WorldWideScience

Sample records for 5-ala mediated photodynamic

  1. Study of the efficacy of 5-ALA mediated photodynamic therapy on human rhabdomyosarcoma cell line (RD)

    The aim of this study was to investigate the mechanism of cell death by photodynamic therapy (PDT) in the Rhabdomyosarcoma (RD) cell line. The present study evaluates the effects of photodynamic therapy (PDT) with 5-ALA as photosensitizer using human muscle cancer cells as experimental model. We study the photosensitizer uptake, cytotoxicity, phototoxicity, and cellular viability of the RD cells which was estimated by means of neutral-red spectrophotometric assay. The given experiment was consisted of two steps. For the first one, RD cells were exposed to 5-ALA at concentrations of 0 up to 1000 μg of ALA/ml in minimum essential medium (MEM). The optimal uptake of photosensitizer (5-ALA) in RD cells was investigated by means of spectrometric measurements. Cells viability was determined by means of neutral red assay (NRA). In the second step, 5-ALA exposed RD cells were irradiated with red light (a diode laser, λ = 635 nm) at total light dose of 80 J/cm2. The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the viability of RD cells were investigated. It was observed that sensitizer concentration or light doses have no significant effect on cells viability when studied independently. The maximal cellular uptake occurred after 47 hours in vitro incubation. The phototoxic assay showed that ALA-PDT induced killing of 76% of the cells at 250 μg/ml drug dose and 80 J/cm2 light dose

  2. 5-ALA based photodynamic management of glioblastoma

    Rühm, Adrian; Stepp, Herbert; Beyer, Wolfgang; Hennig, Georg; Pongratz, Thomas; Sroka, Ronald; Schnell, Oliver; Tonn, Jörg-Christian; Kreth, Friedrich-Wilhelm

    2014-03-01

    Objective: Improvement of the clinical outcome of glioblastoma (GBM) patients by employment of fluorescence and photosensitization on the basis of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX). Methods: In this report the focus is laid on the use of tumor selective PpIX fluorescence for stereotactic biopsy sampling and intra-operative treatment monitoring. In addition, our current concept for treatment planning is presented. For stereotactic interstitial photodynamic therapy (iPDT), radial diffusers were implanted into the contrast enhancing tumor volume. Spectroscopic measurements of laser light transmission and fluorescence between adjacent fibers were performed prior, during and post PDT. Results: PpIX concentrations in primary glioblastoma tissue show high intra- and inter-patient variability, but are usually sufficient for an effective PDT. During individual treatment attempts with 5-ALA based GBM-iPDT, transmission and fluorescence measurements between radial diffusers gave the following results: 1. In some cases, transmission after PDT is considerably reduced compared to the value before PDT, which may be attributable to a depletion of oxygenated hemoglobin and/or diffuse bleeding. 2. PpIX fluorescence is efficiently photobleached during PDT in all cases. Conclusion: iPDT with assessment of PpIX fluorescence and photobleaching is a promising treatment option. Individualization of treatment parameters appears to bear a potential to further improve clinical outcomes.

  3. Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma

    Shaker, Maryam N.; Ramadan, Heba S.; Mohamed, Moustafa M.; El khatib, Ahmed M.; Roston, Gamal D.

    2014-10-01

    Nanoparticles (NPs) fabricated from the biodegradable copolymer poly(lactic- co-glycolic acid) (PLGA) were investigated as a drug delivery system to enhance the photodynamic efficacy of 5-aminolevulinic acid (5-ALA) in mice bearing Ehrlich ascites carcinoma. The PLGA-encapsulated 5-ALA NPs were prepared using binary organic solvent diffusion method and characterized in terms of shape and particle size. The in vivo photodynamic efficiency in Ehrlich ascites-bearing mice was studied. The obtained particles were uniform in size with spherical shape of mean size of 249.5 nm as obtained by particle size analyzer and the in vitro release studies demonstrated a controlled release profile of 5-ALA. Tumor-bearing mice injected with PLGA-encapsulated 5-ALA NPs exhibited significantly smaller mean tumor volume, increased tumor growth delay compared with the control group and the group injected with free 5-ALA during the time course of the experiment. Histopathological examination of tumor from mice treated with PLGA-encapsulated 5-ALA NPs showed regression of tumor cells, in contrast to those obtained from mice treated with free 5-ALA. The results indicate that PLGA-encapsulated 5-ALA NPs are a successful delivery system for improving photodynamic activity in the target tissue.

  4. Interstitial 5-ALA photodynamic therapy and glioblastoma: preclinical model development and preliminary results.

    TETARD, MARIE-CHARLOTTE; Vermandel, Maximilien; Leroy, Henri-Arthur; Leroux, Bertrand; Maurage, Claude-Alain; Lejeune, Jean-Paul; Mordon, Serge; Reyns, Nicolas

    2015-01-01

    AbstractOBJECTIVE: Photodynamic therapy (PDT) has become a well-established modality for the treatment of many cancers. Photodynamic eradication of tumor cells depends on the presence of a photosensitizer, oxygen and light. However, oxygen depletion during PDT is a well known problem. Modulation of light delivery could address this issue by counteracting tumor hypoxia, thereby improving tumor cell killing. This preclinical study was designed to validate an animal model incorporating 5-aminola...

  5. Overview on Topical 5-ALA Photodynamic Therapy Use for Non Melanoma Skin Cancers

    Carmen Cantisani

    2014-01-01

    Full Text Available Ultraviolet radiation (UV contributes to a variety of skin diseases including inflammation, degenerative aging, and cancer. Historically, humans have been exposed to UV radiation mainly through occupational exposure; recreational UV exposure, however, has increased dramatically in recent years, because of outdoor leisure activities and to purposely tan for cosmetic purposes. Both UVB and UVA radiation have been shown to cause DNA damage and immunosuppression, the important forms of biological damage that lead to NMSC. Nonmelanoma skin cancer (NMSC is the most common malignancy, whose public health significance is often unrecognized which continues to grow at an alarming rate, becoming an occupational disease. Available treatments alternative to surgery include photodynamic therapy, electrochemotherapy, cryotherapy, ablative lasers, 5-fluorouracil, imiquimod, ingenol mebutate, and diclofenac. Among these, photodynamic therapy is a noninvasive technique with excellent cosmetic outcome and good curative results, when used in initial stages of skin cancers for superficial lesions. It is administered under numerous and significantly varied regimens and there are a wide range of cure rates reported, permitting treatment of large and multiple lesions with excellent cosmetic results. This is an overview of photodynamic applications especially for the treatment of NMSC, with a short focus on daylight modality.

  6. Topical photodynamic therapy with 5-ALA in the treatment of arsenic-induced skin tumors

    Karrer, Sigrid; Szeimies, Rolf-Markus; Landthaler, Michael

    1995-03-01

    A case of a 62-year-old woman suffering from psoriasis who was treated orally with arsenic 25 years ago is reported. The cumulative dose of arsenic trioxide was 800 mg. Since 10 years ago arsenic keratoses, basal cell carcinomas, Bowen's disease and invasive squamous cell carcinomas mainly on her hands and feet have developed, skin changes were clearly a sequence of arsenic therapy. Control of disease was poor, her right little finger had to be amputated. Topical photodynamic therapy with 5-aminolevulinic acid was performed on her right hand. Clinical and histological examinations 6 months after treatment showed an excellent cosmetic result with no signs of tumor residue.

  7. Influence of ceramide 2 on in vitro skin permeation and retention of 5-ALA and its ester derivatives, for Photodynamic Therapy

    Maria Bernadete Riemma Pierre

    2009-03-01

    Full Text Available Photodynamic therapy (PDT based on topical 5-aminolevulinic acid (5-ALA, an endogenous precursor of protoporphyrin, is an interesting approach for the treatment of skin cancer. However, 5-ALA is a hydrophilic molecule and such a characteristic limits its appropriate cutaneous penetration and retention. In this way, more lipophilic molecules, such as esterified 5-ALA derivatives, have been under investigation in order to improve the skin penetration of this molecule. Drug formulation can also alter 5-ALA skin penetration. Therefore, the aim of this work was to study the influence of ceramide 2 - the main lipid of the SC- on the cutaneous delivery of 5-ALA and its ester derivatives in vitro, using Franz diffusion cell. The skin permeation of all studied drugs was decreased in the presence of ceramide, representing a desirable characteristic in order to avoid the risk of systemic side effects. Nevertheless, the SC and [epidermis + dermis] retention after 16 h has also been decreased in the presence of ceramide, as compared to control. In conclusion, ceramide was not a good adjuvant, meaning that research of other vehicles could be useful to improve cutaneous delivery of 5-ALA.A Terapia Fotodinâmica (TFD tópica com um precursor das porfirinas endógenas, o ácido 5-aminolevulínico (5-ALA, constitui uma nova modalidade para o tratamento do câncer de pele. Entretanto, o 5-ALA é uma molécula hidrofílica, o que limita sua penetração e retenção cutânea apropriadas. Moléculas mais lipofílicas, tais como derivados esterificados do 5-ALA, estão sob intensa investigação para melhorar a penetração cutânea desta molécula. A formulação que contém o fármaco também pode alterar a penetração cutânea do 5-ALA. Desta forma, o objetivo deste trabalho foi estudar a influência da ceramida 2 - o principal lipídeo do EC- sobre a penetração cutânea de 5-ALA e seus derivados esterificados usando células de difusão de Franz. A permea

  8. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells.

    Lawrence, Johnathan E; Steele, Christopher J; Rovin, Richard A; Belton, Robert J; Winn, Robert J

    2016-03-01

    Extent of resection of glioblastoma (GBM) correlates with overall survival. Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) can improve the extent of resection. Unfortunately not all patients given 5-ALA accumulate sufficient quantities of protoporphyrin IX (PpIX) for successful FGR. In this study, we investigated the effects of dexamethasone, desipramine, phenytoin, valproic acid, and levetiracetam on the production and accumulation of PpIX in U87MG cells. All of these drugs, except levetiracetam, reduce the total amount of PpIX produced by GBM cells (p < 0.05). When dexamethasone is mixed with another drug (desipramine, phenytoin, valproic acid or levetiracetam) the amount of PpIX produced is further decreased (p < 0.01). However, when cells are analyzed for PpIX cellular retention, dexamethasone accumulated significantly more PpIX than the vehicle control (p < 0.05). Cellular retention of PpIX was not different from controls in cells treated with dexamethasone plus desipramine, valproic acid or levetiracetam, but was significantly less for dexamethasone plus phenytoin (p < 0.01). These data suggest that medications given before and during surgery may interfere with PpIX accumulation in malignant cells. At this time, levetiracetam appears to be the best medication in its class (anticonvulsants) for patients undergoing 5-ALA-mediated FGR. PMID:26643803

  9. Synergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells

    Mahnaz Hadizadeh

    2014-09-01

    Full Text Available Background: Photodynamic therapy (PDT is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA as a photosensitizer. Methods: Human fibroblast and A431 cells were grown in 96-well plates. The effect of GNPs on the efficacy of 5-ALA-mediated PDT (5-ALA-PDT was evaluated by comparing the effect of 5-ALA with GNPs to the effect of 5-ALA alone. Cell viability was determined by the methyl- tetrazolium assay. Results: Dark toxicity experiments showed that 5-ALA at concentrations 0.5, 1 and 2 mM had no significant effect on cell viability of both cell lines. However, treatment of cells with 5-ALA (0.5 to 2 mM and light dose of 25 Jcm-2 led to 5-10% and 31-42% decrease in cell viability of fibroblast and A431 cells respectively. The data also shows that GNPs in both the absence and the presence of light, results in a dose-dependent decrease in cell viability of both cell lines. However, the sensitivity of cancer cells to GNPs at concentrations more than 24 μg/ml was approximately 2.5- to 4-fold greater than healthy cells. Furthermore, data indicates that 5-ALA in combination with GNPs results in a synergistic reduction in viability of A431 cells. Conclusion: In summary, the findings of this study suggest that concomitant treatment with 5-ALA and GNPs may be useful in enhancing the effect of 5-ALA-PDT.

  10. Pimecrolimus Combined with Photodynamic Therapy in the Treatment of Facial Corticosteroid Dependent Dermatitis%吡美莫司联合5-ALA-PDT治疗面部激素依赖性皮炎疗效观察

    杨怡; 王祎琳; 丁香玉; 赵华

    2014-01-01

    目的 探讨1%吡美莫司乳膏联合5-氨基酮戊酸光动力疗法(5-ALA-PDT)治疗面部糖皮质激素依赖性皮炎的有效性及安全性.方法 选取62例面部糖皮质激素依赖性皮炎患者,随机分为2组.试验组外用1%吡美莫司乳膏,每日1次,同时联合3.7%浓度5-ALA-PDT治疗,每周1次;对照组单纯外用1%吡美莫司乳膏,每日1次.两组均治疗3周后停止治疗,分别在开始治疗后第1、2、3及8周随访时对两组患者进行疗效判断,并观察治疗过程出现的不良反应.结果 3周疗程结束时,两组患者面部红斑、脱屑、毛细血管扩张、丘疹和脓疱均明显改善,且试验组改善程度优于对照组.试验组治疗2周后各时间点有效率均显著优于对照组(P<0.05).随着治疗次数的增加,试验组总有效率均较前次明显提高(P<0.05).试验组不良反应主要表现为照射时出现面部瘙痒感和灼热感,治疗结束后症状均能自行缓解.对照组不良反应主要表现为面部灼热感、瘙痒感和疼痛感,连续用药1周后逐渐缓解.结论 1%吡美莫司乳膏联合5-ALA-PDT治疗面部激素依赖性皮炎,起效速度快,治疗效果显著且不良反应较轻,是较好的治疗面部糖皮质激素依赖性皮炎的可选方案.

  11. Weather conditions and daylight-mediated photodynamic therapy

    Wiegell, S R; Fabricius, S; Heydenreich, J;

    2013-01-01

    Photodynamic therapy (PDT) is an attractive therapy for nonmelanoma skin cancers and actinic keratoses (AKs). Daylight-mediated methyl aminolaevulinate PDT (daylight-PDT) is a simple and painless treatment procedure for PDT. All daylight-PDT studies have been performed in the Nordic countries. To...

  12. Aminolevulinic Acid-Mediated Photodynamic Therapy of Human Meningioma: An in Vitro Study on Primary Cell Lines

    Mustafa El-Khatib

    2015-04-01

    Full Text Available Objective: Five-aminolevulinic acid (5-ALA-induced porphyrins in malignant gliomas are potent photosensitizers. Promising results of ALA-PDT (photodynamic therapy in recurrent glioblastomas have been published. Recently, 5-ALA-induced fluorescence was studied in meningioma surgery. Here, we present an experimental study of ALA-PDT in an in vitro model of primary meningioma cell lines. Methods: We processed native tumor material obtained intra-operatively within 24 h for cell culture. Epithelial membrane antigen (EMA immunohistochemistry was performed after the first passage to confirm that cells were meningioma cells. For 5-ALA-PDT treatment, about 5000 cells per well were seeded in 20 wells of a blank 96-well plate. Each block of 4 wells was inoculated with 150 µL of 0, 25, 50 and 100 µg/mL 5-ALA solutions; one block was used as negative control without 5-ALA and without PDT. Following incubation for 3 h PDT was performed using a laser (635 nm, 18.75 J/cm2. The therapeutic response was analyzed by the water soluble tetrazolium salt (WST-1 cell viability assay 90 min after PDT. Results: 5-ALA-PDT was performed in 14 primary meningioma cell lines. EMA expression was verified in 10 primary cell cultures. The remaining 4 were EMA negative and PDT was without any effect in these cultures. All 10 EMA-positive cell lines showed a significant and dose-dependent decrease in viability rate (p < 0.001. Cell survival at 5-ALA concentrations of 12.5, 25, 50 and 100 μg/mL was 96.5% ± 7.6%, 67.9% ± 29.9%, 24.0% ± 16.7% and 13.8% ± 7.5%, respectively. For the negative controls (no 5-ALA/PDT and ALA/no PDT, the viability rates were 101.72% ± 3.5% and 100.17% ± 3.6%, respectively. The LD50 for 5-ALA was estimated between 25 and 50 µg/mL. Conclusion: This study reveals dose-dependent cytotoxic effects of 5-ALA-PDT on primary cell lines of meningiomas. Either 5-ALA or PDT alone did not affect cell survival. Further efforts are necessary to study the

  13. mTHPC-mediated photodynamic diagnosis of malignant brain tumors

    Radical tumor resection is the basis for prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiform. We have carried out a phase II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis (PDD) and fluorescence-guided resection (FGR) mediated by the second generation photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). In addition, intraoperative photodynamic therapy (PDT) was performed. Several commercially available fluorescence diagnostic systems were investigated for their applicability for clinical practice. We have adapted and optimized a diagnostic system which includes a surgical microscope, an excitation light source (filtered to 370-440 nm), a video camera detection system, and a spectrometer for clear identification of the mTHPC fluorescence emission at 652 nm. Especially in regions of faint fluorescence it turned out to be essential to maximize the spectral information by optimizing and matching the spectral properties of all components, such as excitation source, camera and color filters. In summary, based on 138 tissue samples derived from 22 tumor specimens we have been able to achieve a sensitivity of 87.9 % and a specificity of 95.7 %. This study demonstrates that mTHPC-mediated intraoperative fluorescence-guided resection followed by photodynamic therapy is a feasible concept. (author)

  14. Application of femtosecond ultrashort pulse laser to photodynamic therapy mediated by indocyanine green

    Sawa, M; Awazu, K; Takahashi, T.; Sakaguchi, H; Horiike, H.; Ohji, M; Tano, Y

    2004-01-01

    Backgrounds/aims: To evaluate treatment with high peak power pulse energy by femtosecond ultrashort pulse laser (titanium sapphire laser) delivered at an 800 nm wavelength for corneal neovascularisation using photodynamic therapy (PDT) mediated by indocyanine green (ICG).

  15. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  16. Toluidine Blue-Mediated Photodynamic Effects on Staphylococcal Biofilms▿

    Sharma, Mrinalini; Visai, Livia; Bragheri, Francesca; Cristiani, Ilaria; Gupta, Pradeep Kumar; Speziale, Pietro

    2007-01-01

    Staphylococci are important causes of nosocomial and medical-device-related infections. Their virulence is attributed to the elaboration of biofilms that protect the organisms from immune system clearance and to increased resistance to phagocytosis and antibiotics. Photodynamic treatment (PDT) has been proposed as an alternative approach for the inactivation of bacteria in biofilms. In this study, we have investigated the effect of the photodynamic action of toluidine blue O (TBO) on the viab...

  17. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    Ali Seyed M

    2008-06-01

    Full Text Available Abstract Background Photodynamic therapy (PDT involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h and long (6 h drug light interval (DLI hypericin-PDT (HY-PDT treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF, tumor necrosis growth factor-α (TNF-α, interferon-α (IFN-α and basic fibroblast growth factor (bFGF were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF and Ephrin-A3 (EFNA3 were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.

  18. Efficacy of 5-ALA Photodynamic Therapy Combined with IPL and LED Red Light in the Treatment of Moderate and Severe Acne%5-氨基酮戊酸光动力疗法联合强脉冲光及LED红光治疗中、重度痤疮疗效观察

    米希婷; 鲍海平; 郑爱义; 米亚英; 王娟; 武晓华

    2015-01-01

    目的:评价5-氨基酮戊酸光动力技术(ALA-PDT)联合强脉冲光(IPL)和LED红光治疗中、重度痤疮的效果,探讨痤疮治疗的最佳方案。方法用ALA-PDT治疗痤疮21例,治疗3~4次;用ALA-PDT联合IPL治疗痤疮30例,先用ALA-PDT治疗3次后,改用IPL治疗1~2次;用ALA-PDT联合二极管激发(LED)红光治疗痤疮29例,先用ALA-PDT治疗3次后,改用LED红光治疗2~4次。分别于治疗6周、8周及治疗后3月对3种方法治疗痤疮的疗效进行评价,并记录不良反应。结果3种治疗方法于治疗6周、8周及疗后3月的总有效率分别为:ALA-PDT组,76.19%,85.71%,90.48%;ALA-PDT联合IPL组,86.67%,96.67%,96.67%;ALA-PDT联合LED红光组,65.52%,68.97%,65.52%。结论ALA-PDT联合IPL和ALA-PDT二法治疗中、重度痤疮均有较好疗效,但ALA-PDT联合IPL较ALA-PDT具有简化程序、不良反应小等优点,值得临床推广应用。%Objective To evaluate the effect of 5-ALA-PDT combined with IPL and LED red light in the treatment of moderate and severe acne. Methods ALA-PDT treatment of 21 cases of acne, treated 3~4times. ALA-PDT combined with IPL for treatment of 30 cases of acne. First, treated with ALA-PDT 3 times, and then switch to IPL 1~2 times. AL-PDT combined with LED red light for treatment of 29 cases of acne. First, treated with ALA-PDT 3 times, and then switch to LED red light treated 2~4 times. Estimate the ef⁃ficacy of three methods of treatment for 6 weeks, 8 weeks and 3 month after treatment being evaluated, and recorded the adverse reac⁃tions. Rusults The total effective rate of 6 weeks, 8 weeks and 3 months after treatment of the three treatments was:ALA-PDT group:76.19%, 85.71%, 90.48%;ALA-PDT combined with IPL group:86.67%, 96.67%, 96.67%;AL-PDT combined with LED red light group:65.52%, 68.97%, 65.52%. Conclusions Both ALA-PDT and ALA-PDT combined with IPL method have good efficacy in treat⁃ment of moderate and severe

  19. Mitochondria-involved apoptosis induced by MPPa mediated photodynamic therapy

    Numerous new photosensitizers are now in various stages of trials demonstrating the broad applicability of Photodynamic therapy (PDT). However, only a handful of photosensitizers have received regulatory approval. Lack of effective photosensitizers has become a major limit for extensive application of PDT. Our previous study showed MPPa to be a good photosensitizer candidature, MPPa-PDT can lead PC-3M cell line to death mainly via apoptotic way both in vitro and in vivo, and part of the mechanism was investigated. Mitochondria may play a key role in the process, in order to further elucidate the mechanism, we investigated the level of ROS, GSH, NO, Ca2+, mitochondrial membrane potential, as well as cytochrome C. All in all, ROS production, depletion of GSH, and the activation of ROS downstream, such as mitochondria depolarization, cytochrome C release, were detected in our study. The results provide a mechanism by which oxidative stress provokes apoptosis of PC-3M cells

  20. Pheophorbide a mediated photodynamic therapy against human epidermoid carcinoma cells (A431)

    Chen, Yi-Chun; Li, Wen-Tyng

    2011-02-01

    The objective of this study was to characterize the death mechanism of human epidermoid carcinoma cells (A431) triggered by photodynamic therapy (PDT) with pheophorbide a. First of all, significant inhibition on the survival of A431 cells (N-Acetyl cysteine prevented ROS production and increased cell survival thereafter. The decrease in cellular ATP level was also observed at 6 hrs after PDT. Typical apoptotic cellular morphology and a collapse of mitochondrial membrane potential occurred after PDT. The loss of mitochondrial membrane potential led to the release of cytochrome c from the mitochondria to the cytosol, followed by activation of caspase-9 and caspase-3. The activation of caspase-3 resulted in poly(ADP-ribose) polymerase (PARP) cleavage in A431 cells, followed by DNA fragmentation. In conclusion, the results demonstrated that pheophorbide a possessed photodynamic action against A431 cells, mainly through apoptosis mediated by mitochondrial intrinsic pathway triggered by ROS.

  1. Photofrin-mediated photodynamic therapy for treatment of early stage laryngeal malignancies

    Vanessa Gayl Schweitzer

    2011-12-01

    Full Text Available To evaluate the efficacy of PHOTOFRINmediated photodynamic therapy (PDT for the treatment of Tis-T1N0M0 squamous cell carcinoma (SqCCa of the larynx in patients not amenable to or who failed conventional head and neck treatment. This is a retrospective study of 26 patients with early stage Tis-T1 SqCCa of the larynx treated with PHOTOFRIN-mediated PDT. Intravenous PHOTOFRIN (porfimer-sodium (dose 2.0 mg/kg was administered outpatient, followed by intraoperative photoactivation at 630 nm via fiberoptic microlens surface delivery (surgical light dose 50–100 J/cm2 48–60 h later. As much as 16 out of 26 patients (62% have demonstrated complete remission (average follow-up 40 months. There were 10 patients who were noted to have partial remission with recurrence observed 2–33 months subsequently retreated with either repeated PDT therapy or conventional therapy. PHOTOFRIN-mediated photodynamic therapy can be used as a primary modality to treat Tis-T1N0M0 tumors of the larynx or for treatment for those who have failed prior surgery and/or radiation therapy. PDT allows for preservation of function and structure to maintain or improve voice with absence of systemic toxicity. Patients may have multiple drug administrations and laser light retreatment for local disease control.

  2. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions.

    Minamikawa, Takeo; Matsuo, Hisataka; Kato, Yoshiyuki; Harada, Yoshinori; Otsuji, Eigo; Yanagisawa, Akio; Tanaka, Hideo; Takamatsu, Tetsuro

    2016-01-01

    5-aminolevulinic acid (5-ALA)-based fluorescence diagnosis is now clinically applied for accurate and ultrarapid diagnosis of malignant lesions such as lymph node metastasis during surgery. 5-ALA-based diagnosis evaluates fluorescence intensity of a fluorescent metabolite of 5-ALA, protoporphyrin IX (PPIX); however, the fluorescence of PPIX is often affected by autofluorescence of tissue chromophores, such as collagen and flavins. In this study, we demonstrated PPIX fluorescence estimation with autofluorescence elimination for 5-ALA-based fluorescence diagnosis of malignant lesions by simplified and optimized multispectral imaging. We computationally optimized observation wavelength regions for the estimation of PPIX fluorescence in terms of minimizing prediction error of PPIX fluorescence intensity in the presence of typical chromophores, collagen and flavins. By using the fluorescence intensities of the optimized wavelength regions, we verified quantitative detection of PPIX fluorescence by using chemical mixtures of PPIX, flavins, and collagen. Furthermore, we demonstrated detection capability by using metastatic and non-metastatic lymph nodes of colorectal cancer patients. These results suggest the potential and usefulness of the background-free estimation method of PPIX fluorescence for 5-ALA-based fluorescence diagnosis of malignant lesions, and we expect this method to be beneficial for intraoperative and rapid cancer diagnosis. PMID:27149301

  3. Control of burn wound sepsis in rats by methylene blue-mediated photodynamic treatment

    Hasegawa, Hiroyuki; Sato, Shunichi; Kawauchi, Satoko; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2012-02-01

    Control of wound sepsis is an important challenge in traumatology. However, increase in the drug-resistant bacteria makes this challenge considerably difficult in recent years. In this study, we attempted to control burn wound sepsis in rats by photodynamic treatment, which has been reported to be effective against some drug-resistant bacteria. A 20% TBSA (total body surface area) full-thickness burn was made in rat dorsal skin, and five days after injury, a suspension of P. aeruginosa was applied to the wound surface. At 30 min after infection, a methylene blue (MB) solution was applied to the wound surface; 5 min afterwards, the wound was illuminated with a 665-nm light emitting diode (LED) array for 10 min. This treatment (application of MB and illumination) was repeated 3 times successively. The averaged light intensity on the wound surface was 3.3 mW/cm2, the corresponding total light dose being 5.9 J/cm2. One week after injury, the numbers of bacteria in the blood and liver were counted by colony forming assay. In the liver, the number of bacteria of the treated group was significantly lower than that of the sham control group without photodynamic treatment. In the blood, no bacteria were detected in the treated group, while a certain amount of bacteria was detected in the control group. These results demonstrate the efficacy of MB-mediated PDT with a red LED array to control burn wound sepsis.

  4. Daylight-mediated photodynamic therapy of moderate to thick actinic keratoses of the face and scalp

    Wiegell, S.R.; Fabricius, S.; Philipsen, P.A.;

    2012-01-01

    Background: Photodynamic therapy (PDT) is an attractive therapy for nonmelanoma skin cancers and actinic keratoses (AKs). Daylight-mediated PDT is a simple and tolerable treatment procedure for PDT. Methyl aminolaevulinate (MAL)-PDT is approved for the treatment of thin or nonhyperkeratotic AKs on...... after application and exposed themselves to daylight according to randomization. Daylight exposure was monitored with a wrist-borne dosimeter. Results: No difference in lesion response was found between the 11/2 and 21/2 h exposure group. The mean lesion response rate was significantly higher in grade I...... lesions (75·9%) than in grade II (61·2%) and grade III (49·1%) lesions (P <0·0001). Most grade II (86%) and III AKs (94%) were in complete response or reduced to a lower lesion grade at follow-up. Large variations in response rate of grade II and III AKs were found between centres. No association was...

  5. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature

    Samy Eljamel

    2015-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA induced FIGR. Materials: Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. Results: The mean gross total resection (GTR rate was 75.4% (95% CI: 67.4–83.5, p < 0.001. The mean time to tumor progression (TTP was 8.1 months (95% CI: 4.7–12, p < 0.001. The mean overall survival gain reported was 6.2 months (95% CI: −1–13, p < 0.001. The specificity was 88.9% (95% CI: 83.9–93.9, p < 0.001 and the sensitivity was 82.6% (95% CI: 73.9–91.9, p < 0.001. Conclusion: 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP.

  6. The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas—a critical review

    Motekallemi, Arash; Jeltema, Hanne-Rinck; Metzemaekers, Jan D. M.; van Dam, Gooitzen M.; Crane, Lucy M. A.; Groen, Rob J. M.

    2015-01-01

    Meningiomas are the second most common primary tumors affecting the central nervous system. Surgical treatment can be curative in case of complete resection. 5-aminolevulinic acid (5-ALA) has been established as an intraoperative tool in malignant glioma surgery. A number of studies have tried to outline the merits of 5-ALA for the resection of intracranial meningiomas. In the present paper, we review the existing literature about the application of 5-ALA as an intraoperative tool for the res...

  7. Potentiation of the Anti-Tumor Effect of Merocyanine 540-Mediated Photodynamic Therapy by Amifostine and Amphotericin B

    Tsujino, Ichiro; Miyagi, Kiyoko; Sampson, Reynée W.; Sieber, Fritz

    2006-01-01

    Leukemia and lymphoma cells are much more sensitive to Merocyanine 540 (MC540)-mediated photodynamic therapy (PDT) than normal pluripotent hematopoietic stem cells and normal granulocyte/macrophage progenitors (CFU-GM). By contrast, most solid tumor cells are only moderately sensitive to MC540-PDT. The limited activity against solid tumor cells has detracted from MC540's appeal as a broad-spectrum purging agent. We report here that non-cytotoxic concentrations of amifostine (Ethyol, Ethiofos,...

  8. Treatment of Oral Candidiasis Using Photodithazine®- Mediated Photodynamic Therapy In Vivo

    G. Basso, Fernanda; de Souza Costa, Carlos Alberto; Bagnato, Vanderlei Salvador; Mima, Ewerton Garcia de Oliveira; Pavarina, Ana Cláudia

    2016-01-01

    This study evaluated the effectiveness of antimicrobial photodynamic therapy (aPDT) in the treatment of oral candidiasis in a murine model using Photodithazine® (PDZ). This model of oral candidiasis was developed to allow the monitoring of the infection and the establishment of the aPDT treatment. Six-week-old female mice were immunosuppressed and inoculated with C. albicans to induce oral candidiasis. PDZ-mediated aPDT and nystatin treatment were carried out for 5 consecutive days with one application per day. The macroscopic evaluation of oral lesions was performed. After each treatment, the tongue was swabbed to recover C. albicans cells. Viable colonies were quantified and the number of CFU/ml determined. The animals were sacrificed 24 hours and 7 days after treatment and the tongues were surgically removed for histological analysis and analysis of inflammatory cytokines expression (IL-1, TNF-α and IL-6) by RT-qPCR. Data were analyzed by two-way ANOVA. PDZ-mediated aPDT was as effective as Nystatin (NYS group) in the inactivation of C. albicans, reducing 3 and 3.2 logs10 respectively, 24 h after treatment (pcandidiasis. PMID:27253525

  9. WSTO9 (TOOKAD) mediated photodynamic therapy as an alternative modality in the treatment of prostate cancer

    Chen, Qun; Huang, Zheng; Luck, David L.; Beckers, Jill; Brun, Pierre-Herve; Wilson, Brian C.; Scherz, Avigdor; Salomon, Yoram; Hetzel, Fred W.

    2002-06-01

    Photodynamic therapy (PDT) utilizes optical energy to activate a pre-administered photosensitizer drug to achieve a localized tumor control. In the presented study, PDT mediated with a second-generation photosensitizer, WST09 (TOOKAD, Steba Biotech, The Netherlands), is investigated as an alternative therapy in the treatment of prostate cancer. In vivo canine prostate is used as the animal model. PDT was performed by irradiating the surgically exposed prostates both superficially and interstitially with a diode laser (763 nm) to activate the intra-operatively i.v. infused photosensitizer. During light irradiation, tissue optical properties, and temperature were monitored. During the one-week to 3-month period post PDT treatment, the dogs recovered well with little or no complications. The prostates were harvested and subjected to histopathological evaluations. Maximum lesion size of over 3 cm in dimension could be achieved with a single treatment, suggesting the therapy is extremely effective in destroying prostatic tissue. Although we found there was loss of epithelial lining in prostatic urethra, there was no evidence it had caused urinary tract side effects as reported in those studies utilizing transurethral irradiation. In conclusion, we found second generation photosensitizer WST09 mediated PDT may provide an excellent alternative to treat prostate cancer.

  10. Wertigkeit der 5-Aminolävulinsäure- (5-ALA- gestützten Gliomchirurgie

    Pakrah-Bodingbauer B

    2009-01-01

    Full Text Available Einleitung: Das Glioblastoma multiforme ist mit 50 % die häufigste Tumorentität unter den Gliomen. Ein wichtiger Faktor für das Überleben des Patienten mit einem bösartigen Hirntumor stellt die möglichst radikale Resektion des Tumors dar. Die intraoperative Resektionskontrolle mittels 5-ALA (5-Aminolävulinsäure kann die angestrebte radikale Entfernung des kontrastmittelaufnehmenden Tumoranteils verbessern. Patienten und Methoden: An der neurochirurgischen Abteilung Rudolfstiftung wurden in einem Zeitraum von 08/2007–06/2008 13 Patienten mit 5-ALA neuronavigiert operiert. Bei allen bestand radiologisch der Verdacht auf ein Glioblastoma multiforme. Die primär chirurgische Zielsetzung war eine radikale Resektion des Tumors. Bei 10 Patienten erfolgte eine vollständige Resektion, in drei Fällen kam es zu einer Teilresektion. Die histologische Diagnose lautete bei 11 Patienten Glioblastoma multiforme, bei einem Oligodendrogliom und bei einem weiteren Patienten wurde ein anaplastisches Astrozytom festgestellt. Alle Patienten erhielten postoperativ eine Kombination aus Radio- und Chemotherapie. Ergebnisse: In der postoperativen Nachbeobachtungszeit von 5,2 Monaten (0–10 Monate traten insgesamt 2 Rezidive (nach 6 und 4 Monaten auf. Als postoperative Komplikation ist bei einem Patienten bei präoperativer Hemiparese eine Hemiplegie aufgetreten, bei 3 weiteren Patienten kam es zu einer leichten temporären Verschlechterung des klinisch-neurologischen Zustandsbildes. Bei allen übrigen verliefen der Eingriff und die postoperative Zeit komplikationslos. Schlussfolgerung: Die fluoreszenzgestützte Chirurgie mit 5-ALA hat sich sicher und standardisiert an unserer Abteilung etablieren lassen. Unter der Anwendung von 5-ALA lässt sich nachweislich ein höherer Prozentsatz des Tumors entfernen, wodurch die Patienten von den postoperativen adjuvanten Behandlungsmodalitäten besser profitieren. Eine 100%ige Radikalität ist jedoch auch durch diese

  11. Dosimetry study of PHOTOFRIN-mediated photodynamic therapy in a mouse tumor model

    Qiu, Haixia; Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2016-03-01

    It is well known in photodynamic therapy (PDT) that there is a large variability between PDT light dose and therapeutic outcomes. An explicit dosimetry model using apparent reacted 1O2 concentration [1O2]rx has been developed as a PDT dosimetric quantity to improve the accuracy of the predicted ability of therapeutic efficacy. In this study, this explicit macroscopic singlet oxygen model was adopted to establish the correlation between calculated reacted [1O2]rx and the tumor growth using Photofrin-mediated PDT in a mouse tumor model. Mice with radiation-induced fibrosarcoma (RIF) tumors were injected with Photofrin at a dose of 5 mg/kg. PDT was performed 24h later with different fluence rates (50, 75 and 150 mW/cm2) and different fluences (50 and 135 J/cm2) using a collimated light applicator coupled to a 630nm laser. The tumor volume was monitored daily after PDT and correlated with the total light fluence and [1O2]rx. Photophysical parameters as well as the singlet oxygen threshold dose for this sensitizer and the RIF tumor model were determined previously. The result showed that tumor growth rate varied greatly with light fluence for different fluence rates while [1O2]rx had a good correlation with the PDT-induced tumor growth rate. This preliminary study indicated that [1O2]rx could serve as a better dosimetric predictor for predicting PDT outcome than PDT light dose.

  12. Photodynamic therapy mediates innate immune responses via fibroblast-macrophage interactions.

    Zulaziz, N; Azhim, A; Himeno, N; Tanaka, M; Satoh, Y; Kinoshita, M; Miyazaki, H; Saitoh, D; Shinomiya, N; Morimoto, Y

    2015-10-01

    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages. PMID:25997703

  13. Hematoporphyrin-mediated photodynamic therapy for treatment of head and neck cancer: clinical update 1996

    Schweitzer, Vanessa G.

    1996-04-01

    From 1983 to 1996 Phase II and III clinical studies at Henry Ford Hospital demonstrated complete or partial responses in 55 of 56 patients treated with hematoporphyrin-derivative or PHOTOFRIN-mediated photodynamic therapy (HPD-PDT) for a variety of benign and malignant upper aerodigestive tract disease: (1) superficial 'condemned mucosa' or 'field cancerization' of the oral cavity and larynx (7 cases); (2) Stage III/IV head and neck cancer (25 cases); (3) mucocutaneous AIDS-associated Kaposi's sarcoma of the upper aerodigestive tract and non AIDS-related Kaposi's sarcoma of the lower extremity (15 cases); (4) recurrent laryngotracheal papillomatosis (3 cases); (5) severe dysplasia/adenocarcinoma or squamous cell carcinoma in situ in Barrett's esophagus (4 cases); (6) partial or completely obstructing terminal esophageal cancer (9 cases). At the time of this report, HPD-PDT produced complete responses in 24 patients (follow up 6 months to 9 years) with 'field cancerization' (CIS, T1N0M0) of the oral cavity and larynx (6 cases), adenocarcinoma in situ in Barrett's esophagus (3 cases), mucocutaneous Kaposi's sarcoma (12 cases), obstructing esophageal carcinoma (1 case), and stage IV squamous cell carcinoma of the nasopharynx (1 case), and radiation therapy or solar-induced basal cell/squamous cell carcinomas (2 cases). PDT treatment protocols, results, complications, and application as adjunct or primary oncologic therapy for head and neck cancer are reviewed in this article.

  14. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  15. Indocyanine green-mediated photodynamic therapy on glioblastoma cells in vitro

    AK, Ayşe; Kaya, Özgür; Turgut Coşan, Didem; Gülsoy, Murat

    2015-01-01

    Photodynamic therapy (PDT) is an alternative therapy which is administered with non-toxic drugs, called photosensitizers (PSs), along with irradiation at a specific wavelength of light to damage tumor cells. Different wavelengths of light sources and photosensitizers have been investigated in treatment of many cancer types. In this study, we investigated whether photodynamic therapy using indocyanine green (ICG), also a cyanine dye used in medical diagnostics, can be used to inhibit cell prol...

  16. ALA-mediated photodynamic therapy of experimental malignant glioma in the BD-IX rat model

    Hirschberg, Henry; Angell-Petersen, Even; Peng, Qian; Sun, Chung-Ho; Sorensen, Dag R.; Carper, Steven W.; Madsen, Steen J.

    2005-04-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resec-tion indicating that a more aggressive form of local therapy could be of benefit. Photodynamic therapy (PDT) is a local form of treatment involving the administration of a tumor-localizing photosensitizing drug that is activated by light of a specific wavelength The results of in vitro experiments indicated that PDT, given at low fluence rates was substantially more effective at inhibiting glioma spheroid growth than short term high fluence rate regimes. This prompted the initia-tion of in vivo studies of low fluence rate 5-aminolevulinic acid (ALA) PDT in a rat glioma model. Methods:BT4C cell line tumors were established in the brains of inbred BD- IX rats. Eighteen days following tumor induction the animals were injected with 125 mg/kg ALA ip. and four hours later light treatment at various fluences and fluence rates were given after the introduction of an optical fiber. Tumor histology and animal survival were examined. Results: In vitro experiments verified that the cell line was sensitive to ALA PDT. Microfluorometry of frozen tissue sections showed that PpIX is produced with a greater than 20:1 tumor to normal tissue selectivity ratio four hours after ALA injection. Histological examination demonstrated neutrophil infiltration and tumor central necrosis in low fluence rate treated tumors. Conclusions: Low fluence rate long term ALA mediated PDT had a more pronounced effect on tumor histology than single shot short duration treatments at similar total fluence levels.

  17. Hematoporphyrin monomethyl ether-mediated photodynamic therapy selectively kills sarcomas by inducing apoptosis.

    Hui Zeng

    Full Text Available We investigated the antitumor effect and mechanism of hematoporphyrin monomethyl ether-mediated photodynamic therapy (HMME-PDT in sarcomas. Intracellular uptake of HMME by osteosarcoma cells (LM8 and K7 was time- and dose-dependent, while this was not observed for myoblast cells (C2C12 and fibroblast cells (NIH/3T3. HMME-PDT markedly inhibited the proliferation of sarcoma cell lines (LM8, MG63, Saos-2, SW1353, TC71, and RD (P<0.05, and the killing effect was improved with increased HMME concentration and energy intensity. Flow cytometry analysis revealed that LM8, MG63, and Saos-2 cells underwent apoptosis after treatment with HMME-PDT. Additionally, apoptosis was induced after HMME-PDT in a three-dimensional culture of osteosarcoma cells. Hoechst 33342 staining confirmed apoptosis. Cell death caused by PDT was rescued by an irreversible inhibitor (Z-VAD-FMK of caspase. However, cell viability was not markedly decreased compared with the HMME-PDT group. Expression levels of caspase-1, caspase-3, caspase-6, caspase-9, and poly (ADP-ribose polymerase (PARP proteins were markedly up-regulated in the treatment groups and increased with HMME concentration as determined by western blot analysis. In vivo, tumor volume markedly decreased at 7-16 days post-PDT. Hematoxylin and eosin staining revealed widespread necrotic and infiltrative inflammatory cells in the HMME-PDT group. Immunohistochemistry analysis also showed that caspase-1, caspase-3, caspase-6, caspase-9, and PARP proteins were significantly increased in the HMME-PDT group. These results indicate that HMME-PDT has a potent killing effect on osteosarcoma cells in vitro and significantly inhibits tumor growth in vivo, which is associated with the caspase-dependent pathway.

  18. Effect of 630-NM pulsed laser irradiation on the proliferation of HeLa cells in Photofrin®-mediated photodynamic therapy

    Miyamoto, Yuichi; Nishikiori, Daisuke; Hagino, Fumika; Wakita, Masayoshi; Tanabe, Ichiro; Toida, Masahiro

    2011-01-01

    Background and Aims: Red laser light of wavelength 630 nm is usually used for Photofrin®-mediated photodynamic therapy (PDT). The 630-nm light employed in PDT corresponds to the region of the wavelength used in low-level laser therapy (LLLT) may influence on the photodynamic effect required for killing cancer cells. The aim of this in vitro study was to investigate the changes in cell viability and degree of cell proliferation after Photofrin®-mediated PDT using 630-nm pulsed laser irradiatio...

  19. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on human gastric cancer xenografts in nude mice in vivo%5-氨基乙酰丙酸介导的光动力学对裸鼠人胃癌移植瘤的治疗作用

    周广军; 黄宗海; 俞金龙; 厉周; 丁涟沭

    2008-01-01

    Objective To investigate the effect of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) on human gastric cancer xenografts in vivo and to explore its potential tumoreidal mechanism. Methods Cultured MGC-803 human gastric cancer cells were injected below the skins of the nude mice to develop the tumor model. The tumor-bearing nude mice were examined under the Leica LT-9MACIMSYSPULS to detect the fluorescence. The tumor volume of day 1, 3, 7, 14, 21 after treatment were measured, and its histological changes were also studied. The tissues of the tumors in nude mice of the control group, light group, 5-ALA group and PDT group were examined with the electron microscope and apoptosis was detected by TUNEL assay. Results The tumor model was successfully developed. The tumor in the nude mice emited the red fluorescence under the Leica LT-9MACIMSYSPULS. The tumor volumes were (0.189±0.010)cm3, (0.183±0.011)cm3, (0.185±0.019) cm3, (0.182±0.015)cm3 for the control group, light group, 5-ALA group, PDT group, respectively at day 1 after treatment, while at day 3, (0.294±0.010)cm3, (0.280±0.013)cm3, (0.278±0.016)cm3, (0.183±0.014)cm3;at day 7, (0.409±0.016)cm3, (0.411±0.009)cm3, (0.407±0.015)cm3, (0.221±0.008)cm3;at day 14, (0.970±0.055)cm3 (0.976±0.054)cm3, (0.981±0.032)cm3, (0.318±0.005)cm3;at day 21, (1.495±0.059)cm3, (1.513±0.057)cm3, ( 1.524±0.063)cm3, (0.446±0.042)cm3(F=1003.086, P=0.000). The histology demonstrated that most tumor blood vessels were congested and necrosis developed after PDT while not in the control group, light group and 5-ALA group. Necrosis and apoptosis were observed in the cells of the tumors of the PDT group examined by TUNEL and electron microscope while not in the cells of the tumors of the other groups. Conclusions 5-aminolevulinic acid-mediated photodynamic therapy (PDT) can induce injury to human gastric cancer xenografts and inhibit the tumor growth while light only and 5-ALA only can not. 5-aminolevulinic

  20. Mechanisms involved in hypericin mediated photodynamic resistance of non-tumoral colon epithelial cells

    Mikeš, J.; Hýžďalová, Martina; Kočí, Lenka; Hofmanová, Jiřina; Kozubík, Alois; Fedoročko, P.

    Smolenice, 2008. s. 55. ISBN 978-80-969951-27. [Drug Resistance in Cancer . 07.06.2008-11.06.2008, Smolenice] R&D Projects: GA ČR(CZ) GA524/07/1178 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hypericin * photodynamic therapy * colon Subject RIV: BO - Biophysics

  1. Daylight-mediated photodynamic therapy of basal cell carcinomas - an explorative study

    Wiegell, S R; Skødt, V; Wulf, H C

    2014-01-01

    BACKGROUND: Studies have shown that daylight-photodynamic therapy (PDT) is an effective treatment of actinic keratoses, nearly pain free and more convenient for both the clinics and patients. Treatment of basal cell carcinomas (BCCs) is another main indication for PDT. OBJECTIVES: The aim of this...

  2. Enhancement of oxaliplatin sensitivity in human colorectal cancer by hypericin mediated photodynamic therapy via ROS-related mechanism.

    Lin, Shengchao; Lei, Kecheng; Du, Wenpei; Yang, Liyan; Shi, Haiyang; Gao, Yuwei; Yin, Peihao; Liang, Xin; Liu, Jianwen

    2016-02-01

    The resistance to oxaliplatin (L-OHP) is a major obstacle to ideal therapeutic outcomes in colorectal cancer. Photodynamic therapy (PDT) induces tumor damage through photosensitizer-mediated oxidative cytotoxicity. Hypericin is a well-studied photosensitizer. In this study, we explored the role of hypericin-mediated PDT (HY-PDT) in sensitizing human colorectal cancer cells towards L-OHP. Pre-treatment with HY-PDT enhanced the anti-tumor activity of L-OHP via decreasing drug efflux and increasing platinum accumulation. Further research showed that HY-PDT-mediated resensitization of resistance cells towards L-OHP was dependent on regulation of MRP-2, instead of p-gp. HY-PDT was also found to inhibit intracellular glutathione (GSH) and Glutathione S-transferase (GST), suggesting the involvement of GSH-related detoxification in the sensitization effect. Additionally, enhanced DNA double-strand breaks (DSBs) was observed following HY-PDT/L-OHP combined treatment. HY-PDT lowered the removing rate of platinum from DNA and down-regulated the expression of ERCC1 and XPF, two critical enzymes involved in nucleotide excision repair (NER) pathway. GSH monoethyl ester (GSH-EE) antagonized HY-PDT-induced ROS and repressed sensitization to platinum. Taken together, HY-PDT mediated sensitization of L-OHP in human colorectal cancer is mediated by ROS, whose mechanism involves affecting drug efflux, GSH-related detoxification and NER-mediated DNA repair. PMID:26673998

  3. 5-aminolevulinic acid-mediated photodynamic therapy of intraepithelial neoplasia and human papillomavirus of the uterine cervix--a new experimental approach.

    Wierrani, F; Kubin, A; Jindra, R; Henry, M; Gharehbaghi, K; Grin, W; Söltz-Szötz, J; Alth, G; Grünberger, W

    1999-01-01

    The aim of this study was to treat patients for ectocervical dysplasia [cervical intraepithelial neoplasia (CIN) grades 1 and 2] and associated human papilloma virus (HPV) infections with photodynamic therapy (PDT). In 20 patients, 5-aminolevulinic acid (5-ALA, 12% w/v) was applied topically with a cervical cap 8 h prior to illumination. A thermal light source (150 W halogen lamp) emitting a broadband red light (total energy: 100 J/cm2, fluence rate: 90 mW/cm2) was used for superficial illumination of the portio. In addition, an Nd:YAG pumped dye laser (652 nm) was used to illuminate the cervical canal (total energy: 50 J/cm2, fluence rate: 300 mW/cm2). Preliminary results of follow-ups at 1, 3, 6, and 9 months posttherapy showed a cytological improvement in the grading of the PAP smears in 19 patients and the eradication of cervical HPV in 80%. These results demonstrate that ectocervical dysplasia and associated HPV infections can be treated by PDT. PMID:10403907

  4. The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas-a critical review.

    Motekallemi, Arash; Jeltema, Hanne-Rinck; Metzemaekers, Jan D M; van Dam, Gooitzen M; Crane, Lucy M A; Groen, Rob J M

    2015-10-01

    Meningiomas are the second most common primary tumors affecting the central nervous system. Surgical treatment can be curative in case of complete resection. 5-aminolevulinic acid (5-ALA) has been established as an intraoperative tool in malignant glioma surgery. A number of studies have tried to outline the merits of 5-ALA for the resection of intracranial meningiomas. In the present paper, we review the existing literature about the application of 5-ALA as an intraoperative tool for the resection of intracranial meningiomas. PubMed was used as the database for search tasks. We included articles published in English without limitations regarding publication date. Tumor fluorescence can occur in benign meningiomas (WHO grade I) as well as in WHO grade II and WHO grade III meningiomas. Most of the reviewed studies report fluorescence of the main tumor mass with high sensitivity and specificity. However, different parts of the same tumor can present with a different fluorescent pattern (heterogenic fluorescence). Quantitative probe fluorescence can be superior, especially in meningiomas with difficult anatomical accessibility. However, only one study was able to consistently correlate resected tissue with histopathological results and nonspecific fluorescence of healthy brain tissue remains a confounder. The use of 5-ALA as a tool to guide resection of intracranial meningiomas remains experimental, especially in cases with tumor recurrence. The principle of intraoperative fluorescence as a real-time method to achieve complete resection is appealing, but the usefulness of 5-ALA is questionable. 5-ALA in intracranial meningioma surgery should only be used in a protocolled prospective and long-term study. PMID:25736455

  5. The use of 5-ALA to assist complete removal of residual non-enhancing part of childhood medulloblastoma

    Skjøth-Rasmussen, Jane; Bøgeskov, Lars; Sehested, Astrid;

    2015-01-01

    PURPOSE: Medulloblastoma is the most common malignant brain tumor in childhood. Radical surgery in the non-metastatic stage is an important factor with respect to overall survival. In this case, 5-aminolevulinic acid (5-ALA) was used at second-look surgery in order to improve surgical results...... the child changed from the high-risk medulloblastoma regimen to the standard-risk regimen. CONCLUSIONS: In this particular difficult case of non-contrast-enhancing tumor, 5-ALA was of vital importance to improve rate of resection and change the aggressiveness needed in postsurgery radiation therapy....

  6. Superoxide dismutase is upregulated in Staphylococcus aureus following protoporphyrin-mediated photodynamic inactivation and does not directly influence the response to photodynamic treatment

    Gwizdek-Wiśniewska Anna

    2010-12-01

    Full Text Available Abstract Background Staphylococcus aureus, a major human pathogen causes a wide range of disease syndromes. The most dangerous are methicillin-resistant S. aureus (MRSA strains, resistant not only to all β-lactam antibiotics but also to other antimicrobials. An alarming increase in antibiotic resistance spreading among pathogenic bacteria inclines to search for alternative therapeutic options, for which resistance can not be developed easily. Among others, photodynamic inactivation (PDI of S. aureus is a promising option. Photodynamic inactivation is based on a concept that a non toxic chemical, called a photosensitizer upon excitation with light of an appropriate wavelength is activated. As a consequence singlet oxygen and other reactive oxygen species (e.g. superoxide anion are produced, which are responsible for the cytotoxic effect towards bacterial cells. As strain-dependence in photodynamic inactivation of S. aureus was observed, determination of the molecular marker(s underlying the mechanism of the bacterial response to PDI treatment would be of great clinical importance. We examined the role of superoxide dismutases (Sod in photodynamic inactivation of S. aureus as enzymes responsible for oxidative stress resistance. Results The effectiveness of photodynamic inactivation towards S. aureus and its Sod isogenic mutants deprived of either of the two superoxide dismutase activities, namely SodA or SodM or both of them showed similar results, regardless of the Sod status in TSB medium. On the contrary, in the CL medium (without Mn++ ions the double SodAM mutant was highly susceptible to photodynamic inactivation. Among 8 clinical isolates of S. aureus analyzed (4 MRSA and 4 MSSA, strains highly resistant and strains highly vulnerable to photodynamic inactivation were noticed. We observed that Sod activity as well as sodA and sodM transcript level increases after protoporphyrin IX-based photodynamic treatment but only in PDI

  7. The Effect of Photodynamic Therapy and Diode Laser as Adjunctive Periodontal Therapy on the Inflammatory Mediators Levels in Gingival Crevicular Fluid and Clinical Periodontal Status

    Teymouri, Faraz; Farhad, Shirin Zahra; Golestaneh, Hedayatollah

    2016-01-01

    Statement of the Problem The presence of bacterial biofilms is the major cause of gingivitis and periodontitis, their mechanical removal is not often enough. Therefore, laser therapy and photodynamic therapy can be effective as adjunctive treatment. Purpose This study aimed to evaluate the impact of these treatments on the level of gingival crevicular fluid (GCF), inflammatory mediators, and periodontal clinical status. Materials and Method In this clinical trial, three quadrants were studied in 12 patients with chronic periodontitis aged 30-60 years. The clinical parameters were recorded and GCF samples were taken. After the first phase of periodontal treatment, one of the three quadrants was determined as the control group, one was treated by diode laser, and one underwent photodynamic therapy. The clinical parameters were recorded 2 and 6 weeks later. The data were statistically analyzed by using Friedman, ANOVA, and LSD post-test. Results Significant reduction was observed over time in the level of Interleukin-1β (IL-1β), Interleukin-17 (IL-17), clinical attachment loss, and pocket depth in the three treatment groups (plaser and photodynamic therapy significantly decreased the average bleeding on probing over time (pLaser and photodynamic therapy reduced the inflammatory mediators (IL-1β and IL-17) and improved the clinical symptoms. PMID:27602399

  8. Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors.

    Kalluru, Poliraju; Vankayala, Raviraj; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2016-07-01

    Cancer is one of the major life-threatening diseases among human beings. Developing a simple, cost-effective and biocompatible approach to treat cancers using ultra-low doses of light is a grand challenge in clinical cancer treatments. In this study, we report for the first time that nano-sized graphene oxide (GO) exhibits single-photon excitation wavelength dependent photoluminescence in the visible and short near-infrared (NIR) region, suitable for in vivo multi-color fluorescence imaging. We also demonstrate in both in vitro and in vivo experiments to show that nano GO can sensitize the formation of singlet oxygen to exert combined nanomaterial-mediated photodynamic therapeutic (NmPDT) and photothermal therapy (NmPTT) effects on the destruction of B16F0 melanoma tumors in mice using ultra-low doses (∼0.36 W/cm(2)) of NIR (980 nm) light. The average half-life span of the mice treated by the GO-PEG-folate-mediated NmPDT effects is beyond 30 days, which is ∼1.8 times longer than the mice treated with doxorubicin (17 days). Overall, the current study points out a successful example of using GO-PEG-folate nanocomposite as a theranostic nanomedicine to exert simultaneously in vivo fluorescent imaging as well as combined NmPDT and NmPTT effects for clinical cancer treatments. PMID:27108401

  9. Explicit dosimetry for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy: macroscopic singlet oxygen modeling

    Penjweini, Rozhin; Liu, Baochang; Kim, Michele M.; Zhu, Timothy C.

    2015-12-01

    Type II photodynamic therapy (PDT) is based on the photochemical reactions mediated through an interaction between a photosensitizer, ground-state oxygen ([O]), and light excitation at an appropriate wavelength, which results in production of reactive singlet oxygen ([]rx). We use an empirical macroscopic model based on four photochemical parameters for the calculation of []rx threshold concentration ([]rx,sh) causing tissue necrosis in tumors after PDT. For this reason, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-mediated PDT was performed interstitially on mice with radiation-induced fibrosarcoma (RIF) tumors. A linear light source at 665 nm with total energy released per unit length of 12 to 100 J/cm and source power per unit length (LS) of 12 to 150 mW/cm was used to induce different radii of necrosis. Then the amount of []rx calculated by the macroscopic model incorporating explicit PDT dosimetry of light fluence distribution, tissue optical properties, and HPPH concentration was correlated to the necrotic radius to obtain the model parameters and []rx,sh. We provide evidence that []rx is a better dosimetric quantity for predicting the treatment outcome than PDT dose, which is proportional to the time integral of the products of the photosensitizer concentration and light fluence rate.

  10. Explicit dosimetry for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy: macroscopic singlet oxygen modeling.

    Penjweini, Rozhin; Liu, Baochang; Kim, Michele M; Zhu, Timothy C

    2015-12-01

    Type II photodynamic therapy (PDT) is based on the photochemical reactions mediated through an interaction between a photosensitizer, ground-state oxygen ([(3)O2]), and light excitation at an appropriate wavelength, which results in production of reactive singlet oxygen ([(1)O2]rx). We use an empirical macroscopic model based on four photochemical parameters for the calculation of [(1)O2]rx threshold concentration ([(1)O2]rx,sh) causing tissue necrosis in tumors after PDT. For this reason, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-mediated PDT was performed interstitially on mice with radiation-induced fibrosarcoma (RIF) tumors. A linear light source at 665 nm with total energy released per unit length of 12 to 100  J/cm and source power per unit length (LS) of 12 to 150  mW/cm was used to induce different radii of necrosis. Then the amount of [(1)O2]rx calculated by the macroscopic model incorporating explicit PDT dosimetry of light fluence distribution, tissue optical properties, and HPPH concentration was correlated to the necrotic radius to obtain the model parameters and [(1)O2]rx,sh. We provide evidence that [(1)O2]rx is a better dosimetric quantity for predicting the treatment outcome than PDT dose, which is proportional to the time integral of the products of the photosensitizer concentration and light fluence rate. PMID:26720883

  11. Surgical strategy for malignant gliomas involving pyramidal tracts guided by functional neuronavigation and 5-ALA fluorescence navigation

    For patients with malignant glioma invading pyramidal tracts, maximal resections are difficult to accomplish while preserving their motor function. We used tractography-integrated functional neuronavigation and 5-aminolevulinic acid (5-ALA) fluorescence-guided resection for removal of malignant gliomas involving pyramidal tract. In this study, we analyzed postoperative motor function and extent of resection in a series of patients who underwent surgery in our department. Ten patients with malignant glioma invading pyramidal tracts underwent radical surgery. To preserve pyramidal tracts, we developed a functional neuronavigation-guided fence-post procedure to avoid the problem of brain shift, a disadvantage of the existing neuronavigation systems. Furthermore we have achieved precise resection of tumors using 5-ALA fluorescence navigation. Intraoperatively, tumor fluorescence was visualized using a modified operating microscope. All fluorescing tumor tissue was resected. Motor function was preserved after appropriate tumor resection in all cases. Postoperatively, improvement of motor weakness was observed in seven patients, whereas transient mild motor weakness occurred in two patients. Gross total removals were accomplished in seven patients, and subtotal removal was accomplished in one patient, and partial removal was accomplished in two patients. Combined use of tractography-integrated functional neuronavigation and 5-ALA fluorescence-guided resection contributes to maximal safe resection of malignant gliomas with pyramidal tract involvement. (author)

  12. Complete destruction of deep-tissue buried tumors via combination of gene silencing and gold nanoechinus-mediated photodynamic therapy.

    Vijayaraghavan, Priya; Vankayala, Raviraj; Chiang, Chi-Shiun; Sung, Hsing-Wen; Hwang, Kuo Chu

    2015-09-01

    Cancer is one of the major diseases leading to human deaths. Complete destruction of deep tissue-buried tumors using non-invasive therapies is a grand challenge in clinical cancer treatments. Many therapeutic modalities were developed to tackle this problem, but only partial tumor suppression or delay growths were usually achieved. In this study, we report for the first time that complete destruction of deep tissue-buried tumors can be achieved by combination of gold nanoechinus (Au NEs)-mediated photodynamic therapy (PDT) and gene silencing under ultra-low doses of near infra-red (NIR) light irradiation (915 nm, 340 mW/cm(2); 1064 nm, 420 mW/cm(2)) in the first and second biological windows. The average lifespan of the mice treated by the above combined therapy is beyond 40 days, which are ∼ 2.6 times longer than that (15 days) observed from the anticancer drug doxorubicin-treated group. The current study points out a new direction for the therapeutic design to treat deeply seated tumors in future cancer treatments. PMID:26016691

  13. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells. PMID:27108344

  14. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment

    Li, Pei-Tzu; Tsai, Yi-Jane; Lee, Ming-Jen; Chen, Chin-Tin

    2015-01-01

    Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ0 cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation. PMID:26473836

  15. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy.

    Durantini, Andrés M; Greene, Lana E; Lincoln, Richard; Martínez, Sol R; Cosa, Gonzalo

    2016-02-01

    Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain. PMID:26789198

  16. Phthalocyanine-mediated photodynamic therapy induces cell death and a G /G1 cell cycle arrest in cervical cancer cells

    We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC5 concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665 nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G /G1 cell cycle arrest during the phthalocyanine PDT-mediated response

  17. The Effect of Photodynamic Therapy and Diode Laser as Adjunctive Periodontal Therapy on the Inflammatory Mediators Levels in Gingival Crevicular Fluid and Clinical Periodontal Status

    Faraz Teymouri

    2016-09-01

    Full Text Available Statement of the Problem: The presence of bacterial biofilms is the major cause of gingivitis and periodontitis, their mechanical removal is not often enough. Therefore, laser therapy and photodynamic therapy can be effective as adjunctive treatment. Purpose: This study aimed to evaluate the impact of these treatments on the level of gingival crevicular fluid (GCF, inflammatory mediators, and periodontal clinical status. Materials and Method: In this clinical trial, three quadrants were studied in 12 patients with chronic periodontitis aged 30-60 years. The clinical parameters were recorded and GCF samples were taken. After the first phase of periodontal treatment, one of the three quadrants was determined as the control group, one was treated by diode laser, and one underwent photodynamic therapy. The clinical parameters were recorded 2 and 6 weeks later. The data were statistically analyzed by using Friedman, ANOVA, and LSD post-test. Results: Significant reduction was observed over time in the level of Interleukin-1β (IL-1β, Interleukin-17 (IL-17, clinical attachment loss, and pocket depth in the three treatment groups (p< 0.000. The three treatment methods significantly reduced the IL-1β and IL-17 at the baseline, up to 2 weeks, and 2-6 weeks (p< 0.05. Diode laser and photodynamic therapy significantly decreased the average bleeding on probing over time (p< 0.000 and p< 0.002, respectively. Conclusion: Laser and photodynamic therapy reduced the inflammatory mediators (IL-1β and IL-17 and improved the clinical symptoms.

  18. Towards photodynamic therapy with ionizing radiation: nanoparticle-mediated singlet oxygen generation (Conference Presentation)

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian; Goldys, Ewa

    2016-03-01

    Photodynamic therapy (PDT) is a clinically approved method for the treatment of cancer by using singlet oxygen, a highly reactive oxygen generated from a photosensitizer drug upon photoactivation. Limited light penetration depth into to the tissue means that PDT is unsuitable for deep tissue cancer treatments. This can be overcome by using X-ray /gamma rays activated nanoparticles able to trigger the photosensitizer drug and generate singlet oxygen. Additionally, inorganic nanoparticles interact more strongly with X and/or gamma rays than the tissue, allowing to concentrate the effects of radiation near nanoparticle surface and they can also be molecularly targeted to cancer cells. In this work we synthesized and characterized CeF3 nanoparticles, a well-known scintillator material. The nanoparticles were conjugated with Verteporfin, a photosensitizer drug by electrostatic interaction. We assessed the performance of CeF3 and the conjugates to generate singlet oxygen exposed to X-ray radiation. The X-ray singlet oxygen quantum yield of the nanoparticle-photosensitizer system was accurately quantified for the first time. This provided realistic estimates of the singlet oxygen dose taking into consideration the dose partition of the radiation between CeF3 and the tissue. Furthermore, we investigated gold nanoparticle-photosensitizer systems. We confirmed that pure gold nanoparticles itself generate singlet oxygen which is attributed to plasmonic effects. We found enhanced singlet oxygen generation from gold-Rose Bengal conjugates and gold nanorod-verteporfin conjugates. These singlet-oxygen-generating nanomaterials add a new dimension to radiation-assisted PDT.

  19. ALA-containing transparent applicators on the basis of biodegradable polymers for photodynamic therapy of superficial malignancies

    Meerovich, Gennadii A.; Loschenov, Victor B.; Shental, Victor V.; Vakoulovskaya, Elena G.; Davydov, Anatoly B.; Khromov, Gennady L.; Kuzmin, Sergei G.; Lukyanets, Eugeny A.; Tkach, Iosif I.; Vorozhtsov, Georgy N.

    2002-06-01

    The efficiency of photodynamic therapy (PDT) using 5- aminolevulinic acid (5-ALA) is essentially determined by an optimal choice of sensitization means, among which the application method is one of the most perspective due to high permeability of a skin for 5-ALA. The aim of present work is optimization of sensitization process with ALA. We have used the possibility of 5-ALA transparency in applicator (outside of tissue) while protoporphyrin-IX, formed in sensitized tissue, has sufficient absorption for providing PDT. We have developed 5-ALA containing applicator on the basis of transparent biodegradable polymers, which serve as a programmed source of 5-ALA in the zone of their contact with pathological tissue. The investigations carried out on mice with the solid form of leucosis p-388, have shown that developed applicator provides effective sensitization of pathological tissue, supporting high concentration of photosensitizer in tissue during the whole time of application (up to week). The experiments in vivo have demonstrated high efficiency of PDT. The preliminary clinical researches allow to draw a conclusion about its perspectivity for photodynamic treatment of skin malignancies.

  20. Use of 5-ALA fluorescence guided endoscopic biopsy of a deep-seated primary malignant brain tumor.

    Ritz, Rainer; Feigl, Guenther C; Schuhmann, Martin U; Ehrhardt, André; Danz, Soeren; Noell, Susan; Bornemann, Antje; Tatagiba, Marcos S

    2011-05-01

    The introduction of fluorescence-guided resection of primary malignant brain tumors was a milestone in neurosurgery. Deep-seated malignant brain tumors are often not approachable for microsurgical resection. For diagnosis and therapy, new strategies are recommended. The combination of endoscopy and 5-aminolevulinic acid-induced protoporphyrin IX (5-ALA-induced Pp IX) fluorescence-guided procedures supported by neuronavigation seems an interesting option. Here the authors report on a combined approach for 5-ALA fluorescence-guided biopsy in which they use an endoscopy system based on an Xe lamp (excitation approximately λ = 407 nm; dichroic filter system λ = 380-430 nm) to treat a malignant tumor of the thalamus and perform a ventriculostomy and septostomy. The excitation filter and emission filter are adapted to ensure that the remaining visible blue remission is sufficient to superimpose on or suppress the excited red fluorescence of the endogenous fluorochromes. The authors report that the lesion was easily detectable in the fluorescence mode and that biopsy led to histological diagnosis. PMID:21166571

  1. Enhanced antitumor effects of BPD-MA-mediated photodynamic therapy combined with adriamycin on breast cancer in mice

    Zhong-sheng TONG; Pei-tian MIAO; Ting-ting LIU; Yong-sheng JIA; Xiao-dong LIU

    2012-01-01

    Aim:Photodynamic therapy (PDT) is an emerging treatment used to eradicate premalignant and early-stage cancers and to reduce tumor size in end-stage cancers.In this study,we investigated the effects of a combination of benzoporphyrin derivative monoacid ring A (BPD-MA)-mediated PDT with adriamycin (ADM) on 4T1 breast carcinoma cells in vivo and the mechanisms underlyingthis effect.Methods:Normal BALA/c female mice bearing 4T1 breast carcinoma xenografts were tested.The animals were treated with PDT (BPD-MA 1 mg/kg,iv,plus single-dose laser irradiation) or ADM (5 mg/kg,iv) alone,or a combination of PDT with ADM.The tumor growth rate was determined by measuring the tumor weight.Cell apoptosis was measured with flow cytometry,and the expression of apoptosis-related molecules was assessed using Western blot.Microvessel density (MVD) was determined with immunohistochemical staining.Results:Compared to PDT or ADM alone,PDT plus ADM produced a combined inhibition on the tumor growth,prolonged life span,and enhanced apoptosis in the mice bearing 4T1 subcutaneously xenografted tumors.The combination of PDT and ADM exerted additive effects on the upregulation of Bax and the downregulation of Bcl-2,and on the reduction of MVD in 4T1 xenografted tumors.Conclusion:Our results demonstrate that PDT plus ADM exerts enhanced in vivo antitumor effect on breast cancer,which is closely associated with the cooperative regulation of extrinsic apoptotic pathways and the inhibition of tumor angiogenesis.Thus,PDT plus ADM is a promising combined treatment strategy for breast carcinoma.

  2. Photodynamic Vvisualisation of Paratyroid Glands – Results of Clinical use Eng

    I V Slepzov

    2009-03-01

    Full Text Available The purpose: an approbation of intraoperative photodynamic identification of healthy and adenomatous parathyroid glands using 5-aminolevulinic acid (5-ALA at thyroid and parathyroid operations.Materials and methods: intraoperative photodynamic identification using 5-ALA was performed in 25 patients with various thyroid and parathyroid diseases. 2–3 hours before the surgery the patients have received 1,5 g of 5-ALA per os. In 10 cases video-assisted operations were performed. In 3 cases at primary hyperparathyroidism video-assisted parathyroidectomy was used. In other cases the operative intervention was carried out using conventional technique. The operative wound surface was exposed to blue light of the light source KARL STORZ D-Light C (wavelength –380–440 nm and the endoscope with the system of filters. During preand postoperative period we have been registering basic clinical parameters, including parathyroid hormone level and the level of ionized calcium monitoring before operation, in 24, 48 hours and 1 month after operation. Results: the parathyroid glands were identified in 23 of 25 patients. There were no cases of allergic reactions and other side effects of 5-ALA introduction.Conclusion: intraoperative parathyroid glands identification by the way of registration of their fluorescence at peroral administration of 5-aminolevulinic acid is possible for the overwhelming majority of patients.

  3. Endoscopy imaging of 5-ALA-induced PPIX fluorescence for detecting early neoplasms in the oral cavity

    Zheng, Wei; Olivo, Malini; Sivanandan, Ranjiv; Karuman, Philip; Lim, Tuan-Kay; Soo, K. C.

    2001-10-01

    A digitized fluorescence endoscopy imaging system combined with 5-Aminolevulinic Acid (5-ALA) induced Protoporphyrin IX (PPIX) has been developed for the detection of neoplasms in oral cavity. It mainly consists of the illumination console, fluorescence detection unit, computer system for image acquisition, processing and analysis, and online image display system as well. The developed system can produce both the digital and video fluorescence images in real time, and can be used to quantify fluorescence images acquired. Preliminary results from the Head and Neck clinic show that high sensitivity and high specificity can be achieved. Furthermore, applying the intensity ratios at two different wavelength regions, the developed system shows the capability of differentiating between different histopathological stages of oral lesions, suggesting a significant potential for realizing the non-invasive optical biopsy for early cancer diagnosis.

  4. Early apoptosis and cell death induced by ATX-S10Na ( Ⅱ)-mediated photodynamic therapy are Bax- and p53-dependent in human colon cancer cells

    Makoto Mitsunaga; Akihito Tsubota; Kohichi Nariai; Yoshihisa Namiki; Makoto Sumi; Tetsuya Yoshikawa; Kiyotaka Fujise

    2007-01-01

    AIM: To investigate the roles of Bax and p53 proteins in photosensitivity of human colon cancer cells by using lysosome-localizing photosensitizer, ATX-S10Na (Ⅱ).METHODS: HCT116 human colon cancer cells and Bax-null or p53-null isogenic derivatives were irradiated with a diode laser. Early apoptosis and cell death in response to photodynamic therapy were determined by MTT assays, annexin V assays, transmission electron microscopy assays, caspase assays and western blotting.RESULTS: Induction of early apoptosis and cell death was Bax- and p53-dependent. Bax and p53 were required for caspase-dependent apoptosis. The levels of anti-apoptotic Bcl-2 family proteins, Bcl-2 and Bcl-XL,were decreased in Bax- and p53-independent manner.CONCLUSION: Our results indicate that early apoptosis and cell death of human colon cancer cells induced by photodynamic therapy with lysosome-localizingphotosensitizer ATX-S10Na (Ⅱ) are mediated by p53-Bax network and Iow levels of Bcl-2 and Bcl-XL proteins.Our results might help in formulating new therapeutic approaches in photedynamic therapy.

  5. Phototoxic effects of zinc oxide nanowires (ZnO NWs) complexed with 5-ALA in RD cell line

    Fakhar-e-Alam, M.; Ali, S. M. U.; Ibupoto, Z. H.; Atif, M.; Willander, M.

    2011-12-01

    In this current study, we have manifested the photosensitizing effects of zinc oxide nanowires (ZnO NWs) in dark as well as under ultra violet light exposure with 240 nm of UV region, using human muscle cancer (Rhybdomyosarcoma cells, RD) as in vitro experimental model. We have fabricated ZnO-NWs on the tip of borosilicate glass capillaries (0.5 μm diameter) and were conjugated using 5-aminolevulinic acid (ALA) for the efficient intracellular drug delivery. When ZnO NWs were applied on tumor localizing drugs with non ionizing illumination, then excited drug liberates reactive oxygen species (ROS), effecting mitochondria and nucleus resulting in cell necrosis within few minutes. During investigations, we observed that when ZnO-NWs grown on intracellular tip was excited by using 240 nm of UV light, as a resultant 625 nm of emitted red light were used as appetizer in the presence of 5-ALA for chemical reaction, which produces singlet oxygen, responsible for cell necrosis. Morphological changes of necrosed cells were examined under microscopy. Moreover, Viability of controlled and treated RD cells with optimum dose of light (UV-Visible) has been assessed by MTT assay as well as reactive oxygen species (ROS) detection.

  6. 5-氨基乙酰丙酸介导的光动力学治疗胃癌的实验研究%Effect of photodynamic therapy with 5-aminolevulinic acid on human gastric cancer cells in vitro

    黄宗海; 周广军; 俞金龙; 厉周; 丁涟沭; 徐如祥; 姜晓丹

    2006-01-01

    目的探讨5-氨基乙酰丙酸(5-ALA)介导的光动力学对人胃癌细胞MGC-803的治疗作用.方法将不同浓度的5-ALA加入细胞培养基中,随之给予相同剂量的激光辐射;之后用固定浓度的5-ALA处理细胞,并给予不同剂量的激光辐射.MTT法测定细胞生存率.结果在相同的辐射剂量下,经0.25、0.5、1.0、2.0、4.0 mmol/L的5-ALA处理的细胞生存率分别为(70.07±5.37)%、(50.04±4.99)%、(34.53±5.30)%、(26.89±4.44)%和23.90%±2.80%,除2.0和4.0 mmol/L5-ALA两组间外,其余各组间具有显著性差异(F=266.39,P<0.001).在相同的5-ALA的浓度下,辐射剂量为6.25、12.5、25.0、50.0、100 J/cm2的细胞生存率分别为(83.50±10.43)%、(67.96±9.23)%、(33.80±8.26)%、(23.31±5.98)%和(14.96±3.50)%,各组之间有显著性差异(F=226.31,P<0.0001).而单用5-ALA处理细胞,对应于其浓度为0.25、0.5、1.0、2.0,和4.0 mmol/L时的细胞生存率分别为(96.46±6.72)%、(97.48±5.27)%、(98.33±6.67)%、(99.47±6.97)%和(95.66±7.72)%,各浓度之间无显著性差异(F=0.79,P=0.5383).单纯激光辐射,其剂量为6.25、12.5、25.0、50.0、100.0 J/cm2时的细胞生存率也无显著性差异(F=0.61,P=0.6551).结论在较低的浓度范围内,5-ALA介导的光动力学治疗对人胃癌MGC-803细胞的杀伤作用随着5-ALA浓度的增加而增加,在较高浓度时则存在饱和现象,杀伤力与光剂量成正比.单纯激光不能产生光动力效应,5-ALA本身对细胞无毒性作用.5-ALA介导的光动力学治疗是很有希望的胃癌治疗方法.%Objective To investigate the effect of 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) on MGC-803 human gastric cancer cells in vitro. Methods MGC-803 human gastric cancer cells were treated with 5-ALA at various concentrations followed by laser irradiation. The cells were also treated with 5-ALA at the same concentration before laser exposure at various doses. PDT-induced phototoxicity of the cells was

  7. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    Wang X

    2015-01-01

    Full Text Available Xiaojie Wang,1,2,* Lei Shi,2,* Qingfeng Tu,2 Hongwei Wang,3 Haiyan Zhang,2 Peiru Wang,2 Linglin Zhang,2 Zheng Huang,4 Feng Zhao,5 Hansen Luan,5 Xiuli Wang2 1Shanghai Skin Diseases Clinical College of Anhui Medical University, 2Shanghai Skin Disease Hospital, 3Huadong Hospital, Fudan University, Shanghai, 4MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University, Fuzhou, 5National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, People’s Republic of China *These authors contributed equally to this study Background: Squamous cell carcinoma (SCC is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP-assisted 5-aminolevulinic acid (ALA delivery for topical photodynamic therapy (PDT of cutaneous SCC.Materials and methods: Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined.Results: PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC.Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. Keywords: 5-aminolevulinic acid (ALA, polylactic-co-glycolic acid (PLGA, nanoparticles (NPs, cutaneous squamous cell carcinoma (SCC, photodynamic therapy (PDT, microneedling

  8. Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo

    Yanina, Irina Yu.; Tuchin, Valery V.; Navolokin, Nikita A.; Matveeva, Olga V.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Altshuler, Gregory B.

    2012-05-01

    Histological slices of skin samples with the subcutaneous adipose tissue after photothermal/photodynamic treatment are analyzed. In the case of subcutaneous indocyanine green injection and 808-nm diode laser exposure of the rat skin site in vivo, the greatest changes in tissue condition were observed. Processes were characterized by dystrophy, necrosis, and desquamation of the epithelial cells, swelling and necrosis of the connective tissue, and widespread necrosis of the subcutaneous adipose tissue. The obtained data are useful for safe layer-by-layer dosimetry of laser illumination of ICG-stained adipose tissue for treatment of obesity and cellulite.

  9. Photodynamic therapy (PDT) and waterfiltered infrared A (wIRA) in patients with recalcitrant common hand and foot warts

    Fuchs, SM; Fluhr, JW; Bankova, L; Tittelbach, J; Hoffmann, G.; Elsner, P

    2004-01-01

    Background: Common warts (verrucae vulgares) are human papilloma virus (HPV) infections with a high incidence and prevalence, most often affecting hands and feet, being able to impair quality of life. About 30 different therapeutic regimens described in literature reveal a lack of a single striking strategy. Recent publications showed positive results of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) in the treatment of HPV-induced skin diseases, especially warts, using visibl...

  10. Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma.

    Qidwai, Afreen; Khan, Saba; Md, Shadab; Fazil, Mohammad; Baboota, Sanjula; Narang, Jasjeet K; Ali, Javed

    2016-05-01

    Topical photodynamic therapy (PDT) is a promising alternative for malignant skin diseases such as basal-cell carcinoma (BCC), due to its simplicity, enhanced patient compliance, and localization of the residual photosensitivity to the site of application. However, insufficient photosensitizer penetration into the skin is the major issue of concern with topical PDT. Therefore, the aim of the present study was to enable penetration of photosensitizer to the different strata of the skin using a lipid nanocarrier system. We have attempted to develop a nanostructured lipid carrier (NLC) for the topical delivery of second-generation photosensitizer, 5-amino levulinic acid (5-ALA), whose hydrophilicity and charge characteristic limit its percutaneous absorption. The microemulsion technique was used for preparing 5-ALA-loaded NLC. The mean particle size, polydispersity index, and entrapment efficiency of the optimized NLC of 5-ALA were found to be 185.2 ± 1.20, 0.156 ± 0.02, and 76.8 ± 2.58%, respectively. The results of in vitro release and in vitro skin permeation studies showed controlled drug release and enhanced penetration into the skin, respectively. Confocal laser scanning microscopy and cell line studies respectively demonstrated that encapsulation of 5-ALA in NLC enhanced its ability to reach deeper skin layers and consequently, increased cytotoxicity. PMID:26978275

  11. Upconversion nanoparticle-mediated photodynamic therapy induces THP-1 macrophage apoptosis via ROS bursts and activation of the mitochondrial caspase pathway

    Zhu X

    2015-05-01

    Full Text Available Xing Zhu,1,* Hao Wang,2,* Longbin Zheng,1 Zhaoyu Zhong,1 Xuesong Li,1 Jing Zhao,3 Jiayuan Kou,1 Yueqing Jiang,1 Xiufeng Zheng,1 Zhongni Liu,1 Hongxia Li,1 Wenwu Cao,4,5 Ye Tian,1,6 You Wang,2 Liming Yang1 1Department of Pathophysiology, Harbin Medical University, Harbin, People’s Republic of China; 2Materials Physics and Chemistry Department, Harbin Institute of Technology, Harbin, People’s Republic of China; 3Blood Transfusion Department, Jining No 1 People’s Hospital, Jining, People’s Republic of China; 4Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, People’s Republic of China; 5Materials Research Institute, The Pennsylvania State University, University Park, PA, USA; 6Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China *These authors contributed equally to this work Abstract: Atherosclerosis (AS is the most vital cardiovascular disease, which poses a great threat to human health. Macrophages play an important role in the progression of AS. Photodynamic therapy (PDT has emerged as a useful therapeutic modality not only in the treatment of cancer but also in the treatment of AS. The purpose of this study was to determine the molecular mechanisms underlying the activity of PDT, using mesoporous-silica-coated upconversion fluorescent nanoparticles encapsulating chlorin e6 (UCNPs-Ce6 in the induction of apoptosis in THP-1 macrophages. Here, we investigated the ability of UCNPs-Ce6-mediated PDT to induce THP-1 macrophage apoptosis by facilitating the induction of reactive oxygen species (ROS and regulation of mitochondrial permeability transition pore (MPTP to depolarize mitochondrial membrane potential (MMP. Both Bax translocation and the release of cytochrome C were examined using immunofluorescence and Western blotting. Our results indicated that the levels of ROS were significantly increased in the PDT group, resulting

  12. Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients – a randomized controlled trial

    Togsverd-Bo, Katrine; Lei, Ulrikke; Erlendsson, A M;

    2015-01-01

    BACKGROUND: Topical photodynamic therapy (PDT) for actinic keratoses (AK) is hampered by pain during illumination and inferior efficacy in organ-transplant recipients (OTR). OBJECTIVES: We assessed ablative fractional laser (AFL)-assisted daylight photodynamic therapy (PDT) (AFL-dPDT) compared...

  13. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study.

    Longo, João Paulo F; Leal, Soraya C; Simioni, Andreza R; de Fátima Menezes Almeida-Santos, Maria; Tedesco, Antônio C; Azevedo, Ricardo B

    2012-05-01

    Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions. PMID:21809069

  14. The effect of combined modality treatment with ionising radiation and TPPS-mediated photodynamic therapy on murine tail skin

    The effect on normal skin of combined modality treatment with 300 kV X-rays and photodynamic therapy (PDT) using the photosensitising drug meso-tetra (sulphonatophenyl) porphine (TPPS) was studied using the mouse tail necrosis assay. Prior treatment with a tolerance dose of PDT produced a significant increase in the probability of necrosis following graded doses of ionising radiation. A tolerance dose of X-rays administered prior to graded doses of PDT also produced a significant rise in the necrosis rate. TPPS appeared to have a radiosensitising effect but, as the animals were kept in subdued light, the low dose of PDT they therefore received may provide an alternative explanation. The effect of prolonging the interval between the modalities on the necrosis rate did not appear to be related to the time course of either the changes in blood flow produced by each modality, measured by zenon clearance studies or the development of the skin reaction following X-ray irradiation. (author)

  15. Transporter-Mediated Drug Interaction Strategy for 5-Aminolevulinic Acid (ALA-Based Photodynamic Diagnosis of Malignant Brain Tumor: Molecular Design of ABCG2 Inhibitors

    Toshihisa Ishikawa

    2011-09-01

    Full Text Available Photodynamic diagnosis (PDD is a practical tool currently used in surgical operation of aggressive brain tumors, such as glioblastoma. PDD is achieved by a photon-induced physicochemical reaction which is induced by excitation of protoporphyrin IX (PpIX exposed to light. Fluorescence-guided gross-total resection has recently been developed in PDD, where 5-aminolevulinic acid (ALA or its ester is administered as the precursor of PpIX. ALA induces the accumulation of PpIX, a natural photo-sensitizer, in cancer cells. Recent studies provide evidence that adenosine triphosphate (ATP-binding cassette (ABC transporter ABCG2 plays a pivotal role in regulating the cellular accumulation of porphyrins in cancer cells and thereby affects the efficacy of PDD. Protein kinase inhibitors are suggested to potentially enhance the PDD efficacy by blocking ABCG2-mediated porphyrin efflux from cancer cells. It is of great interest to develop potent ABCG2-inhibitors that can be applied to PDD for brain tumor therapy. This review article addresses a pivotal role of human ABC transporter ABCG2 in PDD as well as a new approach of quantitative structure-activity relationship (QSAR analysis to design potent ABCG2-inhibitors.

  16. Photodynamic therapy activated STAT3 associated pathways: Targeting intrinsic apoptotic pathways to increase PDT efficacy in human squamous carcinoma cells.

    Qiao, Li; Xu, Chengshan; Li, Qiang; Mei, Zhusong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    5-Aminolaevulinic acid-based photodynamic therapy (ALA-PDT) has been used for part of squamous cell carcinoma (premalignant conditions or in situ cutaneous SCC-Bowen disease). However, mechanism of ALA-PDT is not fully understood yet on the cell apoptosis pathway. The aim of this study was to further investigate the effect and mechanism of 5-ALA-PDT on human squamous carcinoma A431cells. Apoptosis and cell viability after PDT were evaluated using Annexin V-FITC apoptosis detection kit and MTT assay. The mRNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Our data showed that 5-ALA-PDT significantly inhibited cell proliferation (p<0.05), but there was no significant difference when the photosensitizer reached to 4.8mM. The inhibition in cell proliferation after 5-ALA-PDT treatment was correlated to more cells being arrested in the G0/G1 phase of the cell cycle (p<0.01). Immunocytochemical observations using anti-active caspase-3 antibodies showed active caspase-3 was translocated from cytoplasm to nuclear during apoptosis. STAT3 and its downstream gene Bax and BCL-2 were changed after 5-ALA-PDT treatment for the mRNA and protein expression. Our studies confirmed that 5-ALA-PDT might be an effective treatment for human squamous carcinoma by inhibiting the tumor cell A431growth and for the first time demonstrated that the expression of STAT3 was significantly reduced at 24h after 5-ALA-PDT treatment. PMID:26607555

  17. Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, dimethylsulfoxide (DMSO), and edetic acid disodium salt (EDTA)

    Orenstein, Arie; Kostenich, Gennady; Tsur, H.; Roitman, Leonid; Ehrenberg, Benjamin; Malik, Zvi

    1995-01-01

    The results of photodynamic therapy (PDT) in 48 patients bearing basal cell carcinoma (BCC) and 7 patients with squamous cell carcinoma (SCC) of the skin are described. Five- aminolevulinic acid (5-ALA) was applied topically in two formulations. The first formulation contained 20% of 5-ALA in a base cream, and the second formulation (5-ALA composite cream), contained an additional 2% of dimethylsulfoxide (DMSO) and 2% of edetic acid disodium salt (EDTA). The creams were left on the skin for 2 - 5 hours. Production of protoporphyrin (PP) was measured in situ by a laser-induced fluorescence (LIF) method. The results of fluorescence measurement clearly indicate that PP accumulation in tumors induced by the 5-ALA composite cream was markedly higher than that induced by the 5-ALA cream. The tumors were light-irradiated (600 - 720 nm) after 4 - 5 hours of cream applications, using the light delivery system Versa-Light by a light dose of 100 J/cm2. The clinically superficial BCC tumors were highly responsive to PDT; the overall result in BCC patients was an 85.4% complete response. Histological examination showed an initial edematous reaction, followed by necrosis and complete disappearance of the tumor. The superficial SCC tumors showed a 100% complete response after PDT. The ulcerated nodular SCC showed partial responses.

  18. Specific anti-tumor immune response with photodynamic therapy mediated by benzoporphyrin derivative and chlorin(e6)

    Castano, Ana P.; Gad, Faten; Zahra, Touqir; Hamblin, Michael R.

    2003-07-01

    The purpose of this study was to investigate the induction of anti-tumor immunity by photodynamic therapy (PDT). We used EMT-6 mammary sarcoma, a moderately immunogenic tumor, with 10(6) cells injected s.c. in thighs of immunocompetent Balb/c mice. Mice were treated 10 days later when tumors were 6-mm diameter. Two PDT regimens were equally effective in curing tumors: 1-mg/kg of liposomal benzoporphyrin derivative (BPD) followed after 15 min by 150 J/cm2 690 nm light or 10-mg/kg chlorin(e6) (ce6) followed after 6 hours by 150 J/cm2 665 nm light. BPD-PDT produced a black eschar 24-48 hours after treatment with no visible tumor, followed by healing of the lesion. By contrast ce6-PDT showed no black eschar, but a slow disappearance of tumor over 5-7 days. When cured mice were rechallenged with 10(6) EMT-6 cells in the opposite thigh, all ce6-PDT cured mice rejected the challenge, but BPD-PDT cured mice grew tumors in a proportion of cases. When mice were cured by amputation of the tumor bearing leg, all mice subsequently grew tumors upon rechallenge. Mice were given two EMT6 tumors (1 in each leg) and the mouse was injected with ce6 or BPD but only one tumor was treated with light. Both tumors (PDT-treated and contralateral) regressed at an equal rate until they became undetectable, but in some mice the untreated tumor recurred. Those mice cured of both tumors rejected a subsequent EMT6 rechallenge. Amputation of the tumor bearing leg did not lead to regression of the contralateral tumor. Mice that rejected an EMT6 rechallenge failed to reject a subsequent cross-challenge with J774 reticulum cell sarcoma (an alternative Balb/c murine tumor). These data show that PDT generates a tumor-specific memory immune response, and in addition an active tumoricidal immune response capable of destroying distant established tumors. We hypothesize that ce6-PDT is more effective than BPD-PDT due to more necrotic rather than apoptotic cell death and/or generation of heat

  19. Combination therapies in adjuvant with topical ALA-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premalignant lesions

    Yang, Deng-Fu; Hsu, Yih-Chih

    2012-03-01

    In Taiwan, oral cancer has becomes the fastest growth male cancer disease due to the betel nut chewing habit combing with smoking and alcohol-drinking lifestyle of people. In order to eliminate the systemic phototoxic effect of 5-aminolevulinic acid (ALA), this study was designed to use a topical ALA-mediated PDT for treatment of DMBA-induced hamster buccal pouch precancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 10 to 12 weeks. Cancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical ALA-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when ALA reached its peak level in the lesional epithelial cells after topical application of ALA gel. We found that ALA reached its peak level in precancerous lesions about 2.5 hrs after topical application of ALA gel. The cancerous lesions in hamsters were then treated with topical ALA -mediated PDT with light exposure dose of 150 J/cm2 using LED 635 nm fiber-guided light device. Visual examination demonstrated that adjuvant topical ALA -mediated PDT group has shown better therapeutic results in compared to those of non-adjuvant topical ALA-mediated PDT group for DMBA-induced hamster buccal pouch precancerous lesions.

  20. Topical photosan-mediated photodynamic therapy for DMBA-induced hamster buccal pouch early cancer lesions: an in vivo study

    Hsu, Yih-Chih; Chang, Walter Hong-Shong; Chang, Junn-Liang; Liu, Kuang-Ting; Chiang, Chun-Pin; Liu, Chung-Ji; Chen, Chih-Ping

    2011-03-01

    Oral cancer has becomes the most prominent cancer disease in recent years in Taiwan. The reason is the betel nut chewing habit combing with smoking and alcohol-drinking lifestyle of people results in oral cancer becomes the fastest growth incident cancer amongst other major cancer diseases. In previous studies showed that photosan, haematoporphyrin derivative (HPD), has demonstrated effective PDT results on human head and neck disease studies. To avoid the systemic phototoxic effect of photosan, this study was designed to use a topical photosan-mediated PDT for treatment of DMBA-induced hamster buccal pouch cancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 10 to 12 weeks. Cancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical photosan-mediated PDT. Before PDT, fluorescence spectroscopy was used to determine when photosan reached its peak level in the lesional epithelial cells after topical application of photosan gel. We found that photosan reached its peak level in cancerous lesions about 13.5 min after topical application of photosan gel. The cancerous lesions in hamsters were then treated with topical photosan-mediated PDT (fluence rate: 600 mW/cm2; light exposure dose 200 J/cm2) using the portable Lumacare 635 nm fiber-guided light device. Visual examination demonstrated that topical photosan-mediated PDT was an applicable treatment modality for DMBA-induced hamster buccal pouch cancerous lesions.

  1. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  2. Comparsion of light dose on topical ALA-mediated photodynamic therapy for DMBA-induced hamster buccal pouch premalignant lesions

    Yang, Deng-Fu; Tseng, Meng-Ke; Liu, Chung-Ji; Hsu, Yih-Chih

    2012-03-01

    Oral cancer has becomes the most prominent male cancer disease due to the local betel nut chewing habit combing with smoking and alcohol-drinking lifestyle. In order to minimize the systemic phototoxic effect of 5-aminolevulinic acid (ALA), this study was designed to use a topical ALA-mediated PDT for treatment of DMBA-induced hamster buccal pouch cancerous lesions. DMBA was applied to one of the buccal pouches of hamsters thrice a week for 8 to 10 weeks. Precancerous lesions were induced and proven by histological examination. These DMBA-induced cancerous lesions were used for testing the efficacy of topical ALA -mediated PDT. We found that ALA reached its peak level in cancerous lesions about 2.5 hrs after topical application of ALA gel. The precancerous lesions in hamsters were then treated with topical ALA -mediated PDT with light exposure dose of 75 and 100 J/cm2 using LED 635 nm Wonderlight device. It is suggesting that optimization of the given light dose is critical to the success of PDT results.

  3. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells.

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2016-02-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)-encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm(2) ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  4. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI

    Cao, Jianbo; An, Hengqing; Huang, Xinglu; Fu, Guifeng; Zhuang, Rongqiang; Zhu, Lei; Xie, Jin; Zhang, Fan

    2016-05-01

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency. Chlorin e6-loaded and PEGylated nano-graphene (GO-PEG-Ce6) can be excited at 660 nm, 808 nm, or both, to induce PDT, PTT, or PDT/PTT combination. Despite the potential of the treatments, there is a lack of a diagnostic tool which can monitor their therapeutic response in a non-invasive and prognostic manner; such an ability is urgently needed for the transformation and translation of the technologies. In this study, we performed diffusion-weighted and blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) after GO-PEG-Ce6-mediated PTT, PDT, or PTT/PDT. We found that after efficient PTT, there is a significant increase of the tumor apparent diffusion coefficient (ADC) value in diffusion-weighted imaging (DWI) maps; meanwhile, an efficient PDT led to an increase of in BOLD images. In both the cases, the amplitude of the increase was correlated with the treatment outcomes. More interestingly, a synergistic treatment efficacy was observed when the PTT/PDT combination was applied, and the combination was associated with a greater ADC and increase than when either modality was used alone. In particular, the PTT/PDT condition that induced the most dramatic short-term increase of the ADC value (>70%) caused the most effective tumor control in the long-run, with 60% of the treated animals being tumor-free after 60 days. These results suggest the great promise of the combination of DWI and BOLD MRI as a tool for accurate monitoring and prognosis

  5. Photodynamic therapy (ALA-PDT) in the treatment of pathological states of the cornea

    Switka-Wieclawska, Iwona; Kecik, Tadeusz; Kwasny, Miroslaw; Graczyk, Alfreda

    2003-10-01

    Each year an increasing amount of research is published on the use of photodynamic therapy in medicine. The most recent research has focused mostly on the use of photosensitizer called vertoporphyrin (Visudyne) is the treatment of subretinal neovascularization in age-related macular degeneration (AMD) or myopia, following a substantial amount of ophthalmology research mostly experimental on the application of the method in diagnosis and treatment of some eye tumors. In the Department of Ophthalmology of Polish Medical University in Warsaw, PDT was used as supplementary method in a selected group of patients with chronic virus ulcer of the cornea and keratopathies. During the treatment 5-aminolevulinic acid (5-ALA) was applied in ointment form as a photosensitizer activated with light wave of 633 nm. It appears, on the basis of the results obtained, that photodynamic therapy (ALA-PDT) may become in the future a valuable supplement to the methods being used at the present treating pathological states of the cornea.

  6. Pain in photodynamic therapy

    Mircea Tampa; Maria Isabela Sârbu; Mădălina-Irina Mitran; Cristina-Iulia Mitran; Adrian Dumitru; Vasile Benea; Simona-Roxana Georgescu

    2016-01-01

    Photodynamic therapy is a modern treatment with applications in several medical specialties, which has been intensely studied in the last years. The main indications in dermatology are actinic keratosis, superficial basal cell carcinoma and Bowen's disease- common skin disorders in which photodynamic therapy proved its efficacy. At present, the use of photodynamic therapy for the treatment of other skin disorders is profoundly researched. Pain is the most common and redoubtable adverse effect...

  7. Colloidal gold nanorings for improved photodynamic therapy through field-enhanced generation of reactive oxygen species

    Hu, Yue; Yang, Yamin; Wang, Hongjun; Du, Henry

    2013-02-01

    Au nanostructures that exhibit strong localized surface plasmon resonance (SPR) have excellent potential for photo-medicine, among a host of other applications. Here, we report the synthesis and use of colloidal gold nanorings (GNRs) with potential for enhanced photodynamic therapy of cancer. The GNRs were fabricated via galvanic replacement reaction of sacrificial Co nanoparticles in gold salt solution with low molecular weight (Mw = 2,500) poly(vinylpyrrolidone) (PVP) as a stabilizing agent. The size and the opening of the GNRs were controlled by the size of the starting Co particles and the concentration of the gold salt. UV-Vis absorption measurements indicated the tunability of the SPR of the GNRs from 560 nm to 780 nm. MTT assay showed that GNRs were non-toxic and biocompatible when incubated with breast cancer cells as well as the healthy counterpart cells. GNRs conjugated with 5-aminolevulinic acid (5-ALA) photosensitizer precursor led to elevated formation of reactive oxygen species and improved efficacy of photodynamic therapy of breast cancer cells under light irradiation compared to 5-ALA alone. These results can be attributed to significantly enhance localized electromagnetic field of the GNRs.

  8. Pain in photodynamic therapy

    Mircea Tampa

    2016-04-01

    Full Text Available Photodynamic therapy is a modern treatment with applications in several medical specialties, which has been intensely studied in the last years. The main indications in dermatology are actinic keratosis, superficial basal cell carcinoma and Bowen's disease- common skin disorders in which photodynamic therapy proved its efficacy. At present, the use of photodynamic therapy for the treatment of other skin disorders is profoundly researched. Pain is the most common and redoubtable adverse effect of photodynamic therapy and it is the most important factor affecting the patient's adherence to treatment. The aim of this article is to look over the most recent medical studies regarding pain in PDT, with emphasis on the factors affecting the occurrence of pain and the most recent strategies for controlling photodynamic therapy- related pain.

  9. Differences in sensitivity to mTHPC-mediated photodynamic therapy of neurons, glial cells and MCF7 cells in a 3-dimensional cell culture model

    Wright, K E; MacRobert, A J; Phillips, J. B.

    2008-01-01

    The effect of photodynamic therapy (PDT) on the cells of the nervous system is an important consideration in the treatment of tumours that are located within or adjacent to the brain, spinal cord and peripheral nerves. Previous studies have reported the sparing of nerves during PDT using meta-tetrahydroxyphenylchlorin (mTHPC, Foscan®) in patients and in animal models. The aim of this study was to investigate the effects of mTHPC on key nervous system cells using a 3-dimensional cell culture s...

  10. Possible in vivo mechanisms involved in photodynamic therapy using tetrapyrrolic macrocycles

    A.G. Filip

    2011-01-01

    Full Text Available Photodynamic therapy (PDT mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl-porphyrin (TMPP and its zinc complex (ZnTMPP on tumor levels of malondialdehyde (MDA, reduced glutathione (GSH and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9 and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control as well as the activation of MMP-2 (P < 0.05 were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05 with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis.

  11. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  12. Photodynamic therapy for epilepsy

    Zusman, Edie; Sidhu, Manpreet; Coon, Valerie; Scott, Nicholas; Bisland, Stuart; Tsukamoto, Tara

    2006-02-01

    Epilepsy is surgically curable if the seizure focus can be localized and does not include areas of eloquent cortex. Because epileptic cells are indistinct from surrounding brain, resection typically includes normal tissue. Using the rat kindling model of epilepsy, we evaluated Photodynamic Therapy (PDT) as a super-selective lesioning technique. We present a series of pilot studies to evaluate: 1) Protoporphyrin IX (PpIX) fluorescence, 2) the efficacy of PDT to raise seizure thresholds, 3) the safety of PDT using behavioral studies, and 4) histologic results. Bipolar electrodes were chronically implanted into the cortex and animals received successive low-level stimulation generating seizures of increasing severity. Following 5-aminolevulinic acid (ALA) administration, fully kindled rats received electrical stimulation to induce a generalized seizure. Animals were irradiated with laser light focused onto a temporal craniectomy. Our results show: 1) an increase in PpIX fluorescence in the seizure group, 2) PDT treated animals failed to demonstrate seizure activity following repeat stimulation, 3) no statistically significant difference between treated and control animals were observed on behavioral tests, 4) histology showed pyknotic hippocampal pyramidal cells in the CA3 region without areas of obvious necrosis. In conclusion, this is the first report of heightened PpIX-mediated fluorescence in epileptic brain. The selective accumulation of PpIX with laser PDT may provide a less invasive and more precise technique for obliteration of epileptic foci. PDT warrants additional research to determine if this technique may augment or replace existing procedures for the surgical management of epilepsy.

  13. 藻红蛋白介导光动力治疗的光化学机制研究%Photochemical Mechanism of R-phycoerythrin Mediated Photodynamic Therapy of Cancer

    李冠武; 王广策; 李振刚; 曾呈奎

    2001-01-01

    To explore the photochemical mechanisms of R-phycoery thrin mediated Photodynamic therapy of cancer,the photobleaching was observed wi th different concentrations of R-PE and inhibitors of reactive oxygen species.T he results show that it will decrease the efficacy of PDT when the R-PE concent ration reached one top concentration.And the mechanisms involved in R-PE mediat ed PDT include Ⅰ and Ⅱ type reactive oxygen production reaction.The inhibitor of Ⅰ type reaction made more singlet oxygen produced by transition from Ⅰ to Ⅱ type with more efficiency.%为探讨藻红蛋白介导的光动力治疗的光化学机制,观察藻红蛋白浓度和活性氧抑制剂对藻红蛋白光漂白作用的影响,研究藻红蛋白介导的光敏反应产生活性氧分子的途径和影响因素.结果表明:藻红蛋白浓度太高会降低光动力的效率,其活性氧产生的机制为Ⅰ和Ⅱ型,用Ⅰ型反应抑制剂可使反应向Ⅱ型方向转变,产生更多的单线态氧,可显著提高光动力效率.

  14. Exploring a Novel Target Treatment on Breast Cancer: Aloe-emodin Mediated Photodynamic Therapy Induced Cell Apoptosis and Inhibited Cell Metastasis.

    Chen, Qing; Tian, Si; Zhu, Jing; Li, Kai-Ting; Yu, Ting-He; Yu, Le-Hua; Bai, Ding-Qun

    2016-01-01

    Photodynamic therapy (PDT) as a clinical cancer therapy, is a mild therapy, which involves application of photosensitizers (PSs) located in target cells and then irradiated by corresponding wavelength. The activation of PSs generates radical oxygen species (ROS) to exert a selective cytotoxic activity for the target cells. Aloe-emodin (AE) has been found to be an anti-tumor agent in many studies, and has also been demonstrated as a photosensitizer, in the recent years. In order to study the mechanisms of aloe-emodin as a photosensitizer, we investigated the mechanisms of photo-cytotoxicity induced by aloe-emodin in breast cancer MCF-7 cells in the present study. Analysis of cell proliferation evidenced that there was a drastic depression after photodynamic treatment with a series of aloe-emodin concentrations and light doses. We observed changes in apoptosis and demonstrated that the mechanisms of apoptosis were involved in mitochondrial and endoplasmic reticulum death pathways. The capacity of adhesion, migration and invasion of breast cells was measured using WST8 and transwell assay and demonstrated that AE-PDT significantly inhibited adhesion, migration and invasion of MCF-7cells. The expression of MMP2, MMP9, VEGF and Nrf2 demonstrated that the metastasis was related to oxidative stress. Analysis of changes in cytoskeleton components (F-actin) evidenced cytoskeleton disorganization after treatment with AE-PDT. Taken together, the present results indicated that PDT with aloe-emodin effectively suppressed cancer development in MCF-7cells, suggesting the potential of AE as a new photosensitizer in PDT which can provide a new modility for treating cancer. PMID:26295333

  15. Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

    Shi J

    2013-04-01

    Full Text Available Jinjin Shi, Zhenzhen Wang, Lei Wang, Honghong Wang, Lulu Li, Xiaoyuan Yu, Jing Zhang, Rou Ma, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of ChinaAbstract: Fullerene (C60 has shown great potential in drug delivery. In this study we exploited modified fullerene (diadduct malonic acid-fullerene-Asn-Gly-Arg peptide [DMA-C60-NGR] as an antitumor drug carrier in order to build a new tumor-targeting drug delivery system. We also investigated the synergistic enhancement of cancer therapy using photodynamic therapy (PDT induced by DMA-C60-NGR and 2-methoxyestradiol (2ME. Cytotoxicity tests indicated that DMA-C60-NGR had no obvious toxicity, while our drug delivery system (DMA-C60-2ME-NGR had a high inhibition effect on MCF-7 cells compared to free 2ME. The tumor-targeting drug delivery system could efficiently cross cell membranes, and illumination induced the generation of intracellular reactive oxygen species and DNA damage. Furthermore, DMA-C60-2ME-NGR with irradiation had the highest inhibition effect on MCF-7 cells compared to the other groups. DMA-C60-NGR combined with 2ME showed a good synergistic photosensitization effect for inhibiting the growth of MCF-7 cells, demonstrating that DMA-C60-2ME-NGR may be promising for high treatment efficacy with minimal side effects in future therapy.Keywords: fullerene, drug delivery system, photodynamic therapy, tumor targeting

  16. Photodynamic therapy of non-melanoma skin cancers

    Ikram, M.; Khan, R. U.; Firdous, S.; Atif, M.; Nawaz, M.

    2011-02-01

    In this prospective study duly approved from Institutional Ethics Review Committee for research in medicine, PAEC General Hospital Islamabad, Pakistan, we investigate the efficacy, safety and tolerability along with cosmetic outcome of topical 5-aminolaevulinic acid photodynamic therapy for superficial nonmelanoma skin cancers (NMSCs) and their precursors. Patients with Histological diagnosis of NMSCs and their precursors were assessed for PDT, after photographic documentation of the lesions and written consent, underwent two (2) sessions of PDT in one month (4 weeks) according to standard protocol. A freshly prepared 20% 5-ALA in Unguentum base was applied under occlusive dressing for 4-6 h as Drug Light Interval (DLI) and irradiated with light of 630 nm wavelength from a diode laser at standard dose of 90 J/cm2. Approximately 11% patients reported pain during treatment which was managed in different simple ways. In our study we regularly followed up the patients for gross as well as histopathological response and recurrence free periods during median follow-up of 24 months. Regarding Basal cell carcinomas complete response was observed in 86.2% (25/29), partial response in 10.3% (3/29) and recurrence during first year in 3.5% (1/29) lesions. All the lesions which showed partial response or recurrence were nBCCs. Regarding Actinic Keratosis complete response was observed in 95.3% (20/21), partial response in 4.7% (1/21) while Bowen's disease showed 100% (2/2) results. 81.8% (9/11) Squamous Cell Carcinomas showed complete, 9% (1/11) partial response and 9% (1/11) presented with recurrence after 3 months. We observed excellent and good cosmetic results along with tumor clearance in our study. Treatment sessions were well tolerated with high level of patient's satisfaction and only minor side effects of pain during treatment sessions and inflammatory changes post photodynamic therapy were observed. We concluded that 5-ALA PDT is an effective and safe emerging

  17. Calreticulin as cancer treatment adjuvant: combination with photodynamic therapy and photodynamic therapy-generated vaccines

    Mladen eKorbelik; Judit eBanath; Kyi Min Saw; Wei eZhang; Evaldas eCilpys

    2015-01-01

    Calreticulin is recognized as one of pivotal damage-associated molecular pattern (DAMP) molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT). The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to ...

  18. New Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy Phthalocyanine Zinc-Mediated Photodynamic Therapy Inhibits the Proliferation of Human Hepatocellular Carcinoma Bel-7402 Cells by Triggering Apoptosis and Arresting Cell Cycle

    Tao Li

    2011-02-01

    Full Text Available Photodynamic therapy (PDT is a novel and promising antitumor treatment. Phthalocyanine-mediated PDT has shown antitumor activity in some tumor cells, but the effect of new hydrophilic/lipophilic tetra-α-(4-carboxyphenoxyphthalocyanine zinc (TαPcZn-mediated PDT (TαPcZn-PDT on human hepatocellular carcinoma Bel-7402 cells and underlying mechanisms have not been clarified. In the present study, therefore, the ultraviolet-visible (UV-vis absorption spectrum and cellular localization of TαPcZn, and effect of TαPcZn-PDT on the proliferation, apoptosis, cell cycle, Bcl-2 and Fas in Bel-7402 cells were investigated by spectrophotometry, inverted microscope, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, electron microscopy, annexinV-FITC/propidium iodide double staining, DNA content and immunoblot assay, respectively. We found that an intense absorption in UV-vis absorption spectrum of TαPcZn was in the red visible region at 650–680 nm, where light penetration in tissue is efficient, that green TαPcZn localized to both plasma membrane and nuclear membrane of Bel-7402 cells, signifying that there was a selective uptake of TαPcZn in Bel-7402 cells and TαPcZn-PDT would be expected to directly damage DNA, and that TαPcZn-PDT significantly resulted in the proliferation inhibition, apoptosis induction, S cell cycle arrest, and down-regulation of Bcl-2 and Fas. Taken together, we conclude that TαPcZn-PDT inhibits the proliferation of Bel-7402 cells by triggering apoptosis and arresting the cell cycle.

  19. [Photodynamic modulation of cellular functions].

    Li, Yuan; Jiang, Hong-Ning; Cui, Zong-Jie

    2016-08-25

    Photodynamic action, due to the rather limited lifetime (1 μs) and effective reactive distance of singlet oxygen (lysosomes or endoplasmic reticulum can modulate photodynamically subcellular functions and fine-tune protein activity by targeted photooxidation. With the newly emerged active illumination technique, simultaneous photodynamic action localized at multiple sites is now possible, and the contribution of subcellular regions to the whole cell or individual cells to a cell cluster could be quantitated. Photodynamic action with protein photosensitiser will be a powerful tool for nano-manipulation in cell physiology research. PMID:27546513

  20. A randomized, multicentre study of directed daylight exposure times of 1½ vs. 2½ h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp

    Wiegell, Stine; Fabricius, S; Stender, I M; Berne, B; Kroon, S; Andersen, B L; Mørk, Camilla; Sandberg, C; Jemec, Gregor; Mogensen, M; Brocks, K M; Philipsen, P A; Heydenreich, J; Haedersdal, M; Wulf, H C

    2011-01-01

    Actinic keratoses (AKs) are common dysplastic skin lesions that may differentiate into invasive squamous cell carcinomas. Although a superior cosmetic outcome of photodynamic therapy (PDT) is advantageous compared with equally effective treatments such as cryotherapy and curettage, the inconvenie......Actinic keratoses (AKs) are common dysplastic skin lesions that may differentiate into invasive squamous cell carcinomas. Although a superior cosmetic outcome of photodynamic therapy (PDT) is advantageous compared with equally effective treatments such as cryotherapy and curettage, the...

  1. Photodynamic therapy in dentistry.

    Konopka, K; Goslinski, T

    2007-08-01

    Photodynamic therapy (PDT), also known as photoradiation therapy, phototherapy, or photochemotherapy, involves the use of a photoactive dye (photosensitizer) that is activated by exposure to light of a specific wavelength in the presence of oxygen. The transfer of energy from the activated photosensitizer to available oxygen results in the formation of toxic oxygen species, such as singlet oxygen and free radicals. These very reactive chemical species can damage proteins, lipids, nucleic acids, and other cellular components. Applications of PDT in dentistry are growing rapidly: the treatment of oral cancer, bacterial and fungal infection therapies, and the photodynamic diagnosis (PDD) of the malignant transformation of oral lesions. PDT has shown potential in the treatment of oral leukoplakia, oral lichen planus, and head and neck cancer. Photodynamic antimicrobial chemotherapy (PACT) has been efficacious in the treatment of bacterial, fungal, parasitic, and viral infections. The absence of genotoxic and mutagenic effects of PDT is an important factor for long-term safety during treatment. PDT also represents a novel therapeutic approach in the management of oral biofilms. Disruption of plaque structure has important consequences for homeostasis within the biofilm. Studies are now leading toward selective photosensitizers, since killing the entire flora leaves patients open to opportunistic infections. Dentists deal with oral infections on a regular basis. The oral cavity is especially suitable for PACT, because it is relatively accessible to illumination. PMID:17652195

  2. Photodynamic therapy in dermatology

    Nayak Chitra

    2005-01-01

    Full Text Available Photodynamic therapy is a new modality of therapy being used for the diagnosis and treatment of many tumors. It is now being increasingly used for skin tumors and other dermatological disorders. With its range of application it is certainly the therapy of the future. Its mechanism of action is by the Type II photo-oxidative reaction. The variables are the photosensitizer, the tissue oxygenation and the light source. It has been used to treat various disorders including Bowen′s disease, actinic keratoses, squamous cell carcinomas, basal cell carcinomas, and mycosis fungoides. The side-effects are fortunately mild and transient. Newer photosensitisers like methyl aminolevulinate hold a lot of promise for better therapy.

  3. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line

    Hammad Aziz, Muhammad; Fakhar-e-Alam, M.; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M.; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al.Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M.; AlSalhi, M. S.; Alahmed, Z. A.

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  4. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line.

    Muhammad Hammad Aziz

    Full Text Available Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs were tested in an in vitro cervical cancer model (HeLa cell line to optimize the parameters of photodynamic therapy (PDT for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM, an energy dispersive X-ray analysis (EDAX and a vibrating sample magnetometer (VSM analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA; this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA and by detection of intracellular reactive oxygen species (ROS production. Furthermore, 10-200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65-68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice.

  5. Low Power Photodynamic Therapy for Retinoblastoma Mediated by Reactive Oxidative Damage%低剂量光动力诱导活性氧产生治疗视网膜母细胞瘤

    许善超; 陆翠霞; 周非凡

    2012-01-01

    Retinoblastoma ( RB ) is the most common primary intraocular malignancy of infancy, traditional chemotherapy or brachytherapy may induce secondary sarcoma. Photodynamic therapy ( PDT ), a non-invasive selective therapy may be preferable. In this study, we observed the photodynamic effect of different dosages of PPa on Y79 cells through detecting the ROS production and corresponding cell apoptosis. The results indicated that the ROS production and corresponding cell apoptosis ratio increased obviously with an escalating PPa dosage (0.2 、0.4、0. 6 μmol/L ), it is a primary proof of the feasibility of PPa-based photodynamic therapy for retinoblastoma cells killing.%视网膜母细胞瘤(Retinoblastoma,RB)是一种最常见的儿童眼癌,传统的化疗和放疗可能会诱发二次肿瘤的产生.光动力疗法(photodynamic therapy,PDT)作为一种具有选择性的非入侵疗法在肿瘤治疗中展现了很好的应用前景.本课题通过实验观察了不同浓度焦脱镁叶绿酸-a(PPa)光动力作用对人视网膜母细胞瘤细胞株Y79细胞ROS产率和相应诱导凋亡能力的影响.结果表明,伴随逐步上升的PPa浓度(0.2、0.4、0.6 μmol/L ),Y79细胞的ROS产量和相对的凋亡率都明显上升,初步证明了PPa光动力杀伤视网膜母细胞瘤的可行性.

  6. Photodynamic therapy of diseased bone

    Bisland, Stuart K.; Yee, Albert; Siewerdsen, Jeffery; Wilson, Brian C.; Burch, Shane

    2005-08-01

    Objective: Photodynamic therapy (PDT) defines the oxygen-dependent reaction that occurs upon light-mediated activation of a photosensitizing compound, culminating in the generation of cytotoxic, reactive oxygen species, predominantly, singlet oxygen. We are investigating PDT treatment of diseased bone. Methods: Using a rat model of human breast cancer (MT-1)-derived bone metastasis we confirmed the efficacy of benzoporphyrin-derivative monoacid (BPD-MA)-PDT for treating metastatic lesions within vertebrae or long bones. Results: Light administration (150 J) 15 mins after BPDMA (2.5 mg/Kg, i.v.) into the lumbar (L3) vertebra of rats resulted in complete ablation of the tumour and surrounding bone marrow 48 hrs post-PDT without paralysis. Porcine vertebrae provided a model comparable to that of human for light propagation (at 150 J/cm) and PDT response (BPD-MA; 6 mg/m2, i.v.) in non-tumour vertebrae. Precise fibre placement was afforded by 3-D cone beam computed tomography. Average penetration depth of light was 0.16 +/- 0.04 cm, however, the necrotic/non-necrotic interface extended 0.6 cm out from the treatment fiber with an average incident fluence rate of 4.3 mW/cm2. Non-necrotic tissue damage was evident 2 cm out from the treatment fiber. Current studies involving BPD-MA-PDT treatment of primary osteosarcomas in the forelimbs of dogs are very promising. Magnetic resonance imaging 24 hr post treatment reveal well circumscribed margins of treatment that encompass the entire 3-4 cm lesion. Finally, we are also interested in using 5-aminolevulinic acid (ALA) mediated PDT to treat osteomyelitis. Response to therapy was monitored as changes in bioluminescence signal of staphylococcus aureus (SA)-derived biofilms grown onto 0.5 cm lengths of wire and subjected to ALA-PDT either in vitro or in vivo upon implant into the intramedullary space of rat tibia. Transcutaneous delivery of PDT (75 J/cm2) effectively eradicated SAbiofilms within bone. Conclusions: Results support

  7. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-05-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M‑1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.

  8. Photodynamic therapy for hair removal

    Mohamed H. M. Ali

    2013-05-01

    Full Text Available Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB incubation, liposome methylene blue (MB incubation, laser without methylene blue (MB, free methylene blue (MB for 3 and 4 hrs and laser, liposome methylene blue (MB for 3 hrs and laser. Methylene blue (MBwas applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/ cm2 for 10 minutes. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MBuntreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB sections incubated for 3 hrs showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB for 4 hrs showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB sections incubated for 3 hrs showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusions: Low power CW He:Ne laser and methylene blue (MB offered a successful PDT system

  9. 光动力联合二氧化碳激光治疗顽固性跖疣的研究%Photodynamic Therapy Combined with Carbon Dioxide Laser for the Treatment of Recalcitrant Plantar Warts

    章泳; 金宪强; 陈俊帆; 许爱娥

    2012-01-01

    Objective To observe the clinical effect of topical 5-ALA photodynamic therapy (PDT) combined with carbon dioxide laser for the treatment of recalcitrant plantar warts. Methods 30 patients with recalcitrant plantar warts were collected, removed the thick and hard stratum corneum, sealed with 20% 5-ALA cream for four to five hours, irradiated with 633 nm red light for 20 minutes (126 J/cm2), and human papillomavims (HPV) genotyping by polymerase chain reaction (PCH )method. Results After three times of photodynamic therapy, 16 patients had a complete regression(533%), four patients had partial regression (13.3%), and 10 patients had no response (333%), No statistical significance was found in different phenotypes of HPV. Conclusion Topical 5 -ALA PDT combined with carbon dioxide laser for the treatment of recalcitrant plantar warts is a new, effective and safe method. It might be another choice of treatment method for recalcitrant plantar warts.%目的 观察外用5-氨基酮戊酸(5-ALA)光动力联合二氧化碳(C02)激光治疗顽固性跖疣的临床疗效.方法 收集顽固性跖疣患者30例,超脉冲C02激光去除厚硬的角质层,20% 5-ALA霜封包4~5 h,633 nm的红光照射20 min( 126 J/cm2),用聚合酶链反应技术(polymerase chain reaction,PCR)技术进行人乳头瘤病毒(humanpapillomavirus,HPV)病毒分型,分析各型HPV对光动力治疗反应的差异.结果 本组30例患者经3次光动力治疗,16例患者完全缓解(完全缓解率53.3%),4例(13.3%)患者部分缓解,10例(33.3%)患者无反应.各型HPV对光动力治疗的反应差异无统计学意义.结论 外用5-ALA光动力联合二氧化碳激光治疗顽固性跖疣是一种新的、有效的、安全的治疗方案,可以作为跖疣的二线治疗方案.

  10. Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin.

    Ronqui, Maria Rita; de Aguiar Coletti, Tatiana Maria Starck Fogaça; de Freitas, Laura Marise; Miranda, Elaine Toscano; Fontana, Carla Raquel

    2016-05-01

    The occurrence of a variety of pathogens resistant to current antibiotics remains the major problem in medical care, especially when bacterial infections are established as biofilms. In this study, we propose the use of photodynamic therapy (PDT) as a monotherapy and associated with antibiotic as an alternative treatment. The aim of this study was to analyze the effects of PDT mediated by methylene blue (MB) on Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) in both biofilm and planktonic phases. Several concentrations of MB and light doses were tested. The bactericidal effects of PDT as a monotherapy did not increase with the concentration of photosensitizer, but were light dose-dependent. In addition, bacteria in biofilms were less affected than cells in the planktonic phase. Although not concentration-dependent, the disruption effect of PDT on biofilms was clearly illustrated by scanning electron microscopy (SEM). We also carried out experiments that evaluated the synergistic effect of photodynamic therapy and the antibiotic ciprofloxacin. The best results were obtained after combination treatment of photodynamic therapy followed by ciprofloxacin on biofilms, which increased bacterial reduction on biofilms, resulting in a 5.4 log reduction for S. aureus biofilm and approximately 7 log for E. coli biofilm. PMID:26971277

  11. Photodynamic Therapy in Pediatric Dentistry

    Patricia da Silva Barbosa; Danilo Antônio Duarte; Mariana Ferreira Leite; Giselle Rodrigues de Sant’ Anna

    2014-01-01

    Conservation of deciduous teeth with pulp alterations caused by caries and trauma is a major therapeutic challenge in pediatric dentistry as a result of the internal anatomy and life cycle characteristic. It is essential that the root canal procedures sanitizers have a performance in eliminating bacterial. In this context, antimicrobial photodynamic therapy (PAT) is promising and emerging as adjuvant therapy in an attempt to eliminate the microorganisms persistent to chemi-mechanical preparat...

  12. Photodynamic therapy in clinical practice

    E. V. Filonenko; L. G. Serova

    2016-01-01

    The review is on opportunities and possibilities of application of photodynamic therapy in clinical practice. The advantages of this method are the targeting of effect on tumor foci and high efficiency along with low systemic toxicity. The results of the set of recent Russian and foreign clinical trials are represented in the review. The method is successfully used in clinical practice with both radical (for early vulvar, cervical cancer and pre-cancer, central early lung cancer, esophageal a...

  13. Can nanotechnology potentiate photodynamic therapy?

    Huang, Ying-Ying; Sharma, Sulbha K.; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Long Y. Chiang; Hamblin, Michael R.

    2012-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposom...

  14. Photodynamic therapy for wound treatment

    Diddens, Heyke; Arp, Niko; Eisenbeiß, Werner

    2006-01-01

    With a combination of photodynamic therapy using the photosensitizer toluidine blue O plus the antiseptic octenisept, it is possible to attain a sufficient bacterial-count reduction with simultaneous low cytotoxicity to human skin cells. This novel concept may find application in various clinical areas, for instance, in burn medicine or in killing antibiotic-resistant pathogens. Using the strategy we developed, it may be possible to prevent the development of resistence to a broad spectrum of...

  15. Prevention of Distant Lung Metastasis After Photodynamic Therapy Application in a Breast Cancer Tumor Model.

    Longo, João Paulo Figueiró; Muehlmann, Luis Alexandre; Miranda-Vilela, Ana Luisa; Portilho, Flávia Arruda; de Souza, Ludmilla Regina; Silva, Jaqueline Rodrigues; Lacava, Zulmira Guerrero Marques; Bocca, Anamelia Lorenzetti; Chaves, Sacha Braun; Azevedo, Ricardo Bentes

    2016-04-01

    The objective of this study was to investigate the activity of photodynamic therapy mediated by aluminum-chlorophthalocyanine contained in a polymeric nanostructured carrier composed by methyl vinyl ether-co-maleic anhydride (PVM/MA) against local subcutaneous breast cancer tumors and its effects against distant metastasis in a mouse tumor model. In our results, we observed a decrease in breast cancer tumor growth, prevention of distant lung metastases, and a significant increased survival in mice treated with photodynamic therapy. In addition to these results, we observed that tumor-bearing mice without treatment developed a significant extension of liver hematopoiesis that was significantly reduced in mice treated with photodynamic therapy. We hypothesized and showed that this reduction in (1) metastasis and (2) liver hematopoiesis may be related to the systemic activity of immature hematopoietic cells, specifically the myeloid-derived suppressor cells, which were suppressed in mice treated with photodynamic therapy. These cells produce a tolerogenic tumor environment that protects tumor tissues from immunological surveillance. Therefore, we suggest that photodynamic therapy could be employed in combination with other conventional therapies; such as surgery and radiotherapy, to improve the overall survival of patients diagnosed with breast cancer, as observed in our experimental resuIts. PMID:27301195

  16. 5-氨基酮戊酸光动力疗法治疗中重度痤疮疗效观察%Efficacy of photodynamic therapy with 5-aminolevulinicacid in the treatment of moderate to severe acne

    陈向齐; 牛高祥; 刘向农; 陈进木; 吴洁; 陈胜平

    2012-01-01

    目的:探讨5-氨基酮戊酸光动力疗法(5-aminolevulinicacid photodynamic therapy,5-ALA-PDT)治疗中重度痤疮的疗效.方法:将50例中重度痤疮患者随机、单盲分为两组:治疗组给予5%浓度5-ALA敷药1.5h、照红光20min,每周1次,共治行3次;对照组只给予红光照射,每周1次,共治疗3次.治疗后第2、4、6周对两组患者进行行效判断和比较,并记录治疗过程中出现的不良反应.结果:治疗组24例完成疗程,第4、6周总有效率分别为75.0%(18例)、83.3%(20例),与对照组比较,具有显著性差异.结论:5%浓度5-ALA敷药1.5h、照光20min,每周1次、治疗3次能有效治疗中重度痤疮.%Objective To investigate the efficacy and safety of 5-aminolevulinicacid photodynamic therapy in treatment of moderate to severe acne. Methods Fifty patients with moderate to severe acne were equally randomized into two groups, and one group was treated with 5% 5ALA-PDT with an interval of 1 week for 3 sessions while the other was only irradiated with red light once a week for 3 sessions. The patients were evaluated for efficacy after 2, 4 and 6 weeks. Adverse effects were also recorded at each visit. Results 24 cases of treatment group completed treatment.The efficacy rate of 5-aminolevulinicacid photodynamic therapy during 4, 6 weeks were 75.0% (18 cases),83.3% (20 cases) respectably, which were higher than control group. Conclusions Topical 5 -ALA -PDT has a significant effect in treatment of moderate to severe acne with few side reactions and it is more effective than the control group.

  17. Temperature effects in photodynamic processes

    Hovhannisyan, Vladimir A.; Avetisyan, Hasmik A.; Mathevosyan, Margarita B.; Elbakyan, Egishe G.

    2005-04-01

    Photodynamic activity of several dyes on Drosophila melanogaster at different temperatures (15-35°C) inside of test-tubes was investigated. Both phototoxic sensitizers (chlorin e6, methylene blue, etc. -group A) and non active compounds (hemoglobin, brilliant green, pyronine, etc.-group B) were used. Dyes of 10-5-10-3 M concentration were added to the food for drosophila 24 hours before irradiation. Solar radiation, narrow-band halogen lamps, LEDs and laser were used as a photo-stimulator. Irradiation parameters: I insects was approximately 100%. In the darkness with the use of all dyes observations also indicated no damage to the insects. At the temperatures up to 25°C when using dyes of group B insects were not affected at all, while with the dyes of group A findings showed dose-dependent insect mortality. At high temperatures (30-35°C) when using group B dyes flies were losing their mobility and in the case of group A dyes the drosophila"s survival value sharply dropped. Combination of dyes from A group with some dyes from B group leads to the partial disappearance of photodynamic effect. This, probably, is concerned with the toxic photoproduct suppression by the inactive dye. Experimental model of drosophila allows to investigate photosensitization impact within wide temperature range, to find out the processes, when using combination of dyes, as well as to study photodynamic effect on reproductive functions of insects.

  18. Nanodrug applications in photodynamic therapy.

    Paszko, Edyta

    2011-03-01

    Photodynamic therapy (PDT) has developed over last century and is now becoming a more widely used medical tool having gained regulatory approval for the treatment of various diseases such as cancer and macular degeneration. It is a two-step technique in which the delivery of a photosensitizing drug is followed by the irradiation of light. Activated photosensitizers transfer energy to molecular oxygen which results in the generation of reactive oxygen species which in turn cause cells apoptosis or necrosis. Although this modality has significantly improved the quality of life and survival time for many cancer patients it still offers significant potential for further improvement. In addition to the development of new PDT drugs, the use of nanosized carriers for photosensitizers is a promising approach which might improve the efficiency of photodynamic activity and which can overcome many side effects associated with classic photodynamic therapy. This review aims at highlighting the different types of nanomedical approaches currently used in PDT and outlines future trends and limitations of nanodelivery of photosensitizers.

  19. A randomized, multicentre study of directed daylight exposure times of 11/2 vs. 21/2 h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp

    Wiegell, S.R.; Fabricius, S.; Philipsen, P.A.;

    2011-01-01

    Background: Actinic keratoses (AKs) are common dysplastic skin lesions that may differentiate into invasive squamous cell carcinomas. Although a superior cosmetic outcome of photodynamic therapy (PDT) is advantageous compared with equally effective treatments such as cryotherapy and curettage, the...... entire treatment area. Immediately after, patients left the clinic and exposed themselves to daylight according to the randomization. Daylight exposure was monitored with a wristwatch dosimeter and patients scored their pain sensation during treatment. Results: The mean lesion response rate at 3 months...... was 77% in the 11/2-h group and 75% in the 21/2-h group (P = 0·57). The mean duration of daylight exposure was 131 and 187 min in the two groups. The mean overall effective light dose was 9·4 J cm (range 0·2-28·3). Response rate was not associated with effective daylight dose, exposure duration...

  20. Photodynamic therapy: Biophysical mechanisms and molecular responses

    Mitra, Soumya

    In photodynamic therapy (PDT), photochemical reactions induced by optical activation of sensitizer molecules cause destruction of the target tissue. In this thesis we present results of several related studies, which investigated the influence of photophysical properties and photobleaching mechanisms of sensitizers and oxygen-dependent tissue optical properties on PDT treatment efficacy. The bleaching mechanism of the sensitizer meso-tetra hydroxyphenyl chlorin (mTHPC) is examined indirectly using measurements of photochemical oxygen consumption during PDT irradiation of multicell tumor spheroids. Analysis of the results with a theoretical model of oxygen diffusion that incorporates the effects of sensitizer photobleaching shows that mTHPC is degraded via a singlet-oxygen (1O2)-mediated bleaching process. The analysis allows us to extract photophysical parameters of mTHPC which are used to account for its enhanced clinical photodynamic potency in comparison to that of Photofrin. Evaluation of the spatially-resolved fluorescence in confocal optical sections of intact spheroids during PDT irradiation allows for the direct experimental verification of mTHPC's 1O2-mediated bleaching mechanism. The technique is also used to investigate the complex bleaching kinetics of Photofrin. The results allow us to successfully reconcile apparently contradictory experimental observations and to confirm the predictions of a new theoretical model in which both 1O2 and excited triplet sensitizer molecules are allowed to contribute to photobleaching. Based on studies performed in tissue-simulating erythrocyte phantoms and in a murine tumor model in vivo, we present clinically relevant results which indicate that a shift toward increased hemoglobin-oxygen saturation due to improved tissue oxygenation reduces PDT treatment beam attenuation and may allow for more effective treatment of deeper lesions. Finally, we investigate the induction of the stress protein, heat shock protein 70 (HSP

  1. Clinical Application of Photodynamic Therapy

    LIU Hui-long; LIU Duan-qi

    2005-01-01

    Photodynamic therapy(PDT) is a new medical technology, the study on photodynamic therapy was in full swing in the past two decade. Scientists have made great progress in it. Photosensitizer,oxygen and light source play important role in photodynamic therapy.PDT is a light activated chemotherapy. A photon is adsorbed by a photosensitizer which moves the drug into an excited state. The excited drug can then pass its energy to oxygen to create a chemical radical called "singlet oxygen". Singlet oxygen attacks cellular structures by oxidation. Such oxidative damage might be oxidation of cell membranes or proteins. When the accumulation of oxidative damage exceeds a threshold level,the cell begins to die.Photodynamic therapy allows selective treatment of localized cancer. PDT involves administration of a photosensitizer to the patients, followed by delivery of light to the cancerous region. The light activates the agent which kills the cancer cells. Without light,the agent is harmless.As a new therapy,photodynamic Therapy has great Advantage in treating cancers. 1. PDT avoids systemic treatment. The treatment occurs only where light is delivered, hence the patient does not undergo go needless systemic treatment when treating localized disease. Side-effects are avoided, from losing hair or suffering nausea to more serious complications. 2. PDT is selective. The photosensitizing agent will selectively accumulate in cancer cells and not in surrounding normal tissues.Hence ,there is selective targeting of the cancer and sparing of surrounding tissues.3. when surgery is not possible. PDT kills cancer cells but does not damage collagenous tissue structures,and normal cells will repopulate these structures. Hence,if a patient has cancer in a structure that cannot be removed surgically(eg. ,the upper bronchi of the lung) ,PDT can still treat the site. 4. PDT is repeatable. Unilke radiation therapy, PDT can be used again and again. Hence,it offers a means of longterm management

  2. A history of photodynamic therapy.

    Daniell, M D; Hill, J S

    1991-05-01

    The origins of light as a therapy in medicine and surgery are traced from antiquity to the modern day. Phototherapy began in ancient Greece, Egypt and India but disappeared for many centuries, only being rediscovered by Western civilization at the beginning of the twentieth century through the Dane, Niels Finsen, and the Germans Oscar Raab and Herman von Tappeiner. The discovery of the tumour-localizing ability of haematoporphyrin, together with its phototoxic effect on tumour cells led to the development of photodynamic therapy, a promising tool in modern cancer treatment. PMID:2025186

  3. Photodynamic therapy for wound treatment

    Diddens, Heyke

    2006-08-01

    Full Text Available With a combination of photodynamic therapy using the photosensitizer toluidine blue O plus the antiseptic octenisept, it is possible to attain a sufficient bacterial-count reduction with simultaneous low cytotoxicity to human skin cells. This novel concept may find application in various clinical areas, for instance, in burn medicine or in killing antibiotic-resistant pathogens. Using the strategy we developed, it may be possible to prevent the development of resistence to a broad spectrum of pathogens due to too-frequent use of systemic antibiotics, reserving these for life-threatening infections.

  4. Photodynamic therapy for cervical lesions

    E. V. Grebenkina

    2014-01-01

    Full Text Available The experience of treatment for precancer and early cervical cancer by photodynamic therapy in 12 patients with primary diagnosis H-SIL (CIN II–III and cancer in situ is described. Chlo-rine photosensitizer Photolon was given intravenously at a dose of 0.75–1.15 mg/kg body weight. 2.5 h later the treatment with polyposition laser exposure (light dose – 150 J/cm2, light power density – 400–500 mW/cm2 was made. Thirty days later conization of the cervix with endocervical curettage assessing therapeutic response of cervical tumor tissue was per-formed. According to histological data complete response was in 4 patients, minute foci of CIN I were determined in 7 patients, 1 patient had foci of CIN II. 8 of 10 HPV-positive patients had complete eradication of HPV after treatment. There were no serious adverse events after light exposure. Marked therapeutic response, high anti-viral activity and good feasibility allow to consider photodynamic therapy as alternative organ-sparing treatment of early cancer and pre-cancer of cervix. 

  5. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles.

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  6. Photodynamic inactivation of antibiotic-resistant pathogens

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  7. Direct Photocontrol of Peptidomimetics: An Alternative to Oxygen-Dependent Photodynamic Cancer Therapy.

    Babii, Oleg; Afonin, Sergii; Garmanchuk, Liudmyla V; Nikulina, Viktoria V; Nikolaienko, Tetiana V; Storozhuk, Olha V; Shelest, Dmytro V; Dasyukevich, Olga I; Ostapchenko, Liudmyla I; Iurchenko, Volodymyr; Zozulya, Sergey; Ulrich, Anne S; Komarov, Igor V

    2016-04-25

    Conventional photodynamic treatment strategies are based on the principle of activating molecular oxygen in situ by light, mediated by a photosensitizer, which leads to the generation of reactive oxygen species and thereby causes cell death. A diarylethene-derived peptidomimetic is presented that is suitable for photodynamic cancer therapy without any involvement of oxygen. This light-sensitive molecule is not a mediator but is itself the cytotoxic agent. As a derivative of the cyclic amphiphilic peptide gramicidin S, the peptidomimetic exists in two thermally stable photoforms that are interconvertible by light of different wavelengths. The isomer generated by visible light shows much stronger toxicity against tumor cells than the UV-generated isomer. First in vivo applications are demonstrated on a tumor animal model to illustrate how the peptidomimetic can be administered in the less toxic form and then activated locally in a solid tumor by visible light. PMID:27028784

  8. Photodynamic Cancer Therapy - Recent Advances

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  9. Is photodynamic therapy an appropriate treatment of feline superficial squamous cell carcinomas? Two case studies in small animal practice

    Vinck, Elke; Cagnie, B.; Vinck, H.; Cambier, D.

    2003-12-01

    Oncological research and cancer treatment are more common in human medicine than in veterinary medicine. Nevertheless the latest decennium chemotherapy, radiotherapy and surgery also figure largely in the cancer treatment of pets. For this matter, the present study tried to explore the applicability of Photodynamic Therapy (PDT) as a proper and advantageous alternative for those treatments. PDT using topical 5-aminolaevulinic acid (5-ALA) cream was applied on superficial squamous cell carcinomas (SCC) at the nasal planum of two cats. Five hours after the cream was applied, the photosensitizing agent was removed and the sensitized area was irradiated with a red Light Emitting Diode (LED) contrivance with a wavelength of 660 nm. LED irradiation was administrated during 20 minutes, at a power output of 80 mW, with an energy density outcome of 38 J/cm2. The day after ths irradiation, the tumor area became erythematous and somewhat oedematous. After two days a scab occurred. Long-term post treatment observation showed complete removal of the malign cells related with regain of normal skin structure after three weeks. Follow-up period of one year for the first case and of two months for the second case revealed no recurrence. These promising results indicate that PDT is a possible alternative method to treat superficial skin tumors. Especially when taking into account that chemotherapy and radiotherapy are time-consuming treatments and that surgery (complete removal of the nasal planum) is not an esthetical solution.

  10. Photodynamic action of the methylene blue: mutagenesis and sinergism

    Two aspects of photodynamic therapy were studied: the associated mutagenesis and the interactions with physical agents, in order to increase its biological effects. The photodynamic action with methylene blue in the mutagenesis and sinergism is studied. (L.M.J.)

  11. Vitamin D3 enhances the apoptotic response of epithelial tumors to aminolevulinate-based photodynamic therapy

    Anand, Sanjay; Wilson, Clara; Hasan, Tayyaba; Maytin, Edward V.

    2011-01-01

    Photodynamic therapy, mediated by exogenously administered aminolevulinic acid (ALA-PDT) followed by exposure to a laser or broadband light source, is a promising modality for treatment of many types of cancers, but it remains inadequate to treat large, deep solid tumors. Here we report that calcitriol, the active form of Vitamin D3, can be administered prior to ALA as a non-toxic preconditioning regimen to markedly increase the efficacy of ALA-PDT. Using mouse models of squamous skin cancer ...

  12. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    Xu H

    2012-09-01

    Full Text Available Hao Xu, Chen Liu, Jiansheng Mei, Cuiping Yao, Sijia Wang, Jing Wang, Zheng Li, Zhenxi ZhangKey Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shannxi, People’s Republic of ChinaPurpose: As a precursor of the potent photosensitizer protoporphyrin IX (PpIX, 5-aminolevulinic acid (5-ALA, was conjugated onto cationic gold nanoparticles (GNPs to improve the efficacy of photodynamic therapy (PDT.Methods: Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively. The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation.Results: The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs.Conclusion: Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT.Keywords: nonradiative energy transfer, photodamage, protoporphyrin IX, selective destruction, singlet oxygen sensor green reagent, surface plasmon resonance

  13. Photodynamic therapy in the treatment of epithelial potentially malignant disorders of the mouth: advantages and disadvantages

    Gaimari, G.; Russo, C.; Palaia, G.; Tenore, G.; Del Vecchio, A.; Romeo, U.

    2016-03-01

    Introduction: Leukoplakia is a potentially malignant epithelial lesion with carcinomatous percentages transformation comprehended between 1% and 7% for the homogeneous forms and from 4% to 15% for the non-homogeneous ones. Their removal can be performed by scalpel or laser surgery (excision or vaporization). Photodynamic therapy (PDT) is a bloodless treatment option, based on the involvement of three elements: light, photosensitizer and oxygen. When the molecules of the photosensitizer are activated by a low power laser, energy is transferred to molecular oxygen creating highly reactive radicals of oxygen, that have a cytotoxic effect on target cells. Aim of the study: According to several studies in Literature, it has been decided to evaluate through an initial clinical trial, the efficacy of PDT using topical aminolevulinic acid (5-ALA) activated by a laser diode (λ = 635 nm) to treat potentially oral malignant lesions and to illustrate the advantages and disadvantages derived from the use of this technique. Materials and Methods: Five patients, affected by oral leukoplakia (OL) and oral verrucous leukoplakia (OVL) on the mucosal cheeks, labial commissure, fornix and retromolar areas, have been treated using the PDT. Irradiation time with Diode laser: 1000s. Irradiation mode: Scanning. 5 cycles of 3 minute + final cycle of 100 seconds. Each cycle has been interrupted by pauses of 3 minutes. Results and conclusion: PDT results to be effective in the treatment of OL, especially on OVL. In fact, OVL, due to its irregularity, has got an area of increased retention for the gel that is more difficult to be removed by salivary flow. This could explain the better results obtained in this case rather than in those ones of OL. Furthermore, the advantages have been represented by: less invasivity, high sensitivity for altered tissues, minimal scar tissue, less side effects and no pain during and after operation. In contrast to this, the disadvantages were: longer treatment

  14. Effect of Photodynamic Therapy with BPD-MA on the Proliferation and Apoptosis of Human Bladder Cancer Cells

    Chuanshan Xu; Shiming Wu; Zhigang Wang; Lehua Yu; Qing Yang

    2005-01-01

    OBJECTIVE To explore the effect of photodynamic therapy with benzoporphyrin derivative monoacid ring A (BPD-MA) on the proliferation and apoptosis of human bladder cancer cells.METHODS Rhotosensitization of BPD-MA was activated with a red light laser (632.8 nm) delivered at 10 mw/cm2 to give a total dose of 2.4 J/cm2.Cellular proliferative activity was measured using the 3-(4,5-dimethylethiazil-2-yl)-2,5-Diph3-eyl tetrazolium bromide (MTT) assay and 3H-thymidine incorporation. Cell apoptosis was determined with flow cytometry analysis and the terminal deoxyuridine nicked-labeling (TUNEL) assay.RESULTS At 24 h post photodynamic treatment, photodynamic therapy significantly decreased cellular proliferative activity. The rate of apoptosis in BIU-87 cells 8 h after photodynamic treatment significantly increased up to 26.11± 2.59% as analyzed with flow cytometry. In situ labeling of DNA cleavage products with the terminal deoxyuridine nicked-labeling (TUNEL) assay reinforced these observations, BPD-MA-mediated photosensitization increased the number of TUNEL-positive cells compared to the controls. However, laser irradiation alone, BPD-MA alone and sham radiation did not affect cellular proliferative activity or apoptosis of the human bladder cancer BIU-87 cells.CONCLUSION Photodynamic therapy with BPD-MA significantly decreases cellular proliferative activity and enhances apoptosis. Therapy using this method might be a promising approach to treat patients with bladder cancer.

  15. Calreticulin as cancer treatment adjuvant: combination with photodynamic therapy and photodynamic therapy-generated vaccines

    Mladen eKorbelik

    2015-02-01

    Full Text Available Calreticulin is recognized as one of pivotal damage-associated molecular pattern (DAMP molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT. The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to mouse SCCVII tumor cells treated by PDT. Compared to the outcome with PDT alone, cure-rates of SCCVII tumors grown in immunocompetent C3H/HeN mice were elevated when calreticulin (0.4 mg/mouse was injected peritumorally immediately after PDT. Such therapeutic gain with PDT plus calreticulin combination was not obtained with SCCVII tumors growing in immunodeficient NOD-scid mice. In PDT vaccine protocol, where PDT-treated SCCVII cells are used for vaccination of SCCVII tumor-bearing mice, adding recombinant calreticulin to cells before their injection produced improved therapeutic effect. The expression of calreticulin gene was reduced in PDT-treated cells, while no changes were observed with the expression of this gene in tumor, liver, and spleen tissues in PDT vaccine-treated mice. These findings reveal that externally added recombinant calreticulin can boost antitumor responses elicited by PDT or PDT-generated vaccines, and can thus serve as an effective adjuvant for cancer treatment with PDT and probably other cancer cell stress-inducing modalities.

  16. Inactivation of bovine immunodeficiency virus by photodynamic therapy with HMME

    Huijuan Yin; Yingxin Li; Zhaohui Zou; Wentao Qiao; Xue Yao; Yang Su; Hongyan Guo

    2008-01-01

    To investigate the effect of photodynamic therapy (PDT) with hematoporphrin monomethyl ether (HMME) on bovine immunodeficiency virus (BIV) can provide the basis theory for photoinactivation of human immunodeficiency virus (HIV). To assess the protection of HMME-PDT on the cell line Cf2Th infected with BIVR29 by 3-(4,5)-dimethylthiahiazol-2-yl-3,5-di-phenytetrazolium bromide (MTT) with power density of 5 and 25 mW/cm2 and energy density from 0.6 to 3 J/cm. To observe the inhibition of membrane fusion using a new reporter cell line BIVE by fluorescence microscope. HMME-PDT has significant protectant effects on Cf2Th-BIVR29 with both power densities, especially in the group of high power density. Fluorescent microscope shows that there is no significant difference between the group of PDT and control, which means PDT could not inhibit the BIV-mediated membrane fusion.

  17. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  18. Photodynamic therapy, new drugs, new lasers

    In the mid-1970's Dougherty and co-workers reintroduced hematoporphyrin derivative (HpD) as tumor localizer and photosensitizer for the detection and treatment of neoplastic disease. The efforts of this group led to the introduction of the combination of HpD and lasers for the treatment of a number of human neoplasms. During the late 1970's and throughout most of the 1980's efforts were made to determine the active component in the mixture of porphyrins which comprise HpO. The standard light source used in HpD was the argon-dye laser. Recently new photosensitizers for photodynamic therapy have been introduced. These newer photosensitizers are pure and not mixtures and are associated with less side effects than HpD. Concomitant with the development of new photosensitizers has been the development of new laser systems for photodynamic therapy. In this paper current developments in new drugs and new lasers for photodynamic therapy are presented

  19. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  20. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P.; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24–48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  1. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy.

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24-48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  2. Dye Sensitizers for Photodynamic Therapy

    Harold S. Freeman

    2013-03-01

    Full Text Available Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT. Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89 and having broad food and drug administration (FDA approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA, meta-tetra(hydroxyphenylchlorin (m-THPC, N-aspartyl chlorin e6 (NPe6, and precursors to endogenous protoporphyrin IX (PpIX: 1,5-aminolevulinic acid (ALA, methyl aminolevulinate (MAL, hexaminolevulinate (HAL. Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers.

  3. 甲苯胺蓝介导的光动力疗法对大鼠口腔牙周致病菌灭菌效果的研究%Study of the Effect of Toluidine Blue- Mediated Photodynamic Therapy of Periodontal Bacteria from Subgingival Plaques in Rats

    栾秀玲; 秦艳利; 胡艳秋

    2012-01-01

    to host tissues. PLI was from 3 to 1 and SBI was from 4 to 1. Conclusion: Toluidine blue-mediated photodynamic therapy could effectively treat periodontitis in rats and has high potential in clinical application.

  4. Daylight photodynamic therapy for actinic keratosis

    Wiegell, Stine; Wulf, H C; Szeimies, R-M;

    2011-01-01

    Photodynamic therapy (PDT) is an attractive therapy for non-melanoma skin cancers including actinic keratoses (AKs) because it allows treatment of large areas; it has a high response rate and results in an excellent cosmesis. However, conventional PDT for AKs is associated with inconveniently lon...

  5. Photodynamic application in neurosurgery: present and future

    Kostron, Herwig

    2009-06-01

    Photodynamic techniques such as photodynamic diagnosis (PDD), fluorescence guided tumor resection (FGR) and photodynamic therapy (PDT) are currently undergoing intensive clinical investigations as adjunctive treatment for malignant brain tumours. This review provides an overview on the current clinical data and trials as well as on photosensitisers, technical developments and indications for photodynamic application in Neurosurgery. Furthermore new developments and clinical significance of FGR for neurosurgery will be discussed. Over 1000 patients were enrolled in various clinical phase I/II trials for PDT for malignant brain tumours. Despite various treatment protocols, variation of photosensitisers and light dose there is a clear trend towards prolonging median survival after one single PDT as compared to conventional therapeutic modalities. The median survival after PDT for primary glioblastoma multiforme WHO IV was 19 months and for recurrent GBM 9 months as compared to standard convential treatment which is 15 months and 3 months, respectively. FGR in combination with adjunctive radiation was significantly superior to standard surgical resection followed by radiation. The combination of FGR/PDD and intraoperative PDT increased significantly survival in recurrent glioblastoma patients. The combination of PDD/ FGR and PDT offers an exciting approach to the treatment of malignant brain tumours "to see and to treat." PDT was generally well tolerated and side effects consisted of occasionally increased intracranial pressure and prolonged skin sensitivity against direct sunlight. This review covers the current available data and draws the future potential of PDD and PDT for its application in neurosurgery.

  6. Pain induced by photodynamic therapy of warts

    Stender, I-M; Borgbjerg, F Molke; Villumsen, J;

    2006-01-01

    Photodynamic therapy with topical 5-aminolevulinic acid (ALA), followed by irradiation with red light (ALA-PDT), is used for non-melanoma skin cancer and other dermatological diseases. Pain during and after light exposure is a well-known adverse advent that may be a limiting factor for treatment...

  7. Continuous ultra-low-intensity artificial daylight is not as effective as red LED light in photodynamic therapy of multiple actinic keratoses

    Wiegell, Stine Regin; Heydenreich, Jakob; Fabricius, Susanne;

    2011-01-01

    Daylight-mediated photodynamic therapy (PDT) is a simple and tolerable treatment of nonmelanoma skin cancer. It is of interest which light intensity is sufficient to prevent accumulation of protoporphyrin IX (PpIX) and effectively treat actinic keratoses (AKs). We compared the efficacy of PDT wit...

  8. Artificial daylight photodynamic therapy with "non-inflammatory" doses of hexyl aminolevulinate only marginally delays SCC development in UV-exposed hairless mice

    Togsverd-Bo, Katrine; Lerche, Catharina M; Philipsen, Peter A;

    2013-01-01

    Photodynamic therapy (PDT) is effective for actinic keratoses, but is associated with pain and post-treatment inflammation. Daylight-mediated PDT and PpIX-precursors at low concentrations reduce pain and inflammation intensity. The objective was to evaluate the effect of repeated low-concentratio...

  9. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys)5 shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys)5 in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys)5 toward bacteria. These findings suggest ZnPc-(Lys)5 is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys)5 is a potent photosensitizer for treatment of infectious diseases

  10. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Chen, Zhuo, E-mail: zchen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Shanyong; Chen, Jincan [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Linsen [Department of Biochemistry, Shenyang Medical College, Shenyang, Liaoning 110034 (China); Hu, Ping; Chen, Song [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Mingdong, E-mail: mhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-08-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys){sub 5}) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys){sub 5} shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys){sub 5} in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys){sub 5} toward bacteria. These findings suggest ZnPc-(Lys){sub 5} is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys){sub 5} is a potent photosensitizer for treatment of infectious diseases.

  11. 光动力作用对人结肠癌细胞转录因子激活蛋白-4表达的影响%Inhibition of AP-4 gene expression by zinc phthalocyanine-mediated photodynamic therapy in human colon cancer cell line SW480

    张通; 曹杰; 杨平; 李旺林; 孙政; 张伟健; 曾山崎

    2013-01-01

    目的 观察不同浓度光敏剂酞菁锌对结肠癌细胞株SW480的生长抑制作用及其对转录因子激活蛋白-4(AP-4)表达的影响.方法 应用CCK-8方法 评估光动力作用后SW480细胞的存活率,通过流式细胞技术、RT-PCR技术、Western blot技术检测光敏剂酞菁锌光动力作用后对SW480细胞凋亡和AP-4基因表达等生物学行为的影响.结果 酞菁锌光动力治疗对结肠癌细胞株SW480生长增殖具有明显抑制作用,其效应呈浓度和光照剂量依赖性;流式细胞仪分析显示SW480细胞呈G2/M期阻滞;SW480细胞的凋亡率随酞菁锌浓度增加逐步上升.2.0 μg/mL酞菁锌光动力作用SW480细胞48 h后其AP-4 mRNA水平下降了81%,培养液上清液AP-4蛋白浓度下降了75.6%(P<0.01).结论 应用光敏剂酞菁锌光动力作用能有效抑制SW-480细胞 AP-4的表达,进而抑制细胞的生长、增殖及诱导细胞的凋亡,为结肠癌治疗提供了新的思路和手段.%Objective To investigate the influence of zinc phthalocyanine on the proliferation and AP - 4 gene expression in SW480 cells in vitro. Methods The cell proliferation was analyzed by cell counting kit - 8 ( CCK8 ) assay, while the AP - 4 mRNA and protein expression after photodynamic therapy ( PDT ) were analyzed by RT - PCR and Western blot, respectively. Meanwhile, the flow cytometry ( FCM ) was used to detect the cell apoptosis and cycle. Results The proliferation of SW480 cells was significantly suppressed by zinc phthalocyanine - mediated PDT in concentration - and light dose - dependent manners. The cell was arrested at G2/M by PDT, while the apoptosis rate was enhanced with zinc phthalocyanine in concentration dependent manner. After 2. 0 μg/mL zinc phthalocyanine - mediated PDT, the AP - 4 mRNA and protein were significantly reduced by 81% and 75. 6% , respectively, in SW480 cells ( P <0. 01 ). Conclusion Zinc phthalocyanine - mediated PDT can effectively suppress the expression of AP - 4, and

  12. Apoptosis of human colorectal cancer cell line SW480 induced by zinc phthalocyanine-mediated photodynamic therapy%酞菁锌介导的光动力疗法诱导结肠癌SW480细胞凋亡的研究

    曹杰; 张通; 杨平; 李旺林; 孙政; 张伟健; 曾山崎

    2012-01-01

    Objective To investigate the influence of light dose and concentration of zinc phthalocyanine on the proliferation and apoptosis in vitro of SW480 cells.Methods Four different light doses with six different concentrations of photosensitizer were used to kill SW480 cells,respectively.Cell counting kit-8 (CCK-8) assay was used to test the changes in the proliferation of SW480 cells cultured with different concentrations of zinc phthalocyanine and different light doses in vitro.Cell-cycle kinetics and apoptosis were analyzed by flow cytometry (FCM).The expression of bax and bcl-2 proteins was detected for photodynamic therapy (PDT) by using immunocytochemistry.Results Growth inhibition rate of four different light doses with six different concentrations of photosensitizer was (0.99 ±0.02) %,(1.00 ±0.02) %,(1.01 ±0.05)%,(1.01 ±0.01)%,(1.04 ±0.03)%,(1.08 ±0.05)%; (0.54 ±0.05)%,(0.65 ±0.07)%,(0.70 ±0.04)%,(0.76 ± 0.09)%,(0.86 ±0.02)%,(0.91 ±0.04)%; (0.28 ±0.01)%,(0.45 ±0.05)%,(0.60 ±0.02)%,(0.81±0.04)%,(0.91 ±0.07)%,(0.92 ±0.06)% and (0.18 ±0.01)%,(0.35 ±0.09)%,(0.43 ±0.03)%,(0.75 ±0.04)%,(0.87 ±0.05) %,(0.92 ± 0.05) %,respectively.The proliferation of SW480 cells was obviously suppressed by zinc phthalocyanine-mediated photodynamic therapy in a concentration and light dose-dependent manner.Under the conditions of light dose constant 5 J/cm2,and 10 min,the cells were arrested in G2/M phase and apoptosis was induced.When SW480 cells were treated with zinc phthalocyanine at the concentration of 0.000,0.125,0.250,0.500,1.000,and 2.000 mg/L,the apoptosis rate of SW480 cells was (0.17±0.09)%,(0.19±0.08)%,(3.25±0.29)%,(7.38±1.01)%,(14.97 ±1.03)% and (18.25 ± 1.23)% respectively.After SW480 cells were treated with 0,2.0 mg/L zinc phthalocyanine respectively,there was no significant difference in the positive expression rate of bax oncoprotein among all groups (P > 0.05).The positive

  13. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes.

    Perez, Ana Paula; Casasco, Agustina; Schilrreff, Priscila; Tesoriero, Maria Victoria Defain; Duempelmann, Luc; Pappalardo, Juan Sebastián; Altube, Maria Julia; Higa, Leticia; Morilla, Maria Jose; Petray, Patricia; Romero, Eder L

    2014-01-01

    In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and -35 mV zeta potential) were innocuous against promastigotes, a low concentration (0.01 μM ZnPc and 7.6 μM phospholipids) of ZnPcALs irradiated at a very low-energy density (0.2 J/cm(2)) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal ZnPc was improved by TPA-containing liposomes. PMID:25045264

  14. Assessment of 5-aminolevulinic acid photodynamic therapy in the treatment of basal cell carcinoma%5-氨基酮戊酸光动力疗法治疗基底细胞癌疗效评价

    班超; 张帆

    2015-01-01

    目的::评价5-氨基酮戊酸光动力疗法治疗基底细胞癌的疗效。方法:治疗组29例采用ALA-PDT方法治疗,2周1次,共2~5次;对照组27例采用手术切除方法。结果:所有患者均痊愈。随访10个月,治疗组原位复发率10.3%,对照组7.4%。两组复发率比较无统计学差异( P>0.05)。结论:5-氨基酮戊酸光动力疗法治疗基底细胞癌与手术方法疗效相当。%Objective: To assess the clinical efficacy and recurrence of 5- aminolevulinic acid photody-namic therapy in the treatment of basal cell carcinoma. Methods: The patients in the treatment group were treated with 5-ALA-PDT, once every 2 weeks, for 2~5 times. The patients in the control group were per-formed with surgical removal. Results:All the patients in the treatment group and control group were cured. The recurrence in the treatment group was 10.3% and that in the control group was 7.4% after follow-up of 10 months, with no significant difference between these two groups (P>0.05). Conclusion: 5-ALA-PDT and surgical removal in the treatment of basal cell carcinoma have equivalent efficacy and recurrence.

  15. Treatment of oral leukoplakia with photodynamic therapy: A pilot study

    Niranzena Panneer Selvam

    2015-01-01

    Full Text Available Aim of the Study: Oral leukoplakia (OL is the most common potentially malignant disorder that may transform into oral carcinoma. By treating leukoplakia in its incipient stage, the risk of occurrence of oral carcinoma can be prevented. In this aspect, photodynamic therapy (PDT can serve as a useful treatment modality. The aim of the study is to treat patients with OL using PDT in which 5-aminolevulinic acid (ALA is used as a photosensitizer. Materials and Methods: Five patients with OL were included in the study. They were treated with 10% ALA mediated PDT (light source: Xenon lamp, power: 0.1 W, wavelength: 630 ± 5 nm, total dose: 100 J/cm 2 per session for 6-8 sessions. Follow-up was done for a period of 1 year. Results: One month (4 weeks after ALA-PDT, the response was evaluated based on clinical examination. It was as follows: Complete response: Two patients; partial response: Two patients; and no response: One patient. There was no recurrence in any of the cases. Conclusion: There was satisfactory reduction in the size of the OL lesion without any side-effects. Thus, ALA mediated PDT seems to be a promising alternative for the treatment of OL.

  16. Photodynamic therapy with verteporfin for corneal neovascularization

    Abdullah A Al-Torbak

    2012-01-01

    Results: At the last follow-up visit, 22 (66.7% eyes showed a decrease in corneal neovascularization and evidence of vascular thrombosis. Complete vascular occlusion was achieved in 14 (42.4% eyes, partial occlusion was achieved in 8 (24.2% eyes, and the vessels were patent in 11 (33.3% eyes. The corneal neovascularization score and depth of the vessels were found to be significant risk factors for failure (P = 0.0001 and 0.046, respectively. However, the diagnoses or causes of corneal neovascularisation were not statistically significant. No significant systemic or ocular complications associated with photodynamic therapy were observed. Conclusion: Photodynamic therapy with verteporfin was effective for the treatment of corneal neovascularization in the majority of the cases in this study.

  17. Present status of photodynamic procedures in urology

    Jocham, Dieter; Thomas, Stephen

    1994-03-01

    Since 1976, photodynamic therapy (PDT) has been used for the treatment of different stages of urothelial bladder tumors. First applications were based on the irradiation of single exophytic tumors using bare fibers for laser irradiation (630 mm) or bright white light generated e.g. from a mercury arc lamp. Clinical results of several centers demonstrated the possibility of destroying single superficially growing tumors. A new approach to the treatment of multifocal growing tumors, including the endoscopically often undetectable carcinoma in situ, was provided by the development of treatment modalities allowing for whole bladder wall irradiation. Photodynamic diagnosis (PDD) is a novel procedure for detecting flat precancerous and malignant lesions undetectable by endoscopy alone on the basis of laser- induced fluorescence.

  18. Second generation photodynamic agents: a review.

    Sternberg, E D; Dolphin, D

    1993-10-01

    Over the last decade, laser treatment of neoplastic diseases has become routine. The ability of these light-induced therapies to effect positive results is increased with the utilization of photosensitizing dyes. The approval of Photofrin in Canada as a first generation photodynamic therapeutic agent for the treatment of some forms of bladder cancer is being followed by the development of other agents with improved properties. At this time a number of second generation photosensitizing dyes are under study in phase I/II clinical trials. A review of the status of these trials along with mechanistic aspects is reviewed in this article. In addition, a review of the status of lasers to be utilized for photodynamic therapy gives some indication of which instruments could be considered for this therapy in the future. PMID:10146514

  19. Photodynamical Properties of Various Phthalocyanine Citrates

    Drobek, M.; Klusoň, Petr; Hejda, S.; Krýsa, J.; Rakušan, J.

    Prague: ICT Prague Press, 2010 - (Krýsa, J.), s. 68 ISBN 978-80-7080-750-7. [European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications /6./. Prague (CZ), 13.06.2010-16.06.2010] R&D Projects: GA AV ČR KAN400720701; GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40720504 Keywords : phthalocyanine citrates * photodynamical properties Subject RIV: CA - Inorganic Chemistry

  20. Photodynamic therapy for occluded biliary metal stents

    Roche, Joseph V. E.; Krasner, Neville; Sturgess, R.

    1999-02-01

    In this abstract we describe the use of photodynamic therapy (PDT) to recanalize occluded biliary metal stents. In patients with jaundice secondary to obstructed metal stents PDT was carried out 72 hours after the administration of m THPC. Red laser light at 652 nm was delivered endoscopically at an energy intensity of 50 J/cm. A week later endoscopic retrograde cholangiogram showed complete recanalization of the metal stent.

  1. Photodynamic therapy for pododermatitis in penguins.

    Sellera, Fábio Parra; Sabino, Caetano Padial; Ribeiro, Martha Simões; Fernandes, Loriê Tukamoto; Pogliani, Fabio Celidonio; Teixeira, Carlos Roberto; Dutra, Gustavo Henrique Pereira; Nascimento, Cristiane Lassálvia

    2014-01-01

    Pododermatitis is currently one of most frequent and important clinical complications in seabirds kept in captivity or in rehabilitation centers. In this study, five Magellanic penguins with previous pododermatitis lesions on their footpad were treated with photodynamic therapy (PDT). All PDT treated lesions successfully regressed and no recurrence was observed during the 6-month follow-up period. PDT seems to be an inexpensive and effective alternative treatment for pododermatitis in Magellanic penguins encouraging further research on this topic. PMID:24888264

  2. Scope of photodynamic therapy in periodontics

    Vivek Kumar; Jolly Sinha; Neelu Verma; Kamal Nayan; Saimbi, C. S.; Amitandra K Tripathi

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is...

  3. Animal models for photodynamic therapy (PDT)

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for...

  4. Treatment of Basal Cell Carcinoma with 5-Aminolevulinic Acid Photodynamic Therapy%氨基酮戊酸光动力疗法治疗基底细胞癌

    汪治国; 张庆波

    2013-01-01

    Objective To observe the efficacy of topical 5-aminolevulinic acid photodynamic therapy in treating basal cell carcinoma.Methods Totally 42 patients with basal cell carcinoma were given topical 5-aminolevulinic acid photodynamic therapy.A layer of ALA 20% cream,being about 1 mm thick,was applied on the lesion and surrounding areas 0.5-1.0 cm away.The treated area was covered with an occlusive polyethylene dressing for 4 h.Subsequently,the lesions were exposed to He-Ne laser (wavelength:632.8 nm) for 30min to deliver a total light dose of 180 ~360 J/cm2.The treatment was given once every one or two weeks,3 to 6 times in total.Results Of the 42 patients,29 had complete remission,and 8 partial remission,showing a total effective rate of 88.1%.39 (92.9%) patients had an excellent or good cosmetic outcome,and no serious adverse reaction occurred in the course of treatment.Conclusions ALA-PDT is safe and effective for patients with basal cell carcinoma,featuring good cosmetic outcome and few adverse reaction.%目的 观察氨基酮戊酸-光动力疗法(5-aminolevulinic acid photodynamic therapy,5-ALA-PDT)治疗基底细胞癌的疗效.方法 基底细胞癌患者42例,局部采用5-ALA-PDT治疗.20% ALA霜剂涂于患者皮损和周围正常皮肤0.5 ~1.0cm处,厚度约1mm,持续湿敷,外加塑料薄膜封包,4h后He-Ne激光照射,功率密度100~ 200 mW/cm2,时间30 min,每次能量密度180~360 J/cm2,两次光动力治疗时间间隔1~2周,共治疗3~6次.结果 42例基底细胞癌中,完全缓解29例,部分缓解8例,总有效率88.1%;39例(92.9%)患者美容效果满意;无一例患者出现严重不良反应.结论 局部5-ALA-PDT治疗基底细胞癌安全有效、美容效果好、不良反应少.

  5. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency. PMID:26790610

  6. 藻蓝蛋白-光动力疗法治疗小鼠HeLa细胞瘤的免疫和凋亡机制研究%Treatment of Hela Tumor in mice with C-phycocyanin Mediated Photodynamic Therapy and Its Immune Mechanism Underlying Apoptosis

    李冰; 褚现明; 高美华

    2011-01-01

    目的 探讨藻蓝蛋白介导的光动力疗法治疗小鼠HeLa细胞瘤的免疫和凋亡机制.方法 将HeLa细胞接种于小鼠肋缘皮下脾区构建荷瘤小鼠模型.实验分成3组:对照组、激光照射组、光动力治疗组(PDT组).PDT组:肿瘤局部皮下注射藻蓝蛋白液0.25 ml(约2 g)2 h后以He-Ne激光照射.实验第7 d测瘤块重量,取胸腺、脾脏检测NK细胞活性和T细胞增殖活性.取瘤块制成石蜡包埋切片,采用原位核酸杂交技术、免疫组织化学技术检测肿瘤细胞内CD44、P53、NFκB、Fas基因的表达.结果 与对照组相比,激光照射组NK细胞和免疫T细胞的增殖活性有所增强,肿瘤细胞内抗凋亡基因(Fas)表达量显著增多,而瘤块的重量、肿瘤形成率和抗凋亡基因(P53、NFκB、CD44)明显减少.以上各项指标PDT组与激光组比较,差异亦具有显著或非常显著意义(P>0.05或P<0.01).结论 藻蓝蛋白介导的光动力疗法通过增强机体的免疫力同时启动HeLa细胞内的凋亡信号转导通路诱导细胞凋亡,从而达到杀死肿瘤的目的.%Objective To study the treatment of Hela tumor in mice with C-phycocyanin (C-PC) mediated photodynamic therapy (PDT) and its mechanism. Methods HeLa lines were injected into spleen area of mice to establish mice tumor models which then were divided into control group, He-Ne laser radiation group and PDT group. 7 days later, tumor weight, activities of NK cells, proliferation activities of immunocytes were determined. Tumor tissue was cut into sections and the expressions of apoptosis-related genes such as CD44, P53, NfκB and Fas in HeLa cells in vivo were determined by in situ hybridization assays and immunohistochemistry. Results Compared with control group, immunocyte proliferation ability and pro-apoptotic gene expression in He-Ne radiation group were slighthly higher, while the tumor weight and forming rate, anti-apoptotic genes quantities were comparatively lower. When the mice

  7. The use of photodynamic therapy in the treatment of keratoacanthomas

    V. N. Galkin

    2016-01-01

    Full Text Available The review is on treatment of keratoacanthomas using photodynamic therapy. The defining characteristic of keratoacanthoma among epithelial tumors is a rapid spontaneous regression in the case of typical keratoacanthoma and long-term persistence, recurrence and common malignant transformation to squamous cell carcinoma in the case of atypical keratoacanthoma. In recent years, photodynamic therapy which is an effective method of treatment of different types of cancer and pre-cancer diseases of the skin including actinic keratosis, Bowen’s disease, basal cell carcinoma, is increasingly used in clinical practice. There are few data for photodynamic therapy in the treatment of keratoacanthoma. The analysis of the literature shows that using of photodynamic therapy in the set of treatment modalities in patients with keratoacanthoma improves the efficacy and reduces the terms of the therapy. In all investigations except one there was complete tumor regression in 100% patients with keratoacanthoma who underwent photodynamic therapy. In one study complete tumor regression was observed in 66.7% of patients with atypical keratoacanthoma after photodynamic therapy. The follow-up of patients in all analyzed studies accounted for at least 2-3 years. During this time none of the patients had evidence for recurrence. This approach has minimal restrictions for application. Thus, photodynamic therapy may become a therapeutic alternative to surgical treatment of keratoacanthoma with good clinical and cosmetic results.

  8. Cell Death Pathways in Photodynamic Therapy of Cancer

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT

  9. Cell Death Pathways in Photodynamic Therapy of Cancer

    Michael R. Hamblin

    2011-06-01

    Full Text Available Photodynamic therapy (PDT is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2 are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  10. Photodynamic therapy for treatment subretinal neovascularization

    Avetisov, Sergey E.; Budzinskaja, Maria V.; Kiseleva, Tatyana N.; Balatskaya, Natalia V.; Gurova, Irina V.; Loschenov, Viktor B.; Shevchik, Sergey A.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2007-07-01

    This work are devoted our experience with photodynamic therapy (PDT) with > for patients with choroidal neovascularization (CNV). 18 patients with subfoveal CNV in age-related macular degeneration (AMD), 24 patients with subfoveal CNV in pathological myopia (PM) and 4 patients with subfoveal CNV associated with toxoplasmic retinochoroiditis were observed. CNV was 100% classic in all study patients. Standardized protocol refraction, visual acuity testing, ophthalmologic examinations, biomicroscopy, fluorescein angiography, and ultrasonography were performed before treatment and 1 month, 3 months, 6 months, and 1 year after treatment; were used to evaluate the results of photodynamic therapy with > (0.02% solution of mixture sulfonated aluminium phtalocyanine 0.05 mg/kg, intravenously). A diode laser (>, Inc, Moscow) was used operating in the range of 675 nm. Need for retreatment was based on fluorescein angiographic evidence of leakage at 3-month follow-up intervals. At 3, 6, 9 month 26 (56.5%) patients had significant improvement in the mean visual acuity. At the end of the 12-month minimal fluorescein leakage from choroidal neovascularization was seen in 12 (26.1%) patients and the mean visual acuity was slightly worse than 0.2 which was not statistically significant as compared with the baseline visual acuity. Patients with fluorescein leakage from CNV underwent repeated PDT with >. 3D-mode ultrasound shown the decreasing thickness of chorioretinal complex in CNV area. Photodynamic therapy with > can safely reduce the risk of severe vision loss in patients with predominantly classic subfoveal choroidal neovascularization secondary to AMD, PM and toxoplasmic retinochoroiditis.

  11. Hormonal component of tumor photodynamic therapy response

    Korbelik, Mladen; Merchant, Soroush

    2008-02-01

    The involvement of adrenal glucocorticoid hormones in the response of the treatment of solid tumors by photodynamic therapy (PDT) comes from the induction of acute phase response by this modality. This adrenal gland activity is orchestrated through the engagement of the hypothalamic-pituitary-adrenal hormonal axis incited by stress signals emanating from the PDT-treated tumor. Glucocorticoid hormone activity engendered within the context of PDT-induced acute phase response performs multiple important functions; among other involvements they beget acute phase reactant production, systemic neutrophil mobilization, and control the production of inflammation-modulating and immunoregulatory proteins.

  12. Flexible textile light diffuser for photodynamic therapy

    Selm, Barbel; Camenzind, Martin

    2005-03-01

    In this article a new medical application is introduced using textile production techniques to deliver a defined radiation dose. The advantage for photodynamic therapy (PDT) is that a flat luminous textile structure can homogeneously illuminate unequal body surfaces. The optical properties of this two-dimensional luminous pad are characterized with a set of bench-scale tests. In vitro investigations on petri dishes with cultivated cells and first clinical tests on animal patients are promising. In addition first measurement results are presented together with an outlook to future developments.

  13. [Photodynamic therapy for head and neck cancer

    Lajer, C.B.; Specht, Lena; Kirkegaard, J.;

    2006-01-01

    Photodynamic therapy (PDT) is a new treatment for head and neck cancer. The principle of the treatment is a photochemical reaction initiated by light activation of a photosensitizer, which causes the death of the exposed tissue. This article presents the modes of action of PDT and the techniques as...... well as the clinical procedure. A critical review of the literature is also presented, regarding treatment results of the different techniques and indications for treatments. The possibilities for PDT for head and neck cancer in Denmark are mentioned Udgivelsesdato: 2006/6/5...

  14. Photodynamic dosimetry in the treatment of periodontitis

    Andersen, Roger C.; Loebel, Nicolas G.; Andersen, Dane M.

    2009-06-01

    Photodynamic therapy has been demonstrated to effectively kill human periopathogens in vitro. However, the translation of in vitro work to in vivo clinical efficacy has been difficult due to the number of variables present in any given patient. Parameters such as photosensitizer concentration, duration of light therapy and amount of light delivered to the target tissue all play a role in the dose response of PDT in vivo. In this 121 patient study we kept all parameters the same except for light dose which was delivered at either 150 mW or 220 mW. This clearly demonstrated the clinical benefits of a higher light dose in the treatment of periodontitis.

  15. Fighting fish parasites with photodynamically active chlorophyllin.

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P

    2016-06-01

    Water-soluble chlorophyll (chlorophyllin) was used in a phototoxic reaction against a number of fish ectoparasites such as Ichtyobodo, Dactylogyrus, Trichodina, and Argulus. Chlorophyllin is applied to the water at concentrations of several micrograms per milliliter for a predefined incubation time, and afterwards, the parasites are exposed to simulated solar radiation. Application in the dark caused only little damage to the parasites; likewise, light exposure without the addition of the photosensitizer was ineffective. In Ichthyobodo, 2 μg/mL proved sufficient with subsequent simulated solar radiation to almost quantitatively kill the parasites, while in Dactylogyrus, a concentration of about 6 μg/mL was necessary. The LD50 value for this parasite was 1.02 μg/mL. Trichodina could be almost completely eliminated at 2 μg/mL. Only in the parasitic crustacean Argulus, no killing could be achieved by a photodynamic reaction using chlorophyllin. Chlorophyllin is non-toxic, biodegradable, and can be produced at low cost. Therefore, we propose that chlorophyllin (or other photodynamic substances) are a possible effective countermeasure against several ectoparasites in ponds and aquaculture since chemical remedies are either forbidden and/or ineffective. PMID:26936032

  16. Drug Carrier for Photodynamic Cancer Therapy

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  17. Photodynamic Therapy in Non-Gastrointestinal Thoracic Malignancies

    Biniam Kidane

    2016-01-01

    Full Text Available Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used as a means of downsizing tumours to allow for resection, as well as reducing the extent of resection necessary. It has also been used successfully for minimally-invasive management of local recurrences, which is especially valuable for patients who are not eligible for radiation therapy. Photodynamic therapy has also shown promising results in mesothelioma and pleural-based metastatic disease. As new generation photosensitizers are being developed and tested and methodological issues continue to be addressed, the role of photodynamic therapy in thoracic malignancies continues to evolve.

  18. Photodynamic Therapy in Non-Gastrointestinal Thoracic Malignancies.

    Kidane, Biniam; Hirpara, Dhruvin; Yasufuku, Kazuhiro

    2016-01-01

    Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used as a means of downsizing tumours to allow for resection, as well as reducing the extent of resection necessary. It has also been used successfully for minimally-invasive management of local recurrences, which is especially valuable for patients who are not eligible for radiation therapy. Photodynamic therapy has also shown promising results in mesothelioma and pleural-based metastatic disease. As new generation photosensitizers are being developed and tested and methodological issues continue to be addressed, the role of photodynamic therapy in thoracic malignancies continues to evolve. PMID:26805818

  19. Photodynamic equipment and gene treatment of bronchial cancer lesions

    Votruba, J.; Javorský, Stanislav; Stádník, Bohumil

    2006-01-01

    Roč. 51, č. 1 (2006), s. 73-85. ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20670512 Keywords : cancer * patient diagnosis * photodynamic therapy * fluorescent screens Subject RIV: BO - Biophysics

  20. Photodynamic action of methylene blue: mutagenesis and synergism

    The associated mutagenesis and the interactions with physical agents in order to potencialize its biological effects are studied. The induction of mutation in bacterias due to photodynamic action of methylene blue is presented as well as the induction of single breaks in bacterial DNA and the relationship between the repair systems, especially the SOS one. The interaction of the photodynamic therapy with low intensity electric current is discussed. (M.A.C.)

  1. Photodynamic/photocatalytic effects on microorganisms processed by nanodyes

    Tuchina, Elena S.; Tuchin, Valery V.

    2010-02-01

    Photodynamic therapy uses laser, LED or lamp light sources in combination with dyes - exogenous photosensitizers for the enhancement and localization of photodynamic effects within the human body. We are developing a new approach of improvement of the efficiency of antimicrobial phototherapy via combined application of photosensitizers and the photocatalysts to pathogenic microorganisms. The main goal of the paper is to conduct experiments to study the action of nanodyes, based on mixtures of nanoparticles and photosensitizers, in combination with LED irradiation of pathogens.

  2. Cytotoxic Efficacy of Photodynamic Therapy in Osteosarcoma Cells In Vitro

    Meier, Daniela; Campanile, Carmen; Botter, Sander M.; Born, Walter; Fuchs, Bruno

    2014-01-01

    In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response(1). Despite its approval almost twenty years ago by th...

  3. Reducing understaging of bladder cancer with the aid of photodynamic

    K. Sfetsas; D. Mitropoulos

    2016-01-01

    Background: The authors evaluated the role of photodynamic cystoscopy in the detection of additional urothelial lesions, mainly carcinoma in situ, that would not be detected solely with white light cystoscopy, leading to disease understaging. Methods: From 2009 to 2011, 70 patients underwent white light cystoscopy, followed by photodynamic cystoscopy (blue light system, Karl Storz, Tuttlingen, Germany). Preoperatively they were instilled intravesically with 50 ml of Hexvix (Hexaminolevulin...

  4. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    L.A. Muehlmann; G.A. Joanitti; Silva, J.R.; J.P.F. Longo; Azevedo, R B

    2011-01-01

    Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in th...

  5. Inhibiton of photodynamic haemolysis by Gratiola officinalis L. extract

    Tkachenko, Natalie; Pravdin, Alexander; Terentyuk, George; Navolokin, Nikita; Kurchatova, Maria; Polukonova, Natalia

    2015-03-01

    On the model of photodynamic haemolysis, the membranoprotective properties of a plant origin antioxidant, Gratiola officinalis L. extract, have been studied based on its ability to inhibit photodamage of sensitized erythrocyte membranes. The effect of different concentrations of the antioxidant on the photodynamic hemolysis has been studied; and the influence of incubation time on the membranoprotective properties of Gratiola officinalis L. extract has also been revealed.

  6. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections

    Lu, Zongshun; Dai, Tianhong; Huang, Liyi; Kurup, Divya B; Tegos, George P; Jahnke, Ashlee; Wharton, Tim; Hamblin, Michael R

    2011-01-01

    Aims Fullerenes are under intensive study for potential biomedical applications. We have previously reported that a C60 fullerene functionalized with three dimethylpyrrolidinium groups (BF6) is a highly active broad-spectrum antimicrobial photosensitizer in vitro when combined with white-light illumination. We asked whether this high degree of in vitro activity would translate into an in vivo therapeutic effect in two potentially lethal mouse models of infected wounds. Materials & methods We used stable bioluminescent bacteria and a low light imaging system to follow the progress of the infection noninvasively in real time. An excisional wound on the mouse back was contaminated with one of two bioluminescent Gram-negative species, Proteus mirabilis (2.5 × 107 cells) and Pseudomonas aeruginosa (5 × 106 cells). A solution of BF6 was placed into the wound followed by delivery of up to 180 J/cm2 of broadband white light (400–700 nm). Results In both cases there was a light-dose-dependent reduction of bioluminescence from the wound not observed in control groups (light alone or BF6 alone). Fullerene-mediated photodynamic therapy of mice infected with P. mirabilis led to 82% survival compared with 8% survival without treatment (p < 0.001). Photodynamic therapy of mice infected with highly virulent P. aeruginosa did not lead to survival, but when photodynamic therapy was combined with a suboptimal dose of the antibiotic tobramycin (6 mg/kg for 1 day) there was a synergistic therapeutic effect with a survival of 60% compared with a survival of 20% with tobramycin alone (p < 0.01). Conclusion These data suggest that cationic fullerenes have clinical potential as an antimicrobial photosensitizer for superficial infections where red light is not needed to penetrate tissue. PMID:21143031

  7. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    Narsireddy A

    2015-11-01

    Full Text Available Amreddy Narsireddy,1 Kurra Vijayashree,2 Mahesh G Adimoolam,1 Sunkara V Manorama,1 Nalam M Rao21CSIR – Indian Institute of Chemical Technology, 2CSIR – Centre for Cellular and Molecular Biology, Hyderabad, IndiaAbstract: Challenges in photodynamic therapy (PDT include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphine [PS] and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine dendrimer (G4 was conjugated with a PS and a nitrilotriacetic acid (NTA group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.Keywords: photodynamic therapy, dendrimers, nanoparticle, targeted delivery, Affibody, xenograft animal model

  8. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    Abolfath, R; Guo, F; Chen, Z; Nath, R [Yale New Haven Hospital, New Haven, CT (United States)

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  9. Oxidative stress of photodynamic antimicrobial chemotherapy inhibits Candida albicans virulence

    Kato, Ilka Tiemy; Prates, Renato Araujo; Tegos, George P.; Hamblin, Michael R.; Simões Ribeiro, Martha

    2011-03-01

    Photodynamic antimicrobial chemotherapy (PACT) is based on the principal that microorganisms will be inactivated using a light source combined to a photosensitizing agent in the presence of oxygen. Oxidative damage of cell components occurs by the action of reactive oxygen species leading to cell death for microbial species. It has been demonstrated that PACT is highly efficient in vitro against a wide range of pathogens, however, there is limited information for its in vivo potential. In addition, it has been demonstrated that sublethal photodynamic inactivation may alter the virulence determinants of microorganisms. In this study, we explored the effect of sublethal photodynamic inactivation to the virulence factors of Candida albicans. Methylene Blue (MB) was used as photosensitizer for sublethal photodynamic challenge on C. albicans associated with a diode laser irradiation (λ=660nm). The parameters of irradiation were selected in causing no reduction of viable cells. The potential effects of PACT on virulence determinants of C. albicans cells were investigated by analysis of germ tube formation and in vivo pathogenicity assays. Systemic infection was induced in mice by the injection of fungal suspension in the lateral caudal vein. C. albicans exposed to sublethal photodynamic inactivation formed significantly less germ tube than untreated cells. In addition, mice infected with C. albicans submitted to sublethal PACT survived for a longer period of time than mice infected with untreated cells. The oxidative damage promoted by sublethal photodynamic inactivation inhibited virulence determinants and reduced in vivo pathogenicity of C. albicans.

  10. Monitoring photodynamic therapy with photoacoustic microscopy

    Shao, Peng; Chapman, David W.; Moore, Ronald B.; Zemp, Roger J.

    2015-10-01

    We present our work on examining the feasibility of monitoring photodynamic therapy (PDT)-induced vasculature change with acoustic-resolution photoacoustic microscopy (PAM). Verteporfin, an FDA-approved photosensitizer for clinical PDT, was utilized. With a 60-μm-resolution PAM system, we demonstrated the capability of PAM to monitor PDT-induced vasculature variations in a chick chorioallantoic membrane model with topical application and in a rat ear with intravenous injection of the photosensitizer. We also showed oxygen saturation change in target blood vessels due to PDT. Success of the present approach may potentially lead to the application of PAM imaging in evaluating PDT efficacy, guiding treatment, and predicting responders from nonresponders.

  11. Scope of photodynamic therapy in periodontics

    Vivek Kumar

    2015-01-01

    Full Text Available Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis.

  12. Scope of photodynamic therapy in periodontics.

    Kumar, Vivek; Sinha, Jolly; Verma, Neelu; Nayan, Kamal; Saimbi, C S; Tripathi, Amitandra K

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer) activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis. PMID:26481895

  13. Photodynamic therapy: superficial and interstitial illumination

    Svanberg, Katarina; Bendsoe, Niels; Axelsson, Johan; Andersson-Engels, Stefan; Svanberg, Sune

    2010-07-01

    Photodynamic therapy (PDT) is reviewed using the treatment of skin tumors as an example of superficial lesions and prostate cancer as an example of deep-lying lesions requiring interstitial intervention. These two applications are among the most commonly studied in oncological PDT, and illustrate well the different challenges facing the two modalities of PDT-superficial and interstitial. They thus serve as good examples to illustrate the entire field of PDT in oncology. PDT is discussed based on the Lund University group's over 20 yr of experience in the field. In particular, the interplay between optical diagnostics and dosimetry and the delivery of the therapeutic light dose are highlighted. An interactive multiple-fiber interstitial procedure to deliver the required therapeutic dose based on the assessment of light fluence rate and sensitizer concentration and oxygen level throughout the tumor is presented.

  14. STUDY ON PHOTODYNAMIC AND PHOTORESPONSIVE AZO POLYELECTROLYTES

    Xiao-gong Wang; Li-feng Wu; Qi-xiang Zhou; Lian Li; Srinivasan Balasubraminian; Jayant Kumar; Sukant K. Tripathy

    2000-01-01

    Several kinds of novel azobenzene-containing polyelectrolytes with special molecular design have been developed from acryloyl chloride or epoxy based precursor polymers. The acryloyl chloride based precursor polymer, poly(acryloyl chloride), was prepared by free radical polymerization of acryloyl chloride. The azo polyelectrolytes were prepared by an esterification reaction between the precursor polymer and corresponding azo chromophores containing a reactive hydroxyl group, followed by hydrolysis of the unreacted acyl chloride groups. The epoxy based precursor polymer was prepared by the reaction between 1,4-cyclohexanedimethanol diglycidyl ether and aniline, and postfunctionalized by azo coupling reaction to form azo polymers containing chromophores with ionizable groups. The polyelectrolytes were characterized by elemental analysis, 1H-NMR, IR and UV-Vis spectroscopy. The photodynamic and photoresponsive properties, as well as self-assembly ofthese azo polyelectrolytes are reported in this paper[1].

  15. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes

    Perez AP

    2014-07-01

    Full Text Available Ana Paula Perez,1 Agustina Casasco,2 Priscila Schilrreff,1 Maria Victoria Defain Tesoriero,1,3 Luc Duempelmann,1 Maria Julia Altube,1 Leticia Higa,1 Maria Jose Morilla,1 Patricia Petray,2 Eder L Romero11Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, 2Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, 3Unidad Operativa Sistemas de Liberación Controlada, Centro de Investigación y Desarrollo en Química, Instituto Nacional de Tecnología Industrial (INTI, Buenos Aires, ArgentinaAbstract: In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs. We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and –35 mV zeta potential were innocuous against promastigotes, a low concentration (0.01 µM ZnPc and 7.6 µM phospholipids of ZnPcALs irradiated at a very low-energy density (0.2 J/cm2 eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The

  16. Study on the mechanism of C-phycocyanin mediated photodynamic therapy in curing mice with MCF-7%藻蓝蛋白介导光动力疗法在乳腺癌治疗中的机制研究

    李冰; 褚现明; 高美华; 徐颖婕

    2011-01-01

    目的 探讨藻蓝蛋白介导的光动力学疗法在乳腺癌治疗中的机制.方法 将MCF-7细胞接种于小鼠肋缘皮下脾区构建乳腺癌小鼠模型.小鼠分成4组:对照组、He-Ne激光照射组、藻蓝蛋白处理组、光动力学治疗组(PDT组).10 d后检测瘤块重量,NK细胞活性和T细胞增殖活性.取瘤块制成石蜡包埋切片,采用原位核酸杂交技术、免疫组织化学技术检测组织细胞内凋亡相关蛋白的表达.体外培养的MCF-7细胞也相应分成4组,通过MTT法、电镜和免疫荧光技术检测细胞增殖活性、细胞形态、细胞色素C表达量的变化.结果 与对照组相比,激光照射组各检测指标均无明显差异,而藻蓝蛋白处理组中NK细胞和T细胞的增殖活性有所增强,肿瘤组织细胞内抗凋亡蛋白(Fas)表达量明显增多,而瘤块的重量、肿瘤形成率和抗凋亡蛋白(p53、NF-κB、CD44)明显减少,如果藻蓝蛋白结合激光治疗发现各检测指标与对照组比较差异更为明显.体外试验证实藻蓝蛋白能抑制MCF-7细胞的增殖,促进细胞色素C的释放,电镜下细胞呈现典型的凋亡形态,用光动力学方法处理后效果更为明显.结论 藻蓝蛋白可以作为一种光敏剂,其介导的光动力学疗法通过增强机体的免疫力同时启动乳腺癌细胞内的凋亡信号转导通路诱导细胞凋亡,从而达到杀死肿瘤的目的.%Aim To study the mechanism of C-phycocyanin ( C-PC ) mediated photodynamic therapy ( PDT ) in curing breast cancer.Methods MCF-7 cells were injected into spleen area of mice to establish mice models with breast cancer which then were divided into four groups: control group, He-Ne laser radiation group, C-PC treatment group and PDT group.10 days later, tumor weight, activities of NK cells, proliferative activities of T cells were determined.The tumors were made to paraffin section and the expressions of apoptosis related proteins such as CD44 , P53 ,NFKB and Fas in

  17. Combined near infrared photothermolysis and photodynamic therapy by association of gold nanoparticles and an organic dye

    Tuchina, Elena S.; Ratto, Fulvio; Khlebtsov, Boris N.; Centi, Sonia; Matteini, Paolo; Rossi, Francesca; Fusi, Franco; Khlebtsov, Nikolai G.; Pini, Roberto; Tuchin, Valery V.

    2011-03-01

    We investigated the combination of near infrared (NIR) photothermolysis and photodynamic therapy against different models of bacteria (S. aureus, S. epidermidis both methicillin susceptible and resistant), in order to discover possible synergistic pathways in the fight against cancer. Photothermolysis was mediated by NIR light absorption from gold nanorods, which were coated with polyethylene glycol to gain biocompatibility and provide for a convenient interface with the bacterial cell walls. At the same time photodynamic therapy was delivered by administration of Indocyanine Green (ICG), whose spectrum of molecular excitation overlaps the plasmonic oscillations of gold nanorods (~ 800 nm). Therefore irradiation with NIR light from a low power diode laser resulted into simultaneous photothermolysis and generation of reactive oxygen species and cytotoxic byproducts of ICG. We assessed the inhibition of the bacterial colony forming ability under different NIR light exposures, and compared the performance of the combined treatment (gold nanorods plus ICG) with the projected addition of the separate treatments (either gold nanorods or ICG). Our preliminary results may originate from the interplay of synergistic and conflicting interactions, which may include e.g. the enhanced intake of cytotoxic species due to permeabilization of the bacterial cell walls, quenching of ICG and modification of the bleaching of ICG due to the noble metal surface.

  18. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  19. Histological Evaluation of Wound Healing Process after Photodynamic Therapy of Rat Oral Mucosal Ulcer

    Deyhimi, Parviz; Khademi, Heidar; Birang, Reza; Akhoondzadeh, Mohammad

    2016-01-01

    Statement of the Problem When the body defense is compromised, wounds can act as a route for entrance and colonization of microorganisms in the body. Photodynamic therapy with methylene blue is known as a promising antimicrobial modality. Purpose The present study aimed to investigate the effects of this procedure on wound healing processes. Materials and Method In this experimental study, 48 male Wistar rats were recruited. Experimental wounds were surgically made on their buccal mucosa. Based on the treatment modality, they were divided into 3 groups (n=16) of control (CG), laser (LG), photosensitizer+ laser (PLG) by methylene blue (MB). The treatment procedure in the two latter groups was done in days 1-4 and 6-9. After sacrificing on 2, 4, 7 and 14-day follow-ups, the microscopic grade of healing of the wounds was assigned on each interval according to histological grading criteria. Results A qualitative result was obtained that showed a healing progression in PLG at day 2 of follow-up. At day 4 of follow-up, no difference was seen in healing stage among the groups. However on day 7 of follow-up, samples of the LG showed a lower degree of healing compared with the other two groups. Likewise, on day 14 of follow- up, both PLG and LG showed lower degree of healing than CG. Conclusion This study qualitatively showed that MB- mediated photodynamic therapy would have an inhibitory effect on healing process after 14 days of the wound creation. PMID:26966708

  20. Early responses of human cancer cells upon photodynamic treatment monitored by laser phase microscopy

    Roelofs, Theo A.; Graschew, Georgi; Perevedentseva, Elena V.; Rakowsky, Stefan; Dressler, Cathrin; Beuthan, Juergen; Schlag, Peter M.

    2001-04-01

    Photodynamic treatment of cancer cells is known to eventually cause cell death in most cases. The precise pathways and the time course seem to vary among different cell types and modes of photodynamic treatment. In this contribution, the focus was put on the responses of human colon carcinoma cells HCT-116 within the first 15 minutes after laser irradiation in the presence of Photofrin« II (PII). To monitor the cell response in this early time period laser phase microscopic imaging was used, a method sensitive to changes in overall cell shape and intracellular structures, mediated by changes in the local refractive index. Laser irradiation of cells loaded with PII induced a significant reduction of the phase shifts, which probably reflects the induced damage to the different cellular membrane structures. The data suggest that even within the first 30 s after the onset of laser illumination, a significant reduction of the phase shifts can be detected. These results underline that laser phase microscopy is a suitable diagnostic tool for cellular research, also in the early time domain.

  1. Epithelial-mesenchymal interaction during photodynamic therapy-induced photorejuvenation.

    Kim, Sue Kyung; Koo, Gi-Bang; Kim, You-Sun; Kim, You Chan

    2016-09-01

    Recently, several clinical studies reported that the photodynamic therapy (PDT) has photorejuvenation effects on the aged skin. Previously, our group introduced evidence of direct effect of PDT on cultured fibroblast (FB). PDT directly stimulated FBs and induced collagen synthesis through activation of extracellular signal-regulated kinase. In this study, we investigated indirect effect of PDT on the human dermal FB during photorejuvenation focused on the epithelial-mesenchymal interaction between keratinocyte (KC) and FB. The "low-level PDT" condition was used for PDT therapy to the cultured KC. Various kinds of cytokines in the supernatants of KC were evaluated by enzyme-linked immunosorbent assay. FBs were stimulated with the KC-conditioned medium (KCM) taken after PDT. The mRNA level of matrix metalloproteinases (MMPs), transforming growth factor (TGF)-β and collagen type Iα in the FB, was determined by real-time polymerase chain reaction. Clinical phtorejuvenation effect was also evaluated from nine patients who had PDT to treat actinic keratoses. Among the FB-stimulating cytokines, a significant elevation of interleukin (IL)-1α, IL-6, and tumor necrosis factor-α level in KCM was noted after PDT compared with controls. After stimulating FB with KCM, the mRNA of MMP-1 was decreased and the mRNA of collagen type Iα was increased compare to control. Clinically, fine wrinkles significantly reduced after PDT. However, coarse wrinkles were not recovered significantly. In conclusion, increased collagen synthesis may be mediated not only by direct effect of PDT on FB but also by indirect effect of PDT on FB through cytokines from KC, such as IL-1α, IL-6, and tumor necrosis factor-α. PMID:27383261

  2. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  3. Investigation of photodynamic therapy on streptococcus mutans of oral biofilm

    Zhaohui Zou; Ping Gao; Huijuan Yin; Yingxin Li

    2008-01-01

    We investigated the effect of photodynamic therapy (PDT) with hematoporphyrin monomethyl ether (HMME) on the viability of Streptococcus mutans (S. mutans) cells on biofilms in vitro. Streptococcus mutans is the primary etiological agent of human dental caries. Since dental caries are localized infections, such plaque-related diseases would be well suited to PDT. The diode laser used in this study had the wavelength of 635 nm, whose output power was 10 mW and the energy density was 12.74 J/cm2. HMME was used as photosensitizer. Samples were prepared and divided into five groups: (1) HMME; (2) Laser; (3) HMME+Laser; (4) Control group (+) with chlorhexidine; and (5) Control group (-) with sterile physiological saline. Inoculum of S. mutans incubated with HMME also examined with fluorescence microscopy. PDT exhibited a significantly (P < 0.05) increased antimicrobial potential compared with 20 μm/mL HMME only, laser only, 0.05% chlorhexidine, and 0.9% sterile physiological saline, which reduced the S. mutans of the biofilm most effectively. Laser and 0.05% chlorhexidine were caused reduction in the viable counts of S. mutans significantly different (P < 0.05) also, but these two test treatments did not statistically differ from each other. HMME group did not statistically differ with negative control group. Fluorescence microscopy indicated that HMME localized primarily in the S. mutans of the biofilm. It was demonstrated that HMME-mediated PDT was efficient at killing S. mutans of biofilms and a useful approach in the treatment of dental plaque-related diseases.

  4. Modulation of inflammatory response of wounds by antimicrobial photodynamic therapy

    Sharma, Mrinalini; Gupta, Pradeep Kumar

    2015-01-01

    Background and aims: Management of infections caused by Pseudomonas aeruginosa is becoming difficult due to the rapid emergence of multi-antibiotic resistant strains. Antimicrobial photodynamic therapy (APDT) has a lot of potential as an alternative approach for inactivation of antibiotic resistant bacteria. In this study we report results of our investigations on the effect of poly-L-lysine conjugate of chlorine p6 (pl-cp6) mediated APDT on the healing of P.aeruginosa infected wounds and the role of Nuclear Factor kappa B (NF-kB) induced inflammatory response in this process. Materials and method: Excisional wounds created in Swiss albino mice were infected with ∼107 colony forming units of P.aeruginosa. Mice with wounds were divided into three groups: 1) Uninfected, 2) Infected, untreated control (no light, no pl-cp6), 3) Infected, APDT. After 24 h of infection (day 1 post wounding), the wounds were subjected to APDT [pl-cp6 applied topically and exposed to red light (660 ± 25 nm) fluence of ∼ 60 J/cm2]. Subsequent to APDT, on day 2 and 5 post wounding (p.w), measurements were made on biochemical parameters of inflammation [toll like receptor-4 (TLR-4), NF-kB, Inteleukin (IL)-[1α, IL-β, and IL-2)] and cell proliferation [(fibroblast growth factor-2 (FGF-2), alkaline phosphatase (ALP)]. Results: In comparison with untreated control, while expression of TLR-4, NF-kB (p105 and p50), and proinflammatory interleukins (IL-1α, IL-1β,IL-2) were reduced in the infected wounds subjected to APDT, the levels of FGF-2 and ALP increased, on day 5 p.w. Conclusion: The measurements made on the inflammatory markers and cell proliferation markers suggest that APDT reduces inflammation caused by P.aeruginosa and promotes cell proliferation in wounds. PMID:26557735

  5. Photodynamic therapy-generated vaccines prevent tumor recurrence after radiotherapy

    Photodynamic therapy (PDT), an established clinical modality for a variety of malignant and non-malignant diseases, inflicts photoreactive drug-mediated oxidative stress that prompts the engagement of host inflammatory and immune responses which contribute to the therapy outcome. Recently, it has become evident that in vitro PDT-treated tumor cells or their lysates can be utilized as an effective vaccine against established tumors of the same origin. The mechanism underlying the vaccine action appears to be based on eliciting immune recognition of the tumor and developing an efficient immune response even against poorly immunogenic tumors. This study examined whether PDT-generated vaccines can be effectively combined with radiotherapy. Subcutaneous SCCVII tumors (squamous cell carcinomas) growing in syngeneic C3H/HeN mice were treated by radiotherapy (60 Gy x-ray dose). PDT-vaccine treatment, done by peritumoral injection of in vitro PDT-treated SCCVII cells (20 million/mouse), was performed either immediately after radiotherapy or ten days later. The mice were then observed for tumor regression/recurrence. The tumors treated with radiotherapy alone shrunk and became impalpable for a brief period after which they all recurred. In contrast, vaccination performed at 10 days post radiotherapy delayed tumor recurrence and prevented it in one of six mice. Even better results were obtained with mice vaccinated immediately after radiotherapy, with mice showing not only a delayed tumor recurrence but also no sign of tumor in 50% of mice. The PDT-vaccine treatment without radiotherapy produced in this trial a significant tumor growth retardation but no complete regressions. These results indicate that PDT-generated vaccines can ensure immune rejection of cancer once the lesion size is reduced by radiotherapy. Even without obtaining a systemic immunity for the elimination of disseminated malignant deposits, these findings suggest that PDT-vaccines can improve local control

  6. Photodynamic antimicrobial therapy in the treatment of denture stomatitis

    Denture stomatitis (DS), also called chronic atrophic candidiasis, is the most common oral fungal infection in denture wearers. It has a multifactorial etiology, but the presence of Candida spp. biofilm on the denture is considered the most important factor for the establishment of the DS. This study aimed to evaluate the treatment of DS through the use of photodynamic antimicrobial therapy (PAT), mediated by methylene blue. For this purpose, preclinical studies and clinical trials were performed. Simulators prototypes dentures were made of methyl methacrylate polymer to serve as a basis for biofilm growth of the following species of Candida: C. albicans, C. glabrata, C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis and C. guilliermondii. Methylene blue solution at a concentration of 450 μg/mL was used as a photosensitizer. The prototypes and biofilms were irradiated with a laser of wavelength of 660 nm, potency of 100 mW, for 80 seconds. For the clinical study, subjects were divided into two groups. The first group received conventional treatment based on the use of antifungal Miconazole. The second group received the treatment by PAT. The preclinical results showed that all species of the genus Candida were susceptible to PAT, with a reduction in colonies that ranged from 2.48 to 3.93 log10. Clinical outcomes were evaluated for the reduction of colonies of Candida spp. located in the mucosa and in the prosthesis and relative to the improvement of the clinical aspect of the affected mucosa. Both the conventional therapy and PAT were effective in treating DS. There was no significant statistical difference between PAT and conventional treatment for any of the factors evaluated. Thus, it was concluded that PAT is effective in the treatment of denture stomatitis. (author)

  7. Mitochondria-targeting for improved photodynamic therapy

    Ngen, Ethel J.

    Photodynamic therapy (PDT) is an emerging cancer therapeutic modality, with great potential to selectively treat surface cancers, thus minimizing systemic side effects. In this dissertation, two approaches to deliver photosensitizers to mitochondria were investigated: 1) Reducing photosensitizer sizes to improve endocytosis and lysosomal localization. Upon irradiation the photosensitizers would then produce singlet oxygen which could rupture the lysosomal membrane releasing the lysosomally trapped photosensitizers to the cytosol, from where they could relocalize to mitochondria by passive diffusion (photochemical internalization). 2) Using delocalized lipophilic cationic dyes (DLCs) to exploit membrane potential differences between the cytoplasm and mitochondria in delivering photosensitizers to mitochondria. To investigate the effects of steric hindrance on mitochondrial localization and photodynamic response, a series of eight thiaporphyrins were studied. Two new thiaporphyrin analogues 6 and 8 with reduced steric hindrance at the 10- and 15- meso positions were studied in comparison to 5,20-diphenyl-10,15-bis[4 (carboxymethyleneoxy)-phenyl]-21,23-dithiaporphyrin 1, previously validated as a potential second generation photosensitizer. Although 6 showed an extraordinarily high uptake (7.6 times higher than 1), it was less potent than 1 (IC 50 = 0.18 muM versus 0.13 muM) even though they both showed similar sub-cellular localization patterns. This low potency was attributed to its high aggregation tendency in aqueous media (4 times higher than 1), which might have affected its ability to generate singlet oxygen in vitro . 8 on the other hand showed an even lower potency than 6 (2.28 vs 0.18 muM). However this was attributed to its low cellular uptake (20 times less than 6) and inefficient generation of singlet oxygen. Overall, although the structural modifications did improve the cellular uptake of 6, 6 was still less potent than the lead photosensitizers 1. Thus

  8. Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis

    Arjen F. Nikkels

    2010-06-01

    Full Text Available Langerhans cell histiocytosis is a rare group of proliferative disorders. Beside cutaneous involvement, other internal organs can be affected. The treatment of cutaneous lesions is difficult and relies on topical corticosteroids, carmustine, nitrogen mustard, and photochemotherapy. Systemic steroids and vinblastine are used for recalcitrant skin lesions. However, some cases fail to respond. An 18-month old boy presented a CD1a+, S100a+ Langerhans cell histocytosis with cutaneous and severe scalp involvement. Topical corticosteroids and nitrogen mustard failed to improve the skin lesions. Systemic corticosteroids and vinblastine improved the truncal involvement but had no effect on the scalp lesions. Methyl-aminolevulinate (MAL based photodynamic therapy (PDT resulted in a significant regression of the scalp lesions. Control histology revealed an almost complete clearance of the tumor infiltrate. Clinical follow-up after six months showed no recurrence. Although spontaneous regression of cutaneous Langerhans cell histiocytosis is observed, the rapid effect of photodynamic therapy after several failures of other treatment suggests that photodynamic therapy was successful. As far as we know this is the first report of photodynamic therapy for refractory skin lesions. Larger series are needed to determine whether photodynamic therapy deserves a place in the treatment of multiresistant cutaneous Langerhans cell histiocytosis.

  9. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  10. In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space.

    Gu, Bobo; Pliss, Artem; Kuzmin, Andrey N; Baev, Alexander; Ohulchanskyy, Tymish Y; Damasco, Jossana A; Yong, Ken-Tye; Wen, Shuangchun; Prasad, Paras N

    2016-10-01

    This paper introduces the concept of in-situ upconversion of deep penetrating near infrared light via second harmonic generation from ZnO nanocrystals delivered into cells to effect photo activated therapies, such as photodynamic therapy, which usually require activation by visible light with limited penetration through biological tissues. We demonstrated this concept by subcellular activation of a photodynamic therapy drug, Chlorin e6, excited within its strong absorption Soret band by the second harmonic (SH) light, generated at 409 nm by ZnO nanocrystals, which were targeted to cancer cells and internalized through the folate-receptor mediated endocytosis. By a combination of theoretical modeling and experimental measurements, we show that SH light, generated in-situ by ZnO nanocrystals significantly contributes to activation of photosensitizer, leading to cell death through both apoptotic and necrotic pathways initiated in the cytoplasm. This targeted photodynamic action was studied using label-free Coherent Anti-Stokes Raman Scattering imaging of the treated cells to monitor changes in the distribution of native cellular proteins and lipids. We found that initiation of photodynamic therapy with upconverted light led to global reduction in the intracellular concentration of macromolecules, likely due to suppression of proteins and lipids synthesis, which could be considered as a real-time indicator of cellular damage from photodynamic treatment. In prospective applications this in-situ photon upconversion could be further extended using ZnO nanocrystals surface functionalized with a specific organelle targeting group, provided a powerful approach to identify and consequently maximize a cellular response to phototherapy, selectively initiated in a specific cellular organelle. PMID:27442221

  11. Photodynamic therapy for cutaneous metastases of breast cancer

    E. V. Goranskaya

    2011-01-01

    Full Text Available Breast cancer is the most common cancer and the leading cause of cancer death in w omen. Cutaneous metastases are observed in 20 % pa- tients with breast cancer. 36 breast cancer patients with cutaneous metastases were treated with photodynamic therapy in the de partment of laser and photodynamic therapy MRRC. Complete regression was obtained in 33.9 %, partial — in 39 % of cases, the stabilization achieved in 25.4 %, progression noted in 1.7 %. The objective response was obtained in 72.9 % of cases, treatment effect — in 97.4 %. Photodynamic therapy has good treatment results of cutaneous metastases of breast cancer with a small number of side effects.

  12. Photodynamic therapy for treatment of head and neck cancer.

    Schweitzer, V G

    1990-03-01

    Since 1975, photodynamic therapy has reportedly been effective in a variety of head and neck malignancies that failed traditional (conventional) therapy, including surgery, cryotherapy, chemotherapy, hyperthermia, and radiation therapy. Photodynamic therapy consists of the intravenous administration of (di)hematoporphyrin ether, a chemosensitizing drug selectively retained by neoplastic and reticuloendothelial tissues which, when exposed to a 630-nm argon laser, catalyzes a photochemical reaction to release free oxygen radicals, "the cytotoxic" agents responsible for cell death and tumor necrosis. Preliminary investigations have assessed the efficacy of photodynamic therapy in treatment of: (1) superficial "condemned mucosa" or "field cancerization" of the oral cavity and (2) stage III and IV head and neck carcinomas that had unsuccessful conventional therapy. Complete and/or partial remissions were obtained in 11 of 12 patients (16 treatments) with a variety of carcinomas of the nasopharynx, palate and uvula, retromolar trigone, temporal bone, cervical esophagus, and AIDS-related Kaposi's sarcoma of the oral cavity. PMID:2108409

  13. Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer.

    McEwan, Conor; Nesbitt, Heather; Nicholas, Dean; Kavanagh, Oisin N; McKenna, Kevin; Loan, Philip; Jack, Iain G; McHale, Anthony P; Callan, John F

    2016-07-01

    Sonodynamic therapy (SDT) involves the activation of a non-toxic sensitiser drug using low-intensity ultrasound to produce cytotoxic reactive oxygen species (ROS). Given the low tissue attenuation of ultrasound, SDT provides a significant benefit over the more established photodynamic therapy (PDT) as it enables activation of sensitisers at a greater depth within human tissue. In this manuscript, we compare the efficacy of aminolevulinic acid (ALA) mediated PDT and SDT in a squamous cell carcinoma (A431) cell line as well as the ability of these treatments to reduce the size of A431 ectopic tumours in mice. Similarly, the relative cytotoxic ability of Rose Bengal mediated PDT and SDT was investigated in a B16-melanoma cell line and also in a B16 ectopic tumour model. The results reveal no statistically significant difference in efficacy between ALA mediated PDT or SDT in the non-melanoma model while Rose Bengal mediated SDT was significantly more efficacious than PDT in the melanoma model. This difference in efficacy was, at least in part, attributed to the dark pigmentation of the melanoma cells that effectively filtered the excitation light preventing it from activating the sensitiser while the use of ultrasound circumvented this problem. These results suggest SDT may provide a better outcome than PDT when treating highly pigmented cancerous skin lesions. PMID:27234890

  14. Intracellular targeting specificity of novel phthalocyanines assessed in a host-parasite model for developing potential photodynamic medicine.

    Sujoy Dutta

    photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity.

  15. Photodynamic therapy of advanced malignant tumors

    Wang, Lian-xing; Dai, Lu-pin; Lu, Wen-qin

    1993-03-01

    Forty patients with advanced tumors were treated by photodynamic therapy (PDT) from May 1991 to August 1991 in our hospital with age ranges from 30 to 81 years old. The pathological diagnosis shows that 13 had tumors in the colon, 3 in the stomach, 2 in the oesophageal, 2 in the palatum, 1 in the cervix, and 19 others with malignant cancers of the skin. The histology was as follows: squamous cell in 20, adenocarcinoma in 19, melanocarcinoma in 1. By TNM classification there were no cases of T1, 5 cases of T2, and 35 cases of T2 - T3. All patients were stage IV. The overall effective rate was 85%, our experience is that the PDT is suitable for the patients with advanced tumor, especially those whose tumor recurrences are hard to treat after conventional treatment (surgery, radiotherapy, chemotherapy). The PDT appears to be a new and promising possibility to treat advanced tumors and to improve the patients' survival rates.

  16. PDT dose dosimeter for pleural photodynamic therapy

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry.

  17. Photodynamic therapy on normal rabbit mandible

    Fan, Kathleen F.; Hopper, Colin; Speight, Paul M.; Davies, Claire; Bown, Stephen G.

    1995-03-01

    Photodynamic therapy has been proposed as an intra-operative adjunct to surgical resection of tumors invading bone. To assess this, we studied the effects of PDT in normal bone. Forty- four rabbits were sensitized with Photofrin 3 mg/kg, 5-aminolaevulinic acid (ALA) 400 mg/kg, or meso-tetrahydroxyphenylchlorin (mTHPC) 0.3 mg/kg. A mandibular incisor was removed and the socket irradiated with a cylindrical diffusion fiber (630 nm Photofrin and ALA, 650 nm mTHPC, 100 J per treatment). Irradiation was given 1 or 48 hours after Photofrin, 72 hours after mTHPC, whilst 2 doses were given 2.5 and 4 hours after the first fractionated dose of ALA. The socket of the ipsilateral maxillary incisor was used as a nonirradiated control to assess healing without PDT. Other controls assessed healing after irradiation of unsensitized animals. Rabbits were killed 3, 10, and 21 days after treatment. Tooth socket healing appeared to be the same in all groups of animals with evidence of woven bone formation by 10 days. We conclude that PDT is unlikely to have any effect on healing in normal bone, which makes it suitable for treating tumors invading bone.

  18. Photodynamic therapy of symptomatic choroidal nevi

    Luis Amselem

    2011-01-01

    Full Text Available Purpose : To evaluate the role of photodynamic therapy (PDT for patients with symptomatic choroidal nevi involving the fovea or located near the fovea with subretinal fluid extending to the fovea. Materials and Methods : Retrospective review of five patients who underwent PDT for choroidal nevi at two separate centers in Ankara and Barcelona. Results : The mean initial logMAR visual acuity was 0.5 (range: 0 to 1.5. The mean largest tumor base diameter was 3.2 mm (range: 2.1-4.5 mm and the mean tumor thickness was 1.1 mm (range: 0.7-1.6 mm. The mean number of PDT sessions was 1.6 (range:1-3. The mean final tumor thickness was 1.0 mm (range: 0-1.6 mm at a mean follow-up of 19 months (range: 12-32 months. The mean final logMAR visual acuity was 0.4 (range: 0-1.5. Subfoveal fluid disappeared or decreased significantly in 4 of 5 eyes (80% after PDT. Conclusions : PDT led to resolution of subretinal fluid with preservation of visual acuity in many symptomatic choroidal nevi in this study. Careful case selection is important as PDT of indeterminate pigmented tumors may delay the diagnosis and treatment of an early choroidal melanoma and thereby increase the risk for metastasis.

  19. Pecularities of clinical photodynamic therapy of cancer

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Litvin, Grigory D.; Astrakhankina, Tamara A.

    1996-01-01

    The analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs, urinary bladder rectum and other locations has been made. During 1992 - 1995 478 tumoral foci in 125 patients have been treated with PDT. All patients were previously treated with conventional techniques without effect or they were not treated due to contraindications either because of severe accompanying diseases or because of old age. A part of the patients had PDT because of recurrences or intradermal metastases in 1 - 2 years after surgical, radial or combined treatment. Two home-made preparations were used as photosensitizers: Photohem (hematoporphyrine derivative) and Photosense (aluminum sulfonated phthalocyanine). Light sources were: the argon pumped dye laser (`Innova-200', `Coherent') and home-made laser devices: copper-vapor laser-pumped dye laser (`Yakhroma-2', Frjazino), gas-discharge unit `Ksenon' (wavelength 630 nm), gold-vapor laser (wavelength 627.8 nm) for Photohem; while for Photosense sessions we used solid-state laser on ittrium aluminate `Poljus-1' (wavelength 670 nm). Up to now we have follow-up control data within 2 months and 3 years. Positive effect of PDT was seen in 92% of patients including complete regression of tumors in 66.4% and partial in 25.6%. Currently, this new perspective technique of treating malignant neoplasms is successfully being used in Russia; new photosensitizers and light sources for PDT and fluorescent tumor diagnostics are being developed as well.

  20. Photodynamic laser therapy in tracheo bronchial endoscopy

    Hp and HpD have been found to be accumulated and retained by tumor tissues; intravenous Hp or HpD disseminates throughout the entire body, but it rapidly clears out of the normal cells, while remaining longer in tumor tissue, where it is 5-6 times more concentrated after 48-72 hours. Photo-Dynamic Therapy is based upon specific photosensitization of malignant tissue containing Hp after exposure to a visible activating light in the red region of the spectrum (630 nm). Absorption in the red allows deep penetration into tissue, biological effects of using this wavelength are in the order of 5-15 mm of tumor tissue thickness. Photosensitization produces a photochemical reaction releasing singlet Oxygen, that causes tissue death. The singlet Oxygen damages some biological processes such as replay and repair of nucleic acids, cell respiration, protein synthesis and cell membrane function. How-ever, the tissue damage is caused by involvement of the tumor microvascular system too. Many authors report that effects of PDT are secondary to the destruction of tumor microvasculature and the first observable signs occur in the subendothelial zone of the tumor capillary wall. PDT is effective in tracheobronchial endoscopy in treatment of precancerous lesions and early stage lung cancer. PDT has been employed in treatment of advanced carcinoma associated with YAG-Laser and Radiotherapy. (author). 29 refs., 1 tab

  1. Interstitial photodynamic laser therapy in interventional oncology

    Photodynamic therapy (PDT) is a well-investigated locoregional cancer treatment in which a systemically administered photosensitizer is activated locally by illuminating the diseased tissue with light of a suitable wavelength. PDT offers various treatment strategies in oncology, especially palliative ones. This article focuses on the development and evaluation of interstitial PDT for the treatment of solid tumors, particularly liver tumors. The PDT is mostly used for superficial and endoluminal lesions like skin or bladder malignancies and also more frequently applied for the treatment of lung, esophageal, and head and neck cancer. With the help of specially designed application systems, PDT is now becoming a practicable option for solid lesions, including those in parenchymal organs such as the liver. After intravenous treatment with the photosensitizer followed by interstitial light activation, contrast-enhanced computed tomography shows the development of therapy-induced necrosis around the light-guiding device. With the use of multiple devices, ablation of liver tumors seems to be possible, and no severe side effects or toxicities related to the treatment are reported. PDT can become a clinically relevant adjunct in the locoregional therapy strategies. (orig.)

  2. Photodynamic antimicrobial polymers for infection control.

    Colin P McCoy

    Full Text Available Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene (HDPE using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA, and by up to 1.51 Log CFU/cm(2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.

  3. Photodynamic antibacterial effect of graphene quantum dots.

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD. PMID:24612819

  4. ZnPcS2P2-based Photodynamic Therapy Induces Mitochondria-dependent Apoptosis in K562 Cells

    Hui-Fang HUANG; Yuan-Zhong CHEN; Yong WU

    2005-01-01

    Mitochondria play a key role in the regulation of apoptosis induced by numerous antitumor chemotherapeutic and other toxic agents. Photodynamic therapy (PDT) exerts significant cellular killing efficacy through either an apoptotic or necrotic cell death pathway. This study investigated the mechanism underlying the killing effects of a novel amphipathic photosensitizer [di-sulfonated di-phthalimidomethyl phthalocyanine zinc (ZnPcS2P2)]-mediated photodynamic therapy (ZnPcS2P2-PDT) on K562 cells. Apoptosis was evident in the post-PDT cells through the TdT-mediated dUTP nick end labeling (TUNEL) method and DNA fragmentation assay. After ZnPcS2P2-PDT, K562 cells underwent mitochondria-dependent apoptosis as evidenced by the release of cytochrome c from mitochondria into cytosol, accompanied by mitochondrial membrane potential (Δ#m) reduction, indicating the opening of the mitochondrial permeability transition pore (PTP). The activities of protease from the caspase family and caspase-3 were also significantly elevated.Furthermore, ZnPcS2P2-PDT down-regulated the expression of chimaeric Bcr-Abl oncoprotein, which is the molecular hallmark of chronic myelogenous leukemia (CML).

  5. 5-Amino-4-oxopentanoic acid photodynamic diagnosis guided microsurgery and photodynamic therapy on VX2 brain tumour implanted in a rabbit model

    XIAO Hong; LIAO Qiong; CHENG Ming; LI Fei; XIE Bing; LI Mei; FENG Hua

    2009-01-01

    Background Complete tumour resection is important for improving the prognosis of brain tumour patients. However,extensive resection remains controversial because the tumour margin is difficult to be distinguished from surrounding brain tissue. It has been established that 5-amino-4-oxopentanoic acid (5-aminolevulinic acid, ALA) can be used as a photodynamic diagnostic marker and a photosensitizer for photodynamic therapy in surgical treatment of brain tumours. We investigated the efficacy of ALA photodynamically guided microsurgery and photodynamic therapy on VX2 brain tumour implanted in a rabbit model.Methods Eighty New Zealand rabbits implanted with VX2 brain tumours were randomly assigned to five groups: control, conventional white light microsurgery, a photodynamic therapy group, a photodynamically guided microsurgery group and a group in which guided microsurgery was followed by photodynamic therapy. The VX2 tumour was resected under a surgical microscope. The tumour resection was confirmed with histological analysis. All animals were examined with MRI for presence of any residual tumour tissue. The survival time of each rabbit was recorded.Results All treatment groups showed a significantly extended survival time compared with the control group.Photodynamically guided microsurgery combined with photodynamic therapy significantly prolonged survival time, compared with guided microsurgery alone. MRI and the autopsy results confirmed removal of most of the tumours.Conclusions Our results suggest that photodynamically guided surgery and photodynamic therapy significantly reduce or delay local recurrence, increase the effectiveness of radical resection and prolong the survival time of tumour bearing rabbits, Their combination has the potential to be used as a rapid and highly effective treatment of metastatic brain tumours.

  6. Development and optimization of a diode laser for photodynamic therapy

    Lim, Hyun Soo

    2011-01-01

    Background and Aims: This study demonstrated the development of a laser system for cancer treatment with photodynamic therapy (PDT) based on a 635 nm laser diode. In order to optimize efficacy in PDT, the ideal laser system should deliver a homogeneous nondivergent light energy with a variable spot size and specific wavelength at a stable output power.

  7. Looking at the photodynamics of individual fluorescent molecules and proteins

    Garcia-Parajo, M.F.; Veerman, J.A.; Kuipers, L.; Hulst, van N.F.

    2001-01-01

    The photodynamics of individual molecules and fluorescent proteins has been investigated in real time. In the case of organic molecules, both the triplet state lifetime and intersystem crossing yield appear to vary in time and space. In the case of autofluorescent proteins, light-driven "on-off" flu

  8. Photochemical predictive analysis of photodynamic therapy in dermatology

    Fanjul-Vélez, F.; Salas-García, I.; López-Escobar, M.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2010-02-01

    Photodynamic Therapy is a recent treatment modality that allows malignant tissue destruction. The technique provides a localized effect and good cosmetic results. The application of Photodynamic Therapy is based on the inoculation of a photosensitizer and the posterior irradiation by an optical source. This radiation chemically activates the drug and provokes reactions that lead to tissue necrosis. Nowadays there are fixed clinical Photodynamic Therapy protocols that make use of a particular optical dose and photosensitizer amount. These parameters are independent of the patient and the lesion. In this work we present a Photodynamic Therapy model that tries to predict the effect of the treatment on the skin. First the results of a clinical study in the Dermatology Department of the Marqués de Valdecilla University Hospital are presented. The most common lesions and some unsuccessful cases are stated. The predictive model proposed is based on a 3D optical propagation of radiation by a Monte Carlo approach. Once the optical energy is obtained, a complex photochemical model is employed. This model takes into account the electronic transitions between molecular levels and particles concentrations. As the process of generation of photosensitizer is not homogeneous, the photosensitizer distribution is also taken into account. The optical power of the source, the exposition time and the optochemical characteristics of the tissue can be varied. This implies that these parameters could be adjusted to the particular pathology we are dealing with, so the unsuccessful cases could be better treated.

  9. Fiber Optic Spectroscopy for the Optimization of Photodynamic Therapy

    F. van Leeuwen- van Zaane (Floor)

    2014-01-01

    markdownabstract__Abstract__ Photodynamic therapy (PDT) is a treatment modality for cancer and premalignant lesions that utilizes a photoactive drug, the photosensitizer, in combination with light. PDT has become the treatment of choice for various malignancies. Furthermore, PDT is under investigat

  10. Photodynamic Inactivation of Bacteria and Biofilms Using Cationic Bacteriochlorins

    Meerovich, G. A.; Tiganova, I. G.; Makarova, E. A.; Meerovich, I. G.; Romanova Ju., M.; Tolordova, E. R.; Alekseeva, N. V.; Stepanova, T. V.; Yu, Koloskova; Luk'anets, E. A.; Krivospitskaya, N. V.; Sipailo, I. P.; Baikova, T. V.; Loschenov, V. B.; Gonchukov, S. A.

    2016-02-01

    This work is devoted to the study of two new synthetic bacteriochlorins with four and eight cationic substitutes as the photosensitizers in the photodynamic process. The spectral and antibacterial properties of these photosensitizers in saline solution were investigated. It is shown, that the aggregation ability decreases and the antibacterial efficiency grows as the cationic substitute number increases.

  11. Suppression of cucurbit scab on cucumber leaves by photodynamic dyes

    The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...

  12. Choline PET for Monitoring Early Tumor Response to Photodynamic Therapy

    Fei, Baowei; Wang, Hesheng; Wu, Chunying; Chiu, Song-mao

    2009-01-01

    Photodynamic therapy (PDT) is a relatively new therapy that has shown promise for treating various cancers in both preclinical and clinical studies. The present study evaluated the potential use of PET with radiolabeled choline to monitor early tumor response to PDT in animal models.

  13. Optical coherence tomography to monitor photodynamic therapy in pathological myopia

    Garcia-Layana, A. (Alfredo); Salinas-Alaman, A. (Ángel); Maldonado, M J; Sainz-Gomez, C. (C.); Fernandez-Hortelano, A. (A.)

    2006-01-01

    To evaluate the role of optical coherence tomography (OCT) in determining choroidal neovascularisation (CNV) activity before and after photodynamic therapy (PDT) in patients with pathological myopia. METHODS: 33 patients (33 eyes) with pathological myopia and being treated with PDT were included. Every 3 months all patients were evaluated and presence or absence of leakage on fluorescein angiography, presence of intraretinal or subretinal fluid on...

  14. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser irradiation. The AHP@MNPs can target tumors via CD44 receptor-mediated endocytosis, which have enhanced tumor therapeutic effects through photodynamic/hyperthermia-combined treatment without any drugs. We successfully detected tumors implanted in mice via magnetic resonance imaging and optical imaging. Furthermore, we demonstrated the photodynamic/hyperthermia-combined therapeutic efficacy of AHP@MNPs with synergistically enhanced efficacy against cancer.Despite magnetic nanoparticles having shown great potential in cancer treatment, tremendous challenges related to diagnostic sensitivity and treatment efficacy for clinical application remain. Herein, we designed optimized multifunctional magnetite nanoparticles (AHP@MNPs), composed of Fe3O4 nanoparticles and photosensitizer conjugated hyaluronic acid (AHP), to achieve enhanced tumor diagnosis and therapy. Fe3O4 nanoparticles (MNPs) were synthesized by a facile hydrolysis method. MNPs have higher biocompatibility, controllable particle sizes, and desirable magnetic properties. The fabricated AHP@MNPs have enhanced water solubility (average size: 108.13 +/- 1.08 nm), heat generation properties, and singlet oxygen generation properties upon magnetic and laser

  15. Photodynamic Therapy for Malignant Brain Tumors.

    Akimoto, Jiro

    2016-04-15

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area. PMID:26888042

  16. Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment

    Rubel, D M; Spelman, L; Murrell, D F; See, J-A; Hewitt, D; Foley, P; Bosc, C; Kerob, D; Kerrouche, N; Wulf, H C; Shumack, S

    2014-01-01

    BACKGROUND: Daylight photodynamic therapy (DL-PDT) of actinic keratosis (AK) has shown preliminary efficacy and safety results comparable to conventional photodynamic therapy (c-PDT), using methyl aminolevulinate (MAL) cream. OBJECTIVES: To demonstrate the efficacy and safety of DL-PDT vs. c-PDT ...

  17. Mechanisms of tumor necrosis in photodynamic therapy with a chlorine photosensitizer: experimental studies

    Privalov, Valeriy A.; Lappa, Alexander V.; Bigbov, Elmir N.

    2011-02-01

    A photodynamic therapy experiment on 118 inbred white mice with transplanted Ehrlich's tumor (mouse mammary gland adenocarcinoma) is performed to reveal mechanisms of necrosis formation. In 7-10 days the tumor of 1-1.5 cm diameter is formed under skin at the injection point, and PDT procedure is applied. There were used a chlorine type photosensitizer RadachlorineTM and 662 nm wavelength diode laser. The drug is injected by intravenously at the dose of 40 mg/kg; the irradiation is executed in 2-2.5 hours at the surface dose of about 200 J/cm2. Each of the mice had a photochemical reaction in form of destructive changes at the irradiation region with subsequent development of dry coagulation necrosis. After rejection of the necrosis there occurred epithelization of defect tissues in a tumor place. Histological investigations were conducted in different follow-up periods, in 5 and 30 min, 1, 3, 6, and 12 hours, 1, 3, 7 and 28 days after irradiation. They included optical microscopy, immune marker analysis, morphometry with measurements of volume density of epithelium, tumor stroma and necroses, vascular bed. The investigations showed that an important role in damaging mechanisms of photodynamic action belongs to hypoxic injuries of tumor mediated by micro vascular disorders and blood circulatory disturbances. The injuries are formed in a few stages: microcirculation angiospasm causing vessel paresis, irreversible stases in capillaries, diapedetic hemorrhages, thromboses, and thrombovasculitis. It is marked mucoid swelling and fibrinoid necrosis of vascular tissue. Progressive vasculitises result in total vessel obliteration and tumor necrosis.

  18. Enhancement of selectivity for photodynamic therapy

    Bedwell, Joanne

    Photodynamic Therapy (PDT) is a technique for producing localised tissue damage with low power light following prior administration of a photosensitising drug. The promise of PDT has been based on the selective retention of photosensitisers by tumours, but this aspect has been over-emphasised with a maximum ratio of photosensitiser concentration of 3:1, tumour to normal, for extracranial tumours and current drugs. This makes selective tumour necrosis difficult to achieve. This thesis explores ways in which selectivity may be improved. Aluminium sulphonated phthalocyanine (AlSPc) has better photochemical properties than the widely used HpD and Photofrin II, but has the same tumour selectivity, although the ratio was improved marginally using its disulphonated component. However, when used in conjunction with the radioprotective drug W7, in a rat colon cancer model, tumour necrosis was the same as without W7 while there was no damage to adjacent normal colon. A radical new approach is to give 5-aminolaevulinic acid (ALA) which induces endogenous production of the photosensitiser protoporphyrin IX. This improves selectivity in the rat colon cancer to 6:1 (tumour to normal mucosa), but also sensitises the mucosa selectively compared with the underlying muscle (10:1), giving a tumour to muscle ratio of 60:1. This has enormous potential for treating small tumours or areas of dysplasia in a range of hollow organs. ALA also has the major advantages of a short optimum drug to light time (typically 4-6 hours), short duration of skin sensitivity (approximately 24 hours) and it can be given orally with minimal systemic toxicity. This work has also shown in vitro that PDT with AlSPc sensitisation can kill helicohacter pylori at doses unlikely to affect gastric mucosa. In conclusion, by careful choice of photosensitising agents and treatment regimes, it is possible to limit PDT effects to abnormal tissues, and even if there is some normal tissue damage, in most cases, this heals

  19. 血卟啉单甲醚介导的光动力作用后人类乳腺癌Bcap-37细胞白细胞介素-2和白细胞介素-6的检测分析%Detection of IL-2 and IL-6 in human breast tumor Bcap-37 cells treated by hematoporphyrin nonomethyl ether mediated photodynamic therapy

    刘力华; 黄明辉; 钱燕春; 张宏波

    2012-01-01

    Objective To observe IL-2 and IL-6 changes in the breast tumor Bcap-37 cells reated by hematoporphyrin nonomethyl ether mediated photodynamic therapy (HMME-PDT).Methods Cells in logarithmic growth phase were collected among breast cancer cells cultured in conventional methods.According to blank control group or the experimental group (laser irradiation group,photosensitive agent group and HMME-PDT group),PDT in addition to HMME and HMME-PDT were conducted.The changes of IL-2,IL-6 were detected by radioimmunoassay.Results After HMME-PDT,IL-2 was increased as time passed.After 12,24 and 48 h,compared with IL-2 level in the control group,in laser irradiation group or photosensitive agent group,the levels of IL-2 in HMME-PDT group was significantly differences (P < 0.05).But IL-6 levels decreased.The most obvious changes of IL-6 levels happened at 12h and 24h.There was significant differences between IL-6 in HMME-PDT group with the control group,laser irradiation group or photosensitive agent group (P < 0.05).Conclusion HMME-PDT maybe have destruction effect by altering IL-2,IL-6 activity on breast tumor cells,which provides objective indicators for clinical patients to regulate immune function and auxiliary diagnosis.%目的 观察乳腺肿瘤细胞经血卟啉单甲醚介导的光动力学疗法( HMME-PDT)作用后白细胞介素(IL )-2和IL-6的变化.方法 常规传代培养乳腺癌Bcap-37细胞,取对数生长期的细胞,按空白对照组、实验组(激光照射组、光敏剂组、综合组)进行HMME-PDT作用,采用放射免疫法检测不同时间点细胞IL-2、IL-6的含量变化.结果 在HMME-PDT作用后,IL-2含量随时间延长增加,综合组在12、24和48 h与对照组、激光照射组、光敏剂组比较差异有统计学意义(P<0.05).IL-6的含量随时间延长降低,在12、24h变化最明显,综合组与对照组、激光照射组和光敏剂组比较差异均有统计学意义(P<0.05).结论 HMME-PDT可能通过改变IL-2、IL-6

  20. 腺病毒为载体的单纯疱疹病毒胸苷激酶/更昔洛韦系统联合光动力治疗口腔恶性肿瘤的初步观察%The initial observation of adenovirus vector-mediated herpes simplex virus-thymidine kinase gene/ganciclovir system and photodynamic therapy for oral malignant tumor treatments

    陈世璋; 张燕升; 范忠; 李维弟; 郭莹; 王潇; 陈剑飞; 李宁

    2011-01-01

    Objective To evaluate the method of adenovirus vector-mediated herpes simplex virus-thymidine kinase gene (ADV-TK)/ganciclovir(GCV) system and photodynamic therapy (PUT) for treating the oral malignant tumor. Methods Ten patients who were suffering from oral malignant tumor of the different positions were selected, and injected with the hematoporphyrin derivative (HPD), irradiated by picking the corresponding laser frequency, and injected the ADV-TK gene into the tumor body and periphery. By the imaging and the hemodynamics analysis, the clinical efficacy after infusing vein with GCV was assessed. Results After the combination method treatments, patients' tumors appeared clear shrinkage or complete extinction. There was obvious fall of the blood flow volume in the tumor body. Imaging results showed significantly differences. So it was a perfect and effective treatment Conclusion There are many advantages to apply the ADV-TK/GCV system and PDT treatment on the oral malignant tumor, minimal side effects and greater clinical security. It is a safe and credible therapy which can be offered for curing the oral malignant tumor systematically.%目的 应用腺病毒为载体的单纯疱疹病毒胸苷激酶(ADV-TK)/更昔洛韦(GCV)系统联合光动力疗法对口腔恶性肿瘤复发患者进行治疗,探讨此法治疗口腔恶性肿瘤的临床效果.方法 选取10名口腔不同部位的恶性肿瘤复发患者,用光敏剂——血卟啉衍生物(HPD)静脉给药,选择相应激光输出功率定时照射,以ADV-TK基因行瘤体及周边注射,经GCV静脉输入治疗后,通过影像学及瘤体血流动力学分析进行临床疗效评估.结果 经联合法治疗后,患者肿瘤明显缩小(甚至完全消失),瘤体内血流量降低,影像结果对比改变明显,治疗效果理想.结论 将ADV-TK/GCV系统联合光动力治疗口腔恶性肿瘤具有显著的抗肿瘤效应,具备副作用轻微、临床安全性高的特点,为系统性治疗相关肿瘤

  1. Photodynamic effect of proflavine on 0X174 bacteriophage, its DNA replicative form and its isolated single-stranded DNA

    In contrast to that what is observed with most inactivating agents, proflavine-mediated photoinactivation is about 10 times more efficient on double-stranded 0X174 replicative form DNA (RFI) than on isolated single-stranded 0X174 DNA. Both 0XRFI DNA and encapsidated DNA have similar sensitivities to proflavine and light treatment. With the three substrates studied, reactivation can occur through high multiplicity of infection and depends upon the cellular rec A gene product. No effect of the pol A, uvr A or lex A gene mutations has been found on either phage of DNA inactivation rates. The photodynamically induced lesions can be repaired, at least in part, by the SOS repair system induced in the host-cells by a 100 J x m-2 UV irradiation. SOS repair does not occur with bacteria (or spheroplasts) irradiated in the presence of chloramphenicol. Reversion frequency of the 0X174 amber mutations indicates that 1) photodynamically induced lesions are mutagenic whether the rec A gene product is present or not in the indicator bacteria; 2) induction of the SOS repair system is accompanied by a mutagenic process which results in a almost twofold increase of the reversion frequency; and 3) multiplicity reactivation occurs through a re ombinational process and is not mutagenic per se. (orig./AJ)

  2. Routine experimental system for defining conditions used in photodynamic therapy and fluorescence photodetection of (non-) neoplastic epithelia

    Lange, Norbert; Vaucher, Laurent; Marti, Alexandre; Etter, Anne-Lise; Gerber, Patrick; van den Bergh, Hubert; Jichlinski, Patrice; Kucera, Pavel

    2001-04-01

    A common method to induce enhanced short-term endogenous porphyrin synthesis and accumulation in cell is the topical, systemic application of 5-aminolevulinic acid or one of its derivatives. This circumvents the intravenous administration of photosensitizers normally used for photodynamic therapy (PDT) of fluorescence photodetection. However, in the majority of potential medical indications, optimal conditions with respect to the porphyrin precursor or its pharmaceutical formulation have not yet been found. Due to ethical restrictions and animal right directives, the number of available test objects is limited. Hence, definition and use of nonanimal test methods are needed. Tissue and organ cultures are a promising approach in replacing cost intensive animal models in early stages of drug development. In this paper, we present a tissue culture, which can among others be used routinely to answer specific questions emerging in the field of photodynamic therapy and fluorescence photodetection. This technique uses mucosae excised from sheep paranasal sinuses or pig bladder, which is cultured under controlled conditions. It allows quasiquantative testing of different protoporphyrin IX precursors with respect to dose-response curves and pharmacokinetics, as well as the evaluation of different incubation conditions and/or different drug formulations. Furthermore, this approach, when combined with the use of electron microscopy and fluorescence-based methods, can be used to quantitatively determine the therapeutic outcome following protoporphyrin IX-mediated PDT.

  3. Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue.

    Lilge, L; Portnoy, M; Wilson, B C

    2000-10-01

    The apoptotic response of normal brain and intracranial VX2 tumour following photodynamic therapy (PDT) mediated by 5 different photosensitizers (Photofrin, 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX), chloroaluminium phthalocyanine (AlCIPc), Tin Ethyl Etiopurpurin (SnET(2)), and meta -tetra(hydroxyphenyl)chlorin (m THPC)) was evaluated following a previous analysis which investigated the necrotic tissue response to PDT at 24 h post treatment. Free DNA ends, produced by internucleosomal DNA cleavage in apoptotic cells, were stained using a TUNEL (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling) assay. Confocal laser scanning microscopy (CLSM) was used to quantify the local incidence of apoptosis and determine its spatial distribution throughout the brain. The incidence of apoptosis was confirmed by histopathology, which demonstrated cell shrinkage, pyknosis and karyorrhexis. At 24 h post PDT, AlClPc did not cause any detectable apoptosis, while the other photosensitizers produced varying numbers of apoptotic cells near the region of coagulative necrosis. The apoptotic response did not appear to be related to photosensitizer dose. These results suggest that at this time point, a minimal and fairly localized apoptotic effect is produced in brain tissues, the extent of which depends largely on the particular photosensitizer. PMID:10993661

  4. Evaluation of photodynamic therapy (PDT) procedures using microfluidic system

    Jedrych, Elzbieta, E-mail: ejedrych@ch.pw.edu.pl [Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 300-664 Warsaw (Poland); Pawlicka, Zuzanna; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew [Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 300-664 Warsaw (Poland)

    2011-01-10

    A hybrid PDMS/glass microfluidic system for evaluation of the efficiency of photodynamic therapy is presented. 5-aminolevulinic acid (ALA) was used as a precursor of photosensitizer. The geometry of the microdevice presented in this paper enables to test different concentrations of the photosensitizer in a single assay. The viability of the A549 cells was determined 24 h after PDT procedure (irradiation with light which induced a photosensitizer accumulated in carcinoma cells, {lambda} = 625 nm). The presented results confirmed the possibility to perform the photodynamic therapy process in vitro in microscale and the possibility to assess its effectiveness. Moreover, because two identical microstructures on a single chip were performed, the microchip can be used for examination simultaneously various cell lines (carcinoma and normal) or various photosensitizers.

  5. Photodynamic Therapy for Extramammary Paget's Disease:5 Cases Report

    2007-01-01

    Objective: To study the therapeutic effect of photodynamic therapy for extramammary Paget's disease.Methods: DIOMED 630 nm diode laser was used as light source and photofrin as photosensitizer. The patient's lesion was irradiated for 24-72 h after administrating of photofrin. The power density was 100-150 mW/cm2 and energy density was 150-300J/cm2. Dosage of photofrin was 2 mg/kg. Results: Lesion darkened 24 h after irradiation and formed a scar 96-120 h after irradiation. One patient's lesion disappeared, three patients' lesion diminished apparently and one patient's lesion was not controlled 3 months later. Conclusion: Photodynamic therapy is an effective modality for extramammary Paget's disease.

  6. Latex carrier for improving protoporphyrin IX for photodynamic therapy.

    Bui, Brian; Liu, Li; Chen, Wei

    2016-06-01

    Attachment of Protoporphyrin IX (PPIX) to poly (styrene-co-4-vinylpyridine) (PS4VP) nanobeads was carried out to improve its properties in aqueous solutions. After using an oil-in-water heated emulsion polymerization technique to synthesize PS4VP, PPIX was bonded to the particles via the carboxylic acid of PPIX hydrogen-bonding to the nitrogen at the surface of PS4VP, thereby preventing self-reactions between the carboxyl groups and the porphyrin core. Refraining the two parts from interacting while attached to the nanobeads prevented PPIX from aggregating, which then increased water solubility, enhanced luminescence and singlet oxygen production. Attachment also improved cell uptake and cell destruction by photodynamic activity. This shows that PS4VP-PPIX may help improve aspects of photodynamic therapy for the treatment of cancer. PMID:27020668

  7. Photodynamic Processes in Fluoride Crystals Doped with Ce3+

    Pavlov V.V.

    2015-01-01

    Full Text Available Integrated studies of photoelectric phenomena and their associated photodynamic processes in LiCaAlF6, LiLuF4, LiYF4, LiY0,5Lu0,5F4, SrAlF5 crystals doped with Ce3+ ions have been carried out using the combination of the methods of optical and dielectric spectroscopy. The numerical values of the basic parameters of photodynamic processes and their spectral dependence in 240 – 310 nm spectral range are evaluated. It has been shown that the most probable process, which leads to the photoionization of Ce3+ ions in LiYxLu1-xF4:Ce3+ (x=0; 0,5; 1 and LiCaAlF6:Ce3+ crystals, is excited-state absorption to the states of mixed configurations of Ce3+ ions localized near/in the conduction band of crystal.

  8. Anticancer photodynamic therapy based on the use of a microsystem

    Jastrzebska, E.; Bulka, N.; Zukowski, K.; Chudy, M.; Brzozka, Z.; Dybko, A.

    2015-07-01

    The paper presents the evaluation of photodynamic therapy (PDT) procedures with an application of a microsystem. Two cell lines were used in the experiments, i.e. human lung carcinoma - A549 and normal human fetal lung fibroblast MRC5. Mono-, coculture and mixed cultures were performed in a microsystem at the same time. The microsystem consisted of a concentration gradient generator (CGG) which generates different concentrations of a photosensitizer, and a set of microchambers for cells. The microchambers were linked by microchannels of various length in order to allow cells migration and in this way cocultures were created. Transparent materials were used for the chip manufacture, i.e. glass and poly(dimethylsiloxane). A high power LED was used to test photodynamic therapy effectiveness in the microsystem.

  9. Nanotechnology; its significance in cancer and photodynamic therapy

    Mohammad Reza Gaeeni

    2015-07-01

    Full Text Available In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yield, narrow emission spectra, broad absorption, large effective stokes shifts. QDs are more photostable and resistant to metabolic degradation. These photosensitizing properties can be used as photosensitizers for Photodynamic Therapy (PDT. PDT has been recommended for its unique characteristic, such as low side effect and more efficiency. Therefore, nanomedicine leads a promising future for targeted therapy in cancer tumor. Furthermore, QDs have recently been applied in PDT, which will be addressed in this review letter. Also this review letter evaluates key aspects of nano-particulate design and engineering, including the advantage of the nanometer scale size range, biological behavior, and safety profile.

  10. The impact of absorbed photons on antimicrobial photodynamic efficacy.

    Cieplik, Fabian; Pummer, Andreas; Regensburger, Johannes; Hiller, Karl-Anton; Späth, Andreas; Tabenski, Laura; Buchalla, Wolfgang; Maisch, Tim

    2015-01-01

    Due to increasing resistance of pathogens toward standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB) may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS)-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively. Consequently, in the present study two strategies for adjustment of irradiation parameters were evaluated: (i) matching energy doses applied by respective light sources (common practice) and (ii) by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule. In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB) regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies. PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii), or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a photophysical point