An energy transfer method for 4D Monte Carlo dose calculation.
Siebers, Jeffrey V; Zhong, Hualiang
2008-09-01
This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy deposited per unit mass in the reference image. ETM has been implemented into DOSXYZnrc and compared with a conventional dose interpolation method (DIM) on deformable phantoms. For voxels whose contents merge in the deforming phantom, the doses calculated by ETM are exactly the same as an analytical solution, contrasting to the DIM which has an average 1.1% dose discrepancy in the beam direction with a maximum error of 24.9% found in the penumbra of a 6 MV beam. The DIM error observed persists even if voxel subdivision is used. The ETM is computationally efficient and will be useful for 4D dose addition and benchmarking alternative 4D dose addition algorithms. PMID:18841862
New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation
In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ∼40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry. (paper)
An energy transfer method for 4D Monte Carlo dose calculation
Siebers, Jeffrey V; Zhong, Hualiang
2008-01-01
This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy ...
Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate
Vieira, Igor F.; Lima, Fernando R.A.; Gomes, Marcelo S., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W.; Pacheco, Ludimila M. [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Chaves, Rosa M. [Instituto de Radium e Supervoltagem Ivo Roesler, Recife, PE (Brazil)
2011-07-01
Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)
Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate
Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)
Chan, Mark K.H. [Tuen Mun Hospital, Department of Clinical Oncology, Hong Kong (S.A.R) (China); Werner, Rene [The University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg (Germany); Ayadi, Miriam [Leon Berard Cancer Center, Department of Radiation Oncology, Lyon (France); Blanck, Oliver [University Clinic of Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany)
2014-09-20
To investigate the adequacy of three-dimensional (3D) Monte Carlo (MC) optimization (3DMCO) and the potential of four-dimensional (4D) dose renormalization (4DMC{sub renorm}) and optimization (4DMCO) for CyberKnife (Accuray Inc., Sunnyvale, CA) radiotherapy planning in lung cancer. For 20 lung tumors, 3DMCO and 4DMCO plans were generated with planning target volume (PTV{sub 5} {sub mm}) = gross tumor volume (GTV) plus 5 mm, assuming 3 mm for tracking errors (PTV{sub 3} {sub mm}) and 2 mm for residual organ deformations. Three fractions of 60 Gy were prescribed to ≥ 95 % of the PTV{sub 5} {sub mm}. Each 3DMCO plan was recalculated by 4D MC dose calculation (4DMC{sub recal}) to assess the dosimetric impact of organ deformations. The 4DMC{sub recal} plans were renormalized (4DMC{sub renorm}) to 95 % dose coverage of the PTV{sub 5} {sub mm} for comparisons with the 4DMCO plans. A 3DMCO plan was considered adequate if the 4DMC{sub recal} plan showed ≥ 95 % of the PTV{sub 3} {sub mm} receiving 60 Gy and doses to other organs at risk (OARs) were below the limits. In seven lesions, 3DMCO was inadequate, providing < 95 % dose coverage to the PTV{sub 3} {sub mm}. Comparison of 4DMC{sub recal} and 3DMCO plans showed that organ deformations resulted in lower OAR doses. Renormalizing the 4DMC{sub recal} plans could produce OAR doses higher than the tolerances in some 4DMC{sub renorm} plans. Dose conformity of the 4DMC{sub renorm} plans was inferior to that of the 3DMCO and 4DMCO plans. The 4DMCO plans did not always achieve OAR dose reductions compared to 3DMCO and 4DMC{sub renorm} plans. This study indicates that 3DMCO with 2 mm margins for organ deformations may be inadequate for Cyberknife-based lung stereotactic body radiotherapy (SBRT). Renormalizing the 4DMC{sub recal} plans could produce degraded dose conformity and increased OAR doses; 4DMCO can resolve this problem. (orig.) [German] Untersucht wurde die Angemessenheit einer dreidimensionalen (3-D) Monte-Carlo
The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the
Flampouri, Stella; Jiang, Steve B.; Sharp, Greg C.; Wolfgang, John; Patel, Abhijit A.; Choi, Noah C.
2006-06-01
The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the
Flampouri, Stella; Jiang, Steve B; Sharp, Greg C; Wolfgang, John; Patel, Abhijit A; Choi, Noah C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)
2006-06-07
The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the
McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald
2010-03-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy investigations that use the phantom. This work further evaluates the NCAT
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4–167.1 cc) and motion amplitude (2.9–30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior–inferior motion amplitude alone. Larger spot sizes (σ ∼ 9–16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ∼ 2–4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes
Dowdell, S.; Grassberger, C.; Sharp, G. C.; Paganetti, H.
2013-06-01
Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ˜ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ˜ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively
Monte Carlo Radiative Transfer
Whitney, Barbara A
2011-01-01
I outline methods for calculating the solution of Monte Carlo Radiative Transfer (MCRT) in scattering, absorption and emission processes of dust and gas, including polarization. I provide a bibliography of relevant papers on methods with astrophysical applications.
Monte Carlo transition probabilities
Lucy, L. B.
2001-01-01
Transition probabilities governing the interaction of energy packets and matter are derived that allow Monte Carlo NLTE transfer codes to be constructed without simplifying the treatment of line formation. These probabilities are such that the Monte Carlo calculation asymptotically recovers the local emissivity of a gas in statistical equilibrium. Numerical experiments with one-point statistical equilibrium problems for Fe II and Hydrogen confirm this asymptotic behaviour. In addition, the re...
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of Monte Carlo. Welcome to Los Alamos, the birthplace of “Monte Carlo” for computational physics. Stanislaw Ulam, John von Neumann, and Nicholas Metropolis are credited as the founders of modern Monte Carlo methods. The name “Monte Carlo” was chosen in reference to the Monte Carlo Casino in Monaco (purportedly a place where Ulam’s uncle went to gamble). The central idea (for us) – to use computer-generated “random” numbers to determine expected values or estimate equation solutions – has since spread to many fields. "The first thoughts and attempts I made to practice [the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as I was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered whether a more practical method than “abstract thinking” might not be to lay it out say one hundred times and simply observe and count the number of successful plays... Later [in 1946], I described the idea to John von Neumann, and we began to plan actual calculations." - Stanislaw Ulam.
Monte Carlo photon benchmark problems
Photon benchmark calculations have been performed to validate the MCNP Monte Carlo computer code. These are compared to both the COG Monte Carlo computer code and either experimental or analytic results. The calculated solutions indicate that the Monte Carlo method, and MCNP and COG in particular, can accurately model a wide range of physical problems. 8 refs., 5 figs
Sessi, V.; Otte, F.; Krotzky, S.; Tieg, C.; Wasniowska, M.; Ferriani, P.; Heinze, S.; Honolka, Jan; Kern, K.
2014-01-01
Roč. 89, č. 20 (2014), "205425-1"-"205425-6". ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : iron atoms on 4d metal surfaces * surface magnetism * complex spin order * indirect exchange interactions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables
Optimization of Monte Carlo simulations
Bryskhe, Henrik
2009-01-01
This thesis considers several different techniques for optimizing Monte Carlo simulations. The Monte Carlo system used is Penelope but most of the techniques are applicable to other systems. The two mayor techniques are the usage of the graphics card to do geometry calculations, and raytracing. Using graphics card provides a very efficient way to do fast ray and triangle intersections. Raytracing provides an approximation of Monte Carlo simulation but is much faster to perform. A program was ...
Quantum Gibbs ensemble Monte Carlo
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of 4He in two dimensions
The course of ''Monte Carlo Techniques'' will try to give a general overview of how to build up a method based on a given theory, allowing you to compare the outcome of an experiment with that theory. Concepts related with the construction of the method, such as, random variables, distributions of random variables, generation of random variables, random-based numerical methods, will be introduced in this course. Examples of some of the current theories in High Energy Physics describing the e+e- annihilation processes (QED, Electro-Weak, QCD) will also be briefly introduced. A second step in the employment of this method is related to the detector. The interactions that a particle could have along its way, through the detector as well as the response of the different materials which compound the detector will be quoted in this course. An example of detector at LEP era, in which these techniques are being applied, will close the course. (orig.)
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Monte Carlo Methods in Physics
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
Parallelizing Monte Carlo with PMC
Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.
1994-11-01
PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described.
Monte Carlo dose mapping on deforming anatomy
Zhong, Hualiang; Siebers, Jeffrey V.
2009-10-01
This paper proposes a Monte Carlo-based energy and mass congruent mapping (EMCM) method to calculate the dose on deforming anatomy. Different from dose interpolation methods, EMCM separately maps each voxel's deposited energy and mass from a source image to a reference image with a displacement vector field (DVF) generated by deformable image registration (DIR). EMCM was compared with other dose mapping methods: energy-based dose interpolation (EBDI) and trilinear dose interpolation (TDI). These methods were implemented in EGSnrc/DOSXYZnrc, validated using a numerical deformable phantom and compared for clinical CT images. On the numerical phantom with an analytically invertible deformation map, EMCM mapped the dose exactly the same as its analytic solution, while EBDI and TDI had average dose errors of 2.5% and 6.0%. For a lung patient's IMRT treatment plan, EBDI and TDI differed from EMCM by 1.96% and 7.3% in the lung patient's entire dose region, respectively. As a 4D Monte Carlo dose calculation technique, EMCM is accurate and its speed is comparable to 3D Monte Carlo simulation. This method may serve as a valuable tool for accurate dose accumulation as well as for 4D dosimetry QA.
Proton Upset Monte Carlo Simulation
O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.
2009-01-01
The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.
Monte Carlo Particle Lists: MCPL
Kittelmann, Thomas; Knudsen, Erik B; Willendrup, Peter; Cai, Xiao Xiao; Kanaki, Kalliopi
2016-01-01
A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular simulation packages.
Shell model Monte Carlo methods
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Kinematics of multigrid Monte Carlo
We study the kinematics of multigrid Monte Carlo algorithms by means of acceptance rates for nonlocal Metropolis update proposals. An approximation formula for acceptance rates is derived. We present a comparison of different coarse-to-fine interpolation schemes in free field theory, where the formula is exact. The predictions of the approximation formula for several interacting models are well confirmed by Monte Carlo simulations. The following rule is found: For a critical model with fundametal Hamiltonian Η(φ), absence of critical slowing down can only be expected if the expansion of (Η(φ+ψ)) in terms of the shift ψ contains no relevant (mass) term. We also introduce a multigrid update procedure for nonabelian lattice gauge theory and study the acceptance rates for gauge group SU(2) in four dimensions. (orig.)
Asynchronous Anytime Sequential Monte Carlo
Paige, Brooks; Wood, Frank; Doucet, Arnaud; Teh, Yee Whye
2014-01-01
We introduce a new sequential Monte Carlo algorithm we call the particle cascade. The particle cascade is an asynchronous, anytime alternative to traditional particle filtering algorithms. It uses no barrier synchronizations which leads to improved particle throughput and memory efficiency. It is an anytime algorithm in the sense that it can be run forever to emit an unbounded number of particles while keeping within a fixed memory budget. We prove that the particle cascade is an unbiased mar...
Neural Adaptive Sequential Monte Carlo
Gu, Shixiang; Ghahramani, Zoubin; Turner, Richard E
2015-01-01
Sequential Monte Carlo (SMC), or particle filtering, is a popular class of methods for sampling from an intractable target distribution using a sequence of simpler intermediate distributions. Like other importance sampling-based methods, performance is critically dependent on the proposal distribution: a bad proposal can lead to arbitrarily inaccurate estimates of the target distribution. This paper presents a new method for automatically adapting the proposal using an approximation of the Ku...
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Parallel Monte Carlo reactor neutronics
The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved
Monomial Gamma Monte Carlo Sampling
Zhang, Yizhe; Wang, Xiangyu; Chen, Changyou; Fan, Kai; Carin, Lawrence
2016-01-01
We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling by demonstrating their connection under the canonical transformation from Hamiltonian mechanics. This insight enables us to extend HMC and slice sampling to a broader family of samplers, called monomial Gamma samplers (MGS). We analyze theoretically the mixing performance of such samplers by proving that the MGS draws samples from a target distribution with zero-autocorrelation, in the limit of a single parameter. This propert...
We have shown that the transport equation can be solved with particles, like the Monte-Carlo method, but without random numbers. In the Monte-Carlo method, particles are created from the source, and are followed from collision to collision until either they are absorbed or they leave the spatial domain. In our method, particles are created from the original source, with a variable weight taking into account both collision and absorption. These particles are followed until they leave the spatial domain, and we use them to determine a first collision source. Another set of particles is then created from this first collision source, and tracked to determine a second collision source, and so on. This process introduces an approximation which does not exist in the Monte-Carlo method. However, we have analyzed the effect of this approximation, and shown that it can be limited. Our method is deterministic, gives reproducible results. Furthermore, when extra accuracy is needed in some region, it is easier to get more particles to go there. It has the same kind of applications: rather problems where streaming is dominant than collision dominated problems
Extending canonical Monte Carlo methods
Velazquez, L.; Curilef, S.
2010-02-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C < 0. The resulting framework appears to be a suitable generalization of the methodology associated with the so-called dynamical ensemble, which is applied to the extension of two well-known Monte Carlo methods: the Metropolis importance sampling and the Swendsen-Wang cluster algorithm. These Monte Carlo algorithms are employed to study the anomalous thermodynamic behavior of the Potts models with many spin states q defined on a d-dimensional hypercubic lattice with periodic boundary conditions, which successfully reduce the exponential divergence of the decorrelation time τ with increase of the system size N to a weak power-law divergence \\tau \\propto N^{\\alpha } with α≈0.2 for the particular case of the 2D ten-state Potts model.
Forward physics Monte Carlo (FPMC)
Boonekamp, M.; Juránek, Vojtěch; Kepka, Oldřich; Royon, C.
Hamburg : Verlag Deutsches Elektronen-Synchrotron, 2009 - (Jung, H.; De Roeck, A.), s. 758-762 ISBN N. [HERA and the LHC workshop series on the implications of HERA for LHC physics. Geneve (CH), 26.05.2008-30.05.2008] R&D Projects: GA MŠk LC527; GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : forward physics * diffraction * two-photon * Monte Carlo Subject RIV: BF - Elementary Particles and High Energy Physics http://arxiv.org/PS_cache/arxiv/pdf/0903/0903.3861v2.pdf
MontePython: Implementing Quantum Monte Carlo using Python
J.K. Nilsen
2006-01-01
We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo (QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial and parallel cases to show that the overhead using Python can be negligible.
Monte Carlo techniques in radiation therapy
Verhaegen, Frank
2013-01-01
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...
Monte Carlo primer for health physicists
The basic ideas and principles of Monte Carlo calculations are presented in the form of a primer for health physicists. A simple integral with a known answer is evaluated by two different Monte Carlo approaches. Random number, which underlie Monte Carlo work, are discussed, and a sample table of random numbers generated by a hand calculator is presented. Monte Carlo calculations of dose and linear energy transfer (LET) from 100-keV neutrons incident on a tissue slab are discussed. The random-number table is used in a hand calculation of the initial sequence of events for a 100-keV neutron entering the slab. Some pitfalls in Monte Carlo work are described. While this primer addresses mainly the bare bones of Monte Carlo, a final section briefly describes some of the more sophisticated techniques used in practice to reduce variance and computing time
Interacting Particle Markov Chain Monte Carlo
Rainforth, Tom; Naesseth, Christian A.; Lindsten, Fredrik; Paige, Brooks; van de Meent, Jan-Willem; Doucet, Arnaud; Wood, Frank
2016-01-01
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method that introduces a coupling between multiple standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both non-interacting PMCMC samplers and a single PMCMC sampler with an equivalent total computational budget. An additional advant...
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
MONTE-4 for Monte Carlo simulations with high performance
The Monte Carlo machine MONTE-4, has been developed based on the architecture of existing supercomputer with a design philosophy to realize high performance in vector-parallel processing of Monte Carlo codes for particle transport problems. The effective performance of this Monte Carlo machine is presented through practical applications of multi-group criticality safety code KENO-IV and continuous-energy neutron/photon transport code MCNP. Ten times speedup has been obtained on MONTE-4 compared with the execution time in the scalar processing. (K.A.)
Multidimensional stochastic approximation Monte Carlo.
Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383
Single scatter electron Monte Carlo
Svatos, M.M. [Lawrence Livermore National Lab., CA (United States)|Wisconsin Univ., Madison, WI (United States)
1997-03-01
A single scatter electron Monte Carlo code (SSMC), CREEP, has been written which bridges the gap between existing transport methods and modeling real physical processes. CREEP simulates ionization, elastic and bremsstrahlung events individually. Excitation events are treated with an excitation-only stopping power. The detailed nature of these simulations allows for calculation of backscatter and transmission coefficients, backscattered energy spectra, stopping powers, energy deposits, depth dose, and a variety of other associated quantities. Although computationally intense, the code relies on relatively few mathematical assumptions, unlike other charged particle Monte Carlo methods such as the commonly-used condensed history method. CREEP relies on sampling the Lawrence Livermore Evaluated Electron Data Library (EEDL) which has data for all elements with an atomic number between 1 and 100, over an energy range from approximately several eV (or the binding energy of the material) to 100 GeV. Compounds and mixtures may also be used by combining the appropriate element data via Bragg additivity.
1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO
T. EVANS; ET AL
2000-08-01
We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.
Monte Carlo Application ToolKit (MCATK)
Highlights: • Component-based Monte Carlo radiation transport parallel software library. • Designed to build specialized software applications. • Provides new functionality for existing general purpose Monte Carlo transport codes. • Time-independent and time-dependent algorithms with population control. • Algorithm verification and validation results are provided. - Abstract: The Monte Carlo Application ToolKit (MCATK) is a component-based software library designed to build specialized applications and to provide new functionality for existing general purpose Monte Carlo radiation transport codes. We will describe MCATK and its capabilities along with presenting some verification and validations results
Monte Carlo lattice program KIM
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
The Monte Carlo code MONK is a general program written to provide a high degree of flexibility to the user. MONK is distinguished by its detailed representation of nuclear data in point form i.e., the cross-section is tabulated at specific energies instead of the more usual group representation. The nuclear data are unadjusted in the point form but recently the code has been modified to accept adjusted group data as used in fast and thermal reactor applications. The various geometrical handling capabilities and importance sampling techniques are described. In addition to the nuclear data aspects, the following features are also described; geometrical handling routines, tracking cycles, neutron source and output facilities. 12 references. (U.S.)
Monte Carlo application tool-kit (MCATK)
The Monte Carlo Application tool-kit (MCATK) is a C++ component-based software library designed to build specialized applications and to provide new functionality for existing general purpose Monte Carlo radiation transport codes such as MCNP. We will describe MCATK and its capabilities along with presenting some verification and validations results. (authors)
Common misconceptions in Monte Carlo particle transport
Booth, Thomas E., E-mail: teb@lanl.gov [LANL, XCP-7, MS F663, Los Alamos, NM 87545 (United States)
2012-07-15
Monte Carlo particle transport is often introduced primarily as a method to solve linear integral equations such as the Boltzmann transport equation. This paper discusses some common misconceptions about Monte Carlo methods that are often associated with an equation-based focus. Many of the misconceptions apply directly to standard Monte Carlo codes such as MCNP and some are worth noting so that one does not unnecessarily restrict future methods. - Highlights: Black-Right-Pointing-Pointer Adjoint variety and use from a Monte Carlo perspective. Black-Right-Pointing-Pointer Misconceptions and preconceived notions about statistical weight. Black-Right-Pointing-Pointer Reasons that an adjoint based weight window sometimes works well or does not. Black-Right-Pointing-Pointer Pulse height/probability of initiation tallies and 'the' transport equation. Black-Right-Pointing-Pointer Highlights unnecessary preconceived notions about Monte Carlo transport.
Use of Monte Carlo Methods in brachytherapy
The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)
Monte Carlo simulation for soot dynamics
Zhou Kun
2012-01-01
Full Text Available A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Importance iteration in MORSE Monte Carlo calculations
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)
Fast quantum Monte Carlo on a GPU
Lutsyshyn, Y
2013-01-01
We present a scheme for the parallelization of quantum Monte Carlo on graphical processing units, focusing on bosonic systems and variational Monte Carlo. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent acceleration. Comparing with single core execution, GPU-accelerated code runs over x100 faster. The CUDA code is provided along with the package that is necessary to execute variational Monte Carlo for a system representing liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the latest Kepler architecture K20 GPU. Kepler-specific optimization is discussed.
Advanced computers and Monte Carlo
High-performance parallelism that is currently available is synchronous in nature. It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC, CRI CRAY-1, ICL DAP, and many special-purpose array processors designed for signal processing. This form of parallelism has apparently not been of significant value to many important Monte Carlo calculations. Nevertheless, there is much asynchronous parallelism in many of these calculations. A model of a production code that requires up to 20 hours per problem on a CDC 7600 is studied for suitability on some asynchronous architectures that are on the drawing board. The code is described and some of its properties and resource requirements ae identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resources of some asynchronous multiprocessor architectures. Arguments are made for programer aids and special syntax to identify and support important asynchronous parallelism. 2 figures, 5 tables
Guideline for radiation transport simulation with the Monte Carlo method
Today, the photon and neutron transport calculations with the Monte Carlo method have been progressed with advanced Monte Carlo codes and high-speed computers. Monte Carlo simulation is rather suitable expression than the calculation. Once Monte Carlo codes become more friendly and performance of computer progresses, most of the shielding problems will be solved by using the Monte Carlo codes and high-speed computers. As those codes prepare the standard input data for some problems, the essential techniques for solving the Monte Carlo method and variance reduction techniques of the Monte Carlo calculation might lose the interests to the general Monte Carlo users. In this paper, essential techniques of the Monte Carlo method and the variance reduction techniques, such as importance sampling method, selection of estimator, and biasing technique, are described to afford a better understanding of the Monte Carlo method and Monte Carlo code. (author)
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Monte Carlo simulations for plasma physics
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Frontiers of quantum Monte Carlo workshop: preface
The introductory remarks, table of contents, and list of attendees are presented from the proceedings of the conference, Frontiers of Quantum Monte Carlo, which appeared in the Journal of Statistical Physics
Monte Carlo methods for particle transport
Haghighat, Alireza
2015-01-01
The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...
Monte Carlo Treatment Planning for Advanced Radiotherapy
Cronholm, Rickard
validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...... more sophisticated than previous algorithms since it uses delineations of structures in order to include and/or exclude certain media in various anatomical regions. This method has the potential to reduce anatomically irrelevant media assignment. In house MATLAB scripts translating the treatment plan...... presented. Comparison between dose distribution for clinical treatment plans generated by a commercial Treatment Planning System and by the implemented Monte Carlo Treatment Planning workflow were conducted. Good agreement was generally found, but for regions involving large density gradients differences of...
Experience with the Monte Carlo Method
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed
Monte Carlo simulation of granular fluids
Montanero, J. M.
2003-01-01
An overview of recent work on Monte Carlo simulations of a granular binary mixture is presented. The results are obtained numerically solving the Enskog equation for inelastic hard-spheres by means of an extension of the well-known direct Monte Carlo simulation (DSMC) method. The homogeneous cooling state and the stationary state reached using the Gaussian thermostat are considered. The temperature ratio, the fourth velocity moments and the velocity distribution functions are obtained for bot...
Monte Carlo photon transport techniques
The basis of Monte Carlo calculation of photon transport problems is the computer simulation of individual photon histories and their subsequent averaging to provide the quantities of interest. As the history of a photon is followed the values of variables are selected and decisions made by sampling known distributions using random numbers. The transport of photon is simulated by creation of particles from a defined source region, generally with a random initial orientation in space, with tracking of particles as they travel through the system, sampling the probability density functions for their interactions to evaluate their trajectories and energy deposition at different points in the system. The interactions determine the penetration and the motion of particles. The computational model, for radiation transport problems includes geometry and material specifications. Every computer code contains a database of experimentally obtained quantities, known as cross-sections that determine the probability of a particle interacting with the medium through which it is transported. Every cross-section is peculiar to the type and energy of the incident particle and to the kind of interaction it undergoes. These partial cross-sections are summed to form the total cross-section; the ratio of the partial cross-section to the total cross-section gives the probability of this particular interaction occurring. Cross-section data for the interaction types of interest must be supplied for each material present. The model also consists of algorithms used to compute the result of interactions (changes in particle energy, direction, etc.) based on the physical principles that describe the interaction of radiation with matter and the cross-section data provided
Successful vectorization - reactor physics Monte Carlo code
Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)
Monte Carlo strategies in scientific computing
Liu, Jun S
2008-01-01
This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...
CosmoPMC: Cosmology Population Monte Carlo
Kilbinger, Martin; Cappe, Olivier; Cardoso, Jean-Francois; Fort, Gersende; Prunet, Simon; Robert, Christian P; Wraith, Darren
2011-01-01
We present the public release of the Bayesian sampling algorithm for cosmology, CosmoPMC (Cosmology Population Monte Carlo). CosmoPMC explores the parameter space of various cosmological probes, and also provides a robust estimate of the Bayesian evidence. CosmoPMC is based on an adaptive importance sampling method called Population Monte Carlo (PMC). Various cosmology likelihood modules are implemented, and new modules can be added easily. The importance-sampling algorithm is written in C, and fully parallelised using the Message Passing Interface (MPI). Due to very little overhead, the wall-clock time required for sampling scales approximately with the number of CPUs. The CosmoPMC package contains post-processing and plotting programs, and in addition a Monte-Carlo Markov chain (MCMC) algorithm. The sampling engine is implemented in the library pmclib, and can be used independently. The software is available for download at http://www.cosmopmc.info.
Quantum Monte Carlo calculations of light nuclei
Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on 3H, 4He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed
SPQR: a Monte Carlo reactor kinetics code
The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations
Quantum Monte Carlo with Variable Spins
Melton, Cody A; Mitas, Lubos
2016-01-01
We investigate the inclusion of variable spins in electronic structure quantum Monte Carlo, with a focus on diffusion Monte Carlo with Hamiltonians that include spin-orbit interactions. Following our previous introduction of fixed-phase spin-orbit diffusion Monte Carlo (FPSODMC), we thoroughly discuss the details of the method and elaborate upon its technicalities. We present a proof for an upper-bound property for complex nonlocal operators, which allows for the implementation of T-moves to ensure the variational property. We discuss the time step biases associated with our particular choice of spin representation. Applications of the method are also presented for atomic and molecular systems. We calculate the binding energies and geometry of the PbH and Sn$_2$ molecules, as well as the electron affinities of the 6$p$ row elements in close agreement with experiments.
Interaction picture density matrix quantum Monte Carlo
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible
Monte Carlo modeling of Tajoura reactor
From neutronics point of view, reactor modeling is concerned with the determination of the reactor neutronic parameters which can be obtained through the solution of the neutron transport equation. The attractiveness of the Monte Carlo method is in its capability of handling geometrically complicated problems and due to the nature of the method a large number of particles can be tracked from birth to death before any statistically significant results can be obtained. In this paper the MCNP, a Monte Carlo code, is implemented in the modeling of the Tajoura reactor. (author)
Monte Carlo dose computation for IMRT optimization*
Laub, W.; Alber, M.; Birkner, M.; Nüsslin, F.
2000-07-01
A method which combines the accuracy of Monte Carlo dose calculation with a finite size pencil-beam based intensity modulation optimization is presented. The pencil-beam algorithm is employed to compute the fluence element updates for a converging sequence of Monte Carlo dose distributions. The combination is shown to improve results over the pencil-beam based optimization in a lung tumour case and a head and neck case. Inhomogeneity effects like a broader penumbra and dose build-up regions can be compensated for by intensity modulation.
Monte Carlo electron/photon transport
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs
Geodesic Monte Carlo on Embedded Manifolds.
Byrne, Simon; Girolami, Mark
2013-12-01
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024
Monte Carlo simulation of granular fluids
Montanero, J M
2003-01-01
An overview of recent work on Monte Carlo simulations of a granular binary mixture is presented. The results are obtained numerically solving the Enskog equation for inelastic hard-spheres by means of an extension of the well-known direct Monte Carlo simulation (DSMC) method. The homogeneous cooling state and the stationary state reached using the Gaussian thermostat are considered. The temperature ratio, the fourth velocity moments and the velocity distribution functions are obtained for both cases. The shear viscosity characterizing the momentum transport in the thermostatted case is calculated as well. The simulation results are compared with analytical predictions showing an excellent agreement.
Monte Carlo applications to radiation shielding problems
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation
Monte Carlo dose distributions for radiosurgery
The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)
Monte Carlo simulation of neutron scattering instruments
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Use of Monte Carlo Methods in brachytherapy; Uso del metodo de Monte Carlo en braquiterapia
Granero Cabanero, D.
2015-07-01
The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
A Monte Carlo simulation of photomultiplier resolution
A Monte Carlo simulation of dynode statistics has been used to generate multiphotoelectron distributions to compare with actual photomultiplier resolution results. In place of Poission of Polya statistics, in this novel approach, the basis for the simulation is an experimentally determined single electron response. The relevance of this method to the study of intrinsic line widths of scintillators is discussed
Using CIPSI nodes in diffusion Monte Carlo
Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony
2016-01-01
Several aspects of the recently proposed DMC-CIPSI approach consisting in using selected Configuration Interaction (SCI) approaches such as CIPSI (Configuration Interaction using a Perturbative Selection done Iteratively) to build accurate nodes for diffusion Monte Carlo (DMC) calculations are presented and discussed. The main ideas are illustrated with a number of calculations for diatomics molecules and for the benchmark G1 set.
Coded aperture optimization using Monte Carlo simulations
Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.
Monte Carlo methods beyond detailed balance
Schram, Raoul D.; Barkema, Gerard T.
2015-01-01
Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying
A note on simultaneous Monte Carlo tests
Hahn, Ute
In this short note, Monte Carlo tests of goodness of fit for data of the form X(t), t ∈ I are considered, that reject the null hypothesis if X(t) leaves an acceptance region bounded by an upper and lower curve for some t in I. A construction of the acceptance region is proposed that complies to a...
Accelerating Hasenbusch's acceleration of hybrid Monte Carlo
Hasenbusch has proposed splitting the pseudo-fermionic action into two parts, in order to speed-up Hybrid Monte Carlo simulations of QCD. We have tested a different splitting, also using clover-improved Wilson fermions. An additional speed-up between 5 and 20% over the original proposal was achieved in production runs. (orig.)
A comparison of Monte Carlo generators
Golan, Tomasz
2014-01-01
A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and $\\pi^+$ two-dimensional energy vs cosine distribution.
Scalable Domain Decomposed Monte Carlo Particle Transport
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Parallel processing Monte Carlo radiation transport codes
Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine
Monte Carlo simulation of the microcanonical ensemble
We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references
Extending canonical Monte Carlo methods: II
We have previously presented a methodology for extending canonical Monte Carlo methods inspired by a suitable extension of the canonical fluctuation relation C = β2(δE2) compatible with negative heat capacities, C α, as is shown in the particular case of the 2D seven-state Potts model where the exponent α = 0.14–0.18
Monte Carlo Renormalization Group: a review
The logic and the methods of Monte Carlo Renormalization Group (MCRG) are reviewed. A status report of results for 4-dimensional lattice gauge theories derived using MCRG is presented. Existing methods for calculating the improved action are reviewed and evaluated. The Gupta-Cordery improved MCRG method is described and compared with the standard one. 71 refs., 8 figs
Hybrid Monte Carlo with Chaotic Mixing
Kadakia, Nirag
2016-01-01
We propose a hybrid Monte Carlo (HMC) technique applicable to high-dimensional multivariate normal distributions that effectively samples along chaotic trajectories. The method is predicated on the freedom of choice of the HMC momentum distribution, and due to its mixing properties, exhibits sample-to-sample autocorrelations that decay far faster than those in the traditional hybrid Monte Carlo algorithm. We test the methods on distributions of varying correlation structure, finding that the proposed technique produces superior covariance estimates, is less reliant on step-size tuning, and can even function with sparse or no momentum re-sampling. The method presented here is promising for more general distributions, such as those that arise in Bayesian learning of artificial neural networks and in the state and parameter estimation of dynamical systems.
Monte Carlo simulation of gas Cerenkov detectors
Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier
No-compromise reptation quantum Monte Carlo
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)
Fast Lattice Monte Carlo Simulations of Polymers
Wang, Qiang; Zhang, Pengfei
2014-03-01
The recently proposed fast lattice Monte Carlo (FLMC) simulations (with multiple occupancy of lattice sites (MOLS) and Kronecker δ-function interactions) give much faster/better sampling of configuration space than both off-lattice molecular simulations (with pair-potential calculations) and conventional lattice Monte Carlo simulations (with self- and mutual-avoiding walk and nearest-neighbor interactions) of polymers.[1] Quantitative coarse-graining of polymeric systems can also be performed using lattice models with MOLS.[2] Here we use several model systems, including polymer melts, solutions, blends, as well as confined and/or grafted polymers, to demonstrate the great advantages of FLMC simulations in the study of equilibrium properties of polymers.
Status of Monte Carlo at Los Alamos
Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner
Monte Carlo study of real time dynamics
Alexandru, Andrei; Bedaque, Paulo F; Vartak, Sohan; Warrington, Neill C
2016-01-01
Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that emerges from highly oscillatory phase of the path integral. In this letter, we present a new method to compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo simulations. The key idea is to deform the path integration domain to a complex manifold where the phase oscillations are mild and the sign problem is manageable. We use the previously introduced "contraction algorithm" to create a Markov chain on this alternative manifold. We substantiate our approach by analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones obtained by diagonalization of the Hamiltonian. The method we introduce is generic and in principle applicable to quantum field theory albeit very slow. We discuss some possible improvements that should speed up the algorithm.
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
Coevolution Based Adaptive Monte Carlo Localization (CEAMCL
Luo Ronghua
2008-11-01
Full Text Available An adaptive Monte Carlo localization algorithm based on coevolution mechanism of ecological species is proposed. Samples are clustered into species, each of which represents a hypothesis of the robot's pose. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence when using MCL in highly symmetric environments can be solved. And the sample size can be adjusted adaptively over time according to the uncertainty of the robot's pose by using the population growth model. In addition, by using the crossover and mutation operators in evolutionary computation, intra-species evolution can drive the samples move towards the regions where the desired posterior density is large. So a small size of samples can represent the desired density well enough to make precise localization. The new algorithm is termed coevolution based adaptive Monte Carlo localization (CEAMCL. Experiments have been carried out to prove the efficiency of the new localization algorithm.
Monte Carlo Shell Model Mass Predictions
The nuclear mass calculation is discussed in terms of large-scale shell model calculations. First, the development and limitations of the conventional shell model calculations are mentioned. In order to overcome the limitations, the Quantum Monte Carlo Diagonalization (QMCD) method has been proposed. The basic formulation and features of the QMCD method are presented as well as its application to the nuclear shell model, referred to as Monte Carlo Shell Model (MCSM). The MCSM provides us with a breakthrough in shell model calculations: the structure of low-lying states can be studied with realistic interactions for a nearly unlimited variety of nuclei. Thus, the MCSM can contribute significantly to the study of nuclear masses. An application to N∼20 unstable nuclei far from the β-stability line is mentioned
A Monte Carlo solution to skyshine radiation
A Monte Carlo method was used to calculate the skyshine doses from 2-ft exposure cell ceiling of an accelerator. Modifications were made to the Monte Carlo program MORSE code to perform this analysis. Adjoint mode calculations provided optimum Russian roulette and splitting parameters which were later used in the forward mode calculations. Russian roulette and splitting were used at the collision sites and at boundary crossings. Exponential transform was used for particle pathlength stretching. The TIGER code was used to generate the anisotropic source term and P5 Legendre expansion was used to compute the cross sections. Where negative fluxes occured at detector locations due to large angle scatterings, a macroscopic cross section data bank was used to make Klein-Nishina and pair production flux estimates. With the above modifications, sixty detectors at locations ranging from 10 to 300 ft from the cell wall showed good statistical responses (5 to 10% fsd)
Composite biasing in Monte Carlo radiative transfer
Baes, Maarten; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-01-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the spe...
Quantum Monte Carlo calculations for carbon nanotubes
Luu, Thomas; Lähde, Timo A.
2016-04-01
We show how lattice quantum Monte Carlo can be applied to the electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path-integral formalism and use methods developed within the lattice QCD community for our numerical work. Our lattice Hamiltonian is closely related to the hexagonal Hubbard model augmented by a long-range electron-electron interaction. We apply our method to the single-quasiparticle spectrum of the (3,3) armchair nanotube configuration, and consider the effects of strong electron-electron correlations. Our approach is equally applicable to other nanotubes, as well as to other carbon nanostructures. We benchmark our Monte Carlo calculations against the two- and four-site Hubbard models, where a direct numerical solution is feasible.
Status of Monte Carlo at Los Alamos
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time
Monte Carlo modeling of liquid scinttilation spectra
Šimek, Ondřej; Šídlová, V.; Světlík, Ivo; Tomášková, Lenka
Praha : ČVUT v Praze, 2007, s. 90-93. ISBN 978-80-01-03901-4. [Dny radiační ochrany /29./. Kouty nad Desnou, Hrubý Jeseník (CZ), 05.11.2007-09.11.2007] Institutional research plan: CEZ:AV0Z10480505 Keywords : Monte Carlo modelling * liquid scintillation spectra * energy deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders
Monte Carlo Simulations of Star Clusters
Giersz, M
2000-01-01
A revision of Stod\\'o{\\l}kiewicz's Monte Carlo code is used to simulate evolution of large star clusters. The survey on the evolution of multi-mass N-body systems influenced by the tidal field of a parent galaxy and by stellar evolution is discussed. For the first time, the simulation on the "star-by-star" bases of evolution of 1,000,000 body star cluster is presented. \\
Replica Exchange for Reactive Monte Carlo Simulations
Turner, C.H.; Brennan, J.K.; Lísal, Martin
2007-01-01
Roč. 111, č. 43 (2007), s. 15706-15715. ISSN 1932-7447 R&D Projects: GA ČR GA203/05/0725; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507 Institutional research plan: CEZ:AV0Z40720504 Keywords : monte carlo * simulation * reactive system Subject RIV: CF - Physical ; Theoretical Chemistry
A Ballistic Monte Carlo Approximation of {\\pi}
Dumoulin, Vincent
2014-01-01
We compute a Monte Carlo approximation of {\\pi} using importance sampling with shots coming out of a Mossberg 500 pump-action shotgun as the proposal distribution. An approximated value of 3.136 is obtained, corresponding to a 0.17% error on the exact value of {\\pi}. To our knowledge, this represents the first attempt at estimating {\\pi} using such method, thus opening up new perspectives towards computing mathematical constants using everyday tools.
Topological zero modes in Monte Carlo simulations
We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)
The lund Monte Carlo for jet fragmentation
We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)
New Dynamic Monte Carlo Renormalization Group Method
Lacasse, Martin-D.; Vinals, Jorge; Grant, Martin
1992-01-01
The dynamical critical exponent of the two-dimensional spin-flip Ising model is evaluated by a Monte Carlo renormalization group method involving a transformation in time. The results agree very well with a finite-size scaling analysis performed on the same data. The value of $z = 2.13 \\pm 0.01$ is obtained, which is consistent with most recent estimates.
Autocorrelations in hybrid Monte Carlo simulations
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Monte Carlo methods for preference learning
Viappiani, P.
2012-01-01
Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....
The Moment Guided Monte Carlo Method
Degond, Pierre; Dimarco, Giacomo; Pareschi, Lorenzo
2009-01-01
In this work we propose a new approach for the numerical simulation of kinetic equations through Monte Carlo schemes. We introduce a new technique which permits to reduce the variance of particle methods through a matching with a set of suitable macroscopic moment equations. In order to guarantee that the moment equations provide the correct solutions, they are coupled to the kinetic equation through a non equilibrium term. The basic idea, on which the method relies, consists in guiding the p...
Handbook of Markov chain Monte Carlo
Brooks, Steve
2011-01-01
""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.
Simulated Annealing using Hybrid Monte Carlo
Salazar, Rafael; Toral, Raúl
1997-01-01
We propose a variant of the simulated annealing method for optimization in the multivariate analysis of differentiable functions. The method uses global actualizations via the hybrid Monte Carlo algorithm in their generalized version for the proposal of new configurations. We show how this choice can improve upon the performance of simulated annealing methods (mainly when the number of variables is large) by allowing a more effective searching scheme and a faster annealing schedule.
Coevolution Based Adaptive Monte Carlo Localization (CEAMCL)
Luo Ronghua; Hong Bingrong
2004-01-01
An adaptive Monte Carlo localization algorithm based on coevolution mechanism of ecological species is proposed. Samples are clustered into species, each of which represents a hypothesis of the robot's pose. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence when using MCL in highly symmetric environments can be solved. And the sample size can be adjusted adaptively over time according to the unce...
Lookahead Strategies for Sequential Monte Carlo
Lin, Ming; Chen, Rong; Liu, Jun
2013-01-01
Based on the principles of importance sampling and resampling, sequential Monte Carlo (SMC) encompasses a large set of powerful techniques dealing with complex stochastic dynamic systems. Many of these systems possess strong memory, with which future information can help sharpen the inference about the current state. By providing theoretical justification of several existing algorithms and introducing several new ones, we study systematically how to construct efficient SMC algorithms to take ...
Archimedes, the Free Monte Carlo simulator
Sellier, Jean Michel D.
2012-01-01
Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, fee...
A Monte Carlo for BFKL Physics
Orr, Lynne H.; Stirling, W. J.
2000-01-01
Virtual photon scattering in e^+e^- collisions can result in events with the electron-positron pair at large rapidity separation with hadronic activity in between. The BFKL equation resums large logarithms that dominate the cross section for this process. We report here on a Monte Carlo method for solving the BFKL equation that allows kinematic constraints to be taken into account. The application to e^+e^- collisions is in progress.
On adaptive Markov chain Monte Carlo algorithms
Atchadé, Yves F.; Rosenthal, Jeffrey S.
2005-01-01
We look at adaptive Markov chain Monte Carlo algorithms that generate stochastic processes based on sequences of transition kernels, where each transition kernel is allowed to depend on the history of the process. We show under certain conditions that the stochastic process generated is ergodic, with appropriate stationary distribution. We use this result to analyse an adaptive version of the random walk Metropolis algorithm where the scale parameter σ is sequentially adapted using a Robbins-...
Tracklength biassing in Monte Carlo radiation transport
Tracklength stretching is employed in deep penetration Monte Carlo studies for variance reduction. Incorporating a dependence of the biassing on the angular disposition of the track improves the procedure. Linear and exponential forms for this dependence are investigated here, using Spanier's self-learning technique. Suitable biassing parameters are worked out for representative shield systems, for use in practical simulations. Of the two, we find that the exponential scheme performs better. (orig.)
Introduction to the Monte Carlo methods
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
Monte Carlo simulation and numerical integration
Geweke, John F.
1995-01-01
This is a survey of simulation methods in economics, with a specific focus on integration problems. It describes acceptance methods, importance sampling procedures, and Markov chain Monte Carlo methods for simulation from univariate and multivariate distributions and their application to the approximation of integrals. The exposition gives emphasis to combinations of different approaches and assessment of the accuracy of numerical approximations to integrals and expectations. The survey illus...
Quantum Monte Carlo for vibrating molecules
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H2O and C3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H2O and C3. In order to construct accurate trial wavefunctions for C3, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies
jTracker and Monte Carlo Comparison
Selensky, Lauren; SeaQuest/E906 Collaboration
2015-10-01
SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.
Monte Carlo small-sample perturbation calculations
Two different Monte Carlo methods have been developed for benchmark computations of small-sample-worths in simplified geometries. The first is basically a standard Monte Carlo perturbation method in which neutrons are steered towards the sample by roulette and splitting. One finds, however, that two variance reduction methods are required to make this sort of perturbation calculation feasible. First, neutrons that have passed through the sample must be exempted from roulette. Second, neutrons must be forced to undergo scattering collisions in the sample. Even when such methods are invoked, however, it is still necessary to exaggerate the volume fraction of the sample by drastically reducing the size of the core. The benchmark calculations are then used to test more approximate methods, and not directly to analyze experiments. In the second method the flux at the surface of the sample is assumed to be known. Neutrons entering the sample are drawn from this known flux and tracking by Monte Carlo. The effect of the sample or the fission rate is then inferred from the histories of these neutrons. The characteristics of both of these methods are explored empirically
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Methods for Monte Carlo procedure in radiation measurement by SPECT (single photon emission computed tomography) and 3-D PET (3-dimensional positron emission tomography) are described together with its application to develop and optimize the scattering correction method in 201Tl-SPECT. In the medical technology, the Monte Carlo simulation makes it possible to quantify the behavior of a photon like scattering and absorption, and which can be performed by the use of EGS4 simulation code consisting from Step A - E. With the method, data collection procedures of the diagnostic equipments for nuclear medicine and application to develop the transmission radiation source for SPECT are described. Precision of the scattering correction method is also evaluated in the SPECT by the Monte Carlo simulation. The simulation is a useful tool for evaluating the behavior of radiation in the human body which can not be actually measured. (K.H.)
Monte Carlo modelling for individual monitoring
Full text: Individual monitoring techniques provide suitable tools for the estimate of personal dose equivalent Hp(d), representative of the effective dose, in case of external irradiation, or the evaluation of the committed effective dose by inference from activity measurements, in case of internal contamination. In both these fields Monte Carlo techniques play a crucial role: they can provide a series of parameters that are usually difficult, sometimes impossible, to be assessed experimentally. The aim of this paper is to give a panoramic view of Monte Carlo studies in external exposures individual monitoring field; internal dosimetry applications are briefly summarized in another paper. The operative practice in the field of occupational exposure relies on the employment of personal dosemeters to be worn appropriately on the body in order to guarantee a reliable estimate of the radiation protection quantities (i.e. effective dose or equivalent dose). Personal dosemeters are calibrated in terms of the ICRU operational quantity personal dose equivalent, Hp(d), that should, in principle, represent a reasonably conservative approximation of the radiation protection quantity (this condition is not fulfilled in a specific neutron energy range). All the theoretical and practical implementation of photon individual monitoring relies on two main aspects: the definition of the operational quantities and the calculation of the corresponding conversion coefficients for the field quantities (fluence and air kerma); the characterization of individual dosemeters in terms of these operational quantities with the associated energy and angular type test evaluations carried out on suitable calibration phantoms. For the first aspect (evaluation of conversion coefficients) rather exhaustive tabulations of Monte Carlo evaluated conversion coefficients has been published in ICRP and ICRU reports as well as in the open literature. For the second aspect (type test and calibration
Quantum Monte Carlo for vibrating molecules
Brown, W.R. [Univ. of California, Berkeley, CA (United States). Chemistry Dept.]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.
A Monte Carlo approach to water management
Koutsoyiannis, D.
2012-04-01
Common methods for making optimal decisions in water management problems are insufficient. Linear programming methods are inappropriate because hydrosystems are nonlinear with respect to their dynamics, operation constraints and objectives. Dynamic programming methods are inappropriate because water management problems cannot be divided into sequential stages. Also, these deterministic methods cannot properly deal with the uncertainty of future conditions (inflows, demands, etc.). Even stochastic extensions of these methods (e.g. linear-quadratic-Gaussian control) necessitate such drastic oversimplifications of hydrosystems that may make the obtained results irrelevant to the real world problems. However, a Monte Carlo approach is feasible and can form a general methodology applicable to any type of hydrosystem. This methodology uses stochastic simulation to generate system inputs, either unconditional or conditioned on a prediction, if available, and represents the operation of the entire system through a simulation model as faithful as possible, without demanding a specific mathematical form that would imply oversimplifications. Such representation fully respects the physical constraints, while at the same time it evaluates the system operation constraints and objectives in probabilistic terms, and derives their distribution functions and statistics through Monte Carlo simulation. As the performance criteria of a hydrosystem operation will generally be highly nonlinear and highly nonconvex functions of the control variables, a second Monte Carlo procedure, implementing stochastic optimization, is necessary to optimize system performance and evaluate the control variables of the system. The latter is facilitated if the entire representation is parsimonious, i.e. if the number of control variables is kept at a minimum by involving a suitable system parameterization. The approach is illustrated through three examples for (a) a hypothetical system of two reservoirs
Monte Carlo simulation for Kaonic deuterium studies
Full text: The SIDDHARTA experiment at the DAFNE collider measured the shift and with of the ground level in kaonic hydrogen caused by the strong interaction between the kaons and protons. The measurement of the X-ray transitions to the 1s level in kaonic deuterium will allow, together with the available results from kaonic hydrogen, to extract the isospin- dependent antikaon-nucleon scattering lengths. I will present the Monte Carlo simulation of the SIDDHARTA-2 setup, in the framework of GEANT4. The program is used to optimize the critical parameters of the setup in order to perform the kaonic deuterium measurement. (author)
Monte Carlo simulations for heavy ion dosimetry
Geithner, Oksana
2006-01-01
Water-to-air stopping power ratio ( ) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variabl...
Monte Carlo methods for applied scientists
Dimov, Ivan T
2007-01-01
The Monte Carlo method is inherently parallel and the extensive and rapid development in parallel computers, computational clusters and grids has resulted in renewed and increasing interest in this method. At the same time there has been an expansion in the application areas and the method is now widely used in many important areas of science including nuclear and semiconductor physics, statistical mechanics and heat and mass transfer. This book attempts to bridge the gap between theory and practice concentrating on modern algorithmic implementation on parallel architecture machines. Although
Variation After Response in Quantum Monte Carlo
Neuscamman, Eric
2016-01-01
We present a new method for modeling electronically excited states that overcomes a key failing of linear response theory by allowing the underlying ground state ansatz to relax in the presence of an excitation. The method is variational, has a cost similar to ground state variational Monte Carlo, and admits both open and periodic boundary conditions. We present preliminary numerical results showing that, when paired with the Jastrow antisymmetric geminal power ansatz, the variation-after-response formalism delivers accuracies for valence and charge transfer single excitations on par with equation of motion coupled cluster, while surpassing even this very high-level method's accuracy for excitations with significant doubly excited character.
Monte Carlo method in radiation transport problems
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media
Introduction to Monte-Carlo method
We recall first some well known facts about random variables and sampling. Then we define the Monte-Carlo method in the case where one wants to compute a given integral. Afterwards, we ship to discrete Markov chains for which we define random walks, and apply to finite difference approximations of diffusion equations. Finally we consider Markov chains with continuous state (but discrete time), transition probabilities and random walks, which are the main piece of this work. The applications are: diffusion and advection equations, and the linear transport equation with scattering
Monte Carlo simulation of block copolymer brushes
We studied a simplified model of a polymer brush formed by linear chains, which were restricted to a simple cubic lattice. The chain macromolecules consisted of a sequence of two kinds of segment, arranged in a specific sequence. The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface at one end. The number of chains was varied from low to high grafting density. The model system was studied under different solvent quality, from good to poor solvent. The properties of this model system were studied by means of Monte Carlo simulations. The sampling algorithm was based on local changes of the chain's conformations
by means of FLUKA Monte Carlo method
Ermis Elif Ebru
2015-01-01
Full Text Available Calculations of gamma-ray mass attenuation coefficients of various detector materials (crystals were carried out by means of FLUKA Monte Carlo (MC method at different gamma-ray energies. NaI, PVT, GSO, GaAs and CdWO4 detector materials were chosen in the calculations. Calculated coefficients were also compared with the National Institute of Standards and Technology (NIST values. Obtained results through this method were highly in accordance with those of the NIST values. It was concluded from the study that FLUKA MC method can be an alternative way to calculate the gamma-ray mass attenuation coefficients of the detector materials.
Modulated pulse bathymetric lidar Monte Carlo simulation
Luo, Tao; Wang, Yabo; Wang, Rong; Du, Peng; Min, Xia
2015-10-01
A typical modulated pulse bathymetric lidar system is investigated by simulation using a modulated pulse lidar simulation system. In the simulation, the return signal is generated by Monte Carlo method with modulated pulse propagation model and processed by mathematical tools like cross-correlation and digital filter. Computer simulation results incorporating the modulation detection scheme reveal a significant suppression of the water backscattering signal and corresponding target contrast enhancement. More simulation experiments are performed with various modulation and reception variables to investigate the effect of them on the bathymetric system performance.
Monte Carlo Simulation of an American Option
Gikiri Thuo
2007-04-01
Full Text Available We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simultaneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.
Monte-Carlo simulations: FLUKA vs. MCNPX
Oden, M.; Krása, Antonín; Majerle, Mitja; Svoboda, Ondřej; Wagner, Vladimír
Melville : AMER INST PHYSICS, 2007 - (Granja, C.; Leroy, C.; Štekl, I.), s. 219-221 ISBN 978-0-7354-0472-4. ISSN 0094-243X. - (AIP Conference Proceedings. 958). [4th International Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine . Praha (CZ), 08.07.2007-19.07.2007] R&D Projects: GA MŠk(CZ) LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron production * spallation reaction * Monte-Carlo simulation Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders
The Moment Guided Monte Carlo Method
Degond, Pierre; Pareschi, Lorenzo
2009-01-01
In this work we propose a new approach for the numerical simulation of kinetic equations through Monte Carlo schemes. We introduce a new technique which permits to reduce the variance of particle methods through a matching with a set of suitable macroscopic moment equations. In order to guarantee that the moment equations provide the correct solutions, they are coupled to the kinetic equation through a non equilibrium term. The basic idea, on which the method relies, consists in guiding the particle positions and velocities through moment equations so that the concurrent solution of the moment and kinetic models furnishes the same macroscopic quantities.
Markov chains analytic and Monte Carlo computations
Graham, Carl
2014-01-01
Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec
Discovering correlated fermions using quantum Monte Carlo.
Wagner, Lucas K; Ceperley, David M
2016-09-01
It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior. PMID:27518859
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-24
Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.
Kinetic Monte Carlo simulation of dislocation dynamics
A kinetic Monte Carlo simulation of dislocation motion is introduced. The dislocations are assumed to be composed of pure edge and screw segments confined to a fixed lattice. The stress and temperature dependence of the dislocation velocity is studied, and finite-size effects are discussed. It is argued that surfaces and boundaries may play a significant role in the velocity of dislocations. The simulated dislocations are shown to display kinetic roughening according to the exponents predicted by the Kardar-Parisi-Zhang equation. copyright 1999 The American Physical Society
Monte Carlo Simulation of Quantum Computation
Cerf, N. J.; Koonin, S. E.
1997-01-01
The many-body dynamics of a quantum computer can be reduced to the time evolution of non-interacting quantum bits in auxiliary fields by use of the Hubbard-Stratonovich representation of two-bit quantum gates in terms of one-bit gates. This makes it possible to perform the stochastic simulation of a quantum algorithm, based on the Monte Carlo evaluation of an integral of dimension polynomial in the number of quantum bits. As an example, the simulation of the quantum circuit for the Fast Fouri...
Archimedes, the Free Monte Carlo simulator
Sellier, Jean Michel D
2012-01-01
Archimedes is the GNU package for Monte Carlo simulations of electron transport in semiconductor devices. The first release appeared in 2004 and since then it has been improved with many new features like quantum corrections, magnetic fields, new materials, GUI, etc. This document represents the first attempt to have a complete manual. Many of the Physics models implemented are described and a detailed description is presented to make the user able to write his/her own input deck. Please, feel free to contact the author if you want to contribute to the project.
Monte Carlo modelling for neutron guide losses
In modern research reactors, neutron guides are commonly used for beam conducting. The neutron guide is a well polished or equivalently smooth glass tube covered inside by sputtered or evaporated film of natural Ni or 58Ni isotope where the neutrons are totally reflected. A Monte Carlo calculation was carried out to establish the real efficiency and the spectral as well as spatial distribution of the neutron beam at the end of a glass mirror guide. The losses caused by mechanical inaccuracy and mirror quality were considered and the effects due to the geometrical arrangement were analyzed. (author) 2 refs.; 2 figs
Discovering correlated fermions using quantum Monte Carlo
Wagner, Lucas K.; Ceperley, David M.
2016-09-01
It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.
Development of Monte Carlo machine for particle transport problem
Monte Carlo machine, Monte-4 has been developed to realize high performance computing of Monte Carlo codes for particle transport. The calculation for particle tracking in a complex geometry requires (1) classification of particles by the region types using multi-way conditional branches, and (2) determination whether intersections of particle paths with surfaces of the regions are on the boundaries of the regions or not, using nests of conditional branches. However, these procedures require scalar operations or unusual vector operations. Thus the speedup ratios have been low, i.e. nearly two times, in vector processing of Monte Carlo codes for particle transport on conventional vector processors. The Monte Carlo machine Monte-4 has been equipped with the special hardware called Monte Carlo pipelines to process these procedures with high performance. Additionally Monte-4 has been equipped with enhanced load/store pipelines to realize fast transfer of indirectly addressed data for the purpose of resolving imbalances between the performance of data transfers and arithmetic operations in vector processing of Monte Carlo codes on conventional vector processors. Finally, Monte-4 has a parallel processing capability with four processors to multiply the performance of vector processing. We have evaluated the effective performance of Monte-4 using production-level Monte Carlo codes such as vectorized KENO-IV and MCNP. In the performance evaluation, nearly ten times speedup ratios have been obtained, compared with scalar processing of the original codes. (author)
Unbiased combinations of nonanalog Monte Carlo techniques and fair games
Historically, Monte Carlo variance reduction techniques have developed one at a time in response to calculational needs. This paper provides the theoretical basis for obtaining unbiased Monte Carlo estimates from all possible combinations of variance reduction techniques. Hitherto, the techniques have not been proven to be unbiased in arbitrary combinations. The authors are unaware of any Monte Carlo techniques (in any linear process) that are not treated by the theorem herein. (author)
Temperature variance study in Monte-Carlo photon transport theory
We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case
Monte Carlo likelihood inference for missing data models
Sung, Yun Ju; Geyer, Charles J.
2007-01-01
We describe a Monte Carlo method to approximate the maximum likelihood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer θ* of the Kullback–Leibler information, as both Monte Carlo and observed data sa...
Monte Carlo Hamiltonian: Generalization to Quantum Field Theory
Luo, Xiang-Qian; Jirari, H.; Kroger, H; Moriarty, K.
2001-01-01
Monte Carlo techniques with importance sampling have been extensively applied to lattice gauge theory in the Lagrangian formulation. Unfortunately, it is extremely difficult to compute the excited states using the conventional Monte Carlo algorithm. Our recently developed approach: the Monte Carlo Hamiltonian method, has been designed to overcome the difficulties of the conventional approach. In this paper, we extend the method to many body systems and quantum field theory. The Klein-Gordon f...
Alternative Monte Carlo Approach for General Global Illumination
徐庆; 李朋; 徐源; 孙济洲
2004-01-01
An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Neutron transport calculations using Quasi-Monte Carlo methods
Moskowitz, B.S.
1997-07-01
This paper examines the use of quasirandom sequences of points in place of pseudorandom points in Monte Carlo neutron transport calculations. For two simple demonstration problems, the root mean square error, computed over a set of repeated runs, is found to be significantly less when quasirandom sequences are used ({open_quotes}Quasi-Monte Carlo Method{close_quotes}) than when a standard Monte Carlo calculation is performed using only pseudorandom points.
Validation of Compton Scattering Monte Carlo Simulation Models
Weidenspointner, Georg; Hauf, Steffen; Hoff, Gabriela; Kuster, Markus; Pia, Maria Grazia; Saracco, Paolo
2014-01-01
Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
Combinatorial nuclear level density by a Monte Carlo method
Cerf, N.
1993-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning t...
Monte Carlo generators in ATLAS software
This document describes how Monte Carlo (MC) generators can be used in the ATLAS software framework (Athena). The framework is written in C++ using Python scripts for job configuration. Monte Carlo generators that provide the four-vectors describing the results of LHC collisions are written in general by third parties and are not part of Athena. These libraries are linked from the LCG Generator Services (GENSER) distribution. Generators are run from within Athena and the generated event output is put into a transient store, in HepMC format, using StoreGate. A common interface, implemented via inheritance of a GeneratorModule class, guarantees common functionality for the basic generation steps. The generator information can be accessed and manipulated by helper packages like TruthHelper. The ATLAS detector simulation as well access the truth information from StoreGate1. Steering is done through specific interfaces to allow for flexible configuration using ATLAS Python scripts. Interfaces to most general purpose generators, including: Pythia6, Pythia8, Herwig, Herwig++ and Sherpa are provided, as well as to more specialized packages, for example Phojet and Cascade. A second type of interface exist for the so called Matrix Element generators that only generate the particles produced in the hard scattering process and write events in the Les Houches event format. A generic interface to pass these events to Pythia6 and Herwig for parton showering and hadronisation has been written.
Feedback-optimized parallel tempering Monte Carlo
Katzgraber, Helmut G.; Trebst, Simon; Huse, David A.; Troyer, Matthias
2006-03-01
We introduce an algorithm for systematically improving the efficiency of parallel tempering Monte Carlo simulations by optimizing the simulated temperature set. Our approach is closely related to a recently introduced adaptive algorithm that optimizes the simulated statistical ensemble in generalized broad-histogram Monte Carlo simulations. Conventionally, a temperature set is chosen in such a way that the acceptance rates for replica swaps between adjacent temperatures are independent of the temperature and large enough to ensure frequent swaps. In this paper, we show that by choosing the temperatures with a modified version of the optimized ensemble feedback method we can minimize the round-trip times between the lowest and highest temperatures which effectively increases the efficiency of the parallel tempering algorithm. In particular, the density of temperatures in the optimized temperature set increases at the 'bottlenecks' of the simulation, such as phase transitions. In turn, the acceptance rates are now temperature dependent in the optimized temperature ensemble. We illustrate the feedback-optimized parallel tempering algorithm by studying the two-dimensional Ising ferromagnet and the two-dimensional fully frustrated Ising model, and briefly discuss possible feedback schemes for systems that require configurational averages, such as spin glasses.
Information Geometry and Sequential Monte Carlo
Sim, Aaron; Stumpf, Michael P H
2012-01-01
This paper explores the application of methods from information geometry to the sequential Monte Carlo (SMC) sampler. In particular the Riemannian manifold Metropolis-adjusted Langevin algorithm (mMALA) is adapted for the transition kernels in SMC. Similar to its function in Markov chain Monte Carlo methods, the mMALA is a fully adaptable kernel which allows for efficient sampling of high-dimensional and highly correlated parameter spaces. We set up the theoretical framework for its use in SMC with a focus on the application to the problem of sequential Bayesian inference for dynamical systems as modelled by sets of ordinary differential equations. In addition, we argue that defining the sequence of distributions on geodesics optimises the effective sample sizes in the SMC run. We illustrate the application of the methodology by inferring the parameters of simulated Lotka-Volterra and Fitzhugh-Nagumo models. In particular we demonstrate that compared to employing a standard adaptive random walk kernel, the SM...
Quantum Monte Carlo for atoms and molecules
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H2, LiH, Li2, and H2O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li2, and H2O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions
High performance computing&Monte Carlo
Brown, F. B. (Forrest B.); Martin, W. R. (William R.)
2004-01-01
High performance computing (HPC), used for the most demanding computational problems, has evolved from single processor custom systems in the 1960s and 1970s, to vector processors in the 1980s, to parallel processors in the 1990s, to clusters of commodity processors in the 2000s. Performance/price has increased by a factor of more than I million over that time, so that today's desktop PC is more powerful than yesterday's supercomputer. With the introduction of inexpensive Linux clusters and the standardization of parallel software through MPI and OpenMP, parallel computing is now widespread and available to everyone. Monte Carlo codes for particle transport are especially well-positioned to take advantage of accessible parallel computing, due to the inherently parallel nature of the computational algorithm. We review Monte Carlo particle parallelism, including the basic algorithm, load-balancing, fault tolerance, and scaling, using MCNP5 as an example. Due to memory limitations, especially on single nodes of Linux clusters, domain decomposition has been tried, with partial success. We conclude with a new scheme, data decomposition, which holds promise for very large problems.
The MCNPX Monte Carlo Radiation Transport Code
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4c and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics, particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development
Monte Carlo calculations in lattice gauge theories
This paper covers the following: a few words of motivation for numerical simulations, and a description of the Monte Carlo method as applied to lattice gauge theories. This is followed by a discussion of systems that contain bosonic degrees of freedom only. The authors review Monte Carlo results for pure gauge systems, illustrating the determination of a variety of observables - the string tension, the potential, the temperature at which quarks become deconfined, and attempts to calculate the mass gap of the theory, also called the glue-ball mass. They try to explain what happens if one considers various types of the action, how one verifies universality in the passage to the continuum limit and we mention briefly simulations applied to systems that go beyond just gauge fields and include other bosonic fields, known in general as Higgs scalars. Finally they consider fermions on the lattice, pointing out conceptual problems in the formulation of the Dirac equation on the lattice, and then discussing the difficulties that arise in attempting to apply the same kind of numerical methods to fermionic systems, the approximations and the techniques that are used to overcome these problems and some of the numerical results
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
WATERS, LAURIE S. [Los Alamos National Laboratory; MCKINNEY, GREGG W. [Los Alamos National Laboratory; DURKEE, JOE W. [Los Alamos National Laboratory; FENSIN, MICHAEL L. [Los Alamos National Laboratory; JAMES, MICHAEL R. [Los Alamos National Laboratory; JOHNS, RUSSELL C. [Los Alamos National Laboratory; PELOWITZ, DENISE B. [Los Alamos National Laboratory
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
Reactor perturbation calculations by Monte Carlo methods
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Monte Carlo techniques for analyzing deep-penetration problems
Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Quantum Monte Carlo Endstation for Petascale Computing
Lubos Mitas
2011-01-26
NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13
Monte Carlo modeling and meteor showers
Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented
Monte Carlo modeling and meteor showers
Kulikova, N. V.
1987-08-01
Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.
Monte Carlo Exploration of Warped Higgsless Models
Hewett, J L; Rizzo, T G
2004-01-01
We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ gauge group in an AdS$_5$ bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, $\\simeq 10$ TeV, in $W_L^+W_L^-$ elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.
MORSE Monte Carlo radiation transport code system
This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected
Monte Carlo and detector simulation in OOP
Object-Oriented Programming techniques are explored with an eye towards applications in High Energy Physics codes. Two prototype examples are given: MCOOP (a particle Monte Carlo generator) and GISMO (a detector simulation/analysis package). The OOP programmer does no explicit or detailed memory management nor other bookkeeping chores; hence, the writing, modification, and extension of the code is considerably simplified. Inheritance can be used to simplify the class definitions as well as the instance variables and action methods of each class; thus the work required to add new classes, parameters, or new methods is minimal. The software industry is moving rapidly to OOP since it has been proven to improve programmer productivity, and promises even more for the future by providing truly reusable software. The High Energy Physics community clearly needs to follow this trend
Hybrid algorithms in quantum Monte Carlo
With advances in algorithms and growing computing powers, quantum Monte Carlo (QMC) methods have become a leading contender for high accuracy calculations for the electronic structure of realistic systems. The performance gain on recent HPC systems is largely driven by increasing parallelism: the number of compute cores of a SMP and the number of SMPs have been going up, as the Top500 list attests. However, the available memory as well as the communication and memory bandwidth per element has not kept pace with the increasing parallelism. This severely limits the applicability of QMC and the problem size it can handle. OpenMP/MPI hybrid programming provides applications with simple but effective solutions to overcome efficiency and scalability bottlenecks on large-scale clusters based on multi/many-core SMPs. We discuss the design and implementation of hybrid methods in QMCPACK and analyze its performance on current HPC platforms characterized by various memory and communication hierarchies.
Morse Monte Carlo Radiation Transport Code System
Emmett, M.B.
1975-02-01
The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)
Computation cluster for Monte Carlo calculations
Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)
Atomistic Monte Carlo simulation of lipid membranes
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss......Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and...
Response decomposition with Monte Carlo correlated coupling
Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)
Monte Carlo stratified source-sampling
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo open-quotes eigenvalue of the worldclose quotes problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress
Commensurabilities between ETNOs: a Monte Carlo survey
Marcos, C de la Fuente
2016-01-01
Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nin...
Variable length trajectory compressible hybrid Monte Carlo
Nishimura, Akihiko
2016-01-01
Hybrid Monte Carlo (HMC) generates samples from a prescribed probability distribution in a configuration space by simulating Hamiltonian dynamics, followed by the Metropolis (-Hastings) acceptance/rejection step. Compressible HMC (CHMC) generalizes HMC to a situation in which the dynamics is reversible but not necessarily Hamiltonian. This article presents a framework to further extend the algorithm. Within the existing framework, each trajectory of the dynamics must be integrated for the same amount of (random) time to generate a valid Metropolis proposal. Our generalized acceptance/rejection mechanism allows a more deliberate choice of the integration time for each trajectory. The proposed algorithm in particular enables an effective application of variable step size integrators to HMC-type sampling algorithms based on reversible dynamics. The potential of our framework is further demonstrated by another extension of HMC which reduces the wasted computations due to unstable numerical approximations and corr...
Monte Carlo simulations of single polymer force-extension relations
We present Monte Carlo simulations for studying the statistical mechanics of arbitrarily long single molecules under stretching. In many cases in which the thermodynamic limit is not satisfied, different statistical ensembles yield different macroscopic force-displacement curves. In this work we provide a description of the Monte Carlo simulations and discuss in details the assumptions adopted.
Quantum Monte Carlo Simulations : Algorithms, Limitations and Applications
Raedt, H. De
1992-01-01
A survey is given of Quantum Monte Carlo methods currently used to simulate quantum lattice models. The formalisms employed to construct the simulation algorithms are sketched. The origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte Carlo approach is shown
CERN Summer Student Report 2016 Monte Carlo Data Base Improvement
Caciulescu, Alexandru Razvan
2016-01-01
During my Summer Student project I worked on improving the Monte Carlo Data Base and MonALISA services for the ALICE Collaboration. The project included learning the infrastructure for tracking and monitoring of the Monte Carlo productions as well as developing a new RESTful API for seamless integration with the JIRA issue tracking framework.
Adjoint electron-photon transport Monte Carlo calculations with ITS
A general adjoint coupled electron-photon Monte Carlo code for solving the Boltzmann-Fokker-Planck equation has recently been created. It is a modified version of ITS 3.0, a coupled electronphoton Monte Carlo code that has world-wide distribution. The applicability of the new code to radiation-interaction problems of the type found in space environments is demonstrated
Neutron point-flux calculation by Monte Carlo
A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)
Nuclear data treatment for SAM-CE Monte Carlo calculations
The treatment of nuclear data by the SAM-CE Monte Carlo code system is presented. The retrieval of neutron, gamma production, and photon data from the ENDF/B fils is described. Integral cross sections as well as differential data are utilized in the Monte Carlo calculations, and the processing procedures for the requisite data are summarized
Monte Carlo modelling of TRIGA research reactor
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational
Accelerated GPU based SPECT Monte Carlo simulations
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-01
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency
Monte Carlo approaches to effective field theories
In this paper, we explore the application of continuum Monte Carlo methods to effective field theory models. Effective field theories, in this context, are those in which a Fock space decomposition of the state is useful. These problems arise both in nuclear and condensed matter physica. In nuclear physics, much work has been done on effective field theories of mesons and baryons. While the theories are not fundamental, they should be able to describe nuclear properties at low energy and momentum scales. After describing the methods, we solve two simple scalar field theory problems; the polaron and two nucleons interacting through scalar meson exchange. The methods presented here are rather straightforward extensions of methods used to solve quantum mechanics problems. Monte Carlo methods are used to avoid the truncation inherent in a Tamm-Dancoff approach and its associated difficulties. Nevertheless, the methods will be most valuable when the Fock space decomposition of the states is useful. Hence, while they are not intended for ab initio studies of QCD, they may prove valuable in studies of light nuclei, or for systems of interacting electrons and phonons. In these problems a Fock space decomposition can be used to reduce the number of degrees of freedom and to retain the rotational symmetries exactly. The problems we address here are comparatively simple, but offer useful initial tests of the method. We present results for the polaron and two non-relativistic nucleons interacting through scalar meson exchange. In each case, it is possible to integrate out the boson degrees of freedom exactly, and obtain a retarded form of the action that depends only upon the fermion paths. Here we keep the explicit bosons, though, since we would like to retain information about the boson components of the states and it will be necessary to keep these components in order to treat non-scalar of interacting bosonic fields
Monte Carlo modelling of TRIGA research reactor
El Bakkari, B., E-mail: bakkari@gmail.co [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Nacir, B. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); El Bardouni, T. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); El Younoussi, C. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Merroun, O. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Htet, A. [Reactor Technology Unit (UTR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); Boulaich, Y. [Reactor Operating Unit (UCR), National Centre of Sciences, Energy and Nuclear Techniques (CNESTEN/CENM), POB 1382, Rabat (Morocco); ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Zoubair, M.; Boukhal, H. [ERSN-LMR, Department of Physics, Faculty of Sciences, POB 2121, Tetuan (Morocco); Chakir, M. [EPTN-LPMR, Faculty of Sciences, Kenitra (Morocco)
2010-10-15
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucleaires de la Maamora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S({alpha}, {beta}) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file 'up259'. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Monte Carlo scatter correction for SPECT
Liu, Zemei
The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.
Monte Carlo modelling of TRIGA research reactor
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
Criticality benchmarking of ANET Monte Carlo code
In this work the new Monte Carlo code ANET is tested on criticality calculations. ANET is developed based on the high energy physics code GEANT of CERN and aims at progressively satisfying several requirements regarding both simulations of GEN II/III reactors, as well as of innovative nuclear reactor designs such as the Accelerator Driven Systems (ADSs). Here ANET is applied on three different nuclear configurations, including a subcritical assembly, a Material Testing Reactor and the conceptual configuration of an ADS. In the first case, calculation of the effective multiplication factor (keff) are performed for the Training Nuclear Reactor of the Aristotle University of Thessaloniki, while in the second case keff is computed for the fresh fueled core of the Portuguese research reactor (RPJ) just after its conversion to Low Enriched Uranium, considering the control rods at the position that renders the reactor critical. In both cases ANET computations are compared with corresponding results obtained by three different well established codes, including both deterministic (XSDRNPM/CITATION) and Monte Carlo (TRIPOLI, MCNP). In the RPI case, keff computations are also compared with observations during the reactor core commissioning since the control rods are considered at criticality position. The above verification studies show ANET to produce reasonable results since they are satisfactorily compared with other models as well as with observations. For the third case (ADS), preliminary ANET computations of keff for various intensities of the proton beam are presented, showing also a reasonable code performance concerning both the order of magnitude and the relative variation of the computed parameter. (author)
Fission Matrix Capability for MCNP Monte Carlo
Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Reconstruction of Monte Carlo replicas from Hessian parton distributions
Hou, Tie-Jiun; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Stump, Daniel; Wang, Bo-Ting; Xie, Ke-Ping; Dulat, Sayipjamal; Pumplin, Jon; Yuan, C -P
2016-01-01
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
Problems in radiation shielding calculations with Monte Carlo methods
The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)
Quantum Monte Carlo methods algorithms for lattice models
Gubernatis, James; Werner, Philipp
2016-01-01
Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in ...
Hybrid SN/Monte Carlo research and results
The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (SN) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and SN regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may by expected to perform well. (author)
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
A hybrid Monte Carlo and response matrix Monte Carlo method in criticality calculation
Full core calculations are very useful and important in reactor physics analysis, especially in computing the full core power distributions, optimizing the refueling strategies and analyzing the depletion of fuels. To reduce the computing time and accelerate the convergence, a method named Response Matrix Monte Carlo (RMMC) method based on analog Monte Carlo simulation was used to calculate the fixed source neutron transport problems in repeated structures. To make more accurate calculations, we put forward the RMMC method based on non-analog Monte Carlo simulation and investigate the way to use RMMC method in criticality calculations. Then a new hybrid RMMC and MC (RMMC+MC) method is put forward to solve the criticality problems with combined repeated and flexible geometries. This new RMMC+MC method, having the advantages of both MC method and RMMC method, can not only increase the efficiency of calculations, also simulate more complex geometries rather than repeated structures. Several 1-D numerical problems are constructed to test the new RMMC and RMMC+MC method. The results show that RMMC method and RMMC+MC method can efficiently reduce the computing time and variations in the calculations. Finally, the future research directions are mentioned and discussed at the end of this paper to make RMMC method and RMMC+MC method more powerful. (authors)
The computation of Greeks with multilevel Monte Carlo
Burgos, Sylvestre Jean-Baptiste Louis; Michael B. Giles
2014-01-01
In mathematical finance, the sensitivities of option prices to various market parameters, also known as the “Greeks”, reflect the exposure to different sources of risk. Computing these is essential to predict the impact of market moves on portfolios and to hedge them adequately. This is commonly done using Monte Carlo simulations. However, obtaining accurate estimates of the Greeks can be computationally costly. Multilevel Monte Carlo offers complexity improvements over standard Monte Carl...
Recent advances and future prospects for Monte Carlo
Brown, Forrest B [Los Alamos National Laboratory
2010-01-01
The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codes such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Variance reduction in Monte Carlo analysis of rarefied gas diffusion.
Perlmutter, M.
1972-01-01
The problem of rarefied diffusion between parallel walls is solved using the Monte Carlo method. The diffusing molecules are evaporated or emitted from one of the two parallel walls and diffuse through another molecular species. The Monte Carlo analysis treats the diffusing molecule as undergoing a Markov random walk, and the local macroscopic properties are found as the expected value of the random variable, the random walk payoff. By biasing the transition probabilities and changing the collision payoffs, the expected Markov walk payoff is retained but its variance is reduced so that the Monte Carlo result has a much smaller error.
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
Simulation and the Monte Carlo Method, Student Solutions Manual
Rubinstein, Reuven Y
2012-01-01
This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, suc
Status of vectorized Monte Carlo for particle transport analysis
The conventional particle transport Monte Carlo algorithm is ill suited for modern vector supercomputers because the random nature of the particle transport process in the history based algorithm inhibits construction of vectors. An alternative, event-based algorithm is suitable for vectorization and has been used recently to achieve impressive gains in performance on vector supercomputers. This review describes the event-based algorithm and several variations of it. Implementations of this algorithm for applications in particle transport are described, and their relative merits are discussed. The implementation of Monte Carlo methods on multiple vector parallel processors is considered, as is the potential of massively parallel processors for Monte Carlo particle transport simulations
A continuation multilevel Monte Carlo algorithm
Collier, Nathan
2014-09-05
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.
Monte Carlo simulation framework for TMT
Vogiatzis, Konstantinos; Angeli, George Z.
2008-07-01
This presentation describes a strategy for assessing the performance of the Thirty Meter Telescope (TMT). A Monte Carlo Simulation Framework has been developed to combine optical modeling with Computational Fluid Dynamics simulations (CFD), Finite Element Analysis (FEA) and controls to model the overall performance of TMT. The framework consists of a two year record of observed environmental parameters such as atmospheric seeing, site wind speed and direction, ambient temperature and local sunset and sunrise times, along with telescope azimuth and elevation with a given sampling rate. The modeled optical, dynamic and thermal seeing aberrations are available in a matrix form for distinct values within the range of influencing parameters. These parameters are either part of the framework parameter set or can be derived from them at each time-step. As time advances, the aberrations are interpolated and combined based on the current value of their parameters. Different scenarios can be generated based on operating parameters such as venting strategy, optical calibration frequency and heat source control. Performance probability distributions are obtained and provide design guidance. The sensitivity of the system to design, operating and environmental parameters can be assessed in order to maximize the % of time the system meets the performance specifications.
Accelerated Monte Carlo Methods for Coulomb Collisions
Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce
2014-03-01
We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.
Monte Carlo Production Management at CMS
Boudoul, G.; Pol, A; Srimanobhas, P; Vlimant, J R; Franzoni, Giovanni
2015-01-01
The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events.During the runI of LHC (2010-2012), CMS has produced over 12 Billion simulated events,organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up).In order toaggregate the information needed for the configuration and prioritization of the events production,assure the book-keeping and of all the processing requests placed by the physics analysis groups,and to interface with the CMS production infrastructure,the web-based service Monte Carlo Management (McM) has been developed and put in production in 2012.McM is based on recent server infrastructure technology (CherryPy + java) and relies on a CouchDB database back-end.This contribution will coverthe one and half year of operational experience managing samples of simulated events for CMS,the evolution of its functionalitiesand the extension of its capabi...
The Monte Carlo calculation of gamma family
The method of the Monte Carlo calculation for gamma family was investigated. The effects of the variation of values or terms of parameters on observed quantities were studied. The terms taken for the standard calculation are the scaling law for the model, simple proton spectrum for primary cosmic ray, a constant cross section of interaction, zero probability of neutral pion production, and the bending of the curve of primary energy spectrum. This is called S model. Calculations were made by changing one of above mentioned parameters. The chamber size, the mixing of gamma and hadrons, and the family size were fitted to the practical ECC data. When the model was changed from the scaling law to the CKP model, the energy spectrum of the family was able to be expressed by the CKP model better than the scaling law. The scaling law was better in the symmetry around the family center. It was denied that primary cosmic ray mostly consists of heavy particles. The increase of the interaction cross section was necessary in view of the frequency of the families. (Kato, T.)
Finding Planet Nine: a Monte Carlo approach
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2016-06-01
Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30°, and an argument of perihelion of 150°. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of the four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.
Monte Carlo simulations for focusing elliptical guides
Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)
2009-07-01
The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.
Finding Planet Nine: a Monte Carlo approach
Marcos, C de la Fuente
2016-01-01
Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30 degrees, and an argument of perihelion of 150 degrees. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal antialignment scenario. In addition and after studying the current statistic...
Measuring Berry curvature with quantum Monte Carlo
Kolodrubetz, Michael
2014-01-01
The Berry curvature and its descendant, the Berry phase, play an important role in quantum mechanics. They can be used to understand the Aharonov-Bohm effect, define topological Chern numbers, and generally to investigate the geometric properties of a quantum ground state manifold. While Berry curvature has been well-studied in the regimes of few-body physics and non-interacting particles, its use in the regime of strong interactions is hindered by the lack of numerical methods to solve it. In this paper we fill this gap by implementing a quantum Monte Carlo method to solve for the Berry curvature, based on interpreting Berry curvature as a leading correction to imaginary time ramps. We demonstrate our algorithm using the transverse-field Ising model in one and two dimensions, the latter of which is non-integrable. Despite the fact that the Berry curvature gives information about the phase of the wave function, we show that our algorithm has no sign or phase problem for standard sign-problem-free Hamiltonians...
Monte Carlo study of nanowire magnetic properties
R.Masrour; L.Bahmad; A.Benyoussef
2013-01-01
In this work,we use Monte Carlo simulations to study the magnetic properties of a nanowire system based on a honeycomb lattice,in the absence as well as in the presence of both an external magnetic field and crystal field.The system is formed with NL layers having spins that can take the values σ =+1/2 and S =+1,0.The blocking temperature is deduced,for each spin configuration,depending on the crystal field A.The effect of the exchange interaction coupling Jp between the spin configurations σ and S is studied for different values of temperature at fixed crystal field.The established ground-state phase diagram,in the plane (Jp,A),shows that the only stable configurations are:(1/2,0),(1/2,+1),and (1/2,-1).The thermal magnetization and susceptibility are investigated for the two spin configurations,in the absence as well as in the presence of a crystal field.Finally,we establish the hysteresis cycle for different temperature values,showing that there is almost no remaining magnetization in the absence of the external magnetic field,and that the studied system exhibits a super-paramagnetic behavior.
Extending canonical Monte Carlo methods: II
Velazquez, L.; Curilef, S.
2010-04-01
We have previously presented a methodology for extending canonical Monte Carlo methods inspired by a suitable extension of the canonical fluctuation relation C = β2langδE2rang compatible with negative heat capacities, C < 0. Now, we improve this methodology by including the finite size effects that reduce the precision of a direct determination of the microcanonical caloric curve β(E) = ∂S(E)/∂E, as well as by carrying out a better implementation of the MC schemes. We show that, despite the modifications considered, the extended canonical MC methods lead to an impressive overcoming of the so-called supercritical slowing down observed close to the region of the temperature driven first-order phase transition. In this case, the size dependence of the decorrelation time τ is reduced from an exponential growth to a weak power-law behavior, \\tau (N)\\propto N^{\\alpha } , as is shown in the particular case of the 2D seven-state Potts model where the exponent α = 0.14-0.18.
Monte Carlo Production Management at CMS
Boudoul, G.; Franzoni, G.; Norkus, A.; Pol, A.; Srimanobhas, P.; Vlimant, J.-R.
2015-12-01
The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events. During the RunI of LHC (20102012), CMS has produced over 12 Billion simulated events, organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up). In order to aggregate the information needed for the configuration and prioritization of the events production, assure the book-keeping of all the processing requests placed by the physics analysis groups, and to interface with the CMS production infrastructure, the web- based service Monte Carlo Management (McM) has been developed and put in production in 2013. McM is based on recent server infrastructure technology (CherryPy + AngularJS) and relies on a CouchDB database back-end. This contribution covers the one and half year of operational experience managing samples of simulated events for CMS, the evolution of its functionalities and the extension of its capability to monitor the status and advancement of the events production.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Monte Carlo simulations for heavy ion dosimetry
Water-to-air stopping power ratio (sw,air) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, sw,air, the influence of fragments and I-values on sw,air for carbon ion beams was investigated. The value of sw,air deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Linear Scaling Quantum Monte Carlo Calculations
Williamson, Andrew
2002-03-01
New developments to the quantum Monte Carlo approach are presented that improve the scaling of the time required to calculate the total energy of a configuration of electronic coordinates from N^3 to nearly linear[1]. The first factor of N is achieved by applying a unitary transform to the set of single particle orbitals used to construct the Slater determinant, creating a set of maximally localized Wannier orbitals. These localized functions are then truncated beyond a given cutoff radius to introduce sparsity into the Slater determinant. The second factor of N is achieved by evaluating the maximally localized Wannier orbitals on a cubic spline grid, which removes the size dependence of the basis set (e.g. plane waves, Gaussians) typically used to expand the orbitals. Application of this method to the calculation of the binding energy of carbon fullerenes and silicon nanostructures will be presented. An extension of the approach to deal with excited states of systems will also be presented in the context of the calculation of the excitonic gap of a variety of systems. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/LLNL under contract no. W-7405-Eng-48. [1] A.J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87 246406 (2001)
SERPENT Monte Carlo reactor physics code
SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)
Monte Carlo Simulation of Critical Casimir Forces
Vasilyev, Oleg A.
2015-03-01
In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.
Biofilm growth: a lattice Monte Carlo model
Tao, Yuguo; Slater, Gary
2011-03-01
Biofilms are complex colonies of bacteria that grow in contact with a wall, often in the presence of a flow. In the current work, biofilm growth is investigated using a new two-dimensional lattice Monte Carlo algorithm based on the Bond-Fluctuation Algorithm (BFA). One of the distinguishing characteristics of biofilms, the synthesis and physical properties of the extracellular polymeric substance (EPS) in which the cells are embedded, is explicitly taken into account. Cells are modelled as autonomous closed loops with well-defined mechanical and thermodynamic properties, while the EPS is modelled as flexible polymeric chains. This BFA model allows us to add biologically relevant features such as: the uptake of nutrients; cell growth, division and death; the production of EPS; cell maintenance and hibernation; the generation of waste and the impact of toxic molecules; cell mutation and evolution; cell motility. By tuning the structural, interactional and morphologic parameters of the model, the cell shapes as well as the growth and maturation of various types of biofilm colonies can be controlled.
Monte Carlo simulations for heavy ion dosimetry
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Monte Carlo method application to shielding calculations
CANDU spent fuel discharged from the reactor core contains Pu, so it must be stressed in two directions: tracing for the fuel reactivity in order to prevent critical mass formation and personnel protection during the spent fuel manipulation. The basic tasks accomplished by the shielding calculations in a nuclear safety analysis consist in dose rates calculations in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. To perform photon dose rates calculations the Monte Carlo MORSE-SGC code incorporated in SAS4 sequence from SCALE system was used. The paper objective was to obtain the photon dose rates to the spent fuel transport cask wall, both in radial and axial directions. As source of radiation one spent CANDU fuel bundle was used. All the geometrical and material data related to the transport cask were considered according to the shipping cask type B model, whose prototype has been realized and tested in the Institute for Nuclear Research Pitesti. (authors)
Monte Carlo Simulations of the Photospheric Process
Santana, Rodolfo; Hernandez, Roberto A; Kumar, Pawan
2015-01-01
We present a Monte Carlo (MC) code we wrote to simulate the photospheric process and to study the photospheric spectrum above the peak energy. Our simulations were performed with a photon to electron ratio $N_{\\gamma}/N_{e} = 10^{5}$, as determined by observations of the GRB prompt emission. We searched an exhaustive parameter space to determine if the photospheric process can match the observed high-energy spectrum of the prompt emission. If we do not consider electron re-heating, we determined that the best conditions to produce the observed high-energy spectrum are low photon temperatures and high optical depths. However, for these simulations, the spectrum peaks at an energy below 300 keV by a factor $\\sim 10$. For the cases we consider with higher photon temperatures and lower optical depths, we demonstrate that additional energy in the electrons is required to produce a power-law spectrum above the peak-energy. By considering electron re-heating near the photosphere, the spectrum for these simulations h...
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Monte Carlo techniques for analyzing deep penetration problems
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.
Monte Carlo computations of the hadronic mass spectrum
This paper summarizes two talks presented at the Orbis Scientiae Meeting, 1982. Monte Carlo results on the mass gap (or glueball mass) and on the masses of the lightest quark-model hadrons are illustrated
Monte Carlo methods for the self-avoiding walk
Janse van Rensburg, E J [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada)], E-mail: rensburg@yorku.ca
2009-08-14
The numerical simulation of self-avoiding walks remains a significant component in the study of random objects in lattices. In this review, I give a comprehensive overview of the current state of Monte Carlo simulations of models of self-avoiding walks. The self-avoiding walk model is revisited, and the motivations for Monte Carlo simulations of this model are discussed. Efficient sampling of self-avoiding walks remains an elusive objective, but significant progress has been made over the last three decades. The model still poses challenging numerical questions however, and I review specific Monte Carlo methods for improved sampling including general Monte Carlo techniques such as Metropolis sampling, umbrella sampling and multiple Markov Chain sampling. In addition, specific static and dynamic algorithms for walks are presented, and I give an overview of recent innovations in this field, including algorithms such as flatPERM, flatGARM and flatGAS. (topical review)