weeks. The mean time to progression was for group A [11.4 (6-35) weeks] and for group B [17.6 (8-33) weeks]. Mean survival was for group A [27.4 (12-59) weeks] and for group B [30.6 (17-53) weeks], for 50% of patients. Causes of death were, for group A, 40 patients from disease progression and two sudden deaths; for group B, causes of death were for 41 patients disease progression and two sudden deaths. There were two patients in group A and one in

  9. Purple sweet potato color inhibits endothelial premature senescence by blocking the NLRP3 inflammasome.

    Sun, Chunhui; Fan, Shaohua; Wang, Xin; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Shan, Qun; Zheng, Yuanlin

    2015-10-01

    Purple sweet potato color (PSPC), flavonoids isolated from purple sweet potato, has been well demonstrated for the pharmacological properties. In the present study, we attempt to explore whether the antisenescence was involved in PSPC-mediated protection against endothelium dysfunction in type 2 diabetes mellitus (T2DM) and, if involved, what are the possible mechanisms. The results showed that atherogenesis and endothelial senescence in the thoracic aorta were promoted in mice with prediabetes; meanwhile, PSPC attenuated the deterioration of vascular vessel and inhibited the endothelial senescence. Diabetes mellitus is a documented high-risk factor for the development of atherosclerosis. Studies show that D-galactose (D-gal) promotes endothelial cell senescence in vitro. In our study, we have determined that PSPC could suppress the D-gal-induced premature senescence and the abnormal endothelial function, discovered in the early stages of atherosclerosis induced by T2DM. We have discovered that the PSPC down-regulates reactive oxygen species (ROS) accumulation and the NLRP3 inflammasome functions. Furthermore, the premature senescence induced by D-gal was inhibited after attenuation of ROS and deactivation of NLRP3 inflammasomes. However, once the NLRP3 inflammasomes are overactivated, PSPC could not restrain cell senescence. These data imply that the beneficial effects of PSPC on diabetes-induced endothelial dysfunction and senescence are mediated through ROS and NLRP3 signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases. PMID:26164602

  10. Characterization of calcium alginate beads of 5-fluorouracil for colon delivery

    Patel Hetal

    2008-01-01

    Full Text Available A multiparticulate system combining pH-sensitive property and specific biodegradability for colon targeted delivery of 5-fluorouracil (5-FU was examined. The purpose of this study was to prepare and evaluate the colon-specific alginate beads of 5-FU for the treatment of colon cancer. Calcium alginate beads were prepared by extruding 5-FU loaded alginate solution to calcium chloride solution, and gelled spheres were formed instantaneously by ionotropic gelation reaction using different ratios of FU and alginate, alginate and calcium chloride, stirring speeds (500-1500 rpm, and reaction time. The core beads were coated with Eudragit S-100 to prevent drug release in the stomach and provide controlled dissolution of enteric coat in the small intestine and maximum drug release in the colon. Morphology and surface characteristics of the formulation were determined by scanning electron microscopy. In vitro drug release studies were performed in conditions simulating stomach to colon transit. No significant release was observed at acidic pH, however, when it reached the pH where Eudragit S-100 starts to dissolve, drug release was observed. Also, release of drug was found to be higher in presence of rat caecal content.

  11. Combination therapy with methotrexate and 5-fluorouracil: a prospective randomized clinical trial of order of administration.

    Coates, A S; Tattersall, M H; Swanson, C; Hedley, D; Fox, R M; Raghavan, D

    1984-07-01

    Because of biochemical and tissue culture evidence casting doubt on the physiologic relevance of reported synergy afforded by sequential administration of methotrexate (MTX) followed by 5-fluorouracil (5-FU), a randomized controlled clinical trial was conducted in 108 patients with advanced cancer, including 70 with squamous cell carcinoma (SCC) of the head and neck, nine with SCC of other primary sites, 24 with colorectal, and five with gastric adenocarcinomas. Patients were randomized to receive weekly therapy consisting of MTX followed one hour later by 5-FU, or 5-FU followed one hour later by MTX. There was a trend to higher tumor response rates in patients treated with MTX before 5-FU (45% v 33% overall; 65% v 39% in patients with previously untreated head and neck cancer), but these differences were not significant, either by chi-square test or by multivariate stepwise logistic regression. The trend in survival favoring the reverse sequence of 5-FU before MTX was not significant in univariate analyses. Stepwise multivariate Cox model analysis showed that Eastern Cooperative Oncology Group performance status at study entry was the major prognostic factor for survival (P less than 0.001), but among the 70 patients with head and neck cancer, the sequence of drug administration was the only other significant prognostic factor for survival, and favored the sequence of 5-FU followed by MTX (P less than 0.025). PMID:6376719

  12. Porous clay heterostructures: A new inorganic host for 5-fluorouracil encapsulation.

    Gârea, S A; Mihai, A I; Ghebaur, A; Nistor, C; Sârbu, A

    2015-08-01

    This study proposed a new inorganic host for drug encapsulation. Porous clay heterostructure (PCH), synthesized using modified montmorillonite with hexadecyltrimethylammonium bromide, was used as host material and 5-fluorouracil (5-FU) as guest drug. Drug encapsulation within PCH in different conditions (soaking time, temperature and pH value) was investigated. Possible interactions of 5-FU with PCH were pointed out using different characterization methods like spectroscopic techniques (FT-IR, UV-vis, XPS), thermogravimetrical and BET analysis. The obtained results suggested that PCH host exhibits a high drug encapsulation efficiency which was influenced by factors like soaking time and pH value. PCH zeta potential value was strongly influenced by pH value. The PCH zeta potential significantly varies at acid pH, while a pH value higher than 7 provides a less variation. UV-vis analysis showed that after 30 min PCH host registered a maximum encapsulation efficiency value (44%) at room temperature using an incubation solution with a pH of 11. The soaking temperature does not substantially affect the loading of drug in PCH host. Thermogravimetrical analysis highlighted that drug encapsulation efficiency of PCH was mainly influenced by pH values. BET results confirmed the PCH synthesis and drug loading capacity. PMID:26022890

  13. Development of Sulfadiazine-Decorated PLGA Nanoparticles Loaded with 5-Fluorouracil and Cell Viability

    Pedro Pires Goulart Guimarães

    2015-01-01

    Full Text Available The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide (SUL-PLGA nanoparticles (NPs for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = −32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA on two cancer cell lines (Caco-2, A431 and two normal cell lines (fibroblast, osteoblast were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future.

  14. Development of novel ionic liquid-based microemulsion formulation for dermal delivery of 5-Fluorouracil.

    Goindi, Shishu; Arora, Prabhleen; Kumar, Neeraj; Puri, Ashana

    2014-08-01

    The present study was aimed at synthesizing an imidazole-based ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) and subsequent development of a novel ionic liquid-in-oil (IL/o) microemulsion (ME) system for dermal delivery of a poorly permeating drug 5-fluorouracil (5-FU). A significant enhancement in the solubility of 5-FU was observed in BMIMBr. IL/o MEs of 5-FU were prepared using isopropyl myristate, Tween 80/Span 20, and BMIMBr. Results of ex vivo skin permeation studies through mice skin indicated that the selected IL/o ME exhibited 4-fold enhancement in percent drug permeation as compared to aqueous solution, 2.3-fold as compared to hydrophilic ointment, and 1.6-fold greater permeation than water in oil (w/o) ME. The results of in vivo studies against dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice skin carcinogenesis demonstrated that the IL/o ME could effectively treat skin cancer in 4 weeks. In addition, the side effects such as erythema and irritation associated with the conventional formulations were not observed. Histopathological studies showed that the use of IL/o ME caused no anatomic and pathological changes in the skin structure of mice. These studies suggest that the use of IL-based ME system can efficiently enhance the solubility and permeability of 5-FU and hence its therapeutic efficacy. PMID:24668136

  15. Combined radiotherapy and preradiation chemotherapy with Cisplatin and 5-Fluorouracil for advanced esophageal carcinoma, 1

    Eight patients with untreated squamous cell carcinoma of the esophagus accompanying distant metastases who were treated by one to five cycles of chemotherapy consisting of Cisplatin and 120 hour infusion of 5-Fluorouracil were reported. Two patients showed complete response (CR), four partial response (PR), one minor response, and one no response. High response rate of 75% (6 of 8) was obtained. Radiation therapy was then administered to six of the patients. After definitive treatment, CR was obtained in four, and PR in two of the cases. However, relapses were noted in all four of the CR cases, with four at distant sites, and one locally. Five of the eight patients (62.5%) survived one year and two survived three years (25%). Two patients could not receive radiotherapy because of uncontrollable lung metastases or death from duodenal ulcer. Although the follow-up period is still short, the combined treatment of radiation and preradiation chemotherapy appears to be an effective treatment, and has made a major impact upon survival time in cases of disseminated esophageal carcinoma. (author)

  16. Treatment of advanced esophageal cancer by means of irradiation, cisplatinum and 5-fluorouracil

    In the years 1985-1990, 30 patients with locally advanced and/or disseminated cancer of the esophagus (Stages III and IV) were treated by radiotherapy and chemotherapy containing cisplatinum and 5-fluorouracil (5-fu). The median survival of the patients was 8 months (range 2.5-39 months); 13 stage III patients survived 3-36 months respectively (median 11 months), while 17 stage IV patients survived 2.5-27 months, respectively (median 6.5 months). The survival depended statistically significantly (p<0.05) only on the presence or absence of residual tumor after therapy and not on other parameters observed. Clinical response to treatment was evaluated in 16/30 patients as follows: clinical response (CR) was obtained in 4 patients, partial response in two, and no respond in 10 patients. Median survival of 4 patients with CR was 31 months; relatively high rate of CR (4/16) could be explained by the small number of patients. However, favorable survival results in individual patients may be expected even in larger series, though the rate responders may be somewhat lower than that obtained in our study. (author)

  17. Analysis of chemotherapy drug 5-fluorouracil and its metabolites by surface-enhanced Raman spectroscopy

    Gift, Alan D.; Shende, Chetan S.; Inscore, Frank E.; Farquharson, Stuart

    2004-12-01

    Chemotherapy drug dosage is based on the limited statistics of the response of previously treated patients and administered according to body surface area. Considerably better dose regulation could be performed if the drug metabolism of each patient could be monitored. Unfortunately, current technologies require multiple withdrawals of blood to determine metabolism, a precious fluid in limited supply. Saliva analysis has long been considered an attractive alternative, but unfortunately standard techniques require large quantities that are difficult to obtain. In an effort to overcome this limitation we have been investigating the ability of metal-doped sol-gels to both separate drugs and their metabolites from saliva and generate surface-enhanced Raman spectra. Surface-enhanced Raman spectroscopy has the potential to perform this analysis with just a few drops of sample due to its extreme sensitivity. Preliminary measurements are presented for the chemotherapy drug, 5-fluorouracil, and its two metabolites 5-fluorouridine and 5-fluoro-2'-deoxyuridine, and the potential of determining metabolism on a patient-by-patient basis.

  18. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability.

    Guimarães, Pedro Pires Goulart; Oliveira, Sheila Rodrigues; de Castro Rodrigues, Gabrielle; Gontijo, Savio Morato Lacerda; Lula, Ivana Silva; Cortés, Maria Esperanza; Denadai, Ângelo Márcio Leite; Sinisterra, Rubén Dario

    2015-01-01

    The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = -32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA) on two cancer cell lines (Caco-2, A431) and two normal cell lines (fibroblast, osteoblast) were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future. PMID:25580685

  19. Research on the development of bioadhesive vaginal tablets containing 5-fluorouracil.

    Cojocaru, Ileana; Palade, Laura; Popovici, Iuliana; Georgescu, Gabriela; Bîrsan, Magdalena

    2013-01-01

    Biomucoadhesive vaginal tablets are modern formulations used in current therapy to achieve controlled release of the active substance at the application site by maintaining the pharmaceutical preparation at that level. This can be achieved by using mucoadhesive substances with different mechanical and physical-chemical properties. Two cellulose derivatives of different viscosity, Metolose 90 SH 4000 and Metolose 90 SH 100000, and two types of polyacrylates with different cross linking degrees, Carbopol 71, low degree of cross linking, and Carbopol 974, high degree of cross linking were used. In a previous study twelve original formulations of bioadhesive vaginal tablets containing 100 mg 5-fluorouracil (5-FU)/tablet (F1-F12) were formulated, prepared and analyzed. The pharmacotechnical characterization of the bioadhesive vaginal tablets containing 5-FU was performed by determining their specific quality characteristics. For the optimization of formulations, the influence of formulation factors on some quality characteristics (mechanical strength, friability, disintegration time) which may be influenced by the nature and amount of auxiliary substances used was studied by SPSS statistical software and statistical analysis ANOVA tests. The results are in favor of formulations F1, F2 containing 20-30% Carbopol 71 and of 37-47% Microcelac. PMID:24505926

  20. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil

    Youssef W. Naguib

    2014-02-01

    Full Text Available Topical 5-fluorouracil (5-FU is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter. In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5% was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy.

  1. 5-Fluorouracil in the Treatment of Keloids and Hypertrophic Scars: A Comprehensive Review of the Literature.

    Shah, Vidhi V; Aldahan, Adam S; Mlacker, Stephanie; Alsaidan, Mohammed; Samarkandy, Sahal; Nouri, Keyvan

    2016-06-01

    Hypertrophic (HTSs) and keloid scars are common dermatological complaints produced by disruption of the normal wound-healing process. Despite a wide array of therapeutic options available to treat these lesions, HTSs and keloids continue to pose a significant challenge to clinicians in everyday practice. The chemotherapeutic drug 5-fluorouracil (5-FU) is a well-known treatment option reserved for recalcitrant HTSs and keloid lesions. We present clinicians with a comprehensive review of the published data concerning the use of 5-FU in the treatment of HTSs and keloids. The current evidence suggests that 5-FU is a safe and practical alternative for the treatment of HTSs and keloids as it may substantially improve the appearance of proliferative scars and reduce the chance of recurrence. This therapeutic option is most effective in conjunction with adjuvant therapy such as corticosteroids. Additional randomized controlled clinical trials with large sample sizes should be conducted to corroborate the existing efficacy and safety data in patients with HTSs and keloids. PMID:27105629

  2. Base excision by thymine DNA glycosylase mediates DNA-directed cytotoxicity of 5-fluorouracil.

    Christophe Kunz

    2009-04-01

    Full Text Available 5-Fluorouracil (5-FU, a chemotherapeutic drug commonly used in cancer treatment, imbalances nucleotide pools, thereby favoring misincorporation of uracil and 5-FU into genomic DNA. The processing of these bases by DNA repair activities was proposed to cause DNA-directed cytotoxicity, but the underlying mechanisms have not been resolved. In this study, we investigated a possible role of thymine DNA glycosylase (TDG, one of four mammalian uracil DNA glycosylases (UDGs, in the cellular response to 5-FU. Using genetic and biochemical tools, we found that inactivation of TDG significantly increases resistance of both mouse and human cancer cells towards 5-FU. We show that excision of DNA-incorporated 5-FU by TDG generates persistent DNA strand breaks, delays S-phase progression, and activates DNA damage signaling, and that the repair of 5-FU-induced DNA strand breaks is more efficient in the absence of TDG. Hence, excision of 5-FU by TDG, but not by other UDGs (UNG2 and SMUG1, prevents efficient downstream processing of the repair intermediate, thereby mediating DNA-directed cytotoxicity. The status of TDG expression in a cancer is therefore likely to determine its response to 5-FU-based chemotherapy.

  3. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes. PMID:24845476

  4. Eudragit S100 Coated Citrus Pectin Nanoparticles for Colon Targeting of 5-Fluorouracil

    M. Biswaranjan Subudhi

    2015-02-01

    Full Text Available In the present study, Eudragit S100 coated Citrus Pectin Nanoparticles (E-CPNs were prepared for the colon targeting of 5-Fluorouracil (5-FU. Citrus pectin also acts as a ligand for galectin-3 receptors that are over expressed on colorectal cancer cells. Nanoparticles (CPNs and E-CPNs were characterized for various physical parameters such as particle size, size distribution, and shape etc. In vitro drug release studies revealed selective drug release in the colonic region in the case of E-CPNs of more than 70% after 24 h. In vitro cytoxicity assay (Sulphorhodamine B assay was performed against HT-29 cancer cells and exhibited 1.5 fold greater cytotoxicity potential of nanoparticles compared to 5-FU solution. In vivo data clearly depicted that Eudragit S100 successfully guarded nanoparticles to reach the colonic region wherein nanoparticles were taken up and showed drug release for an extended period of time. Therefore, a multifaceted strategy is introduced here in terms of receptor mediated uptake and pH-dependent release using E-CPNs for effective chemotherapy of colorectal cancer with uncompromised safety and efficacy.

  5. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs.

    Çetin, Kemal; Denizli, Adil

    2015-02-01

    The objective of this study is to prepare imprinted cryogel discs for delivery of 5-fluorouracil. The coordinate bond interactions are utilized to accomplish a coordination complex between metal-chelate monomer N-methacryloyl-L-histidine and 5-FU with the assistance of Cu(2+) ion. The complex is copolymerized with hydroxyethyl methacrylate to produce poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) cryogel discs. The cryogel discs are characterized thoroughly by performing swelling tests, scanning electron microscopy, differential scanning calorimetry and X-ray diffraction studies. In vitro delivery studies are performed to investigate the effects of cross-linker ratio, medium pH and drug concentration. 5-FU imprinted cryogel discs have highly macroporous structures. Drug molecules are homogeneously dispersed in the 5-FU imprinted cryogel matrix. The cumulative release of 5-FU decreased by increasing the cross-linker density in the polymer matrix. Delivery rate of 5-FU varied with different pH values in a coordination complex since metal ion acts as a Lewis acid, and the ligand, i.e. 5-FU acts as a Lewis base. The cumulative release of 5-FU increased with increasing drug concentration in polymer matrix. The nature of the 5-FU transport mechanism is non-Fickian. PMID:25601094

  6. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  7. Preoperative radiation with concurrent 5-fluorouracil continuous infusion for locally advanced unresectable rectal cancer

    Background and Purpose: To determine the percentage of complete responders and the resectability rate for patients with locally advanced carcinoma of the rectum treated by 5-fluorouracil (5-FU) infusional chemotherapy and pelvic radiation. Materials and Methods: Between October 1992 and June 1996, 29 patients with a diagnosis of locally advanced unresectable rectal cancer received preoperative 5 FU by continuous intravenous infusion at a dose of 225 mg/m2/day concurrent with pelvic radiation (median 54 Gy/28 fractions). All patients were clinical stage T4 on the bases of organ invasion or tumor fixation. Median time for surgical resection was 6 weeks. Results: Median follow-up for the group was 28 months (range 5-57 months). Six patients were felt to be persistently unresectable or developed distant metastases and did not undergo surgical resection. Of the 29 patients, 23 proceeded to surgery, 18 were resectable for cure, 13 by abdominoperineal resection, 3 by anterior resection and 2 by local excision. Of the 29 patients, 4 (13%) had a complete response, and 90% were clinically downstaged. Of the 18 resected patients, 1 has died of his disease, 17 are alive, and 15 disease-free. The regimen was well tolerated; there was only one treatment-related complication, a wound dehiscence. Conclusion: The combination of 5 FU infusion and pelvic radiation in the management of locally advanced rectal cancer is well tolerated and provides a baseline for comparison purposes with future combinations of newer systemic agents and radiation

  8. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal.

    Salerno, Aurelio; Saurina, Javier; Domingo, Concepción

    2015-12-30

    The manufacture of porous polycaprolactone (PCL) scaffolds containing three different drugs, namely 5-fluorouracil, nicotinamide and triflusal, was investigated in this work with the aim of obtaining bioactive systems with controlled drug delivery capabilities. The scaffolds were prepared by means of a supercritical CO2 (scCO2) foaming technique by optimizing the drug loading process. This was achieved by dissolving the drugs in organic solvents miscible with scCO2 and by mixing these drug/solvent solutions with PCL powder. The as prepared mixtures were further compressed to eliminate air bubbles and finally processed by the scCO2 foaming technique. ScCO2 saturation and foaming conditions were optimized to create the porosity within the samples and to allow for the concomitant removal of the organic solvents. Physical and chemical properties of porous scaffolds, as well as drug content and delivery profiles, were studied by HPLC. The results of this study demonstrated that the composition of the starting PCL/drug/solvent mixtures affected polymer crystallization, scaffold morphology and pore structure features. Furthermore, it was found that drug loading efficiency depended on both initial solution composition and drug solubility in scCO2. Nevertheless, in the case of highly scCO2-soluble drugs, such as triflusal, loading efficiency was improved by adding a proper amount of free drug inside of the pressure vessel. The drug delivery study indicated that release profiles depended mainly upon scaffolds composition and pore structure features. PMID:26570986

  9. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border.

    Marcos-Ramiro, Beatriz; García-Weber, Diego; Barroso, Susana; Feito, Jorge; Ortega, María C; Cernuda-Morollón, Eva; Reglero-Real, Natalia; Fernández-Martín, Laura; Durán, Maria C; Alonso, Miguel A; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2016-05-01

    Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation. PMID:27138256

  10. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  11. Efeito do colírio de 5-fluorouracil sobre o epitélio corneano íntegro de coelhos Effects of 5-fluorouracil eye drops on intact rabbit corneal epithelium

    Lucieni Cristina Barbarini Ferraz

    2003-08-01

    Full Text Available OBJETIVO: Observar os efeitos da aplicação tópica de 5-fluorouracil (5-FU sobre o epitélio corneano íntegro. MÉTODOS: Foram utilizados 10 coelhos albinos (14 olhos, divididos em: grupo controle (GC, 4 olhos nos quais não se administraram drogas, grupo 1 (G1, 5 olhos que receberam 5-fluorouracil na concentração 1,25% e grupo 2 (G2, 5 olhos que receberam 5-fluorouracil na concentração de 2,5%. A droga foi instilada 4 vezes por dia, durante 7 dias, quando os animais foram sacrificados, os olhos removidos, separando-se a córnea que foi preparada de modo convencional para estudo em microscópico eletrônico de varredura. RESULTADOS: GC: observaram-se células de formato hexagonal, claras, escuras e intermediárias, compondo o epitélio corneano de coelhos. Presença de numerosas microplicas, principalmente nas células claras. Cada célula possui cerca de 1 a 3 criptas. Nos animais do G1, observou-se maior número de células escuras, regiões com diminuição no número de criptas; alterações da superfície celular, protusão na região do núcleo e descamação de células epiteliais. Os do G2 tiveram aumento de microprojeções na superfície celular, modificações nas junções intercelulares até separação de células adjacentes; diminuição do número e variabilidade no tamanho das criptas. As alterações mais freqüentes ocorreram nas células da periferia da córnea. CONCLUSÃO: O 5-fluorouracil teve efeitos deletérios no epitélio íntegro corneano de coelhos. As alterações observadas foram mais importantes nos animais que receberam a droga mais concentrada (G2 e mais freqüentes na periferia da córnea.PURPOSE: To assess the influence of the antiproliferative agent (5-FU on the intact rabbit corneal epithelium. METHODS: 10 rabbits (14 eyes,were divided into: control group (CG, 4 eyes without drug administration; G1, 5 eyes underwent treatment with topical 12.5 mg/ml 5-fluorouracil and G2, 5 eyes received 5-fluorouracil

  12. Synthesis, Structure and Antitumor Activity of Dibutyltin Oxide Complexes with 5-Fluorouracil Derivatives. Crystal Structure of [(5-Fluorouracil-1-CH2CH2COOSn(n-Bu 2]4O2

    Zhan Shi

    2001-07-01

    Full Text Available Dibutyltin (IV oxide complex reacts with the fluorouracil compounds 5-fluorouracil-1-propanonic or 5-fluorouracil-1-acetic acid (Fu to give the complexes [(5-Fu-1-(CH2nCOOSn(n-Bu2]4O2 (I, n=2; II, n=1 which were characterized by IR and 1H-NMR. The crystal structure of complex I shows that the molecular is a dimer, in which two [(5-Fu-1-CH2CH2COOSn(n-Bu2]2O units are linked by a bridging oxygen atom, and the tin atoms adopt distorted trigonal bipyramids via two carbons from a dibutyl moiety and three oxygen atoms from 5-Fu and bridging oxygen. These complexes have potential anti-tumour activity: in vitro tests showed that complexes I and II exhibit high cytotoxicity against OVCAR-3 and PC-14.

  13. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  14. Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents.

    Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He

    2016-06-01

    A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. PMID:27117429

  15. The effects of 5-fluorouracil and doxorubicin on expression of human immunodeficiency virus type 1 long terminal repeat

    Panozzo, J.; Akan, E. [Argonne National Lab., IL (United States); Griffiths, T.D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Woloschak, G.E. [Argonne National Lab., IL (United States)

    1996-03-01

    Previous work by many groups has documented induction of the HIV-LTR following exposure of cells to ultraviolet light and other DNA damaging agents. Our experiments set out to determine the relative activation or repression of the HIV-LTR in response to two classes of chemotherapeutic agents: Doxorubicin is a DNA-damage inducing agent, and 5-fluorouracil has an antimetabolic mode of action. Using HeLa cells stably transfected with a construct in which HIV-LTR drives expression of the chloramphenicol acetyl transferase reporter gene, we demonstrated an up to 10-fold induction following doxorubicin treatment in 24 h post-treatment. This induction was repressed by treatment with salicylic acid, suggesting a role for prostaglandin/cyclo-oxygenase pathways and/or NFKB in the inductive response. Induction by 5-fluorouracil, in contrast, was more modest (two-fold at most) though it was consistently elevated over controls.

  16. The Prediction of Nanoscale Drug Molecular Structure and Acid Dissociation Constants of 5-Fluorouracil in Aqueous Solution Using DFT Methods

    Baghery SMS

    2013-09-01

    Full Text Available Background and Objective : In this work, dissociation of nano drug 5 -Fluorouracil derivatives was studied theoretically. Methodology : For this purpose, Gibbs free energy values for neutral and deprotonated forms of 5 -Fluorouracil were calculated at gas and aqueous phases by using density functional theory (DFT method. Solvent effects are taken into account by means of polarizable continuum model (PCM. Result : It was shown that, theoretically calculated pKa values are in good agreement with the existing experimental pKa values, which are determined from capillary electrophoresis, potentiometric titration and UV visible spectrophotometric measurements. Conclusion : In summary, cluster continuum method with implicit - explicit solvent molecules was used for calculation of pKa values.Total energies and molecular parameters were obtained for 5 - FUra nanoscale drug systems, at B3LYP6-31G(d level of theory for the anion, cation, and neutral species.

  17. Influences of Organic Solvents on Particle Size and Drug-loading Efficiency for 5-Fluorouracil Poly(lactic acid) Nanoparticles

    LIUXiao-yan; CHANGJin; GUOYan-shuang; YUANXu-bo; LIXiao-rong; LIUChun-ling; SONGCun-xian

    2004-01-01

    The objective of this study was to investigate the influences of organic solvents on particle size, drug content, loading efficiency and yield for 5-Fluorouracil Poly (lactic acid) nanoparticles . The 5-Fluorouracil was entrapped into poly(lactic acid)(PLA) nanoparticles using a water-in-oil-in-water solvent evaporation technique. During the preparation process, ethyl acetate and acetone were used as organic solvents since they are less toxic than the more commonly used dichloromethane. The effect of the three solvents on particle size, drug content, loading efficiency and yield of nanopartcles was compared. When the solvent of the oil phase was acetone, the highest drug content, smallest particle size and lowest yield were obtained for the PLA nanoparticles.

  18. The effects of 5-fluorouracil and doxorubicin on expression of human immunodeficiency virus type 1 long terminal repeat

    Previous work by many groups has documented induction of the HIV-LTR following exposure of cells to ultraviolet light and other DNA damaging agents. Our experiments set out to determine the relative activation or repression of the HIV-LTR in response to two classes of chemotherapeutic agents: Doxorubicin is a DNA-damage inducing agent, and 5-fluorouracil has an antimetabolic mode of action. Using HeLa cells stably transfected with a construct in which HIV-LTR drives expression of the chloramphenicol acetyl transferase reporter gene, we demonstrated an up to 10-fold induction following doxorubicin treatment in 24 h post-treatment. This induction was repressed by treatment with salicylic acid, suggesting a role for prostaglandin/cyclo-oxygenase pathways and/or NFKB in the inductive response. Induction by 5-fluorouracil, in contrast, was more modest (two-fold at most) though it was consistently elevated over controls

  19. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; D'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    Abstract The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase- 2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1–10 µg/ml), whereas 50 µg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors. PMID:15548359

  20. Shear Stress Inhibits Apoptosis of Ischemic Brain Microvascular Endothelial Cells

    Xiafeng Shen

    2013-01-01

    Full Text Available As a therapeutic strategy for ischemic stroke, to restore or increase cerebral blood flow (CBF is the most fundamental option. Laminar shear stress (LS, as an important force generated by CBF, mainly acts on brain microvascular endothelial cells (BMECs. In order to study whether LS was a protective factor in stroke, we investigated LS-intervented ischemic apoptosis of rat BMECs (rBMECs through PE Annexin V/7-AAD, JC-1 and Hoechst 33258 staining to observe the membranous, mitochondrial and nuclear dysfunction. Real-time PCR and western blot were also used to test the gene and protein expressions of Tie-2, Bcl-2 and Akt, which were respectively related to maintain membranous, mitochondrial and nuclear norm. The results showed that LS could be a helpful stimulus for ischemic rBMECs survival. Simultaneously, membranous, mitochondrial and nuclear regulation played an important role in this process.

  1. Neoadjuvante Chemotherapie mit Paclitaxel, Cisplatin, Leucovorin und 5-Fluorouracil beim lokal fortgeschrittenen Adenokarzinom des Ösophagus

    Bader, Franz Georg

    2005-01-01

    In einer prospektiven Phase-II-Studie wurde die Kombination Paclitaxel/Cisplatin/Leucovorin/5-Fluorouracil bei 35 Patienten mit lokal fortgeschrittenen Adenocarzinomen des Ösophagus hinsichtlich Wirksamkeit und verträglichkeit geprüft. Auf die neoadjuvante Therapie ansprechende Patientensollten anschließend in kurativer Intention operiert werden. Die Remissionsrate betrug 48%. 29 Patienten wurden reseziert mit einem Anteil von 64,5% R0-Resektionen. In 31% der Resektate betrug die Tumorregress...

  2. Comment: The comparison study of 5 Fluorouracil vs. cryotherpy in the treatment of the backhand resistant common wart

    Antonio Chuh

    2014-07-01

    Full Text Available We refer to the study conducted by Asghariazar R et al comparing the efficacy of 5-fluorouracil against cryotherapy in the management of backhand resistant common warts [1]. We congratulate their success in reporting such a high-quality study. We would humbly like to offer a few pieces of advice, which might further augment the clinical relevance and the scientific content for future studies along similar veins.

  3. Effects of stable adenosine receptor agonists on bone marrow haematopoietic cells as inferred from the cytotoxic action of 5-fluorouracil

    Pospíšil, Milan; Hofer, Michal; Vacek, Antonín; Znojil, V.; Pipalová, I.

    2004-01-01

    Roč. 53, č. 3 (2004), s. 549-556. ISSN 0862-8408 R&D Projects: GA ČR GA305/02/0423; GA AV ČR IBS5004009; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5004920 Keywords : adenosine receptor agonists * hematopoiesis * 5-fluorouracil Subject RIV: BO - Biophysics Impact factor: 1.140, year: 2004

  4. Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil

    WU, BI-BO; Gong, Yi-Ping; Wu, Xin-Hong; Chen, Yuan-Yuan; Chen, Fang-Fang; Jin, Li-Ting; Cheng, Bo-Ran; Hu, Fen; Xiong, Bin

    2015-01-01

    Background In order to provide personalized treatment to patients with breast cancer, an accurate, reliable and cost-efficient analytical technique is needed for drug screening and evaluation of tumor response to chemotherapy. Methods Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used as a tool to assess cancer cell response to chemotherapy. MCF-7 cells (human breast adenocarcinoma cell line) were treated with different concentrations of 5-fluorouracil (5...

  5. Gefitinib, Methotrexate and Methotrexate plus 5-Fluorouracil as palliative treatment in recurrent head and neck squamous cell carcinoma

    Kushwaha, Vandana Singh; Gupta, Seema; Husain, Nuzhat; Khan, Huma; Negi, MPS; Jamal, Naseem; Ghatak, Ashim

    2015-01-01

    This study compared the efficacy and toxicity of Gefitinib, Methotrexate and Methotrexate plus 5-Fluorouracil (5-FU) in patients of recurrent squamous cell carcinoma of head and neck (SCCHN) treated with palliative intent. Patients with recurrent SCCHN not amenable to curative treatment were randomly assigned to Gefitinib, Methotrexate or Methotrexate plus 5-FU arm. The primary end point was overall survival. Secondary end points of interest were objective response rate, toxicity and quality ...

  6. Up-regulation of cyclooxygenase-2-derived prostaglandin E2 in colon cancer cells resistant to 5-fluorouracil

    Choi, Cheol Hee; Lee, Tae Bum; Lee, Yeon Ah; Choi, Suk; Kim, Kyung Jong

    2011-01-01

    Purpose It has been suggested that constitutive up-regulation of cyclooxygenase (COX)-2 is associated with resistance to apoptosis, increased angiogenesis, and increased tumor invasiveness in various cancers including colon cancer. There are many factors involved in the resistance to 5-fluorouracil (5-FU) in colon cancer. However, little is known about the role of COX-2 in acquired resistance to 5-FU in colon cancer. Methods Hence we investigated whether COX-2 contribute to acquired resistanc...

  7. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil

    Roberto Madeddu; Cristiano Farace; Andrea Montella; Pasquale Bandiera; Garcia, Maria A.; Houria Boulaiz; Giuliana Solinas; Yolande Asara; Juan A. Marchal; Esther Carrasco

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of th...

  8. Growth hormone releasing peptide 2 reverses anorexia associated with chemotherapy with 5-fluorouracil in colon cancer cell-bearing mice

    Perboni, Simona; Bowers, Cyril; Kojima, Shinya; Asakawa, Akihiro; Inui, Akio

    2008-01-01

    The cancer-associated anorexia-cachexia syndrome is observed in 80% of patients with advanced-stage cancer, and is one of the major obstacles in chemotherapy. Ghrelin is a orexigenic hormone that has been proposed to prevent anorexia. Aim of the study was to determine whether the addition of the ghrelin agonist growth hormone releasing peptide 2 (GHRP-2) to cytotoxic therapy with 5-fluorouracil (5-FU) prevents the anorexia associated with chemotherapy in cancer cachectic mice. Thirty-three BA...

  9. Controlled 5-fluorouracil release from hydrogels of Poly (acrylamide-co-metacrylic acid) crosslinked by means Of gamma irradiation techniques

    This report present the results on entrapped a cytostatic 5-Fluorouracil (5-F) in polymeric matrixes named hydrogels of polyacrylamide co -metacrylic acid crosslinked by means of gamma radiation with doses of 10,30, and 30 kGy at 25 o C. The drug delivery was followed by HPLC. The behavior of 5 -Fu migration from polymeric network was analyze by Iguchi equation for plain structure systems. The diffusion coefficients were obtained and drug release was in accordance with Fickian behavior

  10. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  11. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora

    5-Fluorocytosine (FC) is used to treat systemic fungal infections in man. Its clinical effectiveness has been limited by hematologic toxicity which may be secondary to the formation of 5-fluorouracil (FU). It is unclear how FU is formed since human cells lack cytosine deaminase. The present study examined if intestinal microflora (IMF) could convert FC to FU in man. An in vitro semicontinuous culture system was inoculated with human feces and maintained with sterile nutrient suspension. The microbial community was assessed for cell count and anaerobes as well as formation of volatile fatty acids and CH4. The system approximated that believed to occur in vivo. The study was initiated with addition of purified [6-14C]-FC. Unlabelled FC was then added to the system daily for 2 weeks following which [6-14C]-FC was again added. Following each addition of [6-14C]-FC, samples were removed at 2,4,8,24,48,72, and 96 hr. Utilizing HPLC, FC and FU could be separated with quantitation of radioactivity in each peak. Following the initial dose, no detectable FU was observed during the first 8 hr, but after 24 hr increasing levels were detected (9.42 μg FU/ml after 4 days). Following chronic administration of FC, increased levles of FU were noted without an 8 hr lag time in the production of FU (31.86 μg FU/ml after 4 days). In summary, these studies demonstrate that IMF can convert FC to FU possibly accounting for toxicity observed following administration of FC

  12. 5-Fluorouracil, folinic acid and cisplatin in advanced colorectal cancer: a pilot study.

    Tsavaris, N; Tentas, K; Bacoyiannis, C; Katsikas, M; Sakelaropoulos, N; Kosmas, C; Daliani, D; Kosmidis, P

    1995-08-01

    The combination of 5-fluorouracil (5-FU) and folinic acid (FA) has demonstrated activity in colorectal cancer (CC). Cisplatin is reported to have synergistic activity with 5-FU. We examined the combination FA + 5-FU + cisplatin in patients who had previously received chemotherapy with FA + 5-FU and relapsed. Two months after the last dose of FA + 5-FU and documentation of relapse, patients continued with the regimen consisting of cisplatin 20 mg/m2 in 15 min i.v. infusion followed by FA 500 mg/m2 in 1 h i.v. infusion, in the middle of which 5-FU 500 mg/m2 i.v. bolus was administered, with adequate post-hydration. This was repeated weekly for 4 weeks followed by a 2 week rest, for a maximum of six cycles. A total of 30 patients with CC that had relapsed to the combination of FA + 5-FU were treated; 23 had previous surgery and none had radiotherapy. Local recurrence was found in eight patients, metastases in the liver in 21, in lymph nodes in six, lung six and peritoneal metastases in seven. Seven patients responded partially. Toxicity requiring dose reduction or discontinuation of treatment included neutropenia 42% (grade 3:7%), mucositis 28% (grade 1:2), diarrhea 63% (Grade 3:10%), nausea-vomiting 55% (Grade 3:10%), increased creatinine value in three patients and peripheral neuropathy in two patients. We conclude that evaluation of this regimen shows substantial toxicity, with satisfactory response as a second line chemotherapy in these heavily pretreated patients. PMID:7579565

  13. Pretreatment with insulin enhances anticancer functions of 5-fluorouracil in human esophageal and colonic cancer cells

    Ke ZOU; Ji-hang JU; Hong XIE

    2007-01-01

    Aim: To investigate the effects of insulin on enhancing 5-fluorouracil (5-FU) anti-cancer functions and its mechanisms in the human esophageal cancer cell line (Eca 109) and human colonic cancer cell line (Ls-174-t). Methods: The effect of insulin/5-FU combination treatment on the growth of Eca 109 and Ls-174-t cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. After insulin treatment or insulin/5-FU treatment, cell cycle distri-bution of both cell lines was analyzed by flow cytometry. Western blot assay was used to assess the expression of caspase-3 and thymidylate synthase (TS).Apoptosis was detected by flow cytometry, DNA fragmentation assay, and termi-nal transferase dUTP nick end labeling assay (TUNEL). Moreover, the changes of 5-FU uptake after insulin pretreatment were detected by HPLC assay and Western blot analysis. Results: We found that insulin enhanced the inhibitory effect of 5-FU on cell proliferation when Eca 109 cells and Ls- 174-t cells were pretreated with insulin for the appropriate time. Insulin increased the cell number of the S phase and the uptake of 5-FU. Insulin/5-FU treatment enhanced apoptosis of tumor cells and upregulated the expression of cleaved caspase-3 compared with 5-FU treatment.Moreover, insulin/5-FU treatment induced the changes of free TS and the TS ternary complex level compared with 5-FU treatment in Eca 109 and Ls-174-t cells.Conclusion: These data suggest that insulin enhances anticancer functions of 5-FU when it is treated before 5-FU for the appropriate time in human esophageal and colonic cancer cell lines.

  14. Effects of 5-fluorouracil on survival and hematopoiesis in irradiated mice

    The effects of whole-body irradiation on survival and hematopoiesis were studied in mice treated with 5-fluorouracil (5-FU). Animals (ddy-SLC male mice, 8 - 10 weeks old) were injected with 5-FU (i.p.) as a single dose (150 mg/kg) at various times before or after irradiation with X-rays. In mice pretreated with 5-FU at different intervals before X-irradiation (1.9 Gy), the radiosensitivity of the CFU-S population changed day by day after the treatment. The maximal survival for femoral CFU-S was obtained in mice treated with 5-FU at 5 days before irradiation. The post-irradiation recovery for femoral and splenetic CFU-S in mice pretreated with 5-FU at 3 days before X-irradiation (1.9 Gy) was faster than in mice given irradiation alone. The pattern of change for thrombocyte counts in the circulating blood after X-irradiation (1.9 Gy) was greatly modified by the pretreatment with 5-FU at 5 days before irradiation, being effective in lessening the radiation-induced depression. For survival experiments, treatment of mice with 5-FU at 5 days before X-irradiation with graded doses (4.8 to 7.6 Gy) was the most effective in reducing for radiation lethality. The dose reduction factor was obtained as 1.24. However, treatment with 5-FU at 1 day and 2 hours before, and at times after irradiation increased the radiation lethality compared to the untreated controls. Such phenomena on the decrease or the increase of radiation lethality of 5-FU exhibited a similar pattern to the radiation-dose relation on endogenous and exogenous CFU-S. (author)

  15. Comparison of capecitabine and 5-fluorouracil in chemoradiotherapy for locally advanced pancreatic cancer

    Although capecitabine has theoretical advantages in the pharmacokinetics, such as higher intratumoral and lower systemic concentration, relative to bolus 5-fluorouracil (5-FU), outcomes of chemoradiotherapy (CRT) with capecitabine or bolus 5-FU have not been directly compared in patients with locally advanced pancreatic cancer. Therefore, we retrospectively compared the outcomes, including toxicity, tumor response, and overall survival, of oral capecitabine plus radiotherapy (RT) with bolus 5-FU plus RT, in patients with locally advanced pancreatic cancer. Between August 2006 and January 2012, 98 patients with locally advanced pancreatic cancer received CRT, with 52 receiving concurrent oral capecitabine and 46 receiving bolus injection of 5-FU. Primary tumor and overall response after CRT were evaluated radiologically, and toxicity, tumor response, and overall survival (OS) were compared in the two groups. Baseline clinical parameters of the two groups were similar. The rates of ≥ Grade 3 hematologic (0% vs. 8.7%, p = 0.045) and non-hematologic (0% vs. 8.7%, p = 0.045) toxicities were significantly lower in the capecitabine group than in the 5-FU group. Primary tumor (30.7% vs. 28.2%, p = 0.658) and overall (13.7% vs. 15.2%, p = 0.273) response rates and median OS time (12.5 months vs. 11.6 months, p = 0.655) were similar in the two groups. Capecitabine plus RT may be a safe and feasible regimen for patients with locally advanced pancreatic cancer, with similar efficacy and low rates of toxicities compared with bolus 5-FU plus RT

  16. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy.

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy. PMID:27478804

  17. Concurrent chemoradiotherapy comparison of taxanes and platinum versus 5-fluorouracil and platinum in nasopharyngeal carcinoma treatment

    Chen Xichuang; Hong Yuan; Feng Jinhua; Ye Jianlin; Zheng Panpan; Guan Xiyin; You Xiaohong

    2014-01-01

    Background Nasopharyngeal carcinoma (NPC) is a squamous-cell carcinoma especially prevailing among the natives of southern China.The regimen of concurrent chemoradiotherapy (CCRT) that include platinum and 5-fluorouracil (5-FU)is considered to be the standard treatment for NPC.However,its clinical use is limited by its toxicity.Our purpose was to evaluate the efficacy and safety of the regimen of CCRT with taxanes and platinum versus the regimen of CCRT with 5-FU and platinum in NPC treatment.Methods Medline,the Cochrane library,and the Chinese medical literature database were searched for eligible studies.Meta-analysis was performed using Review Manager (Version 5.2).Results Six random controlled trials (RCTs) including 514 patients met our criteria.Meta-analysis showed that the regimen of CCRT with taxanes and platinum had an improved significant difference in complete remission (CR) and less incidence rate in adverse reactions such as gastrointestinal impairment grades Ⅲll-Ⅳ,liver and kidney impairment grades Ⅰ-Ⅱ,and radiodermatitis grades Ⅲ-Ⅳ versus the conventional regimen of CCRT with 5-FU and platinum,while the long-term effectiveness rate of overall survival,Iocoregional failure-free survival,or distant metastasis failure-free survival between the two groups was therapeutic equivalence.Conclusions The regimen of CCRT with taxanes and platinum in NPC therapy may be more efficient and safe compared to the conventional modality of 5-FU and platinum in CCRT.However,we need more high-quality studies of multi-center and randomized double-blind clinical trials to further compare,analyze,and confirm the findings.

  18. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system

    Han Ruolan

    2008-04-01

    Full Text Available Abstract Background Cancer treatment with a variety of chemotherapeutic agents often is associated with delayed adverse neurological consequences. Despite their clinical importance, almost nothing is known about the basis for such effects. It is not even known whether the occurrence of delayed adverse effects requires exposure to multiple chemotherapeutic agents, the presence of both chemotherapeutic agents and the body's own response to cancer, prolonged damage to the blood-brain barrier, inflammation or other such changes. Nor are there any animal models that could enable the study of this important problem. Results We found that clinically relevant concentrations of 5-fluorouracil (5-FU; a widely used chemotherapeutic agent were toxic for both central nervous system (CNS progenitor cells and non-dividing oligodendrocytes in vitro and in vivo. Short-term systemic administration of 5-FU caused both acute CNS damage and a syndrome of progressively worsening delayed damage to myelinated tracts of the CNS associated with altered transcriptional regulation in oligodendrocytes and extensive myelin pathology. Functional analysis also provided the first demonstration of delayed effects of chemotherapy on the latency of impulse conduction in the auditory system, offering the possibility of non-invasive analysis of myelin damage associated with cancer treatment. Conclusions Our studies demonstrate that systemic treatment with a single chemotherapeutic agent, 5-FU, is sufficient to cause a syndrome of delayed CNS damage and provide the first animal model of delayed damage to white-matter tracts of individuals treated with systemic chemotherapy. Unlike that caused by local irradiation, the degeneration caused by 5-FU treatment did not correlate with either chronic inflammation or extensive vascular damage and appears to represent a new class of delayed degenerative damage in the CNS.

  19. Pathologic downstaging of T3-4Nx rectal cancer after chemoradiation: 5-fluorouracil vs. Tegafur

    Purpose: To describe downstaging effects in locally advanced rectal cancer induced by 2 fluopirimidine radiosensitizing agents given through different routes in conjunction with preoperative radiotherapy. Methods and Materials: From March 1995 to December 1999, two consecutive groups of patients with cT3-4Nx rectal cancer (94% CT scan, 71% endorectal ultrasound) were treated with either (1) 45-50 Gy (1.8 Gy/day, 25 fractions) and 5-fluorouracil (5-FU) (500-1,000 mg/m2 by 24-h continuous i.v. infusion on Days 1-4 and 21-25) or (2) oral Tegafur (1,200 mg/day on Days 1-35, including weekends). Surgery was performed 4 to 6 weeks after the completion of chemoradiation. Results: The total T downstaging rate was 46% in the 5-FU group and 53% in the Tegafur group. Subcategories were downstaged by the sensitizing agents (5-FU vs. Tegafur) as follows: pT0-1, 14% vs. 23%; pT2, 32% vs. 32%; pT3, 49% vs. 37%; pT4, 5% vs. 7%; and N0, 74% vs. 86%. Analysis of residual malignant disease in the specimen discriminated mic/mac subgroups (mic: <20% of microscopic cancer residue), with evident superior downstaging effects in the Tegafur-treated group: pTmic 23% vs. 58% (p 0.002). Conclusions: When administered concurrent with pelvic irradiation, oral Tegafur induced downstaging rates in both T and N categories superior to those induced by intermediate doses of 5-FU by continuous i.v. infusion. In this pilot experience, oral Tegafur reproduced the characteristics of downstaging described previously when full doses of 5-FU have been combined with radiotherapy

  20. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes.

    Saif, M Wasif; Choma, Adrienne; Salamone, Salvatore J; Chu, Edward

    2009-11-18

    Chemotherapy dosing of the fluoropyrimidine 5-fluorouracil (5-FU) is currently based on body surface area. However, body surface area-based dosing has been associated with clinically significant pharmacokinetic variability, and as such, dosing based on body surface area may be of limited use. The clinical activity of 5-FU is modest at standard doses, and in general, dosing is limited by the safety profile, with myelosuppression and gastrointestinal toxicity being the most commonly observed side effects. Various strategies have been developed to enhance the clinical activity of 5-FU, such as biochemical modulation, alterations in scheduling of administration, and the use of oral chemotherapy. Studies that have shown an association between plasma concentration with toxicity and clinical efficacy have shown that pharmacokinetically guided dose adjustments can substantially improve the therapeutic index of 5-FU treatment. These studies have shown that only 20%-30% of patients treated with a 5-FU-based regimen have 5-FU levels that are in the appropriate therapeutic range--approximately 40%-60% of patients are underdosed and 10%-20% of patients are overdosed. To date, 5-FU drug testing has not been widely used because of the lack of a simple, fast, and inexpensive method. Recent advances in testing based on liquid chromatography-mass spectroscopy and a nanoparticle antibody-based immunoassay for 5-FU may now allow for routine monitoring of 5-FU in clinical practice. We review the data on pharmacokinetically guided dose adjustment of 5-FU and discuss the potential of this approach to advance therapeutic outcomes. PMID:19841331

  1. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok Pal; Yadav, Awesh K

    2016-06-01

    Aim of this research was to prepare hyaluronic acid-modified-cellulose acetate phthalate (HAC) core shell nanoparticles (NPs) of 5-fluorouracil (5-FU). HAC copolymer was synthesized and confirmed by fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. HAC NPs with 5-FU were prepared using HAC copolymer and compared with 5-FU loaded cellulose acetate phthalate (CAP) NPs. NPs were characterized by atomic force microscopy (AFM), particle size, zeta potential, polydispersity index, entrapment efficiency, in-vitro release, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). HAC NPs were found slower release (97.30% in 48h) than (99.25% in 8h) CAP NPs. In cytotoxicity studies, showed great cytotoxic potential of 5-FU loaded HAC NPs in A549, MDA-MD-435 and SK-OV-3 cancer cellline. HAC NPs showing least hemolytic than CAP NPs and 5-FU. Area under curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and time to reach maximum plasma concentration Tmax), were observed 4398.1±7.90μgh/mL, 145.45±2.25μg/L, 45.74±0.25h, 72±0.50h, respectively of HAC NPs and 119.92±1.78μgh/mL, 46.38±3.42μg/L, 1.2±0.25h, 0.5±0.02h were observed in plain 5-FU solution. In conclusion, HAC NPs is effective deliver carrier of 5-FU for lung cancer. PMID:26955748

  2. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss. PMID:22436700

  3. Adjuvant radiotherapy and concomitant 5-fluorouracil by protracted venous infusion for resected pancreatic cancer

    Purpose: To assess the toxicity and clinical benefit from adjuvant chemoradiotherapy consisting of protracted venous infusion 5-fluorouracil (5-FU) and concomitant radiotherapy in patients with resected pancreatic cancer. Methods and Materials: Between 1994 and 1999, 52 patients who underwent pancreaticoduodenectomy received adjuvant chemoradiotherapy. The tumor bed and regional nodes received a dose of 45 Gy in fractions of 1.8 Gy followed by boost to the tumor bed if the surgical margins were involved (total dose, 54 Gy). The patients also received concomitant 5-FU by protracted venous infusion (200-250 mg/m2/day, 7 days/week) during the entire radiotherapy course. Results: Fifty-two patients (30 men, 22 women) were enrolled and treated on this protocol. The median age was 63 years (range, 38-78 years), and the median Karnofsky Performance Status was 80 (range, 70-100). Thirty-five percent had involved surgical margins and 59% had involved lymph nodes. All patients completed therapy, and there were no Grade IV/V toxicities observed. With median follow-up of 24 months (range, 3-52 months) for surviving patients, the median survival is 32 months, and 2-year and 3-year survivals are 62%, and 39%, respectively. Conclusion: Radiotherapy with concomitant 5-FU by protracted venous infusion as adjuvant treatment for resected pancreatic cancer is well tolerated. This approach allows for greater dose intensity with reduced toxicity. The median survival of this cohort of patients compares favorably with our earlier experience and other published series.

  4. Analysis of the clinical benefit of 5-fluorouracil and radiation treatment in locally advanced pancreatic cancer

    Purpose: To assess the palliative benefit of 5-fluorouracil (5-FU) and radiotherapy in patients with surgically unresectable localized pancreatic cancer. Methods and Materials: Twenty-five patients with locally advanced surgically unresectable symptomatic pancreatic cancer received 5-FU chemotherapy and local radiation therapy. They were retrospectively reviewed in regard to their clinical benefit response (a composite of measurement of pain assessment, weight, and Karnofsky performance status [KPS]), as well as radiological response, time to progression, and overall survival. Results: Median survival for the 25 patients was 9 months and median progression-free survival was 6 months. Thirty-two percent of patients survived in excess of 1 year. Analgesic requirements increased >50% in 2 patients and KPS deteriorated in 10 patients. Of the 13 remaining patients, 2 sustained a >7% weight loss and 2 gained weight post-treatment. Six patients improved in one parameter of analgesic consumption, weight loss or KPS without deteriorating in any others. Thus, the clinical benefit response index for 5-FU-radiation was 6/25 (24%). In terms of tumor response, 8 patients (44%) demonstrated a reduction in tumor volume post-treatment, 4 of whom (22%) experienced a >50% reduction. Four additional patients had radiologically stable disease. Conclusion: In this retrospective analysis, the clinical benefit response index for 5-FU-radiation was 24%, a value similar to the 23.8% reported for single agent gemcitabine. The median survival of 7 months was also similar to the 5.65 months reported for gemcitabine. The radiological partial response rate of 22% and the 1-year survival of 32% were higher for 5-FU-radiation than the reported values for gemcitabine. A randomized trial would be necessary to compare 5-FU-radiation to gemcitabine directly; however, from this review it did not appear that the overall palliative benefit of 5-FU-radiation was inferior to gemcitabine

  5. Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs.

    Ooyama, Akio; Okayama, Yoshihiro; Takechi, Teiji; Sugimoto, Yoshikazu; Oka, Toshinori; Fukushima, Masakazu

    2007-04-01

    Resistance to chemotherapeutic agents represents the chief cause of mortality in cancer patients with advanced disease. Chromosomal aberration and altered gene expression are the main genetic mechanisms of tumor chemoresistance. In this study, we have established an algorithm to calculate DNA copy number using the Affymetrix 10K array, and performed a genome-wide correlation analysis between DNA copy number and antitumor activity against 5-fluorouracil (5-FU)-based drugs (S-1, tegafur + uracil [UFT], 5'-DFUR and capecitabine) to screen for loci influencing drug resistance using 27 human cancer xenografts. A correlation analysis confirmed that the single nucleotide polymorphism (SNP) showing significant associations with drug sensitivity were concentrated in some cytogenetic regions (18p, 17p13.2, 17p12, 11q14.1, 11q11 and 11p11.12), and we identified some genes that have been indicated their relations to drug sensitivity. Among these regions, 18p11.32 at the location of the thymidylate synthase gene (TYMS) was strongly associated with resistance to 5-FU-based drugs. A change in copy number of the TYMS gene was reflected in the TYMS expression level, and showed a significant negative correlation with sensitivity against 5-FU-based drugs. These results suggest that amplification of the TYMS gene is associated with innate resistance, supporting the possibility that TYMS copy number might be a predictive marker of drug sensitivity to fluoropyrimidines. Further study is necessary to clarify the functional roles of other genes coded in significant cytogenetic regions. These promising data suggest that a comprehensive DNA copy number analysis might aid in the quest for optimal markers of drug response. PMID:17425594

  6. Effects of Combined Intralesional 5-Fluorouracil and Topical Silicone in Prevention of Keloids: A Double Blind Randomized Clinical Trial Study

    Hamid Reza Ghafarian Shirazi

    2011-03-01

    Full Text Available Keloids are aesthetically disfiguring and severely disabling. The optimal treatment remains undefined. This clinical study, evaluate the efficacy and side effects of combined topical silicone and 5-Fluorouracil on the prevention of keloids. In this double blind randomized clinical trial, fifty patients with keloids were randomly allocated in two groups. The control group were treated by perilesional surgical excision of keloids combined with topical silicone and the trial group were treated with adjuvant treatment of intralesional 5-Fluorouracil. All patients were examined and assessment was done by an independent observer. the data collected were analyzed by SPSS statistical software with using tables and χ square tests. 75% of the cases in the trial group were keloid free 21% have keloid partially improvement and 4% have keloid recurrence, compared to patients in the control group respectively: 43%, 35% and 22%, findings suggest that efficacy of 5-Fluorouracil combined with topical silicone used for the prevention of keloid is comparable to other modality. The lack of any serious side effects and the evidence of recurrence at one year of follow-up make this an effective tool for the prevention of keloids.

  7. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  8. TRAF6 inhibits proangiogenic signals in endothelial cells and regulates the expression of vascular endothelial growth factor

    Bruneau, Sarah; Datta, Dipak; Flaxenburg, Jesse A.; Pal, Soumitro [Transplantation Research Center, Division of Nephrology, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Briscoe, David M., E-mail: david.briscoe@childrens.harvard.edu [Transplantation Research Center, Division of Nephrology, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States); Department of Pediatrics, Harvard Medical School, Boston, MA (United States)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer TNF-receptor associated factors (TRAFs) function in the angiogenesis response. Black-Right-Pointing-Pointer TRAF6 regulates basal and inducible expression of VEGF in endothelial cells (EC). Black-Right-Pointing-Pointer TRAF6 is an endogenous inhibitor of EC proliferation and migration in EC. Black-Right-Pointing-Pointer TRAF6 inhibits VEGF expression in part via its ability to regulate Src signaling. -- Abstract: TNF-family molecules induce the expression Vascular Endothelial Growth Factor (VEGF) in endothelial cells (EC) and elicit signaling responses that result in angiogenesis. However, the role of TNF-receptor associated factors (TRAFs) as upstream regulators of VEGF expression or as mediators of angiogenesis is not known. In this study, HUVEC were cotransfected with a full-length VEGF promoter-luciferase construct and siRNAs to TRAF 1, -2, -3, -5, -6, and promoter activity was measured. Paradoxically, rather than inhibiting VEGF expression, we found that knockdown of TRAF6 resulted in a 4-6-fold increase in basal VEGF promoter activity compared to control siRNA-transfected EC (P < 0.0001). In addition, knockdown of TRAF 1, -2, -3 or -5 resulted in a slight increase or no change in VEGF promoter activation. Using [{sup 3}H]thymidine incorporation assays as well as the in vitro wound healing assay, we also found that basal rates of EC proliferation and migration were increased following TRAF6 knockdown; and this response was inhibited by the addition of a blocking anti-VEGF antibody into cell cultures. Using a limited protein array to gain insight into TRAF6-dependent intermediary signaling responses, we observed that TRAF6 knockdown resulted in an increase in the activity of Src family kinases. In addition, we found that treatment with AZD-0530, a pharmacological Src inhibitor, reduced the regulatory effect of TRAF6 knockdown on VEGF promoter activity. Collectively, these findings define a novel pro-angiogenic signaling

  9. Three diketopiperazines from marine-derived bacteria inhibit LPS-induced endothelial inflammatory responses.

    Kang, Hyejin; Ku, Sae-Kwang; Choi, Hyukjae; Bae, Jong-Sup

    2016-04-15

    Diketopiperazine is a natural products found from bacteria, fungi, marine sponges, gorgonian and red algae. They are cyclic dipeptides possessing relatively simple and rigid structures with chiral nature and various side chains. Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, three (1-3) of diketopiperazines were isolated from two strains of marine-derived bacteria. The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses in vitro and in vivo. From 1μM, 1-3 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer and in mice in a dose-dependent manner suggesting that 1-3 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. PMID:26988307

  10. Heparin cofactor II inhibits arterial thrombosis after endothelial injury

    Li HE; Vicente, Cristina P; Westrick, Randal J.; Eitzman, Daniel T.; Tollefsen, Douglas M.

    2002-01-01

    Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin rapidly in the presence of dermatan sulfate, heparan sulfate, or heparin. HCII has been proposed to regulate coagulation or to participate in processes such as inflammation, atherosclerosis, and wound repair. To investigate the physiologic function of HCII, about 2 kb of the mouse HCII gene, encoding the N-terminal half of the protein, was deleted by homologous recombination in embryonic stem cells. Crosses of F1 HCII+/–...

  11. Angiotensin II Inhibits Insulin Binding to Endothelial Cells

    Su-Jin Oh

    2011-06-01

    Full Text Available BackgroundInsulin-mediated glucose uptake in insulin target tissues is correlated with interstitial insulin concentration, rather than plasma insulin concentration. Therefore, insulin delivery to the interstitium of target tissues is very important, and the endothelium may also play an important role in the development of insulin resistance.MethodsAfter treating bovine aortic endothelial cells with angiotensin II (ATII, we observed the changes in insulin binding capacity and the amounts of insulin receptor (IR on the cell membranes and in the cytosol.ResultsAfter treatment of 10-7M ATII, insulin binding was decreased progressively, up to 60% at 60 minutes (P<0.05. ATII receptor blocker (eprosartan dose dependently improved the insulin binding capacity which was reduced by ATII (P<0.05. At 200 µM, eprosartan fully restored insulin binding capacity, althogh it resulted in only a 20% to 30% restoration at the therapeutic concentration. ATII did not affect the total amount of IR, but it did reduce the amount of IR on the plasma membrane and increased that in the cytosol.ConclusionATII decreased the insulin binding capacity of the tested cells. ATII did not affect the total amount of IR but did decrease the amount of IR on the plasma membrane. Our data indicate that ATII decreases insulin binding by translocating IR from the plasma membrane to the cytosol. The binding of insulin to IR is important for insulin-induced vasodilation and transendothelial insulin transport. Therefore, ATII may cause insulin resistance through this endothelium-based mechanism.

  12. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  13. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  14. Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer

    Alaa Eldeen B. Yassin, Md. Khalid Anwer, Hammam A. Mowafy, Ibrahim M. El-Bagory, Mohsen A. Bayomi, Ibrahim A. Alsarra

    2010-01-01

    Full Text Available Solid lipid nanoparticle (SLNs formulae were utilized for the release of 5-fluorouracil (5-FU inside the colonic medium for local treatment of colon cancer. SLNs were prepared by double emulsion-solvent evaporation technique (w/o/w using triglyceride esters, Dynasan™ 114 or Dynasan™ 118 along with soyalecithin as the lipid parts. Different formulation parameters; including type of Dynasan, soyalicithin:Dynasan ratio, drug:total lipid ratio, and polyvinyl alcohol (PVA concentration were studied with respect to particle size and drug entrapment efficiency. Results showed that formula 8 (F8 with composition of 20% 5-FU, 27% Dynasan™ 114, and 53% soyalithicin and F14 (20% 5-FU, 27% Dynasan™ 118, and 53% soyalithicin, which were stabilized by 0.5% PVA, as well as F10 with similar composition as F8 but stabilized by 2% PVA were considered the optimum formulae as they combined small particle sizes and relatively high encapsulation efficiencies. F8 had a particle size of 402.5 nm ± 34.5 with a polydispersity value of 0.005 and an encapsulation efficiency of 51%, F10 had a 617.3 nm ± 54.3 particle size with 0.005 polydispersity value and 49.1% encapsulation efficiency, whereas formula F14 showed a particle size of 343 nm ± 29 with 0.005 polydispersity, and an encapsulation efficiency of 59.09%. DSC and FTIR results suggested the existence of the lipids in the solid crystalline state. Incomplete biphasic prolonged release profile of the drug from The three formulae was observed in phosphate buffer pH 6.8 as well as simulated colonic medium containing rat caecal contents. A burst release with magnitudes of 26%, 32% and 28.8% cumulative drug released were noticed in the first hour samples incubated in phosphate buffer pH 6.8 for both F8, F10 and F14, respectively, followed by a slow release profile reaching 50%, 46.3% and 52% after 48 hours.

  15. Apolipoprotein E COG 133 mimetic peptide improves 5-fluorouracil-induced intestinal mucositis

    Azevedo Orleâncio Gomes R

    2012-07-01

    Full Text Available Abstract Background Intestinal mucositis is one of the major troublesome side effects of anticancer chemotherapy leading to poor patient compliance. In this study we addressed the role of the novel apolipoprotein E (ApoE COG 133 mimetic peptide in 5-fluorouracil (5-FU-challenged Swiss mice and IEC-6 cell monolayers. Experiments were also conducted in C57BL6J ApoE knock-out mice to assess the effects of apoE peptide treatment. Methods Experimental groups were as follows: unchallenged controls, 5-FU-challenged mice (450 mg/kg, i.p with or without the ApoE peptide (0.3, 1, and 3 μM, given twice daily i.p. for 4 days. Mice were sacrificed 3 days after 5-FU challenge. Proximal small intestinal samples were harvested for molecular biology and histological processing. We conducted ELISA assays and RT-PCR to target IL-1β, TNF-α, IL-10, iNOS, and myeloperoxidase (MPO to assess intestinal inflammation. Cell death and NF-κB assays were also conducted in apoE knock-out mice. In our in vitro models, IEC-6 cells were exposed to 1 mM of 5-FU in glutamine free media with or without the ApoE peptide (0.02, 0.2, 2, 5, 10, and 20 μM. We investigated IEC-6 cell proliferation and migration, 24 h after the 5-FU challenge. Additionally, apoptotic IEC-6 cells were measured by Tunel and flow cytometry. Equimolar doses of the ApoA-I (D4-F peptide were also used in some experiments for comparative studies. Results Villus blunting and heavy inflammatory infiltrates were seen in the 5-FU-challenged group, findings that were partially ameliorated by the ApoE peptide. We found increased intestinal MPO and pro-inflammatory IL-1β and TNF-α levels, and TNF-α and iNOS transcripts, and reduction of IL-10 following 5-FU treatment, each of which were partially abrogated by the peptide. Improvements were also found in IEC-6 cell apoptosis and migration following ApoE and D-4F treatment. Conclusion Altogether, these findings suggest that the novel ApoE COG 133 mimetic peptide

  16. S-nitrosoglutathione accelerates recovery from 5-fluorouracil-induced oral mucositis.

    Maria Adriana Skeff

    Full Text Available INTRODUCTION: Mucositis induced by anti-neoplastic drugs is an important, dose-limiting and costly side-effect of cancer therapy. AIM: To evaluate the effect of the topical application of S-nitrosoglutathione (GSNO, a nitric oxide donor, on 5-fluorouracil (5-FU-induced oral mucositis in hamsters. MATERIALS AND METHODS: Oral mucositis was induced in male hamsters by two intraperitoneal administrations of 5-FU on the first and second days of the experiment (60 and 40 mg/kg, respectively followed by mechanical trauma on the fourth day. Animals received saline, HPMC or HPMC/GSNO (0.1, 0.5 or 2.0 mM 1 h prior to the 5-FU injection and twice a day for 10 or 14 days. Samples of cheek pouches were harvested for: histopathological analysis, TNF-α and IL-1β levels, immunohistochemical staining for iNOS, TNF-α, IL-1β, Ki67 and TGF-β RII and a TUNEL assay. The presence and levels of 39 bacterial taxa were analyzed using the Checkerboard DNA-DNA hybridization method. The profiles of NO released from the HPMC/GSNO formulations were characterized using chemiluminescence. RESULTS: The HPMC/GSNO formulations were found to provide sustained release of NO for more than 4 h at concentration-dependent rates of 14 to 80 nmol/mL/h. Treatment with HPMC/GSNO (0.5 mM significantly reduced mucosal damage, inflammatory alterations and cell death associated with 5-FU-induced oral mucositis on day 14 but not on day 10. HPMC/GSNO administration also reversed the inhibitory effect of 5-FU on cell proliferation on day 14. In addition, we observed that the chemotherapy significantly increased the levels and/or prevalence of several bacterial species. CONCLUSION: Topical HPMC/GSNO accelerates mucosal recovery, reduces inflammatory parameters, speeds up re-epithelization and decreases levels of periodontopathic species in mucosal ulcers.

  17. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  18. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  19. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/-) and wild-type (APOE+/+) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  20. Comparison of external dacryocystorhinostomy and 5-fluorouracil augmented endonasal laser dacryocystorhinostomy. A Retrospective review

    Watts Patrick

    2001-01-01

    Full Text Available Purpose: To compare the success rates of external dacryocystorhinostomy (EXT-DCR with 5-fluorouracil (5-FU augmented endonasal laser dacryocystorhinostomy (ENL-DCR and to record the complications associated with 5-FU augmented ENL-DCR Materials and Methods: This was a retrospective non-randomised study. Forty-one patients with primary acquired nasolacrimal duct obstruction underwent an EXT-DCR (19 patients or an ENL-DCR (22 patients over a 3-year period. A Holmium YAG laser (Ho:YAG was used in the latter group of patients. Silicone tubes intubated in all patients were removed at three months. 5-FU was applied intraoperatively at the site of the ostium in the ENL-DCR patients. The median follow-up was 12 months (range 3-24 months for the ENL-DCR group and 22 months (range 6-28 months for the EXT-DCR group. The patency of the lacrimal system and the severity of epiphora were assessed at a final-review. Results: The median age of the EXT-DCR group was 77 years (range 53-87 and that of the ENL-DCR group was 71 years (range 23 to 84. There were 12 female patients in the former group and 19 in the latter. The percentage of success in the EXT-DCR group was 94.7% (95% confidence interval (CI = 75.4-99.1 = , and 63.6% in the ENL-DCR group (95% CI= 43.0-80.3. The confidence interval for the difference of 31.1% was 5.6-52.2. There was a statistically significant difference between the two groups, p=0.024 (Fisher exact test. Conclusions: These data suggest that EXT-DCR provides better results than 5-FU augmented ENL-DCR. However, ENL-DCR is the procedure of choice in certain circumstances such as in elderly, frail or medically unfit patients. Our results of 5-FU augmented ENL-DCR compare favourably with other published series.

  1. l-carnosine dipeptide overcomes acquired resistance to 5-fluorouracil in HT29 human colon cancer cells via downregulation of HIF1-alpha and induction of apoptosis.

    Iovine, Barbara; Guardia, Francesca; Irace, Carlo; Bevilacqua, Maria Assunta

    2016-08-01

    Hypoxia-inducible factor (HIF-1α) protein is over-expressed in many human cancers and is a major cause of resistance to drugs. HIF-1α up-regulation decreases the effectiveness of several anticancer agents, including 5-fluorouracil (5-FU), because it induces the expression of drug efflux transporters, alters DNA repair mechanisms and modifies the balance between pro- and antiapoptotic factors. These findings suggest that inhibition of HIF-1α activity may sensitize cancer cells to cytotoxic drugs. We previously reported that l-carnosine reduces HIF-1α expression by inhibiting the proliferation of colon cancer cells. In the present study we investigated the effect of l-carnosine on HT29 colon cancer cells with acquired resistance to 5-FU. We found that l-carnosine reduces colon cancer cell viability, decreases HIF-1α and multi-drug resistant protein MDR1-pg expression, and induces apoptosis. Moreover, the l-carnosine/5-FU combination lowers the expression of some chemoresistance markers. The combination index evaluated in vitro on the HT29-5FU cell line by median drug effect analysis reveals a significant synergistic effect. PMID:27234614

  2. Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice

    Tsai CC

    2011-10-01

    Full Text Available Chia-Che Tsai1, Chih-Hsien Chang1, Liang-Cheng Chen1, Ya-Jen Chang1, Keng-Li Lan2, Yu-Hsien Wu1, Chin-Wei Hsu1, I-Hsiang Liu1, Chung-Li Ho1, Wan-Chi Lee1, Hsiao-Chiang Ni1, Tsui-Jung Chang1, Gann Ting3, Te-Wei Lee11Institute of Nuclear Energy Research, Taoyuan, 2Cancer Center, Taipei Veterans General Hospital, Taipei, 3National Health Research Institutes, Taipei, Taiwan, ROCBackground: Nanoliposomes are designed as carriers capable of packaging drugs through passive targeting tumor sites by enhanced permeability and retention (EPR effects. In the present study the biodistribution, pharmacokinetics, micro single-photon emission computed tomography (micro-SPECT/CT image, dosimetry, and therapeutic efficacy of 188Re-labeled nanoliposomes (188Re-liposomes in a C26 colonic peritoneal carcinomatosis mouse model were evaluated.Methods: Colon carcinoma peritoneal metastatic BALB/c mice were intravenously administered 188Re-liposomes. Biodistribution and micro-SPECT/CT imaging were performed to determine the drug profile and targeting efficiency of 188Re-liposomes. Pharmacokinetics study was described by a noncompartmental model. The OLINDA|EXM® computer program was used for the dosimetry evaluation. For therapeutic efficacy, the survival, tumor, and ascites inhibition of mice after treatment with 188Re-liposomes and 5-fluorouracil (5-FU, respectively, were evaluated and compared.Results: In biodistribution, the highest uptake of 188Re-liposomes in tumor tissues (7.91% ± 2.02% of the injected dose per gram of tissue [%ID/g] and a high tumor to muscle ratio (25.8 ± 6.1 were observed at 24 hours after intravenous administration. The pharmacokinetics of 188Re-liposomes showed high circulation time and high bioavailability (mean residence time [MRT] = 19.2 hours, area under the curve [AUC] = 820.4%ID/g*h. Micro-SPECT/CT imaging of 188Re-liposomes showed a high uptake and targeting in ascites, liver, spleen, and tumor. The results were correlated with

  3. A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7.

    E A K, Nivethaa; S, Dhanavel; A, Rebekah; V, Narayanan; A, Stephen

    2016-09-01

    5-Fluorouracil encapsulated chitosan/silver and chitosan/silver/multiwalled carbon nanotubes were synthesized to comparatively study the release profile and cytotoxicity of the systems towards MCF-7 cell line. The triclinic structure of 5-Fluorouracil, face centered cubic structure of silver and the semi-crystalline nature of chitosan were elucidated using the XRD pattern. The XRD pattern of Chitosan/silver/multiwalled carbon nanotube consisted of (002) reflection of graphitic carbon from carbon nanotube. The evident splitting of NH2 and NH3(+) and a variation in the intensity of OH peaks in the FTIR pattern were indicative of the binding of moieties like silver, carbon nanotube and 5-Fluorouracil to chitosan. The encapsulation of 5-Fluorouracil was evident from elemental mapping and from the presence of reflections corresponding to 5-Fluorouracil in the SAED pattern. The release profile showed a prolonged release for 5-Fluorouracil encapsulated Chitosan/silver/multiwalled carbon nanotube and a better cytotoxicity with a IC50 of 50μg/ml was observed for the same. PMID:27207060

  4. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.

    Zhu, Ying-Ting; Chen, Hung-Chi; Chen, Szu-Yu; Tseng, Scheffer C G

    2012-08-01

    Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na(+)/K(+)-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties. PMID:22505615

  5. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  6. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies. (paper)

  7. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  8. ACE Inhibition and Endothelial Function: Main Findings of PERFECT, a Sub-Study of the EUROPA Trial

    Bots, M.L.; Remme, W.J.; Lüscher, T.F.; Fox, K.M.; Bertrand, M.; Ferrari, R.; Simoons, M.L.; Grobbee, D.E.; EUROPA-PERFECT Investigators

    2007-01-01

    Background: ACE inhibition results in secondary prevention of coronary artery disease (CAD) through different mechanisms including improvement of endothelial dysfunction. The Perindopril-Function of the Endothelium in Coronary artery disease Trial (PERFECT) evaluated whether long-term administratio

  9. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. PMID:26785611

  10. N-Alkynyl Derivatives of 5-Fluorouracil: Susceptibility to Palladium-Mediated Dealkylation and Toxigenicity in Cancer Cell Culture

    Jason T Weiss

    2014-07-01

    Full Text Available Palladium-activated prodrug therapy is an experimental therapeutic approach that relies on the unique chemical properties and biocompatibility of heterogeneous palladium catalysis to enable the spatially-controlled in vivo conversion of a biochemically-stable prodrug into its active form. This strategy, which would allow inducing local activation of systemically administered drug precursors by mediation of an implantable activating device made of Pd(0, has been proposed by our group as a way to reduce drug’s systemic toxicity while reaching therapeutic levels of the active drug in the affected tissue / organ. In the seminal study of such an approach, we reported that propargylation of the N1 position of 5-fluorouracil suppressed the drug’s cytotoxic properties, showed high stability in cell culture and facilitated the bioorthogonal restoration of the drug’s pharmacological activity in the presence of extracellular Pd(0-functionalized resins. To provide additional insight on the properties of this system, we have investigated different N1-alkynyl derivatives of 5-fluorouracil and shown that the presence of substituents near the triple bond influence negatively on its sensitivity to palladium catalysis under biocompatible conditions. Comparative studies of the N1- versus the N3-propargyl derivatives of 5-fluorouracil revealed that masking each or both positions equally led to inactive derivatives (>200-fold reduction of cytotoxicity relative to the unmodified drug, whereas the depropargylation process occurred faster at the N1 position than at the N3, thus resulting in greater toxigenic properties in cancer cell culture.

  11. Metronomic chemotherapy with 5-fluorouracil and cisplatin for inoperable malignant bowel obstruction because of peritoneal dissemination from gastric cancer

    Yang, S.; Li, S.; Yu, H.; Li, S.; Liu, W.; Liu, X.; Ma, H.

    2016-01-01

    Background Gastric cancer is the 2nd leading cause of cancer death worldwide. Malignant bowel obstruction (mbo) is a common complication in advanced gastric cancer because of peritoneal dissemination. A multicentre prospective study reported that patients with peritoneal dissemination of gastric origin survive for a median of 3.1 months. The aim of the present study was therefore to evaluate the efficacy and safety of metronomic combination chemotherapy with 5-fluorouracil and cisplatin in inoperable mbo from peritoneal dissemination in gastric cancer. Methods Gastric cancer patients diagnosed with inoperable mbo because of peritoneal dissemination were treated with infusional 5-fluorouracil 300 mg/m2 daily on days 1–5 and 8–12, and cisplatin 5 mg/m2 daily on days 1–4 and 8–11 every 3 weeks. The primary endpoint was symptom control (remission of obstruction); the secondary endpoint was symptom control time and survival; the tertiary endpoint was adverse effects. Results Between January 2013 and December 2014, 26 patients received the study treatment. Before treatment, 18 patients (69.2%) were nil per os, and 8 (30.8%) could consume liquids. After a mean of 3.3 cycles of the study treatment, just 4 patients (15.4%) was still nil per os. Of the remaining 22 patients, 3 (11.5%) could consume liquids, 7 (26.9%) could consume soft solids, and 12 (46.2%) ate a full diet. The improved ability to eat was statistically significant (p cancer. Metronomic combination chemotherapy with 5-fluorouracil and cisplatin provides a rationale for exploring this medical problem in the future.

  12. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells

    Cheng M

    2013-10-01

    Full Text Available Mingrong Cheng,1,2,* Hongzhi Xu,3,* Yong Wang,4,* Houxiang Chen,5 Bing He,3 Xiaoyan Gao,6 Yingchun Li,2 Jiang Han,1 Zhiping Zhang1 1Department of General Surgery, 2Department of Endoscopy, Pudong New Area District Zhoupu Hospital, Shanghai, People’s Republic of China; 3Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China; 4School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, People’s Republic of China; 5Zhejiang Huafon Fiber Research Institute, Zhejiang Huafon Spandex Co, Ltd, Wenzhou, People’s Republic of China; 6Department of Plastic Surgery, Pudong New Area District Zhoupu Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Modified chitosan nanoparticles are a promising platform for drug, such as 5-fluorouracil (5-FU, gene, and vaccine delivery. Here, we used chitosan and hepatoma cell-specific binding molecule glycyrrhetinic acid (GA to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS. The synthetic product was confirmed by infrared spectroscopy and hydrogen nuclear magnetic resonance. By combining GA-CTS and 5-FU, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 193.7 nm, drug loading of 1.56%, and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained-release system comprising three distinct phases of quick, steady, and slow release. In vitro data indicated that it had a dose- and time-dependent anticancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited cancer cell proliferation, resulting in increased survival time. The antitumor mechanisms for GA-CTS/5-FU nanoparticle were possibly associated with an increased expression of regulatory T

  13. Combination photodynamic therapy using 5-fluorouracil and aminolevulinate enhances tumor-selective production of protoporphyrin IX and improves treatment efficacy of squamous skin cancers and precancers

    Maytin, Edward V.; Anand, Sanjay

    2016-03-01

    In combination photodynamic therapy (cPDT), a small-molecule drug is used to modulate the physiological state of tumor cells prior to giving aminolevulinate (ALA; a precursor for protoporphyrin IX, PpIX). In our laboratory we have identified three agents (methotrexate, 5-fluorouracil, and vitamin D) that can enhance therapeutic effectiveness of ALAbased photodynamic therapy for cutaneous squamous cell carcinoma (SCC). However, only one (5-fluorouracil; 5-FU) is FDA-approved for skin cancer management. Here, we describe animal and human studies on 5-FU mechanisms of action, in terms of how 5-FU pretreatment leads to enhanced PpIX accumulation and improves selectivity of ALA-PDT treatment. In A431 subcutaneous tumors in mice, 5-FU changed expression of heme enzyme (upregulating coproporphyrinogen oxidase, and down-regulating ferrochelatase), inhibited tumor cell proliferation (Ki-67), enhanced differentiation (E-cadherin), and led to strong, tumor-selective increases in apoptosis. Interestingly, enhancement of apoptosis by 5-FU correlated strongly with an increased accumulation of p53 in tumor cells that persisted for 24 h post- PDT. In a clinical trial using a split-body, bilaterally controlled study design, human subjects with actinic keratoses (AK; preneoplastic precursors of SCC) were pretreated on one side of the face, scalp, or forearms with 5-FU cream for 6 days, while the control side received no 5-FU. On the seventh day, the levels of PpIX in 4 test lesions were measured by noninvasive fluorescence dosimetry, and then all lesions were treated with PDT using methyl-aminolevulinate (MAL) and red light (635 nm). Relative amounts of PpIX were found to be increased ~2-fold in 5-FU pretreated lesions relative to controls. At 3 months after PDT, the overall clinical response to PDT (reduction in lesion counts) was 2- to 3-fold better for the 5-FU pretreated lesions, a clinically important result. In summary, 5-FU is a useful adjuvant to aminolevulinate-based PDT

  14. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  15. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  16. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  17. Two half-sandwiched ruthenium (II compounds containing 5-fluorouracil derivatives: synthesis and study of DNA intercalation.

    Zhao-Jun Li

    Full Text Available Two novel coordination compounds of half-sandwiched ruthenium(II containing 2-(5-fluorouracil-yl-N-(pyridyl-acetamide were synthesized, and their intercalation binding modes with calf thymus DNA were revealed by hyperchromism of ultraviolet-visible spectroscopy; the binding constants were determined according to a Langmuir adsorption equation that was deduced on the base of careful cyclic voltammetry measurements. The two compounds exhibited DNA intercalation binding activities with the binding constants of 1.13×106 M-1 and 5.35 ×105 M-1, respectively.

  18. Oxaliplatin combined with infusional 5-fluorouracil and concomitant radiotherapy in inoperable and metastatic rectal cancer: a phase I trial

    S. Loi; Ngan, S Y K; Hicks, R.J.; Mukesh, B; Mitchell, P; Michael, M.; Zalcberg, J.; Leong, T; Lim-Joon, D; MACKAY, J.; Rischin, D

    2005-01-01

    The aim of this study was to define the recommended dose of oxaliplatin when combined with infusional 5-fluorouracil (5-FU) and concurrent pelvic radiotherapy. Eligible patients had inoperable rectal cancer, or symptomatic primary rectal cancer with metastasis. Oxaliplatin was given on day 1 of weeks 1, 3 and 5 of radiotherapy. Dose level 1 was oxaliplatin 70 mg m−2 with 5-FU 200 mg m−2 day−1 continuous infusion 96 h week−1. On dose level 2, the oxaliplatin dose was increased to 85 mg m−2. On...

  19. Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines

    Udofot, Ofonime; Affram, Kevin; Israel, Bridg'ette; Agyare, Edward

    2015-01-01

    5-Fluorouracil (5-FU) is widely used in cancer therapy, either alone or in combination with other anti-cancer drugs. However, poor membrane permeability and a short half-life (5-20 min) due to rapid metabolism in the body necessitate the continuous administration of high doses of 5-FU to maintain the minimum therapeutic serum concentration. This is associated with significant side effects and a possibility of severe toxic effects. This study aimed to formulate 5-FU-loaded pH-sensitive liposom...

  20. Ocular surface squamous neoplasia in HIV-positive and HIV-negative patients and response to 5-fluorouracil in Angola

    Nutt RJ

    2014-12-01

    Full Text Available Robert J Nutt,1 John L Clements,2 William H Dean3 1Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK; 2Boa Vista Eye Clinic, Benguela, Angola; 3Bristol Eye Hospital, Bristol, UK Background: Ocular surface squamous neoplasia (OSSN is becoming increasingly prevalent and aggressive in Sub-Saharan Africa. It is a phenomenon linked with human immunodeficiency virus (HIV infection, although association rates in Angola are currently unknown. A topical treatment that is effective in HIV-positive and HIV-negative individuals may be preferable to surgery in some contexts. We aimed to estimate the proportion of OSSN associated with HIV in Angola and to report on the success of topical 5-fluorouracil as a primary treatment in HIV-positive and HIV-negative patients.Methods: Photographs of OSSNs taken at presentation and following treatment with 5-fluorouracil in patients presenting to Boa Vista Eye Clinic, Angola, between October 2011 and July 2013 were grouped into HIV-positive and HIV-negative groups and analyzed to compare presenting features and treatment response. Eighty-one OSSNs were analyzed for clinical features and 24 met the inclusion criteria for analysis of treatment response.Results: Eighty-two patients presented with OSSN between October 2011 and July 2013. Twenty-one (26% were HIV-positive and typically had OSSNs that exhibited more pathological features than those in HIV-negative patients. Twenty-four (29% patients met the inclusion criteria for analysis of treatment response; of these, 26 (91% OSSNs in both groups displayed at least partial resolution after one treatment course. In the HIV-positive group, five of eight patients displayed complete resolution, two showed partial resolution, and one failed. In the HIV-negative group, five of 16 showed complete resolution, ten of 16 had partial resolution, and one failed.Conclusion: Individuals presenting with OSSN in Angola are more likely to have HIV infection compared

  1. Effects of Caloric Intake on Intestinal Mucosal Morphology and Immune Cells in Rats Treated with 5-Fluorouracil

    Murakami, Mariko; Sato, Norifumi; Tashiro, Katsufumi; Nakamura, Tsuyoshi; Masunaga, Hiroaki

    2009-01-01

    Anticancer drugs have been reported to damage the intestinal mucosa. We evaluated the effects of caloric intake on the mucosal morphology and immune cells in rats treated with 5-fluorouracil (5-FU). Rats were received a liquid diet plus 5-FU treatment for 8 days as follows: Low calorie group (25 kcal/day with 5-FU), Normal calorie group (50 kcal/day with 5-FU), and Control group (50 kcal/day with saline). The mucosal morphology, cell numbers and phenotypes of spleen and intraepithelial lympho...

  2. Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion

    A tissue-engineered endothelial layer was prepared by culturing endothelial cells on a fibroblast growth factor-2 (FGF-2)–l-ascorbic acid phosphate magnesium salt n-hydrate (AsMg)–apatite (Ap) coated titanium plate. The FGF-2–AsMg–Ap coated Ti plate was prepared by immersing a Ti plate in supersaturated calcium phosphate solutions supplemented with FGF-2 and AsMg. The FGF-2–AsMg–Ap layer on the Ti plate accelerated proliferation of human umbilical vein endothelial cells (HUVECs), and showed slightly higher, but not statistically significant, nitric oxide release from HUVECs than on as-prepared Ti. The endothelial layer maintained proper function of the endothelial cells and markedly inhibited in vitro platelet adhesion. The tissue-engineered endothelial layer formed on the FGF-2–AsMg–Ap layer is promising for ameliorating platelet activation and thrombus formation on cardiovascular implants. (paper)

  3. Enhancing effect of N-dodecyl-2-pyrrolidone on the percutaneous absorption of 5-fluorouracil derivatives.

    Sato, S; Hirotani, Y; Ogura, N; Sasaki, E; Kitagawa, S

    1998-05-01

    The enhancing effects of N-dodecyl-2-pyrrolidone (NDP) on the percutaneous absorption of doxifluridine (DOX), 5-fluorouracil (5-FU), tegafur (TEG) and carmofur (CAR) were examined using an in vitro penetration technique and rat skin. Phosphate buffered isotonic saline (PBS), propylene glycol (PG) and PG containing 0.4M NDP (PGNDP) were applied as the donor solution. The correlation between the n-octanol/water partition coefficients and the permeability coefficients of DOX, 5-FU and TEG was investigated using both logarithmic plots. It was determined that the permeability coefficients are significantly correlated with their n-octanol/water partition coefficients on PBS. This result suggested that the non-polar stratum corneum lipid lamella in the skin might act as a rate limiting step on the skin penetration of DOX, 5-FU and TEG. The permeability coefficient of DOX, 5-FU and TEG was increased on PGNDP. The enhancing effect of NDP on the permeability coefficient was more effective at higher hydrophilic drugs, the values of the permeability coefficient had almost the same values on PGNDP and the dependency of the permeability coefficient on the n-octanol/water partition coefficient disappeared in the presence of NDP. These results indicated that the enhancing effect of NDP on the percutaneous absorption of DOX, 5-FU and TEG might be closely related to the perturbation of stratum corneum lipid lamella. Since it has been well recognized that CAR is decomposed into 5-FU in neutral and alkaline solution, the decomposition rate of CAR was measured using PBS solution and was found to be very rapid (Kd = 3.17 h-1, t1/2 = 13.1 min). The total concentrations of CAR plus 5-FU in the acceptor compartment were used to determine the permeability coefficient of CAR. The obtained value of the permeability coefficient of CAR on PG was almost the same as that of TEG on PG (CAR: 1.11 x 10(-3) cm/h, TEG: 1.24 x 10(-3) cm/h), while that of CAR on PGNDP was smaller than that of TEG on

  4. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  5. A micro fluidic system to study the cytotoxic effect of drugs: the combined effect of celecoxib and 5-fluorouracil on normal and cancer cells

    We have investigated the response of normal and cancer cells to exposure a combination of celecoxib (Celbx) and 5-fluorouracil (5-FU) using a lab-on-a-chip micro fluidic device. Specifically, we have tested the cytotoxic effect of Celbx on normal mouse embryo cells (Balb/c 3T3) and human lung carcinoma cells (A549). The single drugs or their combinations were adjusted to five different concentrations using a concentration gradient generator (CGG) in a single step. The results suggest that Celbx can enhanced the anticancer activity of 5-FU by stronger inhibition of cancer cell growth. We also show that the A549 cancer cells are more sensitive to Celbx than the Balb/c 3T3 normal cells. The results obtained with the micro fluidic system were compared to those obtained with a macro scale in vitro cell culture method. In our opinion, the micro fluidic system represents a unique approach for an evaluation of cellular response to multidrug exposure that also is more simple than respective micro well plate assays. (author)

  6. CF101, An Agonist to the A3 Adenosine Receptor, Enhances the Chemotherapeutic Effect of 5-Fluorouracil in a Colon Carcinoma Murine Model

    Sara Bar-Yehuda

    2005-01-01

    Full Text Available NF-κB and the upstream kinase PKB/Akt are highly expressed in chemoresistance tumor cells and may hamper the apoptotic pathway. CF101, a specific agonist to the A3 adenosine receptor, inhibits the development of colon carcinoma growth in cell cultures and xenograft murine models. Because CF101 has been shown to downregulate PKB/Akt and NF-κB protein expression level, we presumed that its combination with chemotherapy will enhance the antitumor effect of the cytotoxic drug. In this study, we utilized 3-[4,5Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT and colony formation assays and a colon carcinoma xenograft model. It has been shown that a combined treatment of CF101 and 5-fluorouracil (5-FU enhanced the cytotoxic effect of the latter on HCT-116 human colon carcinoma growth. Downregulation of PKB/Akt, NF-κB, and cyclin D1, and upregulation of caspase-3 protein expression level were observed in cells and tumor lesions on treatment with a combination of CF101 and 5-FU. Moreover, in mice treated with the combined therapy, myelotoxicity was prevented as was evidenced by normal white blood cell and neutrophil counts. These results show that CF101 potentiates the cytotoxic effect of 5-FU, thus preventing drug resistance. The myeloprotective effect of CF101 suggests its development as an add-on treatment to 5-FU.

  7. Comparative study of the effects of PEGylated interferon-α2a versus 5-fluorouracil on cancer stem cells in a rat model of hepatocellular carcinoma.

    Motawi, Tarek Kamal; El-Boghdady, Noha Ahmed; El-Sayed, Abeer Mostafa; Helmy, Hebatullah Samy

    2016-02-01

    Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) possess tumor-initiating, metastatic, and drug resistance properties. This study was conducted to evaluate the effects of PEGylated interferon-α2a (PEG-IFN-α2a) and 5-fluorouracil (5-FU) on the expression of CSC markers and on specific pathways that contribute to the propagation of CSCs in HCC. HCC was initiated in rats using a single intraperitoneal dose of diethylnitrosamine (DENA) (200 mg/kg) and promoted by weekly subcutaneous injections of carbon tetrachloride (CCl4) for 6 weeks. After the appearance of dysplastic nodules, the animals received PEG-IFN-α2a or 5-FU for 8 weeks. CSC markers (OV6, CD90) and molecules related to transforming growth factor β (TGF-β) and other signaling pathways were assessed in hepatic tissues. The PEG-IFN-α2a treatment effectively suppressed the hepatic expression of OV6 and CD90, ameliorated the diminished hepatic expression of TGF-β receptor II (TGF-βRII) and β2-spectrin (β2SP), and significantly reduced the elevated hepatic expression of TGF-β1, interleukin6 (IL6), signal transducer and activator of transcription3 (STAT3), and vascular endothelial growth factor (VEGF). In contrast, the 5-FU treatment failed to reduce the overexpression of CSC markers and barely affected the disrupted TGF-β signaling. Furthermore, it had no effect on angiogenesis or nitrosative stress. PEG-IFN-α2a, but not 5-FU, could reduce the propagation of CSCs during the progression of HCC by upregulating the disrupted TGF-β signaling, suppressing the IL6/STAT3 pathway and reducing angiogenesis. PMID:26304505

  8. Crystallization and preliminary X-ray diffraction analysis of Salmonella typhimurium uridine phosphorylase complexed with 5-fluorouracil

    Uridine phosphorylase from S. typhimurium was expressed and purified and cocrystallized with the drug 5-fluorouracil. The crystals diffracted X-rays to 2.2 Å resolution using synchrotron radiation. Uridine phosphorylase (UPh; EC 2.4.2.3) catalyzes the phosphorolytic cleavage of the N-glycosidic bond of uridine to form ribose 1-phosphate and uracil. This enzyme also activates pyrimidine-containing drugs, including 5-fluorouracil (5-FU). In order to better understand the mechanism of the enzyme–drug interaction, the complex of Salmonella typhimurium UPh with 5-FU was cocrystallized using the hanging-drop vapour-diffusion method at 294 K. X-ray diffraction data were collected to 2.2 Å resolution. Analysis of these data revealed that the crystal belonged to space group C2, with unit-cell parameters a = 158.26, b = 93.04, c = 149.87 Å, α = γ = 90, β = 90.65°. The solvent content was 45.85% assuming the presence of six hexameric molecules of the complex in the unit cell

  9. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance

    Ji, Yuqin; Wang, Aili [Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wu, Gang [Department of Stomatology, Chinese PLA 359 Hospital, Zhenjiang 212006 (China); Yin, Hengbo, E-mail: yin@ujs.edu.cn [Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Liu, Shuxin [School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000 (China); Chen, Bujun; Liu, Fanggang [Department of Orthopaedics, Chinese PLA 359 Hospital, Zhenjiang 212006 (China); Li, Xiaoyun [Faculty of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-12-01

    Porous biocompatible hydroxyapatite (HAP) nanorods of various sizes were synthesized by the combination of chemical precipitation and hydrothermal method without the use of organic modifiers. The HAP nanorod samples were characterized by powder X-ray diffraction, transmission electron microscopy, and N{sub 2} adsorption/desorption techniques. HAP nanorods with average diameters and average lengths ranging from 8.5 to 26.6 nm and from 23.1 to 49.7 nm, respectively, could be controllably synthesized via these methods. Low autoclaving temperature and high pH value favored the formation of relatively small HAP nanorods. The TEM images showed that the nanorods possessed porous structures with average pore diameters ranging from 1.6 to 2.7 nm. These HAP nanoparticles effectively prolonged the release time of 5-fluorouracil up to 24 h. The as-synthesized HAP nanorods displayed no cytotoxicity to bone marrow stem cells at low HAP concentration, indicating that these nanorod materials could serve as potential carriers for novel drug release systems. - Highlights: • Porous HAP nanorods were synthesized by chemical precipitation/hydrothermal method. • Particle sizes of HAP nanorods were tunably changed without using organic modifiers. • Porous HAP nanorods had average pore diameters of 1.6–2.7 nm measured from TEM image. • Porous HAP as drug carrier effectively prolonged the release time of 5-fluorouracil.

  10. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance

    Porous biocompatible hydroxyapatite (HAP) nanorods of various sizes were synthesized by the combination of chemical precipitation and hydrothermal method without the use of organic modifiers. The HAP nanorod samples were characterized by powder X-ray diffraction, transmission electron microscopy, and N2 adsorption/desorption techniques. HAP nanorods with average diameters and average lengths ranging from 8.5 to 26.6 nm and from 23.1 to 49.7 nm, respectively, could be controllably synthesized via these methods. Low autoclaving temperature and high pH value favored the formation of relatively small HAP nanorods. The TEM images showed that the nanorods possessed porous structures with average pore diameters ranging from 1.6 to 2.7 nm. These HAP nanoparticles effectively prolonged the release time of 5-fluorouracil up to 24 h. The as-synthesized HAP nanorods displayed no cytotoxicity to bone marrow stem cells at low HAP concentration, indicating that these nanorod materials could serve as potential carriers for novel drug release systems. - Highlights: • Porous HAP nanorods were synthesized by chemical precipitation/hydrothermal method. • Particle sizes of HAP nanorods were tunably changed without using organic modifiers. • Porous HAP nanorods had average pore diameters of 1.6–2.7 nm measured from TEM image. • Porous HAP as drug carrier effectively prolonged the release time of 5-fluorouracil

  11. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard; Desrosiers, Richard R.

    2014-03-10

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  12. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  13. Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity.

    Hongbing Xiao

    Full Text Available BACKGROUND: Small GTPases (guanosine triphosphate, GTP are involved in many critical cellular processes, including inflammation, proliferation, and migration. GTP loading and isoprenylation are two important post-translational modifications of small GTPases, and are critical for their normal function. In this study, we investigated the role of post-translational modifications of small GTPases in regulating endothelial cell inflammatory responses and junctional integrity. METHODS AND RESULTS: Confluent human umbilical vein endothelial cell (HUVECs treated with atorvastatin demonstrated significantly decreased lipopolysaccharide (LPS-mediated IL-6 and IL-8 generation. The inhibitory effect of atorvastatin (Atorva was attenuated by co-treatment with 100 µM mevalonate (MVA or 10 µM geranylgeranyl pyrophosphate (GGPP, but not by 10 µM farnesyl pyrophosphate (FPP. Atorvastatin treatment of HUVECs produced a time-dependent increase in GTP loading of all Rho GTPases, and induced the translocation of small Rho GTPases from the cellular membrane to the cytosol, which was reversed by 100 µM MVA and 10 µM GGPP, but not by 10 µM FPP. Atorvastatin significantly attenuated thrombin-induced HUVECs permeability, increased VE-cadherin targeting to cell junctions, and preserved junction integrity. These effects were partially reversed by GGPP but not by FPP, indicating that geranylgeranylation of small GTPases plays a major role in regulating endothelial junction integrity. Silencing of small GTPases showed that Rho and Rac, but not Cdc42, play central role in HUVECs junction integrity. CONCLUSIONS: In conclusion, our studies show that post-translational modification of small GTPases plays a vital role in regulating endothelial inflammatory response and endothelial junction integrity. Atorvastatin increased GTP loading and inhibited isoprenylation of small GTPases, accompanied by reduced inflammatory response and preserved cellular junction integrity.

  14. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation

  15. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[35S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  16. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  17. Natural phenylpropanoids inhibit lipoprotein-induced endothelin-1 secretion by endothelial cells.

    Martin-Nizard, Françoise; Sahpaz, Sevser; Kandoussi, Abdelmejid; Carpentier, Marie; Fruchart, Jean-Charles; Duriez, Patrick; Bailleul, François

    2004-12-01

    There is increasing evidence that oxidized low-density lipoproteins (Ox-LDL) might be involved in the pathogenesis of atherosclerosis and it has been reported that polyphenols inhibit LDL peroxidation and atherosclerosis. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide isolated from endothelial cells and it induces smooth muscle cell proliferation. ET-1 secretion is increased in atheroma and induces deleterious effects such as vasospasm and atherosclerosis. The goal of this study was to test the effect of four natural phenolic compounds against copper-oxidized LDL (Cu-LDL)-induced ET-1 liberation by bovine aortic endothelial cells (BAEC). The tested compounds were phenylpropanoid glycosides previously isolated from the aerial parts of Marrubium vulgare L. (acteoside 1, forsythoside B 2, arenarioside 3 and ballotetroside 4). ET-1 secretion increased when cells were incubated with Cu-LDL but the compounds 1-4 inhibited this increase. These results were confirmed by quantitative-polymerase chain reaction (QPCR) analysis. Since ET-1 plays an important role in atherosclerosis development, our work suggests that the tested phenylpropanoids could have a beneficial effect in inhibiting atherosclerosis development. PMID:15563769

  18. Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IκBα in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-β phosphorylation in pretreatments of less than 3 h. In TNFα-treated ECs, NF-κB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFα-induced singling pathways through the inhibition of IKK-β activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.

  19. A newly synthesized sinapic acid derivative inhibits endothelial activation in vitro and in vivo.

    Zeng, Xiaoyun; Zheng, Jinhong; Fu, Chenglai; Su, Hang; Sun, Xiaoli; Zhang, Xuesi; Hou, Yingjian; Zhu, Yi

    2013-05-01

    Inhibition of oxidative stress and inflammation in vascular endothelial cells (ECs) may represent a new therapeutic strategy against endothelial activation. Sinapic acid (SA), a phenylpropanoid compound, is found in natural herbs and high-bran cereals and has moderate antioxidant activity. We aimed to develop new SA agents with the properties of antioxidation and blocking EC activation for possible therapy of cardiovascular disease. We designed and synthesized 10 SA derivatives according to their chemical structures. Preliminary screening of the compounds involved scavenging hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH(⋅)), croton oil-induced ear edema in mice, and analysis of the mRNA expression of adhesion molecules in ECs. 1-Acetyl-sinapic acyl-4-(3'-chlorine-)benzylpiperazine (SA9) had the strongest antioxidant and anti-inflammatory activities both in vitro and in vivo. Thus, the effect of SA9 was further studied. SA9 inhibited tumor necrosis factor α-induced upregulation of adhesion molecules in ECs at both mRNA and protein levels, as well as the consequent monocyte adhesion to ECs. In vivo, result of face-to-face immunostaining showed that SA9 reduced lipopolysaccharide-induced expression of intercellular adhesion molecule-1 in mouse aortic intima. To study the molecular mechanism, results from luciferase assay, nuclear translocation of NF-κB, and Western blot indicated that the mechanism of the anti-inflammatory effects of SA9 might be suppression of intracellular generation of ROS and inhibition of NF-κB activation in ECs. SA9 is a prototype of a novel class of antioxidant with anti-inflammatory effects in ECs. It may represent a new therapeutic approach for preventing endothelial activation in cardiovascular disorders. PMID:23470287

  20. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells.

    Wu, K. K.; Sanduja, R; Tsai, A. L.; Ferhanoglu, B.; Loose-Mitchell, D S

    1991-01-01

    Prostaglandin H (PGH) synthase (EC 1.14.99.1) is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations (0.1-1 micrograms/ml) inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-i...

  1. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca2+]i) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca2+]i overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca2+]i overload can be prevented by lithium treatment. [Ca2+]i and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P 2+]i (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P 2+]i response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P 2+]i. A 24-h pre-treatment with 10 mM of lithium chloride before the inhibition of ATP synthesis abolished both phases of the 2-DG-induced [Ca2+]i increase. This effect was not observed when lithium chloride was added simultaneously with 2-DG. We conclude that lithium chloride abolishes the injurious [Ca2+]i overload in EC and that this most likely occurs by preventing inositol 3-phosphate-sensitive Ca2+-release from the endoplasmic reticulum. Though further research is needed, these findings provide a novel option for therapeutic strategies to

  2. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells

    L(U) Yun; ZHANG Ying-chuan; LIU Jing-hua; ZHANG Li-ke; DU Jie; ZENG Xiang-jun; HAO Gang; HUANG Ji; ZHAO Dong-hui; WANG Guo-zhong

    2010-01-01

    Background Fibroblast growth factor 21 (FGF21) is a new member of FGF super family that is an important endogenous regulator for systemic glucose and lipid metabolism. This study aimed to explore whether FGF21 reduces atherosclerotic injury and prevents endothelial dysfunction as an independent protection factor.Methods The present study was designed to investigate the changes of FGF21 levels induced by oxidized-low density lipoprotein (ox-LDL), and the changes of apoptosis affected by regulating FGF21 expression. The FGF21 mRNA levels of cultured cardiac microvascular endothelial cells (CMECs) were determined by real time-PCR and the protein concentration in culture media was detected by enzyme-linked immunosorbent assay. We analyzed the different expression levels of untreated controls and CMFCs incubated with ox-LDL, and the changes of CMECs apoptosis initiated by the enhancement or suppression of FGF21 levels.Results The secretion levels of FGF21 mRNA and protein were significantly upregulated in CMECs incubated with ox-LDL. Furthermore, FGF21 levels increased by 200 μmol/L bezafibrate could reduce CMECs apoptosis, and inhibit FGF21 expression by shRNA induced apoptosis (P <0.05).Conclusions FGF21 may be a signal of injured target tissue, and may play physiological roles in improving the endothelial function at an early stage of atherosclerosis and in stopping the development of coronary heart disease.

  3. Comparative therapeutic efficacy of rhenium-188 radiolabeled-liposome and 5-fluorouracil in LS-174T human colon carcinoma solid tumor xenografts.

    Hsu, Chin-Wei; Chang, Ya-Jen; Chang, Chih-Hsien; Chen, Liang-Cheng; Lan, Keng-Li; Ting, Gann; Lee, Te-Wei

    2012-10-01

    Nanoliposomes are important carriers capable of packaging drugs for various delivery applications. Rhenium-188-radiolabeled liposome ((188)Re-liposome) has potential for radiotherapy and diagnostic imaging. To evaluate the targeting of (188)Re-liposome, biodistribution, microSPECT/CT, whole-body autoradiography (WBAR), and pharmacokinetics were performed in LS-174T human tumor-bearing mice. The comparative therapeutic efficacy of (188)Re-liposome and 5-fluorouracil (5-FU) was assessed according to inhibition of tumor growth and the survival ratio. The highest uptake of (188)Re-liposome in LS-174T tumor was found at 24 hours by biodistribution and microSPECT/CT imaging, showing a positive correlation for tumor targeting of (188)Re-liposome using the Pearson's correlation analysis (r=0.997). Pharmacokinetics of (188)Re-liposome showed the properties of high circulation time and high bioavailability (mean residence time [MRT]=18.8 hours, area under the curve [AUC]=1371%ID/g·h). For therapeutic efficacy, the tumor-bearing mice treated with (188)Re-liposome (80% maximum tolerated dose [MTD], 23.7 MBq) showed better tumor growth inhibition and longer survival time than those treated with 5-FU (80% MTD, 144 mg/kg). The median survival time for mice treated with (188)Re-liposome (58.5 days; p0.05) and normal saline-treated mice (43.63 days). Dosimetry study revealed that the (188)Re-liposome did not lead to high absorbed doses in normal tissue, but did in small tumors. These results of imaging and biodistribution indicated the highly specific accumulation of tumor after intravenous (i.v.) injection of (188)Re-liposome. The therapeutic efficacy of radiotherapeutics of (188)Re-liposome have been confirmed in a LS-174T solid tumor animal model, which points to the potential benefit and promise of passive nanoliposome delivered radiotherapeutics for cancer treatment. PMID:23067100

  4. Formulation, in vitro drug release and in vivo human X-ray investigation of polysaccharide based drug delivery systems for targeting 5-fluorouracil to the colon

    Sidramappa Mallikarjun Chickpetty; Baswaraj Veerappa Raga

    2013-01-01

    The purpose of this research study was to develop 5-fluorouracil compression coated tablets by using biodegradable polysaccharide polymer locust bean gum (LBG) and hydroxyl propyl methyl cellulose (HPMC) as coating materials. The fast disintegrating core tablets containing 50 mg of 5-fluorouracil were compression coated with LBG and HPMC in different ratios (8:1, 7:2 and 6:3) with a coat weight of 300, 400 and 500 mg. In vitro dissolution data indicated that the formulation (CLH63) with a coa...

  5. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks (∼ 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133+ CD44- phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear β-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133+ cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  6. Impact of heterophil granulocyte depletion caused by 5-fluorouracil on infectious bursal disease virus infection in specific pathogen free chickens

    Kabell, Susanne; Igyarto, Botond-Zoltan; Magyar, Attila; Hajdu, Zoltan; Biro, Eva; Bisgaard, Magne; Olah, Imre

    2006-01-01

    The purpose of this study was to investigate the influence of the cytostatic drug, 5-fluorouracil (5-FU), which causes depletion of heterophil granulocytes, on clinical symptoms and histological lesions during the progress of infectious bursal disease virus ( IBDV) infection in chickens. The aim...... were inoculated with the classical IBDV strain F52/70. Bursae of Fabricius were sampled at fixed intervals, and the progress of the infection was monitored by various histological techniques and reverse transcriptase-polymerase chain reaction (RT-PCR). We found correlation between histological...... observations and RT-PCR results. In the 5-FU pretreated chickens, IBDV caused only mild clinical symptoms, even though histological alterations similar to alterations caused by IBDV were still observed. The 5-FU pretreatment resulted in severe heterophil granulocyte depletion by days 2 and 3 after infection...

  7. Efficacy of repeated 5-fluorouracil needling for failing and failed filtering surgeries based on simple gonioscopic examination

    Rashad MA

    2012-12-01

    Full Text Available Mohammad A RashadOphthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, EgyptPurpose: To evaluate the success rate of a modified bleb needling technique in eyes with previous glaucoma surgery that had elevated intraocular pressure.Methods: A retrospective study of 24 eyes of 24 patients that underwent repeated bleb needling performed for failing and failed blebs on slit lamp with 5-fluorouracil (5-FU injections on demand. This was performed after gonioscopic examination to define levels of filtration block.Results: There was significant reduction of mean IOP from 36.91 mmHg to 14.73 mmHg at the final follow-up (P < 0.001. The overall success rate was 92%.Conclusion: Repeated needling with adjunctive 5-FU proved a highly effective, safe alternative to revive filtration surgery rather than another medication or surgery.Keywords: bleb, failure, 5-FU, needling, gonioscopy

  8. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    Tentes, I.K., E-mail: itentes@med.duth.gr [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Schmidt, W.M. [Center for Anatomy and Cell Biology, Waehringer Strasse 13, 1090 Vienna (Austria); Krupitza, G. [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Steger, G.G.; Mikulits, W. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kortsaris, A. [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Mader, R.M. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  9. Simultaneous radiation plus cis-platinum/5-fluorouracil infusion in locally advanced squamous cell carcinoma of the head and neck

    This paper reports twenty patients with advanced untreated head and neck cancer (curative) and five with recurrence (palliative) treated with three 2-week courses of radiation (1,500 rad/10 treatments), cis-platinum, and a 5-day 5-fluorouracil infusion. A fourth 2-week course of radiation (2,000 rad/10 treatments) brought the final tumor dose to 6,500 rad. Nineteen (95%) of the curative patients and four (80%) of the palliative patients experienced complete or partial response. There have been 12 recurrences (nine local, two distant, and one local + distant). Most patients experienced toxicity, including nausea, vomiting, weight loss, and mucositis. In this study, chemoradiotherapy was effective in achieving local/regional control in advanced head and neck cancer

  10. Alteration of the redox state with reactive oxygen species for 5-fluorouracil-induced oral mucositis in hamsters.

    Fumihiko Yoshino

    Full Text Available Oral mucositis is often induced in patients receiving cancer chemotherapy treatment. It has been reported that oral mucositis can reduce quality of life, as well as increasing the incidence of mortality. The participation of reactive oxygen species (ROS in the pathogenesis of oral mucositis is well known, but no report has actually demonstrated the presence of ROS. Thus, the purpose of this study was thus to demonstrate the involvement of ROS and the alteration of the redox state in oral mucositis using an in vivo L-band electron spin resonance (ESR technique. An oral mucositis animal model induced by treatment of 5-fluorouracil with 10% acetic acid in hamster cheek pouch was used. Lipid peroxidation was measured as the level of malondialdehyde determined by the thiobarbituric acid reaction. The rate constants of the signal decay of nitroxyl compounds using in vivo L-band ESR were calculated from the signal decay curves. Firstly, we established the oral mucositis animal model induced by treatment of 5-fluorouracil with acetic acid in hamster cheek pouch. An increased level of lipid peroxidation in oral mucositis was found by measuring malondialdehyde using isolated hamster cheek pouch ulcer. In addition, as a result of in vivo L-band ESR measurements using our model animals, the decay rate constants of carbamoyl-PROXYL, which is a reagent for detecting the redox balance in tissue, were decreased. These results suggest that a redox imbalance might occur by excessive generation of ROS at an early stage of oral mucositis and the consumption of large quantities of antioxidants including glutathione in the locality of oral mucositis. These findings support the presence of ROS involved in the pathogenesis of oral mucositis with anti-cancer therapy, and is useful for the development of novel therapies drugs for oral mucositis.

  11. Outcomes of Chemoradiotherapy With 5-Fluorouracil and Mitomycin C for Anal Cancer in Immunocompetent Versus Immunodeficient Patients

    Purpose: Information is limited as to how we should treat invasive anal squamous cell carcinoma (SCC) in patients with chronic immunosuppression, since the majority of clinical studies to date have excluded such patients. The objective of this study is to compare treatment outcomes in immunocompetent (IC) versus immunodeficient (ID) patients with invasive anal SCC treated similarly with combined modality therapy. Methods and Materials: Between January 1999 and March 2007, a total of 36 consecutive IC and ID patients received concurrent chemoradiotherapy using three-dimensional conformal radiotherapy with infusional 5-fluorouracil and mitomycin C. The IC and ID groups consisted of 19 and 17 patients, respectively, with 14 human immunodeficiency virus-positive (HIV+) and 3 post-solid organ transplant ID patients. There were no significant differences in tumor size, T stage, N stage, chemotherapy doses, or radiation doses between the two groups. Results: With a median follow-up of 3.1 years, no differences were found in overall survival, disease-specific survival, and colostomy-free survival. Three-year overall survival was 83.6% (95% CI = 68.2-100) and 91.7% (95% CI = 77.3-100) in the IC and ID groups, respectively. In addition, there were no differences in acute and late toxicity profiles between the two groups. In the human immunodeficiency virus-positive patients, Cox modeling showed no difference in overall survival by pretreatment CD4 counts (hazard ratio = 0.994, 95% CI = 0.98-1.01). No correlation was found between CD4 counts and the degree of acute toxicities. Conclusion: Our data suggest that standard combined modality therapy with three-dimensional conformal radiotherapy and 5-fluorouracil plus mitomycin C is as safe and effective for ID patients as for IC patients.

  12. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  13. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Nakayama, Hironao [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 (Japan); Huang, Lan [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kelly, Ryan P.; Oudenaarden, Clara R.L. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Dagher, Adelle; Hofmann, Nicole A.; Moses, Marsha A. [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bischoff, Joyce, E-mail: joyce.bischoff@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Klagsbrun, Michael, E-mail: michael.klagsbrun@childrens.harvard.edu [Vascular Biology Program, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Surgery, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Department of Pathology, Boston Children' s Hospital, Harvard Medical School, Boston, MA 02115 (United States)

    2015-08-14

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.

  14. Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1+) endothelial cells (designated as GLUT1sel cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1sel-to-EC differentiation

  15. Treatment of metastatic colorectal carcinomas by systemic inhibition of vascular endothelial growth factor signaling in mice

    Volker Schmitz; Miroslaw Kornek; Tobias Hilbert; Christian Dzienisowicz; Esther Raskopf; Christian Rabe; Tilman Sauerbruch; Cheng Qian; Wolfgang H Caselmann

    2005-01-01

    AIM: Tumor angiogenesis has been shown to be promoted by vascular endothelial growth factor (VEGF) via stimulating endothelial cell proliferation, migration, and survival.Blockade of VEGF signaling by different means has been demonstrated to result in reduced tumor growth and suppression of tumor angiogenesis in distinct tumor entities.Here, we tested a recombinant adenovirus, AdsFlt1-3,that encodes an antagonistically acting fragment of the VEGF receptor 1 (Flt-1), for systemic antitumor effects in pre-established subcutaneous CRC tumors in mice.METHODS: Murine colorectal carcinoma cells (CT26) were inoculated subcutaneously into Balb/c mice forin vivo studies. Tumor size and survival were determined. 293cell line was used for propagation of the adenoviral vectors.Human lung cancer line 4549 and human umbilical vein endothelial cells were transfected forin vitro experiments.RESULTS: Infection of tumor cells with AdsFlt1-3 resulted in protein secretion into cell supernatant, demonstrating correct vector function. As expected, the secreted sFlt1-3 protein had no direct effect on CT26 tumor cell proliferation in vitro, but endothelial cell function was inhibited by about 46% as compared to the AdLacZ control in a tube formation assay. When AdsFlt1-3 (5×109 PFU/animal) was applied to tumor bearing mice, we found a tumor inhibition by 72% at d 12 after treatment initiation. In spite of these antitumoral effects, the survival time was not improved.According to reduced intratumoral microvessel density in AdsFlt1-3-treated mice, the antitumor mechanism can be attributed to angiostatic vector effects. We did not detect increased systemic VEGF levels after AdsFlt1-3 treatment and liver toxicity was low as judged by serum alanine aminotransferase determination.CONCLUSION: In this study we confirmed the value of a systemic administration of AdsFlt1-3 to block VEGF signaling as antitumor therapy in an experimental metastatic colorectal carcinoma model in mice.

  16. The Effect of Analogues of 1α,25-Dihydroxyvitamin D₂ on the Regrowth and Gene Expression of Human Colon Cancer Cells Refractory to 5-Fluorouracil.

    Neska, Jacek; Swoboda, Paweł; Przybyszewska, Małgorzata; Kotlarz, Agnieszka; Bolla, Narasimha Rao; Miłoszewska, Joanna; Grygorowicz, Monika Anna; Kutner, Andrzej; Markowicz, Sergiusz

    2016-01-01

    This study aimed to evaluate the capacity of hypocalcemic analogues of 1α,25-dihydroxyvitamin D₂ (1,25D2) and 1α,25-dihydroxyvitamin D₃ (1,25D3) to inhibit regrowth and regulate the stemness-related gene expression in colon cancer cells undergoing renewal after exposure to 5-fluorouracil (5-FU). All of the tested analogues of 1,25D2 equally potently decreased the clonogenicity and the proliferative activity of HT-29 cells which survived the exposure to 5-FU, but differently regulated gene expression of these cells during their renewal. 1,25D2 and analogues (PRI-1907 and PRI-1917), as well as 1,25D3 and analogue PRI-2191, decreased the relative expression level of several stemness-related genes, such as NANOG, OCT3/4, PROM1, SOX2, ALDHA1, CXCR4, in HT-29/5-FU cells during their renewal, in comparison to untreated HT-29/5-FU cells. The other 1,25D2 analogues (PRI-1906 and PRI-1916) were not capable of downregulating the expression of these stemness-related genes as the analogues PRI-1907 and PRI-1917 did. All of the tested vitamin D analogues upregulated CDH1, the gene encoding E-cadherin associated with epithelial phenotype. Out of the series of analogues studied, side-chain branched analogues of 1,25D2 (PRI-1907, PRI-1917) and the analogue of 1,25D3 (PRI-2191) might be used to target cancer cells with stem-like phenotypes that survive conventional chemotherapy. PMID:27314328

  17. The Effect of Analogues of 1α,25-Dihydroxyvitamin D2 on the Regrowth and Gene Expression of Human Colon Cancer Cells Refractory to 5-Fluorouracil

    Jacek Neska

    2016-06-01

    Full Text Available This study aimed to evaluate the capacity of hypocalcemic analogues of 1α,25-dihydroxyvitamin D2 (1,25D2 and 1α,25-dihydroxyvitamin D3 (1,25D3 to inhibit regrowth and regulate the stemness-related gene expression in colon cancer cells undergoing renewal after exposure to 5-fluorouracil (5-FU. All of the tested analogues of 1,25D2 equally potently decreased the clonogenicity and the proliferative activity of HT-29 cells which survived the exposure to 5-FU, but differently regulated gene expression of these cells during their renewal. 1,25D2 and analogues (PRI-1907 and PRI-1917, as well as 1,25D3 and analogue PRI-2191, decreased the relative expression level of several stemness-related genes, such as NANOG, OCT3/4, PROM1, SOX2, ALDHA1, CXCR4, in HT-29/5-FU cells during their renewal, in comparison to untreated HT-29/5-FU cells. The other 1,25D2 analogues (PRI-1906 and PRI-1916 were not capable of downregulating the expression of these stemness-related genes as the analogues PRI-1907 and PRI-1917 did. All of the tested vitamin D analogues upregulated CDH1, the gene encoding E-cadherin associated with epithelial phenotype. Out of the series of analogues studied, side-chain branched analogues of 1,25D2 (PRI-1907, PRI-1917 and the analogue of 1,25D3 (PRI-2191 might be used to target cancer cells with stem-like phenotypes that survive conventional chemotherapy.

  18. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2.

    Wu, Haijun; Liang, Yu; Shen, Lin; Shen, Liangfang

    2016-01-01

    MicroRNAs (miRNAs) are a conserved class of ∼22 nucleotide RNAs that playing important roles in various biological processes including chemoresistance. Recently, many studies have revealed that miR-204 is significantly attenuated in colorectal cancer (CRC), suggesting that this miRNA may have a function in CRC. However, whether miR-204 modulates chemosensitivity to 5-fluorouracil (5-Fu) in colorectal cancer is still unclear. In our present study, we discuss this possibility and the potential mechanism exerting this effect. We identified high mobility group protein A2 (HMGA2) as a novel direct target of miR-204 and showed that miR-204 expression was decreased while HMGA2 expression was increased in CRC cell lines. Additionally, both MiR-204 overexpression and HMGA2 inhibition attenuated cell proliferation, whereas forced expression of HMGA2 partly restored the inhibitory effect of miR-204 on HCT116 and SW480 cells. Moreover, the miR-204/HMGA2 axis modulated the resistance of tumor cells to 5-Fu in HCT-116 and SW480 colon cancer cells via activation of the PI3K/AKT pathway. These results demonstrate that the miR-204/HMGA2 axis could play a vital role in the 5-Fu resistance of colon cancer cells. Taken together, our present study elucidated that miR-204 upregulated 5-Fu chemosensitivity via the downregulation of HMGA2 in colorectal cancer and provided significant insight into the mechanism of 5-Fu resistance in colorectal cancer patients. More importantly, our present study suggested that miR-204 has potential as a therapeutic strategy for 5-Fu-resistant colorectal cancer. PMID:27095441

  19. MicroRNA-204 modulates colorectal cancer cell sensitivity in response to 5-fluorouracil-based treatment by targeting high mobility group protein A2

    Haijun Wu

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a conserved class of ∼22 nucleotide RNAs that playing important roles in various biological processes including chemoresistance. Recently, many studies have revealed that miR-204 is significantly attenuated in colorectal cancer (CRC, suggesting that this miRNA may have a function in CRC. However, whether miR-204 modulates chemosensitivity to 5-fluorouracil (5-Fu in colorectal cancer is still unclear. In our present study, we discuss this possibility and the potential mechanism exerting this effect. We identified high mobility group protein A2 (HMGA2 as a novel direct target of miR-204 and showed that miR-204 expression was decreased while HMGA2 expression was increased in CRC cell lines. Additionally, both MiR-204 overexpression and HMGA2 inhibition attenuated cell proliferation, whereas forced expression of HMGA2 partly restored the inhibitory effect of miR-204 on HCT116 and SW480 cells. Moreover, the miR-204/HMGA2 axis modulated the resistance of tumor cells to 5-Fu in HCT-116 and SW480 colon cancer cells via activation of the PI3K/AKT pathway. These results demonstrate that the miR-204/HMGA2 axis could play a vital role in the 5-Fu resistance of colon cancer cells. Taken together, our present study elucidated that miR-204 upregulated 5-Fu chemosensitivity via the downregulation of HMGA2 in colorectal cancer and provided significant insight into the mechanism of 5-Fu resistance in colorectal cancer patients. More importantly, our present study suggested that miR-204 has potential as a therapeutic strategy for 5-Fu-resistant colorectal cancer.

  20. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  1. Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells

    Ming, Xiu-Fen; Viswambharan, Hema; Barandier, Christine; Ruffieux, Jean; Kaibuchi, Kozo; Rusconi, Sandro; Yang, Zhihong

    2002-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB. PMID:12446767

  2. Changes in thymidylate synthase mRNA in blood leukocytes from patients with colorectal cancer after bolus administration of 5-fluorouracil

    Ehrnrooth, E; Sørensen, B; Poulsen, J H;

    2000-01-01

    5-fluorouracil (5-FU) is considered the standard antineoplastic drug of choice for metastatic colorectal cancer. It has been suggested that 5-FU administered as bolus infusion is cytotoxic mainly through an RNA damaging effect. We investigated the effect of i.v. bolus 5-FU 500-600 mg/m2 on the 5-FU...

  3. Phase I and II studies of the combination of recombinant human interferon-gamma and 5-fluorouracil in patients with advanced colorectal carcinoma.

    Ajani, J A; Rios, A A; Ende, K; Abbruzzese, J L; Edwards, C; Faintuch, J S; Saks, S; Gutterman, J U; Levin, B

    1989-04-01

    Based on the in vitro and in vivo data suggesting synergistic cytolysis by the combination of 5-fluorouracil and interferon-gamma against a variety of malignant cell lines including a human colon carcinoma cell line (HT-29), we initiated studies in patients with advanced colon or rectal carcinoma. Forty-six patients received 5-fluorouracil as an intravenous injection on days 1-5 and recombinant human interferon-gamma as an intramuscular injection on days 1-14, followed by a rest period of 14 days; courses were repeated every 28 days. In the phase I study, cohorts of two patients received a stepwise dose level increase to achieve the maximum tolerated dose (MTD), at which a total of six patients were studied. The dose levels constituting the MTD were as follows: 5-fluorouracil (500 g/m2/day) and recombinant gamma-interferon (0.5 mg/m2/day). Four patients achieved a partial response in the phase I study. In the phase II study, 30 patients received therapy at the MTD. Among 29 evaluable patients in the phase II study, two patients achieved a partial response. Common toxicities included malaise, fever, anorexia, nausea and vomiting, and diarrhea. Transient severe myelosuppression was common but did not result in significant morbidity. Our data suggest that the combination of 5-fluorouracil and recombinant gamma-interferon did not have the same antitumor effect in patients as it had in the preclinical experiments. PMID:2499663

  4. Influence of different sugar cryoprotectants on the stability and physico-chemical characteristics of freeze-dried 5-fluorouracil plurilamellar vesicles

    Mohamed Mahmoud Nounou

    2005-07-01

    Full Text Available Lyophilization increases the shelf-life of liposomes by preserving it in a dry form as lyophilized cake to be reconstituted with water immediately prior to administration. Aiming at increasing stability and availability of 5-Fluorouracil liposomal products, 5-Fluorouacil Stable Plurilamellar Vesicles were prepared. Freeze dried liposomal dispersions were prepared with or without cryoprotectants. The cryoprotectants used were glucose, mannitol or trehalose in 1, 2 and 4 grams per gram phospholipids. The results showed that lyophilized cake of liposomes without cryoprotectants was compact and difficult to reconstitute, in comparison with fluffy cakes which reconstituted easily and quickly when using cryoprotectants. The percentage of 5-Fluorouracil retained in liposomes freeze-dried without cryoprotectants was 18.29% ± 0.96% and the percentage of 5-Fluorouracil retained in stable plurilamellar vesicles was 31.22% ± 0.62% using 4 grams trehalose as cryoprotectant per gram of lipid. Physico-chemical and release stability studies showed superior potentials of the lyophilized product after reconstitution in comparison to dispersion product. It may be concluded that all tested sugars have cryoprotectant effects that stabilized liposomes in the freeze dried state, where trehalose offered the most superior cryoprotectant effect for freeze dried 5-fluorouracil liposomes.

  5. Endoscopic Resection and Topical 5-Fluorouracil as an Alternative Treatment to Craniofacial Resection for the Management of Primary Intestinal-Type Sinonasal Adenocarcinoma

    Simon Mackie

    2010-01-01

    Conclusion. Trans-nasal endoscopic resection and topical 5-Fluorouracil could potentially offer an acceptable alternative treatment to the standard of cranio-facial resection. This should be investigated in trials with a longer followup period than this paper in order to directly compare the two treatment modalities.

  6. Formulation, in vitro drug release and in vivo human X-ray investigation of polysaccharide based drug delivery systems for targeting 5-fluorouracil to the colon

    Sidramappa Mallikarjun Chickpetty

    2013-06-01

    Full Text Available The purpose of this research study was to develop 5-fluorouracil compression coated tablets by using biodegradable polysaccharide polymer locust bean gum (LBG and hydroxyl propyl methyl cellulose (HPMC as coating materials. The fast disintegrating core tablets containing 50 mg of 5-fluorouracil were compression coated with LBG and HPMC in different ratios (8:1, 7:2 and 6:3 with a coat weight of 300, 400 and 500 mg. In vitro dissolution data indicated that the formulation (CLH63 with a coat weight of 500 mg containing LBG and HPMC in the ratio 6:3 gave the best release profile (0% in first 5 hour and 96.18% in 24 hours. DSC and FTIR results indicated no possibility of interaction between drug and polymers or other excipients. In vivo human X-ray studies revealed that formulation CLH63 was able to resist breakdown in the stomach and small intestine. The disintegration of the tablet occurred in the colon between 8 to 16 hours of post dose. By the present study, it can be concluded that the LBG and HPMC based compression coated tablets of 5-fluorouracil will be useful strategy for colonic delivery of 5-fluorouracil without being released in upper gastrointestinal region for the safe and effective management of colon cancer.

  7. Phase I and pharmacokinetic study of the polyamine synthesis inhibitor SAM486A in combination with 5-fluorouracil/leucovorin in metastatic colorectal cancer

    L. van Zuylen; C. Mueller; J. Verweij (Jaap); J.A. Ledermann; J. Bridgewater; A. Sparreboom (Alex); F.A.L.M. Eskens (Ferry); P. de Bruijn (Peter); I. Sklenar; A.S.Th. Planting (André); L. Choi; D. Bootle

    2004-01-01

    textabstractPURPOSE: The purpose of our study was to determine the maximum-tolerated dose, dose-limiting toxicity, safety profile, and pharmacokinetics of the polyamine synthesis inhibitor SAM486A given in combination with 5-fluorouracil/leucovorin (5-FU/LV) in cancer patients. EXP

  8. Inhibition of endothelial activation: a new way to treat cerebral malaria?

    2005-09-01

    Full Text Available BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM, remains incompletely understood. However tumor necrosis factor (TNF is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin alpha (LT. METHODS AND FINDINGS: Using an in vitro model of CM based on human brain-derived endothelial cells (HBEC-5i, we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH2-6-Cl-9-[(5-dihydroxyboryl-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum-parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. CONCLUSION: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients.

  9. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. PMID:24096161

  10. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  11. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF).

    Zhang, Jinqiang; Han, Chang; Zhu, Hanqing; Song, Kyoungsub; Wu, Tong

    2013-05-01

    Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy. PMID:23608225

  12. Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity

    Troglitazone, an agonist of peroxisome proliferator activated receptorγ (PPARγ), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 μM) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPARγ independent

  13. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation

    RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-α (TNF-α). siRNA was designed and synthesized targeting tumor necrosis factor-α receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-α expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-α expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia

  14. Effects of 5-fluorouracil on the mitotic activity of onion root tips apical meristem

    Waldemar Lechowicz

    2015-05-01

    Full Text Available The effects of various concentrations of 5-FU on the mitotic activity of onion root tips apical meristem were investigated during 24-hour incubation in 5-FU and postincubation in water. The incubation in 5-FU caused a reversible inhibition of mitotic activity, and waves of the partially synchronised mitoses were observed during the period of postincubation. The most pronounced synchronisation of mitoses was obtained after incubation in 100 mg/l. 5-FU but the mitotic index of the resumed mitotic activity amounted to only one half of the control value. 5-FU was found to cause some cytological changes in meristematic cells such as enlargement of the nucleoli, change in the interphasic nuclei structure, appearance of subchromatid and chromatid aberrations and micronuclei. The effects of 5-FU on nucleic acids and the cell division cycle ace discussed and compared with the effects of 5-FUdR.

  15. Postoperative subconjunctival bevacizumab injection as an adjunct to 5-fluorouracil in the management of scarring after trabeculectomy

    Freiberg FJ

    2013-06-01

    Full Text Available Florentina Joyce Freiberg,1 Juliane Matlach,1 Franz Grehn,1 Sabine Karl,2 Thomas Klink1 1Department of Ophthalmology, Julius Maximilian University, Wuerzburg, Germany; 2Institute of Mathematics, University of Wuerzburg, Wuerzburg, Germany Purpose: Scarring after glaucoma filtering surgery remains the most frequent cause for bleb failure. The aim of this study was to assess if the postoperative injection of bevacizumab reduces the number of postoperative subconjunctival 5-fluorouracil (5-FU injections. Further, the effect of bevacizumab as an adjunct to 5-FU on the intraocular pressure (IOP outcome, bleb morphology, postoperative medications, and complications was evaluated. Methods: Glaucoma patients (N = 61 who underwent trabeculectomy with mitomycin C were analyzed retrospectively (follow-up period of 25 ± 19 months. Surgery was performed exclusively by one experienced glaucoma specialist using a standardized technique. Patients in group 1 received subconjunctival applications of 5-FU postoperatively. Patients in group 2 received 5-FU and subconjunctival injection of bevacizumab. Results: Group 1 had 6.4 ± 3.3 (0–15 (mean ± standard deviation and range, respectively 5-FU injections. Group 2 had 4.0 ± 2.8 (0–12 (mean ± standard deviation and range, respectively 5-FU injections. The added injection of bevacizumab significantly reduced the mean number of 5-FU injections by 2.4 ± 3.08 (P ≤ 0.005. There was no significantly lower IOP in group 2 when compared to group 1. A significant reduction in vascularization and in cork screw vessels could be found in both groups (P < 0.0001, 7 days to last 5-FU, yet there was no difference between the two groups at the last follow-up. Postoperative complications were significantly higher for both groups when more 5-FU injections were applied. (P = 0.008. No significant difference in best corrected visual acuity (P = 0.852 and visual field testing (P = 0.610 between preoperative to last follow

  16. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes

    The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study, the surface modification of TiO2 nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO2 nanotubes used in this work were obtained by sol–gel template synthesis. The ZnS quantum dots were deposited onto TiO2 nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO2/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO2 nanotubes exhibited a high emission at 380 nm (3.26 eV), whereas TiO2/ZnS exhibited an emission at 410 nm (3.02 eV). The TiO2/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells—CHO) suggesting that TiO2/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO2/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO2/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. - Highlights: • TiO2/ZnS nanotubes showed a redshift in fluorescence spectrum. • Cytotoxicity against mammalian cells revealed biocompatibility of the nanotubes. • TiO2/ZnS proved an efficient delivery system for anti-tumor 5-fluorouracil

  17. A novel drug delivery of 5-fluorouracil device based on TiO{sub 2}/ZnS nanotubes

    Mendonça Faria, Henrique Antonio, E-mail: henrique.fisica@ifsc.usp.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil); Nanomedicine and Nanotoxicology Laboratory, São Carlos Institute of Physics, University of São Paulo. Av. Trabalhador São-carlense, 400, Arnold Schimidt, São Carlos, SP CEP: 13566-590 (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Institute of Physics and Chemistry, Federal University of Itajubá (UNIFEI), Av. BPS, 1303, Pinheirinho, Itajubá, MG, PO Box 50, CEP: 37500-903 (Brazil)

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO{sub 2}) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO{sub 2} has typically been within ultraviolet spectrum. In this study, the surface modification of TiO{sub 2} nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO{sub 2} nanotubes used in this work were obtained by sol–gel template synthesis. The ZnS quantum dots were deposited onto TiO{sub 2} nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO{sub 2}/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO{sub 2} nanotubes exhibited a high emission at 380 nm (3.26 eV), whereas TiO{sub 2}/ZnS exhibited an emission at 410 nm (3.02 eV). The TiO{sub 2}/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells—CHO) suggesting that TiO{sub 2}/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO{sub 2}/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO{sub 2}/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. - Highlights: • TiO{sub 2}/ZnS nanotubes showed a redshift in fluorescence spectrum. • Cytotoxicity against mammalian cells revealed biocompatibility of the nanotubes. • TiO{sub 2}/ZnS proved an efficient delivery system for anti-tumor 5-fluorouracil.

  18. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil

    Singh S

    2015-11-01

    Full Text Available Sima Singh,1,* Niranjan G Kotla,2,* Sonia Tomar,3 Balaji Maddiboyina,4 Thomas J Webster,5,6 Dinesh Sharma,7 Omprakash Sunnapu2 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 2Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, 3Department of Pharmaceutics, Ram Gopal College of Pharmacy, Rohtak, Haryana, 4Department of Pharmaceutics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 7Ranbaxy Laboratory Ltd, Gurgaon, Haryana, India *These authors contributed equally to this work Abstract: Targeted drug delivery plays a significant role in disease treatment associated with the colon, affording therapeutic responses for a prolonged period of time with low side effects. Colorectal cancer is the third most common cancer in both men and women with an estimated 102,480 cases of colon cancer and 40,340 cases of rectal cancer in 2013 as reported by the American Cancer Society. In the present investigation, we developed an improved oral delivery system for existing anticancer drugs meant for colon cancer via prebiotic and probiotic approaches. The system comprises three components, namely, nanoparticles of drug coated with natural materials such as guar gum, xanthan gum (that serve as prebiotics, and probiotics. The natural gums play a dual role of protecting the drug in the gastric as well as intestinal conditions to allow its release only in the colon. In vitro results obtained from these experiments indicated the successful targeted delivery of 5-fluorouracil to the colon. Electron microscopy results demonstrated that the prepared nanoparticles were spherical in shape and 200 nm in size. The in vitro release data

  19. Anticancer activity of an extract from needles and twigs of Taxus cuspidata and its synergistic effect as a cocktail with 5-fluorouracil

    Shang Weihu

    2011-12-01

    Full Text Available Abstract Background Botanical medicines are increasingly combined with chemotherapeutics as anticancer drug cocktails. This study aimed to assess the chemotherapeutic potential of an extract of Taxus cuspidata (TC needles and twigs produced by artificial cuttage and its co-effects as a cocktail with 5-fluorouracil (5-FU. Methods Components of TC extract were identified by HPLC fingerprinting. Cytotoxicity analysis was performed by MTT assay or ATP assay. Apoptosis studies were analyzed by H & E, PI, TUNEL staining, as well as Annexin V/PI assay. Cell cycle analysis was performed by flow cytometry. 5-FU concentrations in rat plasma were determined by HPLC and the pharmacokinetic parameters were estimated using 3p87 software. Synergistic efficacy was subjected to median effect analysis with the mutually nonexclusive model using Calcusyn1 software. The significance of differences between values was estimated by using a one-way ANOVA. Results TC extract reached inhibition rates of 70-90% in different human cancer cell lines (HL-60, BGC-823, KB, Bel-7402, and HeLa but only 5-7% in normal mouse T/B lymphocytes, demonstrating the broad-spectrum anticancer activity and low toxicity to normal cells of TC extract in vitro. TC extract inhibited cancer cell growth by inducing apoptosis and G2/M cell cycle arrest. Most interestingly, TC extract and 5-FU, combined as a cocktail, synergistically inhibited the growth of cancer cells in vitro, with Combination Index values (CI ranging from 0.90 to 0.26 at different effect levels from IC50 to IC90 in MCF-7 cells, CI ranging from 0.93 to 0.13 for IC40 to IC90 in PC-3M-1E8 cells, and CI TC extract did not affect the pharmacokinetics of 5-FU in rats. Conclusions The combinational use of the TC extract with 5-FU displays strong cytotoxic synergy in cancer cells and low cytotoxicity in normal cells. These findings suggest that this cocktail may have a potential role in cancer treatment.

  20. 5-Fluorouracil-induced acute reversible heart failure not explained by coronary spasms, myocarditis or takotsubo: lessons from MRI.

    Fakhri, Yama; Dalsgaard, Morten; Nielsen, Dorte; Lav Madsen, Per

    2016-01-01

    A 69-year-old woman presented with arterial hypotension, pulmonary oedema and a severely depressed left ventricular ejection fraction (LVEF) of 25% only 3 days after having received her first treatment for colorectal cancer with 5-fluorouracil (5-FU)-based therapy. The ECG demonstrated widespread ST-segment depression and echocardiography showed uniform hypokinesia of all left ventricular (LV) myocardial segments without signs of regional LV ballooning. Coronary angiography was normal and the patient gained full recovery after receiving treatment with heart failure medication. Interestingly, cardiac MRI scan 9 days later showed a normal LVEF with signs of neither myocardial oedema nor necrosis. Despite the high therapeutic efficacy of 5-FU in treatment of colorectal cancer, it is associated with undesired cardiac toxicities including coronary spasms, toxic inflammation and takotsubo cardiomyopathy. However, our patient did not fulfil the diagnostic criteria for the aforementioned complications. Based on this case report, we discuss alternative mechanisms including myocardial adenosine triphosphate depletion suggested from animal experiments. PMID:27251602

  1. Effect of combined treatment with x-irradiation and 5-fluorouracil in multicellular spheroids of rat glioma

    Kuwahara, Kenji; Katakura, Ryuichi; Suzuki, Jiro; Sasaki, Takehito; Mori, Teruaki

    1987-12-01

    The effect of combined treatment with X-irradiation and 5-fluorouracil (5-Fu) on the spheroids of rat glioma clone-6 cells was compared with that on exponentially grown monolayer cells. Isobolographic analysis showed the effect of the combined treatment to be supra-additive in both multicellular spheroids and monolayer cells when irradiation followed 24 hours of treatment with 5-Fu. X-irradiation prior to 5-Fu treatment showed an additive effect. The effect of X-irradiation on spheroids was enhanced after 3 hours of 5-Fu treatment, whereas its effect on monolayer cells was augmented only when prior 5-Fu treatment exceeded 12 hours. Potentiation of the effect of X-irradiation on spheroids by prior treatment with 5-Fu is thought to be due to reoxygenation of previously hypoxic cells and partial synchronization of proliferating cells. These results suggest that when X-irradiation is applied shortly after 5-Fu treatment the effect on solid tumors is selectively enhanced, while the effect on actively proliferating normal tissues is reduced.

  2. Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

    Ashwanikumar N

    2012-11-01

    Full Text Available N Ashwanikumar,1,* Nisha Asok Kumar,2,* S Asha Nair,2 GS Vinod Kumar11Chemical Biology, 2Cancer Research Programme, Rajiv Gandhi Center for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India *These authors contributed equally to this workAbstract: Methacrylic-based copolymers in drug-delivery systems demonstrate a pH-sensitive drug-releasing behavior in the colon. In this study, copolymers of methacrylic acid and 2-ethyl hexyl acrylate were prepared using a microemulsion polymerization technique. The purified copolymer was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. 5-Fluorouracil (5-FU was entrapped within methacrylic-based copolymers by a solvent evaporation method. The size of the nanogels formed was characterized by transmission electron microscopy and atomic force microscopy. In vitro drug-release studies using phosphate-buffered saline at different pH levels demonstrated the sustained release of 5-FU and its pH dependence. Cell proliferation assay of a human colon tumor colon cancer cell line (HCT-116 was performed and showed that the nanogels containing 5-FU exhibited considerable cytotoxicity in comparison with free 5-FU. Cell uptake of the nanogels was also monitored using confocal microscopy. Western blot analysis and flow cytometry studies confirmed that the nanogels could be successfully used as an efficient vector for pH-sensitive and controlled delivery of drugs specifically targeted to the colon.Keywords: 5-FU, methacrylic polymer, colon cancer, nanogel

  3. Systemic gemcitabine combined with intra-arterial low-dose cisplatin and 5-fluorouracil for advanced hepatocellular carcinoma: Seven cases

    Kiminori Uka; Kazuaki Chayama; Hiroshi Aikata; Shintaro Takaki; Tomokazu Kawaoka; Hiromi Saneto; Daiki Mild; Shoichi Takahashi; Naoyuld Toyota; Katsuhide Ito

    2008-01-01

    The combination of intra-arterial low-dose cisplatin and 5-fluorouracil (5-FU) is effective against advanced hepatocellular carcinoma (HCC).Systemic gemcitabine chemotherapy seems effective in many cancers.We report the results of combination therapy with systemic gemcitabine, intra-arterial low-dose cisplatin and 5-FU (GEMFP).Seven patients with non-resectable advanced HCC were treated with GEMFP.One course of chemotherapy consisted of daily intra-arterial cisplatin (20 mg/body weight/hour on day z, 10 mg/body weight per 0.5 h on d 2-5 and 8-12), followed by 5-FU (250 mg/body weight per 5 h on d 1-5 and 8-12) via an injection port.Gemcitabine at 1000 mg/m2 was administered intravenously at 0.5 h on d 1 and 8.The objective response was 57%.The response to GEMFP was as follows: complete response (no patients), partial response (four patients), stable disease (three patients),and progressive disease (no patients).The median survival period was 8 mo (range, 5-55).With regard to the National Cancer Institute Common Toxicity Criteria (NCI-CTC) grade 3 or 4 adverse reactions, seven (100%),seven, six (86%) and one (14%) patients developed leukopenia, neutropenia, thrombocytopenia and anemia,respectively.GEMFP may potentially be effective for nonresectable advanced HCC, but it has severe hematologic toxicity.

  4. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  5. 5-Fluorouracil Encapsulated Chitosan Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled Release Kinetics

    R. Seda Tığlı Aydın

    2012-01-01

    Full Text Available Nanoparticles consisting of human therapeutic drugs are suggested as a promising strategy for targeted and localized drug delivery to tumor cells. In this study, 5-fluorouracil (5-FU encapsulated chitosan nanoparticles were prepared in order to investigate potentials of localized drug delivery for tumor environment due to pH sensitivity of chitosan nanoparticles. Optimization of chitosan and 5-FU encapsulated nanoparticles production revealed 148.8±1.1 nm and 243.1±17.9 nm particle size diameters with narrow size distributions, which are confirmed by scanning electron microscope (SEM images. The challenge was to investigate drug delivery of 5-FU encapsulated chitosan nanoparticles due to varied pH changes. To achieve this objective, pH sensitivity of prepared chitosan nanoparticle was evaluated and results showed a significant swelling response for pH 5 with particle diameter of ∼450 nm. In vitro release studies indicated a controlled and sustained release of 5-FU from chitosan nanoparticles with the release amounts of 29.1–60.8% due to varied pH environments after 408 h of the incubation period. pH sensitivity is confirmed by mathematical modeling of release kinetics since chitosan nanoparticles showed stimuli-induced release. Results suggested that 5-FU encapsulated chitosan nanoparticles can be launched as pH-responsive smart drug delivery agents for possible applications of cancer treatments.

  6. Assessment of surface concentrations in resorbable ocular implants: controlled drug delivery devices for 5-fluorouracil (5-FU)

    Milne, Peter J.; Gautier, Sandrine; Parel, Jean-Marie A.; Jallet, Valerie

    1997-05-01

    The antineoplastic drug 5-fluorouracil (5-fluoro- 2,4,(1H,3H)-pyrimidinedione; 5-FU) has been used to control proliferation of penetrating fibroblasts and to prevent channel closure following glaucoma filtration surgery (trabeculectomy) or laser sclerectomy. Because of the toxicity of the drug, administration of low dosages slowly over time, at the site of the desired treatment, is indicated for optimum efficacy. Repeated injections of low dosages of the drug represent an undesirable intervention and may also result in unwanted toxicity to the corneal epithelium. A suitable biocompatible and resorbable polymer matrix composed of a poly (D,L-lactic-co-glycolic acid: PLGA) has been admixed with varying amounts of 5-FU and cast as shapes suitable for intracorneal implantation. Slow biodegradation of this polymer over a one to two week period has been shown to result in an acceptably slow drug release mechanism. An issue arising during the clinical evaluation of the efficacy of this drug delivery system was how best to quantify the concentration of 5-FU and its distribution spatially in the solid implant. FT-IR and FT-Raman spectroscopies distinguishes between the drug and the polymer matrix and were used to differentiate and quantitate the 5-FU concentration of the implants.

  7. Hyperfractionated Radiotherapy with Concurrent Cisplatin/5-Fluorouracil for Locoregional Advanced Head and Neck Cancer: Analysis of 105 Consecutive Patients

    David Zaboli

    2012-01-01

    Full Text Available Objective. We reviewed a cohort of patients with previously untreated locoregional advanced head and neck squamous cell carcinoma (HNSCC who received a uniform chemoradiotherapy regimen. Methods. Retrospective review was performed of 105 patients with stage III or IV HNSCC treated at Greater Baltimore Medical Center from 2000 to 2007. Radiation included 125 cGy twice daily for a total 70 Gy to the primary site. Chemotherapy consisted of cisplatin (12 mg/m2/h daily for five days and 5-fluorouracil (600 mg/m2/20 h daily for five days, given with weeks one and six of radiation. All but seven patients with N2 or greater disease received planned neck dissection after chemoradiotherapy. Primary outcomes were overall survival (OS, locoregional control (LRC, and disease-free survival (DFS. Results. Median followup of surviving patients was 57.6 months. Five-year OS was 60%, LRC was 68%, and DFS was 56%. Predictors of increased mortality included age ≥55, female gender, hypopharyngeal primary, and T3/T4 stage. Twelve patients developed locoregional recurrences, and 16 patients developed distant metastases. Eighteen second primary malignancies were diagnosed in 17 patients. Conclusions. The CRT regimen resulted in favorable outcomes. However, locoregional and distant recurrences cause significant mortality and highlight the need for more effective therapies to prevent and manage these events.

  8. Neutropenia predicts better prognosis in patients with metastatic gastric cancer on a combined epirubicin, oxaliplatin and 5-fluorouracil regimen

    Zhao, Xiaoying; Peng, Wei; Sun, Si; Cao, Jun; Ji, Dongmei; Wang, Chenchen; Guo, Weijian; Li, Jin; Yin, Jiliang; Zhu, Xiaodong

    2015-01-01

    Chemotherapy-induced neutropenia (CIN) reportedly indicated better prognosis for some cancers. We retrospectively analyzed 150 evaluable metastatic gastric cancer (MGC) patients who had received first-line EOF5 (combination regimen of epirubicin, oxaliplatin and 5-day continuous infusion of 5-fluorouracil) treatment. We divided patients into three groups according to the worst grade of CIN: absent group (grade 0), moderate group (grade 1–2) and severe group (grade 3–4). Multivariate analyses of overall survival (OS) proved moderate and severe CIN were important prognostic factors whether regarding CIN as a time-varying covariate (TVC) or not. Compared with absent CIN, hazard ratio (HR) for moderate and severe CIN were 0.31 (95% confidential interval (CI): 0.17–0.55; P < 0.001) and 0.36 (95% CI: 0.20–0.64; P = 0.001) respectively with TVC; and were 0.31 (95% CI: 0.17–0.56; P < 0.001) and 0.34 (95% CI: 0.19–0.61; P < 0.001) respectively without TVC. In progression-free survival (PFS) analyses, moderate and severe CIN showed similar results. In the landmark group (n = 122 patients) analyses with TVC, moderate and severe CIN remained prognostic factors for PFS, while only moderate CIN was prognostic factor for OS. CIN predicted longer OS and PFS in MGC patients treated with first-line EOF5 chemotherapy. PMID:26528696

  9. 5-fluorouracil 0.5% cream for multiple actinic or solar keratoses of the face and anterior scalp.

    Gupta, A K; Weiss, J S; Jorizzo, J L

    2001-06-01

    Carac (5-fluorouracil 0.5% cream, Aventis Pharma) was approved by the US FDA in October 2000, for the treatment of multiple actinic or solar keratoses involving the face and anterior scalp. The cream should be applied in a thin film once daily to the skin where actinic keratoses (AKs) are present. When it is applied for 1, 2, or 4 weeks, it is significantly more effective than a vehicle in the management of patients with five or more AKs at pretherapy. Pooled data from the two pivotal trials (n=384) indicate that following 4 weeks of therapy the number of subjects with total AK clearance in the Carac and vehicle groups was 52.9% and 1.6% respectively (p<0.001). Furthermore, the corresponding reduction of AK lesion counts in the Carac and vehicle groups was 82.5% and 19.3%, respectively (p<0.001). Treatment should be continued up to 4 weeks as tolerated by the patient. The most common adverse-effect is facial irritation. PMID:11550079

  10. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells.

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; de la Cueva, Ana; Vargas, Teodoro; Santoyo, Susana; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2013-06-01

    5-Fluorouracil (5-FU) is the most used chemotherapeutic agent in colorectal cancer. However, resistance to this drug is relatively frequent, and new strategies to overcome it are urgently needed. The aim of this work was to determine the antitumor properties of a supercritical fluid rosemary extract (SFRE), alone and in combination with 5-FU, as a potential adjuvant therapy useful for colon cancer patients. This extract has been recognized as a healthy component by the European Food Safety Authority (EFSA). The effects of SFRE both alone and in combination with 5-FU were evaluated in different human colon cancer cells in terms of cell viability, cytotoxicity, and cell transformation. Additionally, colon cancer cells resistant to 5-FU were used to assay the effects of SFRE on drug resistance. Finally, qRT-PCR was performed to ascertain the mechanism by which SFRE potentiates the effect of 5-FU. Our results show that SFRE displays dose-dependent antitumor activities and exerts a synergistic effect in combination with 5-FU on colon cancer cells. Furthermore, SFRE sensitizes 5-FU-resistant cells to the therapeutic activity of this drug, constituting a beneficial agent against both 5-FU sensitive and resistant tumor cells. Gene expression analysis indicates that the enhancement of the effect of 5-FU by SFRE might be explained by the downregulation of TYMS and TK1, enzymes related to 5-FU resistance. PMID:23557932

  11. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina

    2016-01-01

    Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003

  12. Combined effects of protein kinase inhibitors and 5-fluorouracil on CEA expression in human colon cancer cells.

    Prete, Salvatore Pasquale; Rossi, Lorena; Correale, Pier Paolo; Turriziani, Mario; Baier, Susanne; Tamburrelli, Giuliana; De Vecchis, Liana; Bonmassar, Enzo; Aquino, Angelo

    2005-08-01

    Previous studies showed that 5-fluorouracil (5-FU) and Staurosporine (ST), a protein kinase inhibitor (PKI), were able to increase the expression of carcinoembryonic antigen (CEA) in human colon cancer cells. In the present study, we examined the in vitro effects of five PKIs, i.e. ST, 1-5-isoquinolinyl-sulfonyl-2-methylpiperazine (H-7), bisindolylmaleimide-I (BIS), Genistein (GEN), and Herbimycin A (HERB) alone or in combination with 5-FU on CEA expression. C22-20, a clonal subline, derived from colon cancer HT-29 line, selected for low expression of CEA, was used in our experimental model. Among the PKIs tested, only ST, at non-toxic concentrations of 5 nM, was capable of increasing the level of CEA. The other PKIs did not modify CEA expression when used either alone or in combination with 5-FU. Flow cytometric analysis showed that treatment of cells with 5-FU + ST resulted in a synergistic increase of CEA expression, being higher than that obtainable with both agents alone. Moreover, the increase of CEA expression occurred not only in membrane fractions but also in cytosolic compartments, as indicated by Western blot analysis. The present study suggests that ST-mediated induction of CEA expression in cancer cells is PKC independent and could be of potential clinical interest for the development of new diagnostic and/or immunotherapeutic approaches. PMID:15967383

  13. A designed 5-fluorouracil-based bridged silsesquioxane as an autonomous acid-triggered drug-delivery system.

    Giret, Simon; Théron, Christophe; Gallud, Audrey; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel; Wong Chi Man, Michel; Carcel, Carole

    2013-09-16

    Two new prodrugs, bearing two and three 5-fluorouracil (5-FU) units, respectively, have been synthesized and were shown to efficiently treat human breast cancer cells. In addition to 5-FU, they were intended to form complexes through H-bonds to an organo-bridged silane prior to hydrolysis-condensation through sol-gel processes to construct acid-responsive bridged silsesquioxanes (BS). Whereas 5-FU itself and the prodrug bearing two 5-FU units completely leached out from the corresponding materials, the prodrug bearing three 5-FU units was successfully maintained in the resulting BS. Solid-state NMR ((29) Si and (13) C) spectroscopy show that the organic fragments of the organo-bridged silane are retained in the hybrid through covalent bonding and the (1) H NMR spectroscopic analysis provides evidence for the hydrogen-bonding interactions between the prodrug bearing three 5-FU units and the triazine-based hybrid matrix. The complex in the BS is not affected under neutral medium and operates under acidic conditions even under pH as high as 5 to deliver the drug as demonstrated by HPLC analysis and confirmed by FTIR and (13) C NMR spectroscopic studies. Such functional BS are promising materials as carriers to avoid the side effects of the anticancer drug 5-FU thanks to a controlled and targeted drug delivery. PMID:23929826

  14. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells.

    Mayumi Okamoto

    2014-09-01

    Full Text Available Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD. The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.

  15. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release.

    Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping

    2016-01-01

    The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, (1)H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676

  16. Studies on In Vitro Slow-Release Characteristics and Anticancer Effect of 5-Fluorouracil-Loaded Immuno-Nanoparticles

    2007-01-01

    OBJECTIVE To investigate slow-release features of biodegradable anticancer 5-fluorouracil-loaded immunonanoparticles (5-FU INPs), and to assess their tumor cell killing activity in vitro.METHODS The method of vibrating dialysis at a constant temperature,and first-order derivative ultraviolet spectrophotometry were used to determine the drug-releasing character of 5-FU INPs. The methyl thiazolyl tetrazolium (MTT) colorimetric method was employed to assay the killing activity of 5-FU INPs on 5 tumor cell lines at different phases.RESULTS The 5-FU INPs had a favorable slow-release function, with a t1/2 release time of 10.4 days. The 5-FU INPs had a rather strong lethal effect on 5 tumor cell lines resulting in a positive correlativity between the killing activity and the action time and amount of the drug released.CONCLUSION The drug disposition is uniform from the 5-FU INPs,and there is no impact on efficacy of the 5-FU during preparation and degradation of the 5-FU INPs. The 5-FU INPs have a favorable function for drug release, and can maintain an effective killing activity over a long period of time.

  17. Dynamical Interactions of 5-Fluorouracil Drug with Dendritic Peptide Vectors: The Impact of Dendrimer Generation, Charge, Counterions, and Structured Water.

    De Luca, Sergio; Seal, Prasenjit; Ouyang, Defang; Parekh, Harendra S; Kannam, Sridhar Kumar; Smith, Sean C

    2016-06-30

    Molecular dynamics simulations are utilized to investigate the interactions between the skin cancer drug 5-fluorouracil (5FU) and peptide-based dendritic carrier systems. We find that these drug-carrier interactions do not conform to the traditional picture of long-time retention of the drug within a hydrophobic core of the dendrimer carrier. Rather, 5FU, which is moderately soluble in its own right, experiences weak, transient chattering interactions all over the dendrimer, mediated through multiple short-lived hydrogen bonding and close contact events. We find that charge on the periphery of the dendrimer actually has a negative effect on the frequency of drug-carrier interactions due to a counterion screening effect that has not previously been observed. However, charge is nevertheless an important feature since neutral dendrimers are shown to have a significant mutual attraction that can lead to clustering or agglomeration. This clustering is prevented due to charge repulsion for the titrated dendrimers, such that they remain independent in solution. PMID:27267604

  18. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Yang, H.; Gan, L.; Yang, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, R. [School Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xian, Y.; Lu, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  19. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system

  20. Is early post-operative treatment with 5-fluorouracil possible without affecting anastomotic strength in the intestine?

    van der Kolk, B M; de Man, B M; Wobbes, T; Hendriks, T

    1999-01-01

    Early post-operative local or systemic administration of 5-fluorouracil (5-FU) is under investigation as a means to improve outcome after resection of intestinal malignancies. It is therefore quite important to delineate accurately its potentially negative effects on anastomotic repair. Five groups (n = 24) of rats underwent resection and anastomosis of both ileum and colon: a control group and four experimental groups receiving daily 5-FU, starting immediately after operation or after 1, 2 or 3 days. Within each group, the drug (or saline) was delivered either intraperitoneally (n = 12) or intravenously (n = 12). Animals were killed 7 days after operation and healing was assessed by measurement of anastomotic bursting pressure, breaking strength and hydroxyproline content. In all cases, 5-FU treatment from the day of operation or from day 1 significantly (P < 0.025) and severely suppressed wound strength; concomitantly, the anastomotic hydroxyproline content was reduced. Depending on the location of the anastomosis and the route of 5-FU administration, even a period of 3 days between operation and first dosage seemed insufficient to prevent weakening of the anastomosis. The effects of intravenous administration, though qualitatively similar, were quantitatively less dramatic than those observed after intraperitoneal delivery. Post-operative treatment with 5-FU, if started within the first 3 days after operation, is detrimental to anastomotic strength and may compromise anastomotic integrity. © 1999 Cancer Research Campaign PMID:10027328

  1. Risk associated with renal toxicity and hyponatremia in patients with esophageal cancer receiving chemoradiotherapy, including 5-fluorouracil and platinum

    The purpose of this study was to analyze the risk factors for renal toxicity and hyponatremia after primary chemoradiotherapy (CRT), including 5-fluorouracil and platinum in 87 (78 male, 9 female; median age 63.5 years) patients with esophageal cancer, and to prepare a risk classes. The rate of renal toxicity and hyponatremia were 12.6%, 87.4%, respectively. At multivariate analysis, risk factors for renal toxicity were baseline nausea/vomiting and serum creatinine, and for hyponatremia were baseline sodium and C-reactive protein (P<0.05). The toxicity index (TI) consisted of risk factors and regression coefficient. We were stratified patients into three groups according to TI that was calculated for each patient. The group with high value was found to include patients with renal toxicity and hyponatremia with a significantly higher frequency than the group with low value (renal toxicity; 3.4% vs 46.2%, hyponatremia; 2.1% vs 80.0%, P<0.001). This risk classes could be useful to identify patients at high risk for CRT-induced renal toxicity and hyponatremia. (author)

  2. Downregulation of Rap1 promotes 5-fluorouracil-induced apoptosis in hepatocellular carcinoma cell line HepG2.

    Zha, Yong; Gan, Ping; Yao, Qian; Ran, Feng-Ming; Tan, Jing

    2014-04-01

    Recent studies have revealed that repressor/activator protein (Rap1) not only protects telomeres from sister chromatid exchange, but also functions in genomewide transcriptional regulation. Knockdown of Rap1 sensitizes breast cancer cells to adriamycin-induced apoptosis. However, little is known about the role of Rap1 in the progression of hepatocellular carcinoma (HCC). The present study aimed to investigate the functions of Rap1 in HCC progression and to determine whether targeting the Rap1 signaling pathway may be of therapeutic value against HCC. We found knockdown of Rap1 by microRNA (miRNA) interference enhanced significantly apoptosis and 5-fluorouracil (5-FU) chemosensitivity in HepG2 cell line. Rap1 miRNA downregulated nuclear factor-κB p65 (NF-κB p65) expression, and upregulated inhibitor of NF-κB (IκB) expression. In vivo, Rap1 miRNA combined with 5-FU treatment led to a significant reduction of tumor growth as compared with 5-FU alone. The results indicate that Rap1 miRNA can effectively enhance sensitivity of HepG2 cell line to 5-FU chemotherapy in vitro and in vivo. PMID:24549317

  3. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  4. Hypoxia inhibits pulmonary artery endothelial cell apoptosis via the e-selectin/biliverdin reductase pathway.

    Song, Shasha; Yi, Zhi; Zhang, Min; Mao, Min; Fu, Li; Zhao, Xijuan; Liu, Zizhen; Gao, Jiayin; Cao, Weiwei; Liu, Yumei; Shi, Hengyuan; Zhu, Daling

    2016-07-01

    Hypoxia-induced inhibition of apoptosis in pulmonary artery endothelial cells (PAECs) has an important role in pulmonary arterial remodeling leading to aggravated hypoxic pulmonary arterial hypertension. However, the mechanisms involved in the hypoxia-induced inhibition of PAEC apoptosis have not been elucidated. e-selectin and biliverdin reductase (BVR) have been reported to contribute to the cascade of apoptosis in several cell lines but not in PAECs. In the present study, we show that the expression of e-selectin and BVR was both up-regulated by hypoxia in PAECs. Moreover, hypoxia attenuated the decreased cell survival and apoptotic protein expression, and increased DNA fragmentation induced by serum deprivation in the PAECs, which was mediated by the e-selectin/BVR pathway. In addition, by examining the mitochondrial membrane potential and mitochondrial membrane proteins (Bcl-2 and BAX), we show that the mitochondrial-dependent apoptosis pathway was necessary for the e-selectin/BVR pathway inducing the anti-apoptotic effect of hypoxia in PAECs. Taken all together, our data show that the e-selectin/BVR pathway participates in the inhibitory process of hypoxia in PAEC apoptosis which is mediated by the mitochondrial-dependent apoptosis pathway. PMID:27033411

  5. Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells

    Dong Lv; Pei-Lin Cui; Shi-Wei Yao; You-Qing Xu; Zhao-Xu Yang

    2012-01-01

    Objective:To investigate the effects of melatonin on cellular proliferation and endogenous vascular endothelial growth factor (VEGF) expression in pancreatic carcinoma cells (PANC-1).Methods:PANC-1 cells were cultured for this study.The secreted VEGF concentration in the culture medium was determined using ELISA method,VEGF production in the tumor cells was detected by immunocytochemistry,and VEGF mRNA expression was determined by RT-PCR.Results:Higher melatonin concentrations significantly inhibited cellular proliferation,with 1 mmol/L concentration exhibiting the highest inhibitory effect (P<0.01).VEGF concentrations in the cell culture supernatants and intra-cellules were all significantly reduced after melatonin (1 mmol/L) incubation (P<0.05).VEGF mRNA expression decreased markedly in a time-dependent manner during the observation period (P<0.05).Conclusions:High melatonin concentrations markedly inhibited the proliferation of pancreatic carcinoma cells.The endogenous VEGF expression was also suppressed by melatonin incubation.

  6. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells

    YANGPeng-Yuan; RUIYao-Cheng; JINYou-Xin; LITie-Jun; QIUYan; ZHANGLi; WANGJie-Song

    2003-01-01

    AIM:To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liprotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. METHODS: U937 cells were incubated with ox-LDL 80 mg/L for 48h, then ,the foam cells were treated with asODN (0,5,10, and 20μmol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. RESULTS: After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markeldy inhibited the increase of VEGF. After treatment with asODN 20μmol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. CONCLUSION: The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  7. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  8. Heme Oxygenase-1 Inhibits HLA Class I Antibody-Dependent Endothelial Cell Activation.

    Eva Zilian

    Full Text Available Antibody-mediated rejection (AMR is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA class I (HLA I antibodies (Abs play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs. The antioxidant enzyme heme oxygenase (HO-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]. Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.

  9. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG

    2013-01-01

    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  10. TPF (Paclitaxel, Cisplatin, 5-fluorouracil) 療法を施行した進行性陰茎癌の1例

    高本, 大路; 春日, 純; 湯村, 寧; 小泉, 充之; 花井, 孝宏; 石田, 寛明; 服部, 裕介; 寺西, 淳一; 三好, 康秀; 近藤, 慶一; 野口, 和美

    2014-01-01

    54-year-old male was introduced to our hospital in January 2012 for surgical treatment and chemotherapy. The pathological examination revealed well differentiated squamous cell carcinoma of the penis. Computed tomography and magnetic resonance imaging indicated right inguinal and pelvic lymphadenopathy. We diagnosed the tumor to be unresectable radically and administered paclitaxel, cisplatin and 5-fluorouracil (TPF) as neoadjuvant chemotherapy. After 3 courses of chemotherapy, the size of ly...

  11. Chemoradiotherapy with or without consolidation chemotherapy using cisplatin and 5-fluorouracil in anal squamous cell carcinoma: long-term results in 31 patients

    The objectives of this study were to evaluate long-term results of concurrent chemoradiotherapy (CRT) with 5-fluorouracil and cisplatin and the potential benefit of consolidation chemotherapy in patients with anal squamous cell carcinoma (ASCC). Between January 1995 and February 2006, 31 patients with ASCC were treated with CRT. Radiotherapy was administered at 45 Gy over 5 weeks, followed by a boost of 9 Gy to complete or partial responders. Chemotherapy consisted of 5-fluorouracil (750 or 1,000 mg/m2) daily on days 1 to 5 and days 29 to 33; and, cisplatin (75 or 100 mg/m2) on day 2 and day 30. Twelve patients had T3–4 disease, whereas 18 patients presented with lymphadenopathy. Twenty-one (67.7%) received consolidation chemotherapy with the same doses of 5-fluorouracil and cisplatin, repeated every 4 weeks for maximum 4 cycles. Nineteen patients (90.5%) completed all four courses of consolidation chemotherapy. After CRT, 28 patients showed complete responses, while 3 showed partial responses. After a median follow-up period of 72 months, the 5-year overall, disease-free, and colostomy-free survival rates were 84.7%, 82.9% and 96.6%, demonstrating that CRT with 5-fluorouracil and cisplatin yields a good outcome in terms of survival and sphincter preservation. No differences in 5-year OS and DFS rates between patients treated with CRT alone and CRT with consolidation chemotherapy was observed. our study shows that CRT with 5-FU and cisplatin, with or without consolidation chemotherapy, was well tolerated and proved highly encouraging in terms of long-term survival and the preservation of anal function in ASCC. Further trials with a larger patient population are warranted in order to evaluate the potential role of consolidation chemotherapy

  12. The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells

    Kugimiya, Naruji; Nishimoto, Arata; Hosoyama, Tohru; Ueno, Koji; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2015-01-01

    c-MYC overexpression is frequently observed in various cancers including colon cancer and regulates many biological activities such as aberrant cell proliferation, apoptosis, genomic instability, immortalization and drug resistance. However, the mechanism by which c-MYC confers drug resistance remains to be fully elucidated. In this study, we found that the c-MYC expression level in primary colorectal cancer tissues correlated with the recurrence rate following 5-fluorouracil (5-FU)-based adj...

  13. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice

    The human bladder carcinoma cell line 5637 produces hematopoietic growth factors [granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)] and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1α (IL-1α). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1α and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or human IL-1α accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F1 mice. The combination of IL-1α and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression

  14. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Yasui-Furukori, Norio

    2013-01-01

    Norio Yasui-Furukori, Kojiro Hashimoto, Kazutoshi Kubo, Tetsu Tomita Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Abstract: Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 m...

  15. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Yasui-Furukori N; Hashimoto K; Kubo K; Tomita T

    2013-01-01

    Norio Yasui-Furukori, Kojiro Hashimoto, Kazutoshi Kubo, Tetsu Tomita Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Abstract: Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 mg...

  16. Tolerance and toxicity of neoadjuvant docetaxel, cisplatin and 5 fluorouracil regimen in technically unresectable oral cancer in resource limited rural based tertiary cancer center

    V M Patil; Chakraborty, S; P K Shenoy; A Manuprasad; Sajith Babu, T. P.; T Shivkumar; Babu, S.; A Bhatterjee; S Balasubramanian

    2014-01-01

    Background: Recent studies indicate neoadjuvant chemotherapy (NACT) can result in R0 resection in a substantial proportion of patients with technically unresectable oral cavity cancers. However, data regarding the efficacy and safety of docetaxel, cisplatin and 5 fluorouracil (TPF) NACT in our setting is lacking. The present audit was proposed to evaluate the toxicities encountered during administration of this regimen. It was hypothesized that TPF NACT would be considered feasible for routin...

  17. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis.

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-07-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  18. Probiotic factors partially prevent changes to caspases 3 and 7 activation and transepithelial electrical resistance in a model of 5-fluorouracil-induced epithelial cell damage.

    Prisciandaro, Luca D; Geier, Mark S; Chua, Ann E; Butler, Ross N; Cummins, Adrian G; Sander, Guy R; Howarth, Gordon S

    2012-12-01

    The potential efficacy of a probiotic-based preventative strategy against intestinal mucositis has yet to be investigated in detail. We evaluated supernatants (SN) from Escherichia coli Nissle 1917 (EcN) and Lactobacillus rhamnosus GG (LGG) for their capacity to prevent 5-fluorouracil (5-FU)-induced damage to intestinal epithelial cells. A 5-day study was performed. IEC-6 cells were treated daily from days 0 to 3, with 1 mL of PBS (untreated control), de Man Rogosa Sharpe (MRS) broth, tryptone soy roth (TSB), LGG SN, or EcN SN. With the exception of the untreated control cells, all groups were treated with 5-FU (5 μM) for 24 h at day 3. Transepithelial electrical resistance (TEER) was determined on days 3, 4, and 5, while activation of caspases 3 and 7 was determined on days 4 and 5 to assess apoptosis. Pretreatment with LGG SN increased TEER (p < 0.05) compared to controls at day 3. 5-FU administration reduced TEER compared to untreated cells on days 4 and 5. Pretreatment with MRS, LGG SN, TSB, and EcN SN partially prevented the decrease in TEER induced by 5-FU on day 4, while EcN SN also improved TEER compared to its TSB vehicle control. These differences were also observed at day 5, along with significant improvements in TEER in cells treated with LGG and EcN SN compared to healthy controls. 5-FU increased caspase activity on days 4 and 5 compared to controls. At day 4, cells pretreated with MRS, TSB, LGG SN, or EcN SN all displayed reduced caspase activity compared to 5-FU controls, while both SN groups had significantly lower caspase activity than their respective vehicle controls. Caspase activity in cells pretreated with MRS, LGG SN, and EcN SN was also reduced at day 5, compared to 5-FU controls. We conclude that pretreatment with selected probiotic SN could prevent or inhibit enterocyte apoptosis and loss of intestinal barrier function induced by 5-FU, potentially forming the basis of a preventative treatment modality for mucositis. PMID:22526145

  19. Loss of Runt-related transcription factor 3 induces resistance to 5-fluorouracil and cisplatin in hepatocellular carcinoma.

    Kataoka, Junro; Shiraha, Hidenori; Horiguchi, Shigeru; Sawahara, Hiroaki; Uchida, Daisuke; Nagahara, Teruya; Iwamuro, Masaya; Morimoto, Hiroki; Takeuchi, Yasuto; Kuwaki, Kenji; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yagi, Takahito; Yamamoto, Kazuhide; Okada, Hiroyuki

    2016-05-01

    Runt-related transcription factor 3 (RUNX3) is known to function as a tumor suppressor in gastric cancer and other types of cancers, including hepatocellular carcinoma (HCC). However, its role has not been fully elucidated. In the present study, we aimed to evaluate the role of RUNX3 in HCC. We used the human HCC cell lines Hep3B, Huh7 and HLF; RUNX3 cDNA was introduced into Hep3B and Huh7 cells, which were negative for endogenous RUNX3 expression, and RUNX3 siRNA was transfected into HLF cells, which were positive for endogenous RUNX3. We analyzed the expression of RUNX3 and multidrug resistance-associated protein (MRP) by immunoblotting. MTT assays were used to determine the effects of RUNX3 expression on 5-fluorouracil (5-FU) and cisplatin (CDDP) sensitivity. Finally, 23 HCC specimens resected from patients with HCC at Okayama University Hospital were analyzed, and correlations among immunohistochemical expression of RUNX3 protein and MRP protein were evaluated in these specimens. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, MRP3 and MRP5 in the RUNX3-negative cells, whereas knockdown of RUNX3 in the HLF cells stimulated the expression of these MRPs. An inverse correlation between RUNX3 and MRP expression was observed in the HCC tissues. Importantly, loss of RUNX3 expression contributed to 5-FU and CDDP resistance by inducing MRP expression. These data have important implications in the study of chemotherapy resistance in HCC. PMID:26985715

  20. In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil

    This study evaluates tumour cell-killing efficacy of metallic gold nanoparticles (AuNPs)-mediated photo-thermal therapy (PTT) in comparison to 5-fluorouracil (5-FU) as a standard chemotherapeutic drug. It also focuses on the possible genetic abnormalities of both drugs in normal blood lymphocytes. Both 5-FU and light-activated spherical AuNPs of 15± nm diameter were used to target MCF-7 breast cancer cell line. Alkaline comet assay, standard karyotyping and multiplex fluorescent in situ hybridization were applied in order to investigate the respective possible genotoxic and mutagenic side effects that might result from the application of each therapeutic modality. Results showed that the LC25 of AuNPs-mediated PTT was achieved at a concentration of 100 µM for 12-h incubation and exposure to light energy of 50 J/cm2, while the same cytotoxic effect was obtained by incubating the MCF-7 cells with the same concentration of the chemotherapeutic drug 5-FU for 24 h. On the other hand, AuNPs showed insignificant genotoxic effect of DNA damage represented by 4.6 % in comparison to 18.58 % exerted by 5-FU. The chromosomal studies resulted in normal karyotypes for cells treated with AuNPs-mediated PTT, while those treated with 5-FU showed several types of numerical as well as structural chromosomal aberrations. In conclusion, compared to 5-FU, light-activated AuNPs-mediated PTT provides considerable efficacy in breast cancer cells killing with no genetic side effects under the proposed experimental conditions

  1. Fermented Wheat Germ Extract Induced Cell Death and Enhanced Cytotoxicity of Cisplatin and 5-Fluorouracil on Human Hepatocellular Carcinoma Cells

    Cheng-Jeng Tai

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common causes of cancer-related death worldwide. Due to the difficulties of early diagnosis, curative treatments are not available for most patients. Palliative treatments such as chemotherapy are often associated with low response rate, strong adverse effects and limited clinical benefits for patients. The alternative approaches such as fermented wheat germ extract (FWGE with anti-tumor efficacy may provide improvements in the clinical outcome of current therapy for HCC. This study aimed to clarify antitumor efficacy of FWGE and the combination drug effect of FWGE with chemotherapeutic agents, cisplatin and 5-fluorouracil (5-Fu in human HCC cells, HepG2, Hep3B, and HepJ5. The present study indicated that FWGE exhibited potential to suppress HepG2, Hep3B, and HepJ5 cells, with the half maximal inhibitory concentrations (IC50 of FWGE were 0.494, 0.371 and 1.524 mg/mL, respectively. FWGE also induced Poly (Adenosine diphosphate ribose polymerase (PARP associated cell death in Hep3B cells. Moreover, the FWGE treatment further enhanced the cytotoxicity of cisplatin in all tested HCC cells, and cytotoxicity of 5-Fu in a synergistic manner in HepJ5 cells. Collectively, the results identified the anti-tumor efficacy of FWGE in HCC cells and suggested that FWGE can be used as a supplement to effectively improve the tumor suppression efficiency of cisplatin and 5-Fu in HCC cells.

  2. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma

    Salvesen Gerd S

    2009-12-01

    Full Text Available Abstract Background Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. Methods One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min, whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif, collagen content, oxygen stress (measured as malondialdehyd levels, lymphatics and transcapillary transport in the tumors. Results The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%, but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. Conclusion We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.

  3. In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil

    Gomaa, Iman E., E-mail: iman.gomaa@guc.edu.eg; Abdel Gaber, Sara A. [German University in Cairo (GUC), Faculty of Pharmacy and Biotechnology (Egypt); Bhatt, Samarth; Liehr, Thomas [Friedrich Schiller University, Jena University Hospital, Institute of Human Genetics (Germany); Glei, Michael [Friedrich Schiller University, Faculty of Biology and Pharmacy, Institute of Nutrition (Germany); El-Tayeb, Tarek A. [Cairo University, The National Institute for Laser Enhanced Sciences (NILES) (Egypt); Abdel-Kader, Mahmoud H. [German University in Cairo (GUC), Faculty of Pharmacy and Biotechnology (Egypt)

    2015-02-15

    This study evaluates tumour cell-killing efficacy of metallic gold nanoparticles (AuNPs)-mediated photo-thermal therapy (PTT) in comparison to 5-fluorouracil (5-FU) as a standard chemotherapeutic drug. It also focuses on the possible genetic abnormalities of both drugs in normal blood lymphocytes. Both 5-FU and light-activated spherical AuNPs of 15± nm diameter were used to target MCF-7 breast cancer cell line. Alkaline comet assay, standard karyotyping and multiplex fluorescent in situ hybridization were applied in order to investigate the respective possible genotoxic and mutagenic side effects that might result from the application of each therapeutic modality. Results showed that the LC25 of AuNPs-mediated PTT was achieved at a concentration of 100 µM for 12-h incubation and exposure to light energy of 50 J/cm{sup 2}, while the same cytotoxic effect was obtained by incubating the MCF-7 cells with the same concentration of the chemotherapeutic drug 5-FU for 24 h. On the other hand, AuNPs showed insignificant genotoxic effect of DNA damage represented by 4.6 % in comparison to 18.58 % exerted by 5-FU. The chromosomal studies resulted in normal karyotypes for cells treated with AuNPs-mediated PTT, while those treated with 5-FU showed several types of numerical as well as structural chromosomal aberrations. In conclusion, compared to 5-FU, light-activated AuNPs-mediated PTT provides considerable efficacy in breast cancer cells killing with no genetic side effects under the proposed experimental conditions.

  4. Raltitrexed (Tomudex administration in patients with relapsed metastatic colorectal cancer after weekly irinotecan/5-Fluorouracil/Leucovorin chemotherapy

    Vadiaka Maria

    2002-01-01

    Full Text Available Abstract Purpose The present study aimed at evaluating the efficacy of Raltitrexed, a specific thymidilate synthase inhibitor, in patients with advanced colorectal cancer (ACC in relapse (>8 weeks after a prior response or disease stabilization to first-line chemotherapy combination with lrinotecan+5-Fluorouracil (5-FU+Leucovorin (LV. Methods Twenty-five patients with metastatic ACC entered; 17 males/8 females, median age 61 (range: 47–70, median Karnovsky PS: 80 (70–90, and sites of metastases; liver: 21, lung: 4, lymph nodes: 7, peritoneal: 5 and a life expectancy of at least 3 months, were entered in the present pilot study. All patients had progressed after prior chemotherapy with lrinotecan+5-FU+LV. Raltitrexed was administered at a dose of 3 mg/m2 i.v. every 21 days. Results Three patients (12% achieved a partial response (PR, 8 (32% had stable disease (SD, and the remaining 14 (56% developed progressive disease (PD. Median time-to-progression (TTP was 5.5 months (range, 2–8.5, and median overall survival (OS 8 months (range, 4.0–12.5. Toxicity was generally mild; it consisted mainly of myelosuppression; neutropenia grade 1–2: 52%-grade 3: 28%, and anemia grade 1–2 only: 36%. Mild mucositis grade 1–2 occured in 13.5% of patients and was the principal non-hematologic toxicity. Conclusion Response to treatment with Raltitrexed is limited in patients with ACC failing after an initial response or non-progression to the weekly lrinotecan+5-FU+LV combination. However, it appears that a limited number of patients with PR/SD may derive clinical benefit, but final proof would require a randomized study.

  5. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Roberto Madeddu

    2013-08-01

    Full Text Available Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd, which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  6. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Asara, Yolande; Marchal, Juan A.; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A.; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782

  7. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil.

    Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782

  8. H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance.

    Paschall, Amy V; Yang, Dafeng; Lu, Chunwan; Choi, Jeong-Hyeon; Li, Xia; Liu, Feiyan; Figueroa, Mario; Oberlies, Nicholas H; Pearce, Cedric; Bollag, Wendy B; Nayak-Kapoor, Asha; Liu, Kebin

    2015-08-15

    The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL(+) and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression. PMID:26136424

  9. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma

    Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen) has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil) into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO) treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min), whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar) served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif), collagen content, oxygen stress (measured as malondialdehyd levels), lymphatics and transcapillary transport in the tumors. The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%), but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2

  10. Vitamin D analogs enhance the anticancer activity of 5-fluorouracil in an in vivo mouse colon cancer model

    Active vitamin D analogs that are less toxic than calcitriol can be useful in the combined treatment of patients suffering from colon cancer. In the present study we demonstrate, for the first time in an in vivo model system, the biological effect of combined therapy using 5-fluorouracil (5-FU) along with vitamin D analog PRI-2191 (tacalcitol, 1,24-dihydroxyvitamin D3) or PRI-2205 (5,6-trans-isomer of calcipotriol) on colon cancer. We investigated the influence of vitamin D analogs on the anticancer activity of 5-FU or capecitabine in the treatment of mice bearing MC38 mouse colon tumors implanted subcutaneously or orthotopically. The cell cycle distribution, E-cadherin expression and caspase 3/7 activity in vitro were also evaluated. We observed that both PRI-2191 and PRI-2205 significantly enhanced the antitumor activity of 5-FU; but these results depend on the treatment regimen. Applying the optimal schedule of combined therapy we observed a significant decrease in tumor growth, metastasis and also a prolongation of the survival time of mice, in comparison with the administrations of 5-FU given alone. Both combinations indicated a synergistic effect and did not cause toxicity. Moreover, analogs applied after completed course of administration of 5-FU, prolonged the antitumor effect of the drug. Furthermore, when the prodrug of 5-FU, capecitabine, was used, potentiation of its activity was also observed. Our data suggest that vitamin D analogs (especially PRI-2191) might be potentially applied to clinical use in order to enhance the anticancer effect of 5-FU and also prolong its activity against colon cancer. The activity of PRI-2191 is realized through stopping the cells in the G0/G1 cell cycle phase and increasing the expression of E-cadherin

  11. Phase I Trial of Escalating-dose Cisplatin with 5-fluorouracil and Concurrent Radiotherapy in Chinese Patients with Esophageal Cancer

    Zhao,Yan-Nan

    2008-02-01

    Full Text Available We defined the maximum-tolerated dose (MTD of chemoradiotherapy (cisplatin (CDDP with 5-fluorouracil (5-FU and concurrent chemoradiotherapy for Chinese patients with esophageal cancer. Twenty-one previously untreated patients with primary esophageal cancer were entered into this study. Escalating doses of CDDP with 5-FU were administered in a modified Fibonacci sequence, with concurrent conventional fractionation radiotherapy (CFR of 60 Gy or 50 Gy. The starting doses were CDDP 37.5 mg/m2 on day 1, and 5-FU 500 mg/m2 on days 1-5, respectively. The regimen was repeated 4 times every 28 days. If no dose-limiting toxicity (DLT was observed, the next dose level was applied. The procedures were repeated until DLT appeared. The MTD was declared to be 1 dose level below the level at which DLT appeared. DLT was grade 3 radiation-induced esophagitis at a dose level of CDDP 60 mg/m2 with 5-FU 700 mg/m2 and concurrent 60 Gy CFR. MTD was defined as CDDP 52.5 mg/m2 with 5-FU 700 mg/m2 and concurrent 50 Gy CFR. The MTD of CDDP with 5-FU and in concurrent chemoradiotherapy for Chinese patients with esophageal cancer is CDDP 52.5 mg/m2 on day 1 and 5FU 700 mg/m2 on days 1-5, repeated 4 times every 28 days, and concurrent 50 Gy CFR. Further evaluation of this regimen in a prospective phase II trial is ongoing.

  12. PREOPERATIVE CHEMOTHERAPY OF CONTINUOUS INFUSION OF 5-FLUOROURACIL, EPIRUBICIN OR PIRARUBICIN AND CYCLO-PHOSPHAMINE IN OPERABLE PRIMARY BREAST CANCER

    李金锋; 欧阳涛; 王天峰; 林本耀

    2004-01-01

    Objective: To evaluate the feasibility and activity of continuous-infusion of fluorouracil in association with epirubicin or pirarubicin and cyclophosphamine as neoadjuvant regimen in patients with primary breast cancer. Methods: A total of 111 (including 114 breasts) were entered into the study. Chemotherapy consisted of two to six cycles of epirubicin 50 mg/(m2·d) and cyclophosphamide 500 mg/(m2·d) on day 1 and 8, and continuous intravenous administration of 5-fluorouracil 200 mg/(m2·d) from day 1 to 28 with a microinfusional elastomer (CEFci) or pirarubicin 35 mg/(m2·d) on day 1 and 8 instead of epirubicin (CTFci). Results: The overall response rate was 87.7%. Forty-five patients (39.5%) attained a complete clinical response and 27 (23.7%) attained a pathological complete response. CTFci regimen was superior to CEFci regimen in response rate, the pathological complete response rate (pCR) of former regimen was significantly higher than that of latter regimen (34.8% vs. 16.2%) (P=0.022). The pCR rate in ER/PgR negative tumor was significantly higher than that of ER/PgR positive tumor, achieving 33.3% and 7.5% respectively (P=0.001, x2=11.043). There was no relationship between HER-2 expression and tumor response. The toxicity of two regimens was well tolerated. Alopecia was mild in CTFci regimen comparing with CEFci regimen but neutropenia in CTFci regimen was higher than CEFci regimen. Conclusion: Continuous-infusion of fluorouracil in association with epirubicin or pirarubicin and cyclophosphamine is effective regimens as neoadjuvant chemotherapy for primary breast cancer and the toxicity is well tolerated. Pirarubicin regimen was superior to epirubicin regimen in response rate.

  13. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer

    Gupta, Ankita; Tiwari, Gaurav; Tiwari, Ruchi; Srivastava, Rishabh

    2015-01-01

    Introduction: The work was aimed to develop an enteric-coated hydroxypropyl methylcellulose (HPMC) capsules (ECHC) plugged with 5-fluorouracil (5-FU)-loaded microsponges in combination with calcium pectinate beads. Materials and Methods: The modified quasi-emulsion solvent diffusion method was used to prepare microsponges. A 32 factorial design was employed to study the formulation and the effects of independent variables (volume of organic solvent and Eudragit-RS100 content) on dependent variables (particle size, %entrapment efficiency, and %cumulative drug release). The optimized microsponge (F4) was characterized by scanning electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. F4 was plugged along with the calcium pectinate beads in HPMC capsules coated with enteric polymer Eudragit-L100 (Ed-L100) and/or Eudragit-S100 (Ed-S100) in different proportions. An in vitro release study of ECHC was performed in simulated gastric fluid for 2 h, followed by simulated intestinal fluid for next 6 h and then in simulated colonic fluid (in the presence and absence of pectinase enzyme for further 16 h). The optimized formulation was subjected to in vivo roentgenographic and pharmacokinetic studies in New Zealand white rabbits to analyze the in vivo behavior of the developed colon-targeted capsules. Results: Drug release was retarded on coating with Ed-S100 in comparison to a blend of Ed-S100:Ed-L100 coating. The percentage of 5-FU released at the end of 24 h from ECHC3 was 97.83 ± 0.12% in the presence of pectinase whereas in the control study, it was 40.08 ± 0.02%. Conclusion: Thus, enteric-coated HPMC capsules plugged with 5-FU-loaded microsponges and calcium pectinate beads proved to be a promising dosage form for colon targeting. PMID:26682194

  14. Experience with combination of docetaxel, cisplatin plus 5-fluorouracil chemotherapy, and intensity-modulated radiotherapy for locoregionally advanced nasopharyngeal carcinoma

    Our aim was to evaluate the efficacy and toxicity of cisplatin, fluorouracil, and docetaxel chemotherapy plus intensity-modulated radiotherapy (IMRT) for locoregionally advanced nasopharyngeal carcinoma (NPC). Sixty patients with locoregionally advanced NPC were enrolled. Patients received IMRT plus three courses of neoadjuvant chemotherapy and two courses of adjuvant chemotherapy consisting of docetaxel (60 mg/m2/day on day 1), cisplatin (25 mg/m2/day on days 1-3), and 5-fluorouracil (500 mg/m2/day on days 1-3). The overall response rate to neoadjuvant chemotherapy was 89%. Three months after the completion of radiotherapy, 53 (93%) patients achieved complete regression, 3 (5%) achieved partial response (PR), and 1 experienced liver metastasis. However, among the 3 PR patients, 2 patients had no evidence of relapse in the follow-up. With a median follow-up of 27 months (range, 6-43), the 2-year estimated locoregional failure-free survival, distant failure-free survival, progression-free survival, and overall survival were 96.6, 93.3, 89.9, and 98.3%, respectively. Leukopenia was the main adverse effect in chemotherapy; 14 patients experienced grade 3 or grade 4 neutropenia, and 1 patient developed febrile neutropenia. The nonhematological adverse events included alopecia, nausea, vomiting, anorexia, and diarrhea. The incidence of grade 3 acute radiotherapy-related mucositis was 28.3%; no grade 4 acute mucositis was observed. No grade 3 or grade 4 hematological toxicity occurred during radiotherapy. None of the patients had interrupted radiotherapy. The common late adverse effects included xerostomia and hearing impairment. Neoadjuvant-adjuvant chemotherapy using cisplatin, fluorouracil, plus docetaxel combined with IMRT was an effective and well-tolerated alternative for advanced NPC. (author)

  15. Re-evaluation of antitumor effects of combination chemotherapy with interferon-α and 5-fluorouracil for advanced hepatocellular carcinoma

    Munechika Enjoji; Shusuke Morizono; Kazuhiro Kotoh; Motoyuki Kohjima; Yuzuru Miyagi; Tsuyoshi Yoshimoto; Makoto Nakamuta

    2005-01-01

    AIM: To evaluate the efficacy of combination chemotherapy with interferon-α (IFNα) and 5-fluorouracil (5-FU) in patients with advanced hepatocellular carcinoma (HCC).METHODS: Twenty-eight HCC patients in advanced stage were enrolled in the study. They were treated with IFNα/5-FU combination chemotherapy. One cycle of therapy lasted for 4 wk. IFNα (3× 106 units) was subcutaneously injected thrice weekly on days 1, 3, and 5 for 3 wk, and 5-FU (500 mg/d) was administered via the proper hepatic artery for 5 consecutive days per week for 3 wk. No drugs were administered during the 4th wk. The effect of combination chemotherapy was evaluated in each patient after every cycle based on the reduction of tumor volume.RESULTS: After the 1st cycle of therapy, 16 patients showed a partial response (PR, 57.1%) but none showed a complete response (CR, 0%). At the end of therapy,the number of patients who showed a CR, PR, or no response (NR) was 1, 10, and 17, respectively. The response rate for therapy (CR+PR) was 21.5%. Biochemical tests before therapy were compared between responsive (CR+PR) and non-responsive (NR) patients, but no significant differences were found for any of the parameters examined, indicating that no reasonable predictors could be identified in our analysis.CONCLUSION: Attempts should be made to discriminate between responders and non-responders by evaluating tumor size after the first cycle of IFNα/5-FU combination chemotherapy. For non-responders, therapy should not proceed to the next cycle, and instead, different combination of anticancer drugs should be explored.

  16. Structure-function analysis of Leishmania lipophosphoglycan. Distinct domains that mediate binding and inhibition of endothelial cell function.

    Ho, J L; Kim, H K; Sass, P M; He, S; Geng, J; Xu, H; Zhu, B; Turco, S J; Lo, S K

    1996-10-01

    We have shown that Leishmania lipophosphoglycan (LPG) inhibits IL-1 beta gene expression in human monocytes. Here, we show that LPG can bind in a time-dependent manner and suppress endothelial cell activation, possibly via specific LPG domains. Endotoxin (10 ng/ml, 4 h) consistently caused endothelium to increase monocyte adhesion (approximately 20-fold). LPG pretreatment (2 microM, 2 h) completely blocked endotoxin-mediated monocyte adhesion. LPG did not grossly suppress endothelial functions because TNF-alpha- and IL-1 beta-mediated adhesion toward monocytes were not affected. Using four highly purified LPG fragments (namely, repeating phosphodisaccharide (PGM), phosphoglycan, phosphosaccharide core-lyso-alkyl-phosphatidylinositol (core-PI), and lyso-alkyl-phosphatidylinositol (lyso-PI)), we examined whether these fragments can independently inhibit endothelial adhesion. In contrast to that of intact LPG, neither the four LPG fragments (2 microM, 2 h) independently nor the co-addition of phosphoglycan and core-P1 fragments blocked the endotoxin-mediated adhesion to monocytes. To determine whether the fragments can reverse the effect of intact LPG, endothelial cells were first pretreated with the LPG fragments (10 microM, 15 min), followed by the addition of LPG (2 microM). All four LPG fragments fully reversed the effect of LPG. Simultaneous addition of LPG fragments and intact LPG caused only partial suppression (approximately 45%), while the addition of LPG fragments 14 min later had no reversal effect. Flow cytometry revealed that only core-P1 and lyso-P1 competitively inhibited (approximately 30%) LPG binding. Conversely, LPG competed with the binding of [3H]lyso-P1 (approximately 30%). Furthermore, mAb against the PGM reversed (approximately 70%) the effect of LPG. Thus, the lyso-P1 domain on LPG mediates binding to endothelial cells, whereas the PGM domain mediates the cell inhibitory effect. PMID:8816410

  17. Chemistry of Secondary Metabolites (Production, Properties, Biological Activity, etc.: Solubility Study of the Interaction between Pamam G-3 Dendrimer and 5 Fluorouracil in Aqueous Solution

    B. PALECZ

    2014-06-01

    Full Text Available Poly(amidoamine dendrimers (PAMAM are polymeric macromolecules that can find their use as carriers of small ligand molecules such as cosmetics and drugs. 5- Fluorouracil is a potent oncological drug, whose usage is limited because of its relatively high toxicity.The surface and internal layer groups in PAMAM dendrimer belonging to the third (G3 generation create an open-type structure, which facilitate small ligand molecules to bind with them.The formation equilibrium of PAMAM G3 dendrimer complex with an oncologic drug such as 5 fluorouracil (FU in water at room temperature was examined. Using the results of the drug solubility in dendrimer solutions, the maximal number of drug molecules in the dendrimer-drug complex was evaluated. Solubility results show that PAMAM G3 dendrimer can transfer tens 5 fluorouracil molecules in aqueous solution.This research work was funded from the Polish budget appropriations for science in the years 2013-2015, project number IP2012 022372.

  18. Studies of variation in inherent sensitivities to radiation, 5-fluorouracil and methotrexate in a series of human and murine tumor cell lines in vitro

    Clinical studies have reported reduced response rates to subsequent chemotherapy in certain tumors recurring after radiotherapy. These authors have investigated whether there are any correlations between radiation and drug responses in vitro using a range of murine and human tumor cell lines. They have compared sensitivities to X-irradiation and to 24 hr exposures to two widely used antitumor drugs, methotrexate and 5-fluorouracil. The 4 murine lines selected showed a range of radiation responses with Do values of 0.48-0.76 Gy. Methotrexate sensitivities also exhibited an 800-fold difference which appeared to correlate inversely with radiation response. Sensitivity to 5-FU was less variable in these cells and was unrelated to radiation response. In contrast, in the human lines tested, no correlations were observed between drug sensitivities and radiation response. The six lines tested showed a range of radiation responses with Do values of 0.66-1.59 Gy. Methotrexate sensitivities ranged only over a 150-fold concentration but, contrasting with data from the murine cells, no correlation with radiation response was apparent. Similarly, no correlations between response to 5-fluorouracil and radiation or 5-fluorouracil and methotrexate were noted, which is inconsistent with results using murine cells

  19. The use of morphometric and fractal parameters to assess the effects of 5-fluorouracil, interferon and dexamethasone treatment on colonic anastomosis healing: an experimental study in rats

    Zbigniew Plewa

    2011-04-01

    Full Text Available Adjuvant chemotherapy and steroid therapy have been demonstrated to interfere with the wound healing process. The aim of this study was to evaluate the effects of 5-fluorouracil, interferon, and dexamethasone, on the healing of colon anastomosis by assessing morphometric and fractal parameters of the colonic wall. An experimental anastomosis of the ascending colon was performed in 60 male Wistar rats, which were then randomly assigned to four groups. On the second to sixth post-operative days, the rats were administered 5-fluorouracil, interferon-α, dexamethasone, or 0.9% NaCl solution as a control. Macroscopic, histomorphometric and microbiological evaluation was performed in order to assess healing of the anastomosis. In three animals from the dexamethasone group, there was leakage of anastomosis; adhesion formation was highest in the interferon group, and significantly higher than in the control and 5-fluorouracil groups. Histomorphometric parameter alterations were most pronounced on the seventh and fourteenth post-operative days in all treatment groups, with submucosal thickness the most affected parameter. Connective tissue fractal dimension was significantly decreased in those animals treated with interferon and dexamethasone. All three pharmaceutical agents impaired healing of anastomosis, and promoted infection in the anastomosis and skin wound sites. As dexamethasone induced both morphometric and macroscopic alterations, it was considered the most detrimental in this study. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 80–89

  20. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  1. Aspirin inhibits tumor necrosis factor-α-stimulated fractalkine expression in human umbilical vein endothelial cells

    JIANG De-qian; LIU Hong; ZHANG She-bing; ZHANG Xiao-lian

    2009-01-01

    Background Fractalkine is an important chemokine mediating local monocyte accumulation and inflammatory reactions in the vascular wall. Aspirin inhibits inflammatory cytokine expression closely related to atherosclerosis through the way independent of platelet and cyclooxygenase (COX). There has been no report about the effect of aspirin on fractalkine expression. We aimed to determine the fractalkine expression in human umbilical vein endothelial cell (HUVEC) stimulated by tumor necrosis factor (TNF)-α and the effect of aspirin intervention.Methods Six of 8 HUVEC groups received either different concentrations of aspirin (0.02, 0.2, 1.0, 5.0 mmol/L) or 40 μmol/L pyrrolidinecarbodithioc acid (PDTC) or 0.5 μmol/L NS-398. The other two groups were negative control and positive control (TNF-α-stimulated). After being incubated for 24 hours, cells of the 8 groups except the negative control one were stimulated with TNF-a (4 ng/ml) for another 24 hours. After that, the cells were collected for RNA isolation and protein extraction.Results Both mRNA and protein expressions of fractalkine in HUVEC were upregulated by 4 ng/ml TNF-α stimulation,Aspirin inhibited fractalkine expression in a dose-dependent manner at mRNA and protein levels. Nuclear factor-kappa B inhibitor, PDTC, effectively decreased the fractalkine expression. Fractalkine expression was not influenced by COX-2 selective inhibitor NS-398. COX-1 protein expression was not changed by either TNF-α stimulation or aspirin, PDTC,NS-398 intervention. Both mRNA and protein expression of COX-2 in HUVEC were upregulated by 4 ng/ml TNF-α stimulation. Aspirin decreased COX-2 expression in a dose-dependent manner at mRNA and protein levels.Conclusions TNF-α-stimulated fractalkine expression is suppressed by aspirin in a dose-dependent manner through the nuclear factor-kappa B p65 pathway.

  2. The extracellular regulated kinases (ERK) 1/2 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells

    Brandes, R P; Popp, R; G. Ott; Bredenkötter, D; Wallner, C.; Busse, R.; Fleming, I.

    2002-01-01

    Cannabinoids are potent inhibitors of endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations. We set out to study the mechanism underlying this effect and the possible role of cannabinoid-induced changes in intercellular gap junction communication.In cultured endothelial cells, Δ9-tetrahydrocannabinol (Δ9-THC) and the cannabinoid receptor agonist HU210, increased the phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) and inhibited gap junctional communication, as ...

  3. Inhibition of miR-200c Restores Endothelial Function in Diabetic Mice Through Suppression of COX-2.

    Zhang, Huina; Liu, Jian; Qu, Dan; Wang, Li; Luo, Jiang-Yun; Lau, Chi Wai; Liu, Pingsheng; Gao, Zhen; Tipoe, George L; Lee, Hung Kay; Ng, Chi Fai; Ma, Ronald Ching Wan; Yao, Xiaoqiang; Huang, Yu

    2016-05-01

    Endothelial dysfunction plays a crucial role in the development of diabetic vasculopathy. Our initial quantitative PCR results showed an increased miR-200c expression in arteries from diabetic mice and patients with diabetes. However, whether miR-200c is involved in diabetic endothelial dysfunction is unknown. Overexpression of miR-200c impaired endothelium-dependent relaxations (EDRs) in nondiabetic mouse aortas, whereas suppression of miR-200c by anti-miR-200c enhanced EDRs in diabetic db/db mice. miR-200c suppressed ZEB1 expression, and ZEB1 overexpression ameliorated endothelial dysfunction induced by miR-200c or associated with diabetes. More importantly, overexpression of anti-miR-200c or ZEB1 in vivo attenuated miR-200c expression and improved EDRs in db/db mice. Mechanistic study with the use of COX-2(-/-) mice revealed that COX-2 mediated miR-200c-induced endothelial dysfunction and that miR-200c upregulated COX-2 expression in endothelial cells through suppression of ZEB1 and increased production of prostaglandin E2, which also reduced EDR. This study demonstrates for the first time to our knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR-200c rescues EDRs in diabetic mice. These new findings suggest the potential usefulness of miR-200c as the target for drug intervention against diabetic vascular complications. PMID:26822089

  4. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal

    SUN, YAN PING; GU, JUN FEI; TAN, XIAO BIN; WANG, CHUN FEI; JIA, XIAO BIN; FENG, LIANG; LIU, JI PING

    2016-01-01

    Methylglyoxal (MGO)-induced carbonyl stress and pro-inflammatory responses have been suggested to contribute to endothelial dysfunction. Curcumin (Cur), a polyphenolic compound from Curcuma longa L., may protect endothelial cells against carbonyl stress-induced damage by trapping dicarbonyl compounds such as MGO. However, Cur-MGO adducts have not been studied in depth to date and it remains to be known whether Cur-MGO adducts are able to attenuate endothelial damage by trapping MGO. In the present study, 1,2-diaminobenzene was reacted with MGO to ensure the reliability of the reaction system. Cur was demonstrated to trap MGO at a 1:1 ratio to form adducts 1, 2 and 3 within 720 min. The structures of these adducts were identified by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. The kinetic curves of Cur (10−7, 10−6 and 10−5 M) were measured from 0–168 h by fluorescent intensity. Cur significantly inhibited the formation of advanced glycation end products (AGEs). The differences in oxidative damage and the levels of pro-inflammatory cytokines following MGO + HSA or Cur-MGO treatment were investigated in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to the Cur-MGO reaction adducts significantly reduced the intracellular ROS levels and improved cell viability compared with MGO alone. Furthermore, there was a significant reduction in the expression levels of transforming growth factor-β1 and intercellular adhesion molecule-1 following treatment with Cur-MGO adducts compared with MGO alone. These results provide further evidence that the trapping of MGO by Cur inhibits the formation of AGEs. The current study indicates that the protective effect of Cur on carbonyl stress and pro-inflammatory responses in endothelial damage occurs via the trapping of MGO. PMID:26718010

  5. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice.

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion-evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0-t): 12.53±1.65 mg/L(*)h vs 7.80±0.83 and 5.82±0.83 mg/L(*)h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU. PMID:27042001

  6. A comparison between 5-fluorouracil/mitomycin and capecitabine/mitomycin in combination with radiation for anal cancer

    Wan, Dante D.; Schellenberg, Devin; Lim, Howard J.

    2016-01-01

    Background There are no randomized phase III trials comparing 5-fluorouracil/mitomycin (FM) versus capecitabine/mitomycin (CM) in combination with radiotherapy (RT) for locally advanced anal cancer. We aim to evaluate the outcomes of patients treated with FM and CM at our institution. Methods Patients with stage I–III anal cancer who initiated curative-intent RT (50–54 Gy) with either CM or FM between 1998 and 2013 at the BC Cancer Agency were reviewed. Cox proportional models were used to analyze the impact of regimen on disease-free survival (DFS) and anal cancer-specific survival (ACSS). Results A total of 300 patients were included. Baseline characteristics were well-distributed between the groups. A total of 194 patients (64.6%) received FM and 106 (35.3%) CM. The 2-year DFS was 79.7% for CM [95% confidence intervals (95% CI), 71.1–88.3%] and 78.8% for FM (95% CI, 73–84.6%); 2-year ACSS was 88.7% for CM (95% CI, 81.8–95.5%) and 87.5% for FM (95% CI, 82.8–92.2%). On multivariate analysis, only HIV status, clinical T size (≤5 vs. >5 cm), and N status (negative vs. positive) remained as significant prognostic factors for both DFS and ACSS. Chemotherapy regimen (CM vs. FM) had no impact on either DFS [P=0.995; hazard ratios (HR) =0.99; 95% CI, 0.57–1.74] or ACSS (P=0.847; HR =0.93; 95% CI, 0.46–1.86). Conclusions In our population-based study, CM and FM concomitant with RT achieved similar DFS and ACSS. Substitution of capecitabine for infusional 5-FU may therefore be a reasonable option for patients and physicians who prefer to avoid the inconvenience and potential complications of a central infusional device. PMID:27563458

  7. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer.

    Tummala, Shashank; Satish Kumar, M N; Prakash, Ashwati

    2015-07-01

    5-Fluorouracil is used in the treatment of colorectal cancer along with oxaliplatin as first line treatment, but it is having lack of site specificity and poor therapeutic effect. Also toxic effects to healthy cells and unavailability of major proportion of drug at the colon region remain as limitations. Toxic effects prevention and drug localization at colon area was achieved by preparing enteric-coated chitosan polymeric nanoparticles as it can be delivered directly to large bowel. Enteric coating helps in preventing the drug degradation at gastric pH. So the main objective was to prepare chitosan polymeric nanoparticles by solvent evaporation emulsification method by using different ratios of polymer (1:1, 1:2, 1:3, 1:4). Optimized polymer ratio was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), entrapment efficiency and particle size and further subjected to enteric coating. In vitro drug release studies were done using dialysis bag technique using simulated fluids at various pH (1.2, 4.5, 7.5, 7.0) to mimic the GIT tract. 5-FU nanoparticles with drug: polymer ratio of 1:2 and 1:3 has shown better particle size (149 ± 1.28 nm and 138 ± 1.01 nm respectively), entrapment efficiency (48.12 ± 0.08% and 69.18 ± 1.89 respectively). 5-FU E1 has shown better drug release after 4 h and has shown 82% drug release till 24 h in a sustained manner comparable to the non-enteric coated tablets, which released more than 50% of the drug before entering the colon region. So we can conclude that nanoparticles prepared by this method using the same polymer with the optimized ratio can represent as potential drug delivery approach for effective delivery of the active pharmaceutical ingredient to the colorectal tumors. PMID:26106279

  8. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening

    Yu GUO; Jia ZHANG; Ji-Cheng WANG; Feng-Xiang YAN; Bing-Yang ZHU; Hong-Lin HUANG; Duan-Fang LIAO

    2005-01-01

    Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the "adsorption-elution-amplification"procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin- 1 and intercellular adhesion molecule- 1 (ICAM- 1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin-1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin-1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.

  9. 8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation.

    Jiménez-García, Lidia; Través, Paqui G; López-Fontal, Raquel; Herranz, Sandra; Higueras, María Angeles; de Las Heras, Beatriz; Hortelano, Sonsoles; Luque, Alfonso

    2016-07-15

    Endothelial activation contributes to lung inflammatory disorders by inducing leucocyte recruitment to pulmonary parenchyma. Consequently, vascular-targeted therapies constitute promising strategies for the treatment of inflammatory pathologies. In the present study, we evaluated the effect of 8,9-dehydrohispanolone-15,16-lactol diterpene (DT) on lung endothelium during inflammation. Lung endothelial cells pre-treated with DT and activated with lipopolysaccharide (LPS) or tumour necrosis factor-α (TNF-α) exhibited reduced expression of the pro-inflammatory cytokines Cxcl10, Ccl5 and Cxcl1, whereas the anti-inflammatory molecules IL1r2 and IL-10 were induced. Consistent with this result, DT pre-treatment inhibited nuclear factor κB (NF-κB) nuclear translocation, by interfering with IκBα phosphorylation, and consequently NF-κB transcriptional activity in endothelium activated by LPS or TNF-α. Furthermore, DT, probably through p38 signalling, induced transcriptional activation of genes containing activator protein 1 (AP-1)-binding elements. Inhibition of p38 prevented IL1r2 mRNA expression in endothelium incubated with DT alone or in combination with LPS or TNF-α. Accordingly, conditioned medium (CM) from these cells failed to stimulate leucocytes as measured by a reduction in adhesive ability of the leucocyte cell line J774 to fibronectin (FN). Additionally, DT reduced the expression of the endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) after activation. Similarly, expression of VCAM-1 and ICAM-1 molecules on the lung endothelial layer of C57/BL6 mice pre-treated with DT and challenged with LPS were unchanged. Finally, inhibition of vascular adhesion molecule expression by DT decreased the interaction of J774 cells with lung endothelial cells in an inflammatory environment. Our findings establish DT as a novel endothelial inhibitor for the treatment of inflammatory

  10. Tanshinone IIA Induces Heme Oxygenase 1 Expression and Inhibits Cyclic Strain-Induced Interleukin 8 Expression in Vascular Endothelial Cells.

    Zhuang, Shaowei; Cheng, Tzu-Hurng; Shih, Nang-Lang; Liu, Ju-Chi; Chen, Jin-Jer; Hong, Hong-Jye; Chan, Paul

    2016-04-01

    Tanshinone IIA is the main effective component of Salvia miltiorrhiza, known as "Danshen," which has been used in many therapeutic remedies in traditional Chinese medicine. However, the direct effects of tanshinone IIA on vascular endothelial cells have not yet been fully described. In the present study, we demonstrated that tanshinone IIA increased heme oxygenase-1 (HO-1) expression in human umbilical vein endothelial cells. Western blot analyses and experiments with specific inhibitors indicated tanshinone IIA enhanced HO-1 expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt and the subsequent induction of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation. In addition, tanshinone IIA inhibited cyclic strain induced interleukin-8 (IL-8) expression. HO-1 silencing significantly abrogated the repressive effects of tanshinone IIA on strain-induced IL-8 expression, which suggests HO-1 has a role in mediating the effects of tanshinone IIA. This study reports for the first time that tanshinone IIA inhibits cyclic strain-induced IL-8 expression via the induction of HO-1 in endothelial cells, providing valuable new insight into the molecular pathways that may contribute to the effects of tanshinone IIA. PMID:27080946

  11. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  12. A 220-kilodalton glycoprotein in yeast extract inhibits Staphylococcus aureus adherence to human endothelial cells.

    Elliott, D.A.; Hatcher, V B; Lowy, F D

    1991-01-01

    A 220-kDa glycoprotein from yeast extract causes a twofold decrease in S. aureus adherence to human endothelial cells in vitro. Medium constituents can have a significant effect on bacterial adherence interactions.

  13. C-reactive protein decreases interleukin-8 production in human endothelial progenitor cells by inhibition of p38 MAPK pathway

    NAN Jing-long; LI Jian-jun; HE Jian-guo

    2009-01-01

    Background C-reactive protein (CRP) has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation,and it is also speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs).Interleukin-8 (IL-8) is an important mediator of the paracrine mitogenic effect of EPCs,which has direct angiogenic effects on mature endothelial cells.We,herein,investigated the direct effect of CRP on IL-8 production and gene expression in cultured human EPCs.Methods EPCs were isolated from the peripheral venous blood of healthy male volunteers.Cells were cultured in EndoCultTM liquid medium in the absence and presence of CRP at clinically relevant concentrations (5 to 25 μg/ml) for different durations (3 to 48 hours).IL-8 protein and mRNA of cultured EPCs were evaluated using ELISA and real-time PCR.Results The results showed that CRP at a concentration of 10 pg/ml significantly reduced IL-8 secretion of cultured EPCs with a peak at 25 μg/ml,and also decreased mRNA expression in EPCs with a peak at 12 hours.In addition,preincubation of EPCs with SB203580,an inhibitor of p38 mitogen-activated protein kinase (MAPK) decreased CRP inhibition of IL-8 mRNA expression at 12 hours in EPCs.Conclusions Our study,for the first time,demonstrates that CRP directly inhibits EPCs IL-8 secretion,a key cytokine player of angiogenesis induced by EPCs.Inhibition occurred in part via an effect of CRP to active the p38 MAPK signal transduction pathway in EPC.The ability of CRP to inhibit EPCs IL-8 secretion may represent an important mechanism that further links inflammation to cardiovascular disease.

  14. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets

    Cicmil, Milenko; Stevens, Jo; Leduc, Mireille; Bon, Cassian; Gibbins, Jonathan M.

    2002-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the r...

  15. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  16. The role of neoadjuvant radiochemotherapy using low-dose fraction cisplatin and 5-fluorouracil in patients with carcinoma of the esophagus

    We clarified the role of neoadjuvant radiochemotherapy in patients with carcinoma of the esophagus and compared it to neoadjuvant chemotherapy. We retrospectively examined 40 patients diagnosed with advanced thoracic esophageal carcinoma who underwent neoadjuvant therapy followed by esophagectomy between 1993 and 1999. We divided them into 2 groups: radiochemotherapy (17) and chemotherapy (23). Radiochemotherapy patients underwent 40 Gy radiation and low-dose fraction cisplatin (7 mg/body/day, 5 days a week x 4 weeks) and 5-fluorouracil (350 mg/body/day x 28 days). Chemotherapy patients received high-dose fraction cisplatin/5-fluorouracil involving 2 courses of cisplatin (70 mg/m2/day on day1) and 5-fluorouracil (700 mg/m2/day on days 1-5). Complete pathological response was 17.6% in the radiochemotherapy group and 0% in the chemotherapy group respectively. No hospital mortality occurred in the radiochemotherapy group, and 1 of the 23 chemotherapy patients died in the hospital due to postoperative complications. The incidence of residual tumors was significantly higher in the chemotherapy group (34.8%) than in the radiochemotherapy group (0%). Actuarial survival in the radiochemotherapy group at 1 year was 80.2% and at 3 years 53.5%. Actuarial survival in the chemotherapy group at 1 year was 56.5% and at 3 years 30.4%. Histological effectiveness was greater in patients treated with preoperative radiochemotherapy than those treated with preoperative chemotherapy. The combination of radiation and low-dose fraction CDDP/5-FU thus is first choice in neoadjuvant radiochemotherapy for the advanced esophageal carcinoma. (author)

  17. Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells.

    Xu, Man; Bi, Xueyuan; He, Xi; Yu, Xiaojiang; Zhao, Ming; Zang, Weijin

    2016-05-18

    The mitochondrial unfolded protein response (UPR(mt)) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPR(mt) in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPR(mt) in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPR(mt) and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPR(mt) might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR. PMID:27111378

  18. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Yasui-Furukori, Norio; Hashimoto, Kojiro; Kubo, Kazutoshi; Tomita, Tetsu

    2013-01-01

    Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient’s usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also rec...

  19. Irinotecan or oxaliplatin combined with 5-fluorouracil and leucovorin as first-line therapy for advanced colorectal cancer: a meta-analysis

    LIANG Xiao-bo; HOU Sheng-huai; Li Yao-ping; WANG Li-chun; ZHANG Xin; YANG Jun

    2010-01-01

    Background To compare clinical efficacy and toxicity of irinotecan combined with 5-fluorouracil and leucovorin with those of oxaliplatin combined with 5-fiuorouracil and leucovorin as first-line therapy for advanced colorectal cancer.Methods Literature search was performed by keywords "irinotecan", "oxaliplatin" and "colorectal cancer" on all randomized controlled trails reported on irinotecan versus oxaliplatin combined with 5-fluorouracil and leucovorin as first-line therapy for advanced colorectal cancer in MEDLINE, OVID, Springer, Cochrane Controlled Trials Register (CCTR) and CBMdisc (Chinese Biology and Medicine disc) before January 2010. Two authors drew the details of trial design, characteristics of patients, outcomes, and toxicity from the studies included. Data analysis was performed by RevMan 4.2.Results According to the screening criteria, 7 clinical studies with 2095 participants of advanced colorectal cancer were included in this meta analysis. The baseline characteristics of irinotecan group were similar to those of oxaliplatin group.The response rate of oxaliplatin group was higher than that of irinotecan group (relative risk (RR)=0.82, 95% confidence interval (95%CI) (0.70, 0.96), P=0.01), and the median overall survival of oxaliplatin group was longer by 2.04 months than that of irinotecan group (95%CI (-3.54, -0.54), P=0.008). In the comparison of grade 3-4 toxicity between the two groups, the incidences of nausea, emesis, diarrhoea and alopecia in irinotecan group were higher than those in oxaliplatin group (RR=1.94, 95%CI(1.22, 3.09), P=0.005; 1.71, 95%CI (1.34, 2.18), P <0.001; 14.56, 95%CI (4.11,51.66), P <0.0001), respectively. However, the incidence of neurotoxicity, neutropenia and thrombocytopenia in irinotecan group were lower than those in oxaliplatin group (RR=0.06, 95%CI(0.03, 0.14), P <0.00001; 0.70, 95%CI(0.55, 0.91), P=0.006; 0.18, 95%CI(0.05, 0.61), P=0.006), respectively.Conclusions Both irinotecan and oxaliplatin combined

  20. Preparation of magnetite-chitosan/methylcellulose nanospheres by entrapment and adsorption techniques for targeting the anti-cancer drug 5-fluorouracil.

    Şanlı, Oya; Kahraman, Aslı; Kondolot Solak, Ebru; Olukman, Merve

    2016-05-01

    In this work, we have formulated novel nanospheres that could be used in the controlled release of the anticancer drug, 5-fluorouracil (5-FU). The nanospheres are composed of magnetite, containing chitosan (CS) and methylcellulose (MC). The drug entrapment was achieved through the encapsulation and adsorption processes. The effects of the preparation conditions, such as magnetite content, CS/MC ratio, crosslinking concentration, exposure time to glutaraldehyde (GA), and the drug/polymer ratio were investigated for both processes. The 5-FU release was found to follow the Fickian mechanism, and the Langmuir isotherm for the nanospheres was achieved through encapsulation and adsorption processes, respectively. PMID:25677468

  1. Intravenous 5-fluorouracil versus oral doxifluridine as preoperative concurrent chemoradiation for locally advanced rectal cancer. Prospective randomized trails

    Preoperative radiation treatment with concomitant intravenous infusion of 5-fluorouracil (5-FU) is known to be effective in shrinking and downstaging of tumors. However, chemotherapy has often been limited by its toxicity and poor patient compliance. Oral 5-FU is known to have several advantages over conventional intravenous 5-FU infusion such as lower toxicity and higher quality of life without compromising the efficacy of the treatment. The aim of this study was to compare intravenous 5-FU with oral doxifluridine with respect to tumor response, toxicity and quality of life. Twenty-eight patients with rectal cancer, staged as over T3N1 or T4 by transrectal ultrasonography between July 1997 and December 1998, were included in this study. Intravenous 5-FU (450 mg/m2) and leucovorin (20 mg/m2) were given for five consecutive days during the first and fifth weeks of radiation therapy (50.4 Gy) (n=14). Oral doxifluridine (700 mg/m2/day) and leucovorin (20 mg/m2) were given daily during radiation treatment (n=14). Quality of life was scored according to 22 activity items (good, >77; fair, >58; poor, <57). Surgical resection was performed 4 weeks after completion of concurrent chemoradiation treatment. Tumor response was classified into CR (complete remission), PR (partial response; 50% diminution of tumor volume or downstaging) and NR (no response). Tumor response was CR 3/14 (21.4%), PR 7/14 (50%) and NR 4/14 (28.6%) in the IV arm versus CR 2/14 (14.2%), PR 6/14 (42.9%) and NR 6/14 (42.9%) in the Oral arm (p=0.16, 0.23, 0.24), respectively. The quality of life was poor (36.4% versus 33.3%), fair and good (63.6% versus 66.7%) between the IV arm and Oral arm, respectively. Gastrointestinal toxicity was 2/14 (14.3%) in the IV arm versus 5/14 (35.7%) in the Oral arm, respectively. Stomatitis was only observed in the IV arm (1/14, 7.1%). Hematological toxicity was 3/14 (21.4%) in the IV arm versus 4/14 (28.5%) in the Oral arm, respectively. Systemic recurrence during the

  2. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway

    Highlights: ► Omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. ► Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-α in HUVECs. ► Omentin inhibits TNF-α-induced ERK and NF-κB activation in HUVECs. ► Omentin supreeses TNF-α-induced expression of ICAM-1 and VCAM-1 via ERK/NF-κB pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  3. Endothelial derived factors inhibit anoikis of head and neck cancer stem cells

    Campos, Marcia S.; Neiva, Kathleen G.; Meyers, Kristy A.; Krishnamurthy, Sudha; Nör, Jacques E.

    2011-01-01

    Recent evidence demonstrated that cancer stem cells reside in close proximity to blood vessels in human head and neck squamous cell carcinomas (HNSCC). These findings suggest the existence of a supporting perivascular niche for cancer stem cells. Objective The purpose of this study was to evaluate the effect of endothelial cell-secreted factors on the behavior of head and neck cancer stem-like cells (HNCSC). Materials and methods HNCSC were identified by sorting UM-SCC-22A (cell line derived from a primary squamous cell carcinoma of the oropharynx) and UM-SCC-22B (derived from the metastatic lymph node of the same patient) for CD44 expression and ALDH (aldehyde dehydrogenase) activity. HNCSC (ALDH+CD44+) and control (ALDH−CD44−) cells were cultured in ultra-low attachment plates in presence of conditioned medium from primary human endothelial cells. Results ALDH+CD44+ generated more orospheres than control cells when cultured in suspension. The growth factor milieu secreted by endothelial cells protected HNCSC against anoikis. Mechanistic studies revealed that endothelial cell-secreted vascular endothelial growth factor (VEGF) induces proliferation of HNCSC derived from primary UM-SCC-22A, but not from the metastatic UM-SCC-22B. Likewise, blockade of VEGF abrogated endothelial cell-induced Akt phosphorylation in HNCSC derived from UM-SCC-22A while it had a modest effect in Akt phosphorylation in HNCSC from UM-SCC-22B. Conclusion This study revealed that endothelial cells initiate a crosstalk that protect head and neck cancer stem cells against anoikis, and suggest that therapeutic interference with this crosstalk might be beneficial for patients with head and neck cancer. PMID:22014666

  4. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  5. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells.

    Michael L Vasil

    2009-05-01

    Full Text Available The hemolytic phospholipase C (PlcHR expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase. Data presented herein indicate that picomolar (pM concentrations of PlcHR are selectively lethal to endothelial cells (EC. An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS, but not control peptides (i.e., GDGRS, block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation, which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature. Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization. An active site mutant of PlcHR (Thr178Ala exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where

  6. EMJH medium with 5-fluorouracil and nalidixic acid associated with serial dilution technique used to recover Leptospira spp from experimentally contaminated bovine semen Meio de EMJH com 5-fluorouracil e ácido nalidíxico associado a técnica das diluições seriadas usados para recuperar Leptospira spp do sêmen bovino experimentalmente contaminado

    Fabiana Miraglia; Zenaide Maria Moraes; Priscilla Anne Melville; Ricardo Augusto Dias; Silvio Arruda Vasconcellos

    2009-01-01

    Bovine semen experimentally contaminated with Leptospira santarosai serovar Guaricura was submitted to the modified EMJH medium with 5-fluorouracil (300mg/L) and nalidixic acid (20mg/L), named as "selective medium" and using the serial dilution technique, in order to evaluate the percentage of recovery of the added microorganism. The selective EMJH medium was found with higher percentage of recovery of leptospiras and minor losses of samples due to contamination with opportunistic microorgani...

  7. Inhibition of a store-operated Ca2+ entry pathway in human endothelial cells by the isoquinoline derivative LOE 908.

    Encabo, A.; Romanin, C; Birke, F. W.; Kukovetz, W. R.; Groschner, K

    1996-01-01

    1. The novel cation channel blocker, LOE 908, was tested for its effects on Ca2+ entry and membrane currents activated by depletion of intracellular Ca2+ stores in human endothelial cells. 2. LOE 908 inhibited store-operated Ca2+ entry induced by direct depletion of Ca2+ stores with 100 nM thapsigargin or 100 nM ionomycin with an EC50 of 2 microM and 4 microM, respectively. 3. LOE 908 did not affect thapsigargin- or ionomycin-induced Ca2+ release from intracellular stores up to concentrations...

  8. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion - Solvent evaporation method.

    Amasya, Gulin; Badilli, Ulya; Aksu, Buket; Tarimci, Nilufer

    2016-03-10

    With Quality by Design (QbD), a systematic approach involving design and development of all production processes to achieve the final product with a predetermined quality, you work within a design space that determines the critical formulation and process parameters. Verification of the quality of the final product is no longer necessary. In the current study, the QbD approach was used in the preparation of lipid nanoparticle formulations to improve skin penetration of 5-Fluorouracil, a widely-used compound for treating non-melanoma skin cancer. 5-Fluorouracil-loaded lipid nanoparticles were prepared by the W/O/W double emulsion - solvent evaporation method. Artificial neural network software was used to evaluate the data obtained from the lipid nanoparticle formulations, to establish the design space, and to optimize the formulations. Two different artificial neural network models were developed. The limit values of the design space of the inputs and outputs obtained by both models were found to be within the knowledge space. The optimal formulations recommended by the models were prepared and the critical quality attributes belonging to those formulations were assigned. The experimental results remained within the design space limit values. Consequently, optimal formulations with the critical quality attributes determined to achieve the Quality Target Product Profile were successfully obtained within the design space by following the QbD steps. PMID:26780593

  9. Nucleic acid labeling with [3H]orotic acid and nucleotide profile in rats in protein deprivation, enteral and parenteral essential amino acid administration, and 5-fluorouracil treatment

    Rats were fed a 0% casein diet for 1 week, with or without enteral or parenteral administration of essential amino acids, or a 25% casein diet, in one group supplemented with 5-fluorouracil treatment. Ninety minutes before sacrifice the rats were given a tracer of [3H]orotic acid. Incorporation into the acid soluble fraction, RNA, and DNA was determined in liver, small intestine, bone marrow, and kidney. Nucleotide profile was examined in liver and intestine. Protein deficiency caused inter alia a decrease in body weight; a decrease in RNA/DNA ratio and an increase in the specific RNA labeling in liver and kidney; an altered nucleotide profile in the liver; an increase in the nucleotide/DNA and RNA/DNA ratios and a decrease in the specific labeling of the acid soluble fraction, RNA, and DNA in the bone marrow. These changes were prevented to the same extent by giving essential amino acids, either orally or intravenously. The minor changes in intestinal nucleotide profile in protein deprivation were prevented to a slightly larger extent by amino acids orally than parenterally. 5-Fluorouracil treatment gave a decrease in the RNA/DNA ratio in the liver and kidney but an increase in the nucleotide/DNA and RNA/DNA ratios in the bone marrow. Nucleotide profiles were unaltered. The amount of DNA per gram of tissue decreased in bone marrow and increased in kidney. Parenteral administration per se resulted in almost no changes

  10. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    Zhang, Wenjie [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Zhang, Xiaomei, E-mail: zhangxm667@163.com [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Lu, Hong [Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Matsukura, Makoto [Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082 (Japan); Zhao, Jien; Shinohara, Makoto [Ashikita Institution for Developmental Disabilities, 2813 Oaza Ashikita, Ashikita-machi, Ashikita, Kumamoto 869-5461 (Japan)

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  11. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV

  12. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10-5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  13. LXR agonist T0901317 upregulates thrombomodulin expression in glomerular endothelial cells by inhibition of nuclear factor‑κB.

    Ding, Hanlu; Li, Yi; Feng, Yunlin; Chen, Jin; Zhong, Xiang; Wang, Nan; Wang, Wei; Zhang, Ping; Wang, Li

    2016-06-01

    Dysfunction of glomerular endothelial cells (GECs) induces a variety of symptoms, including proteinuria, inflammation, vascular diseases, fibrosis and thrombosis. Thrombomodulin (TM) acts as a vasoprotective molecule on the surface of the vascular endothelial cells to maintain the homeostasis of the endothelial microenvironment by suppressing cellular proliferation, adhesion and inflammatory responses. Liver X receptor (LXR), a nuclear receptor (NR) and a bile acid‑activated transcription factor, regulates metabolism and cholesterol transport, vascular tension and inflammation. Previous studies indicated that TM expression is upregulated by various NRs; however, it is unclear whether pharmacological modulation of LXR may affect TM expression and GEC function. The current study revealed that LXR activation by its agonist, T0901317, upregulates the expression and activity of TM. This effect was mediated specifically through LXR‑α, and not through LXR‑β. Additionally, T0901317 treatment inhibited nuclear factor‑κB (NF‑κB) signaling and the secretion of high glucose‑induced proinflammatory mediators, including tumor necrosis factor‑α and interleukin‑1β in GECs. Co‑immunoprecipitation experiments determined that treatment with T0901317 enhances the interaction between LXR‑α and the transcriptional coactivator, p300, in GEC extracts. The present findings suggest that NF‑κB may be a negative regulator of TM expression, and its removal may contribute to TM gene expression, particularly when in competition with the T0901317‑enhanced formation of the LXR/p300 complex. Therefore, LXR may be a novel molecular target for manipulating TM in GECs, which may advance the treatment of endothelial cell‑associated diseases. PMID:27082844

  14. IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression

    Nielsen, Sebastian Rune; Hammer, Troels; Gibson, Josefine; Pepper, Michael S; Nisato, Riccardo E; Dissing, Steen; Tritsaris, Katerina

    2013-01-01

    OBJECTIVE: IL-27 belongs to the IL-12 family of cytokines and is recognized for its role in Th cell differentiation and as an inhibitor of tumor-angiogenesis. The purpose of this study was to investigate the effect of IL-27 on proliferation of lymphatic endothelial cells to gain insight into the ...

  15. Neferine inhibits the upregulation of CCL5 and CCR5 in vascular endothelial cells during chronic high glucose treatment.

    Li, Guilin; Zhu, Gaochun; Gao, Yun; Xiao, Wen; Xu, Hong; Liu, Shuangmei; Tu, Guihua; Peng, Haiying; Zheng, Chaoran; Liang, Shangdong; Li, Guodong

    2013-04-01

    We investigated whether the expressions of CCL5 and CCR5 participate in dysfunctional changes in human umbilical vein endothelial cells (HUVECs) induced by chronic high glucose treatment and examined whether neferine exerts its therapeutic effects by blocking the development of dysfunctional vascular endothelium. HUVECs were cultured with control or high concentrations of glucose in the absence or presence of neferine for 5 days. Nitric acid reductase method was used to detect the concentration of nitric oxide (NO) released into culture media. The level of intracellular reactive oxygen species (ROS) was measured by fluorescent DCFH-DA probe. The expressions of 84 genes related to endothelial cell biology were assessed by Human Endothelial Cell Biology RT(2) Profiler PCR Array. The expressions of the chemokine CCL5 and its receptor CCR5 were further determined by real-time RT-PCR and western blotting. PCR array indicated that CCL5 was the most significantly upregulated when HUVECs were exposed to chronic high glucose; the intracellular ROS level and the expressions of CCL5 and CCR5 at both mRNA and protein levels were significantly increased, whereas NO production was decreased simultaneously. The increased level of ROS and elevated expressions of CCL5 and CCR5 at high glucose were significantly inhibited by neferine; meanwhile the decreased NO production upon chronic high glucose treatment was relieved. An antioxidant (vitamin E) exerted similar beneficial effects. These data indicate that neferine can reduce the upregulation of CCL5 and CCR5 of vascular endothelium exposure to chronic high glucose and prevent or inhibit subsequent occurrence of inflammation in blood vessels possibly through antioxidation. PMID:23053727

  16. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  17. Cryptotanshinone inhibits TNF-α-induced LOX-1 expression by suppressing reactive oxygen species (ROS) formation in endothelial cells.

    Ran, Xiaoli; Zhao, Wenwen; Li, Wenping; Shi, Jingshan; Chen, Xiuping

    2016-07-01

    Cryptotanshinone (CPT) is a natural compound isolated from traditional Chinese medicine Salvia miltiorrhiza Bunge. In the present study, the regulatory effect and potential mechanisms of CPT on tumor necrosis factor alpha (TNF-α) induced lectin-like receptor for oxidized low density lipoprotein (LOX-1) were investigated. Human umbilical vein endothelial cells (HUVECs) were cultured and the effect of TNF-α on LOX-1 expression at mRNA and protein levels was determined by Real-time PCR and Western blotting respectively. The formation of intracellular ROS was determined with fluorescence probe CM-DCFH2-DA. The endothelial ox-LDL uptake was evaluated with DiI-ox-LDL. The effect of CPT on LOX-1 expression was also evaluated with SD rats. TNF-α induced LOX-1 expression in a dose- and time-dependent manner in endothelial cells. TNF-α induced ROS formation, phosphorylation of NF-κB p65 and ERK, and LOX-1 expression, which were suppressed by rotenone, DPI, NAC, and CPT. NF-κB inhibitor BAY11-7082 and ERK inhibitor PD98059 inhibited TNF-α-induced LOX-1 expression. CPT and NAC suppressed TNF-α-induced LOX-1 expression and phosphorylation of NF-κB p65 and ERK in rat aorta. These data suggested that TNF-α induced LOX-1 expression via ROS activated NF-κB/ERK pathway, which could be inhibited by CPT. This study provides new insights for the anti-atherosclerotic effect of CPT. PMID:27382351

  18. Scutellarein inhibits hypoxia- and moderately-high glucose-induced proliferation and VEGF expression in human retinal endothelial cells

    Rong GAO; Bang-hao ZHU; Shi-bo TANG; Jiang-feng WANG; Jun REN

    2008-01-01

    Aim: This study was designed to examine the effect of scutellarein on high glu-cose- and hypoxia-stimulated proliferation of human retinal endothelial cells (HREC). Methods: HREC were cultured under normal glucose (NG), moderate, and high glucose (NG supplemented with 10 or 25 mmol/L D-glucose) and/or hypoxic (cobalt chloride treated) conditions. Cell proliferation was evaluated by a cell counting kit. The expression of vascular endothelial growth factor (VEGF) was assessed by Western blot analysis. Results: The proliferation of HREC was significantly elevated in response to moderately-high glucose and hypoxic conditions. The combination of high glucose and hypoxia did not have any additive effects on cell proliferation. Consistent with the proliferation data, the expression of VEGF was also upregulated under both moderately-high glucose and hypoxic conditions. The treatment with scutellarein (1 × 10-11-1 × 10-5 mol/L) significantly inhibited high glucose- or hypoxia-induced cell proliferation and VEGF expression. Conclusion: Both hypoxia and moderately-high glucose were potent stimuli for cell proliferation and VEGF expression in HREC without any significant additive effects. Scutellarein is capable of inhibiting the proliferation of HREC, which is possibly related to its ability to suppress the VEGF expression.

  19. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    Research highlights: → STIM1 and TRPC1 are expressed in EPCs. → Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. → TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  20. Comparison of cisplatinum/paclitaxel with cisplatinum/5-fluorouracil as first-line therapy for nonsurgical locally advanced esophageal squamous cell carcinoma patients

    Hu GF

    2016-07-01

    Full Text Available Guofang Hu,1 Zhehai Wang,2 Yuan Wang,1 Qingqing Zhang,1 Ning Tang,1 Jun Guo,2 Liyan Liu,2 Xiao Han2 1School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, 2Department of Oncology, Shandong Cancer Hospital, Shandong University, Jinan, Shandong, People’s Republic of China Background: To retrospectively evaluate the efficacy and toxicity of definitive concurrent chemoradiotherapy (dCRT with cisplatinum/paclitaxel versus cisplatinum/5-fluorouracil in patients with locally advanced esophageal squamous cell carcinoma (ESCC who received nonsurgical treatment. Methods: This study retrospectively evaluated 202 patients with locally advanced ESCC treated at Shandong Cancer Hospital between January 2009 and December 2013. All the patients initially received dCRT, including platinum and paclitaxel or 5-fluorouracil, with concurrent 1.8 or 2 Gy/fraction radiation (total dose, 54–60 Gy. The patient population was divided into two treatment groups: 105 patients who received the cisplatinum/paclitaxel regimen were allocated to group A, and 97 patients who received the cisplatinum/5-fluorouracil regimen were allocated to group B. We compared the progression-free survival (PFS and overall survival (OS by various clinical variables, including prior treatment characteristics, major toxicities (mainly in grade 3 and 4 hematological, and response to dCRT. We used the receiver operating curve analysis to determine the optimal cutoff value of clinical stage and radiation dose. The Kaplan–Meier method was used for survival comparison and Cox regression for multivariate analysis. Results: Median PFS and OS in group A were significantly better compared with group B (median PFS, 15.9 versus 13.0 months, P=0.016 and median OS, 33.9 versus 23.1 months, P=0.014, respectively. The 1- and 2-year survival rates of the two groups were 82.9% versus 76.3%, and 61.9% versus 47.6%, respectively. The complete response and response rate

  1. Prospective trial of concurrent chemoradiotherapy with protracted infusion of 5-fluorouracil and cisplatin for T4 esophageal cancer with or without fistula

    Purpose: A prospective trial of concurrent chemoradiotherapy (CT-RT) with a protracted infusion of 5-fluorouracil and cisplatin was performed to evaluate the safety and efficacy of this protocol for T4 esophageal cancer (UICC 1997). Methods and Materials: Between 1998 and 2000, 28 patients with T4 esophageal squamous cell carcinomas were treated with concurrent CT-RT. Of the 28 patients, 15 had Stage III, 5 Stage IVA, and 8 Stage IV disease. Five of the T4 tumors had evidence of fistula before treatment. Patients received a protracted infusion of 5-fluorouracil 300 mg/m2/24 h on Days 1-14, a 1-h infusion of cisplatin 10 mg/body on Days 1-5 and 8-12, and concurrent radiation at a dose of 30 Gy in 15 fractions during 3 weeks. This schedule was repeated twice, with a 1-week split, for a total RT dose of 60 Gy during 7 weeks for 25 patients. For the remaining 3 patients, 30 Gy of preoperative CT-RT was administered. Results: Of the 25 patients who were treated with the full dose of CT-RT, 14 (56%) completed the two courses of the CT-RT protocol, and 8 patients (32%) received the full dose of RT but a reduced dose of chemotherapy. Eight (32%) of the 25 tumors showed complete regression. Although Grade 3 hematologic toxicities were frequently noted, Grade 4 or more hematologic toxicities were few. Of the 5 T4 fistulous tumors, 2 demonstrated the disappearance of the fistula after CT-RT. However, the worsening or development of an esophageal fistula was noted in 5 patients. The 2-year survival rate for patients with Stage III was 27%, and the median survival time for those with Stage III and Stage IVA+IV was 12 and 5 months, respectively. Conclusion: Despite its significant toxicity for esophageal fistula, this concurrent CT-RT protocol of protracted 5-fluorouracil infusion and cisplatin appears feasible and effective for T4 esophageal cancer with or without fistulas

  2. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis

    Nagai, Toshihiro; Sato, Masato; Kobayashi, Miyuki; Yokoyama, Munetaka; Tani, Yoshiki; Mochida, Joji

    2014-01-01

    Introduction Angiogenesis is an important factor in the development of osteoarthritis (OA). We investigated the efficacy of bevacizumab, an antibody against vascular endothelial growth factor and an inhibitor of angiogenesis, in the treatment of OA using a rabbit model of anterior cruciate ligament transection. Methods First, we evaluated the response of gene expression and histology of the normal joint to bevacizumab treatment. Next, in a rabbit model of OA induced by anterior cruciate ligam...

  3. Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen

    Brauer, Rena; Beck, Inken; Roderfeld, M.; Roeb, E.; Sedláček, Radislav

    2011-01-01

    Roč. 12, - (2011), e38. ISSN 1471-2091 R&D Projects: GA ČR GC301/08/J053; GA ČR GP301/09/P662 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50520514 Keywords : matrix metalloproteinase-19 * angiogenesis * endothelial cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.988, year: 2011

  4. Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells

    Wang Xue; Wang Yong; Lee Seon-Jin; Kim Hong Pyo; Choi Augustine MK; Ryter Stefan W

    2011-01-01

    Abstract Background The extrinsic apoptotic pathway initiates when a death ligand, such as the Fas ligand, interacts with its cell surface receptor (ie., Fas/CD95), forming a death-inducing signaling complex (DISC). The Fas-dependent apoptotic pathway has been implicated in several models of lung or vascular injury. Carbon monoxide, an enzymatic product of heme oxygenase-1, exerts antiapoptotic effects at low concentration in vitro and in vivo. Methods Using mouse lung endothelial cells (MLEC...

  5. Asymmetric dimethylarginine inhibits HSP90 activity in Pulmonary Arterial Endothelial Cells: Role of Mitochondrial Dysfunction

    Sud, Neetu; Wells, Sandra M.; Wiseman, Dean A.; Wilham, Jason; Black, Stephen M.

    2008-01-01

    Increased ADMA levels have been implicated in the pathogenesis of a number of conditions affecting the cardiovascular system. However, the mechanism(s) by which ADMA exerts its effect has not been adequately elucidated. Thus, the purpose of this study was to determine the effect of increased ADMA on nitric oxide (NO) signaling and to begin to elucidate the mechanism by which ADMA acts. Our initial data demonstrated that that ADMA increased NOS uncoupling both in recombinant human endothelial ...

  6. Poly(ADP-ribose) polymerase 1 inhibition protects human aortic endothelial cells against LPS-induced inflammation response

    Xiaonu Peng; Wenjun Li; Wei Zhang

    2012-01-01

    Atherosclerosis is a chronic inflammatory disease.Tolllike receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response.Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes.In this study,we investigated the role and the underlying mechanisms of PARP1 on lipopolysaccharide (LPS)-induced inflammation in human aortic endothelial cells.Compared with the control,LPS stimulation increased the protein expression of TLR4 and PARP1.TLR4 inhibition reduced LPS-induced upregulation of inducible nitric oxide synthase (iNOS) and ICAM-1 as well as PARP1. Nuclear factor κB (NF-κB) inhibition decreased ICAM-1 and iNOS expression.Inhibition of PARP1 decreased protein expression of inflammatory cytokines induced by LPS stimulation,probably through preventing NF-KB nuclear translocation. Our study demonstrated that LPS increased ICAM-1 and iNOS expression via TLR4/PARP1/NF-KB pathway.PARP1 might be an indispensable factor in TLR4-mediated inflammation after LPS stimulation.PARP1 inhibition might shed light on the treatment of LPS-induced inflammatory cytokines expression during atherosclerosis.

  7. 乳腺癌耐受蛋白介导5-氟脲嘧啶的耐受及机制探讨%Breast Cancer Resistance Protein Mediates 5-Fluorouracil Resistance and Its Mechanism

    袁建辉; 贺智敏; 吕辉; 余艳辉; 陈主初

    2005-01-01

    AIM To filtrate breast cancer resistance protein(BCRP)-mediated resistance agents and investigate the mechanism,so as to provide valuable datum for optimization clinical chemotherapy scheme to tumor with evaluation marker of BCRP expression. METHODS MTT assay was used to filtrate BCRP-mediated resistance agents with PA317/Tet-on/TRE-BCRP cell of different expression levels of BCRP after treated with different concentration anticancer agents. High performance liquid chromatography(HPLC) was applied to measure relative dose of intracellular retention resistance agents. Nuclear DNA fluorescence dye,Hochest 33258, staining and flow cytometry were adopted to detect apoptotic cells after treated with drugs. RESULTS There were shown increasing durg-resistance to 5-fluorouracil,methotrexate, doxirubicin, pirarubicin,etoposide and mitoxantrone followed with increasing expression of BCRP on PA317/Tet-on/TRE-BCRP cells(P<0.05, n=3),but shown sensitive to paclitaxel, cisplatin, vincristine, mitomycin and vindesine. There also was shown significant negative correlation between the intracellular retention dose of 5-fluorouracil with different expression of BCRP(r=-0.885, P<0.05, n=3).There were shown parallel results of that decreasing cellular apoptotic rate with increasing cellular expression of BCRP after treated with 5-fluorouracil by fluorescence dye staining and flow cytometry(P<0.05, n=3),and also shown significate rise of the apoptotic rate of BCRP expression cells after treated with Ko143 (P<0.05, n=3). Every group of cells could be different extently blocked in phase of G0/G1 treated with 5-fluorouracil. CONCLUSION Resistance of 5-fluorouracil could be especially mediated by conjugated with BCRP and acted as drug exclude-pump substrate. Cellular ability resistant to 5-fluorouracil-induced apoptosis could be reinforced by BCRP expression.

  8. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Yasui-Furukori, Norio; Hashimoto, Kojiro; Kubo, Kazutoshi; Tomita, Tetsu

    2013-01-01

    Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient’s usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also receiving TS-1. Retrospective analyses showed plasma concentration of paliperidone was consistently lower during the treatment with TS-1 than without TS-1. This case suggests there is drug interaction between paliperidone extended-release tablets and TS-1. PMID:23487437

  9. Interaction between paliperidone extended release and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient

    Yasui-Furukori N

    2013-03-01

    Full Text Available Norio Yasui-Furukori, Kojiro Hashimoto, Kazutoshi Kubo, Tetsu Tomita Department of Neuropsychiatry, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Abstract: Until now there has been no information available on drug interaction between paliperidone and TS-1®, an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also receiving TS-1. Retrospective analyses showed plasma concentration of paliperidone was consistently lower during the treatment with TS-1 than without TS-1. This case suggests there is drug interaction between paliperidone extended-release tablets and TS-1. Keywords: schizophrenia, antipsychotic, OROS, diarrhea, Positive and Negative Syndrome Scale

  10. Controlled release of 5-fluorouracil or mitomycin-C from polymer matrix: preparation by radiation polymerization and in vivo evaluation of the anticancer drug/polymer composites

    Polymer tablets containing anticancer drugs such as 5-fluorouracil (5-FU) and mitomycin-C (MMC) have been prepared to evaluate the drug-release characteristics in vitro and the effect on local control of mouse solid tumors in vivo. Radiation-induced polymerization of hydrophilic monomers (2-hydroxyethyl methacrylate and related monomers) at low temperature (-80degC) was performed to immobilize 5-FU or MMC in the polymer matrix. The tablet consisting of drug/polymer was buried surgically near solid tumors of striate muscle sarcoma (S180) transplanted to Kunming mice and the therapeutic effect of slow releasing drugs was evaluated in vivo by reference to intraperitoneal (i.p.) injection of the corresponding drugs. The slow releasing drugs led to high chemotherapeutic gain for local control of solid tumors with remarkable reduction of toxic side effect of the drugs. (author)

  11. A Phase 1/2 Study of Definitive Chemoradiation Therapy Using Docetaxel, Nedaplatin, and 5-Fluorouracil (DNF-R) for Esophageal Cancer

    Purpose: Patient survival in esophageal cancer (EC) remains poor. The purpose of this study was to investigate a regimen of definitive chemoradiation therapy (CRT) that exerts good local control of EC. We performed a phase 1/2 study to assess the safety and efficacy of CRT with docetaxel, nedaplatin, and 5-fluorouracil (DNF-R). Methods and Materials: Eligible patients presented with stage IB to IV EC. Patients received 2 cycles of docetaxel (20, 30, or 40 mg/m2) and nedaplatin (50 mg/m2) on days 1 and 8 and a continuous infusion of 5-fluorouracil (400 mg/m2/day) on days 1 to 5 and 8 to 12, every 5 weeks, with concurrent radiation therapy (59.4 Gy/33 fractions). The recommended dose (RD) was determined using a 3 + 3 design. Results: In the phase 1 study, the dose-limiting toxicities were neutropenia and thrombocytopenia. The RD of docetaxel was determined to be 20 mg/m2. In the phase 2 study, grade 3 to 4 acute toxicities included neutropenia (42.8%), febrile neutropenia (7.14%), thrombocytopenia (17.9%), and esophagitis (21.4%). Grade 3 to 4 late radiation toxicity included esophagostenosis (10.7%). The complete response rate was 82.1% (95% confidence interval: 67.9-96.3%). Both the median progression-free survival and overall survival were 41.2 months. Conclusions: DNF-R showed good tolerability and strong antitumor activity, suggesting that it is a potentially effective therapeutic regimen for EC

  12. Radiotherapy and Concomitant Intra-Arterial Docetaxel Combined With Systemic 5-Fluorouracil and Cisplatin for Oropharyngeal Cancer: A Preliminary Report-Improvement of Locoregional Control of Oropharyngeal Cancer

    Purpose: To confirm the advantage of chemoradiotherapy using intra-arterial docetaxel with intravenous cisplatin and 5-fluorouracil. Patients and Methods: A total of 26 oropharyngeal cancer patients (1, 2, 2, and 21 patients had Stage I, II, III, and IVa-IVc, respectively) were treated with two sessions of this chemoradiotherapy regimen. External beam radiotherapy was delivered using large portals that included the primary site and the regional lymph nodes initially (range, 40-41.4 Gy) and the metastatic lymph nodes later (60 or 72 Gy). All tumor-supplying branches of the carotid arteries were cannulated, and 40 mg/m2 docetaxel was individually infused on Day 1. The other systemic chemotherapy agents included 60 mg/m2 cisplatin on Day 2 and 500 mg/m2 5-fluorouracil on Days 2-6. Results: The primary response of the tumor was complete in 21 (81%), partial in 4 (15%), and progressive in 1 patient. Grade 4 mucositis, leukopenia, and dermatitis was observed in 3, 2, and 1 patients, respectively. During a median follow-up of 10 months, the disease recurred at the primary site and at a distant organ in 2 (8%) and 3 (12%) patients, respectively. Three patients died because of cancer progression. Two patients (8%) with a partial response were compromised by lethal bleeding from the tumor bed or chemotherapeutic toxicity. The 3-year locoregional control rate and the 3-year overall survival rate was 73% and 77%, respectively. Conclusion: This method resulted in an excellent primary tumor response rate (96%) and moderate acute toxicity. Additional follow-up is required to ascertain the usefulness of this modality.

  13. A Phase 1/2 Study of Definitive Chemoradiation Therapy Using Docetaxel, Nedaplatin, and 5-Fluorouracil (DNF-R) for Esophageal Cancer

    Ohnuma, Hiroyuki; Sato, Yasushi; Hirakawa, Masahiro; Okagawa, Yutaka; Osuga, Takahiro; Hayashi, Tsuyoshi; Sato, Tsutomu; Miyanishi, Koji; Kobune, Masayoshi; Takimoto, Rishu [Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo (Japan); Sagawa, Tamotsu [Division of Gastroenterology, Hokkaido Cancer Center, Sapporo (Japan); Hori, Masakazu; Someya, Masanori; Nakata, Kensei; Sakata, Koh-ichi [Department of Radiology, Sapporo Medical University School of Medicine, Sapporo (Japan); Takayama, Tetsuji [Department of Gastroenterology and Oncology, University of Tokushima, Tokushima (Japan); Kato, Junji, E-mail: jkato@sapmed.ac.jp [Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo (Japan)

    2015-10-01

    Purpose: Patient survival in esophageal cancer (EC) remains poor. The purpose of this study was to investigate a regimen of definitive chemoradiation therapy (CRT) that exerts good local control of EC. We performed a phase 1/2 study to assess the safety and efficacy of CRT with docetaxel, nedaplatin, and 5-fluorouracil (DNF-R). Methods and Materials: Eligible patients presented with stage IB to IV EC. Patients received 2 cycles of docetaxel (20, 30, or 40 mg/m{sup 2}) and nedaplatin (50 mg/m{sup 2}) on days 1 and 8 and a continuous infusion of 5-fluorouracil (400 mg/m{sup 2}/day) on days 1 to 5 and 8 to 12, every 5 weeks, with concurrent radiation therapy (59.4 Gy/33 fractions). The recommended dose (RD) was determined using a 3 + 3 design. Results: In the phase 1 study, the dose-limiting toxicities were neutropenia and thrombocytopenia. The RD of docetaxel was determined to be 20 mg/m{sup 2}. In the phase 2 study, grade 3 to 4 acute toxicities included neutropenia (42.8%), febrile neutropenia (7.14%), thrombocytopenia (17.9%), and esophagitis (21.4%). Grade 3 to 4 late radiation toxicity included esophagostenosis (10.7%). The complete response rate was 82.1% (95% confidence interval: 67.9-96.3%). Both the median progression-free survival and overall survival were 41.2 months. Conclusions: DNF-R showed good tolerability and strong antitumor activity, suggesting that it is a potentially effective therapeutic regimen for EC.

  14. Tolerance and toxicity of neoadjuvant docetaxel, cisplatin and 5 fluorouracil regimen in technically unresectable oral cancer in resource limited rural based tertiary cancer center

    V M Patil

    2014-01-01

    Full Text Available Background: Recent studies indicate neoadjuvant chemotherapy (NACT can result in R0 resection in a substantial proportion of patients with technically unresectable oral cavity cancers. However, data regarding the efficacy and safety of docetaxel, cisplatin and 5 fluorouracil (TPF NACT in our setting is lacking. The present audit was proposed to evaluate the toxicities encountered during administration of this regimen. It was hypothesized that TPF NACT would be considered feasible for routine administration if an average relative dose intensity (ARDI of ≥0.90 or more in at least 70% of the patients. Materials and Methods: Technically unresectable oral cancers with Eastern Cooperative Oncology Group PS 0-2, with biopsy proven squamous cell carcinoma underwent two cycles of NACT with TPF regimen. Toxicity and response rates were noted following the CTCAE 4.03 and RECIST criteria. Descriptive analysis of completion rates (completing 2 cycles of planned chemotherapy with ARDI of 0.85 or more, reason for delay, toxicity, and response are presented. Results: The NACT was completed by all patients. The number of subjects who completed all planned cycles of chemotherapy are with the ARDI of the delivered chemotherapy been equal to or >0.85 was 11 (91.67%. All toxicity inclusive Grade 3-5 toxicity was seen in 11 patients (91.67%. The response rate of chemotherapy was 83.33%. There were three complete response, seven partial response, and two stable disease seen post NACT in this study. Conclusion: Docetaxel, cisplatin and 5 fluorouracil regimen can be routinely administered at our center with the supportive care methods and precautionary methods used in our study.

  15. Concurrent Liposomal Cisplatin (Lipoplatin), 5-Fluorouracil and Radiotherapy for the Treatment of Locally Advanced Gastric Cancer: A Phase I/II Study

    Purpose: Liposomal drugs have a better tolerance profile and are highly accumulated in the tumor environment, properties that promise an optimal radiosensitization. We investigated the feasibility of the combination of 5-fluorouracil/lecovorin-based radio-chemotherapy with the administration of high weekly dose of a liposomal platinum formulation (LipoplatinTM). Methods and Materials: Lipoplatin was given at a dose of 120mg/m2/week, 5-fluorouracil at 400mg/m2/week (Day 1), whereas radiotherapy was given through 3.5-Gy fractions on Days 2, 3, and 4. Two groups of 6 patients received four and five consecutive cycles, respectively. Results: Minimal nephrotoxicity (18.2% Grade 1) and neutropenia (9% Grade 3) was noted. Fatigue Grade 2 appeared in 25% of cases. Abdominal discomfort was reported by 18% of patients. No liver, kidney, gastric, or intestinal severe acute or late sequellae were documented, although the median follow-up of 9 months is certainly too low to allow safe conclusions. A net improvement in the performance status (from a median of 1 to 0) was recorded 2 months after the end of therapy. The response rates assessed with computed tomography, endoscopy, and biopsies confirmed 33% (2 of 6) tumor disappearance in patients treated with four cycles, which reached 80% (4 of 5) in patients receiving five cycles. Conclusions: Lipoplatin radio-chemotherapy is feasible, with minor hematological and nonhematological toxicity. The high complete response rates obtained support the testing of Lipoplatin in the adjuvant postoperative or preoperative radio-chemotherapy setting for the treatment of gastric cancer.

  16. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells.

    Thangjam, Gagan S; Birmpas, Charalampos; Barabutis, Nektarios; Gregory, Betsy W; Clemens, Mary Ann; Newton, Joseph R; Fulton, David; Catravas, John D

    2016-05-15

    The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation. PMID:27036868

  17. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  18. Inhibition of a store-operated Ca2+ entry pathway in human endothelial cells by the isoquinoline derivative LOE 908.

    Encabo, A; Romanin, C; Birke, F W; Kukovetz, W R; Groschner, K

    1996-10-01

    1. The novel cation channel blocker, LOE 908, was tested for its effects on Ca2+ entry and membrane currents activated by depletion of intracellular Ca2+ stores in human endothelial cells. 2. LOE 908 inhibited store-operated Ca2+ entry induced by direct depletion of Ca2+ stores with 100 nM thapsigargin or 100 nM ionomycin with an EC50 of 2 microM and 4 microM, respectively. 3. LOE 908 did not affect thapsigargin- or ionomycin-induced Ca2+ release from intracellular stores up to concentrations of 3 microM. 4. LOE 908 reversibly suppressed thapsigargin- as well as ionomycin-induced whole-cell membrane currents. 5. The LOE 908-sensitive membrane conductance corresponded to a cation permeability of 5.5 and 6.9 fold selectivity for Ca2+ over K+ in the presence of thapsigargin and ionomycin, respectively. 6. Our results suggest that the isoquinoline, LOE 908 is a novel, potent inhibitor of the store-operated (capacitive) Ca2+ entry pathway in endothelial cells. PMID:8904644

  19. Inhibitive effects of anti-oxidative vitamins on mannitol-induced apoptosis of vascular endothelial cells

    PAN Kai-yu; SHEN Mei-ping; YE Zhi-hong; DAI Xiao-na; SHANG Shi-qiang

    2006-01-01

    Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was performed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D).Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression.Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only,and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.

  20. Inhibition of MMP synthesis by doxycycline and chemically modified tetracyclines (CMTs) in human endothelial cells

    Hanemaaijer, R.; Visser, H.; Koolwijk, P.; Sorsa, T.; Salo, T.; Golub, L.M.; Hinsbergh, V.W. van

    1998-01-01

    Doxycycline is a commonly used broad-spectrum antibiotic. Recently, it has been shown that it also inhibits the activity of mammalian collagenases and gelatinases, an activity unrelated to its antimicrobial efficacy. In this study, we show that doxycycline not only inhibits MMP-8 and MMP-9 (gelatina

  1. Inhibition of corneal neovascularization with new Tyrosine Kinase Inhibitors targeting vascular endothelial growth factor receptors: Sunitinib malate and Sorafenib

    Delnia Arshadi

    2007-06-01

    Full Text Available Corneal neovascularization (NV is a significant, sight-threatening, complication of many ocular surface disorders. Presence of new vessels in cornea can compromise clarity and thus vision. The data supporting a causal role for vascular endothelial growth factor (VEGF in corneal NV are extensive. Inhibition of VEGF remains as a main strategy for treating corneal NV. There is a growing body of evidence that corneal NV can be reduced by using anti-VEGF agents. Sunitinib malate and Sorafenib are new orally bio-available anti-angiogenic agents undergoing tests of efficacy in the treatment of various types of cancers. The main mechanism of these drugs is inhibiting angiogenesis by diminishing signaling through VEGF receptor1 (VEGFR1, VEGFR2, and platelet-derived growth factor receptors. Since VEGF exerts its angiogenic effects through tyrosine kinase receptors in cornea, any mechanisms which reduce VEGF signaling may inhibit corneal NV or at least attenuate it. Based on this fact we herein hypothesize that Sunitinib malate and Sorafenib can be prepared in topical form and be used in corneal neovascularization states. These approaches offer new hope for the successful treatment of corneal NV. Further investigations in animal models are needed to place these two drugs alongside corneal NV therapeutics.

  2. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand

    Jong-Sup Bae

    2013-11-01

    Full Text Available High mobility group box 1 (HMGB1 is involved in thepathogenesis of vascular diseases. Unlike activated protein C(APC, the activation of PAR-1 by thrombin is known to elicitproinflammatory responses. To determine whether the occupancyof EPCR by the Gla-domain of APC is responsible for thePAR-1-dependent antiinflammatory activity of the protease, wepretreated HUVECs with the PC zymogen and then activatedPAR-1 with thrombin. It was found that thrombin downregulatesthe HMGB1-mediated induction of both TNF-α andIL-6 and inhibits the activation of both p38 MAPK and NF-κB inHUVECs pretreated with PC. Furthermore, thrombin inhibitedHMGB1-mediated hyperpermeability and leukocyte adhesion/migration by inhibiting the expression of cell adhesion moleculesin HUVECs if EPCR was occupied. Collectively, theseresults suggest the concept that thrombin can initiate proinflammatoryresponses in vascular endothelial cells through theactivation of PAR-1 may not hold true for normal vesselsexpressing EPCR under in vivo conditions. [BMB Reports 2013;46(11: 544-549

  3. Phosphorothioate oligonucleotide inhibits tissue factor expression in endothelial cells induced by blood flow shear stress in rats

    Li Qianning; Yang Yimin; Ying Dajun; Cheng Rongchuan; Gong Zili; Liu Yong; Zhou Zhujuan; Zheng Jian

    2008-01-01

    Objective: To determine the effect of antiparallel phosphorothioate triplex-forming oligonucleotide (apsTFO),which was designed according to shear stress response element (SSRE) in tissue factor (TF) gene promoter region, on the expression of endothelial TF in carotid artery stenosis rats. Methods: Rat model of severe carotid artery stenosis were inflicted by silica gel tube ligation. Half an hour before the model infliction, GT20-apsTFO, GT20-psTFO and GT21-apsTFO labeled with green fluorescence (FITC) were injected into the vena caudalis of rat at a dose of 0.5 mg/kg.Half an hour, 4 or 9 h after the ligation, the distribution of TFO in the common carotid artery, the liver and the kidney was detected with aid of fluorescence microscopy. And the mRNA and protein expressions of TF, Egr-1 and Spl in the above-mentioned organs were determined with in situ hybridization and immunohistoehemical assay respectively in 6 h after the model establishment, and the results were analyzed with an image analysis system. Results: Only in 1 h after TFO injection, fluorescent granules appeared in the liver, the kidney and the vascular wall and lumen of carotid artery,and then in 4.5 h, they still deposited in above sites except the vascular lumen. GT20-apsTFO and GT21-apsTFO significant down-regulated the mRNA and protein expressions of TF compared to the rats without treatment (P0.05).The 3 TFOs had no inhibition on the mRNA and protein expressions of Egr-I and Spl. Conclusion: Pretreated apsTFO can partly come into the vascular endothelial cells, and inhibit TF expression induced by shear stress, but had no effect on Egr-1 and Spl gene expressions.

  4. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4.

    Li, Yi-Ze; Wen, Lei; Wei, Xu; Wang, Qian-Rong; Xu, Long-Wen; Zhang, Hong-Mei; Liu, Wen-Chao

    2016-09-01

    Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors. PMID:27431648

  5. In-vitro differential metabolism and activity of 5-fluorouracil between short-term, high-dose and long-term, low-dose treatments in human squamous carcinoma cells.

    Qin, Baoli; Tanaka, Risa; Ariyama, Hiroshi; Shibata, Yoshihiro; Arita, Shuji; Kusaba, Hitoshi; Baba, Eishi; Harada, Mine; Nakano, Shuji

    2006-04-01

    Although continuous infusion of 5-fluorouracil (5-FU) has been clinically demonstrated to be superior to bolus administration, the mechanistic difference between the treatments still remains unclear. Here, we investigated in vitro whether there were any differences in the metabolism and activity of 5-FU between these schedules. To simulate bolus and infusional treatments of 5-FU, HST-1 human squamous carcinoma cells were treated with short-term, high-doses and long-term, low-doses so that the area under the curve (AUC) of 5-FU became equivalent between both schedules, and compared the cytotoxicity, fluorinated RNA (F-RNA) levels, 5-fluorodeoxyuridine monophosphate (FdUMP) content and thymidylate synthase (TS) activity. F-RNA and FdUMP were measured by capillary gas chromatography-mass spectrometry and competitive ligand-binding assay, respectively. The [H]FdUMP binding site in TS was determined as an index of the amount of TS using the radio-binding assay. Long-term, low-dose treatment of 5-FU was found to be 1.3-1.7 times more cytotoxic than the short-term, high-dose treatment. F-RNA content increased as the AUC of 5-FU was increased and was 2-4 times significantly higher in the cells treated with the long-term, low-dose than those with the short-term, high-dose schedule, indicating that the levels of F-RNA are AUC and schedule dependent. In contrast, there were no significant differences in FdUMP levels, TS activity and TS inhibition rate between the schedules. These data suggest that the superior activity of 5-FU administered long-term, low-dose over short-term, high-dose could be explained by more 5-FU incorporated into RNA during a long-term, low-dose exposure, thus providing a strategic rationale for the clinical advantage of continuous infusion over bolus administration. PMID:16550002

  6. High-dose 5-fluorouracil plus low dose methotrexate plus or minus low-dose PALA in advanced colorectal cancer : a randomised phase II-III trial of the EORTC Gastrointestinal Group

    Wils, J; Blijham, GH; Wagener, T; De Greve, J; Jansen, RLH; Kok, TC; Nortier, JWR; Bleiberg, H; Couvreur, ML; Genicot, B; Baron, B

    2003-01-01

    The aim of this study was to investigate whether N-(phosphonacetyl)-L-aspartic acid (PALA) can enhance the activity of low-dose methotrexate (LD-MTX) modulated infusional 5-fluorouracil (5-FU) in patients with advanced colorectal cancer. 198 patients were randomised either to (i) 5-FU 60 mg/kg as a

  7. Inhibition of γ-synuclein (SNCG) expression in breast cancer MDA-MB231 cell line%抑制SNCG阳性表达乳腺癌细胞株MDA-MB231的实验研究

    Tao Ren; Bangxian Tan; Xiaojie Ma; Yan Gui; Daiyuan Ma; Yeqin Zhou

    2012-01-01

    Objective: The aim of the study was to evaluate the inhibition of different chemotherapy drugs on γ-synuclein (SNCG) positive expression of breast cancer cell line MDA-MB231, and the effects on cell cycle and apoptosis, and to explore the related mechanism as well.Methods: We treated the breast cancer cell line MDA-MB231 for the inhibition of SNCG with chemotherapy drugs such as irinotecan, nedaplatin and 5-fluorouracil using RT-PCR and immunohistochemistry, and adopted flow cytometry to detect cell cycle distribution and apoptosis.Results: At the transcription and translation levels, the SNCG expression level in nedaplatin group and 5-fluorouracil group was lower than that of other groups and there was statistically significance (P < 0.01) compared with the control group, while there was not statistically significant between irinotecan group and the control group.After drugs action, cell cycle and distribution in each experiment group changed obviously, where the cells in G0G1 phase increased, especially the cells in the nedaplatin group and 5-fluorouracil group changed most significantly, as well as the obvious change in the cells of nedaplatin group and 5-fluorouracil group in the apoptosis period.Conclusion: There was a stronger inhibition of SNCG expression in nedaplatin and 5-fluorouracil groups, and can cause significant cell cycle and apoptosis changes.It may also be concluded that nedaplatin and 5-fluorouracil could make effects by the mechanisms of inhibiting cancer cell proliferation and inducing cell apoptosis.

  8. An algorithm for the management of hypertension in the setting of vascular endothelial growth factor signaling inhibition.

    Copur, M Sitki; Obermiller, Angela

    2011-09-01

    Vascular endothelial growth factor (VEGF) signaling is considered to be one of the key factors involved in tumor-associated angiogenesis. Inhibition of angiogenesis has significantly improved anticancer therapy making it one of the cornerstones of treatment for various solid tumors. Several antiangiogenesis inhibitory compounds (eg, bevacizumab, sunitinib, sorafenib) are now widely used in the treatment of patients with colorectal, non-small-cell lung, advanced renal cell, hepatocellular, and breast cancer. One of the most commonly observed side effects of inhibition of VEGF signaling is hypertension, which is dose-dependent and varies in incidence among the different angiogenesis inhibitor drugs. Poorly controlled hypertension not only can lead to cardiovascular events, renal disease, and stroke, but may also necessitate discontinuation of anticancer therapy, thereby potentially limiting overall clinical benefit. In contrast, hypertension induced by VEGF inhibitors has been shown to represent an important pharmacodynamic biomarker of oncologic response. For the practicing oncologist, knowledge and optimal management of this toxicity is essential. Because of the lack of controlled studies on this topic, no clear recommendations are available. In this article, we review the available preclinical and clinical data on the pathogenesis and management of hypertension resulting from anti-VEGF inhibitor therapy and propose a treatment algorithm that our group has now implemented for daily clinical practice. PMID:21855035

  9. Phenothiazines inhibit copper and endothelial cell-induced peroxidation of low density lipoprotein. A comparative study with probucol, butylated hydroxytoluene and vitamin E.

    Breugnot, C; Mazière, C; Salmon, S; Auclair, M; Santus, R; Morlière, P; Lenaers, A; Mazière, J C

    1990-11-01

    The effect of two phenothiazines, chlorpromazine (CPZ) and trifluoperazine (TFP) on the copper and endothelial cell-induced peroxidation of low density lipoprotein (LDL) has been studied and compared to that of drugs previously shown to protect LDL against peroxidation: probucol (PBC) and butylated hydroxytoluene (BHT). Incubation with CPZ or TFP inhibited in a dose-dependent manner LDL peroxidation induced either by copper ions or by cultured endothelial cells. Both the electrophoretic mobility and the thiobarbituric reactive substance content of LDL returned to almost normal values in the presence of 50 microM CPZ or TFP. The two studied phenothiazines also strongly inhibited the hydrolysis of LDL phosphatidylcholine which accompanies copper or endothelial cell-induced peroxidation of the particle. CPZ and TFP were as effective as PBC and BHT in inhibiting the LDL peroxidation. Whereas copper or endothelial cell-oxidized LDL were recognized and rapidly catabolized by mouse peritoneal macrophages, CPZ- or TFP-, as well as PBC- or BHT-treated LDL were not. Moreover, it was found that, in contrast to vitamin E, neither CPZ nor PBC reacted with model peroxy radicals formed by gamma irradiation of aerated ethanol. The possible mechanisms underlying this protective effect of phenothiazines against LDL oxidative modification are discussed. PMID:2242028

  10. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  11. Rap1 spatially controls ArhGAP29 to inhibit Rho signaling during endothelial barrier regulation

    Post, A.; Pannekoek, W. J.; Ponsioen, B.; Vliem, M. J.; Bos, J. L.

    2015-01-01

    The small GTPase Rap1 controls the actin cytoskeleton by regulating Rho GTPase signaling. We recently established that the Rap1 effectors Radil and Rasip1, together with the Rho GTPase activating protein ArhGAP29, mediate Rap1-induced inhibition of Rho signaling in the processes of epithelial cell s

  12. Is taxane/platinum/5 fluorouracil superior to taxane/platinum alone and does docetaxel trump paclitaxel in induction therapy for locally advanced oral cavity cancers?

    V Noronha

    2015-01-01

    Full Text Available Background: Cisplatin and 5 fluorouracil drug combination is inferior to the combination of taxane with these 2 drugs. However, often in clinical practice at our center giving TPF (docetaxel, cisplatin, 5 fluorouracil is difficult in view of logistics and tolerance issues. In such a scenario, we prefer to use the 2 drugs combination of platinum and taxane. However, no study has addressed whether a 2 drugs combination, which includes taxane is inferior to the 3 drugs combination and which the taxane of choice is in the 2 drugs combination of taxane and platinum. Methods: This is a retrospective analysis of prospectively collected data of patients undergoing induction chemotherapy (IC in oral cavity cancers from 2010 to 2012. We chose for analysis those patients who had a baseline scan done within 4 weeks of starting therapy and a follow-up scan done within 2 weeks of completion of the second cycle of IC. Response was scored in accordance with RECIST version 1.1. Chi-square analysis was done to compare response rates (RRs between regimens. Results: Two hundred and forty-five patients were identified. The median age was 45 years (24–70 years, 208 (84.9% were male patients, and 154 patients (62.9% had primary in the Buccal mucosa. The regimens received were TPF 22 (9%, docetaxel + cisplatin 97 (39.6%, paclitaxel + cisplatin 89 (36.3%, docetaxel + carboplatin 16 (6.5% and paclitaxel + carboplatin 21 (8.6%. The overall RRs were complete response, partial response, stable disease and progressive disease in 4 (1.6%, 56 (22.9%, 145 (59.2% and 40 (16.3%. The 3 drugs regimen (TPF had 50% RR as compared to 22% RR with 2 drugs regimen (P = 0.004. Docetaxel containing regimens had 30.3% RR as compared to 17.2% RR with paclitaxel containing regimens (P = 0.094. Conclusions: TPF has better RR than a 2 drugs taxane-containing regimen and docetaxel leads to a better RR than paclitaxel for IC in locally advanced oral cavity cancers.

  13. Retrospective analysis of chronomodulated chemotherapy versus conventional chemotherapy with paclitaxel, carboplatin, and 5-fluorouracil in patients with recurrent and/or metastatic head and neck squamous cell carcinoma

    Chen D

    2013-10-01

    Full Text Available Dan Chen, Jue Cheng, Kai Yang, Yue Ma, Fang Yang Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China Background: Chronomodulated chemotherapy has emerged as a new therapy as a result of recent studies focusing on the biological clock. It has been demonstrated that combination chronomodulated chemotherapy of platinum-based drugs and 5-fluorouracil (5-Fu can significantly improve efficacy and reduce the incidence of adverse events in patients with metastatic colorectal cancer, as compared with conventional chemotherapy. However, the results may be different in different tumors. Recurrent and metastatic head and neck squamous cell carcinoma (HNSCC is very difficult to treat, with an extremely unfavorable prognosis. So far, no report is available on chronomodulated chemotherapy for HNSCC. Methods: Retrospective analyses were made on 49 patients with local recurrent and/or metastatic HNSCC who underwent palliative treatments with paclitaxel, carboplatin, and 5-Fu. The patients were divided into a chronomodulated chemotherapy group (28 patients and a conventional chemotherapy group (21 patients according to their administration times. The two groups were compared for tumor objective response rate, overall survival (OS, progression-free survival (PFS, and the incidence of adverse events. Results: The tumor objective response rate and patients' OS were significantly higher and longer in the chronomodulated chemotherapy group than in the conventional chemotherapy group (71.43% versus 42.86%, respectively, P0.05. The global incidence of adverse events in the chronomodulated chemotherapy group was significantly lower than that in the conventional chemotherapy group (46.43% versus 76.19%, P<0.05, with significantly lower incidence of grade 3–4 adverse events (7.14% versus 33.33%, P<0.05. Conclusion: Chronomodulated chemotherapy with paclitaxel, carboplatin, and

  14. Definitive Chemoradiation Therapy With Docetaxel, Cisplatin, and 5-Fluorouracil (DCF-R) in Advanced Esophageal Cancer: A Phase 2 Trial (KDOG 0501-P2)

    Purpose: A previous phase 1 study suggested that definitive chemoradiation therapy with docetaxel, cisplatin, and 5-fluorouracil (DCF-R) is tolerable and active in patients with advanced esophageal cancer (AEC). This phase 2 study was designed to confirm the efficacy and toxicity of DCF-R in AEC. Methods and Materials: Patients with previously untreated thoracic AEC who had T4 tumors or M1 lymph node metastasis (M1 LYM), or both, received intravenous infusions of docetaxel (35 mg/m2) and cisplatin (40 mg/m2) on day 1 and a continuous intravenous infusion of 5-fluorouracil (400 mg/m2/day) on days 1 to 5, every 2 weeks, plus concurrent radiation. The total radiation dose was initially 61.2 Gy but was lowered to multiple-field irradiation with 50.4 Gy to decrease esophagitis and late toxicity. Consequently, the number of cycles of DCF administered during radiation therapy was reduced from 4 to 3. The primary endpoint was the clinical complete response (cCR) rate. Results: Characteristics of the 42 subjects were: median age, 62 years; performance status, 0 in 14, 1 in 25, 2 in 3; TNM classification, T4M0 in 20, non-T4M1LYM in 12, T4M1LYM in 10; total scheduled radiation dose: 61.2 Gy in 12, 50.4 Gy in 30. The cCR rate was 52.4% (95% confidence interval [CI]: 37.3%-67.5%) overall, 33.3% in the 61.2-Gy group, and 60.0% in the 50.4-Gy group. The median progression-free survival was 11.1 months, and the median survival was 29.0 months with a survival rate of 43.9% at 3 years. Grade 3 or higher major toxicity consisted of leukopenia (71.4%), neutropenia (57.2%), anemia (16.7%), febrile neutropenia (38.1%), anorexia (31.0%), and esophagitis (28.6%). Conclusions: DCF-R frequently caused myelosuppression and esophagitis but was highly active and suggested to be a promising regimen in AEC. On the basis of efficacy and safety, a radiation dose of 50.4 Gy is recommended for further studies of DCF-R

  15. 5-Fluorouracil-loaded poly(ε-caprolactone nanoparticles combined with phage E gene therapy as a new strategy against colon cancer

    Ortiz R

    2012-01-01

    Full Text Available Raúl Ortiz1,3, José Prados1, Consolación Melguizo1, José L Arias2, M Adolfina Ruiz2, Pablo J Álvarez1, Octavio Caba1,3, Raquel Luque4, Ana Segura5, Antonia Aránega11Institute of Biopathology and Regenerative Medicine (IBIMER, 2Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain; 3Department of Health Science, University of Jaén, Jaén, Spain; 4Service of Medical Oncology, Virgen de las Nieves Hospital, Granada, Spain; 5CSIC-Estacion Experimental del Zaidin, Department of Environmental Protection, Granada, SpainAbstract: This work aimed to develop a new therapeutic approach to increase the efficacy of 5-fluorouracil (5-FU in the treatment of advanced or recurrent colon cancer. 5-FU-loaded biodegradable poly(ε-caprolactone nanoparticles (PCL NPs were combined with the cytotoxic suicide gene E (combined therapy. The SW480 human cancer cell line was used to assay the combined therapeutic strategy. This cell line was established from a primary adenocarcinoma of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis using the interfacial polymer disposition method. The antitumor activity of gene E from the phage ΦX174 was tested by generating a stable clone (SW480/12/E. In addition, the localization of E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU into PCL NPs (which show no cytotoxicity alone, significantly improved the drug's anticancer activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic

  16. Definitive Chemoradiation Therapy With Docetaxel, Cisplatin, and 5-Fluorouracil (DCF-R) in Advanced Esophageal Cancer: A Phase 2 Trial (KDOG 0501-P2)

    Higuchi, Katsuhiko, E-mail: k.higu@kitasato-u.ac.jp [Department of Gastroenterology, Kitasato University East Hospital, Sagamihara, Kanagawa (Japan); Komori, Shouko [Department of Radiology and Radiation Oncology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Tanabe, Satoshi [Department of Gastroenterology, Kitasato University East Hospital, Sagamihara, Kanagawa (Japan); Katada, Chikatoshi [Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Azuma, Mizutomo [Department of Gastroenterology, Kitasato University East Hospital, Sagamihara, Kanagawa (Japan); Ishiyama, Hiromichi [Department of Radiology and Radiation Oncology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Sasaki, Tohru; Ishido, Kenji [Department of Gastroenterology, Kitasato University East Hospital, Sagamihara, Kanagawa (Japan); Katada, Natsuya [Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Hayakawa, Kazushige [Department of Radiology and Radiation Oncology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Koizumi, Wasaburo [Department of Gastroenterology, Kitasato University East Hospital, Sagamihara, Kanagawa (Japan)

    2014-07-15

    Purpose: A previous phase 1 study suggested that definitive chemoradiation therapy with docetaxel, cisplatin, and 5-fluorouracil (DCF-R) is tolerable and active in patients with advanced esophageal cancer (AEC). This phase 2 study was designed to confirm the efficacy and toxicity of DCF-R in AEC. Methods and Materials: Patients with previously untreated thoracic AEC who had T4 tumors or M1 lymph node metastasis (M1 LYM), or both, received intravenous infusions of docetaxel (35 mg/m{sup 2}) and cisplatin (40 mg/m{sup 2}) on day 1 and a continuous intravenous infusion of 5-fluorouracil (400 mg/m{sup 2}/day) on days 1 to 5, every 2 weeks, plus concurrent radiation. The total radiation dose was initially 61.2 Gy but was lowered to multiple-field irradiation with 50.4 Gy to decrease esophagitis and late toxicity. Consequently, the number of cycles of DCF administered during radiation therapy was reduced from 4 to 3. The primary endpoint was the clinical complete response (cCR) rate. Results: Characteristics of the 42 subjects were: median age, 62 years; performance status, 0 in 14, 1 in 25, 2 in 3; TNM classification, T4M0 in 20, non-T4M1LYM in 12, T4M1LYM in 10; total scheduled radiation dose: 61.2 Gy in 12, 50.4 Gy in 30. The cCR rate was 52.4% (95% confidence interval [CI]: 37.3%-67.5%) overall, 33.3% in the 61.2-Gy group, and 60.0% in the 50.4-Gy group. The median progression-free survival was 11.1 months, and the median survival was 29.0 months with a survival rate of 43.9% at 3 years. Grade 3 or higher major toxicity consisted of leukopenia (71.4%), neutropenia (57.2%), anemia (16.7%), febrile neutropenia (38.1%), anorexia (31.0%), and esophagitis (28.6%). Conclusions: DCF-R frequently caused myelosuppression and esophagitis but was highly active and suggested to be a promising regimen in AEC. On the basis of efficacy and safety, a radiation dose of 50.4 Gy is recommended for further studies of DCF-R.

  17. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Dequan Li; Cong Wang; Chuang Chi; Yuanyuan Wang; Jing Zhao; Jun Fang; Jingye Pan

    2016-01-01

    Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the a...

  18. A selective estrogen receptor modulator inhibits TNF-alpha-induced apoptosis by activating ERK1/2 signaling pathway in vascular endothelial cells.

    Yu, Jing; Eto, Masato; Akishita, Masahiro; Okabe, Tetsuro; Ouchi, Yasuyoshi

    2009-07-01

    Tumor necrosis factor (TNF-alpha) is a pleiotropic cytokine exerting both inflammatory and cell death activity and is thought to play a role in the pathogenesis of atherosclerosis. The present study was designed to examine whether the raloxifene analogue, LY117018 could inhibit TNF-alpha-induced apoptosis in vascular endothelial cells and to clarify the involved mechanisms. Apoptosis of endothelial cells was determined by DNA fragmentation assay and the activation of caspase-3. LY117018 significantly inhibited TNF-alpha-induced caspase-3 activation and cell DNA fragmentation levels in bovine carotid artery endothelial cells. The inhibitory effect of LY117018 was abolished by an estrogen receptor antagonist ICI 182,780. p38 MAPK, JNK, ERK1/2 and Akt have been shown to act as apoptotic or anti-apoptotic signals. TNF-alpha stimulated the phosphorylation levels of p38 MAPK, JNK, ERK1/2 and Akt in vascular endothelial cells. TNF-alpha-induced apoptosis was significantly decreased by SB203580, a p38 MAPK inhibitor or SP600125, a JNK inhibitor, but was enhanced by an ERK1/2 pathway inhibitor, PD98059 or a PI3-kinase/Akt pathway inhibitor, wortmannin. The anti-apoptotic effect of LY117018 was abrogated only by PD98059 but was not affected by the inhibitors for p38 MAPK, JNK, or Akt. LY117018 stimulated the further increase in phosphorylation of ERK1/2 in TNF-alpha treated endothelial cells but it did not affect phosphorylation levels of p38 MAPK, JNK or Akt. These results suggest that LY 110718 prevents caspase-3 dependent apoptosis induced by TNF-alpha in vascular endothelial cells through activation of the estrogen receptors and the ERK1/2 signaling pathway. PMID:19275968

  19. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells.

    Sousa, M; Machado, V; Costa, R; Figueira, M E; Sepodes, B; Barata, P; Ribeiro, L; Soares, R

    2016-07-01

    Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory, and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signaling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10 to 250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay), and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI50  = 87,64 ± 6,59 μg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signaling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. J. Cell. Biochem. 117: 1604-1612, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590362

  20. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2.

    Xiao, Dong; Li, Mengfeng; Herman-Antosiewicz, Anna; Antosiewicz, Jedrzej; Xiao, Hui; Lew, Karen L; Zeng, Yan; Marynowski, Stanley W; Singh, Shivendra V

    2006-01-01

    We have shown recently that diallyl trisulfide (DATS), a cancer-chemopreventive constituent of garlic, inactivates Akt to trigger mitochondrial translocation of proapoptotic protein BAD in human prostate cancer cells. Because Akt activation is implicated in the promotion of endothelial cell survival and angiogenesis, we hypothesized that DATS may inhibit angiogenesis. In the present study, we tested this hypothesis using human umbilical vein endothelial cells (HUVECs) as a model. Survival of HUVECs was reduced significantly in the presence of DATS in a concentration-dependent manner, with an IC50 of approximately 4 microM. The DATS-mediated suppression of HUVEC survival was associated with apoptosis induction characterized by accumulation of subdiploid cells, cytoplasmic histone-associated DNA fragmentation, and cleavage of caspase-3 and poly-(ADP-ribose)-polymerase. The DATS-induced DNA fragmentation was significantly attenuated in the presence of pan-caspase inhibitor zVAD-fmk and specific inhibitors of caspase-9 (zLEHD-fmk) and caspase-8 (zIETD-fmk). DATS treatment inhibited the formation of capillary-like tube structure and migration by HUVECs in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level and inactivation of Akt kinase. DATS treatment also caused activation of extracellular signal-regulated kinase 1/2 (ERK1/2) but not c-Jun NH2-terminal kinase (JNK) or p38 mitogen-activated protein kinase (p38MAPK).DATS-mediatedapoptosis induction and inhibition of HUVEC tube formation was partially but statistically significantly attenuated by pharmacologic inhibition of ERK1/2 but not JNK or p38MAPK. The present study demonstrates, for the first time, that DATS has the ability to inhibit angiogenic features of human endothelial cells. PMID:16965246

  1. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  2. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells

  3. A Type II Arabinogalactan from Anoectochilus formosanus for G-CSF Production in Macrophages and Leukopenia Improvement in CT26-Bearing Mice Treated with 5-Fluorouracil

    Li-Chan Yang

    2013-01-01

    Full Text Available Anoectochilus formosanus is an herb well known in Asian countries. The polysaccharide isolated from A. formosanus consists of type II arabinogalactan (AGAF, with branched 3,6-Gal as the major moiety. In this study, AGAF was examined for the granulocyte colony-stimulating factor (G-CSF production and related protein expression in RAW 264.7 murine macrophages. The signaling pathway of G-CSF production involves AGAF and mitogen-activated protein kinases (MAPKs inhibitors and pattern-recognition receptor antibodies. AGAF was evaluated to ease the leukopenia in CT26-colon-cancer-bearing mice treated with 5-fluorouracil (5-FU. The results of this study showed that AGAF was a stimulant for Toll-like receptor 2 and Dectin-1 and that it induced G-CSF production, through p38 and ERK MAPK, and NF-κB pathways. In vivo examination showed that the oral administration of AGAF mitigated the side effects of leukopenia caused by 5-FU in colon-cancer-bearing mice. In conclusion, the botanic type II AGAF in this study was a potent G-CSF inducer in vivo and in vitro.

  4. Carbogen Breathing Differentially Enhances Blood Plasma Volume and 5-Fluorouracil Uptake in Two Murine Colon Tumor Models with a Distinct Vascular Structure

    Hanneke W.M. van Laarhoven

    2006-06-01

    Full Text Available For the systemic treatment of colorectal cancer, 5-fluorouracil (FU-based chemotherapy is the standard. However, only a subset of patients responds to chemotherapy. Breathing of carbogen (95% O2 and 5% CO2 may increase the uptake of FU through changes in tumor physiology. This study aims to monitor in animal models in vivo the effects of carbogen breathing on tumor blood plasma volume, pH, and energy status, and on FU uptake and metabolism in two colon tumor models C38 and C26a, which differ in their vascular structure and hypoxic status. Phosphorus-31 magnetic resonance spectroscopy (MRS was used to assess tumor pH and energy status, and fluorine-19 MRS was used to follow FU uptake and metabolism. Advanced magnetic resonance imaging methods using ultrasmall particles of iron oxide were performed to assess blood plasma volume. The results showed that carbogen breathing significantly decreased extracellular pH and increased tumor blood plasma volume and FU uptake in tumors. These effects were most significant in the C38 tumor line, which has the largest relative vascular area. In the C26a tumor line, carbogen breathing increased tumor growth delay by FU. In this study, carbogen breathing also enhanced systemic toxicity by FU.

  5. Accelerated split-course radiotherapy and simultaneous cis-dichlorodiammine-platinum and 5-fluorouracil chemotherapy with folinic acid enhancement for unresectable carcinoma of the head and neck

    Thirty-four (6 stage III, 28 stage IV) patients with advanced squamous cell carcinoma of the head and neck were treated by simultaneous radio-chemotherapy. Treatment was divided into three cycles. Chemotherapy consisted of cis-diamminedichloroplatinum(II) (cis-DDP) 60 mg/sqm i.v., 5-fluorouracil (5-FU) 350 mg/sqm i.v. and folinic acid (FA)-50 mg/sqm i.v. on day 2 and 5-FU 350 mg/sqm per 24 h and FA 100 mg/sqm/24 h on days 2-5. Radiotherapy consisted of 23.4 Gy/9 days divided in 13 fractions of 1.8 Gy delivered twice a day from day 3 through day 11. This regimen was repeated on days 22 and 44. Total radiation dose amounted to 70.2 Gy/51 days. Mean follow-up of surviving patients was 21 (14-34) months. 28/32 patients achieved complete response, 4/32 partial response. Actuarial one and two years survival were 88 and 58% including two early deaths from tumour bleeding. Local control rates at one and two years were 87 and 81%, respectively. This protocol produces excellent palliation and the chance of improved long term tumour control. Two patients developed distant metastases. Overall toxicity was tolerable. Since the treatment breaks were inserted after low radiation doses, acute mucositis healed rapidly and was not a limiting factor. 39 refs.; 3 figs.; 3 tabs

  6. Synthesis of 5-Fluorouracil conjugated LaF3:Tb3+/PEG-COOH nanoparticles and its studies on the interaction with bovine serum albumin: spectroscopic approach

    The luminescent lanthanide-doped nanoparticles have gathered considerable attention in many fields especially in biomedicine. In this work, the lanthanum fluoride-doped terbium nanoparticles (LaF3:Tb3+ NPs) via simple chemical precipitation method has been synthesized and functionalized with polyethylene glycol. The size and the shape of the nanoparticles are confirmed using X-ray diffraction and transmission electron microscopy. The conjugation of 5-Fluorouracil (5-FU) and thus synthesized nanoparticles (NPs) were confirmed using various spectroscopic methods such as UV–Visible spectroscopy, fluorescence steady state, and excited state spectroscopy studies. The enhancement in fluorescence emission (λ = 543 nm) of drug-conjugated nanoparticles confirms the Vander Waals force of attraction due to F–F bonding between the drug and the nanoparticles. Further, the effects of 5FU-NPs in carrier protein were investigated using bovine serum albumin as a protein model. The 5FU–LaF3:Tb3+ nanoparticles binding is illustrated with binding constant and number of binding sites. The structural change of bovine serum albumin has been studied using circular dichroism and Fourier transform infrared spectroscopy analysis.

  7. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    Clavel, Sebastien, E-mail: sebastien.clavel@umontreal.ca [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen, David H.A.; Fortin, Bernard [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Despres, Philippe [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Khaouam, Nader [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada); Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis [Department of Head and Neck Surgery, Centre Hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Hopital Maisonneuve-Rosemont, Montreal, QC (Canada)

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  8. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    Simonetti, S.; Compañy, A. Díaz; Pronsato, E.; Juan, A.; Brizuela, G.; Lam, A.

    2015-12-01

    Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's-D2 correction were performed to elucidate the drug-silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO2 (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  9. Efficacy of Sucralfate Mouth Wash in Prevention of 5-fluorouracil Induced Oral Mucositis: A Prospective, Randomized, Double-Blind, Controlled Trial.

    Ala, Shahram; Saeedi, Majid; Janbabai, Ghasem; Ganji, Reza; Azhdari, Elham; Shiva, Afshin

    2016-04-01

    Sucralfate has been used for the prevention and treatment of radiotherapy- and chemotherapy-induced stomatitis and mucositis in a number of studies, but the results are contradictory. To answer such discrepancies, the present study was designed to evaluate the efficacy of sucralfate mouthwash in prevention of 5-fluorouracil (5-FU)-induced oral mucositis in patients with gastrointestinal malignancies. Patients with gastrointestinal cancers receiving 5-FU-based chemotherapy regimens were included in this randomized, blinded, controlled trial and were randomly allocated to either sucralfate mouthwash (every 6 h) or placebo. The patients were visited at fifth and tenth day of trial; the presence and severity of oral mucositis and the intensity of pain were assessed. The patients receiving sucralfate experienced lower frequency and severity of mucositis (76% vs. 38.5%, P = 0.005 and 84 vs. 38.5%, P mucositis was observed throughout the trial period, while in the placebo group no such effect was observed. Sucralfate mouthwash reduced the frequency and severity of 5-FU-induced oral mucositis in patients with gastrointestinal malignancies compared with placebo, indicating its efficacy in the prevention of chemotherapy-induced mucositis. PMID:27007594

  10. Assessment of the biodistribution and metabolism of 5-fluorouracil as monitored by 18F PET and 19F MRI: A comparative animal study

    The effective clinical use of the anticancer drug 5-fluorouracil (5-FU) requires the non-invasive assessment of its transport and metabolism, particularly in the tumor and the liver, where the drug is catabolized to α-fluoro-β-alanine (FBAL). In this study, the potentials and limitations of dynamic 18F PET and metabolic 19F MRI examinations for noninvasive 5-FU monitoring were investigated in ACI and Buffalo rats with transplanted MH3924A and TC5123 Morris hepatomas, respectively. Selective 5-[19F]FU and [19F]FBAL MR images were acquired 5 and 70 min after 5-FU injection using a CHESS MRI sequence. After administration of 5-[18F]FU, the kinetics of the regional 5-[18F]FU uptake were measured by dynamic PET scanning over 120 min. To allow a comparison between PET and MRI data, standardized uptake values (SUV) were computed at the same points in time. The TC5123 hepatoma showed a significantly (p 19F]FU and [19F]FBAL MR signal values in the tumor of both models were observed. The MR images, however, yielded the additional information that 5-FU is converted to FBAL only in the liver and not in the hepatomas

  11. Preclinical screening for drugs effective against 5-fluorouracil-resistant cells with a murine L5178Y cell line in vitro

    A subline of L5178Y cells has been established in vitro that exhibits a fiftyfold order of resistance to 5-fluorouracil (FUra) as compared to that of the parent line. The cytotoxic effects of 24-hour exposures to 23 antitumor drugs and to radiation were compared in the two cell lines. Four patterns of response were identified: 1) Only two drugs, mitomycin C and adriamycin, proved significantly more cytotoxic to FUra-resistant cells. 2) Four other drugs--anguidine, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, melphalan, and quelamycin--showed marginal superiority against resistant cells. 3) X-radiation and the majority of drugs tested--including 5-azacytidine, 1,3-bis(2-chloroethyl)-1-nitrosourea, cisplatin, bleomycin, dibromodulcitol, razoxane, hydroxyurea, methotrexate, teniposide, etoposide, and three experimental agents, metoprine, spirogermanium HCl, and ellipticinum--proved equally cytotoxic to both cell lines. 4) Cross-resistance with FUra was exhibited with vincristine, vindesine, pyrazofurin, and indicine-N-oxide. This experimental system provides a simple method of testing agents for activity against FUra-resistant cells before phase 1 clinical studies

  12. Adverse Event Profiles of 5-Fluorouracil and Capecitabine: Data Mining of the Public Version of the FDA Adverse Event Reporting System, AERS, and Reproducibility of Clinical Observations

    Kaori Kadoyama, Ikuya Miki, Takao Tamura, JB Brown, Toshiyuki Sakaeda, Yasushi Okuno

    2012-01-01

    Full Text Available Objective: The safety profiles of oral fluoropyrimidines were compared with 5-fluorouracil (5-FU using adverse event reports (AERs submitted to the Adverse Event Reporting System, AERS, of the US Food and Drug Administration (FDA.Methods: After a revision of arbitrary drug names and the deletion of duplicated submissions, AERs involving 5-FU and oral fluoropyrimidines were analyzed. Standardized official pharmacovigilance tools were used for the quantitative detection of signals, i.e., drug-associated adverse events, including the proportional reporting ratio, the reporting odds ratio, the information component given by a Bayesian confidence propagation neural network, and the empirical Bayes geometric mean.Results: Based on 22,017,956 co-occurrences, i.e., drug-adverse event pairs, found in 1,644,220 AERs from 2004 to 2009, it was suggested that leukopenia, neutropenia, and thrombocytopenia were more frequently accompanied by the use of 5-FU than capecitabine, whereas diarrhea, nausea, vomiting, and hand-foot syndrome were more frequently associated with capecitabine. The total number of co-occurrences was not large enough to compare tegafur, tegafur-uracil (UFT, tegafur-gimeracil-oteracil potassium (S-1, or doxifluridine to 5-FU.Conclusion: The results obtained herein were consistent with clinical observations, suggesting the usefulness of the FDA's AERS database and data mining methods used, but the number of co-occurrences is an important factor in signal detection.

  13. A reduction in the interstitial fluid pressure per se, does not enhance the uptake of the small molecule weight compound 5-fluorouracil into 4T1 mammary tumours

    Charlotte Jevne

    2011-05-01

    Full Text Available The tumour interstitium represents a major barrier to drug delivery and modification of the tumour extracellular matrix (ECM is one strategy that could promote better delivery. We have focused upon three factors in the tumour interstitium that could influence drug uptake into the tumour tissue; the interstitial fluid pressure (Pif, collagen content and the tumour blood vessel density (TBVD. Two treatment groups were used: repeated hyperbaric oxygen (HBO and single HBO (both to 2.5 bar, 100% O2, à 90 min. The controls were exposed to normal atmosphere (1 bar, 21% O2. Pif, angiogenesis, collagen content and uptake of [H3]-5FU ([5-fluorouracil was investigated. Pif and TBVD significantly decreased after hyperoxic treatment, without any change in collagen content. Uptake of 5FU was not affected by hyperoxic treatment. Reduction in Pif per se does not enhance the uptake of 5FU in 4T1 mammary tumours. The fibrotic ECM (unaltered collagen content together with a less dense microvasculature might help explain this.

  14. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2).

    Valeri, Nicola; Gasparini, Pierluigi; Braconi, Chiara; Paone, Alessio; Lovat, Francesca; Fabbri, Muller; Sumani, Khlea M; Alder, Hansjuerg; Amadori, Dino; Patel, Tushar; Nuovo, Gerard J; Fishel, Richard; Croce, Carlo M

    2010-12-01

    The overexpression of microRNA-21 (miR-21) is linked to a number of human tumors including colorectal cancer, where it appears to regulate the expression of tumor suppressor genes including p21, phosphatase and tensin homolog, TGFβ receptor II, and B-cell leukemia/lymphoma 2 -associated X protein. Here we demonstrate that miR-21 targets and down-regulates the core mismatch repair (MMR) recognition protein complex, human mutS homolog 2 (hMSH2) and 6 (hMSH6). Colorectal tumors that express a high level of miR-21 display reduced hMSH2 protein expression. Cells that overproduce miR-21 exhibit significantly reduced 5-fluorouracil (5-FU)-induced G2/M damage arrest and apoptosis that is characteristic of defects in the core MMR component. Moreover, xenograft studies demonstrate that miR-21 overexpression dramatically reduces the therapeutic efficacy of 5-FU. These studies suggest that the down-regulation of the MMR mutator gene associated with miR-21 overexpression may be an important clinical indicator of therapeutic efficacy in colorectal cancer. PMID:21078976

  15. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

    Li, Longfei; Chen, Lin; Zhang, Huan; Yang, Yongzhen; Liu, Xuguang; Chen, Yongkang

    2016-04-01

    Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150nm with a typical core-shell structure, and the thickness of the coating layer is approximately 50nm. TMMIPs also displayed obvious magnetic properties and thermo-sensitivity. The adsorption results show that the prepared TMMIPs exhibit good adsorption capacity (up to 96.53mg/g at 25°C) and recognition towards 5-FU. The studies on 5-FU loading and release in vitro suggest that the release rate increases with increasing temperature. Meanwhile, adsorption mechanisms were explored by using a computational analysis to simulate the imprinted site towards 5-FU. The interaction energy between the imprinted site and 5-FU is -112.24kJ/mol, originating from a hydrogen bond, Van der Waals forces and a hydrophobic interaction between functional groups located on 5-FU and a NIPAM monomer. The electrostatic potential charges and population analysis results suggest that the imprinted site of 5-FU can be introduced on the surface of TMMIPs, confirming their selective adsorption behavior for 5-FU. PMID:26838836

  16. Curcumin and 5-Fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia

    Balasubramanian S

    2014-01-01

    Full Text Available Sivakumar Balasubramanian,1 Aswathy Ravindran Girija,1 Yutaka Nagaoka,1 Seiki Iwai,1 Masashi Suzuki,1 Venugopal Kizhikkilot,2 Yasuhiko Yoshida,1 Toru Maekawa,1 Sakthikumar Dasappan Nair1 1Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Japan; 2Department of Respiratory Medicine, Sooriya Hospital, Chennai, India Abstract: The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU] and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes by initiating early and late apoptosis. Keywords: nanotechnology, curcumin, 5FU, folate, transferrin, PLGA nanoparticle, magnetic hyperthermia

  17. Safety of implanting sustained-release 5-fluorouracil into hepatic cross-section and omentum majus after primary liver cancer resection.

    Chen, Jiangtao; Zhang, Junjie; Wang, Chenyu; Yao, Kunhou; Hua, Long; Zhang, Liping; Ren, Xuequn

    2016-09-01

    This study was designed to evaluate the short-term safety of implanting sustained-release 5-fluorouracil (5-FU) into hepatic cross-section and omentum majus after primary liver cancer resection and its impact on related indexes of liver. Forty patients were selected and divided into an implantation group (n = 20) and a control group (n = 20). On the first day after admission, first week after surgery, and first month after surgery, fasting venous blood was extracted from patients for measuring hematological indexes. The reduction rate of alpha fetoprotein (AFP) on the first week and first month after surgery was calculated, and moreover, drainage volume of the abdominal cavity drainage tube, length of stay after surgery, and wound healing condition were recorded. We found that levels of alanine aminotransferase, aspartate amino transferase, blood urea nitrogen, creatinine, total bilirubin, albumin, and white blood cells measured on the first week and first month after surgery, length of stay, and wound healing of patients in the two groups had no significant difference (P >0.05). Drainage volume and reduction rate of AFP of two groups were significantly different on the first week and first month after surgery (P <0.05). Implanting sustained-release 5-FU into hepatic cross-section and omentum majus after primary liver cancer resection is proved to be safe as it has little impact on related indexes. PMID:27207445

  18. Long-term results of concurrent chemoradiotherapy using low-dose continuous infusion of 5-fluorouracil for stage II-III esophageal cancer

    To improve the local control of stage II-III esophageal cancer, we tried concurrent chemoradiotherapy with low-dose continuous infusion of 5-fluorouracil (5-FU) during the entire course of conventional radiotherapy. Forty-three eligible patients with stage II-III esophageal cancer were treated with conventional radiotherapy up to 60-70 Gy concurrently with continuous infusion of 5-FU (300 mg/m2 per 24 hours) for 5 days per week given over 5 to 7 weeks. All patients were followed up more than 5 years after starting the treatments. Although there were two treatment-related deaths, 88% of the patients (38/43) could complete the planned course of chemoradiotherapy. Response rate was 90%. The median survival time was 12.2 months, and the 2- and 5-year overall survival rates were 33% and 15%, respectively. Low-dose continuous infusion of 5-FU given during the entire course of conventional radiotherapy is feasible and seems to offer better results than radiotherapy alone in the treatment of stage II-III esophageal cancer. (author)

  19. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    Severe toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (DPYD). In this study, we evaluated DPYD promoter methylation through quantitative methylation-specific PCR and screened DPYD for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. DPYD promoter methylation was also assessed in tumor tissue from 29 patients Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, DPYD promoter methylation and large DPYD intragenic rearrangements were absent in all cases analyzed. Our results indicate that DPYD promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity

  20. Differential interference of vitamin D analogs PRI-1906, PRI-2191, and PRI-2205 with the renewal of human colon cancer cells refractory to treatment with 5-fluorouracil.

    Kotlarz, Agnieszka; Przybyszewska, Małgorzata; Swoboda, Paweł; Miłoszewska, Joanna; Grygorowicz, Monika Anna; Kutner, Andrzej; Markowicz, Sergiusz

    2016-04-01

    This study was aimed to determine whether hypocalcemic analogs of active forms of vitamins D modulate expression of genes related to stem-like phenotype in colon cancer cell lines HT-29 and HCT-116 undergoing renewal after the treatment with 5-fluorouracil (5-FU). Both lines express vitamin D receptor, but differ in differentiation stage and vitamin D sensitivity. Cells that resisted the 5-FU exposure were treated with synthetic analog of 1,25-dihydroxyvitamin D2 (PRI-1906) and analogs of 1,25-dihydroxyvitamin D3 (PRI-2191 and PRI-2205). Proliferative activity was more profoundly affected by vitamin D analogs in HT-29/5-FU than in HCT-116/5-FU cells. In HT-29/5-FU cells, analogs PRI-1906 and PRI-2191 downregulated the expression of genes related to survival, re-growth, and invasiveness during renewal, while PRI-2205 increased expression of genes related to differentiation only. In HCT-116/5-FU cells, PRI-2191 decreased the expression of stemness- and angiogenesis-related genes, whereas PRI-1906 augmented their expression. The effects in HCT-116/5-FU cells were observed at higher concentrations of the analogs than those used for HT-29/5-FU cells. Out of the series of analogs studied, PRI-2191 might be used to counteract the renewal of both moderately and poorly differentiated cancer cells following conventional treatment. PMID:26511971

  1. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer.

    Scoditti, Egeria; Calabriso, Nadia; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Martines, Giuseppe; De Caterina, Raffaele; Carluccio, Maria Annunziata

    2012-11-15

    Diets with high content of antioxidant polyphenols are associated with low prevalence of cardiovascular diseases and cancer. Inflammatory angiogenesis is a key pathogenic process both in cancer and atherosclerosis, and is tightly regulated by the proinflammatory enzyme cyclooxygenase (COX)-2 and the matrix degrading enzymes matrix metalloproteinases (MMPs). We studied the effects of antioxidant polyphenols from virgin olive oil (oleuropein and hydroxytyrosol) and red wine (resveratrol and quercetin) on endothelial cell angiogenic response in vitro, and explored underlying mechanisms. Cultured endothelial cells were pre-incubated with 0.1-50 μmol/L polyphenols before stimulation with phorbol myristate acetate (PMA). All tested polyphenols reduced endothelial cell tube formation on matrigel and migration in wound healing assays. The reduced angiogenesis was associated with the inhibition of PMA-induced COX-2 protein expression and prostanoid production, as well as MMP-9 protein release and gelatinolytic activity. These effects were accompanied by a significant reduction in the stimulated intracellular reactive oxygen species levels and in the activation of the redox-sensitive transcription factor nuclear factor (NF)-κB. Our findings reveal that olive oil and red wine polyphenols reduce inflammatory angiogenesis in cultured endothelial cells, through MMP-9 and COX-2 inhibition, supporting a potential protective role for dietary polyphenols in atherosclerotic vascular disease and cancer. PMID:22595400

  2. Ligustrazini Inhibits Endotoxin Induced PAI-1 Expression in Human Umbilical Vein Endothelial Cells

    阮秋蓉; 邓仲端; 宋建新

    2001-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is one of important coagulant factors. Endotoxin lipopolysaccharide (LPS) induces thrombosis by stimulating PAI-1 secretion of vascular cells (EC). Using sandwich enzyme-linked immunosorbent assay (ELISA) and Northern blot, was investigated the effects of Chinese medicine ligustrazini on PAI-1 expression in EC and LPS-stimulated EC. The results showed that ligustrazini inhibited both basal and LPS-induced PAI-1 mRNA expression in EC. The effect of ligustrazini on LPS-induced PAI-1 secretion worked in a dose-dependent manner. This study provided theoretic and experimental evidence for use of ligustrazini against septic shock and cardiovascular diseases.

  3. Pilot study of continuous-infusion 5-fluorouracil, oral leucovorin, and upper-abdominal radiation therapy in patients with locally advanced residual or recurrent upper gastrointestinal or extrapelvic colon cancer

    Purpose: The purpose of this study was to develop a satisfactorily tolerated regimen of radiation therapy, continuous infusion 5-fluorouracil, and leucovorin in patients with locally advanced upper-abdominal gastrointestinal cancer. Methods and Materials: Patients with locally advanced or locally recurrent gastric, pancreatic, or extrapelvic colon cancer were eligible for this study. Radiation therapy consisted of 45 Gy in 25 fractions to the tumor and regional lymph nodes, followed by 5.4-9 Gy in three to five fractions to the tumor. Treatment with leucovorin, 10 mg orally daily, and continuous infusion 5-fluorouracil was initiated on the first day of radiation therapy. 5-Fluorouracil was administered at an initial daily dose of 125 mg/m2, with dose escalation planned in 25-mg increments, depending on patient tolerance. Results: Twenty-one evaluable patients participated in this study. Six were treated at the initial daily 5-fluorouracil dose of 125 mg/m2. One patient experienced Grade 4 anorexia and nausea. No other Grade ≥3 toxicity was observed at this dose. Fifteen evaluable patients were entered at a planned 5-fluorouracil dose of 150 mg/m2 daily; 6 of them experienced Grade 3 toxicity, and none experienced Grade ≥ 4 toxicity. Grade 3 toxicities and the number of patients who developed each were: vomiting (three patients); nausea (two patients); diarrhea (two patients); and skin toxicity, hand-foot syndrome, catheter-related infection, and stomatitis in one patient each. Four of the six patients who experienced Grade 3 toxicity developed more than one type of Grade 3 toxicity. Conclusions: In patients with upper-abdominal gastrointestinal cancer, continuous infusion 5-fluorouracil (150 mg/m2 daily), leucovorin (10 mg orally daily), and radiation therapy (50-54 Gy) resulted in a 40% rate of severe toxicity but no life-threatening toxicity. This clinical trial excludes, with 90% confidence, a 20% risk of Grade 4 toxicity with this combination. The 40% rate

  4. Genistein inhibits human TNF-α-induced porcine endothelial cell adhesiveness for human monocytes and natural killer cells

    2002-01-01

    Cellular immune response is a major barrier to xenotransplantation. Human tumor necrosis factor-α (hTNF-α) possesses cross-species activity and directly amplifies the immune rejection via the upregulation of adhesion molecules on porcine endothelium. We investigated the role of protein tyrosine phosphorylation in the induction of expression of E-sclectin and vascular cell adhesion molecule-1 (VCAM-1), and the augmentation of adhesion of human peripheral blood monocytes (PBMo) and natural killer cells (PBNK), after rhTNF-α-stimulation of porcine aortic endothelial cells (PAEC) in vitro, rhTNF-α-increased adhesiveness of PAEC for both PBMo and PBNK was dose-dependently reduced by pretreatment of PAEC with the selective protein tyrosine kinase (PTK) inhibitor genistein. The inhibitory effect occurred at the early time of PAEC activation triggered by rhTNF-α, and was completely reversible. PTK activity assay indicated that genistein also suppressed rhTNF-α stimulated activation of protein tyrosine kinases (PTKs) in PAEC in a dose-dependent manner. Flow cytometric analysis showed that genistein inhibited the upregulation of E-selectin and VCAM-1 by rhTNF-α. These results suggest that PTKs may regulate the expression of E-selectin and VCAM-1 on PAEC and the adherence of PBMo and PBNK induced by rhTNF-α. Moreover, dietary genistein, used as an adhesion antagonist, may contribute to managing the cell-mediated rejection in the clinical application.

  5. Islet-activating protein inhibits leukotriene D4- and leukotriene C4- but not bradykinin- or calcium ionophore-induced prostacyclin synthesis in bovine endothelial cells.

    Clark, M. A.; Conway, T.M.; Bennett, C F; Crooke, S T; Stadel, J M

    1986-01-01

    Incubation of the bovine endothelial cell line, CPAE, with leukotriene D4, leukotriene C4, bradykinin, or the calcium ionophore A23187 results in the release of arachidonic acid metabolites including 6-keto-prostaglandin F1 alpha, the stable metabolite of prostacyclin. Pretreatment of these cells with the pertussis toxin islet-activating protein (IAP) results in a dose-dependent inhibition of the release of arachidonic acid metabolites and prostacyclin in response to leukotriene D4 and leukot...

  6. Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells

    LI Cai-juan; GUO Su-fen; SHI Tie-mei

    2012-01-01

    Background Parthenolide has been tested for anti-tumor activities,such as anti-proliferation and pro-apoptosis in recent studies.However,little is known about its role in the process of tumor angiogenesis.This study aims to investigate the effects and potential mechanisms of parthenolide on the proliferation,migration and lumen formation capacity of human umbilical vein endothelial cells.Methods Different concentrations of parthenolide were applied to the human breast cancer cell line MDA-MB-231 cells.After 24-hour incubation,the culture supematants were harvested and used to treat human umbilical vein endothelial cells for 24 hours.Then an inverted fluorescence phase contrast microscope was used to evaluate the human umbilical vein endothelial cells.The secretion of vascular endothelial growth factor (VEGF),interleukin (IL)-8 and matrix metalloproteinases (MMP)-9 in the culture supernatant of the MDA-MB-231 cells was then measured with enzyme-linked immunosorbent assay (ELISA) assays.Results Suppression of proliferation,migration,and the lumen formation capacity of human umbilical vein endothelial cells was observed in the presence of the culture supernatants from the breast cancer cell line treated with different concentrations of parthenolide.Parthenolide decreased the levels of the angiogenic factors MMP-9,VEGF,and IL-8secreted by the MDA-MB-231 cells.Conclusions Parthenolide may suppress angiogenesis through decreasing angiogenic factors secreted by breast cancer cells to interfere with the proliferation,migration and lumen-like structure formation of endothelial cells,thereby inhibiting tumor growth.It is a promising potential anti-angiogenic drug.

  7. Hedyotis diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATP-binding casette subfamily G member 2

    LI, QIONGYU; Wang, Xiangfeng; SHEN, ALING; Zhang, Yuchen; Chen, Youqin; Sferra, Thomas J.; LIN, JIUMAO; Peng, Jun

    2015-01-01

    Previous studies have demonstrated that Hedyotis diffusa Willd (HDW), a traditional Chinese herbal medicine, exhibits potent anticancer activity in models of colorectal cancer (CRC). Aggressive forms of CRC exhibit resistance to widely used chemotherapeutic drugs, including the antimetabolite, 5-fluorouracil (5-FU); however, less is known with regard to the activity of HDW against 5-FU-resistant cancer. In the present study, the mechanism of action and the potency of ethanol extracts of HDW (...

  8. Combination of 5-Fluorouracil and N1,N11-Diethylnorspermine Markedly Activates Spermidine/Spermine N1-Acetyltransferase Expression, Depletes Polyamines, and Synergistically Induces Apoptosis in Colon Carcinoma Cells*

    Choi, Woonyoung; Gerner, Eugene W.; Ramdas, Latha; Dupart, Jheri; Carew, Jennifer; Proctor, Lynsey; Huang, Peng; Zhang, Wei; Hamilton, Stanley R.

    2004-01-01

    The thymidylate synthase inhibitor 5-fluorouracil (5-FU) is used widely for chemotherapy of colorectal carcinoma. Recent studies showed that 5-FU affects polyamine metabolism in colon carcinoma cells. We therefore examined whether combinations of 5-FU with drugs that specifically target polyamine metabolism, i.e. N1,N11-diethylnorspermine (DENSPM) or α-difluoromethyl-ornithine (DFMO), have synergistic effects in killing HCT116 colon carcinoma cells with wild-type or absent p53. Our results sh...

  9. Comparison of the effectiveness and toxicity of neoadjuvant chemotherapy regimens, capecitabine/epirubicin/cyclophosphamide vs 5-fluorouracil/epirubicin/cyclophosphamide, followed by adjuvant, capecitabine/docetaxel vs docetaxel, in patients with operable breast cancer

    Zhang MM; Wei W; Liu JL; Yang HW; Jiang Y; Tang W; Li QY; Liao XM

    2016-01-01

    Minmin Zhang,* Wei Wei,* Jianlun Liu, Huawei Yang, Yi Jiang, Wei Tang, Qiuyun Li, Xiaoming Liao Department of Breast Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China *These authors contributed equally to this work Abstract: The aim of this study was to compare the effectiveness and toxicity of neoadjuvant chemotherapy regimens, xeloda/epirubicin/cyclophosphamide (XEC) vs 5-fluorouracil/epirubicin/cyclophosphamide (FEC)...

  10. A comparative study of the safety and efficacy effect of 5-fluorouracil or mitomycin C mounted biological delivery membranes in a rabbit model of glaucoma filtration surgery

    Wu ZH

    2013-03-01

    Full Text Available Zhihong Wu,1 Shuning Li,2 Ningli Wang,2 Wanshun Liu,3 Wen Liu3 1General Hospital of Armed Police Forces, Beijing, People’s Republic of China; 2Beijing Tongren Eye Center, Capital Medical University, Beijing, People’s Republic of China 3Ocean University of China, Qingdao, People’s Republic of China Purpose: To investigate the potential usage of biological delivery membranes containing mitomycin C (MMC or 5-fluorouracil (5-FU in the construction of glaucoma-filtering blebs, and to evaluate their safety and efficacy. Methods: Chitosan was selected as the biological membrane carrier to prepare sustained-released membranes. Twelve micrograms of 5-FU or MMC was covalently conjugated onto the membranes by solvent volatilization. Rabbits underwent glaucoma filtration surgery and were randomly allocated into one of the four treatment regimens: glaucoma filtration operation with no implantation of chitosan membrane group (as control, drug-free chitosan membrane implantation group (blank/placebo group, membrane containing 5-FU treatment group (5-FU group, and membrane containing MMC treatment group (MMC group. Each group consisted of 12 rabbits. Intraocular pressure (IOP was measured and evaluated over a 28-day period follow-up preoperatively, then after surgery on days 1, 3, 5, 7, 14, 21, and 28 by Tono-Pen. The aqueous humor was analyzed in each experimental and control groups at days 4, 6, 8, 10, 12, 14, 16, and 20 after operation. Bleb survival and anterior segment were examined with a slit lamp microscope and photographed simultaneously. Two rabbits from each group were killed on day 28 and eight eye samples obtained for histopathological study. Corneas and lenses were examined by transmission and scanning electron microscopy. Results: Both 5-FU and MMC significantly prolonged bleb survival compared with control groups. The filtering bleb’s survival period was significantly more prolonged in the MMC and 5-FU groups (maintained 14 days than the

  11. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats.

    Fan, Chiaming; Georgiou, Kristen R; McKinnon, Ross A; Keefe, Dorothy M K; Howe, Peter R C; Xian, Cory J

    2016-05-01

    The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation. PMID:26056019

  12. Involved-field irradiation concurrently combined with nedaplatin/5-fluorouracil for inoperable esophageal cancer on basis of 18FDG-PET scans: A phase II study

    Purpose: A prospective study was performed on chemoradiotherapy (CRT) for esophageal cancer using involved-field radiation therapy (IFRT) based on 18-fluorodeoxyglucose positron-emission tomography. The goal of this phase II study was to evaluate the efficacy of the IFRT procedure in newly diagnosed esophageal cancer. Patients and methods: Eligible patients were adults with newly diagnosed untreated, inoperable esophageal cancer in stages I–IV with lymph node metastases. Patients received nedaplatin 80 mg/m2 per day on day 1, 5-fluorouracil 800 mg/m2 on days 1–4 intravenously repeated every 28 days for 2–4 cycles, and combined IFRT. Elective nodal irradiation was not performed. Irradiation was applied only to the primary tumor and positive lymph nodes. Results: From September 2009 to July 2012, of the 63 patients enrolled, 58 were evaluable for response. The primary end point of isolated out-of-field loco-regional nodal recurrence was seen in only two patients. The expectant rate was assumed to be less than 5%. The threshold value was set as 10% to calculate the number of registrations. Progression-free and overall survival rates at 36 months were 47.7% and 51.1%, respectively. The median progression-free survival was 34.6 months, and overall survival was 38.4 months. Salvage surgery was tried for 11 patients (17.5%) due to residual or recurrent disease. Conclusion: The primary end point of the trial was demonstrated, indicating the efficacy of IFRT in the treatment of inoperable esophageal cancer mostly of squamous cell carcinoma

  13. Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer

    Gunnlaugsson, Adalsteinn; Kjellen, Elisabeth; Bendahl, Paer-Ola; Johnsson, A nders [Dept. of Oncology, Lund Univ. Hospital, Lund (Sweden); Nilsson, Per [Dept. o f Radiation Physics, Lund Univ. Hospital, Lund (Sweden); Willner, Julian [Dept. of Radiology, Lund Univ. Hospital, Lund (Sweden)

    2007-10-15

    Purpose. Radiation enteritis is the main acute side-effect during pelvic irradiation. The aim of this study was to quantify the dose-volume relationship between irradiated bowel volumes and acute enteritis during combined chemoradiotherapy for rectal cancer. Material and methods. Twenty-eight patients with locally advanced rectal cancer received chemoradiotherapy. The radiation therapy was given with a traditional multi-field technique to a total dose of 50 Gy, with concurrent 5-Fluorouracil (5-FU) and oxaliplatin (OXA) based chemotherapy. All patients underwent three-dimensional CT-based treatment planning. Individual loops of small and large bowel as well as a volume defined as 'whole abdomen' were systematically contoured on each CT slice, and dose-volume histograms were generated. Diarrhea during treatment was scored retrospectively according to the NCI Common Toxicity Criteria scale. Results. There was a strong correlation between the occurrence of grade 2+diarrhea and irradiated small bowel volume, most notably at doses >15 Gy. Neither irradiated large bowel volume, nor irradiated 'whole abdomen' volume correlated significantly with diarrhea. Clinical or treatment related factors such as age, gender, hypertension, previous surgery, enterostomy, or dose fractionation (1.8 vs. 2.0 Gy/fraction) did not correlate with grade 2+diarrhea. Discussion. This study indicates a strong dose-volume relationship between small bowel volume and radiation enteritis during 5-FU-OXA-based chemoradiotherapy. These findings support the application of maneuvers to minimize small bowel irradiation, such as using a 'belly board' or the use of IMRT technique aiming at keeping the small bowel volume receiving more than 15 Gy under 150 cc.

  14. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. PMID:27133054

  15. Radiochemotherapy including cisplatin alone versus cisplatin + 5-fluorouracil for locally advanced unresectable stage IV squamous cell carcinoma of the head and neck

    Tribius, Silke; Kilic, Yasemin [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf, Hamburg (Germany); Kronemann, Stefanie [Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany); Schroeder, Ursula [Dept. of Head and Neck Surgery, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany); Hakim, Samer [Dept. of Oro-Maxillo-Facial Surgery, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany); Schild, Steven E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Rades, Dirk [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf, Hamburg (Germany); Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany)

    2009-10-15

    Background and purpose: the optimal radiochemotherapy regimen for advanced head-and-neck cancer is still debated. This nonrandomized study compares two cisplatin-based radiochemotherapy regimens in 128 patients with locally advanced unresectable stage IV squamous cell carcinoma of the head and neck (SCCHN). Patients and methods: concurrent chemotherapy consisted of either two courses cisplatin (20 mg/m{sup 2}/d1-5 + 29-33; n = 54) or two courses cisplatin (20 mg/m{sup 2}/d1-5 + 29-33) + 5-fluorouracil (5-FU; 600 mg/m{sup 2}/d1-5 + 29-33; n = 74). Results: at least one grade 3 toxicity occurred in 25 of 54 patients (46%) receiving cisplatin alone and in 52 of 74 patients (70%) receiving cisplatin + 5-FU. The latter regimen was particularly associated with increased rates of mucositis (p = 0.027) and acute skin toxicity (p = 0.001). Seven of 54 (13%) and 20 of 74 patients (27%) received only one chemotherapy course due to treatment-related acute toxicity. Late toxicity in terms of xerostomia, neck fibrosis, skin toxicity, and lymphedema was not significantly different. The 2-year locoregional control rates were 67% after cisplatin alone and 52% after cisplatin + 5-FU (p = 0.35). The metastases-free survival rates were 79% and 69%, respectively (p = 0.65), and the overall survival rates 70% and 51%, respectively (p = 0.10). On multivariate analysis, outcome was significantly associated with performance status, T-category, N-category, hemoglobin level prior to radiotherapy, and radiotherapy break > 1 week. Conclusion: two courses of fractionated cisplatin (20 mg/m{sup 2}/day) alone appear preferable, as this regimen resulted in similar outcome and late toxicity as two courses of cisplatin + 5-FU, but in significantly less acute toxicity. (orig.)

  16. Oxidative Stress-Related Genetic Polymorphisms Are Associated with the Prognosis of Metastatic Gastric Cancer Patients Treated with Epirubicin, Oxaliplatin and 5-Fluorouracil Combination Chemotherapy

    Zhao, Xiaoying; Qiu, Lixin; Liu, Xin; Liu, Rujiao; Guo, Weijian; He, Guang; Li, Jin; Zhu, Xiaodong

    2014-01-01

    Background Oxidative stress genes are related to cancer development and treatment response. In this study, we aimed to determine the predictive and prognostic roles of oxidative stress-related genetic polymorphisms in metastatic gastric cancer (MGC) patients treated with chemotherapy. Methods In this retrospective study, we genotyped nine oxidative stress-related single nucleotide polymorphisms (SNPs) in NQO1, SOD2, SOD3, PON1, GSTP1, GSTT1, and NOS3 (rs1800566, rs10517, rs4880, rs1799895, rs662, rs854560, rs1695, rs2266637, rs1799983, respectively) in 108 consecutive MGC patients treated with epirubicin, oxaliplatin, and 5-fluorouracil (EOF) regimen as the first-line chemotherapy and analyzed the association between the genotypes and the disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). Results We found that, in addition to a lower pathological grade (p = 0.017), NQO1 rs1800566 CT/TT genotype was an independent predictive factor of poor PFS (hazard ratio [HR] = 1.97, 95% confidence interval [CI] = 1.23–3.16; p = 0.005). PON1 rs662 AA/AG genotype was significantly associated with poor OS (HR = 1.95, 95% CI = 1.07–3.54; p = 0.029). No associations were detected between the nine SNPs and DCR. Conclusions NQO1 rs1800566 is an independent predictive factor of PFS for MGC patients treated with EOF chemotherapy, and PON1 rs662 is a noteworthy prognostic factor of OS. Information on oxidative stress-related genetic variants may facilitate optimization of individualized chemotherapy in clinical practice. PMID:25545243

  17. Impact of Gemcitabine Chemotherapy and 3-Dimensional Conformal Radiation Therapy/5-Fluorouracil on Quality of Life of Patients Managed for Pancreatic Cancer

    Purpose: To report quality of life (QOL) results for patients receiving chemoradiation therapy for pancreatic cancer. Methods and Materials: Eligible patients (n=41 locally advanced, n=22 postsurgery) entered the B9E-AY-S168 study and received 1 cycle of induction gemcitabine (1000 mg/m2 weekly ×3 with 1-week break) followed by 3-dimensional conformal radiation therapy (RT) (54 Gy locally advanced and 45 Gy postsurgery) and concomitant continuous-infusion 5-fluorouracil (5FU) (200 mg/m2/d throughout RT). After 4 weeks, patients received an additional 3 cycles of consolidation gemcitabine chemotherapy. Patients completed the European Organization for Research and Treatment of Cancer QLQ-C30 and QLQ-PAN26 questionnaires at baseline, before RT/5FU, at end of RT/5FU, before consolidation gemcitabine, and at treatment completion. Results: The patterns of change in global QOL scores differed between groups. In the locally advanced group global QOL scores were +13, +8, +3, and +1 compared with baseline before RT/5FU (P=.008), at end of RT/5FU, before consolidation gemcitabine, and at treatment completion, respectively. In the postsurgery group, global QOL scores were −3, +4, +15, and +17 compared with baseline at the same time points, with a significant improvement in global QOL before consolidation gemcitabine (P=.03). No significant declines in global QOL were reported by either cohort. Conclusions: This study demonstrates that global QOL and associated function and symptom profiles for pancreatic chemoradiation therapy differ between locally advanced and postsurgery patients, likely owing to differences in underlying disease status. For both groups, the treatment protocol was well tolerated and did not have a negative impact on patients' global QOL.

  18. Impact of Gemcitabine Chemotherapy and 3-Dimensional Conformal Radiation Therapy/5-Fluorouracil on Quality of Life of Patients Managed for Pancreatic Cancer

    Short, Michala [Discipline of Medical Radiation Sciences, University of Sydney, Sydney, New South Wales (Australia); Western Australia Centre for Cancer and Palliative Care/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia (Australia); Goldstein, David [Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales (Australia); Halkett, Georgia [Western Australia Centre for Cancer and Palliative Care/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia (Australia); Reece, William [Covance Asia Pacific, Sydney, New South Wales (Australia); Borg, Martin [Adelaide Radiotherapy Centre, Adelaide, South Australia (Australia); Zissiadis, Yvonne [Department of Radiation Oncology, Royal Perth Hospital, Perth, Western Australia (Australia); Kneebone, Andrew [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Spry, Nigel, E-mail: Nigel.Spry@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia (Australia); Faculty of Medicine, University of Western Australia, Perth, Western Australia (Australia)

    2013-01-01

    Purpose: To report quality of life (QOL) results for patients receiving chemoradiation therapy for pancreatic cancer. Methods and Materials: Eligible patients (n=41 locally advanced, n=22 postsurgery) entered the B9E-AY-S168 study and received 1 cycle of induction gemcitabine (1000 mg/m{sup 2} weekly Multiplication-Sign 3 with 1-week break) followed by 3-dimensional conformal radiation therapy (RT) (54 Gy locally advanced and 45 Gy postsurgery) and concomitant continuous-infusion 5-fluorouracil (5FU) (200 mg/m{sup 2}/d throughout RT). After 4 weeks, patients received an additional 3 cycles of consolidation gemcitabine chemotherapy. Patients completed the European Organization for Research and Treatment of Cancer QLQ-C30 and QLQ-PAN26 questionnaires at baseline, before RT/5FU, at end of RT/5FU, before consolidation gemcitabine, and at treatment completion. Results: The patterns of change in global QOL scores differed between groups. In the locally advanced group global QOL scores were +13, +8, +3, and +1 compared with baseline before RT/5FU (P=.008), at end of RT/5FU, before consolidation gemcitabine, and at treatment completion, respectively. In the postsurgery group, global QOL scores were -3, +4, +15, and +17 compared with baseline at the same time points, with a significant improvement in global QOL before consolidation gemcitabine (P=.03). No significant declines in global QOL were reported by either cohort. Conclusions: This study demonstrates that global QOL and associated function and symptom profiles for pancreatic chemoradiation therapy differ between locally advanced and postsurgery patients, likely owing to differences in underlying disease status. For both groups, the treatment protocol was well tolerated and did not have a negative impact on patients' global QOL.

  19. Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients.

    Islam, Md Siddiqul; Islam, Mohammad Safiqul; Parvin, Salma; Ahmed, Maizbah Uddin; Bin Sayeed, Muhammad Shahdaat; Uddin, Mir Muhammad Nasir; Hussain, Syed Md Akram; Hasnat, Abul

    2015-07-01

    The most important cytotoxic drug namely, cyclophosphamide used in breast cancer along with epirubicin and 5-fluorouracil, is transported by ABCC transporters and detoxified by glutathione S-transferases (GSTs). The activities of these enzymes and transporters may vary in different population due to the presence of genetic polymorphisms. This study was aimed to evaluate the effects of GSTP1rs1695 and ABCC4rs9561778 polymorphisms on the response and toxicities produced by chemotherapy used in the treatment of Bangladeshi breast cancer patients. A total of 200 and 56 patients with invasive breast cancers were recruited from different public and private hospitals of Bangladesh of which 117 patients received neoadjuvant chemotherapy to examine the response as well as the toxicity, and another 139 patients received adjuvant chemotherapy to evaluate only the toxicity. Genetic polymorphisms of the mentioned genes were detected by using Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR RFLP). Patients carrying AG and AG plus GG genotype of GSTP1rs1695 were more likely to have a good response, whereas no association of ABCC4rs9561778 was found with the chemotherapy response. Patients carrying GT and GT plus TT genotypes of ABCC4rs9561778 were found to be associated with anemia, neutropenia, leukopenia, and gastrointestinal toxicities when compared with GG genotype whereas no association was found with thrombocytopenia. GSTP1rs1695 was not associated with any type of toxicities investigated. Our result indicates that GSTP1rs1695 polymorphism was strongly associated with the response of chemotherapy, whereas ABCC4rs9561778 polymorphism was significantly related with chemotherapy-induced toxicities. PMID:25677905

  20. Chemo radioimmunotherapy with 5-fluorouracil, cisplatin and interferon-α in pancreatic and peri-ampullary cancer: Results of a feasibility study

    Background: Recent studies give rise to the hypothesis, that adjuvant chemo radioimmunotherapy with 5-fluorouracil (5-F.U.), cisplatin and interferon-a (I.F.N.-a) might be a possible new treatment of pancreatic cancer in resected patients. We report the up-to-now experience at our institution. Patients and methods: Eleven patients with histological diagnosis of localized carcinoma of the pancreas (n = 7) or peri-ampullary (n = 4) were prospectively analyzed. Four patients were deemed unresectable because of local invasion of adjacent organs (neo-adjuvant setting) and seven patients underwent curative resection (adjuvant setting). Eight patients were classified as T3 carcinomas and three T4 carcinomas. Fifty-five per cent (6/11) of the patients presented with positive lymph node involvement. One histological Grade I, six Grade II and three Grade III were detected. External conformal irradiation to a total dose of 50.4 Gy with 1.8 Gy per day was delivered. All patients received a concomitant chemotherapy with continuous 5-F.U. 200 mg/m2 per day on 28 treatment days and intravenous bolus cisplatin 30 mg/m2 per week (Day 2, 9, 16, 23, 30). A recombinant r-I.F.N.-a was administered on three days weekly during Week one to five of the radiotherapy course as subcutaneous injections with 3*3 Mio. I.U. weekly. Results: The four-year overall survival rate for all patients was 55%. In the neo-adjuvant group, three of four patients died due to progressive disease; in the adjuvant group, combined chemo radioimmunotherapy lead to controlled disease in five of seven patients. The overall toxicity was well-managed. Conclusion: Our data strengthens the hypothesis of concomitant chemo radioimmunotherapy with 5-F.U., I.F.N.-a and cisplatin as a possible new treatment of pancreatic cancer in resected patients. (authors)

  1. Evaluation of the efficacy and toxicity of protocol cisplatin, 5-fluorouracil, leucovorin compared to protocol fluorouracil, doxorubicin and mitomycin C in locally advanced and metastatic gastric cancer

    Andrić Zoran

    2012-01-01

    Full Text Available Introduction. Still there is no consensus on the choice of the most efficient and the least toxic chemotherapy regimen in the treatment of advanced gastric cancer. Nowadays few therapy protocols are available for treating this disease. Objective. Study was conducted to compare the efficacy and toxicity of FAM (flurouracil, doxorubicin, mitomycin C with CDDP and FU/FA (cisplatin, 5-fluorouracil, leucovorin protocols in patients with locally advanced and metastatic gastric cancer. Methods. This randomized study involved a group of 50 patients with locally advanced or metastatic gastric cancer, who had not previously undergone chemotherapy treatment. Progression free survival, overall survival and drug toxicity were evaluated. For statistical analysis chi-square test, Kaplan-Meier curve and the log rank test were used. Results. The overall response rate was 20% in the group treated with FAM and 24% in the group treated with CDDP, FU/FA (4% of patients from each group had complete response, but without significant statistical difference. Median survival was 10.9 months in the FAM group and 11.8 months in CDDP, FU/FA group, with no statistically significant difference. Non-haematological and haematological toxicities of CDDP, FU/FA were considerably less frequent than of FAM, and there was no treatment related deaths in any of the groups. Conclusion. Both investigated regimens demonstrated moderate efficacy. The study shows in favour of justified application of both protocols, while in regard to toxicity CDDP and FU/FA can be recommended as preferable treatment for locally advanced and metastatic gastric cancer. New strategies should be considered for better efficacy in the treatment of advanced gastric cancer. New strategies are necessary with the goal to achieve a better therapeutic effect.

  2. Radiochemotherapy including cisplatin alone versus cisplatin + 5-fluorouracil for locally advanced unresectable stage IV squamous cell carcinoma of the head and neck

    Background and purpose: the optimal radiochemotherapy regimen for advanced head-and-neck cancer is still debated. This nonrandomized study compares two cisplatin-based radiochemotherapy regimens in 128 patients with locally advanced unresectable stage IV squamous cell carcinoma of the head and neck (SCCHN). Patients and methods: concurrent chemotherapy consisted of either two courses cisplatin (20 mg/m2/d1-5 + 29-33; n = 54) or two courses cisplatin (20 mg/m2/d1-5 + 29-33) + 5-fluorouracil (5-FU; 600 mg/m2/d1-5 + 29-33; n = 74). Results: at least one grade 3 toxicity occurred in 25 of 54 patients (46%) receiving cisplatin alone and in 52 of 74 patients (70%) receiving cisplatin + 5-FU. The latter regimen was particularly associated with increased rates of mucositis (p = 0.027) and acute skin toxicity (p = 0.001). Seven of 54 (13%) and 20 of 74 patients (27%) received only one chemotherapy course due to treatment-related acute toxicity. Late toxicity in terms of xerostomia, neck fibrosis, skin toxicity, and lymphedema was not significantly different. The 2-year locoregional control rates were 67% after cisplatin alone and 52% after cisplatin + 5-FU (p = 0.35). The metastases-free survival rates were 79% and 69%, respectively (p = 0.65), and the overall survival rates 70% and 51%, respectively (p = 0.10). On multivariate analysis, outcome was significantly associated with performance status, T-category, N-category, hemoglobin level prior to radiotherapy, and radiotherapy break > 1 week. Conclusion: two courses of fractionated cisplatin (20 mg/m2/day) alone appear preferable, as this regimen resulted in similar outcome and late toxicity as two courses of cisplatin + 5-FU, but in significantly less acute toxicity. (orig.)

  3. Degradation of cyclophosphamide and 5-fluorouracil by UV and simulated sunlight treatments: Assessment of the enhancement of the biodegradability and toxicity.

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro; Kümmerer, Klaus

    2016-01-01

    The presence of pharmaceuticals in the environment has triggered concern among the general population and received considerable attention from the scientific community in recent years. However, only a few publications have focused on anticancer drugs, a class of pharmaceuticals that can exhibit cytotoxic, genotoxic, mutagenic, carcinogenic and teratogenic effects. The present study investigated the photodegradation, biodegradation, bacterial toxicity, mutagenicity and genotoxicity of cyclophosphamide (CP) and 5-fluorouracil (5-FU). The photodegradation experiments were performed at a neutral to slight pH range (7-7.8) using two different lamps (medium-pressure mercury lamp and a xenon lamp). The primary elimination of the parent compounds was monitored by means of liquid chromatography tandem mass spectrometry (LC-IT-MS/MS). NPOC (non-purgeable organic carbon) analyses were carried out in order to assess mineralization rates. The Closed Bottle Test (CBT) was used to assess ready biodegradability. A new method using Vibrio fischeri was adopted to evaluate toxicity. CP was not degraded by any lamp, whereas 5-FU was completely eliminated by irradiation with the mercury lamp but only partially by the Xe lamp. No mineralization was observed for the experiments performed with the Xe lamp, and a NPOC removal of only 18% was registered for 5-FU after 256 min using the UV lamp. Not one of the parent compounds was readily biodegradable in the CBT. Photo transformation products (PTPs) resulting from photolysis were neither better biodegradable nor less toxic than the parent compound 5-FU. In contrast, the results of the tests carried out with the UV lamp indicated that more biodegradable and non-toxic PTPs of 5-FU were generated. Three PTPs were formed during the photodegradation experiments and were identified. The results of the in silico QSAR predictions showed positive mutagenic and genotoxic alerts for 5-FU, whereas only one of the formed PTPs presented positive alerts

  4. Bevacizumab plus infusional 5-fluorouracil, leucovorin and irinotecan for advanced colorectal cancer that progressed after oxaliplatin and irinotecan chemotherapy: A pilot study

    2007-01-01

    AIM: To evaluate the combination of bevacizumab with infusional 5-fluorouracil (5-FU), leucovorin (LV) and irinotecan (FOLFIRI) in patients with advanced colorectal cancer (CRC) pretreated with combination regimens including irinotecan and oxaliplatin.METHODS: Fourteen patients (median age 56 years) with advanced CRC, all having progressed after oxaliplatin- and irinotecan-based combination chemotherapy, were enrolled in this study. Patients were treated with 2 h infusion of irinotecan 150 mg/m2 on d 1, plus bevacizumab 5 mg/kg iv infusion for 90 min on d 2, and iv injection of LV 20 mg/m2 followed by a bolus of 5-FU 400 mg/m2 and then 22 h continuous infusion of 600 mg/m2 given on two consecutive days every 14 d.RESULTS: The median number of cycles of chemotherapy was six (range 3-12). The response rate was 28.5%, one patient had a complete response, and three patients had a partial response. Eight patients had stable disease. The median time to progression was 3.9 mo (95% CI 2.0-8.7),and the median overall survival was 10.9 mo (95% CI 9.6-12.1). Grade 3/4 neutropenia occurred in five patients, and two of these developed neutropenic fever.Grade 3 hematuria and hematochezia occurred in one.Grade 2 proteinuria occurred in two patients. However,hypertension, bowel perforation or thromboembolic events did not occur in a total of 90 cycles.CONCLUSION: Bevacizumab with FOLFIRI is well tolerated and a feasible treatment in patients with heavily treated advanced CRC.

  5. Front-line Bevacizumab in combination with Oxaliplatin, Leucovorin and 5-Fluorouracil (FOLFOX in patients with metastatic colorectal cancer: a multicenter phase II study

    Touroutoglou Nikolaos

    2007-05-01

    Full Text Available Abstract Purpose To evaluate the efficacy and the toxicity of front line FOLFOX4 combined with bevacizumab in patients with metastatsic CRC (mCRC. Patients and Methods Chemotherapy-naïve patients with mCRC, received bevacizumab (5 mg/kg every 2 weeks d1, oxaliplatin (85 mg/m2 on d1, leucovorin (200 mg/m2 on days 1 and 2 and 5-Fluorouracil (400 mg/m2 as i.v. bolus and 600 mg/m2 as 22 h i.v. continuous infusion on days 1 and 2 every 2 weeks. Results Fifty three patients (46 with a PS 0–1 were enrolled. Complete and partial response was achieved in eight (15.1% and 28 (52.8% patients, respectively (ORR: 67.9%; 95% C.I.: 53.8%–92%; 11 (20.7% patients had stable disease and six (11.3% progressive disease. With a median follow up period of 13.5 months, time to tumor progression was 11 months while the median survival has not yet been reached; the probability of 1-, 2- and 3- year survival was 79.8%, 63.8% and 58.3%, respectively; Two patients relapsed during the follow up period. Eight (15% patients underwent metastasectomy with R0 resections. Grade 3–4 neutropenia occurred in 15.1% of patients and one (1.9% of them presented febrile neutropenia. Non-hematologic toxicity included grade 3 diarrhea (7.6% and grade 2 and 3 neurotoxicity in 16.9 and 15.1% of patients, respectively. One (1.9% patient presented pulmonary embolism and one (1.9% cardiac ischaemia. There was one (1.9% sudden death after the first cycle. Conclusion The combination of FOLFOX4/bevacizumab appears to be highly effective, well tolerated and merits further evaluation in patients with mCRC.

  6. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways

    5-Fluorouracil (5-FU) is one of the widely used chemotherapeutic drugs targeting various cancers, but its chemo-resistance remains as a major obstacle in clinical settings. In the present study, HT-29 colon cancer cells were markedly sensitized to apoptosis by both 5-FU and genistein compared to the 5-FU treatment alone. There is an emerging evidence that genistein, soy-derived phytoestrogen, may have potential as a chemotherapeutic agent capable of inducing apoptosis or suppressing tumor promoting proteins such as cyclooxygenase-2 (COX-2). However, the precise mechanism of cellular cytotoxicity of genistein is not known. The present study focused on the correlation of AMPK and COX-2 in combined cytotoxicity of 5-FU and genistein, since AMPK is known as a primary cellular homeostasis regulator and a possible target molecule of cancer treatment, and COX-2 as cell proliferation and anti-apoptotic molecule. Our results demonstrated that the combination of 5-FU and genistein abolished the up-regulated state of COX-2 and prostaglandin secretion caused by 5-FU treatment in HT-29 colon cancer cells. These appear to be followed by the specific activation of AMPK and the up-regulation of p53, p21, and Bax by genistein. Under same conditions, the induction of Glut-1 by 5-FU was diminished by the combination treatment with 5-FU and genistein. Furthermore, the reactive oxygen species (ROS) was found as an upstream signal for AMPK activation by genistein. These results suggested that the combination of 5-FU and genistein exert a novel chemotherapeutic effect in colon cancers, and AMPK may be a novel regulatory molecule of COX-2 expression, further implying its involvement in cytotoxicity caused by genistein

  7. Paricalcitol Enhances the Chemopreventive Efficacy of 5-Fluorouracil on an Intermediate-Term Model of Azoxymethane-Induced Colorectal Tumors in Rats.

    El-Shemi, Adel Galal; Refaat, Bassem; Kensara, Osama Adnan; Mohamed, Amr Mohamed; Idris, Shakir; Ahmad, Jawwad

    2016-06-01

    Colorectal cancer is a common cancer with high mortality rate. Despite being the standard anti-colorectal cancer drug, 5-fluorouracil (5-FU) exhibits only limited therapeutic benefits. Herein, we investigated whether paricalcitol, a synthetic vitamin D analogue with potential antitumor properties, would enhance the chemopreventive efficacy of 5-FU on an intermediate-term (15 weeks) model of colorectal tumors induced by azoxymethane (AOM) in rats. After AOM injection, 5-FU was administered during the 9th and 10th weeks (12 mg/kg/day for 4 days, then 6 mg/kg every other day for another 4 doses), whereas paricalcitol (2.5 μg/kg/day; 3 days/week) was given from the 7th to the 15th week. At week 15, the animals were euthanized and their resected colons were examined macroscopically and microscopically. Quantitative RT-PCR was used to measure the transcription activities of Wnt, β-catenin, DKK-1, CDNK-1A, NF-κB, and COX-2 genes, and ELISA was used to quantify the protein levels of β-catenin, COX-2, HSP90, and VEGF. IHC was additionally used to measure β-catenin, HSP90, and inducible nitric oxide synthase (iNOS). Compared with their individual therapy, combination of 5-FU and paricalcitol showed more significant reducing effect on numbers of grown tumors and large aberrant crypts foci. Mechanistically, paricalcitol and 5-FU had cooperated together to repress the expression of procancerous Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF, and HSP-90 more, and to upregulate the expression of antitumorigenesis DKK-1 and CDNK-1A, compared with their monotherapies. Our findings suggest that combined use of paricalcitol with 5-FU exhibits an augmenting chemopreventive effect against colorectal tumors, and might potentially be useful for chemoprevention in colorectal cancer patients. Cancer Prev Res; 9(6); 491-501. ©2016 AACR. PMID:27020656

  8. Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses.

    Harrop, Richard; Drury, Noel; Shingler, William; Chikoti, Priscilla; Redchenko, Irina; Carroll, Miles W; Kingsman, Susan M; Naylor, Stuart; Griffiths, Richard; Steven, Neil; Hawkins, Robert E

    2008-07-01

    Modified vaccinia Ankara (MVA) encoding the tumor antigen 5T4 (TroVax) has been evaluated in an open label phase II study in metastatic colorectal cancer patients. The primary objective was to assess the safety and immunogenicity of TroVax injected before, during and after treatment with 5-fluorouracil, leukovorin and irinotecan. TroVax was administered to 19 patients with metastatic colorectal cancer. Twelve patients had blood samples taken following each of the six injections and were considered to be evaluable for assessment of immunological responses. Both antibody and cellular responses specific for the tumor antigen 5T4 and the viral vector MVA were monitored throughout the study. Administration of TroVax alongside chemotherapy was safe and well tolerated with no SAEs attributed to the vaccine and no enhancement of chemo-related toxicity. Of the 12 patients who were evaluable for assessment of immune responses, ten mounted 5T4-specific antibody responses with titers ranging from 10 to > 5,000. IFNgamma ELISPOT responses specific for 5T4 were detected in 11 patients with frequencies exceeding one in 1,000 PBMCs in five patients. Eight patients presented with elevated circulating CEA concentrations, six of whom showed decreases in excess of 50% during chemotherapy and four had CEA levels which remained stable for > 1 month following completion of chemotherapy. Of the 19 intention to treat (ITT) patients, one had a CR, six had PRs and five had SD. Potent 5T4-specific cellular and/or humoral immune responses were induced in all 12 evaluable patients and were detectable in most patients during the period in which chemotherapy was administered. These data demonstrate that TroVax can be layered on top of chemotherapy regimens without any evidence of enhanced toxicity or reduced immunological or therapeutic efficacy. PMID:18060404

  9. Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer

    Purpose. Radiation enteritis is the main acute side-effect during pelvic irradiation. The aim of this study was to quantify the dose-volume relationship between irradiated bowel volumes and acute enteritis during combined chemoradiotherapy for rectal cancer. Material and methods. Twenty-eight patients with locally advanced rectal cancer received chemoradiotherapy. The radiation therapy was given with a traditional multi-field technique to a total dose of 50 Gy, with concurrent 5-Fluorouracil (5-FU) and oxaliplatin (OXA) based chemotherapy. All patients underwent three-dimensional CT-based treatment planning. Individual loops of small and large bowel as well as a volume defined as 'whole abdomen' were systematically contoured on each CT slice, and dose-volume histograms were generated. Diarrhea during treatment was scored retrospectively according to the NCI Common Toxicity Criteria scale. Results. There was a strong correlation between the occurrence of grade 2+diarrhea and irradiated small bowel volume, most notably at doses >15 Gy. Neither irradiated large bowel volume, nor irradiated 'whole abdomen' volume correlated significantly with diarrhea. Clinical or treatment related factors such as age, gender, hypertension, previous surgery, enterostomy, or dose fractionation (1.8 vs. 2.0 Gy/fraction) did not correlate with grade 2+diarrhea. Discussion. This study indicates a strong dose-volume relationship between small bowel volume and radiation enteritis during 5-FU-OXA-based chemoradiotherapy. These findings support the application of maneuvers to minimize small bowel irradiation, such as using a 'belly board' or the use of IMRT technique aiming at keeping the small bowel volume receiving more than 15 Gy under 150 cc

  10. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    Qu CY

    2015-06-01

    Full Text Available Chun-Ying Qu,1,* Min Zhou,1,* Ying-wei Chen,2 Mei-mei Chen,3 Feng Shen,1 Lei-Ming Xu11Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People’s Republic of China; 3Digestive Department, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China*These authors contributed equally to this workPurpose: The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU and cisplatin (CDDP. The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity.Methods: First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model.Results: HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo.Conclusion: This work reveals that HA-coated NLC could be used as a novel carrier to codeliver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine.Keywords: gastric cancer, nanostructured lipid carriers, hyaluronic acid, combination chemotherapy, lipid prodrug

  11. In-vitro and in-vivo assessment of dextran-appended cellulose acetate phthalate nanoparticles for transdermal delivery of 5-fluorouracil.

    Garg, Ashish; Rai, Gopal; Lodhi, Santram; Jain, Alok P; Yadav, Awesh K

    2016-06-01

    The aim of this research was transdermal delivery of 5-fluorouracil (5-FU) using dextran-coated cellulose acetate phthalate (CAP) nanoparticulate formulation. CAP nanoparticles were prepared using drug-polymer ratio (1:1 to 1:3) and surfactant ratio (2.5, 5 and 10%). Dextran coating was made using aminodextran. The results showed that the optimized CAP nanoparticles (CNs) and dextran-coated CAP nanoparticles represented core-corona nanoparticles with the mean diameter of 75 ± 3 and 79 ± 2 nm, respectively, and entrapment efficiency was 82.5 ± 0.06 and 78.2 ± 0.12, respectively. Dextran-coated nanoparticles (FDCNs) and CAP nanoparticles (FCNs) showed in vitro 5-FU release upto 31 h and 8 h, respectively. Moreover, the cumulative amount of 5-FU penetrated through excised skin from FDCNs was 2.94 folds than that of the FU cream. Concentration of 5-FU in epidermis and dermis were also studied. In dermis, concentration of 5-FU was found higher in case of FDCN formulation than plain FU cream. FDCNs were found more hemocompatible in comparison to FCNs. The hematological data recommended that FDCNs formulation was less immunogenic compared to FU creams formulation. In blood level study, FDCNs exhibited 153, 12, 16.66 and 16.24-fold higher values for area under the curve, Tmax, Cmax and mean residence time (MRT) compared with those of FU cream, respectively. The in-vitro cytotoxicity was assessed using the MCF-7 by the MTT test and was compared to the plain 5-FU solution. All the detailed evidence showed that FDCNs could provide a promising tuning as a transdermal delivery system of 5-FU. PMID:25417834

  12. Preoperative Chemoradiotherapy for Rectal Cancer: Randomized Trial Comparing Oral Uracil and Tegafur and Oral Leucovorin Vs. Intravenous 5-Fluorouracil and Leucovorin

    Purpose: To compare, in a randomized trial, 5-fluorouracil (FU) plus leucovorin (LV) (FU+LV) vs. oral uracil and tegafur (UFT) plus LV (UFT+LV) given concomitantly with preoperative irradiation in patients with cT3-4 or N+ rectal cancer. Methods and Materials: A total of 155 patients were entered onto the trial. Patients received pelvic radiotherapy (4500-5,040 cGy in 5 to 6 weeks) and chemotherapy consisting of two 5-day courses of 20 mg/m2/d LV and 350 mg/m2/d FU in the first and fifth weeks of radiotherapy (77 patients) or one course of 25 mg/d oral LV and 300 mg/m2/d UFT for 4 weeks beginning in the second week of radiotherapy (78 patients). The primary endpoints were pathologic complete response (pCR) and resectability rate. Secondary endpoints included downstaging rate, toxicity, and survival. Results: Grade 3-5 acute hematologic toxicity occurred only with FU+LV (leukopenia 9%; p = 0.02). There were no differences in resectability rates (92.1% vs. 93.4%; p = 0.82). The pCR rate was 13.2% in both arms. Tumor downstaging was more frequent with UFT+LV (59.2% vs. 43.3%; p = 0.04). Three-year overall survival was 87% with FU+LV and 74% with UFT+LV (p = 0.37). The 3-year cumulative incidences of local recurrence were 7.5% and 8.9%, respectively (p = 0.619; relative risk, 1.46; 95% confidence interval 0.32-6.55). Conclusion: Although this study lacked statistical power to exclude clinically significant differences between both groups, the outcome of patients treated with UFT+LV did not differ significantly from that of patients treated with FU+LV, and hematologic toxicity was significantly lower in the experimental arm

  13. Length and quality of survival after external-beam radiotherapy with concurrent continuous 5-fluorouracil infusion for locally unresectable pancreatic cancer

    Purpose: The purpose of this study was to evaluate whether external-beam radiotherapy (EBRT) with concurrent continuous 5-fluorouracil (5-FU) infusion affects the length and quality of survival in patients with locally unresectable pancreatic cancer. Methods: Thirty-one patients with histologically proven locally advanced and unresectable pancreatic cancer without distant metastases were evaluated in this prospective randomized trial. Sixteen patients received EBRT (50.4 Gy/28 fractions) with concurrent continuous infusion of 5-FU (200 mg/m2/day), whereas 15 patients received no chemoradiation. The length and quality of survival was analyzed and compared for the two groups. Results: The median survival of 13.2 months and the 1-year survival rate of 53.3% in the chemoradiation group were significantly better than the respective 6.4 months and 0% in the group without chemoradiotherapy (p=0.0009). The average monthly Karnofsky score, a quality of life indicator, was 77.1 in the chemoradiation group, which was significantly higher than the 65.5 in the group without chemoradiotherapy (p<0.0001). The number of hospital days per month of survival was significantly less in the chemoradiation than in the no-therapy group (12.3 vs. 19.0 days, p<0.05). In the chemoradiation group, 5 patients (31%) had a partial response, and 9 (56%) had radiologically stable disease at a median duration of 6.1 months. The patients who had chemoradiation had a lower rate of liver and peritoneal metastases than patients without chemoradiotherapy (31% vs. 64%). Of 10 patients who experienced pain before chemoradiation, 8 (80%) received pain relief that lasted a median of 5.2 months. Conclusions: EBRT with concurrent continuous 5-FU infusion increased the length and quality of survival as compared to no chemoradiotherapy and provided a definite palliative benefit for patients with unresectable pancreatic cancer

  14. Continuous 5-fluorouracil infusion plus long acting octreotide in advanced well-differentiated neuroendocrine carcinomas. A phase II trial of the Piemonte Oncology Network

    Well-differentiated neuroendocrine carcinomas are highly vascularized and may be sensitive to drugs administered on a metronomic schedule that has shown antiangiogenic properties. A phase II study was designed to test the activity of protracted 5-fluorouracil (5FU) infusion plus long-acting release (LAR) octreotide in patients with neuroendocrine carcinoma. Twenty-nine patients with metastatic or locally advanced well-differentiated neuroendocrine carcinoma were treated with protracted 5FU intravenous infusion (200 mg/m2 daily) plus LAR octreotide (20 mg monthly). Patients were followed for toxicity, objective response, symptomatic and biochemical response, time to progression and survival. Assessment by Response Evaluation Criteria in Solid Tumors (RECIST) criteria showed partial response in 7 (24.1%), stable disease in 20 (69.0%), and disease progression in 2 patients. Response did not significantly differ when patients were stratified by primary tumor site and proliferative activity. A biochemical (chromogranin A) response was observed in 12/25 assessable patients (48.0%); symptom relief was obtained in 9/15 symptomatic patients (60.0%). There was non significant decrease in circulating vascular epithelial growth factor (VEGF) over time. Median time to progression was 22.6 months (range, 2.7-68.5); median overall survival was not reached yet. Toxicity was mild and manageable. Continuous/metronomic 5FU infusion plus LAR octreotide is well tolerated and shows activity in patients with well-differentiated neuroendocrine carcinoma. The potential synergism between metronomic chemotherapy and antiangiogenic drugs provides a rationale for exploring this association in the future. NCT00953394

  15. Early toxicity from preoperative radiotherapy with continuous infusion 5-fluorouracil for resectable adenocarcinoma of the rectum: a Phase II trial for the Trans-Tasman Radiation Oncology Group

    Purpose: To assess the toxicity and the efficacy of preoperative radiotherapy with continuous infusion 5-fluorouracil (5-FU) for locally advanced adenocarcinoma of the rectum. Methods and Materials: Eligible patients had newly diagnosed localized adenocarcinoma of the rectum within 12 cm of the anal verge, Stage T3-4, and were suitable for curative resection. Eighty-two patients were treated with radiotherapy--50.4 Gy in 28 fractions in 5.6 weeks, given concurrently with continuous infusion 5-FU, using either 96-h/week infusion at 300 mg/m2/day or 7-days/week infusion at 225 mg/m2/day. Results: The median age was 59 years (range, 27-87), and 67% of patients were male. Pretreatment stages of the rectal cancer were T3, 89% and resectable T4, 11%, with endorectal ultrasound confirmation in 67% of patients. Grade 3 acute toxicity occurred in 5 of 82 patients (6%; 95% confidence interval [CI], 2-14%). Types of surgical resection were anterior resection, 61%; abdominoperineal resection, 35%; and other procedures, 4%. There was no operative mortality. Anastomotic leakage after low anterior resection occurred in 3 of 50 patients (6%; 95% CI, 1-17%). The pathologic complete response rate was 16% (95% CI, 9-26%). Pathologic Stages T2 or less occurred in 51%. Conclusion: Preoperative radiotherapy with continuous infusion 5-FU for locally advanced rectal cancer is a safe regimen, with a significant downstaging effect. It does not seem to lead to a significant increase in serious surgical complications

  16. Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells

    Park Jongsun

    2009-10-01

    Full Text Available Abstract The aim of this study is to determine the effects of silver nanoparticles (Ag-NP on vascular endothelial growth factor (VEGF-and interleukin-1 beta (IL-1β-induced vascular permeability, and to detect the underlying signaling mechanisms involved in endothelial cells. Porcine retinal endothelial cells (PRECs were exposed to VEGF, IL-1β and Ag-NP at different combinations and endothelial cell permeability was analyzed by measuring the flux of RITC-dextran across the PRECs monolayer. We found that VEGF and IL-1β increase flux of dextran across a PRECs monolayer, and Ag-NP block solute flux induced by both VEGF and IL-1β. To explore the signalling pathway involved VEGF- and IL-1β-induced endothelial alteration, PRECs were treated with Src inhibitor PP2 prior to VEGF and IL-1β treatment, and the effects were recorded. Further, to clarify the possible involvement of the Src pathways in endothelial cell permeability, plasmid encoding dominant negative(DN and constitutively active(CA form of Src kinases were transfected into PRECs, 24 h prior to VEGF and IL-1β exposure and the effects were recorded. Overexpression of DN Src blocked both VEGF-and IL-1β-induced permeability, while overexpression of CA Src rescues the inhibitory action of Ag-NP in the presence or absence of VEGF and IL-1β. Further, an in vitro kinase assay was performed to identify the presence of the Src phosphorylation at Y419. We report that VEGF and IL-1β-stimulate endothelial permeability via Src dependent pathway by increasing the Src phosphorylation and Ag-NP block the VEGF-and IL-1β-induced Src phosphorylation at Y419. These results demonstrate that Ag-NP may inhibit the VEGF-and IL-1β-induced permeability through inactivation of Src kinase pathway and this pathway may represent a potential therapeutic target to inhibit the ocular diseases such as diabetic retinopathy.

  17. Comparative study in swines' vocal cords healing after excision of fragment with CO2 laser with mitomycin and 5-fluorouracil postoperative topical application Estudo comparado da cicatrização da prega vocal de suínos após exérese de fragmento com laser de CO2 e aplicação tópica pós-operatória de mitomicina e 5-fluorouracil

    Eduardo Baptistella

    2009-02-01

    Full Text Available PURPOSE: To evaluate the deposition of collagen fibers at pig's vocal folds after topical use of mitomycin or 5-fluorouracil, when partial exeresis of mucosa layer had been promoted by CO2 laser. METHODS: There were used 18 Larger white pigs which were anesthetized and submitted to mucosa fragment's exeresis, bilaterally, at its free border. The animals were divided into 3 groups, each one with 6 animals: control group, without topical drug application; mitomycin group; and 5-fluorouracil group. After 30 days, the animals were subjected to euthanasia, and samples of the vocal folds were collected and stained by picrosirius red technique with polarization for quantification of total collagen deposition. RESULTS: In control group, the mean rate of right vocal fold's collagen deposition at submucosa consisted in a 3428.66 micrometers area. There was found an area whose size had, in average, 2196.36 micrometers, in mitomycin group, and 2269.19 micrometers, in 5-fluorouracil group. CONCLUSION: Mitomycin and 5-fluorouracil had promoted beneficial change in vocal fold's cicatrization with less collagen deposition, but there was no significant statistically difference when they were compared between themselves.OBJETIVO: Avaliar a deposição das fibras de colágeno total em pregas vocais suínas após o uso tópico de mitomicina ou 5-fluorouracil nas exéreses parciais de mucosa com laser de CO2. MÉTODOS: Foram utilizados 18 porcos da raça Larger white anestesiados e submetidos à exérese de fragmento de mucosa de borda livre da prega vocal direita e prega vocal esquerda. Os animais foram divididos em 3 grupos com 6 animais cada: grupo controle, sem aplicação de medicação tópica; grupo mitomicina, com uso tópico dessa substância; grupo 5-fluorouracil, uso tópico. Após 30 dias do experimento os animais foram submetidos à eutanásia, coletadas amostras das pregas vocais e coradas pela técnica do picrosirius red com polarização para a

  18. Tongxinluo Inhibits Cyclooxygenase-2, Inducible Nitric Oxide Synthase, Hypoxia-inducible Factor-2α/Vascular Endothelial Growth Factor to Antagonize Injury in Hypoxia-stimulated Cardiac Microvascular Endothelial Cells

    Yan-Ning Li; Xiu-Juan Wang; Bin Li; Kun Liu; Jin-Sheng Qi; Bing-Hui Liu; Ye Tian

    2015-01-01

    Background:Endothelial dysfunction is considered as the initiating process and pathological basis of cardiovascular disease.Cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS),inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS)are key enzymes with opposing actions in inflammation and oxidative stress,which are believed to be the major driver of endothelial dysfunction.And in hypoxia (Hx),Hx-inducible factor (HIF)-1 α and HIF-2α are predominantly induced to activate vascular endothelial growth factor (VEGF),resulting in abnormal proliferation.Whether and how Tongxinluo (TXL) modulates COX-2,PGIS,iNOS,eNOS,HIF-1 α,HIF-2α,and VEGF in Hx-stimulated human cardiac microvascular endothelial cells (HCMECs) have not been clarified.Methods:HCMEC were treated with CoCl2 to mimic Hx and the mRNA expressions of COX-2,PGIS,iNOS,eNOS,HIF-1α,HIF-2α,and VEGF were first confirmed,and then their mRNA expression and protein content as well as the cell pathological alterations were evaluated for TXL treatment with different concentrations.In addition,the effector molecular of inflammation prostaglandin E2 (PGE2)and the oxidative marker nitrotyrosine (NT) was adopted to reflect HCMEC injury.Results:Hx could induce time-dependent increase of COX-2,iNOS,HIF-2α,and VEGF in HCMEC.Based on the Hx-induced increase,TXL could mainly decrease COX-2,iNOS,HIF-2α,and VEGF in a concentration-dependent manner,with limited effect on the increase of PGIS and eNOS.Their protein contents verified the mRNA expression changes,which was consistent with the cell morphological alterations.Furthermore,high dose TXL could inhibit the Hx-induced increase of PGE2 and NT contents,attenuating the inflammatory and oxidative injury.Conclusions:TXL could inhibit inflammation-related COX-2,oxidative stress-related iNOS,and HIF-2α/VEGF to antagonize Hx-induced HCMEC injury.

  19. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) as a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs

  20. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was