WorldWideScience

Sample records for 4d guide-point modelling

  1. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  2. Predicting lower mantle heterogeneity from 4-D Earth models

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    basal layer ˜ 4% denser than ambient mantle. Increasing convective vigour (Ra ≈ 5 x 108) or decreasing the density of the basal layer decreases both the accuracy and sensitivity of the predicted lower mantle structure. References: D. J. Bower, M. Gurnis, N. Flament, Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8-22 (2015). V. Lekic, S. Cottaar, A. Dziewonski, B. Romanowicz, Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68-77 (2012).

  3. When chaos meets hyperchaos: 4D Rössler model

    Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional systems. In numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via Computer-Assisted Proofs techniques. - Highlights: • The coexistence of chaos and hyperchaos in the 4D Rössler system is proved via Computer-Assisted Proofs techniques. • A global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. • The long transient behaviors make difficult in numerical simulations to distinguish chaos from hyperchaos in some situations

  4. When chaos meets hyperchaos: 4D Rössler model

    Barrio, Roberto, E-mail: rbarrio@unizar.es [Departamento de Matemática Aplicada and IUMA, University of Zaragoza, E-50009 Zaragoza (Spain); Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Angeles Martínez, M., E-mail: gelimc@unizar.es [Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Serrano, Sergio, E-mail: sserrano@unizar.es [Departamento de Matemática Aplicada and IUMA, University of Zaragoza, E-50009 Zaragoza (Spain); Computational Dynamics group, University of Zaragoza, E-50009 Zaragoza (Spain); Wilczak, Daniel, E-mail: wilczak@ii.uj.edu.pl [Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków (Poland)

    2015-10-09

    Chaotic behavior is a common feature of nonlinear dynamics, as well as hyperchaos in high-dimensional systems. In numerical simulations of these systems it is quite difficult to distinguish one from another behavior in some situations, as the results are frequently quite “noisy”. We show that in such systems a global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. This fact provides a mechanism for these noisy results. The coexistence of chaos and hyperchaos is proved via Computer-Assisted Proofs techniques. - Highlights: • The coexistence of chaos and hyperchaos in the 4D Rössler system is proved via Computer-Assisted Proofs techniques. • A global hyperchaotic invariant set is present giving rise to long hyperchaotic transient behaviors. • The long transient behaviors make difficult in numerical simulations to distinguish chaos from hyperchaos in some situations.

  5. 4D Shape-Preserving Modelling of Bone Growth

    Andresen, Per Rønsholt; Nielsen, Mads; Kreiborg, Sven

    1998-01-01

    subdivide the growth analysis into growth simulation, growth modelling, and finally the growth analysis. In this paper, we present results of growth simulation of the mandible from 3 scannings of the same patient in the age of 9 months, 21 months, and 7 years. We also present the first growth models and...

  6. N=2 minimal model from 4d supersymmetric theory

    Honda, Masazumi

    2015-01-01

    Previous studies have shown that supersymmetric partition function on $T^2 \\times S^2$ is related to elliptic genus of two dimensional supersymmetric theory. In this short note we find a four dimensional supersymmetric theory, whose partition function on $T^2 \\times S^2$ is the same as elliptic genera of $\\mathcal{N}=2$ minimal models in two dimensions.

  7. On the semiclassical limit of 4d spin foam models

    Conrady, Florian

    2008-01-01

    We study the semiclassical properties of the Riemannian spin foam models with Immirzi parameter that are constructed via coherent states. We show that in the semiclassical limit the quantum spin foam amplitudes of an arbitrary triangulation are exponentially suppressed, if the face spins do not correspond to a discrete geometry. When they do arise from a geometry, the amplitudes reduce to the exponential of i times the Regge action. Remarkably, the dependence on the Immirzi parameter disappears in this limit.

  8. From 3D TQFTs to 4D models with defects

    Delcamp, Clement

    2016-01-01

    (2+1) dimensional topological quantum field theories with defect excitations are by now quite well understood, while many questions are still open for (3+1) dimensional TQFTs. Here we propose a strategy to lift states and operators of a (2+1) dimensional TQFT to states and operators of a (3+1) dimensional theory with defects. The main technical tool are Heegard splittings, which allow to encode the topology of a three--dimensional manifold with line defects into a two--dimensional Heegard surface. We apply this idea to the example of BF theory which describes locally flat connections. This shows in particular how the curvature excitation generating surface operators of the (3+1) dimensional theory can be obtained from closed ribbon operators of the (2+1) dimensional BF theory. We hope that this technique allows the construction and study of more general models based on unitary fusion categories.

  9. Challenges of 4D(ata Model for Electronic Government

    Bogdan GHILIC-MICU

    2015-01-01

    Full Text Available Social evolution pyramid, built on the foundation of the ‘90s capitalist society, lead to the emergence of the informational society – years 1990 to 2005 – and knowledge society – years 2005 to 2020. The literature starts using a new concept, a new form of association – artificial intelligence society – foreseen to be established in the next time frame. All these developments of human society and translations or leaps (most of the times apparently timeless were, are and will be possible only due to the advancing information and communications technologies. The leap to Democracy 3.0, based on information and communication technologies prompts to a radical change in the majority of the classical concepts targeting society structure and the way it is guided and controlled. Thus, concepts become electronic concepts (or e-concepts through the use of new technologies. E-concepts keep the essence of the classical principles of liberty and democracy, adding a major aspect of the new way of communication and spreading ideas between people. The main problem is to quantify, analyze and foresee the way technological changes will influence not only the economic system, but also the daily life of the individual and the society. Unfortunately (or maybe fortunately, depending on the point of view, all these evolutions and technological and social developments are as many challenges for the governments of the world. In this paper we will highlight only four of the challenges facing the governments, grouped in a structured model with the following specific concepts: Big Data, Social Data, Linked Data and Mobile Data. This is an emerging paradigm of the information and communication technology supporting national and global eGovernment projects.

  10. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Tamara P. Martin

    2014-01-01

    Full Text Available Phosphorylated heat shock protein 20 (HSP20 is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling.

  11. A new model of Pde4d deficiency: genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without spatial cognitive effects.

    Schaefer, T L; Braun, A A; Amos-Kroohs, R M; Williams, M T; Ostertag, E; Vorhees, C V

    2012-07-01

    Phosphodiesterases (PDEs) are a superfamily of intracellular second messenger cyclic nucleotide hydrolyzing enzymes composed of 12 families. The Pde4 family has been implicated in depression and cognition, and PDE4 inhibitors have been evaluated as antidepressants and possible cognitive enhancers. Pde4d(-/-) mice show an antidepressant phenotype and learning enhancement on some tests, but not others as do mice treated with PDE4 inhibitors. Here, we report for the first time the behavioral phenotype of a new Pde4d knock-down (KD) rat model of PDE4D deficiency. Consistent with other data on PDE4D deficiency, Pde4d KD rats showed depression resistance in the Porsolt forced swim test and hyperreactivity of the acoustic startle response with no differential response on prepulse inhibition, suggesting no sensorimotor gating defect. Pde4d KD rats also exhibited a small exploratory activity reduction but no difference following habituation, and no enhanced spatial learning or reference memory in the Morris water maze. A selective improvement in route-based learning in the Cincinnati water maze was seen as well as enhanced contextual and cued fear conditioning and a more rapid rate of cued extinction from their higher freezing level that declined to wild-type (WT) levels only after ∼20 extinction trials. The rat model confirms Pde4d's role in depression but not in spatial learning or memory enhancement and shows for the first time higher fear conditioning and altered extinction compared with controls. The new model provides a tool by which to better understand the role of PDE4D in neuropsychiatric disorders and for the development of alternate treatment approaches. PMID:22487514

  12. Trauma-Related Altered States of Consciousness: Exploring the 4-D Model

    Paul A. Frewen; Lanius, Ruth A.

    2014-01-01

    Frewen and Lanius (in press) recently articulated a 4-D model as a framework for classifying symptoms of posttraumatic stress into those that potentially occur within normal waking consciousness (NWC) versus those that intrinsically represent dissociative experiences of trauma-related altered states of consciousness (TRASC). Four dimensions were specified: time-memory, thought, body, and emotion. The 4-D model further hypothesizes that in traumatized persons, symptoms of TRASC, compared with ...

  13. Allowing for model error in strong constraint 4D-Var

    Howes, Katherine; Lawless, Amos; Fowler, Alison

    2016-04-01

    Four dimensional variational data assimilation (4D-Var) can be used to obtain the best estimate of the initial conditions of an environmental forecasting model, namely the analysis. In practice, when the forecasting model contains errors, the analysis from the 4D-Var algorithm will be degraded to allow for errors later in the forecast window. This work focusses on improving the analysis at the initial time by allowing for the fact that the model contains error, within the context of strong constraint 4D-Var. The 4D-Var method developed acknowledges the presence of random error in the model at each time step by replacing the observation error covariance matrix with an error covariance matrix that includes both observation error and model error statistics. It is shown that this new matrix represents the correct error statistics of the innovations in the presence of model error. A method for estimating this matrix using innovation statistics, without requiring prior knowledge of the model error statistics, is presented. The method is demonstrated numerically using a non-linear chaotic system with erroneous parameter values. We show that that the new method works to reduce the analysis error covariance when compared with a standard strong constraint 4D-Var scheme. We discuss the fact that an improved analysis will not necessarily provide a better forecast.

  14. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  15. Trauma-related altered states of consciousness: exploring the 4-D model.

    Frewen, Paul A; Lanius, Ruth A

    2014-01-01

    Frewen and Lanius (in press) recently articulated a 4-D model as a framework for classifying symptoms of posttraumatic stress into those that potentially occur within normal waking consciousness (NWC) versus those that intrinsically represent dissociative experiences of trauma-related altered states of consciousness (TRASC). Four dimensions were specified: time-memory, thought, body, and emotion. The 4-D model further hypothesizes that in traumatized persons, symptoms of TRASC, compared with NWC forms of distress, will be (a) observed less frequently; (b) less intercorrelated, especially as measured as moment-to-moment states; (c) observed more frequently in people with high dissociative symptomatology as measured independently; and (d) observed more often in people who have experienced repeated traumatization, particularly early developmental trauma. The aim of the present research was to begin to evaluate these 4 predictions of the 4-D model. Within a sample of 74 women with posttraumatic stress disorder (PTSD) primarily due to histories of childhood trauma, as well as within a 2nd sample of 504 undergraduates (384 females), the 1st 2 hypotheses of the 4-D model were supported. In addition, within the PTSD sample, the 3rd hypothesis was supported. However, inconsistent with the 4th hypothesis, severity of childhood trauma history was not strongly associated with TRASC. We conclude that the hypotheses articulated by the 4-D model were generally supported, although further research in different trauma-related disorders is needed, and the role of childhood trauma history in the etiology of TRASC requires further research. PMID:24650122

  16. Current-based 4D shape analysis for the mechanical personalization of heart models

    Le Folgoc, Loïc; Delingette, Hervé; Criminisi, Antonio; Ayache, Nicholas

    2012-01-01

    Patient-specific models of the heart may lead to better understanding of cardiovascular diseases and better planning of therapy. A machine-learning approach to the personalization of an electro-mechanical model of the heart, from the kinematics of the endo- and epicardium, is presented in this paper. We use 4D mathematical currents to encapsulate information about the shape and deformation of the heart. The method is largely insensitive to initialization and does not require on-line simulatio...

  17. Model-driven physiological assessment of the mitral valve from 4D TEE

    Voigt, Ingmar; Ionasec, Razvan Ioan; Georgescu, Bogdan; Houle, Helene; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2009-02-01

    Disorders of the mitral valve are second most frequent, cumulating 14 percent of total number of deaths caused by Valvular Heart Disease each year in the United States and require elaborate clinical management. Visual and quantitative evaluation of the valve is an important step in the clinical workflow according to experts as knowledge about mitral morphology and dynamics is crucial for interventional planning. Traditionally this involves examination and metric analysis of 2D images comprising potential errors being intrinsic to the method. Recent commercial solutions are limited to specific anatomic components, pathologies and a single phase of cardiac 4D acquisitions only. This paper introduces a novel approach for morphological and functional quantification of the mitral valve based on a 4D model estimated from ultrasound data. A physiological model of the mitral valve, covering the complete anatomy and eventual shape variations, is generated utilizing parametric spline surfaces constrained by topological and geometrical prior knowledge. The 4D model's parameters are estimated for each patient using the latest discriminative learning and incremental searching techniques. Precise evaluation of the anatomy using model-based dynamic measurements and advanced visualization are enabled through the proposed approach in a reliable, repeatable and reproducible manner. The efficiency and accuracy of the method is demonstrated through experiments and an initial validation based on clinical research results. To the best of our knowledge this is the first time such a patient specific 4D mitral valve model is proposed, covering all of the relevant anatomies and enabling to model the common pathologies at once.

  18. A 4D-Role Based Access Control Model for Multitenancy Cloud Platform

    Jiangfeng Li

    2016-01-01

    Full Text Available Since more and more applications and services have been transferred from servers in the B/S architecture to cloud, user access control has become a significant part in a multitenancy cloud platform. Role based access control model makes users participate in an enterprise system as particular identities. However, in a multitenancy cloud environment, it has a high probability that the information of tenants has been leaked by using existing role based access control (RBAC model. Moreover, management problems may emerge in the multitenancy platform with the increment of the number of tenants. In this paper, a novel concept of 4D-role is presented. With a detailed definition on the concept of 4D-role, a 4D-role based multitenancy model is proposed for running various applications and services in the multitenancy cloud platform. A theoretical analysis indicates that the model has the characters of tenant isolation, role hierarchy, and administration independence. The three characters are also verified by experimental evaluation. Moreover, the evaluation results indicate that the model has a good performance in using cloud resources when large-scale users are operating in the cloud platform simultaneously.

  19. Planning lung radiotherapy using 4D CT data and a motion model

    This work is a feasibility study to use a four-dimensional computed tomography (4D CT) dataset generated by a continuous motion model for treatment planning in lung radiotherapy. The model-based 4D CT data were derived from multiple breathing cycles. Four patients were included in this retrospective study. Treatment plans were optimized at end-exhale for each patient and the effect of respiratory motion on the dose delivery investigated. The accuracy of the delivered dose as determined by the number of intermediate respiratory phases used for the calculation was considered. The time-averaged geometry of the anatomy representing the mid-ventilation phase of the breathing cycle was generated using the motion model and a treatment plan was optimized for this phase for one patient. With respiratory motion included, the mid-ventilation plan achieved better target coverage than the plan optimized at end-exhale when standard margins were used to expand the clinical target volume (CTV) to planning target volume (PTV). Using a margin to account for set-up uncertainty only, resulted in poorer target coverage and healthy tissue sparing. For this patient cohort, the results suggest that conventional three-dimensional treatment planning was sufficient to maintain target coverage despite respiratory motion. The motion model has proved a useful tool in 4D treatment planning.

  20. Application of adaptive kinetic modelling for bias propagation reduction in direct 4D image reconstruction

    Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image reconstruction algorithms can potentially improve kinetic parameter precision and accuracy in dynamic PET body imaging. However, construction of a common kinetic model is not always feasible and in contrast to post-reconstruction kinetic analysis, errors in poorly modelled regions may spatially propagate to regions which are well modelled. To reduce error propagation from erroneous model fits, we implement and evaluate a new approach to direct parameter estimation by incorporating a recently proposed kinetic modelling strategy within a direct 4D image reconstruction framework. The algorithm uses a secondary more general model to allow a less constrained model fit in regions where the kinetic model does not accurately describe the underlying kinetics. A portion of the residuals then is adaptively included back into the image whilst preserving the primary model characteristics in other well modelled regions using a penalty term that trades off the models. Using fully 4D simulations based on dynamic [15O]H2O datasets, we demonstrate reduction in propagation-related bias for all kinetic parameters. Under noisy conditions, reductions in bias due to propagation are obtained at the cost of increased noise, which in turn results in increased bias and variance of the kinetic parameters. This trade-off reflects the challenge of separating the residuals arising from poor kinetic modelling fits from the residuals arising purely from noise. Nonetheless, the overall root mean square error is reduced in most regions and parameters. Using the adaptive 4D image reconstruction improved model fits can be obtained in poorly modelled regions, leading to reduced errors potentially propagating

  1. Vector model for mapping of visual space to subjective 4-D sphere

    Here we present a mathematical model of binocular vision that maps a visible physical world to a subjective perception of it. The subjective space is a set of 4-D vectors whose components are outputs of four monocular neurons from each of the two eyes. Monocular neurons have one of the four types of concentric receptive fields with Gabor-like weighting coefficients. Next this vector representation of binocular vision is implemented as a pool of neurons where each of them is selective to the object's particular location in a 3-D visual space. Formally each point of the visual space is being projected onto a 4-D sphere. Proposed model allows determination of subjective distances in depth and direction, provides computational means for determination of Panum's area and explains diplopia and allelotropia

  2. Model-based groupware solution for distributed real-time collaborative 4D planning via teamwork

    Zhou, Wei; Georgakis, Panagiotis; Heesom, David; Feng, Xiandong

    2012-01-01

    Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting ...

  3. A SHAPE-NAVIGATED IMAGE DEFORMATION MODEL FOR 4D LUNG RESPIRATORY MOTION ESTIMATION

    Liu, Xiaoxiao; Saboo, Rohit R.; Pizer, Stephen M.; Mageras, Gig S.

    2009-01-01

    Intensity modulated radiation therapy (IMRT) for cancers in the lung remains challenging due to the complicated respiratory dynamics. We propose a shape-navigated dense image deformation model to estimate the patient-specific breathing motion using 4D respiratory correlated CT (RCCT) images. The idea is to use the shape change of the lungs, the major motion feature in the thorax image, as a surrogate to predict the corresponding dense image deformation from training.

  4. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  5. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  6. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    Fung, George S K; Tsui, Benjamin M W [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Segars, W Paul [Department of Radiology, Duke University, Durham, NC (United States); Gullberg, Grant T, E-mail: gfung2@jhmi.edu [E O Lawrence Berkeley National Laboratory, Life Science Division, Berkeley, CA (United States)

    2011-09-07

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  7. Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System

    Roßmann, J.; Hoppen, M.; Bücken, A.

    2013-08-01

    Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.

  8. Selective 4D modelling framework for spatial-temporal land information management system

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  9. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  10. Three-body force for baryons from the D0-D4/D8 matrix model

    Li, Si-wen

    2016-01-01

    This is an extensive work to our previous paper \\cite{key-08} studied on the D0-D4/D8 holographic system. We compute the three-body force for baryons with the D0-D4/D8 matrix model derived in \\cite{key-08} with considering the non-zero QCD vacuum. We obtain the three-body force at short distances but modified by the appearance of the smeared D0-branes i.e. considering the effects from the non-trivial QCD vacuum. We firstly test our matrix model in the case of 't Hooft instanton and then in two more realistic case: (1) three-neutrons with averaged spins and (2) proton-proton-neutron (or proton-neutron-proton). The three-body potential vanishes in the former case while in two latter cases it is positive i.e. repulsive and makes sense only if the constraint for stable baryonic state is satisfied. We require all the baryons in our computation aligned on a line. These may indicate that the cases in dense states of neutrons such as in neutron stars, Helium-3 or Tritium nucleus all with the non-trivial QCD vacuum.

  11. Incremental 4D-VAR assimilation scheme based on Lorenz model

    WANG Xidong; XU Dongfeng; XU Xiaohua

    2008-01-01

    Four-dimensional variational(4D-VAR) data assimilation method is a perfect data assimilation solution in theory, but the compu- tational issue is quite difficult in operational implementation. The incremental 4D-VAR assimilation scheme is set up in order to re- duce the computational cost. It is shown that the accuracy of the observations, the length of the assimilation window and the choice of the first guess have an important influence on the assimilation outcome through the contrast experiment. Compared with the standard 4D-VAR assimilation scheme, the incremental 4D-VAR assimilation scheme shows its advantage in the computation speed through an assimilation experiment.

  12. 4D modeling and estimation of respiratory motion for radiation therapy

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  13. Non-Abelian discrete gauge symmetries in 4d string models

    Berasaluce-Gonzalez, M; Marchesano, F; Regalado, D; Uranga, A M

    2012-01-01

    We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour sy...

  14. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    This paper presents two 4D mathematical observer models for the detection of motion defects in 4D gated medical images. Their performance was compared with results from human observers in detecting a regional motion abnormality in simulated 4D gated myocardial perfusion (MP) SPECT images. The first 4D mathematical observer model extends the conventional channelized Hotelling observer (CHO) based on a set of 2D spatial channels and the second is a proposed model that uses a set of 4D space-time channels. Simulated projection data were generated using the 4D NURBS-based cardiac-torso (NCAT) phantom with 16 gates/cardiac cycle. The activity distribution modelled uptake of 99mTc MIBI with normal perfusion and a regional wall motion defect. An analytical projector was used in the simulation and the filtered backprojection (FBP) algorithm was used in image reconstruction followed by spatial and temporal low-pass filtering with various cut-off frequencies. Then, we extracted 2D image slices from each time frame and reorganized them into a set of cine images. For the first model, we applied 2D spatial channels to the cine images and generated a set of feature vectors that were stacked for the images from different slices of the heart. The process was repeated for each of the 1,024 noise realizations, and CHO and receiver operating characteristics (ROC) analysis methodologies were applied to the ensemble of the feature vectors to compute areas under the ROC curves (AUCs). For the second model, a set of 4D space-time channels was developed and applied to the sets of cine images to produce space-time feature vectors to which the CHO methodology was applied. The AUC values of the second model showed better agreement (Spearman’s rank correlation (SRC) coefficient = 0.8) to human observer results than those from the first model (SRC coefficient = 0.4). The agreement with human observers indicates the proposed 4D mathematical observer model provides a good predictor of the

  15. Strategies for 4-D Regional Modeling of Water Vapour Using GPS

    S. H. Skone; S.M. Shrestha

    2003-01-01

    Global Positioning System (GPS) signals experience ranging errors due to propagation through the neutral atmosphere. These range delays consist of a hydrostatic component, dependent on air pressure and temperature, and a wet delay dependent on water vapour pressure and temperature.Range delays arising from the hydrostatic component can be computed with accuracies of a few millimeters using existing models, provided that surface barometric or meteorological data are available. By using a regional network of GPS reference stations, it is possible to recover estimates of the Slant Wet Delay to all satellites in view. Observations of the Slant Wet Delay (SWD) can be used to model the vertical and horizontal structure of water vapour over a local area. These techniques are based on a tomographic approach using the SWD as input observables, where 4-D models of the wet refractivity may be derived. This method allows improved resolution of water vapour estimates for precise positioning applications and assimilation into Numerical Weather Predictions (NWP). In this paper we present strategies for real-time modeling of wet refractivity, with simulations and preliminary results of data processing for a regional GPS network in Southern California.

  16. 4D modeling of salt-sediment interactions during diapir evolution

    Callot, J.P.; Rondon, D.; Letouzey, J. [IFP, Rueil Malmaison (France); Krajewski, P. [Gaz de France-PEG, Lingen (Germany); Rigollet, C. [Gaz de France, St. Denis la Plaine (France)

    2007-09-13

    We performed sand/silicon models imaged with X-ray tomography and reconstructed by 3D geomodelling for the study of (1) the interaction between host rock and salt diapir during diapir growth, and (2) the evolution of intra salt brittle rocks during diapir ascent. X-ray tomography is a non destructive imaging technique which allows us to follow the 4D evolution of the analogue model. Salt is modelled by Newtonian silicone putty and the internal rock layer, as well as the sedimentary host rock, by a granular Mohr-Coulomb material, generally coryndon. The analogue models are then compared to natural examples, the evolution of which is obtained through 3D restoration of the structures. (1) A 4D evolutionary scenario for a salt diapir development was originally proposed by Trusheim (1960) and discussed later on by Vendeville (1999) among others (Ge et al., 1997; Zirngast et al., 1996). This scenario is reproduced through analogue models to test the relative importance of (1) extensional tectonics, (2) sediment progradations, and (3) source layer depletion and rim-syncline touchdown, in the evolution of a diapir. The comparison of our results with the restored natural analogue shows that the main parameter remains (1) the rim-syncline touchdown and (2) the unloading of the diapir due to erosion. The latter accounts for a drop in strength necessary to allow for the flank rotation and down building of the diapir. Extensional stresses and sediment progradations will also amplify the halokinesis. (2) Salt diapirs from the Middle East or in Southern Permian Basin petroleum province show exotic blocks at outcrop and in salt mines, known as 'stringers' in subsurface data, usually composed of anhydrite, dolomite, marls or carbonates. These stringers, which constitute major structures inside the salt diapir, can reach a few km in size and originate from pre-existing brittle rock layers embedded in the salt layer. Stringers of the Ara carbonate within the Precambrian

  17. 4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

    Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund

    2015-07-01

    The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

  18. 4D maximum a posteriori reconstruction in dynamic SPECT using a compartmental model-based prior

    A 4D ordered-subsets maximum a posteriori (OSMAP) algorithm for dynamic SPECT is described which uses a temporal prior that constrains each voxel's behaviour in time to conform to a compartmental model. No a priori limitations on kinetic parameters are applied; rather, the parameter estimates evolve as the algorithm iterates to a solution. The estimated parameters and time-activity curves are used within the reconstruction algorithm to model changes in the activity distribution as the camera rotates, avoiding artefacts due to inconsistencies of data between projection views. This potentially allows for fewer, longer-duration scans to be used and may have implications for noise reduction. The algorithm was evaluated qualitatively using dynamic 99mTc-teboroxime SPECT scans in two patients, and quantitatively using a series of simulated phantom experiments. The OSMAP algorithm resulted in images with better myocardial uniformity and definition, gave time-activity curves with reduced noise variations, and provided wash-in parameter estimates with better accuracy and lower statistical uncertainty than those obtained from conventional ordered-subsets expectation-maximization (OSEM) processing followed by compartmental modelling. The new algorithm effectively removed the bias in k21 estimates due to inconsistent projections for sampling schedules as slow as 60 s per timeframe, but no improvement in wash-out parameter estimates was observed in this work. The proposed dynamic OSMAP algorithm provides a flexible framework which may benefit a variety of dynamic tomographic imaging applications. (author)

  19. 4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model

    Tuna, Hakan; Arikan, Feza; Arikan, Orhan

    2016-07-01

    approaches onto the obtained results. Combining Kalman methods with the proposed 3D CIT technique creates a robust 4D ionospheric electron density estimation model, and has the advantage of decreasing the computational cost of the proposed method. Results applied on both calm and storm days of the ionosphere show that, new technique produces more robust solutions especially when the number of GPS receiver stations in the region is small. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  20. A method to update fault transmissibility multipliers in the flow simulation model directly from 4D seismic

    Benguigui, Amran; Yin, Zhen; MacBeth, Colin

    2014-04-01

    We propose a new approach to update fault seal estimates in fluid flow simulation models by direct use of 4D seismic amplitudes calibrated by a well geological constraint. The method is suited to compartmentalized reservoirs and based on metrics created from differences in the 4D seismic signature on either side of major faults. The effectiveness of the approach is demonstrated by application to data from the fault controlled Heidrun field in the Norwegian Sea. The results of this application appear favourable and show that our method can detect variations of fault permeability along the major controlling faults in the field. Updates of the field simulation model with the 4D seismic-derived transmissibilities are observed to decrease the mismatch between the predicted and historical field production data in the majority of wells in our sector of interest.

  1. Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate

    Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)

  2. Initial validation of 4D-model for a clinical PET scanner using the Monte Carlo code gate

    Vieira, Igor F.; Lima, Fernando R.A.; Gomes, Marcelo S., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W.; Pacheco, Ludimila M. [Instituto Federal de Educacao, Ciencia e Tecnologia (IFPE), Recife, PE (Brazil); Chaves, Rosa M. [Instituto de Radium e Supervoltagem Ivo Roesler, Recife, PE (Brazil)

    2011-07-01

    Building exposure computational models (ECM) of emission tomography (PET and SPECT) currently has several dedicated computing tools based on Monte Carlo techniques (SimSET, SORTEO, SIMIND, GATE). This paper is divided into two steps: (1) using the dedicated code GATE (Geant4 Application for Tomographic Emission) to build a 4D model (where the fourth dimension is the time) of a clinical PET scanner from General Electric, GE ADVANCE, simulating the geometric and electronic structures suitable for this scanner, as well as some phenomena 4D, for example, rotating gantry; (2) the next step is to evaluate the performance of the model built here in the reproduction of test noise equivalent count rate (NEC) based on the NEMA Standards Publication NU protocols 2-2007 for this tomography. The results for steps (1) and (2) will be compared with experimental and theoretical values of the literature showing actual state of art of validation. (author)

  3. A Universal 4D Model for Double-Efficient Lossless Data Compressions

    Alipour, Philip B

    2011-01-01

    This report discusses the theory, implementation and performance of a combinatorial fuzzy-binary and-or (FBAR) algorithm for lossless data compression (LDC) and decompression (LDD) on 8-bit characters. A combinatorial pairwise flags is utilized, as new zero/nonzero, impure/pure bit-pair operators, where their combination forms a 4D hypercube to compress a sequence of bytes. The compressed sequence is stored in a grid file of constant size. Decompression is by using a fixed size translation table (TT) to access the grid file during I/O data conversions. Compared to other LDC algorithms, double-efficient (DE) entropies denoting 50% compressions with reasonable bitrates were observed. Double-extending the usage of the TT component in the code, exhibits a Universal Predictability via its negative growth of entropy for LDCs > 87.5% compression.

  4. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs.

    Kuhl, Spencer; Voss, Edward; Scherer, Amanda; Lusche, Daniel F; Wessels, Deborah; Soll, David R

    2016-01-01

    A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis. PMID:27271907

  5. Employing conformational analysis in the molecular modeling of agrochemicals: insights on QSAR parameters of 2,4-D

    Matheus Puggina de Freitas

    2013-12-01

    Full Text Available A common practice to compute ligand conformations of compounds with various degrees of freedom to be used in molecular modeling (QSAR and docking studies is to perform a conformational distribution based on repeated random sampling, such as Monte-Carlo methods. Further calculations are often required. This short review describes some methods used for conformational analysis and the implications of using selected conformations in QSAR. A case study is developed for 2,4-dichlorophenoxyacetic acid (2,4-D, a widely used herbicide which binds to TIR1 ubiquitin ligase enzyme. The use of such an approach and semi-empirical calculations did not achieve all possible minima for 2,4-D. In addition, the conformations and respective energies obtained by the semi-empirical AM1 method do not match the calculated trends obtained by a high level DFT method. Similar findings were obtained for the carboxylate anion, which is the bioactive form. Finally, the crystal bioactive structure of 2,4-D was not found as a minimum when using Monte-Carlo/AM1 and is similarly populated with another conformer in implicit water solution according to optimization at the B3LYP/aug-cc-pVDZ level. Therefore, quantitative structure-activity relationship (QSAR methods based on three dimensional chemical structures are not fundamental to provide predictive models for 2,4-D congeners as TIR1 ubiquitin ligase ligands, since they do not necessarily reflect the bioactive conformation of this molecule. This probably extends to other systems.

  6. 4D-Var data assimilation system for a coupled physical biological model

    J M Lellouche; M Ouberdous; W Eifler

    2000-12-01

    A 3-compartment model of phytoplankton growth dynamics has been coupled with a primitive-equation circulation model to better understand and quantify physical and biological processes in the Adriatic Sea. This paper presents the development and application of a data assimilation procedure based on optimal control theory. The aim of the procedure is to identify a set of model coefficient values that ensures the best fit between data and model results by minimizing a function that measures model and data discrepancies. In this sense, twin experiments have been successfully implemented in order to have a better estimation of biological model parameters and biological initial conditions.

  7. Advanced Integrated Work-flows for Incorporating Both Production and 4D Seismic-Related Data into Reservoir Models

    Reservoir models are used for predicting future oil recovery or for evaluating alternative field management scenarios. They can be considered as reliable when they account for all available data collected on the field: data are split into static data such as logs or measurements carried out on cores extracted from wells and dynamic data such as pressures and flow rates. Since the late nineties, the latter also consist of 4D seismic data. This motivated the development of very specific work-flows, which yield reservoir models respecting all collected data. In this paper, we focus on work-flows for building reservoir models consistent with both production and inverted 4D seismic data. Seismic data are referred to as inverted since we do not consider the amplitudes of the seismic traces, but the acoustic impedances or velocities derived from amplitudes. Then, two application cases are presented. The first one is a synthetic case inspired by typical North Sea Brent fields. It aims to stress the potential of the proposed approach for determining reservoir models respecting production data. The second one is also rooted in a real field case, but focuses on the matching of impedances. (authors)

  8. Elasticity/saturation relationships using flow simulation from an outcrop analogue for 4D seismic modelling

    Kirstetter, O.; Corbett, P.; Somerville, J.; MacBeth, C. [Heriot-Watt Institute of Petroleum Engineering, Edinburgh (United Kingdom)

    2006-07-01

    Three production scenarios have been simulated for three displacement mechanisms using three lithofacies models built at two scales (fine and coarse) from a 2D outcrop analogue. Analysis of the flow simulation results and the associated seismic modelling investigate the dependence of the time-lapse response on the lithofacies model and the vertical grid block size. Elastic attribute quantification from coarse-grid models requires a decision on the type of fluid saturation distribution (uniform or patchy) within the coarse-grid blocks. Here, empirical relations for scaling up the fluid bulk modulus are developed which, when inserted into standard Gassmann calculations, permit calibration of the response for the coarse-grid block model from the finer-scale model. At the coarse scale, fluid saturation changes during water injection and pressure depletion can be represented adequately by these relations but, for gas injection, it appears necessary to refer back to the fine-scale models. For the case of gas injection they cannot be generalized readily for each different lithofacies model and are thus observed to be outcrop dependent. (author)

  9. Massless ground state for a compact $SU(2)$ matrix model in 4D

    Boulton, L; Restuccia, A

    2015-01-01

    We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU(2) matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  10. Massless ground state for a compact SU (2) matrix model in 4D

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2015-09-01

    We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU (2) matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  11. Emergent 4D gravity on covariant quantum spaces in the IKKT model

    Steinacker, Harold C.

    2016-01-01

    We study perturbations of the 4-dimensional fuzzy sphere as a background in the IKKT or IIB matrix model. The linearized 4-dimensional Einstein equations are shown to arise from the classical matrix model action, without adding an Einstein-Hilbert term. The excitation modes with lowest spin are identified as gauge fields, metric and connection fields. In addition to the usual gravitational waves, there are also physical "torsion" wave excitations. The quantum structure of the geometry encodes...

  12. Massless ground state for a compact SU(2 matrix model in 4D

    Lyonell Boulton

    2015-09-01

    Full Text Available We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU(2 matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.

  13. A 4D-Role Based Access Control Model for Multitenancy Cloud Platform

    Jiangfeng Li; Zhenyu Liao; Chenxi Zhang; Yang Shi

    2016-01-01

    Since more and more applications and services have been transferred from servers in the B/S architecture to cloud, user access control has become a significant part in a multitenancy cloud platform. Role based access control model makes users participate in an enterprise system as particular identities. However, in a multitenancy cloud environment, it has a high probability that the information of tenants has been leaked by using existing role based access control (RBAC) model. Moreover, mana...

  14. Explosive Model Tarantula 4d/JWL++ Calibration of LX-17

    Souers, P C; Vitello, P A

    2008-09-30

    Tarantula is an explosive kinetic package intended to do detonation, shock initiation, failure, corner-turning with dead zones, gap tests and air gaps in reactive flow hydrocode models. The first, 2007-2008 version with monotonic Q is here run inside JWL++ with square zoning from 40 to 200 zones/cm on ambient LX-17. The model splits the rate behavior in every zone into sections set by the hydrocode pressure, P + Q. As the pressure rises, we pass through the no-reaction, initiation, ramp-up/failure and detonation sections sequentially. We find that the initiation and pure detonation rate constants are largely insensitive to zoning but that the ramp-up/failure rate constant is extremely sensitive. At no time does the model pass every test, but the pressure-based approach generally works. The best values for the ramp/failure region are listed here in Mb units.

  15. A Topological-like Model for Gravity in 4D Space-time

    Morales, Ivan; Oporto, Zui; Piguet, Olivier

    2016-01-01

    In this paper we consider a model for gravity in 4-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a 5-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the Loop Quantization framework. The present paper is dedicated to a classical analysis of the model's properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einstein's General Relativity with cosmological constant.

  16. LHC physics of extra gauge bosons in the 4D Composite Higgs Model

    Barducci D.

    2013-11-01

    Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.

  17. A topological-like model for gravity in 4D space-time

    Morales, Ivan; Neves, Bruno; Oporto, Zui; Piguet, Olivier

    2016-04-01

    In this paper we consider a model for gravity in four-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a five-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the loop quantization framework. The present paper is dedicated to a classical analysis of the model's properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einstein's general relativity with cosmological constant.

  18. A topological-like model for gravity in 4D space-time

    Morales, Ivan; Neves, Bruno; Oporto, Zui; Piguet, Olivier [Universidade Federal de Vicosa-UFV, Departamento de Fisica, Vicosa, MG (Brazil)

    2016-04-15

    In this paper we consider a model for gravity in four-dimensional space-time originally proposed by Chamseddine, which may be derived by dimensional reduction and truncation from a five-dimensional Chern-Simons theory. Its topological origin makes it an interesting candidate for an easier quantization, e.g., in the loop quantization framework. The present paper is dedicated to a classical analysis of the model's properties. Cosmological solutions as well as wave solutions are found and compared with the corresponding solutions of Einstein's general relativity with cosmological constant. (orig.)

  19. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    Pierce, Greg; Wang, Kevin; Battista, Jerry; Lee, Ting-Yim

    2012-06-01

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  20. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  1. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  2. Emergent 4D gravity on covariant quantum spaces in the IKKT model

    Steinacker, Harold C

    2016-01-01

    We study perturbations of the 4-dimensional fuzzy sphere as a background in the IKKT or IIB matrix model. The linearized 4-dimensional Einstein equations are shown to arise from the classical matrix model action, without adding an Einstein-Hilbert term. The excitation modes with lowest spin are identified as gauge fields, metric and connection fields. In addition to the usual gravitational waves, there are also physical "torsion" wave excitations. The quantum structure of the geometry encodes a twisted bundle of self-dual 2-forms, which leads to a covariant 4-dimensional noncommutative geometry. The formalism of string states is used to compute one-loop corrections to the effective action. This leads to a mass term for the gravitons which is significant for $S^4$, but argued to be small in the Minkowski case.

  3. Partitions of 4d Transition Metal Nuclei and Related Correlations Using the Core Cluster Model

    Mageed, K E Abd El

    2013-01-01

    In the present work we attempt to study the cluster model in the transition metal region. The spectrum fitting method is studied for the selected nuclei (88,90,92^Sr, 92,94^Zr, 98,100^Mo, 100,102,104, 106^Ru, 108,110^Pd and 112,114,116,118^Cd) with proton number (38 0+), the excitation energies and the product of valence nucleon numbers of the parent nuclei.

  4. Learning distance function for regression-based 4D pulmonary trunk model reconstruction estimated from sparse MRI data

    Vitanovski, Dime; Tsymbal, Alexey; Ionasec, Razvan; Georgescu, Bogdan; Zhou, Shaohua K.; Hornegger, Joachim; Comaniciu, Dorin

    2011-03-01

    Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to "black box" regression with immediate prediction of coordinates, while providing transparency to the

  5. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  6. 4D Floodplain representation in hydrologic flood forecasting using WRFHydro modeling framework

    Gangodagamage, C.; Li, Z.; Adams, T.; Ito, T.; Maitaria, K.; Islam, M.; Dhondia, J.

    2015-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental U.S. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007, 2011) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels with the fourth dimension, time. We use modeled flows from WRFHydro and demarcate the right and left lateral boundaries of inundation dynamically. This approach dynamically integrates with high resolution models (e.g., hourly and ~ 1 km spatial resolution) that are developed from recent advancements in high computational power with ground based measurements (e.g., Fluxnet), lateral inundation vectors (direction and spatial extent) derived from multi-temporal remote sensing data (e.g., LiDAR, WorldView 2, Landsat, ASTER, MODIS), and improved representations of the physical processes through multi-parameterizations. Our

  7. 4D modelling of the Alto Tiberina Fault system (Northern Apennines, Italy)

    De Donatis, Mauro; Susini, Sara; Mirabella, Francesco; Lupattelli, Andrea; Barchi, Massimiliano

    2014-05-01

    The Alto Tiberina Fault (ATF) in the Northern Apennines of Italy is a low-angle normal fault dipping to the East and accommodating up to 10 km of extension. The fault is ~70 km long and is the detachment for the SW-dipping Gubbio normal fault. The ATF fault system has been dramatically exhumed and the ATF footwall has evolved in a horst bounded to the east by ATF synthetic faults and to the west by the Corciano west-dipping normal fault. The fault has been widely studied over the last years in order to understand its mechanical behaviour, its present-day deformation rate and its seismological role. By using a wide data-set including subsurface data (seismic reflection profiles and boreholes) and surface geological data (new maps of the CARG project of Italy), we have reconstructed the 3D geometry of both the fault and of the main lithostratigraphic boundaries at the fault hanging-wall and foot-wall. The CARG map data were integrated by local observations and mapping using mobile GIS software (BeeGIS) and Android app (Geopaparazzi). Surface data were combined with seismic reflection profiles and wells interpretation and other data from available literature. The large amount of information were combined in MOVE software (Midland Valley Exploration ltd). Our reconstruction allows to i) build up a three-dimensional geological model of the subsurface including the main faults and lithostratigraphic boundaries; ii) identify a set of east-west trending faults the role of which was previously underestimated; iii) test a 3D-restoration of extension for the visualization of the time evolution and for the validation of the structural reconstruction. The restored structures are the main normal faults in the region. The sequential restoration was performed by taking into account the timing of deformation as derived from the literature. The model was sequentially restored according to the following chronological order from the latest to the oldest: 1a) last deformational event

  8. Four Dimensional (4-D BioChemInfoPhysics Models of Cardiac Cellular and Sub-Cellular Vibrations (Oscillations

    Chang-Hua Zou

    2009-01-01

    Full Text Available Problem statement: Cardiovascular Diseases (CVD continued to be the leading cause of death. Failure or abnormal cardiac cellular or sub-cellular vibrations (oscillations could lead failure or abnormal heart beats that could cause CVD. Understanding the mechanisms of the vibrations (oscillations could help to prevent or to treat the diseases. Scientists have studied the mechanisms for more than 100 years. To our knowledge, the mechanisms are still unclear today. In this investigation, based on published data or results, conservation laws of the momentum as well as the energy, in views of biology, biochemistry, informatics and physics (BioChemInfoPhysics, we proposed our models of cardiac cellular and sub-cellular vibrations (oscillations of biological components, such as free ions in Biological Fluids (BF, Biological Membranes (BM, Ca++H+ (Ca++ and Na+K+ ATPases, Na+Ca++ exchangers (NCX, Ca++ carriers and myosin heads. Approach: Our models were described with 4-D (x, y, z, t or r, ?, z, t momentum transfer equations in mathematical physics. Results: The momentum transfer equations were solved with free and forced, damped, un-damped and over-damped, vibrations (oscillations. The biological components could be modeled as resonators or vibrators (oscillators, such as liquid plasmas, membranes, active springs, passive springs and active swings. Conclusion: We systematically provided new insights of automation (ignition and maintain, transportation, propagation and orientation of the cardiac cellular and sub-cellular vibrations (oscillations and resonances, with our BioChemInfoPhysics models of 4-D momentum transfer equations. Our modeling results implied: Auto-rhythmic cells (Sinoatrial Node Cells (SANC, Atrioventricular Node Cells (AVNC, Purkinje fibers, non-Auto-rhythmic ventricular myocytes and their Sarcoplasmic Reticulums (SR work as Biological Liquid Plasma Resonators (BLPR. The resonators were

  9. Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model

    S. Skachko

    2014-01-01

    Full Text Available The Ensemble Kalman filter (EnKF assimilation method is applied to the tracer transport using the same stratospheric transport model as in the 4D-Var assimilation system BASCOE. This EnKF version of BASCOE was built primarily to avoid the large costs associated with the maintenance of an adjoint model. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ2-test measuring the misfit between the control variable and the observations. The performance of the EnKF and 4D-Var versions was estimated through the assimilation of Aura-MLS ozone observations during an 8 month period which includes the formation of the 2008 Antarctic ozone hole. To ensure a proper comparison, despite the fundamental differences between the two assimilation methods, both systems use identical and carefully calibrated input error statistics. We provide the detailed procedure for these calibrations, and compare the two sets of analyses with a focus on the lower and middle stratosphere where the ozone lifetime is much larger than the observational update frequency. Based on the Observation-minus-Forecast statistics, we show that the analyses provided by the two systems are markedly similar, with biases smaller than 5% and standard deviation errors smaller than 10% in most of the stratosphere. Since the biases are markedly similar, they have most probably the same causes: these can be deficiencies in the model and in the observation dataset, but not in the assimilation algorithm nor in the error calibration. The remarkably similar performance also shows that in the context of stratospheric transport, the choice of the assimilation method can be based on application-dependent factors, such as CPU cost or the ability to generate an ensemble

  10. M5-branes on S^2 x M_4: Nahm's Equations and 4d Topological Sigma-models

    Assel, Benjamin; Wong, Jin-Mann

    2016-01-01

    We study the 6d N=(0,2) superconformal field theory, which describes multiple M5-branes, on the product space S^2 x M_4, and suggest a correspondence between a 2d N=(0,2) half-twisted gauge theory on S^2 and a topological sigma-model on the four-manifold M_4. To set up this correspondence, we determine in this paper the dimensional reduction of the 6d N=(0,2) theory on a two-sphere and derive that the four-dimensional theory is a sigma-model into the moduli space of solutions to Nahm's equations, or equivalently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes. We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills theory on I x M_4, with I an interval, then non-abelianize the 5d theory and finally reduce this to 4d. In the special case, when M_4 is a Hyper-Kahler manifold, we show that the dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic maps. Deriving the theory on a general M_4 requires knowledge of the met...

  11. Forward modeling of 4D seismic response to the CO2 injection at the Ketzin pilot site with the reflectivity method

    Ivanova, Alexandra; Ivandic, Monika; Kempka, Thomas; Gil, Magdalena; Bergmann, Peter; Lüth, Stefan

    2014-05-01

    When CO2 replaces brine as a free gas it is well known to affect the elastic properties of porous media considerably. 3D seismic time-lapse surveys (4D seismics) have proven to be a suitable technique for monitoring of injected CO2. Forward modeling of a 4D seismic response to the CO2 fluid substitution in a storage reservoir is an important step in such studies. In order to track the migration of CO2 at the Ketzin pilot site (Germany), 3D time-lapse seismic data were acquired by means of a baseline (pre-injection) survey in 2005 and the monitor surveys in 2009 and 2012. Results of 4D seismic forward modeling with the reflectivity method suggest that effects of the injected CO2 on the 4D seismic data at the Ketzin pilot site are significant regarding both seismic amplitudes and time delays. They prove the corresponding observations in the real 4D seismic data at the Ketzin pilot site. However reservoir heterogeneity and seismic resolution, as well as random and coherent seismic noise are negative factors to be considered while the interpretation. In spite of these negative factors, results of 4D seismic forward modeling with the reflectivity method support the conclusion that the injected CO2 can be monitored at the Ketzin pilot site both qualitatively and quantitatively.

  12. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    Zhang, L; Zhang, Y; Harris, W; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for each single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.

  13. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for each single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System

  14. Improving the robustness of interventional 4D ultrasound segmentation through the use of personalized prior shape models

    Barbosa, Daniel; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.

    2015-03-01

    While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.

  15. Sport for Development (S4D) as "Core University Business"? Modelling University Participation in Sport-Based Social Development

    Rosso, Edoardo G. F.; McGrath, Richard; Immink, Maarten A.; May, Esther

    2016-01-01

    Among the recognised strengths of the "Sport for Development" (S4D) framework there is the capacity of sport to contribute to positive community networks, education and community participation. However, its relevance to tertiary education institutions is often under-appreciated. In this framework, the Football United® program was…

  16. 4-D Photoacoustic Tomography

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  17. 4D-SAS: A Distributed Dynamic-Data Driven Simulation and Analysis System for Massive Spatial Agent-Based Modeling

    Zhenqiang Li

    2016-03-01

    Full Text Available Significant computation challenges are emerging as agent-based modeling becomes more complicated and dynamically data-driven. In this context, parallel simulation is an attractive solution when dealing with massive data and computation requirements. Nearly all the available distributed simulation systems, however, do not support geospatial phenomena modeling, dynamic data injection, and real-time visualization. To tackle these problems, we propose a distributed dynamic-data driven simulation and analysis system (4D-SAS specifically for massive spatial agent-based modeling to support real-time representation and analysis of geospatial phenomena. To accomplish large-scale geospatial problem-solving, the 4D-SAS system was spatially enabled to support geospatial model development and employs high-performance computing to improve simulation performance. It can automatically decompose simulation tasks and distribute them among computing nodes following two common schemes: order division or spatial decomposition. Moreover, it provides streaming channels and a storage database to incorporate dynamic data into simulation models; updating agent context in real-time. A new online visualization module was developed based on a GIS mapping library, SharpMap, for an animated display of model execution to help clients understand the model outputs efficiently. To evaluate the system’s efficiency and scalability, two different spatially explicitly agent-based models, an en-route choice model, and a forest fire propagation model, were created on 4D-SAS. Simulation results illustrate that 4D-SAS provides an efficient platform for dynamic data-driven geospatial modeling, e.g., both discrete multi-agent simulation and grid-based cellular automata, demonstrating efficient support for massive parallel simulation. The parallel efficiency of the two models is above 0.7 and remains nearly stable in our experiments.

  18. Storing a 3d City Model, its Levels of Detail and the Correspondences Between Objects as a 4d Combinatorial Map

    Arroyo Ohori, K.; Ledoux, H.; Stoter, J.

    2015-10-01

    3D city models of the same region at multiple LODs are encumbered by the lack of links between corresponding objects across LODs. In practice, this causes inconsistency during updates and maintenance problems. A radical solution to this problem is to model the LOD of a model as a dimension in the geometric sense, such that a set of connected polyhedra at a series of LODs is modelled as a single polychoron—the 4D analogue of a polyhedron. This approach is generally used only conceptually and then discarded at the implementation stage, losing many of its potential advantages in the process. This paper therefore shows that this approach can be instead directly realised using 4D combinatorial maps, making it possible to store all topological relationships between objects.

  19. ICT4D

    Coelho, Taiane Ritta

    2014-01-01

    Resumo: Este estudo se situa no campo de ICT4D (Information and Communication Technologies for Development), termo internacionalmente conhecido para discutir o uso das Tecnologias da Informação e Comunicação (TIC) para o desenvolvimento. O que motivou o pesquisador a estudar este tema foi a existência de um paradoxo: TIC são amplamente consideradas, por uns, como invenções que mudam a maneira como milhões de pessoas conduzem suas vidas e, por outros, como alargamento das relações de poder. E ...

  20. Including the adjoint model of the moist physics in the 4D-Var in NASA's GEOS-5 Global Circulation Model

    Holdaway, D. R.; Errico, R.

    2011-12-01

    Inherent in the minimization process in the 4D-Var data assimilation system is the need for the model's adjoint. It is straightforward to obtain the exact adjoint by linearizing the code in a line by line sense; however it only provides an accurate overall representation of the physical processes if the model behaviour is linear. Moist processes in the atmosphere, and thus the models that represent them, are intrinsically highly non-linear and can contain discrete switches. The adjoint that is required in the data assimilation system needs to provide an accurate representation of the physical behaviour for perturbation sizes of the order of the analysis error, so an exact adjoint of the moist physics model is likely to be inaccurate. Instead a non-exact adjoint model, which is accurate for large enough perturbations, must be developed. The constraint on the development is that the simplified adjoint be consistent with the actual trajectory of the model. Previous attempts to include the moist physics in the 4D-Var have emphasized the need for redevelopment of the actual moist scheme to a simpler version. These schemes are designed to be linear in the limit of realistic perturbation size but also capture the essence of the physical behaviour, making the adjoint version of the scheme suitable for use in the 4D-Var. A downside to this approach is that it can result in an over simplification of the physics and represent a larger departure from the true model trajectory than necessary. The adjoint is just the transpose of the tangent linear model, which is the differential of the model operator. This differential of the operator can be constructed from Jacobian matrices. Examining the structures of the Jacobians as perturbations of varying size are added to the state vector can help determine whether the adjoint model - be it of actual or simplified physics - will be suitable for use in the assimilation algorithm. If Jacobian structures change considerably when the

  1. CINEMA 4D The Artist's Project Sourcebook

    McQuilkin, Kent

    2011-01-01

    Cinema 4D is a fully integrated 3D modeling, animation, and rendering package used extensively in the film, television, science, architecture, engineering and other industries. Generally ranked as the 3rd most widely-used 3Dapplication Cinema 4D is widely praised for its stability, speed and ease of use. Recent film and broadcast productions that have used Cinema 4D include Open Season, Monster House, Superman Returns, Polar Express, Monday Night Football. This third edition of Cinema 4D is updated to address the latest release of the application as well as its critically acclaimed MoGr

  2. Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT

    We introduce a fast block-iterative maximum a posteriori (MAP) reconstruction algorithm and apply it to four-dimensional reconstruction of gated SPECT perfusion studies. The new algorithm, called RBI-MAP, is based on the rescaled block iterative EM (RBI-EM) algorithm. We develop RBI-MAP based on similarities between the RBI-EM, ML-EM and MAP-EM algorithms. RBI-MAP requires far fewer iterations than MAP-EM, and so should result in acceleration similar to that obtained from using RBI-EM or OS-EM as opposed to ML-EM. When complex four-dimensional clique structures are used in the prior, however, evaluation of the smoothing prior dominates the processing time. We show that a simple scheme for updating the prior term in the heart region only for RBI-MAP results in savings in processing time of a factor of six over MAP-EM. The RBI-MAP algorithm incorporating 3D collimator-detector response compensation is demonstrated on a simulated 99mTc gated perfusion study. Results of RBI-MAP are compared with RBI-EM followed by a 4D linear filter. For the simulated study, we find that RBI-MAP provides consistently higher defect contrast for a given degree of noise smoothing than does filtered RBI-EM. This is an indication that RBI-MAP smoothing does less to degrade resolution gained from 3D detector response compensation than does a linear filter. We conclude that RBI-MAP can provide smooth four-dimensional reconstructions with good visualization of heart structures in clinically realistic processing times. (author)

  3. The stretcher spontaneous neurodegenerative mutation models Charcot-Marie-Tooth disease type 4D [v1; ref status: indexed, http://f1000r.es/8c

    David Chandler

    2013-02-01

    Full Text Available Mice affected by a spontaneous mutation which arose within our colony exhibited a neuromuscular phenotype involving tremor and characteristic stretching of the rear limbs. The mutant, named stretcher, was used to breed a backcross cohort for genetic mapping studies. The gene responsible for the mutant phenotype was mapped to a small region on mouse chromosome 15, with a LOD score above 20. Candidate genes within the region included the Ndrg1 gene. Examination of this gene in the mutant mouse strain revealed that exons 10 to 14 had been deleted. Mutations in the human orthologue are known to result in Charcot-Marie-Tooth disease type 4D (CMT4D a severe early-onset disorder involving Schwann cell dysfunction and extensive demyelination. The stretcher mutant mouse is more severely affected than mice in which the Ndrg1 gene had been knocked out by homologous recombination. Our results demonstrate that the Ndrg1str mutation provides a new model for CMT4D, and demonstrate that exons 10 to 14 of Ndrg1 encode amino acids crucial to the appropriate function of Ndrg1 in the central nervous system.

  4. Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model

    Smith, Polly J.; Alison M. Fowler; Amos S. Lawless

    2015-01-01

    Operational forecasting centres are currently developing data assimilation systems for coupled atmosphere–ocean models. Strongly coupled assimilation, in which a single assimilation system is applied to a coupled model, presents significant technical and scientific challenges. Hence weakly coupled assimilation systems are being developed as a first step, in which the coupled model is used to compare the current state estimate with observations, but corrections to the atmosphere and ocean init...

  5. Analytical and Numerical Study of the Aharonov--Bohm Effect in 3D and 4D Abelian Higgs Model

    Chernodub, M. N.; Gubarev, F. V.; Polikarpov, M.I.

    1996-01-01

    We discuss the Aharonov--Bohm effect in three and four dimensional non--compact lattice Abelian Higgs model. We show analytically that this effect leads to the long--range Coulomb interaction of the charged particles, which is confining in three dimensions. The Aharonov--Bohm effect is found in numerical calculations in 3D Abelian Higgs model.

  6. Estimating and understanding contemporary large-scale CO2 fluxes using 4D-Var for inverse transport modelling

    Wilson, Chris; Chipperfield, Martyn; Gloor, Emanuel

    2010-05-01

    Knowledge of fluxes from terrestrial carbon reservoirs is currently uncertain. While the atmospheric burden and oceanic uptake of carbon are well understood, evidence points to a large land sink, equivalent in size to the atmospheric sink. However, neither the nature nor the location of this land reservoir is well known. Atmospheric transport models, such as the CTM TOMCAT, predict the forward transport of carbon in the atmosphere by numerically solving tracer transport equations with respect to conditions based upon observed data. However, if an 'adjoint' to the CTM is created, it can be used to solve the inverse problem of investigating the nature of carbon sources and sinks using information about atmospheric carbon patterns i.e. inverse transport modelling. Due to recent and imminent improvements in remote sensing of atmospheric CO2, there will soon be thorough high-resolution data available which can be used in order to constrain the results from inverse transport modelling. In this work we describe the creation of the adjoint of the TOMCAT CTM and its application to the inverse modeling of carbon fluxes. The inverse model is created through methods involving matrix inversion and iterative minimisation of a cost function involving surface carbon fluxes.

  7. Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate

    Fassi, Aurora, E-mail: aurora.fassi@mail.polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Schaerer, Joël; Fernandes, Mathieu [CREATIS, CNRS UMR 5220, INSERM U1044, Université Lyon 1, INSA-Lyon, Villeurbanne (France); Department of Radiotherapy, Centre Léon Bérard, Lyon (France); Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy); Sarrut, David [CREATIS, CNRS UMR 5220, INSERM U1044, Université Lyon 1, INSA-Lyon, Villeurbanne (France); Department of Radiotherapy, Centre Léon Bérard, Lyon (France); Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2014-01-01

    Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external–internal correlation models. Although an in-room radiograph-based assessment of the

  8. Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate

    Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external–internal correlation models. Although an in-room radiograph-based assessment of the

  9. NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data.

    Melbourne, Andrew; Toussaint, Nicolas; Owen, David; Simpson, Ivor; Anthopoulos, Thanasis; De Vita, Enrico; Atkinson, David; Ourselin, Sebastien

    2016-07-01

    Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require. PMID:26972806

  10. Examining the Evolution of the Peninsula Segment of the San Andreas Fault, Northern California, Using a 4-D Geologic Model

    Horsman, E.; Graymer, R. W.; McLaughlin, R. J.; Jachens, R. C.; Scheirer, D. S.

    2008-12-01

    Retrodeformation of a three-dimensional geologic model allows us to explore the tectonic evolution of the Peninsula segment of the San Andreas Fault and adjacent rock bodies in the San Francisco Bay area. By using geological constraints to quantitatively retrodeform specific surfaces (e.g. unfolding paleohorizontal horizons, removing fault slip), we evaluate the geometric evolution of rock bodies and faults in the study volume and effectively create a four-dimensional model of the geology. The three-dimensional map is divided into fault-bounded blocks and subdivided into lithologic units. Surface geologic mapping provides the foundation for the model. Structural analysis and well data allow extrapolation to a few kilometers depth. Geometries of active faults are inferred from double-difference relocated earthquake hypocenters. Gravity and magnetic data provide constraints on the geometries of low density Cenozoic deposits on denser basement, highly magnetic marker units, and adjacent faults. Existing seismic refraction profiles constrain the geometries of rock bodies with different seismic velocities. Together these datasets and others allow us to construct a model of first-order geologic features in the upper ~15 km of the crust. Major features in the model include the active San Andreas Fault surface; the Pilarcitos Fault, an abandoned strand of the San Andreas; an active NE-vergent fold and thrust belt located E of the San Andreas Fault; regional relief on the basement surface; and several Cenozoic syntectonic basins. Retrodeformation of these features requires constraints from all available datasets (structure, geochronology, paleontology, etc.). Construction of the three-dimensional model and retrodeformation scenarios are non-unique, but significant insights follow from restricting the range of possible geologic histories. For example, we use the model to investigate how the crust responded to migration of the principal slip surface from the Pilarcitos Fault

  11. Digital elevation models in 10 minute time steps - a status report on 4D monitoring of an active erosional scar

    Kaiser, Andreas; Neugirg, Fabian; Hass, Erik; Jose, Steffen; Haas, Florian; Schmidt, Jürgen

    2016-04-01

    In erosional research a variety of processes are well understood and have been mimicked under laboratory conditions. In complex natural systems such as Alpine environments a multitude of influencing factors tend to superimpose single processes in a mixed signal which impedes a reliable interpretation. These mixed signals can already be captured by geoscientific research approaches such as sediment collectors, erosion pins or remote sensing surveys. Nevertheless, they fail to distinguish between single processes and their individual impact on slope morphology. Throughout the last two years a highly active slope of unsorted glacial deposits in the northern Alps has been monitored by repeated terrestrial laser scans roughly every three months. Resulting high resolution digital elevation models of difference were produced to identify possible seasonal patterns. By reproducing the TLS results with a physically based erosion model (EROSION 3D) ran with in situ input data from rainfall simulations and a climate station a better understanding of individual mechanism could be achieved. However, the already elaborate combination of soil science and close range remote sensing could not answer all questions concerning the slopes behaviour, especially not for freeze and thaw cycles and the winter period. Therefore, an array of three fully automatic synchronised cameras was setup to generate continuous 3D surface models. Among the main challenges faced for the system were the energy supply and durability, perspectives of the cameras to avoid shadowing and to guarantee sufficient overlap, a certain robustness to withstand rough alpine weather conditions, the scaling of each 3D model by tracked ground control points and the automatic data handling. First results show individual processes sculpting the slope's morphology but further work is required to improve automatic point cloud creation and change monitoring.

  12. Estimating Amazonian methane emissions through 4D-Var inverse modelling with satellite observations from GOSAT and IASI

    Wilson, C. J.; Chipperfield, M.; Gloor, M.; McNorton, J.; Miller, J. B.; Gatti, L. V.; Siddans, R.; Bloom, A. A.; Basso, L. S.; Boesch, H.; Parker, R.; Monks, S. A.

    2015-12-01

    Methane (CH4) is emitted from a range of anthropogenic and natural sources, and since the industrial revolution its mean atmospheric concentration has climbed dramatically. CH4 produces a relatively high radiative forcing effect upon the Earth's climate, and its atmospheric lifetime of approximately 10 years makes it an appealing target for the mitigation of climate change. However, the spatial and temporal variation of CH4 emissions are not well understood, though in recent years a number of top-down and bottom-up studies have attempted to construct improved emission budgets. However, some top-down studies suffer from poor observational coverage near the Amazon basin, particularly in the planetary boundary layer. Since emissions from this region, coming mainly from wetland and burning sources, are thought to be relatively high, additional observations in this region would greatly help to constrain the geographical distribution of the global CH4 emission budget. To this end, regular flask measurements of CH4 and other trace gases have been taken during flights over four Amazonian sites since 2010, as part of the AMAZONICA project. The GOSAT has been used to retrieve global column-average CH4 concentrations since mid-2009, whilst IASI, on-board Metop-A, has also been measuring atmospheric CH4 concentrations since its launch in 2006. We present an assessment of Amazonian methane emissions for 2010 and 2011 using the TOMCAT Chemical Transport Model and the new variational inverse model, INVICAT. These models are used to attribute methane variations at each Amazon site to a source type and region, to assess the ability of our current CH4 flux estimates to reproduce these observations and to produce improved posterior emission estimates through assimilation of atmospheric observations. This study represents the first use of the INVICAT scheme to constrain emissions of any atmospheric trace gas. Whilst there is generally good agreement between the model and the

  13. On "New Massive" 4D Gravity

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2012-01-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schroedinger model.

  14. A 4D Analogue Modeling Study Assessing the Effects of Transtension and Inherited Structures on Rift Interaction

    Zwaan, F.; Schreurs, G.; Naliboff, J.; Buiter, S. J.

    2015-12-01

    The interaction of individual rift segments determines the evolution of a rift system and subsequent continental break-up. Inherited heterogeneities control where initial rifts will form and since these are often not properly aligned, rift segments form separately and need to interact. Another important factor affecting rift-segment interaction is the obliquity of plate divergence (transtension), which also promotes eventual continent break-up (Brune et al., 2012). Both analogue and numerical techniques have been used to model rift interaction (e.g. Acocella et al., 1999; Allken et al., 2012) but transtension has never been applied. Here we present a first-order analogue study that elaborates upon earlier studies by assessing the effects of (1) transtension, (2) rift offset and (3) presence and geometry of inherited weak zones that link rift segments. An improved analogue set-up allows more freedom in inherited structure geometry and model analysis with X-Ray Computer Tomography (CT) techniques reveals internal structures with time (Fig. 2 and 3). Our experiments yield the following conclusions: Increasing the degree of transtension (decreasing angle α in Fig. 1) controls general rift structures: from wide rifts in orthogonal divergence settings to narrower rifts with oblique internal structures under transtensional conditions to narrow strike-slip dominated systems towards the strike-slip domain; Rift linkage through transfer zones (hard linkage) is generally promoted by 1) decreasing rift offset and 2) increasing the degree of transtension. However, initial rift linkage might involve relay ramps (soft linkage) due to the interplay of divergence direction and rift offset; Inherited rift-linking weak zones have little effect on rift interaction unless they are oriented ca. perpendicular to the divergence direction; Since the orthogonal divergence models resemble natural examples (Fig. 3), our transtension models might predict what structures can be expected in

  15. Demonstrating the Model Nature of the High-Temperature Superconductor HgBa2CuO4+d

    Barisic, Neven; Li, Yuan; Zhao, Xudong; Cho, Yong-Chan; Chabot-Couture, Guillaume; Yu, Guichuan; Greven, Martin; /SLAC, SSRL /Boskovic Inst., Zagreb /Stanford U., Phys. Dept. /Jilin U. /Stanford U., Appl. Phys. Dept.

    2008-09-30

    The compound HgBa{sub 2}CuO{sub 4+{delta}} (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T{sub c}) among all single Cu-O layer cuprates, with T{sub c} = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (T{sub c} = 47 K, hole concentration p {approx} 0.08) to overdoped (T{sub c} = 64 K, p {approx} 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.

  16. 4D volcano gravimetry

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  17. Direct 4D PET MLEM reconstruction of parametric images using the simplified reference tissue model with the basis function method for [11C]raclopride

    This work assesses the one-step late maximum likelihood expectation maximization (OSL-MLEM) 4D PET reconstruction algorithm for direct estimation of parametric images from raw PET data when using the simplified reference tissue model with the basis function method (SRTM-BFM) for the kinetic analysis. To date, the OSL-MLEM method has been evaluated using kinetic models based on two-tissue compartments with an irreversible component. We extend the evaluation of this method for two-tissue compartments with a reversible component, using SRTM-BFM on simulated 3D + time data sets (with use of [11C]raclopride time-activity curves from real data) and on real data sets acquired with the high resolution research tomograph. The performance of the proposed method is evaluated by comparing voxel-level binding potential (BPND) estimates with those obtained from conventional post-reconstruction kinetic parameter estimation. For the commonly chosen number of iterations used in practice, our results show that for the 3D + time simulation, the direct method delivers results with lower %RMSE at the normal count level (decreases of 9–10 percentage points, corresponding to a 38–44% reduction), and also at low count levels (decreases of 17–21 percentage points, corresponding to a 26–36% reduction). As for the real 3D data set, the results obtained follow a similar trend, with the direct reconstruction method offering a 21% decrease in %CV compared to the post reconstruction method at low count levels. Thus, based on the results presented herein, using the SRTM-BFM kinetic model in conjunction with the OSL-MLEM direct 4D PET MLEM reconstruction method offers an improvement in performance when compared to conventional post reconstruction methods. (paper)

  18. Instant Cinema 4D starter

    Kaminar, Aaron

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.This book is written in a friendly, practical style with lots of screenshots and help that will ensure you grow in confidence chapter by chapter.This book is recommended for artists that have experience in other 3D software packages, and who want to learn Cinema 4D. That being said, dedicated readers without experience in other 3D software should not be discouraged from reading this book to learn the basics of Cinema 4D as their first 3D package.

  19. 4D Lung Reconstruction with Phase Optimization

    Lyksborg, Mark; Paulsen, Rasmus; Brink, Carsten;

    2009-01-01

    This paper investigates and demonstrates a 4D lung CT reconstruction/registration method which results in a complete volumetric model of the lung that deforms according to a respiratory motion field. The motion field is estimated iteratively between all available slice samples and a reference...... than using an optimization which does not correct for phase errors. Knowing how the lung and any tumors located within the lung deforms is relevant in planning the treatment of lung cancer....

  20. HII galaxies in 4D

    Telles, Eduardo

    2014-01-01

    HII galaxies are clumpy and their gas kinematics can be mapped to show the global turbulent motions and the effect of massive star evolution. The distribution of their physical conditions is homogeneous and oxygen abundance is uniform. The presence of nebular HeII 4868 line seems to be higher in a low abundance galaxy, implying a harder ionization power probably due to stars in low metallicity. Innovative methods of data cube analysis, namely PCA tomography (nicknamed 4D), seem promising in revealing additional information not detected with the standard methods. I review some of our own recent work on the 3D spectroscopy of HII galaxies.

  1. 4D image reconstruction for emission tomography

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  2. The analysis of structure-anticancer and antiviral activity relationships for macrocyclic pyridinophanes and their analogues on the basis of 4D QSAR models (simplex representation of molecular structure).

    Kuz'min, Victor E; Artemenko, Anatoly G; Lozitsky, Victor P; Muratov, Eugene N; Fedtchouk, Alla S; Dyachenko, Natalia S; Nosach, Lidiya N; Gridina, Tatiyana L; Shitikova, Larisa I; Mudrik, Liubov M; Mescheriakov, Aleksey K; Chelombitko, Vladislav A; Zheltvay, Andrey I; Vanden Eynde, Jean-Jaques

    2002-01-01

    A new 4D-QSAR approach has been considered. For all investigated molecules the 3D structural models have been created and the set of conformers (fourth dimension) have been used. Each conformer is represented as a system of different simplexes (tetratomic fragments of fixed structure, chirality and symmetry). The investigation of influence of molecular structure of macrocyclic pyridinophanes, their analogues and certain other compounds on anticancer and antiviral (anti-influenza, antiherpes and antiadenovirus) activity has been carried out by means of the 4D-QSAR. Statistic characteristics for QSAR of PLS (partial least squares) models are satisfactory (R = 0.92-0.97; CVR = 0.63-0.83). Molecular fragments increasing and decreasing biological activity were defined. This information may be useful for design, and direct synthesis of novel anticancer and antiviral agents. PMID:12136936

  3. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    Raj K Panta

    2012-01-01

    Conclusions: An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research.

  4. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    Hugo, Geoffrey D.; Rosu, Mihaela

    2012-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are descri...

  5. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    Panta, Raj K.; Paul Segars; Fang-Fang Yin; Jing Cai

    2012-01-01

    Aims: To establish a framework to implement the 4D integrated extended cardiac torso (XCAT) digital phantom for 4D radiotherapy (RT) research. Materials and Methods: A computer program was developed to facilitate the characterization and implementation of the 4D XCAT phantom. The program can (1) generate 4D XCAT images with customized parameter files; (2) review 4D XCAT images; (3) generate composite images from 4D XCAT images; (4) track motion of selected region-of-interested (ROI); (5) c...

  6. Active origami by 4D printing

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  7. Active origami by 4D printing

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  8. Quantification of left ventricular volumes and ejection fraction from gated {sup 99m}Tc-MIBI SPECT: validation of an elastic surface model approach in comparison to cardiac magnetic resonance imaging, 4D-MSPECT and QGS

    Stegger, Lars; Kies, Peter; Schober, Otmar; Schaefers, Michael [University Hospital, Westfaelische Wilhelms-University Muenster, Department of Nuclear Medicine, Muenster (Germany); Lipke, Claudia S.A.; Nowak, Bernd; Buell, Udalrich; Schaefer, Wolfgang M. [University Hospital,Aachen University of Technology, Department of Nuclear Medicine, Aachen (Germany)

    2007-06-15

    The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coefficients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects. (orig.)

  9. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: validation of an elastic surface model approach in comparison to cardiac magnetic resonance imaging, 4D-MSPECT and QGS

    The segmentation algorithm ESM based on an elastic surface model was validated for the assessment of left ventricular volumes and ejection fraction from ECG-gated myocardial perfusion SPECT. Additionally, it was compared with the commercially available quantification packages 4D-MSPECT and QGS. Cardiac MRI was used as the reference method. SPECT and MRI were performed on 70 consecutive patients with suspected or proven coronary artery disease. End-diastolic (EDV) and end-systolic (ESV) volumes and left ventricular ejection fraction (LVEF) were derived from SPECT studies by using the segmentation algorithms ESM, 4D-MSPECT and QGS and from cardiac MRI. ESM-derived values for EDV and ESV correlated well with those from cardiac MRI (correlation coefficients R = 0.90 and R = 0.95, respectively), as did the measurements for LVEF (R = 0.86). Both EDV and ESV were slightly overestimated for larger ventricles but not for smaller ventricles; LVEF was slightly overestimated irrespective of ventricle size. The above correlation coefficients are comparable to those for the 4D-MSPECT and QGS segmentation algorithms. However, results obtained with the three segmentation algorithms are not interchangeable. The ESM algorithm can be used to assess EDV, ESV and LVEF from gated perfusion SPECT images. Overall, the performance was similar to that of 4D-MSPECT and QGS when compared with cardiac MRI. Results obtained with the three tested segmentation methods are not interchangeable, so that the same algorithm should be used for follow-up studies and control subjects. (orig.)

  10. 4-D-Var or ensemble Kalman filter?

    Kalnay, Eugenia; Li, Hong; Miyoshi, Takemasa; Yang, Shu-Chih; Ballabrera-Poy, Joaquim

    2007-10-01

    We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effect of model errors and reduced observation coverage. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4-D-Var. For infrequent observations, when ensemble perturbations grow non-linearly and become non-Gaussian, 4-D-Var attains lower errors than EnKF. If the model is imperfect, the 4-D-Var with long windows requires weak constraint. Similar results are obtained with a quasi-geostrophic channel model. EnKF experiments made with the primitive equations SPEEDY model provide comparisons with 3-D-Var and guidance on model error and `observation localization'. Results obtained using operational models and both simulated and real observations indicate that currently EnKF is becoming competitive with 4-D-Var, and that the experience acquired with each of these methods can be used to improve the other. A table summarizes the pros and cons of the two methods.

  11. Web based hybrid volumetric visualisation of urban GIS data. Integration of 4D Temperature and Wind Fields with LoD-2 CityGML models

    Congote, J.; Moreno, A.; Kabongo, L.; Pérez, J.-L.; San-José, R.; Ruiz, O.

    2012-10-01

    City models visualisation, buildings, structures and volumetric information, is an important task in Computer Graphics and Urban Planning. The different formats and data sources involved in the visualisation make the development of applications a big challenge. We present a homogeneous web visualisation framework using X3DOM and MEDX3DOM for the visualisation of these urban objects. We present an integration of different declarative data sources, enabling the utilization of advanced visualisation algorithms to render the models. It has been tested with a city model composed of buildings from the Madrid University Campus, some volumetric datasets coming from Air Quality Models and 2D layers wind datasets. Results show that the visualisation of all the urban models can be performed in real time on the Web. An HTML5 web interface is presented to the users, enabling real time modifications of visualisation parameters.

  12. The 4D Composite Higgs

    De Curtis, Stefania; Tesi, Andrea

    2012-01-01

    We propose a four dimensional description of Composite Higgs Models which represents a complete framework for the physics of the Higgs as a pseudo-Nambu-Goldstone boson. Our setup captures all the relevant features of 5D models and more in general of composite Higgs models with partial compositeness. We focus on the minimal scenario where we include a single multiplet of resonances of the composite sector, as these will be the only degrees of freedom which might be accessible at the LHC. This turns out to be sufficient to compute the effective potential and derive phenomenological consequences of the theory. Moreover our simplified approach is well adapted to simulate these models at the LHC. We also consider the impact of non-minimal terms in the effective lagrangian which do not descend from a 5D theory and could be of phenomenological relevance, for example contributing to the S-parameter.

  13. 4D-Var or Ensemble Kalman Filter

    Kalnay, E.; Li, H.; Yang, S.; Miyoshi, T.; Ballabrera, J.

    2007-05-01

    We consider the relative advantages of two advanced data assimilation systems, 4D-Var and ensemble Kalman filter (EnKF), currently in use or considered for operational implementation. We explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4D-Var, the variance inflation in EnKF, and the effect of model errors and reduced observation coverage in both systems. For short assimilation windows EnKF gives more accurate analyses. Both systems reach similar levels of accuracy if long windows are used for 4D-Var, and for infrequent observations, when ensemble perturbations grow nonlinearly and become non-Gaussian, 4D-Var attains lower errors than EnKF. Results obtained with variations of EnKF using operational models and both simulated and real observations are reviewed. A table summarizes the pros and cons of the two methods.

  14. 4-D OCT in Developmental Cardiology

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  15. The Link between ICT4D and Modernization Theory

    Marlene Kunst

    2015-01-01

    For some decades western institutions have shared an enormous enthusiasm for Information and Communication Technologies for Development (ICT4D). Nevertheless, despite the field’s ever-increasing importance, research on it remains fragmented and lacks a theoretical foundation. By establishing a link between ICT4D and Modernization theory as one of the major development models, this paper aims to add some theoretical reflections to the body of existing research. Initially, a lite...

  16. Drell-Yan production of multi Z '-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    Accomando, Elena; Barducci, Daniele; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, C. H.

    2016-07-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z '-bosons and the Standard Model Z and γ. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z '-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z '-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi- Z ' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics.

  17. Drell-Yan production of multi Z'-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    Accomando, Elena; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, Claire H

    2016-01-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z'-bosons and the Standard Model Z and {\\gamma}. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z'-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z'-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi-Z' peaking structure. We conclude that in a variety of cases, s...

  18. Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model

    Swanger Sharon A

    2011-10-01

    Full Text Available Abstract Uncovering the mechanisms that regulate dendritic spine morphology has been limited, in part, by the lack of efficient and unbiased methods for analyzing spines. Here, we describe an automated 3D spine morphometry method and its application to spine remodeling in live neurons and spine abnormalities in a disease model. We anticipate that this approach will advance studies of synapse structure and function in brain development, plasticity, and disease.

  19. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    The 'Aespoe task force on modelling of groundwater flow and transport of solutes' is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  20. The Link between ICT4D and Modernization Theory

    Marlene Kunst

    2015-01-01

    Full Text Available For some decades western institutions have shared an enormous enthusiasm for Information and Communication Technologies for Development (ICT4D. Nevertheless, despite the field’s ever-increasing importance, research on it remains fragmented and lacks a theoretical foundation. By establishing a link between ICT4D and Modernization theory as one of the major development models, this paper aims to add some theoretical reflections to the body of existing research. Initially, a literature review of the most significant authors of Modernization theory serves as a theoretical base. Subsequently, empirical findings are systematized and embedded in the theoretical framework. The leading question is, whether ICT4D is connected to Modernization theory’s main lines of thought, both in theory and in the field. Modernization theory was chosen as a reference point, as even though it has frequently been marked as outdated, some argue that ICT4D has brought about its revival: Led by a technocratic mindset, actors in the field have indeed assumed ICTs to be context-free tools, which is one of the reasons why ICT4D has so far not been an unmitigated success. As there is a lack of systematic research on ICT4D, this paper is explorative in nature. It is certainly beyond the author’s scope to make any definite statements on how development cooperation has hitherto handled ICT4D, as the field is too complex. Instead, light will be shed on some trends that can be identified in the field of ICT4D to date.

  1. The 4-D approach to visual control of autonomous systems

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  2. Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer

    Yang, Ying-Hua; Buhamrah, Asma; Schneider, Abraham; Lin, Yi-Ling; Zhou, Hua; Bugshan, Amr; Basile, John R.

    2016-01-01

    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects. PMID:26910109

  3. 4-D XRD for strain in many grains using triangulation

    Bale, Hrishikesh A.; Hanan, Jay C.; Tamura, Nobumichi

    2006-01-01

    Determination of the strains in a polycrystalline material using 4-D XRD reveals sub-grain and grain-to-grain behavior as a function of stress. Here 4-D XRD involves an experimental procedure using polychromatic micro-beam X-radiation (micro-Laue) to characterize polycrystalline materials in spatial location as well as with increasing stress. The in-situ tensile loading experiment measured strain in a model aluminum-sapphire metal matrix composite using the Advanced Light Source, Beam-li...

  4. Inelastic electron scattering investigation of the complete 4d shell

    In order to test for collective behavior in the filled 4d shell of single atoms with Z approx. = 54, inelastic electron scattering experiments were performed on thin films of antimony, tellurium and barium fluoride using 300 keV electrons. The Te measurements at low momentum transfers are in absolute agreement with photoabsorption results. For Te, a high concentration of oscillator strength is found in the broad maximum which dominates the 4d excitation spectrum. With the aid of a background subtraction, the energy centroid of this feature is located. In a comparison with simple models, the measured energy shift in the 4d continuum as a function of momentum transfer favors a single particle rather than collective description

  5. Representing Participation in ICT4D Projects

    Singh, J. P.; Flyverbom, Mikkel

    2016-01-01

    How do the discourses of participation inform deployment of information and communication technologies for development (ICT4D)? Discourses here mean narratives that assign roles to actors, and specify causes and outcomes for events. Based on the theory and practice of international development we...... identify two dimensions to participation and ICT4D: whether participation 1) is hierarchical/top-down or agent-driven/bottom-up, and 2) involves conflict or cooperation. Based on these dimensions we articulate four ideal types of discourse that permeate ICT and development efforts: stakeholder......-based discourses that emphasize consensus, networked efforts among actors collaborating in network arrangements, mobilization discourses that account for contestation over meanings of participation, and oppositional discourses from ׳grassroots׳ actors that also include conflict. We conclude that ICT4D efforts...

  6. Cinema 4D R13 Cookbook

    Szabo, Michael

    2012-01-01

    This book contains short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity. This book is for anyone who wants to quickly get up to speed with Cinema 4D to create 3D projects that run laps around simple

  7. 4D, N = 1 Supersymmetry Genomics (I)

    Gates, S J; MacGregor, B; Parker, J; Polo-Sherk, R; Rodgers, V G J; Wassink, L

    2009-01-01

    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N = 1 component descriptions of supermultiplets are associated with two integers - the numbers of c-V and t-V Adinkras that occur in the representation.

  8. Can Pions ``Smell'' 4D, N = 1 Supersymmetry?

    Gates, Jr., S. James

    1997-01-01

    We show how the usual chiral perturbation theory description of phenomenological pion physics admits an interpretation as a low-energy string-like model associated with QCD. By naive and straightforward generalization within the context of a new class of supersymmetrical models, it is shown that this string-like structure admits a 4D, N = 1 supersymmetrical extension. The presence of a WZNW term in the model implies modifications of certain higher order processes involving the ordinary SU(3) ...

  9. Constrained reconstructions for 4D intervention guidance

    Kuntz, J.; Flach, B.; Kueres, R.; Semmler, W.; Kachelrieß, M.; Bartling, S.

    2013-05-01

    Image-guided interventions are an increasingly important part of clinical minimally invasive procedures. However, up to now they cannot be performed under 4D (3D + time) guidance due to the exceedingly high x-ray dose. In this work we investigate the applicability of compressed sensing reconstructions for highly undersampled CT datasets combined with the incorporation of prior images in order to yield low dose 4D intervention guidance. We present a new reconstruction scheme prior image dynamic interventional CT (PrIDICT) that accounts for specific image features in intervention guidance and compare it to PICCS and ASD-POCS. The optimal parameters for the dose per projection and the numbers of projections per reconstruction are determined in phantom simulations and measurements. In vivo experiments in six pigs are performed in a cone-beam CT; measured doses are compared to current gold-standard intervention guidance represented by a clinical fluoroscopy system. Phantom studies show maximum image quality for identical overall doses in the range of 14 to 21 projections per reconstruction. In vivo studies reveal that interventional materials can be followed in 4D visualization and that PrIDICT, compared to PICCS and ASD-POCS, shows superior reconstruction results and fewer artifacts in the periphery with dose in the order of biplane fluoroscopy. These results suggest that 4D intervention guidance can be realized with today’s flat detector and gantry systems using the herein presented reconstruction scheme.

  10. 4D, N=1 Supergravity Genomics

    Chappell, Isaac; Linch, William D; Parker, James; Randall, Stephen; Ridgway, Alexander; Stiffler, Kory

    2012-01-01

    The off-shell representation theory of 4D, $\\mathcal{N}=1$ supermultiplets can be categorized in terms of distinct irreducible graphical representations called adinkras. Recent evidence has emerged pointing to the existence of three such fundamental adinkras associated with distinct equivalence classes of a Coxeter group. A partial description of these adinkras is given in terms of two types, termed cis-and trans-adinkras (the latter being a degenerate doublet) in analogy to enantiomers in chemistry. Through a new and simple procedure that uses adinkras, we find the irreducible off-shell adinkra representations of 4D, $\\mathcal{N}=1$ supergravity, in the old-minimal, non-minimal, and conformal formulations. We categorize these representations in terms of their supersymmetry `enantiomer' numbers: the number of cis-($n_c$) and trans-($n_t$) adinkras in the representation.

  11. 4D, N=1 Supergravity Genomics

    Chappell, Isaac; Gates, Jr., S. James; Linch III, William D; Parker, James; Randall, Stephen; Ridgway, Alexander; Stiffler, Kory

    2012-01-01

    The off-shell representation theory of 4D, $\\mathcal{N}=1$ supermultiplets can be categorized in terms of distinct irreducible graphical representations called adinkras as part of a larger effort we call supersymmetry `genomics.' Recent evidence has emerged pointing to the existence of three such fundamental adinkras associated with distinct equivalence classes of a Coxeter group. A partial description of these adinkras is given in terms of two types, termed cis-and trans-adinkras (the latter...

  12. Cinema 4D R14 cookbook

    Russell, Simon

    2013-01-01

    This book is written in a Cookbook style with short recipes designed to effectively teach tools in the minimum amount of time. Each recipe hits on a topic that can be combined or incorporated with other recipes to give you the building blocks you need to start making great designs with Cinema 4D. Rather than demonstrating how to make a few specific and extensive projects, the recipes create a solid base of knowledge to help the reader understand the tools available to foster their own creativity.This book is for professional artists working in architecture, design, production, or games and wan

  13. 4D, N = 1 Supersymmetry Genomics (II)

    Gates, S James; Hallett, Jared; Parker, James; Rodgers, Vincent G J; Stiffler, Kory

    2011-01-01

    We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of $n_c$-cis and $n_t$-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these "chemical enantiomer" numbers are found to be $n_c$ = $n_t$ = 1 and $n_c$ = 1, $n_t$ = 2, respectively.

  14. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-01-01

    aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology.We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  15. A 4-D climatology (1979-2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. J.; Solmon, F.; Szopa, S.; Dulac, F.; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-05-01

    aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  16. A 4-D climatology (1979–2009 of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    P. Nabat

    2013-05-01

    dust aerosols showing a large vertical spread, and other continental and marine aerosols which are confined in the boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from LMDz-OR-INCA, whose AOD trends over Europe and the Mediterranean are median among the ACCMIP models. Finally optical properties of the different aerosol types in this region are proposed from Mie calculations so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  17. A 4-D climatology (1979–2009 of the monthly aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    P. Nabat

    2012-11-01

    boundary layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003–2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003–2009 reconstruction to the past up to 1979 using the 2003–2009 average and applying the decreasing trend in sulfate aerosols from the LMDz-OR-INCA model, based on the recent emission reconstruction proposed by Lamarque et al. (2010. Finally optical properties of the different aerosol types in this region are proposed from the literature so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  18. A 4-D climatology (1979-2009) of the monthly aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I.; Morcrette, J. J.; Solmon, F.; Szopa, S.; Dulac, F.

    2012-11-01

    layer. From this compilation, we propose a 4-D blended product from model and satellite data, consisting in monthly time series of 3-D aerosol distribution at a 50 km horizontal resolution over the Euro-Mediterranean marine and continental region for the 2003-2009 period. The product is based on the total AOD from AQUA/MODIS, apportioned into sulfates, black and organic carbon from the MACC reanalysis, and into dust and sea-salt aerosols from RegCM-4 simulations, which are distributed vertically based on CALIOP climatology. We extend the 2003-2009 reconstruction to the past up to 1979 using the 2003-2009 average and applying the decreasing trend in sulfate aerosols from the LMDz-OR-INCA model, based on the recent emission reconstruction proposed by Lamarque et al. (2010). Finally optical properties of the different aerosol types in this region are proposed from the literature so that this reconstruction can be included in regional climate models for aerosol radiative forcing and aerosol-climate studies.

  19. ICT4D: A Computer Science Perspective

    Sutinen, Erkki; Tedre, Matti

    The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Research in that field is often focused on evaluating the feasibility of existing technologies, mostly of Western or Far East Asian origin, in the context of developing regions. A computer science perspective is complementary to that agenda. The computer science perspective focuses on exploring the resources, or inputs, of a particular context and on basing the design of a technical intervention on the available resources, so that the output makes a difference in the development context. The modus operandi of computer science, construction, interacts with evaluation and exploration practices. An analysis of a contextualized information technology curriculum of Tumaini University in southern Tanzania shows the potential of the computer science perspective for designing meaningful information and communication technology for a developing region.

  20. Soft Route to 4D Tomography

    Taillandier-Thomas, Thibault; Roux, Stéphane; Hild, François

    2016-07-01

    Based on the assumption that the time evolution of a sample observed by computed tomography requires many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can be tracked from no more than two radiographs in situations where a complete 3D view would require several hundreds of radiographs. This 2 order of magnitude gain opens the way to a "computed" 4D tomography, which complements the recent progress achieved in fast or ultrafast computed tomography, which is based on beam brightness, detector sensitivity, and signal acquisition technologies.

  1. 4D-Flow validation, numerical and experimental framework

    Sansom, Kurt; Liu, Haining; Canton, Gador; Aliseda, Alberto; Yuan, Chun

    2015-11-01

    This work presents a group of assessment metrics of new 4D MRI flow sequences, an imaging modality that allows for visualization of three-dimensional pulsatile flow in the cardiovascular anatomy through time-resolved three-dimensional blood velocity measurements from cardiac-cycle synchronized MRI acquisition. This is a promising tool for clinical assessment but lacks a robust validation framework. First, 4D-MRI flow in a subject's stenotic carotid bifurcation is compared with a patient-specific CFD model using two different boundary condition methods. Second, Particle Image Velocimetry in a patient-specific phantom is used as a benchmark to compare the 4D-MRI in vivo measurements and CFD simulations under the same conditions. Comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, Lagrangian particle residence time, will be discussed, with justification for their biomechanics relevance and the insights they can provide on the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new sequence to provide a quantitative assessment. A parametric analysis on the carotid bifurcation pulsatile flow conditions will be presented and an accuracy assessment provided.

  2. Phosphodiesterase 4D gene polymorphisms in sudden sensorineural hearing loss.

    Chien, Chen-Yu; Tai, Shu-Yu; Wang, Ling-Feng; Hsi, Edward; Chang, Ning-Chia; Wang, Hsun-Mo; Wu, Ming-Tsang; Ho, Kuen-Yao

    2016-09-01

    The phosphodiesterase 4D (PDE4D) gene has been reported as a risk gene for ischemic stroke. The vascular factors are between the hypothesized etiologies of sudden sensorineural hearing loss (SSNHL), and this genetic effect might be attributed for its role in SSNHL. We hypothesized that genetic variants of the PDE4D gene are associated with susceptibility to SSNHL. We conducted a case-control study with 362 SSNHL cases and 209 controls. Three single nucleotide polymorphisms (SNPs) were selected. The genotypes were determined using TaqMan technology. Hardy-Weinberg equilibrium (HWE) was tested for each SNP, and genetic effects were evaluated according to three inheritance modes. We carried out sex-specific analysis to analyze the overall data. All three SNPs were in HWE. When subjects were stratified by sex, the genetic effect was only evident in females but not in males. The TT genotype of rs702553 exhibited an adjusted odds ratio (OR) of 3.83 (95 % confidence interval = 1.46-11.18) (p = 0.006) in female SSNHL. The TT genotype of SNP rs702553 was associated with female SSNHL under the recessive model (p = 0.004, OR 3.70). In multivariate logistic regression analysis, TT genotype of rs702553 was significantly associated with female SSNHL (p = 0.0043, OR 3.70). These results suggest that PDE4D gene polymorphisms influence the susceptibility for the development of SSNHL in the southern Taiwanese female population. PMID:26521189

  3. Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammation.

    Shanks, K; Nkyimbeng-Takwi, E H; Smith, E; Lipsky, M M; DeTolla, L J; Scott, D W; Keegan, A D; Chapoval, S P

    2013-12-01

    Neuroimmune semaphorin 4D (Sema4D) was found to be expressed and function in the nervous and immune systems. In the immune system, Sema4D is constitutively expressed on T cells and regulates T cell priming. In addition, it displays a stimulatory function on macrophages, DC, NK cells, and neutrophils. As all these cells are deeply involved in asthma pathology, we hypothesized that Sema4D plays a critical non-redundant regulatory role in allergic airway response. To test our hypothesis, we exposed Sema4D(-/-) and WT mice to OVA injections and challenges in the well-defined mouse model of OVA-induced experimental asthma. We observed a significant decrease in eosinophilic airway infiltration in allergen-treated Sema4D(-/-) mice relative to WT mice. This reduced allergic inflammatory response was associated with decreased BAL IL-5, IL-13, TGFβ1, IL-6, and IL-17A levels. In addition, T cell proliferation in OVA₃₂₃₋₃₃₉-restimulated Sema4D(-/-) cell cultures was downregulated. We also found increased Treg numbers in spleens of Sema4D(-/-) mice. However, airway hyperreactivity (AHR) to methacholine challenges was not affected by Sema4D deficiency in either acute or chronic experimental disease setting. Surprisingly, lung DC number and activation were not affected by Sema4D deficiency. These data provide a new insight into Sema4D biology and define Sema4D as an important regulator of Th2-driven lung pathophysiology and as a potential target for a combinatory disease immunotherapy. PMID:23911404

  4. Opening the Black Box of ICT4D: Advancing Our Understanding of ICT4D Partnerships

    Park, Sung Jin

    2013-01-01

    The term, Information and Communication Technologies for Development (ICT4D), pertains to programs or projects that strategically use ICTs (e.g. mobile phones, computers, and the internet) as a means toward the socio-economic betterment for the poor in developing contexts. Gaining the political and financial support of the international community…

  5. 4D DATA FUSION TECHNIQUE IN URBAN WATERLOG-DRAINING DECISION SUPPORT SYSTEM

    2000-01-01

    This paper studies urban waterlog-draining decision support system based on the 4D data fusion technique.4D data includes DEM,DOQ,DLG and DRG.It supplies entire databases for waterlog forecast and analysis together with non-spatial fundamental database.Data composition and reasoning are two key steps of 4D data fusion.Finally,this paper gives a real case: Ezhou Waterlog-Draining Decision Support System (EWDSS) with two application models,i.e.,DEM application model,water generating and draining model.

  6. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Wang, Jing; Gu, Xuejun [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8808 (United States)

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  7. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla

    1998-12-31

    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  8. 4D experience on Girassol Field block 17, Angola

    Lefeuvre, F.; Brechet, E.; Bertini, F.; Jourdan, J.M.; Cassou, G. [TOTAL S.A., Luanda (Angola); Dubucq, D. [TOTAL Angola, Luanda (Angola)

    2004-07-01

    The Girassol field is located in Angolan deep water of Block 17 and consists of large vertically stacked turbidities complexes. The reservoir extends over approximately 200 km{sup 2} and water depth ranges between 1300 and 1400 meters. In that context High Resolution 3D seismic became the most valuable tool to describe and monitor the reservoir. The field development plan took into account, through re-injection of the gas into the reservoir, Total environmental policy imposing the recycling of production gas. Monitoring of this injection was the main reason to shoot the first High Resolution 4D extremely early in the life of field. Despite the complexity of interpretation due to complex fluid situation and pressure effect, the results went way beyond expectations as the 4D images are of very high quality. Data has also been used to update and refine the reservoir flow model as well as to help deciding on the location of latest development wells. Other repeat surveys are scheduled, the next one before the end of 2004. The ultimate goal which we hope to reach in the very near future will be to use seismic-derived saturation and pressure changes to constrain the reservoir model during the history matching process. (author)

  9. Gravitation in 4D Euclidean Space-Time Geometry

    Winkler, Franz-Guenter

    2007-01-01

    The Euclidean interpretation of special relativity provides an intuitive way to understand and derive the Lorentz transformations in the framework of a "natural" 4D Euclidean space-time geometry. In this article the conceptual basis for a purely metric generalization of the Euclidean view is laid. It consists of i) the assumption of spatial and directional variations of the speed of light (VSL), ii) a formulation of the principle of general covariance in 4D Euclidean geometry, and iii) a generally covariant motion law for point particles. For the gravitation model, which is developed on this basis, three out of four effects of the Schwarzschild solution are derived (shift of spectral lines, deflection of light, precession of perihelia of planetary orbits). The explanation of the Shapiro radar echo delay requires modifications of the space-time geometry of the sun's environment. The additional effects brought forth by the respective model entail a possible account of the coronal heating problem and thus make t...

  10. Development operators on 4D moving object databases

    JUN Sung-woo; LEE Yang-koo; KIM Sang-ho; CHI Jeong-hee; RYU Keun-ho

    2004-01-01

    In this paper we propose four-dimensional (4D) operators, which can be used to deal with sequential changes of topological relationships between 4D moving objects and we call them 4D development operators. In contrast to the existing operators, we can apply the operators to real applications on 4D moving objects. We also propose a new approach to define them. The approach is based on a dimension-separated method, which considers x-y coordinates and z coordinates separately. In order to show the applicability of our operators, we show the algorithms for the proposed operators and development graph between 4D moving objects.

  11. Magnetic properties of 4d transition-metal clusters

    We analyze the stability of magnetic states obtained within the tight-binding model solved by molecular dynamics for cubo-octahedral (fcc) and icosahedral clusters of 3d (Ni and Co) and 4d (Pd, Rh, and Ru) transition metals. The magnetic states are stabilized by the Hund close-quote s rule exchange interaction between the d orbitals. Taking realistic parameters deduced from band structure calculations and spectroscopic data, we obtained saturated ferromagnetism for Ni13, Co13, and Pd13 clusters, while Rh13 fcc and Ru13 clusters are partially magnetic, with an antiferromagnetic orientation of the moments on the central atoms in Ru clusters. Our results for 4d transition-metal clusters agree qualitatively with the recent experimental data and with other calculations. Metastable magnetic clusters were identified in several situations. We found a dependence of the equilibrium lattice constant on the magnetization in the considered clusters which may be explained by the character of wave functions in the cluster electronic structure. copyright 1996 The American Physical Society

  12. BPS black holes in gauged N = 4, D = 4 supergravity

    We find solutions of the bosonic sector of gauged N = 4, D = 4 SU(2) x SU(2) supergravity, which represent dilaton black holes with toroidal or spherical event horizons. The axion is consistently truncated, and the gauge group is broken to U(1) x U(1). The spherical black holes carry two electric and two magnetic abelian charges, whereas the toroidal holes have vanishing magnetic charges. The space-time metrics are warped products, and the manifolds turn out to be globally hyperbolic, in contrast to standard gauged supergravity ground states. It is shown that in the toroidal case, there are solutions preserving one quarter or one half of the supersymmetries, while for spherical topologies all supersymmetries are broken. In general, the toroidal BPS states represent naked singularities, but there is also a supersymmetric black hole with vanishing Hawking temperature. The ((1)/(2)) supersymmetric case arises for vanishing charges and mass, and represents the known domain wall solution of the Freedman-Schwarz model. It provides the background in which the black holes live. Finally, we use Chamseddine's and Volkov's Kaluza-Klein interpretation of gauged N = 4, D = 4 SU(2) x SU(2) supergravity to lift our solutions to ten and eleven dimensions and to consider them as solutions to the leading order equations of motion of the string/M-theory effective action

  13. Sex-differential genetic effect of phosphodiesterase 4D (PDE4D on carotid atherosclerosis

    Guo Yuh-Cherng

    2010-06-01

    Full Text Available Abstract Background The phosphodiesterase 4D (PDE4D gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis. Methods Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men. Genotype distribution was compared among the high-risk (plaque index ≥ 4, low-risk (index = 1-3, and reference (index = 0 groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect. Results In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034 for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008. For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032 for a thicker IMT at the common carotid artery compared with the (AA + AT genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025 but not in women (p = 0

  14. Theory of multiplet structure in 4d core photoabsorption spectra of CeO2

    Detailed analysis of 4d core x-ray photoabsorption spectra (4d-XAS) in CeO2 is made with the impurity Anderson model by incorporating the solid-state effect of hybridization between 4f and valence-band states into the atomic calculation of multiplet structures. The hybridization effect plays an essential role in the multiplet structure observed in the prethreshold region of 4d-XAS. The effect of the finite width of the valence band, as well as that of the core-hole potential, is discussed. The multiplet structures in α- and γ-Ce are also calculated for the sake of comparison

  15. Evaluation of Thermodynamic Parameters of 2, 4-Dichlorophenoxyacetic Acid (2, 4-D Adsorption

    A. S. Ghatbandhe

    2013-01-01

    Full Text Available Thermodynamic parameters of 2, 4-Dichlorophenoxyacetic acid (2, 4-D adsorption were evaluated by studying the adsorption equilibrium and kinetics of 2, 4-D at different temperatures. Uptake capacity of activated carbon increases with temperature. Langmuir isotherm models were applied to experimental data of 2, 4-D adsorption. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity , Langmuir constant and adsorption rate constant were evaluated at different temperatures for activated carbon adsorption. The activation energy of adsorption ( was determined using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of adsorption (, , and were evaluated. The obtained values of thermodynamic parameters show that the adsorption of 2, 4-D is an endothermic process.

  16. 4+D digital engineering for advanced nuclear energy systems

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully automated way of managing the information flow spanning their life cycle. In line with practice in disciplines of naval architecture, aerospace engineering, and automotive manufacturing, the paper proposes total digital systems engineering based on three-dimensional (3D) computer-aided design (CAD) models. The signature in the proposal lies with the four-plus-dimensional (4+D) TechnologyTM, a critical know-how for digital management. The so-called OPIUM (Optimized Plant Integrated Ubiquitous Management) features a 4+D TechnologyTM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4+D, is the backbone of digital engineering in the nuclear systems design and management. Based on an integrated 3D configuration management system, OPIUM consists of solutions NOTUS (Nuclear Optimization Technique Ubiquitous System), VENUS (Virtual Engineering Nuclear Ubiquitous System), INUUS (Informatics Nuclear Utilities Ubiquitous System), JANUS (Junctional Analysis Numerical Ubiquitous System) and EURUS (Electronic Unit Research Ubiquitous System). These solutions will help initial simulation capability for NPPs to supply the crucial information. NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4+D system

  17. Demystifying the possibilities of ICT4D in the mountain regions of Nepal

    Thapa, Devinder; Sæbø, Øystein

    2011-01-01

    Despite the substantial investments in ICT4D projects in developing countries, the benefits are yet to be realised by the majority of remote communities. Inaccessibility to ICT has widened educational, healthcare, information, and communication gaps between urban and remote communities. This paper focuses on an interpretive case study in Nepal to widen our understanding of how locally-initiated ICT4D projects may help to narrow these gaps. The study utilises the Assets Pentagon Model to ident...

  18. Pros and cons for C4d as a biomarker

    Cohen, Danielle; Colvin, Robert B.; Mohamed R. Daha; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E.; Sis, Banu; ZHAO, Ming-Hui; Bruijn, Jan A.; Bajema, Ingeborg M.

    2012-01-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations...

  19. Pros and cons for C4d as a biomarker.

    Cohen, Danielle; Colvin, Robert B; Daha, Mohamed R; Drachenberg, Cinthia B; Haas, Mark; Nickeleit, Volker; Salmon, Jane E; Sis, Banu; Zhao, Ming-Hui; Bruijn, Jan A; Bajema, Ingeborg M

    2012-04-01

    The introduction of C4d in daily clinical practice in the late nineties aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. As a marker of classical complement activation, C4d made it possible to visualize the direct link between anti-donor antibodies and tissue injury at sites of antibody binding in a graft. With the expanding use of C4d worldwide several limitations of C4d were identified. For instance, in ABO-incompatible transplantations C4d is present in the majority of grafts but this seems to point at 'graft accommodation' rather than antibody-mediated rejection. C4d is now increasingly recognized as a potential biomarker in other fields where antibodies can cause tissue damage, such as systemic autoimmune diseases and pregnancy. In all these fields, C4d holds promise to detect patients at risk for the consequences of antibody-mediated disease. Moreover, the emergence of new therapeutics that block complement activation makes C4d a marker with potential to identify patients who may possibly benefit from these drugs. This review provides an overview of the past, present, and future perspectives of C4d as a biomarker, focusing on its use in solid organ transplantation and discussing its possible new roles in autoimmunity and pregnancy. PMID:22297669

  20. Background-metric independent formulation of 4D quantum gravity

    Using the background-metric independence for the traceless mode as well as the conformal mode, 4D quantum gravity is described as a quantum field theory defined on a non-dynamical background metric. The measure then induces an action with four derivatives. So we think that fourth order gravity is essential and the Einstein-Hilbert term should be treated like a mass term. We introduce the dimensionless self-coupling constant t for the traceless mode. In this paper we study a model where the measure can be evaluated in the limit t → 0 exactly, using the background-metric independence for the conformal mode. The t-dependence of the measure is determined perturbatively using the background-metric independence for the traceless mode

  1. 4D Script N = 2 supergravity and projective superspace

    Kuzenko, S. M.; Lindström, U.; Rocek, M.; Tartaglino-Mazzucchelli, G.

    2008-09-01

    This paper presents a projective superspace formulation for 4D Script N = 2 matter-coupled supergravity. We first describe a variant superspace realization for the Script N = 2 Weyl multiplet. It differs from that proposed by Howe in 1982 by the choice of the structure group (SO(3,1) × SU(2) versus SO(3,1) × U(2)), which implies that the super-Weyl transformations are generated by a covariantly chiral parameter instead of a real unconstrained one. We introduce various off-shell supermultiplets which are curved superspace analogues of the superconformal projective multiplets in global supersymmetry and which describe matter fields coupled to supergravity. A manifestly locally supersymmetric and super-Weyl invariant action principle is given. Off-shell locally supersymmetric nonlinear sigma models are presented in this new superspace.

  2. 32 CFR 1645.4 - Exclusion from Class 4-D.

    2010-07-01

    ... MINISTERS OF RELIGION § 1645.4 Exclusion from Class 4-D. A registrant is excluded from Class 4-D when his... duly ordained minister of religion in accordance with the ceremonial rite or discipline of a church... principles of religion and administer the ordinances of public worship, as embodied in the creed...

  3. 4D reconstruction of the past

    Doulamis, Anastasios; Ioannides, Marinos; Doulamis, Nikolaos; Hadjiprocopis, Andreas; Fritsch, Dieter; Balet, Olivier; Julien, Martine; Protopapadakis, Eftychios; Makantasis, Kostas; Weinlinger, Guenther; Johnsons, Paul S.; Klein, Michael; Fellner, Dieter; Stork, Andre; Santos, Pedro

    2013-08-01

    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Search engines can search text for keywords using algorithms of varied intelligence and with limited success. Searching images is a much more complex and computationally intensive task but some initial steps have already been made in this direction, mainly in face recognition. This paper aims to describe our proposed pipeline for integrating data available on Internet repositories and social media, such as photographs, animation and text to produce 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EUROPEANA. Our main goal is to enable historians, architects, archaeologists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web.

  4. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean

  5. 4D BIM Application in AEC Industry: Impact on Integrated Project Delivery

    Usman Aminu Umar

    2015-06-01

    Full Text Available As project delivery approaches that are supported by Building Information Modelling (BIM are continuously acknowledged throughout the Architecture, Engineering and Construction (AEC industry, an innovative modelling approach called 4D BIM is starting to develop, which associates elements of 3D BIM with time and scheduling information. Traditional construction planning applications like bar charts and network diagrams fail to present and communicate the spatial and temporal or 4D components of construction schedules efficiently. As a result, they do not permit project managers to produce scheduling alternatives quickly to obtain the finest solution to develop a particular design. With 4D modelling, the whole period of a sequence of activities that is executed by those involved in the project can be presented visually. With the rising interest in BIM and the wider use of this and other technological innovations in the AEC industry, 4D BIM tools, which has been broadly employed, is becoming increasingly recognized among fundamental technological fields under BIM. This study aims to highlight and review numerous impacts of 4D applications on Integrated Project Delivery (IPD on the AEC industry and suggest the ideal strategy to optimize the tools for rapid project delivery.

  6. Motion management with phase-adapted 4D-optimization

    Nohadani, Omid; Seco, Joao; Bortfeld, Thomas

    2010-01-01

    Cancer treatment with ionizing radiation is often compromised by organ motion, in particular for lung cases. Motion uncertainties can significantly degrade an otherwise optimized treatment plan. We present a spatiotemporal optimization method, which takes into account all phases of breathing via the corresponding 4D-CTs and provides a 4D-optimal plan that can be delivered throughout all breathing phases. Monte Carlo dose calculations are employed to warrant for highest dosimetric accuracy, as...

  7. Play as Freedom : Implications for ICT4D

    Ferreira, Pedro

    2015-01-01

    Information and Communication Tech nologies for Development (ICT4D) deals with understanding the relationship between modern technology use and social and economic development. While play may not appear as an immediate concern to the field, a recent body of work has emerged questioning the role of play in ICT4D and the reasons behind its apparent dismissal. Some have even argued that aspects of pleasure and enjoyment get only marginal treatment within academic studies of technology more gener...

  8. Reduced-order 4D-Var: a preconditioner for the Incremental 4D-Var data assimilation method

    Robert, Céline; Verron, Jacques

    2006-01-01

    This study demonstrates how the incremental 4D-Var data assimilation method can be applied efficiently preconditione d in an application to an oceanographic problem. The approach consists in performing a few iterations of the reduced-order 4D-Var prior to the incremental 4D-Var in the full space in order to achieve faster convergence. An application performed in the tropical Pacific Ocean, with assimilation of TAO temperature data, shows the method to be both feasible and efficient. It allows the global cost of the assimilation to be reduced by a factor of 2 without affecting the quality of the solution.

  9. 4D Dynamic RNP Annual Interim Report-Year 1

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Chung, William W.; Salvano, Daniel; Klooster, Joel; Hochwarth, Joachim K.

    2010-01-01

    experiment using the Airspace and Traffic Operations Simulation (ATOS) system to validate the 4D Dynamic RNP construct. This Annual Interim Report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results obtained during the first year of this research effort to expand the RNP concept to 4 dimensions relative to a dynamic frame of reference. A comprehensive assessment of the state-of-the-art international implementation of current RNP was completed and presented in the Contractor Report RNP State-of-the-Art Assessment, Version 4, 17 December 2008 . The team defined in detail two 4DT operations, Airborne Precision Spacing and Self-Separation, that are ideally suited to be supported by 4D Dynamic RNP and developed their respective conceptual frameworks, Required Interval Management Performance (RIMP) Version 1.1, 13 April 2009 and Required Self Separation Performance (RSSP) Version 1.1, 13 April 2009 . Finally, the team started the development of a mathematical model and simulation tool for RIMP and RSSP scheduled to be delivered during the second year of this research effort.

  10. ICT4D 2016: New Priorities for ICT4D Policy, Practice and WSIS in a Post-2015 World

    Heeks, R.

    2014-01-01

    In 2016, the Millennium Development Goals will be replaced by the post-2015 development agenda (PTDA). The foundational content is in place for this new agenda, which will be the single most-important force shaping the future of international development and, hence, the single most-important force shaping the future of information-and-communication-technology-for-development (ICT4D). In planning prospective ICT4D priorities, we should therefore pay close attention to the PTDA.This paper und...

  11. Experimenting with the GMAO 4D Data Assimilation

    Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick; Whitaker, J.

    2012-01-01

    The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing

  12. 4-D Strain Rate Along the San Andreas Fault System: Knowns and Unknowns (Invited)

    Sandwell, D. T.; Smith-Konter, B. R.; Tong, X.

    2013-12-01

    Geodetic imaging of the San Andreas Fault System from a combination of GPS and InSAR techniques is providing a remarkably accurate and detailed mapping of plate boundary surface strain rate. We have assembled and compared strain-rate models from 17 research groups and find that 5 of these models provide remarkably similar images of the surface strain rate tensor, having principal strain axes in good agreement with the principal stress directions inferred from a recent compilation of earthquake focal mechanisms [Yang and Hauksson, 2013]. While surface strain rates seem to be well mapped, it is also important to understand strain rate variations with depth and through time. We have developed a kinematic 4-D earthquake cycle model spanning the North American-Pacific plate boundary that simulates interseismic strain accumulation, coseismic displacement, and postseismic viscous relaxation of the mantle. The model can predict the full 4-D strain rate tensor for the past 1000 years but relies on numerous approximations and assumptions. This talk will highlight the most poorly known aspects of the 4-D model and discuss additional measurements that could improve our mapping of the 4-D strain rate.

  13. Newton law in brane-world scenario with 4d induced gravity: singular quantum mechanical approach

    From the viewpoint of the singular quantum mechanics the effect of the energy-dependent coupling constant for δ-function potential is examined. The energy-dependence of the coupling constant naturally generates the time-derivative in the boundary condition of the Euclidean propagator. This is explicitly confirmed by making use of the simple 1d model. The result is applied to the linearized gravity fluctuation equation for the brane-world scenario with 4d induced gravity. Our approach generates 5d Newton potential at a certain intermediate range of distance between two test massive sources. For other range of distance 4d Newton potential is recovered

  14. Geometry and Dynamics of a Coupled 4D-2D Quantum Field Theory

    Bolognesi, Stefano; Evslin, Jarah; Konishi, Kenichi; Ohashi, Keisuke; Seveso, Luigi

    2015-01-01

    Geometric and dynamical aspects of a coupled 4D-2D interacting quantum field theory - the gauged nonAbelian vortex - are investigated. The fluctuations of the internal 2D nonAbelian vortex zeromodes excite the massless 4D Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2D CP(N-1) zeromodes associated with a nonAbelian vortex become nonnormalizable. Moreover, all sorts of global, topological 4D effects such as the nonAbelian Aharonov-Bohm effect come into play. These topological global features and the dynamical properties associated with the fluctuation of the 2D vortex moduli modes are intimately correlated, as shown concretely here in a U(1) x SU(N) x SU(N) model with scalar fields in a bifundamental representation of the two SU(N) factor gauge groups.

  15. Mvox: Interactive 2-4D medical image and graphics visualization software

    Bro-Nielsen, Morten

    Mvox is a new tool for visualization, segmentation and manipulation of a wide range of 2-4D grey level and colour images, and 3D surface graphics, which has been developed at the Department of Mathematical Modelling, Technical University of Denmark. The principal idea behind the software has been...

  16. Beyond ICT4D: new media research in Uganda

    Lovink, G.

    2011-01-01

    Beyond ICT4D: New Media Research in Uganda is a collection of ethnographic reports from diverse perspectives of those living at the other end of the African ICT pyramid. Crucially, these texts refocus on the so-called "ICT4D" debate away from the standard western lens, which depicts users in the developing world as passive receivers of Western technological development, towards Ugandans whose use and production of technologies entail innovations from the ground up. It is this ‘other’ everyday...

  17. 4D Multimodality Imaging of Citrobacter rodentium Infections in Mice

    Collins, James William; Meganck, Jeffrey A.; Kuo, Chaincy; Francis, Kevin P.; Frankel, Gad

    2013-01-01

    This protocol outlines the steps required to longitudinally monitor a bioluminescent bacterial infection using composite 3D diffuse light imaging tomography with integrated μCT (DLIT-μCT) and the subsequent use of this data to generate a four dimensional (4D) movie of the infection cycle. To develop the 4D infection movies and to validate the DLIT-μCT imaging for bacterial infection studies using an IVIS Spectrum CT, we used infection with bioluminescent C. rodentium, which causes self-limiti...

  18. 基于服务创新四维度模型的乡村旅游创新模式研究——以北京乡村旅游为例%The Innovative Modes of Rural Tourism Based on 4D Service Innovation Model

    马亮; 颜亭玉

    2013-01-01

    以北京乡村旅游为例,指出乡村旅游当前存在创新乏力、效益低下等一系列问题.结合对服务创新四维度模型理论的研究,分析创新发展的瓶颈,并从各个角度分析乡村旅游创新模式,对未来乡村旅游产业的创新发展提供借鉴意义.%By taking Beijing rural tourism for example,a series of problems including lack of innovation and low efficiency were pointed out.Combined with 4D service innovation model theory,the bottleneck of innovation was analyzed,and the innovative modes of rural tourism was established,in order to provide a reference for the future rural tourism industry's innovation and development.

  19. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  20. 4d-polytopes described by Coxeter diagrams and quaternions

    4D-polytopes and their dual polytopes can be described as the orbits of the rank-4 Coxeter-Weyl groups. Their symmetries follow from the quaternionic descriptions of the rank-4 Coxeter-Dynkin diagrams. There exists a one to one correspondence between the finite subgroups of quaternions and the rank-4 Coxeter-Weyl groups.

  1. ARL4D - Wikipedia, the free encyclopedia [Gene Wiki

    Full Text Available ARL4D - Wikipedia, the free encyclopediaARL4DFrom Wikipedia, the free encyclopediaJump to:naviga ... of disease to interested scientists.[13][14][15]Male an d female an imals underwent a standardized phenotyp ... had decreased bone mineral content, heart weight, lean ... body mass and CD8-positive, alpha-beta memory T ce ...

  2. Medicoscapes: on mobile ubiquity effects and ICT4D

    Michelsen, Anders Ib

    2012-01-01

    The Article presents theoretical comments on the theme of ‘media ubiquity’, as an introduction to the presentation of an information and communication technology ‘4’ development (ICT4D) project in the Republic of Somaliland: The Somaliland Telemedical System for Psychiatry. This project is based on...

  3. Rise and fall of the 4d10→4d94f resonance in the Xe isoelectronic sequence

    The extreme ultraviolet photoabsorption spectrum of a laser-produced lanthanum plasma has been recorded and found to contain a number of discrete features in the 130-eV region. These have been analyzed as 4d10→4d9nf,np transitions in La3+. We show that the 4f transition, which is expected to be the strongest, is not in evidence. The reason is that this resonance, after the collapse of the 4f wave function, has a large autoionization width. We conclude that the 4f orbital in Ba2+ is only partially collapsed, which settles a long-standing discussion of this point

  4. 4D flow mri post-processing strategies for neuropathologies

    Schrauben, Eric Mathew

    4D flow MRI allows for the measurement of a dynamic 3D velocity vector field. Blood flow velocities in large vascular territories can be qualitatively visualized with the added benefit of quantitative probing. Within cranial pathologies theorized to have vascular-based contributions or effects, 4D flow MRI provides a unique platform for comprehensive assessment of hemodynamic parameters. Targeted blood flow derived measurements, such as flow rate, pulsatility, retrograde flow, or wall shear stress may provide insight into the onset or characterization of more complex neuropathologies. Therefore, the thorough assessment of each parameter within the context of a given disease has important medical implications. Not surprisingly, the last decade has seen rapid growth in the use of 4D flow MRI. Data acquisition sequences are available to researchers on all major scanner platforms. However, the use has been limited mostly to small research trials. One major reason that has hindered the more widespread use and application in larger clinical trials is the complexity of the post-processing tasks and the lack of adequate tools for these tasks. Post-processing of 4D flow MRI must be semi-automated, fast, user-independent, robust, and reliably consistent for use in a clinical setting, within large patient studies, or across a multicenter trial. Development of proper post-processing methods coupled with systematic investigation in normal and patient populations pushes 4D flow MRI closer to clinical realization while elucidating potential underlying neuropathological origins. Within this framework, the work in this thesis assesses venous flow reproducibility and internal consistency in a healthy population. A preliminary analysis of venous flow parameters in healthy controls and multiple sclerosis patients is performed in a large study employing 4D flow MRI. These studies are performed in the context of the chronic cerebrospinal venous insufficiency hypothesis. Additionally, a

  5. Building tomorrow's nuclear power plants with 4+D VR technology

    There continues to be an increasing demand of electricity around the globe to fuel the industrial growth and to promote the human welfare. The economic activities have brought about richness in our material and cultural lives, in which process the electric power has been at the heart of the versatile energy sources. In order to timely and competitively respond to rapidly changing energy environment in the twenty-first century there is a growing need to build the advanced nuclear power plants in the unlimited workspace of virtual reality (VR) prior to commissioning. One can then realistically evaluate their construction time and cost per varying methods and options available from the leading-edge technology. In particular a great deal of efforts have yet to be made for time- and cost-dependent plant simulation and dynamically coupled database construction in the VR space. The operator training and personnel education may also benefit from the VR technology. The present work is being proposed in the three-dimensional space and time plus cost coordinates, i. e. four plus dimensional (4+D) coordinates. The 4+D VR application will enable the nuclear industry to narrow the technological gap from the other leading industries that have long since been employing the VR engineering. The 4+D technology will help nurture public understanding of the special discipline of nuclear power plants. The technology will also facilitate public access to the knowledge on the nuclear science and engineering which has so far been monopolized by the academia, national laboratories and the heavy industry. The 4+D virtual design and construction will open up the new horizon for revitalization of the nuclear industry over the globe in the foreseeable future. Considering the long construction and operation time for the nuclear power plants, the preliminary VR simulation capability for the plants will supply the vital information not only for the actual design and construction of the engineered

  6. 4D MR imaging using robust internal respiratory signal

    Hui, CheukKai; Wen, Zhifei; Stemkens, Bjorn; Tijssen, R. H. N.; van den Berg, C. A. T.; Hwang, Ken-Pin; Beddar, Sam

    2016-05-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D.

  7. Integration of Radio—Frequency Identification and 4D CAD in Construction Management

    HU Wenfa

    2008-01-01

    In order to increase the productivity of construction industry,emerging technologies have been constantly introduced and applied in this traditional industry by pilot researchers.This paper provides an in-tegrated model of radio-frequency identification (RFID) and four-dimensional Computer-Aided Design (4D CAD) in construction management.RFID involves the use of tags that collect data and transmit data.RFID can collect data by radio waves instead of light waves.RFID technology is surpassing barcode technology where light waves are easily blocked and barcode labels are easy to fall off or become unreadable due to dust,dirt,or other contaminants.4D CAD which involves 3D construction models and construction sched-ules presents visualized construction process.Integration of RFID and 4D CAD in this paper built a dynamic constmction management and control system which would reduce the time of capturing data on site and control quality of construction materials efficiently.Pilot test result shows that a construction manager can easily understand how and what a complicated construction project will be accomplished.Although further analysis is necessary,RFID and 4D CAD show promises of being a beneficial technology in construction management.

  8. Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations

    M. H. Cole

    2005-01-01

    Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee

  9. Expression of Sema4D in patients with cerebral infarction and its clinical significance

    朱琳

    2012-01-01

    Objective To explore the expression and clinical significance of Semaphorin4D (Sema4D) mRNA in peripheral blood lymphocyte,Sema4D on platelet surface, soluble Sema4D (sSema4D) in plasma in patients with cerebral infarction. Methods Taking 299 patients with cerebral infarction

  10. Impact of incorporating visual biofeedback in 4D MRI.

    To, David T; Kim, Joshua P; Price, Ryan G; Chetty, Indrin J; Glide-Hurst, Carri K

    2016-01-01

    Precise radiation therapy (RT) for abdominal lesions is complicated by respiratory motion and suboptimal soft tissue contrast in 4D CT. 4D MRI offers improved con-trast although long scan times and irregular breathing patterns can be limiting. To address this, visual biofeedback (VBF) was introduced into 4D MRI. Ten volunteers were consented to an IRB-approved protocol. Prospective respiratory-triggered, T2-weighted, coronal 4D MRIs were acquired on an open 1.0T MR-SIM. VBF was integrated using an MR-compatible interactive breath-hold control system. Subjects visually monitored their breathing patterns to stay within predetermined tolerances. 4D MRIs were acquired with and without VBF for 2- and 8-phase acquisitions. Normalized respiratory waveforms were evaluated for scan time, duty cycle (programmed/acquisition time), breathing period, and breathing regularity (end-inhale coefficient of variation, EI-COV). Three reviewers performed image quality assessment to compare artifacts with and without VBF. Respiration-induced liver motion was calculated via centroid difference analysis of end-exhale (EE) and EI liver contours. Incorporating VBF reduced 2-phase acquisition time (4.7 ± 1.0 and 5.4 ± 1.5 min with and without VBF, respectively) while reducing EI-COV by 43.8% ± 16.6%. For 8-phase acquisitions, VBF reduced acquisition time by 1.9 ± 1.6 min and EI-COVs by 38.8% ± 25.7% despite breathing rate remaining similar (11.1 ± 3.8 breaths/min with vs. 10.5 ± 2.9 without). Using VBF yielded higher duty cycles than unguided free breathing (34.4% ± 5.8% vs. 28.1% ± 6.6%, respectively). Image grading showed that out of 40 paired evaluations, 20 cases had equivalent and 17 had improved image quality scores with VBF, particularly for mid-exhale and EI. Increased liver excursion was observed with VBF, where superior-inferior, anterior-posterior, and left-right EE-EI displacements were 14.1± 5.8, 4.9 ± 2.1, and 1.5 ± 1.0 mm, respectively, with VBF compared to 11.9

  11. Potential of 4d-VAR for exigent forecasting of severe weather

    Hoffman, Ross N; Nehrkorn, Thomas

    2011-01-01

    Severe storms, tropical cyclones, and associated tornadoes, floods, lightning, and microbursts threaten life and property. Reliable, precise, and accurate alerts of these phenomena can trigger defensive actions and preparations. However, these crucial weather phenomena are difficult to forecast. The objective of this paper is to demonstrate the potential of 4d-VAR (four dimensional variational data assimilation) for exigent forecasting (XF) of severe storm precursors and to thereby characterize the probability of a worst-case scenario. 4d-VAR is designed to adjust the initial conditions (IC) of a numerical weather prediction model consistent with the uncertainty of the prior estimate of the IC while at the same time minimizing the misfit to available observations. For XF the same approach is taken but instead of fitting observations, a measure of damage or loss or an equivalent proxy is maximized or minimized. To accomplish this will require development of a specialized cost function for 4d-VAR. When 4d-VAR s...

  12. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  13. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Williams, Cameron H.; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  14. A brief review of the 2d/4d correspondences

    Tachikawa, Yuji

    2016-01-01

    An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.

  15. Multireference Character for 4d Transition Metal-Containing Molecules.

    Wang, Jiaqi; Manivasagam, Sivabalan; Wilson, Angela K

    2015-12-01

    Four diagnostic criteria have been examined to identify the suitability of single-reference wave function-based quantum chemistry methods for a set of 118 4d transition metal species. These diagnostics include the weight of the leading configuration of the CASSCF wave function, C0(2); the Frobenius norm of the coupled cluster amplitude vector related to single excitations, T1; the matrix 2-norm of the coupled cluster T1 amplitude vector arising from coupled cluster calculations, D1; and the percent total atomization energy, %TAE, corresponding to a relationship between energies determined with CCSD and CCSD(T) calculations. New criteria, namely, T1 ≥ 0.045, D1 ≥ 0.120, and %TAE ≥ 10%, are herein proposed as a gauge for 4d transition metal-containing molecules to predict the possible need to employ multireference (MR) wave function-based methods to describe energetic and spectroscopic properties. PMID:26642991

  16. Construction Management Utilizing 4D CAD and Operations Simulation Methodologies

    ZHANG Jianping; ZHANG Yang; HU Zhenzhong; LU Ming

    2008-01-01

    The paper presents applications of simplified discrete-event simulation (SDESA), and 4D-GCPSU,to the National Stadium of the Beijing 2008 Olympics. Taking into account influential factors, e.g., resource, spatial condition, and the randomness of the construction process, the installation process of the steel- structure was simulated and optimized by using genetic algorithm (GA) optimization methodology. The op- erations simulation shortened the installation duration by 39 days (about 16% of the original total duration),guided the manufacturers to plan the construction processes, and provided specific suggestions on the en-try time of the installation components, resulting in resource allocation optimization, resource saving, and construction efficiency improvement. Combining with the optimized schedule, the 4D visualization environ- ment can discover time-space conflicts timely, and may assist project managers to reschedule the construc-tion activities in tune with the site layout and resource allocation.

  17. 4D, Script N = 1 supersymmetry genomics (I)

    Gates, S. James, Jr.; Gonzales, James; MacGregor, Boanne; Parker, James; Polo-Sherk, Ruben; Rodgers, Vincent G. J.; Wassink, Luke

    2009-12-01

    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, Script N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, Script N = 1 component descriptions of supermultiplets are associated with two integers (nc, nt) — the numbers of c-V and t-V Adinkras that occur in the representation.

  18. ROER4D Sub-project 1 - Malaysia OER review

    Dhanarajan, Gajaraj; Arinto, Patricia

    2014-01-01

    The ROER4D project endeavours to cover at least three regions in the Global South, namely, South America, Sub-Saharan Africa, and South and South East Asia. However, background information on OER projects, policies and research and information on infrastructural, legal, socio-cultural and/or economic factors that might influence the adoption of OER in post-secondary education in these regions is incomplete despite the work of current projects. The project will provide background information o...

  19. 4d photoabsorption in Te V and Te VI

    The 4d photoabsorption spectra of Cd I-like Te V and the Ag I-like Te VI have been recorded in the 70-102 eV region using the dual-laser plasma technique. Discrete structure due to 4d→6p,nf (4≤n≤8) transitions have been observed in both ion stages. These have been identified with the aid of Hartree-Fock calculations. (author). Letter-to-the-editor

  20. APPLICAZIONI 3D/4D GLOBALI: OLTRE TUTTE LE BARRIERE

    Deiana, Andrea

    2011-01-01

    Le soluzioni SkylineGlobe by Skyline Software Systems, Inc. si propongono come un ambiente utile all’integrazione di dati e sistemi provenienti da diverse piattaforme di ambito territoriale per l’acquisizione, la creazione, l’annotazione, la pubblicazione, l’erogazione, la visualizzazione, l’interrogazione e l’analisi di geodatasets in un ambiente 3D/4D di facile utilizzo, distribuzione e condivisione.

  1. ROER4D Sub-project 1 - India OER review

    Dhanarajan, Gajaraj; Arinto, Patricia

    2014-01-01

    The ROER4D project endeavours to cover at least three regions in the Global South, namely, South America, Sub-Saharan Africa, and South and South East Asia. However, background information on OER projects, policies and research and information on infrastructural, legal, socio-cultural and/or economic factors that might influence the adoption of OER in post-secondary education in these regions is incomplete despite the work of current projects. The project will provide background information o...

  2. Multivariable analysis of 2,4-d herbicide photocatalytic degradation

    LÓPEZ-VÁSQUEZ, ANDRÉS F.; JOSÉ A. COLINA-MÁRQUEZ; Machuca-Martínez, Fiderman

    2011-01-01

    The 2,4-D herbicide degradation of TiO2 suspensions in tap water was evaluated under artificial irradiation conditions. The response surface methodology (RSM) was applied to evaluate the effect of variables such as: catalyst concentration, herbicide concentration, pH, and the volumetric flow on the photocatalytic reaction in two kinds of photoreactors: flat plate and tubular reactor. The response variable was the pesticide mineralization expressed as the total organic carbon (TOC) removal per...

  3. Biomechanics of DNA structures visualized by 4D electron microscopy

    Lorenz, Ulrich J.; Zewail, Ahmed H.

    2013-01-01

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eig...

  4. Immersive 4D Interactive Visualization of Large-Scale Simulations

    Teuben, Peter; Hut, Piet; Levy, Stuart; Makino, Jun; McMillan, Steve; Zwart, Simon Portegies; Shara, Mike; Emmart, Carter

    2001-01-01

    In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1TB. Visualization of such data has now become a complex 4D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator...

  5. Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT

    Bergner, Frank; Berkus, Timo; Oelhafen, Markus; Kunz, Patrik; Pan, Tinsu; Kachelrieß, Marc

    2009-01-01

    Purpose: Kilovoltage cone-beam computed tomography (CBCT) is widely used in image-guided radiation therapy for exact patient positioning prior to the treatment. However, producing time series of volumetric images (4D CBCT) of moving anatomical structures remains challenging. The presented work introduces a novel method, combining high temporal resolution inside anatomical regions with strong motion and image quality improvement in regions with little motion.

  6. 4D remote sensing image coding with JPEG2000

    Muñoz-Gómez, Juan; Bartrina-Rapesta, Joan; Blanes, Ian; Jiménez-Rodríguez, Leandro; Aulí-Llinàs, Francesc; Serra-Sagristà, Joan

    2010-08-01

    Multicomponent data have become popular in several scientific fields such as forest monitoring, environmental studies, or sea water temperature detection. Nowadays, this multicomponent data can be collected more than one time per year for the same region. This generates different instances in time of multicomponent data, also called 4D-Data (1D Temporal + 1D Spectral + 2D Spatial). For multicomponent data, it is important to take into account inter-band redundancy to produce a more compact representation of the image by packing the energy into fewer number of bands, thus enabling a higher compression performance. The principal decorrelators used to compact the inter-band correlation redundancy are the Karhunen Loeve Transform (KLT) and Discrete Wavelet Transform (DWT). Because of the Temporal Dimension added, the inter-band redundancy among different multicomponent images is increased. In this paper we analyze the influence of the Temporal Dimension (TD) and the Spectral Dimension (SD) in 4D-Data in terms of coding performance for JPEG2000, because it has support to apply different decorrelation stages and transforms to the components through the different dimensions. We evaluate the influence to perform different decorrelators techniques to the different dimensions. Also we will assess the performance of the two main decorrelation techniques, KLT and DWT. Experimental results are provided, showing rate-distortion performances encoding 4D-Data using KLT and WT techniques to the different dimensions TD and SD.

  7. High-temperature asymptotics of the 4d superconformal index

    Ardehali, Arash Arabi

    2016-01-01

    The superconformal index of a typical Lagrangian 4d SCFT is given by a special function known as an elliptic hypergeometric integral (EHI). The high-temperature limit of the index corresponds to the hyperbolic limit of the EHI. The hyperbolic limit of certain special EHIs has been analyzed by Eric Rains around 2006; extending Rains's techniques, we discover a surprisingly rich structure in the high-temperature limit of a (rather large) class of EHIs that arise as the superconformal index of unitary Lagrangian 4d SCFTs with non-chiral matter content. Our result has implications for $\\mathcal{N}=1$ dualities, the AdS/CFT correspondence, and supersymmetric gauge dynamics on $R^3\\times S^1$. We also investigate the high-temperature asymptotics of the large-N limit of the superconformal index of a class of holographic 4d SCFTs (described by toric quiver gauge theories with SU(N) nodes). We show that from this study a rather general solution to the problem of holographic Weyl anomaly in AdS$_5$/CFT$_4$ at the suble...

  8. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  9. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil.

    Gonod, Laure Vieublé; Martin-Laurent, Fabrice; Chenu, Claire

    2006-12-01

    The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D. PMID:17117994

  10. 4D numerical observer for lesion detection in respiratory-gated PET

    Lorsakul, Auranuch [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Biomedical Engineering, Columbia University, New York, New York 10027 (United States); Li, Quanzheng; Ouyang, Jinsong; El Fakhri, Georges, E-mail: elfakhri@pet.mgh.harvard.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Trott, Cathryn M. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia and ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Redfem, NSW 2016 (Australia); Hoog, Christopher; Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Laine, Andrew F. [Department of Biomedical Engineering, Columbia University, New York, New York 10027 (United States)

    2014-10-15

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated using a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was

  11. A Candidate for Renormalizable and Diffeomorphism Invariant 4D Quantum Theory of Gravity

    Hamada, Ken-ji

    1999-01-01

    We present evidence that there is a 4D model that satisfies the conditions of renormalizability and diffeomorphism invariance simultaneously at the 2-loop level. The traceless mode is treated perturbatively, while the conformal mode can be managed exactly. The two conditions constrain the theory strongly and determine the measure of the gravitational field uniquely. Quantum corrections of the cosmological constant are computed in part to 3-loop diagrams. The method to remove the negative-metr...

  12. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    McGarrie, Moritz

    2013-03-15

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  13. Numerical evidence for a phase transition in 4d spin foam quantum gravity

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-01-01

    Building on recent advances in defining Wilsonian RG flows, and in particular the notion of scales, for background-independent theories, we present a first investigation of the renormalization of the 4d spin foam path integral for quantum gravity, both analytically and numerically. Focussing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different obser...

  14. ULTRASSONOGRAFIA GESTACIONAL 3D/4D EM PEQUENOS ANIMAIS

    Guilherme Fazan Rossi

    2015-06-01

    Full Text Available Esta revisión tiene como objetivo describir el uso actual de la ecografía tridimensional (3D/4D en obstetricia veterinários del pequeños animales. La ecografía tridimensional surgió en la década de 1950 y comenzó a tener una aplicación más amplia en las áreas de obstetricia y ginecología a principios de 1980. Esta técnica facilita 3D estudio volumétrico de ultrasonidos de órganos y las estructuras y permitir tercera plano de la imagen (plano coronal permite el cálculo volumétrico con mayor precisión, especialmente aquellos cuerpos de forma irregular. El método 4D se utiliza para evaluar las estructuras y funciones a través de la imagen de correlación espacio-temporal. Aun siendo una técnica disponible para más de 30 años en la medicina humana, en los estudios de veterinaria son necesarios para demostrar reciente y la especificidad y la sensibilidad de la técnica en la rutina de ultrasonido obstétrico de animales pequeños. A presente revisão tem por objetivo descrever as atuais utilizações da ultrassonografia tridimensional (US 3D/4D em obstetrícia veterinária de pequenos animais. A ultrassonografia tridimensional surgiu na década de 1950 e começou a ter maior aplicabilidade nas áreas de obstetrícia e ginecologia no início dos anos 1980. Essa técnica ultrassonográfica 3D facilita o estudo volumétrico de órgãos e estruturas e por permitir um terceiro plano da imagem (plano coronal possibilita o cálculo volumétrico mais precisamente, principalmente aqueles órgãos com formato irregular. A modalidade 4D é utilizada na avaliação de estruturas e funções via correlação imagem espaçotemporal. Mesmo sendo uma técnica disponível há mais de 30 anos em medicina humana, na veterinária os estudos são recentes e necessários para demonstrar a especificidade e sensibilidade da técnica ultrassonográfica na rotina da obstetrícia de pequenos animais. This review aims to describe the current use of three

  15. A 4D treatment planning tool for the evaluation of motion effects on lung cancer treatments

    In this study, a 4D treatment planning tool using an analytical model accounting for breathing motion is investigated to evaluate the motion effect on delivered dose for lung cancer treatments with three-dimensional conformal radiotherapy (3DCRT). The Monte Carlo EGS4/MCDOSE user code is used in the treatment planning dose calculation, and the patient CT data are converted into respective patient geometry files for Monte Carlo dose calculation. The model interpolates CT images at different phases of the breathing cycle from patient CT scans taken at end inspiration and end expiration phases and the chest wall position. Correlation between the voxels in a reference CT dataset and the voxels in the interpolated CT datasets at any breathing phases is established so that the dose to a voxel can be accumulated through the entire breathing cycle. Simulated lung tumors at different locations are used to demonstrate our model in 3DCRT for lung cancer treatments. We demonstrated the use of a 4D treatment planning tool in evaluating the breathing motion effect on delivered dose for different planning margins. Further studies are being conducted to use this tool to study the lung motion effect through large-scale analysis and to implement this useful tool for treatment planning dose calculation and plan evaluation for 4D radiotherapy

  16. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phase sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase

  17. 4D Proton treatment planning strategy for mobile lung tumors

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVERIGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVERIGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVERIGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  18. 4D seismic data acquisition method during coal mining

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  19. Non-spherical particle generation from 4D optofluidic fabrication.

    Paulsen, Kevin S; Chung, Aram J

    2016-08-01

    Particles with non-spherical shapes can exhibit properties which are not available from spherical shaped particles. Complex shaped particles can provide unique benefits for areas such as drug delivery, tissue engineering, structural materials, and self-assembly building blocks. Current methods of creating complex shaped particles such as 3D printing, photolithography, and imprint lithography are limited by either slow speeds, shape limitations, or expensive processes. Previously, we presented a novel microfluidic flow lithography fabrication scheme combined with fluid inertia called optofluidic fabrication for the creation of complex shaped three-dimensional (3D) particles. This process was able to address the aforementioned limits and overcome two-dimensional shape limitations faced by traditional flow lithography methods; however, all of the created 3D particle shapes displayed top-down symmetry. Here, by introducing the time dimension into our existing optofluidic fabrication process, we break this top-down symmetry, generating fully asymmetric 3D particles where we termed the process: four-dimensional (4D) optofluidic fabrication. This 4D optofluidic fabrication is comprised of three sequential procedures. First, density mismatched precursor fluids flow past pillars within fluidic channels to manipulate the flow cross sections via fluid inertia. Next, the time dimension is incorporated by stopping the flow and allowing the denser fluids to settle by gravity to create asymmetric flow cross sections. Finally, the fluids are exposed to patterned ultraviolet (UV) light in order to polymerize fully asymmetric 3D-shaped particles. By varying inertial flow shaping, gravity-induced flow shaping, and UV light patterns, 4D optofluidic fabrication can create an infinite set of complex shaped asymmetric particles. PMID:27092661

  20. 4D micro-CT using fast prospective gating

    Guo, Xiaolian; Johnston, Samuel M.; Qi, Yi; Johnson, G. Allan; Badea, Cristian T.

    2012-01-01

    Micro-CT is currently used in preclinical studies to provide anatomical information. But, there is also significant interest in using this technology to obtain functional information. We report here a new sampling strategy for 4D micro-CT for functional cardiac and pulmonary imaging. Rapid scanning of free-breathing mice is achieved with fast prospective gating (FPG) implemented on a field programmable gate array. The method entails on-the-fly computation of delays from the R peaks of the ECG signals or the peaks of the respiratory signals for the triggering pulses. Projection images are acquired for all cardiac or respiratory phases at each angle before rotating to the next angle. FPG can deliver the faster scan time of retrospective gating (RG) with the regular angular distribution of conventional prospective gating for cardiac or respiratory gating. Simultaneous cardio-respiratory gating is also possible with FPG in a hybrid retrospective/prospective approach. We have performed phantom experiments to validate the new sampling protocol and compared the results from FPG and RG in cardiac imaging of a mouse. Additionally, we have evaluated the utility of incorporating respiratory information in 4D cardiac micro-CT studies with FPG. A dual-source micro-CT system was used for image acquisition with pulsed x-ray exposures (80 kVp, 100 mA, 10 ms). The cardiac micro-CT protocol involves the use of a liposomal blood pool contrast agent containing 123 mg I ml-1 delivered via a tail vein catheter in a dose of 0.01 ml g-1 body weight. The phantom experiment demonstrates that FPG can distinguish the successive phases of phantom motion with minimal motion blur, and the animal study demonstrates that respiratory FPG can distinguish inspiration and expiration. 4D cardiac micro-CT imaging with FPG provides image quality superior to RG at an isotropic voxel size of 88 µm and 10 ms temporal resolution. The acquisition time for either sampling approach is less than 5 min. The

  1. Exploring the Minimal 4D $\\mathcal{N}=1$ SCFT

    Poland, David

    2015-01-01

    We study the conformal bootstrap constraints for 4D $\\mathcal{N}=1$ superconformal field theories containing a chiral operator $\\phi$ and the chiral ring relation $\\phi^2=0$. Hints for a minimal interacting SCFT in this class have appeared in previous numerical bootstrap studies. We perform a detailed study of the properties of this conjectured theory, establishing that the corresponding solution to the bootstrap constraints contains a $\\text{U}(1)_R$ current multiplet and estimating the central charge and low-lying operator spectrum of this theory.

  2. MULTIVARIABLE ANALYSIS OF 2,4-D HERBICIDE PHOTOCATALYTIC DEGRADATION

    LÓPEZ-VÁSQUEZ, ANDRÉS F.; COLINA-MÁRQUEZ, JOSÉ A.; FIDERMAN MACHUCA-MARTÍNEZ

    2011-01-01

    La degradación del herbicida 2,4-D en suspensiones de TiO2 en agua real fue evaluada bajo condiciones de irradiación artificial. El análisis multivariable de metodología de superficie de respuesta (MSR), se aplicó para evaluar el efecto de variables como la concentración de catalizador y pesticida, el pH y el caudal volumétrico sobre la reacción fotocatalítica en dos fotorreactores catalíticos: placa plana y tubular. La variable de respuesta fue la mineralización del pesticida expresada como ...

  3. Beyond ICT4D: New Media in Uganda

    Lovink, G.W.

    2011-01-01

    This research project aims to pick up where Incommunicado left off, to look past conferences organized in the West, the debates sponsored by western organizations, and to instead look through the lens of the individual end users on the ground. This project aims to embed itself amongst the people living at the ‘bottom of the ICT pyramid’ and to look at the same discussion from their perspective. It is this ‘other’ point of view that is too often missing in the ICT4D debate, otherwise a valuabl...

  4. Magnetic Mass in 4D AdS Gravity

    Araneda, Rene; Miskovic, Olivera; Olea, Rodrigo

    2016-01-01

    We provide a fully-covariant expression for the diffeomorphic charge in 4D anti-de Sitter gravity, when the Gauss-Bonnet and Pontryagin terms are added to the action. The couplings of these topological invariants are such that the Weyl tensor and its dual appear in the on-shell variation of the action, and such that the action is stationary for asymptotic (anti) self-dual solutions in the Weyl tensor. In analogy with Euclidean electromagnetism, whenever the self-duality condition is global, both the action and the total charge are identically vanishing. Therefore, for such configurations the magnetic mass equals the Ashtekhar-Magnon-Das definition.

  5. Contextualised ICT4D: a Bottom-Up Approach

    Lund, Henrik Hautop; Sutinen, Erkki

    2010-01-01

    their own strengths to new levels by designing appropriate technologies with experts of technology and design. The bottomup approach requires a new kind of ICT education at the undergraduate level. An example of the development of a contextualized IT degree program at Tumaini University in Tanzania......The term ICT4D refers to the opportunities of Information and Communication Technology (ICT) as an agent of development. Much of the research in the field is based on evaluating the feasibility of existing technologies, mostly of Western or Asian origin, in the context of developing countries. In a...

  6. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  7. Positive Energy Conditions in 4D Conformal Field Theory

    Farnsworth, Kara; Prilepina, Valentina

    2015-01-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality $\\langle T^{00} \\rangle \\ge -C/L^4$, where $L$ is the size of the smearing region, and $C$ is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarka...

  8. Positive Energy Conditions in 4D Conformal Field Theory

    Farnsworth, Kara; Luty, Markus; Prilepina, Valentina

    2016-03-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  9. Perspective: 4D ultrafast electron microscopy—Evolutions and revolutions

    Shorokhov, Dmitry; Zewail, Ahmed H.

    2016-02-01

    In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook.

  10. Development of a 4D numerical chest phantom with customizable breathing.

    Leni, Pierre-Emmanuel; Laurent, Rémy; Salomon, Michel; Gschwind, Régine; Makovicka, Libor; Henriet, Julien

    2016-06-01

    Respiratory movement information is useful for radiation therapy, and is generally obtained using 4D scanners (4DCT). In the interest of patient safety, reducing the use of 4DCT could be a significant step in reducing radiation exposure, the effects of which are not well documented. The authors propose a customized 4D numerical phantom representing the organ contours. Firstly, breathing movement can be simulated and customized according to the patient's anthroporadiametric data. Using learning sets constituted by 4D scanners, artificial neural networks can be trained to interpolate the lung contours corresponding to an unknown patient, and then to simulate its respiration. Lung movement during the breathing cycle is modeled by predicting the lung contours at any respiratory phases. The interpolation is validated comparing the obtained lung contours with 4DCT via Dice coefficient. Secondly, a preliminary study of cardiac and œsophageal motion is also presented to demonstrate the flexibility of this approach. The application may simulate the position and volume of the lungs, the œsophagus and the heart at every phase of the respiratory cycle with a good accuracy: the validation of the lung modeling gives a Dice index greater than 0.93 with 4DCT over a breath cycle. PMID:27184332

  11. 4D Cities: Analyzing, Visualizing, and Interacting with Historical Urban Photo Collections

    Grant Schindler

    2012-04-01

    Full Text Available Vast collections of historical photographs are being digitally archived and placed online, providing an objective record of the last two centuries that remains largely untapped. In this work, we propose that time-varying 3D models can pull together and index large collections of images while also serving as a tool of historical discovery, revealing new information about the locations, dates, and contents of historical images. In particular, we use computer vision techniques to tie together large sets of historical photographs of a given city into a consistent 4D model of the city: a 3D model with time as an additional dimension.

  12. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  13. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes. (paper)

  14. Scientific Subsurface data for EPOS - integration of 3D and 4D data services

    Kerschke, Dorit; Hammitzsch, Martin; Wächter, Joachim

    2016-04-01

    The provision of efficient and easy access to scientific subsurface data sets obtained from field studies and scientific observatories or by geological 3D/4D-modeling is an important contribution to modern research infrastructures as they can facilitate the integrated analysis and evaluation as well as the exchange of scientific data. Within the project EPOS - European Plate Observing System, access to 3D and 4D data sets will be provided by 'WP15 - Geological information and modeling' and include structural geology models as well as numerical models, e.g., temperature, aquifers, and velocity. This also includes validated raw data, e.g., seismic profiles, from which the models where derived. All these datasets are of high quality and of unique scientific value as the process of modeling is time and cost intensive. However, these models are currently not easily accessible for the wider scientific community, much less to the public. For the provision of these data sets a data management platform based on common and standardized data models, protocols, and encodings as well as on a predominant use of Free and Open Source Software (FOSS) has been devised. The interoperability for disciplinary and domain applications thus highly depends on the adoption of generally agreed technologies and standards (OGC, ISO…) originating from Spatial Data Infrastructure related efforts (e.g., INSPIRE). However, since not many standards for 3D and 4D geological data exists, this work also includes new approaches for project data management, interfaces for tools used by the researchers, and interfaces for the sharing and reusing of data.

  15. Second to fourth digit ratio (2D:4D and concentrations of circulating sex hormones in adulthood

    Morris Howard A

    2011-04-01

    Full Text Available Abstract Background The second to fourth digit ratio (2D:4D is used as a marker of prenatal sex hormone exposure. The objective of this study was to examine whether circulating concentrations of sex hormones and SHBG measured in adulthood was associated with 2D:4D. Methods This analysis was based on a random sample from the Melbourne Collaborative Cohort Study. The sample consisted of of 1036 men and 620 post-menopausal women aged between 39 and 70 at the time of blood draw. Concentrations of circulating sex hormones were measured from plasma collected at baseline (1990-1994, while digit length was measured from hand photocopies taken during a recent follow-up (2003-2009. The outcome measures were circulating concentrations of testosterone, oestradiol, dehydroepiandrosterone sulphate, androstenedione, Sex Hormone Binding Globulin, androstenediol glucoronide for men only and oestrone sulphate for women only. Free testosterone and oestradiol were estimated using standard formulae derived empirically. Predicted geometric mean hormone concentrations (for tertiles of 2D:4D and conditional correlation coefficients (for continuous 2D:4D were obtained using mixed effects linear regression models. Results No strong associations were observed between 2D:4D measures and circulating concentrations of hormones for men or women. For males, right 2D:4D was weakly inversely associated with circulating testosterone (predicted geometric mean testosterone was 15.9 and 15.0 nmol/L for the lowest and highest tertiles of male right 2D:4D respectively (P-trend = 0.04. There was a similar weak association between male right 2D:4D and the ratio of testosterone to oestradiol. These associations were not evident in analyses of continuous 2D:4D. Conclusions There were no strong associations between any adult circulating concentration of sex hormone or SHGB and 2D:4D. These results contribute to the growing body of evidence indicating that 2D:4D is unrelated to adult sex

  16. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan

    the amplitude). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this mid-position model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signal. (paper)

  17. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a “snap-shot” of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  18. Vertex Operators in 4D Quantum Gravity formulated as CFT

    Hamada, Ken-ji

    2010-01-01

    We study vertex operators in 4D conformal field theory derived from quantized gravity, whose dynamics is governed by the Weyl action and the Wess-Zumino action by Riegert. Conformal symmetry is equal to gauge symmetry of diffeomorphism, which mixes positive-metric and negative-metric modes of the gravitational field and thus these modes cannot be treated separately in physical operators. We explicitly construct gravitational vertex operators of the cosmological constant and the Ricci scalar, which are defined as space-time volume integrals of them are invariant under conformal transformations. Short distance singularities of these operator products are computed and it is shown that their coefficients have physically correct sign. Furthermore, we show that conformal algebra holds even in the system perturbed by the cosmological constant vertex operator, as in the case of the Liouville theory shown by Curtright and Thorn.

  19. Biomechanics of DNA structures visualized by 4D electron microscopy.

    Lorenz, Ulrich J; Zewail, Ahmed H

    2013-02-19

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective "nano-cutting" at a given point in the network, it was possible to obtain Young's modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis. PMID:23382239

  20. Immersive 4D Interactive Visualization of Large-Scale Simulations

    Teuben, P; Levy, S; Makino, J; McMillan, S; Zwart, S P; Shara, M M; Emmart, C; Teuben, Peter; Hut, Piet; Levy, Stuart; Makino, Jun; Millan, Steve Mc; Zwart, Simon Portegies; Shara, Mike; Emmart, Carter

    2001-01-01

    In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1TB. Visualization of such data has now become a complex 4D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator, installed in the Hayden Planetarium in the American Museum for Natural History, to tackle some of these problem. This work (http://www.astro.umd.edu/nemo/amnh/) reports on our first ``observations'', modifications needed for our specific experiments, and perhaps field ideas for other fields in science which can benefit from such immersion. We also discuss how our normal analysis programs can be interfaced with this kind of visualization.

  1. Immersive 4-D Interactive Visualization of Large-Scale Simulations

    Teuben, P. J.; Hut, P.; Levy, S.; Makino, J.; McMillan, S.; Portegies Zwart, S.; Shara, M.; Emmart, C.

    In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1 TB. Visualization of such data has now become a complex 4-D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator, installed in the Hayden Planetarium in the American Museum for Natural History, to tackle some of these problem. This work reports on our first ``observations,'' modifications needed for our specific experiments, and perhaps field ideas for other fields in science which can benefit from such immersion. We also discuss how our normal analysis programs can be interfaced with this kind of visualization.

  2. Towards 4D intervention guidance using compressed sensing

    Interventional radiology is nowadays usually guided with projection radiography using mono- or biplane systems. Due to the projective nature of this guidance imaging certain intraprocedural situations remain unclear. Although helpful, the use of 3D CT is limited due to radiation dose. Using advanced reconstruction techniques incorporating prior knowledge, one could overcome these limitations without exceeding dose limitations. Intervention guidance is especially appealing to those algorithms, because certain constrains apply to useful images in intervention guidance that vary relevantly from other CT applications. These are: key relevance of high contrast structures, sparse temporal updates and little relevance of absolute CT values. In this paper the principal usability of reconstruction algorithms for intervention guidance is tested. Compressed sensing algorithms PICCS and ASD-POCS are compared to the McKinnon-Bates and Feldkamp-Davis-Kress algorithm. Animal experiments as well as simulations are performed. An outlook towards 4D intervention guidance is provided. (orig.)

  3. Seeing the unseen-bioturbation in 4D

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane;

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and...... behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images...... provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive...

  4. 4D ultrasound and 3D MRI registration of beating heart

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  5. Parallel Wavefront Analysis for a 4D Interferometer

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  6. Fully 3D PET image reconstruction with a 4D sinogram blurring kernel

    Tohme, Michel S.; Qi, Jinyi [California Univ., Davis, CA (United States). Dept. of Biomedical Engineering; Zhou, Jian

    2011-07-01

    Accurately modeling PET system response is essential for high-resolution image reconstruction. Traditionally, sinogram blurring effects are modeled as a 2D blur in each sinogram plane. Such 2D blurring kernel is insufficient for fully 3D PET data, which has four dimensions. In this paper, we implement a fully 3D PET image reconstruction using a 4D sinogram blurring kernel estimated from point source scans and perform phantom experiments to evaluate the improvements in image quality over methods with existing 2D blurring kernels. The results show that the proposed reconstruction method can achieve better spatial resolution and contrast recovery than existing methods. (orig.)

  7. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm3. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm3) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target-stretching, partial

  8. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development

    Lyons Deirdre C

    2012-09-01

    Full Text Available Abstract Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage, and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise

  9. A 4D-variational ocean data assimilation application for Santos Basin, Brazil

    da Rocha Fragoso, Mauricio; de Carvalho, Gabriel Vieira; Soares, Felipe Lobo Mendes; Faller, Daiane Gracieli; de Freitas Assad, Luiz Paulo; Toste, Raquel; Sancho, Lívia Maria Barbosa; Passos, Elisa Nóbrega; Böck, Carina Stefoni; Reis, Bruna; Landau, Luiz; Arango, Hernan G.; Moore, Andrew M.

    2016-03-01

    Aiming to achieve systematic ocean forecasting for the southeastern Brazilian coast, an incremental 4D-Var data assimilation system is applied to a regional ocean model focused mainly in the Santos Basin region. This implementation is performed within the scope of The Santos Basin Ocean Observing System (or Project Azul), a pilot project designed to collect oceanographic data with enough frequency and spatial coverage so to improve regional forecasts through data assimilation. The ocean modeling and data assimilation system of Project Azul is performed with the Regional Ocean Modeling System (ROMS). The observations used in the assimilation cycles include the following: 1-day gridded, 0.1° resolution SST from POES AVHRR; 1-day gridded, 0.3° composite of the MDT SSH from AVISO; and surface and subsurface hydrographic measurements of temperature and salinity collected with gliders and ARGO floats from Project Azul and from UK Met-Office EN3 project dataset. The assimilative model results are compared to forward model results and independent observations, both from remote sensing and in situ sources. The results clearly show that 4D-Var data assimilation leads to an improvement in the skill of ocean hindcast in the studied region.

  10. SEVIRI 4D-var assimilation analysing the April 2010 Eyjafjallajökull ash dispersion

    Lange, Anne Caroline; Elbern, Hendrik

    2016-04-01

    We present first results of four dimensional variational (4D-var) data assimilation analysis applying SEVIRI observations to the Eulerian regional chemistry and aerosol transport model EURAD-IM (European Air Pollution Dispersion - Inverse Model). Optimising atmospheric dispersion models in terms of volcanic ash transport predictions by observations is especially essential for the aviation industry and associated interests. Remote sensing satellite observations are instrumental for ash detection and monitoring. We choose volcanic ash column retrievals of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) because as infrared instrument on the geostationary satellite Meteosat Second Generation it delivers measurements with high temporal resolution during day and night. The retrieval method relies on the reverse absorption effect. In the framework of the national initiative ESKP (Earth System Knowledge Platform) and the European ACTRIS-2 (Aerosol, Clouds, and Trace gases Research InfraStructure) project, we developed new modules (forward and adjoint) within the EURAD-IM, which are able to process SEVIRI ash column data as observational input to the 4D-var system. The focus of the 4D-var analysis is on initial value optimisation of the volcanic ash clouds that were emitted during the explosive Eyjafjallajökull eruption in April 2010. This eruption caused high public interest because of air traffic closures and it was particularly well observed from many different observation systems all over Europe. Considering multiple observation periods simultaneously in one assimilation window generates a continuous trajectory in the phase space and ensures that past observations are considered within their uncertainties. Results are validated mainly by lidar (LIght Detection And Ranging) observations, both ground and satellite based.

  11. Control of glyphosate resistant hairy fleabane (Conyza bonariensis) with dicamba and 2,4-D Controle de buva (Conyza bonariensis) resistente ao glyphosate com dicamba e 2,4-D

    D.J. Soares; Oliveira, W. S.; R.F. López-Ovejero; P.J. Christoffoleti

    2012-01-01

    Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosa...

  12. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-08-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

  13. Multimaterial 4D Printing with Tailorable Shape Memory Polymers.

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K; Fang, Nicholas X; Dunn, Martin L

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  14. 2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis

    Eyer, Luděk; Vain, Thomas; Pařízková, Barbora; Oklestkova, Jana; Barbez, Elke; Kozubíková, Hana; Pospíšil, Tomáš; Wierzbicka, Roksana; Kleine-Vehn, Jürgen; Fránek, Milan; Strnad, Miroslav; Robert, Stéphanie

    2016-01-01

    The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development. PMID:27434212

  15. 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field

    In this paper, we present a new method to perform 3D tomographic reconstruction of coronary arteries from cone-beam rotational x-ray angiography acquisitions. We take advantage of the precomputation of the coronary artery motion, modelled as a parametric 4D motion field. Contrary to data gating or data triggering approaches, we homogeneously use all available frames, independently of the cardiac phase. In addition, we artificially subtract angiograms from their background structures. Our method significantly improves the reconstruction, by removing both motion and background artefacts. We have successfully tested it on the datasets from a synthetic phantom and 10 patients

  16. BRST Invariant Higher Derivative Operators in 4D Quantum Gravity based on CFT

    Hamada, Ken-ji

    2012-01-01

    We continue the study of physical fields for the background free 4D quantum gravity based on the Riegert-Wess-Zumino action, developed in Phys. Rev. D {\\bf 85} (2012) 024028. The background free model is formulated in terms of a certain conformal field theory on M^4 in which conformal symmetry arises as gauge symmetry, namely diffeomorphism invariance. In this paper, we construct the physical field operator corresponding to any integer power of Ricci scalar curvature in the context of the BRST quantization. We also discuss how to define the correlation function and its physical meanings.

  17. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ∼40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry. (paper)

  18. SU-E-J-148: Tools for Development of 4D Proton CT

    Dou, T [University of California, Los Angeles, Los Angeles, CA (United States); Ramos-Mendez, J [University of California San Francisco, San Francisco, CA (United States); Piersimoni, P [Loma Linda University, Loma Linda, CA (United States); Giacometti, V [Center for Medical Radiation Physics, University of Wollongong, Sydney, NSW (Australia); Penfold, S [University of Adelaide, Adelaide, SA (Australia); Censor, Y [University of Haifa, Haifa (Israel); Faddegon, B [UC San Francisco, San Francisco, CA (United States); Low, D [Deparment of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States); Schulte, R [Loma Linda Univ. Medical Ctr., Loma Linda, CA (United States)

    2015-06-15

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  19. SU-E-J-148: Tools for Development of 4D Proton CT

    Purpose: To develop tools for performing 4D proton computed tomography (CT). Methods: A suitable patient with a tumor in the right lower lobe was selected from a set of 4D CT scans. The volumetric CT images formed the basis for calculating the parameters of a breathing model that allows reconstruction of a static reference CT and CT images in each breathing phase. The images were imported into the TOPAS Monte Carlo simulation platform for simulating an experimental proton CT scan with 45 projections spaced by 4 degree intervals. Each projection acquired data for 2 seconds followed by a gantry rotation for 2 seconds without acquisition. The scan covered 180 degrees with individual protons passing through a 9-cm slab of the patient’s lung covering the moving tumor. An initial proton energy sufficient for penetrating the patient from all directions was determined. Performing the proton CT simulation, TOPAS provided output of the proton energy and coordinates registered in two planes before and after the patient, respectively. The set of projection data was then used with an iterative reconstruction algorithm to generate a volumetric proton CT image set of the static reference image and the image obtained under breathing motion, respectively. Results: An initial proton energy of 230 MeV was found to be sufficient, while for an initial energy of 200 MeV a substantial number of protons did not penetrate the patient. The reconstruction of the static reference image set provided sufficient detail for treatment planning. Conclusion: We have developed tools to perform studies of proton CT in the presence of lung motion based on the TOPAS simulation toolkit. This will allow to optimize 4D reconstruction algorithms by synchronizing the acquired proton CT data with a breathing signal and utilizing a breathing model obtained prior to the proton CT scan. This research has been supported by the National Institute Of Biomedical Imaging And Bioengineering of the National

  20. 32 CFR 1630.43 - Class 4-D: Minister of religion.

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-D: Minister of religion. 1630.43 Section... CLASSIFICATION RULES § 1630.43 Class 4-D: Minister of religion. In accord with part 1645 of this chapter any registrant shall be placed in Class 4-D who is a: (a) Duly ordained minister of religion; or (b)...

  1. Lung 4D-IMRT treatment planning: An evaluation of three methods applied to four-dimensional data sets

    Purpose: To compare 4D-dose distributions for IMRT planning on three data sets: a single 4D-CT phase, a 4D-CT phase with a density override to the tumor motion envelope (TME) volume, and the average intensity projection (AIP). Methods: Eight planning cases were considered. IMRT inverse planning optimization was performed on each of the three data set types, for each case considered. The plans were then applied to all ten phases of the associated 4D-CT data set. The dose to the GTV in each breathing phase was compared to the TME dose from the optimized dose distribution, as well as the GTV dose determined from a model-based deformable registration algorithm. Results: IMRT optimization on a single 3D data set resulted in a greater equivalent uniform dose (EUD) to the GTV when applied to a 4D-CT data set than the EUD for the TME in the optimized plan. The difference was up to 5.5 Gy in one case. For all cases and planning techniques considered, a maximum difference of 0.3 Gy in the NTDmean to the healthy lung throughout the breathing cycle was found. Conclusions: For tumors located in the periphery of the lung, optimization on the AIP image resulted in a more uniform GTV dose throughout the breathing cycle. Averages in GTV EUD and healthy lung NTDmean taken over all the breathing phases were found to be in agreement with the dose effect parameters obtained from model-based deformable registration algorithms. All planning methods yielded GTV EUD values that were larger than the prescribed dose when the full 4D data set was considered

  2. A set of 4D pediatric XCAT reference phantoms for multimodality research

    Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Minhas, Anum; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  3. A set of 4D pediatric XCAT reference phantoms for multimodality research

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  4. A reduced-order strategy for 4D-Var data assimilation

    Robert, Céline; Blayo, Eric; Verron, Jacques; Blum, Jacques; Dimet, François-Xavier Le

    2005-01-01

    This paper presents a reduced-order approach for four-dimensional variational data assimilation, based on a prior EO F analysis of a model trajectory. This method implies two main advantages: a natural model-based definition of a mul tivariate background error covariance matrix $\\textbf{B}_r$, and an important decrease of the computational burden o f the method, due to the drastic reduction of the dimension of the control space. % An illustration of the feasibility and the effectiveness of this method is given in the academic framework of twin experiments for a model of the equatorial Pacific ocean. It is shown that the multivariate aspect of $\\textbf{B}_r$ brings additional information which substantially improves the identification procedure. Moreover the computational cost can be decreased by one order of magnitude with regard to the full-space 4D-Var method.

  5. 4+D TechnologyTM for nuclear systems soft solutions

    The signature in the proposal lies with the NSSS (Nuclear Systems Soft Solutions). NSSS proposed in the 3-dimensional space and time plus cost coordinates, i.e. 4+ dimensional technology, is the backbone of digital engineering in the nuclear system design and management. The NSSS is empowered by Janus (Junctional Analysis Neo dynamic Unit Soft Power), NOTUS (Neo systemic Optimization Technical Unit Soft Power), Venus (Virtual Engineering Neo cybernetic Unit Soft Power), EURUS (Engineering Utilities Research Unit Soft Power) and INUUS (Informative Neo graphic Utilities Unit Soft Power). Janus extracts the geometric data directly from the computer-aided design CAD files to import to multidimensional computational fluid and structural dynamics codes. Janus uses the joint-CAD analysis methods to eliminate the necessity of any pre- and post- processors. Starting from the 3-dimensional CAD, NOTUS contributes to reducing the construction cost of the nuclear power plants by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3-dimensional visualization of construction processes and resulting products intrinsically afford most of the advantages realized by the 4+D technology. Problems with equipment positioning and manpower congestion in certain areas can readily be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in productivity. Venus applied the virtual reality technology in nuclear industry. Virtual reality provides an interactive real time motion with sound and tactile and other forms of feedback. The management and workers can thus comprehend the work process crystal clear by visualizing precisely how activities relate to one another, whereby reducing conflicting interpretations

  6. Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils.

    Ka, J O; Holben, W E; Tiedje, J M

    1994-01-01

    Forty-seven numerically dominant 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria were isolated at different times from 1989 through 1992 from eight agricultural plots (3.6 by 9.1 m) which were either not treated with 2,4-D or treated with 2,4-D at three different concentrations. Isolates were obtained from the most dilute positive most-probable-number tubes inoculated with soil samples from the different plots on seven sampling dates over the 3-year period. The isolates were compare...

  7. Overview of 4D Printing Technology%四维打印技术概述

    邵文; 邢明浩

    2014-01-01

    4D printing is a technology which adding one-dimensional time element on the basis of 3 D printing. People can set models and time by software, thus modified materials shape in set time. Relative to the 3D printing, 4D printing is more intel igent, because the materials could be assembly by itself, which has the advantages of economic, efficient and direct.%四维打印技术是在三维打印技术的基础上增加一维时间元素,人们可以通过软件设定模型和时间,变形材料会在设定的时间内折叠为所需的形状。相对于三维打印技术,四维打印技术更加“智能”,物料可自行组装,具有经济、高效、直接的优点。文章对这项新技术的相关名词、技术要点以及应用前景进行了简要介绍。

  8. Multiyear climate prediction with initialization based on 4D-Var data assimilation

    Mochizuki, Takashi; Masuda, Shuhei; Ishikawa, Yoichi; Awaji, Toshiyuki

    2016-04-01

    An initialization relevant to interannual-to-decadal climate prediction has usually used a simple restoring approach for oceanic variables. Here we demonstrate the potential use of four-dimensional variational (4D-Var) data assimilation on the leading edge of initialization approach particularly in multiyear (5 year long) climate prediction. We perform full-field initialization rather than anomaly initialization and assimilate the atmosphere states together with the ocean states to an atmosphere-ocean coupled climate model. In particular, it is noteworthy that ensembles of multiyear hindcasts using our assimilation results as initial conditions exhibit an improved skill in hindcasting the multiyear changes of the upper ocean heat content (OHC) over the central North Pacific. The 4D-Var approach enables us to directly assimilate a time trajectory of slow changes of the Aleutian Low that are compatible with the sea surface height and the OHC. Consequently, we can estimate a coupled climate state suitable for hindcasting dynamical changes over the extratropical North Pacific as observed.

  9. Overview of 4D Printing Technology%四维打印技术概述

    邵文; 邢明浩

    2014-01-01

    四维打印技术是在三维打印技术的基础上增加一维时间元素,人们可以通过软件设定模型和时间,变形材料会在设定的时间内折叠为所需的形状。相对于三维打印技术,四维打印技术更加“智能”,物料可自行组装,具有经济、高效、直接的优点。文章对这项新技术的相关名词、技术要点以及应用前景进行了简要介绍。%4D printing is a technology which adding one-dimensional time element on the basis of 3 D printing. People can set models and time by software, thus modified materials shape in set time. Relative to the 3D printing, 4D printing is more intel igent, because the materials could be assembly by itself, which has the advantages of economic, efficient and direct.

  10. $\\theta$ dependence of 4D $SU(N)$ gauge theories in the large-$N$ limit

    Bonati, Claudio; Rossi, Paolo; Vicari, Ettore

    2016-01-01

    We study the large-$N$ scaling behavior of the $\\theta$ dependence of the ground-state energy density $E(\\theta)$ of four-dimensional (4D) $SU(N)$ gauge theories and two-dimensional (2D) $CP^{N-1}$ models, where $\\theta$ is the parameter associated with the Lagrangian topological term. We consider its $\\theta$ expansion around $\\theta=0$, $E(\\theta)-E(0) = {1\\over 2}\\chi \\,\\theta^2 ( 1 + b_2 \\theta^2 + b_4\\theta^4 +\\cdots)$ where $\\chi$ is the topological susceptibility and $b_{2n}$ are dimensionless coefficients. We focus on the first few coefficients $b_{2n}$, which parametrize the deviation from a simple Gaussian distribution of the topological charge at $\\theta=0$. We present a numerical analysis of Monte Carlo simulations of 4D $SU(N)$ lattice gauge theories for $N=3,\\,4,\\,6$ in the presence of an imaginary $\\theta$ term. The results provide a robust evidence of the large-$N$ behavior predicted by standard large-$N$ scaling arguments, i.e. $b_{2n}= O(N^{-2n})$. In particular, we obtain $b_2=\\bar{b}_2/N^2...

  11. Numerical evidence for a phase transition in 4d spin foam quantum gravity

    Bahr, Benjamin

    2016-01-01

    Building on recent advances in defining Wilsonian RG flows, and in particular the notion of scales, for background-independent theories, we present a first investigation of the renormalization of the 4d spin foam path integral for quantum gravity, both analytically and numerically. Focussing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow for the definition a continuum limit of the quantum gravity theory.

  12. Induced higher-derivative massive gravity on a 2-brane in 4D Minkowski space

    In this paper we revisit the problem of localizing gravity in a 2-brane embedded in a 4D Minkowski space to address induction of high derivative massive gravity. We explore the structure of propagators to find well-behaved higher-derivative massive gravity induced on the brane. Exploring a special case in the generalized mass term of the graviton propagator we find a model of consistent higher order gravity with an additional unitary massive spin-2 particle and two massless particles: one spin-0 particle and one spin-1 particle. The condition for the absence of tachyons is satisfied for both ‘right’ and ‘wrong’ signs of the Einstein–Hilbert term on the 2-brane. We also find the Pauli–Fierz mass term added to the new massive gravity in three dimensions and recover the low-dimensional DGP model

  13. Standard 4D gravity on a brane in six-dimensional flux compactifications

    We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account

  14. 4D Design and Simulation Technologies and Process Design Patterns to Support Lean Construction Methods

    Manfred Breit; Manfred Vogel; Fritz H(a)ubi; Fabian M(a)rki; Micheal Raps

    2008-01-01

    The objective of this ongoing joint research program is to determine how 3D/4D modeling, simula- tion and visualization of Products (buildings), Organizations and Processes (POP) can support lean con- struction. Initial findings suggest that Process Design Pattern may have the potential to intuitively support ICT based lean construction. We initiated a "Process Archeology" in order to reveal the requirements for tools that can support the planning, simulation and control of lean construction methods. First findings show that existing tools provide only limited support and therefore, we started to develop new methodologies and technologies to overcome these shortcomings. Through the introduction of Process Design Patterns, we in- tent to establish process thinking in the interdisciplinary POP design. Optimized construction processes may be synthesized with semi-automatic methods by applying Process Design Pattems on building structures. By providing process templates that integrate problem solution and expert knowledge, Process Design Pat- tems may have the potential to ensure high quality process models.

  15. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  16. Acquiring 4D thoracic CT scans using a multislice helical method

    Respiratory motion degrades anatomic position reproducibility during imaging, necessitates larger margins during radiotherapy planning and causes errors during radiation delivery. Computed tomography (CT) scans acquired synchronously with the respiratory signal can be used to reconstruct 4D CT scans, which can be employed for 4D treatment planning to explicitly account for respiratory motion. The aim of this research was to develop, test and clinically implement a method to acquire 4D thoracic CT scans using a multislice helical method. A commercial position-monitoring system used for respiratory-gated radiotherapy was interfaced with a third generation multislice scanner. 4D cardiac reconstruction methods were modified to allow 4D thoracic CT acquisition. The technique was tested on a phantom under different conditions: stationary, periodic motion and non-periodic motion. 4D CT was also implemented for a lung cancer patient with audio-visual breathing coaching. For all cases, 4D CT images were successfully acquired from eight discrete breathing phases, however, some limitations of the system in terms of respiration reproducibility and breathing period relative to scanner settings were evident. Lung mass for the 4D CT patient scan was reproducible to within 2.1% over the eight phases, though the lung volume changed by 20% between end inspiration and end expiration (870 cm3). 4D CT can be used for 4D radiotherapy, respiration-gated radiotherapy, 'slow' CT acquisition and tumour motion studies

  17. Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom

    Yue, Yong, E-mail: yong.yue@cshs.org; Yang, Wensha; McKenzie, Elizabeth; Tuli, Richard; Wallace, Robert; Fraass, Benedick [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States); Fan, Zhaoyang; Pang, Jianing [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048 (United States); Deng, Zixin; Li, Debiao [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048 and Department of Bioengineering, University of California, Los Angeles, California 90095 (United States)

    2015-10-15

    Purpose: MRI is increasingly being used for radiotherapy planning, simulation, and in-treatment-room motion monitoring. To provide more detailed temporal and spatial MR data for these tasks, we have recently developed a novel self-gated (SG) MRI technique with advantage of k-space phase sorting, high isotropic spatial resolution, and high temporal resolution. The current work describes the validation of this 4D-MRI technique using a MRI- and CT-compatible respiratory motion phantom and comparison to 4D-CT. Methods: The 4D-MRI sequence is based on a spoiled gradient echo-based 3D projection reconstruction sequence with self-gating for 4D-MRI at 3 T. Respiratory phase is resolved by using SG k-space lines as the motion surrogate. 4D-MRI images are reconstructed into ten temporal bins with spatial resolution 1.56 × 1.56 × 1.56 mm{sup 3}. A MRI-CT compatible phantom was designed to validate the performance of the 4D-MRI sequence and 4D-CT imaging. A spherical target (diameter 23 mm, volume 6.37 ml) filled with high-concentration gadolinium (Gd) gel is embedded into a plastic box (35 × 40 × 63 mm{sup 3}) and stabilized with low-concentration Gd gel. The phantom, driven by an air pump, is able to produce human-type breathing patterns between 4 and 30 respiratory cycles/min. 4D-CT of the phantom has been acquired in cine mode, and reconstructed into ten phases with slice thickness 1.25 mm. The 4D images sets were imported into a treatment planning software for target contouring. The geometrical accuracy of the 4D MRI and CT images has been quantified using target volume, flattening, and eccentricity. The target motion was measured by tracking the centroids of the spheres in each individual phase. Motion ground-truth was obtained from input signals and real-time video recordings. Results: The dynamic phantom has been operated in four respiratory rate (RR) settings, 6, 10, 15, and 20/min, and was scanned with 4D-MRI and 4D-CT. 4D-CT images have target

  18. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  19. TGV-based flow estimation for 4D leukocyte transmigration

    Frerking, L.; M. Burger; Vestweber, D.; Brune, C.; Louis, Alfred K.; Arridge, Simon; Rundell, Bill

    2014-01-01

    The aim of this paper is to track transmigrating leukocytes via TGV flow estimation. Recent results have shown the advantages of the nonlinear and higher order terms of TGV regularizers, especially in static models for denoising and medical reconstruction. We present TGV-based models for flow estimation with the goal to get an exact recovery of simple intracellular and extracellular flows, as well as its implication on realistic tracking situations for transmigration through barriers. To stud...

  20. Analysis of the 4d9-(4d86p + 4p54d10) transitions of Sb VII and the strongest transitions of the 4d9-4d84f array of Sb VII and Te VIII

    The spectra of antimony and tellurium were photographed in the 100-200 A region on grazing incidence spectrographs at Moscow, Russia and NIST, U.S.A. laboratories. The 4d9-[4d86p + 4p54d10] transition array of Sb VII was analyzed. 31 levels in Sb VII were established. 41 new lines in Sb VII belonging to the 4d9-(4p54d10 + 4d86p) transition array have been classified. Seven lines each in Sb VII and Te VIII belonging to the 4d9-4d84f transition array have been classified. Parametric least-squares-fitted calculations involving configuration interaction have been carried out to interpret the spectrum satisfactorily. (orig.)

  1. Time-based Spacing for 4D Approaches using Speed-Profiles

    De Jong, P.M.A.; De Vos, K.; Borst, C; Van Paassen, M.M.; de Mulder, M.

    2011-01-01

    Two of the major projects in ATM development, SESAR and NextGen, both fore- cast the use of 4D trajectories as an intermediate phase in the development of full Performance Based Trajectories. Using 4D trajectories, the full positional and time coordinates of the aircraft are known throughout the planned trajectory. During approach, when reduced separation minimums are applied, the accuracy of this profile is most important to ensure a safe approach to the runway. One implementation of 4D appr...

  2. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers

    Lin, De-Chen; Xu, Liang; Ding, Ling-Wen; Sharma, Arjun; Liu, Li-Zhen; Yang, Henry; Tan, Patrick; Vadgama, Jay; Karlan, Beth Y.; Lester, Jenny; Urban, Nicole; Schummer, Michèl; Doan, Ngan; Said, Jonathan W.; Sun, Hongmao

    2013-01-01

    Discovery of cancer genes through interrogation of genomic dosage is one of the major approaches in cancer research. In this study, we report that phosphodiesterase subtype 4D (PDE4D) gene was homozygously deleted in 198 cases of 5,569 primary solid tumors (3.56%), with most being internal microdeletions. Unexpectedly, the microdeletions did not result in loss of their gene products. Screening PDE4D expression in 11 different types of primary tumor samples (n = 165) with immunohistochemistry ...

  3. Defining the 'D' in ICT4D: Graduate Papers on Development, Globalisation, and ICT

    2009-01-01

    IPID – the International Network for Postgraduate students in ICT4D – arranged a course in the academic year 2008/2009 as a response to several requests from IPID members for an introduction to development theories and for guidance in how to define the ‘D’ in the expression ICT4D. The aim of the course “Development, Globalisation and ICT (Defining the ’D’ in ICT4D) – 7.5 ECTS” was thus to provide a sound foundation for advanced studies in ICT4D. The course was designed to provide insights int...

  4. Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammation

    Shanks, K; Nkyimbeng-Takwi, EH; Smith, E.; Lipsky, MM; DeTolla, LJ; Scott, DW; Keegan, AD; Chapoval, SP

    2013-01-01

    Neuroimmune semaphorin 4D (Sema4D) was found to be expressed and function in the nervous and immune systems. In the immune system, Sema4D is constitutively expressed on T cells and regulates T cell priming. In addition, it displays a stimulatory function on macrophages, DC, NK cells, and neutrophils. As all these cells are deeply involved in asthma pathology, we hypothesized that Sema4D plays a critical non-redundant regulatory role in allergic airway response. To test our hypothesis, we expo...

  5. Genetic Analysis and Fine Mapping of a Novel Semidominant Dwarfing Gene LB4D in Rice

    Fei Liang; Xiaoyun Xin; Zejun Hu; Jiandi Xu; Gang Wei; Xiaoyin Qian; Jinshui Yang; Haohua He; Xiaojin Luo

    2011-01-01

    tA dwarf mutant, designated LB4D, was obtained among the progeny of backcrosses to a wild rice introgression line. Genetic analysis of LB4D indicated that the dwarf phenotype was controlled by a single semidominant dwarfing gene, which was named LB4D. The mutants were categorized as dn-type dwarf mutants according to the pattern of internode reduction. In addition, gibberellin (GA) response tests showed that LB4D plants were neither deficient nor insensitive to GA. This study found that tiller formation by LB4D plants was decreased by 40% compared with the wild type, in contrast to other dominant dwarf mutants that have been identified, indicating that a different dwarfing mechanism might be involved in the LB4D dominant mutant. The reduction of plant height in F1 plants ranged from 27.9% to 38.1% in different genetic backgrounds, showing that LB4D exerted a stronger dominant dwarfing effect.Using large F2 and F3 populations derived from a cross between heterozygous LB4D and the japonica cultivar Nipponbare, the LB4D gene was localized to a 46 kb region between the markers Indel 4 and Indel G on the short arm of chromosome 11, and four predicted genes were identified as candidates in the target region.

  6. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation. PMID:25957135

  7. The Importance of C4d in Biopsies of Kidney Transplant Recipients

    Marlene Antônia dos Reis; Laura Penna Rocha; Ana Carolina Guimarães Faleiros; Camila Souza de Oliveira Guimarães; Fernanda Rodrigues Helmo; Juliana Reis Machado; Marcos Vinícius da Silva; Rosana Rosa Miranda Corrêa

    2013-01-01

    Antibody-mediated rejection (AMR) is highly detrimental to the prolonged survival of transplanted kidneys. C4d has been regarded as a footprint of AMR tissue damage, and the introduction of C4d staining in daily clinical practice aroused an ever-increasing interest in the role of antibody-mediated mechanisms in allograft rejection. Despite the general acceptance of the usefulness of C4d in the identification of acute AMR, the data for C4d staining in chronic AMR is variable. The presence of C...

  8. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer

    Ding, Xiaojie; Qiu, Lijuan; Zhang, Lijuan; Xi, Juemin; Li, Duo; Huang, Xinwei; Zhao, Yujiao; Wang, Xiaodang; Sun, Qiangming

    2016-01-01

    Background Semaphorin 4D (Sema4D) belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current anti-angiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC), however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF) backgrounds. Methods The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays. Results Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF expression level varies among these cell lines. HCT-116 showed the lowest VEGF level, while Caco-2 showed the maximum VEGF level. In vitro migration results show that regardless of cell type and VEGF background, Sema4D showed an enhanced in vitro proangiogenic effect to induce the migration of human umbilical vein endothelial cells. Finally, in vivo tumor angiogenic assays demonstrated that Sema4D alone can elicit a significant angiogenic response to promote tumor growth independently of VEGF. Conclusion Targeting Sema4D might serve as a parallel option for antiangiogenic therapy for CRC

  9. Gaan we 3D printen of 4D?

    T. Forouzanfar

    2014-01-01

    Een veelbelovende methode, het zogeheten additive manufacturing, ook wel 3D printing genoemd, maakt het tegenwoordig mogelijk een driedimensionaal model te vervaardigen op basis van tweedimensionale beeldvorming met computertomografie (ct) en/of magnetic resonance imaging (mri). 3D printing kan onde

  10. SU-E-T-385: 4D Radiobiology

    Fourkal, E; Hossain, M; Veltchev, I; Ma, C; Meyer, J; Horwitz, E [Fox Chase Cancer Center, Philadelphia, PA (United States); Nahum, A [Clatterbridge Centre for Oncology, Bebington (United Kingdom)

    2014-06-01

    Purpose: The linear-quadratic model is the most prevalent model for planning dose fractionation in radiation therapy in the low dose per fraction regimens. However for high-dose fractions, used in SRS/SBRT/HDR treatments the LQ model does not yield accurate predictions, due to neglecting the reduction in the number of sublethal lesions as a result of their conversion to lethal lesions with subsequent irradiation. Proper accounting for this reduction in the number of sublethally damaged lesions leads to the dependence of the survival fraction on the temporal structure of the dose. The main objective of this work is to show that the functional dependence of the dose rate on time in each voxel is an important additional factor that can significantly influence the TCP. Methods: Two SBRT lung plans have been used to calculate the TCPs for the same patient. One plan is a 3D conformal plan and the other is an IMRT plan. Both plans are normalized so that 99.5% of PTV volume receives the same prescription dose of 50 Gy in 5 fractions. The dose rate in each individual voxel is calculated as a function of treatment time and subsequently used in the calculation of TCP. Results: The calculated TCPs show that shorter delivery times lead to greater TCP, despite all delivery times being short compared to the repair half-time for sublethal lesions. Furthermore, calculated TCP(IMRT) =0.308 for the IMRT plan is smaller than TCP(3D) =0.425 for 3D conformal, even though it shows greater tumor hot spots and equal PTV coverage. The calculated TCPs are considerably lower compared to those based on the LQ model for which TCP=1 for both plans. Conclusion: The functional dependence of the voxel-by-voxel dose rate on time may be an important factor in predicting the treatment outcome and cannot be neglected in radiobiological modeling.

  11. 4D in vivo imaging of subpleural lung parenchyma by swept source optical coherence tomography

    Meissner, S.; Tabuchi, A.; Mertens, M.; Homann, H.; Walther, J.; Kuebler, W. M.; Koch, E.

    2009-07-01

    In this feasibility study we present a method for 4D imaging of healthy and injured subpleural lung tissue in a mouse model. We used triggered swept source optical coherence tomography with an A-scan frequency of 20 kHz to image murine subpleural alveoli during the ventilation cycle. The data acquisition was gated to the pulmonary airway pressure to take one B-scan in each ventilation cycle for different pressure levels. The acquired B-scans were combined offline to one C-scan for each pressure level. Due to the high acquisition rate of the used optical coherence tomography system, we are also able to perform OCT Doppler imaging of the alveolar arterioles. We demonstrated that OCT is a useful tool to investigate the alveolar dynamics in spatial dimensions and to analyze the alveolar blood flow by using Doppler OCT.

  12. Quasars in the 4D Eigenvector 1 Context: a stroll down memory lane

    Jack W. Sulentic

    2015-10-01

    Full Text Available Recently some pessimism has been expressed about our lack of progress in understanding quasars over more than fifty year since their discovery. It is worthwhile to look back at some of the progress that has been made – but still lies under the radar – perhaps because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources opens the door towards a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.

  13. Bulk amplitude and degree of divergence in 4d spin foams

    Chen, Lin-Qing

    2016-01-01

    We study the 4-d holomorphic Spin Foam amplitude on arbitrary connected 2-complexes and degrees of divergence. With recently developed tools and truncation scheme, we derive a formula for a certain class of graphs, which allows us to write down the value of bulk amplitudes simply based on graph properties. We then generalize the result to arbitrary connected 2-complexes and extract a simple expression for the degree of divergence only in terms of combinatorial properties and topological invariants. The distinct behaviors of the model in different regions of parameter space signal phase transitions. In the regime which is of physical interest for recovering diffeomorphsim symmetry in the continuum limit, the most divergent configurations are melonic graphs. We end with a discussion of physical implications.

  14. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  15. Towards 4d Virtual City Reconstruction from LIDAR Point Cloud Sequences

    Józsa, O.; Börcs, A.; Benedek, C.

    2013-05-01

    In this paper we propose a joint approach on virtual city reconstruction and dynamic scene analysis based on point cloud sequences of a single car-mounted Rotating Multi-Beam (RMB) Lidar sensor. The aim of the addressed work is to create 4D spatio-temporal models of large dynamic urban scenes containing various moving and static objects. Standalone RMB Lidar devices have been frequently applied in robot navigation tasks and proved to be efficient in moving object detection and recognition. However, they have not been widely exploited yet for geometric approximation of ground surfaces and building facades due to the sparseness and inhomogeneous density of the individual point cloud scans. In our approach we propose an automatic registration method of the consecutive scans without any additional sensor information such as IMU, and introduce a process for simultaneously extracting reconstructed surfaces, motion information and objects from the registered dense point cloud completed with point time stamp information.

  16. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development. (paper)

  17. Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara

    Ana F. Vigário

    2014-06-01

    Full Text Available The 2,4-dichlorophenoxyacetic acid, usually named 2,4-D is one of the most widely used herbicides in the world. Acute toxicity of 2,4-D herbicide was investigated through its effects on guppies (Poecilia vivipara Bloch et Schneider 1801. Fish were exposed to the herbicide at concentrations of 10, 20 and 40µl per liter of water for 24 hours to determine its effects on gills and liver epithelia. The estimated LC50 was 34.64µl of 2,4-D per liter of water. Histochemical analyses and Feulgen's reaction were conducted to detect glycoconjugates and DNA, respectively, in gills and liver epithelia. Histochemistry revealed qualitative variations of glycoconjugates present on mucous cells and granules. The four types of mucous cells contained neutral granules, acids, or both. Increasing amounts of syalomucins were observed from the control group to the group exposed to the highest concentration of 2,4-D, suggesting increased mucous viscosity and the formation of plaques that could inhibit gas exchange and osmoregulation. Lamellar fusion observed in the group exposed to 40µl of 2,4-D suggests a defense mechanism. Hepatocytes showed vacuolization in the 10 and 20µl/L groups. The 40 µl/L group showed normal hepatocytes as well as changed ones, many Ito cells, micronuclei, and nuclear swelling. These effects may be associated with toxicity or adaptative processes to cellular stress. The data from this study indicates the importance of assessing similar risks to aquatic species and suggests that Poecilia vivipara is an adequate biological model for analysis of environmental contamination.

  18. Complete graphs, Hilbert series, and the Higgs branch of the 4d N=2 (An,Am SCFTs

    Michele Del Zotto

    2015-05-01

    Full Text Available The strongly interacting 4d N=2 SCFTs of type (An,Am are the simplest examples of models in the (G,G′ class introduced by Cecotti, Neitzke, and Vafa in arXiv:1006.3435. These systems have a known 3d N=4 mirror only when n+1 divides m+1. By 4d/2d correspondence, we show that in this case these systems have a nontrivial global flavor symmetry group, and, therefore, a non-trivial Higgs branch. As an application of the methods of arXiv:1309.2657, we then compute the refined Hilbert series of the Coulomb branch of the 3d mirror for the simplest models in the series. This equals the refined Hilbert series of the Higgs branch of the (An,Am SCFT, providing interesting information about the Higgs branch of these non-lagrangian theories.

  19. Fast Reservoir Characterization and Development of a Field Case Study with Real Production and 4D Seismic Data

    Rwechungura, Richard

    2012-01-01

    The primary goal of this PhD is to provide methods for continuous and fast optimization and updating of reservoir simulation models (i.e. history matching and associated forecast) based on production data, 4D seismic data and other available data. To accomplish this goal the following strategies have been employed:Comparison and Combination: Combining the use of time-lapse seismic data and production data for history matching and parameter estimation, and then comparing and combining differen...

  20. Real-Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy.

    Bose, Riya; Sun, Jingya; Khan, Jafar I; Shaheen, Basamat S; Adhikari, Aniruddha; Ng, Tien Khee; Burlakov, Victor M; Parida, Manas R; Priante, Davide; Goriely, Alain; Ooi, Boon S; Bakr, Osman M; Mohammed, Omar F

    2016-07-01

    A breakthrough in the development of 4D scanning ultrafast electron microscopy is described for real-time and space imaging of secondary electron energy loss and carrier diffusion on the surface of an array of nanowires as a model system, providing access to a territory that is beyond the reach of either static electron imaging or any time-resolved laser spectroscopy. PMID:27111855

  1. 4D Visualization of Painted Sculpture and Murals

    Ai, M. Y.; Tong, H.; Shen, L.; Wang, R. X.; Zhang, F.; Zhang, Z. C.; Hu, Q. W.; Zhu, Y. X.; Zhang, H.

    2015-08-01

    Most cultural heritage applications address visualization with using various media or platforms: desktop-based multimedia presentations, museum kiosks, or videos produced with computer animation. However, these techniques can not directly reveal or show the course that the colorful surface of painted sculpture and murals becomes faint along with the change of the climate and time. Most current techniques just preserve the current appearance and disseminate the current situation of the painted sculpture and murals. The course how these forms of cultural heritage change along the time has not been visualized. In this paper we developed an approach to modelling of painted sculpture and murals that has undergone changes over the years. Different hypotheses has also be given if there is uncertainty. A painted sculpture of Mogao Grottoes is used to demonstate this approach.

  2. Generalized geometry applied to 4d-supergravity

    Tavares, Sara Oriana

    2013-01-01

    Generalized complex geometry is an example of a powerful formalism to attempt the construction of a language adequate to string theory. With the remarkable property of unifying symplectic and complex manifolds as special cases of a broader structure it is proving to be the right tool to use when trying to describe T-duality. The key idea was to look at both geometries as operations in the direct sum of tangent and cotangent bundle as opposed to the usual approach, where only the tangent spaces are relevant. In this thesis we will be interested in developing a formalism drinking from these ideas but for a toy model of eleven dimensional M-theory: three-form supergravity as introduced by Ovrut and Waldram.

  3. 2D : 4D in Men Is Related to Aggressive Dominance but Not to Sociable Dominance

    van der Meij, Leander; Almela, Mercedes; Buunk, Abraham P.; Dubbs, Shelli; Salvador, Alicia

    2012-01-01

    It has been shown that a smaller ratio between the length of the second and fourth digit (2D:4D) is an indicator of the exposure to prenatal testosterone (T). This study measured the 2D:4D of men and assessed dominance as a personality trait to investigate indirectly if the exposure to prenatal T is

  4. Impact of 4D image quality on the accuracy of target definition

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas;

    2016-01-01

    that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal...

  5. 4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma. Determination of intra- and interfractional gastric motion

    Reinartz, Gabriele; Haverkamp, Uwe; Wullenkord, Ramona; Lehrich, Philipp; Kriz, Jan; Eich, Hans Theodor [University Hospital Muenster, Department of Radiation Oncology, Muenster (Germany); Buether, Florian [University of Muenster, European Institute for Molecular Imaging (EIMI), Muenster (Germany); Schaefers, Klaus [University of Muenster, European Institute for Molecular Imaging (EIMI), Muenster (Germany); DFG EXC 1003, Cluster of Excellence ' Cells in Motion' , Muenster (Germany); Schaefers, Michael [University of Muenster, European Institute for Molecular Imaging (EIMI), Muenster (Germany); University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); DFG EXC 1003, Cluster of Excellence ' Cells in Motion' , Muenster (Germany)

    2016-05-15

    New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins) plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma. (orig.) [German] Zur Optimierung des Sicherheitsabstandes beim Planungszielvolumen (PTV) und zur Erfassung der intra-/interfraktionellen Variation des Magens wurden neue Protokolle fuer die Bildverarbeitung in der Radiotherapie lokalisierter Magenlymphome evaluiert. Die Bildgebung von 6 Patienten wurde prospektiv untersucht. Die Planung der intensitaetsmodulierten Strahlentherapie (IMRT) basierte auf 4D-/3D-Bildgebung von Computertomographie (CT) und Positronenemissionstomographie

  6. Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity

    Egawa, H. S.; Horata, S.; Yukawa, T.

    2002-03-01

    Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields ( NX) and gauge fields ( NA) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Indepenent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity.

  7. Clear Evidence of a Continuum Theory of 4D Euclidean Simplicial Quantum Gravity

    Egawa, H S; Yukawa, T

    2002-01-01

    Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N_X) and gauge fields (N_A) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent gamma^{(4)} is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity.

  8. Neo-Gramscian Approach and Geopolitics of ICT4D Agenda

    Tokunbo Ojo

    2016-06-01

    Full Text Available For the last two decades, the notion of Information Communication Technologies for Development (ICT4D has had significant traction in both praxis and scholarly work of international development. While it has dystopia and utopia dimensions, ICT4D came out of particular history and intellectual climates. The historical and political contexts that shaped the ICT4D agenda deserve examination. Grounded within the canon of neo-Gramscian perspectives, this paper discusses the geopolitical construct of the ICT4D agenda and the agenda-building roles of international institutions in the process. In situating the ICT4D agenda in the geopolitical context, this paper highlights the institutional discursive structure and embedded geometries of power relations in the global communication and international development agenda.

  9. Interpreting digit ratio (2D:4D)-behavior correlations: 2D:4D sex difference, stability, and behavioral correlates and their replicability in young children.

    Wong, Wang I; Hines, Melissa

    2016-02-01

    The popularity of using the ratio of the second to the fourth digit (2D:4D) to study influences of early androgen exposure on human behavior relies, in part, on a report that the ratio is sex-dimorphic and stable from age 2 years (Manning etal., 1998). However, subsequent research has rarely replicated this finding. Moreover, although 2D:4D has been correlated with many behaviors, these correlations are often inconsistent. Young children's 2D:4D-behavior correlations may be more consistent than those of older individuals, because young children have experienced fewer postnatal influences. To evaluate the usefulness of 2D:4D as a biomarker of prenatal androgen exposure in studies of 2D:4D-behavior correlations, we assessed its sex difference, temporal stability, and behavioral correlates over a 6- to 8-month period in 126, 2- to 3-year-old children, providing a rare same-sample replicability test. We found a moderate sex difference on both hands and high temporal stability. However, between-sex overlap and within-sex variability were also large. Only 3 of 24 correlations with sex-typed behaviors-scores on the Preschool Activities Inventory (PSAI), preference for a boy-typical toy, preference for a girl-typical toy, were significant and in the predicted direction, all of which involved the PSAI, partially confirming findings from another study. Correlation coefficients were larger for behaviors that showed larger sex differences. But, as in older samples, the overall pattern showed inconsistency across time, sex, and hand. Therefore, although sex-dimorphic and stable, 2D:4D-behavior correlations are no more consistent for young children than for older samples. Theoretical and methodological implications are discussed. PMID:26542674

  10. TU-C-BRD-01: Image Guided SBRT I: Multi-Modality 4D Imaging

    Motion management is one of the critical technical challenges for radiation therapy. 4D imaging has been rapidly adopted as essential tool to assess organ motion associated with respiratory breathing. A variety of 4D imaging techniques have been developed and are currently under development based on different imaging modalities such as CT, MRI, PET, and CBCT. Each modality provides specific and complementary information about organ and tumor respiratory motion. Effective use of each different technique or combined use of different techniques can introduce a comprehensive management of tumor motion. Specifically, these techniques have afforded tremendous opportunities to better define and delineate tumor volumes, more accurately perform patient positioning, and effectively apply highly conformal therapy techniques such as IMRT and SBRT. Successful implementation requires good understanding of not only each technique, including unique features, limitations, artifacts, imaging acquisition and process, but also how to systematically apply the information obtained from different imaging modalities using proper tools such as deformable image registration. Furthermore, it is important to understand the differences in the effects of breathing variation between different imaging modalities. A comprehensive motion management strategy using multi-modality 4D imaging has shown promise in improving patient care, but at the same time faces significant challenges. This session will focuses on the current status and advances in imaging respiration-induced organ motion with different imaging modalities: 4D-CT, 4D-MRI, 4D-PET, and 4D-CBCT/DTS. Learning Objectives: Understand the need and role of multimodality 4D imaging in radiation therapy. Understand the underlying physics behind each 4D imaging technique. Recognize the advantages and limitations of each 4D imaging technique

  11. Complement activation in astrocytomas: deposition of C4d and patient outcome

    C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement

  12. Calculated electronic properties of ordered alloys a handbook : the element and their 3d/3d and 4d/4d alloys

    Moruzzi, VL

    1995-01-01

    This is a handbook of calculated electronic properties of elements and of 3d/3d and 4d/4d ordered alloys. The book derives the ground-state or equilibrium properties of the metallic elements in both bcc and fcc structures, and of existing and nonexisting ordered binary transition-metal alloys in CsCl, CuAu, and Cu 3 Au structures by the analysis of binding curves, or total energy vs. volume curves, calculated from first-principles augmented-spherical-wave methods. The calculated properties, energy bands along symmetry lines in the respective Brillouin zones, and the total and I-decomposed dens

  13. Ab initio investigations of magnetic properties of ultrathin transition-metal films on 4d substrates

    Pd) are presented. The magnetic state of Fe changes gradually from noncollinear 120 Neel state for Fe films on Tc, and Ru, to the double-row-wise antiferromagnetic state on Rh, to the ferromagnetic one on Pd and Ag. The noncollinear state is a result of antiferromagnetic intersite exchange interactions in combination with the triangular lattice provided by the hexagonal surface termination of the (111) surfaces. A similar systematic trend is observed for a Co monolayer on these substrate, but shifted towards ferromagnetism equivalent to one element in the periodic table. Also the magnetic properties of Co chains on stepped Rh(111) surfaces is investigated. It is shown that the easy axis of the magnetization changes from out-of-plane in case of a Co monolayer to in-plane for the atomic chain. The Heisenberg model was extended by a Stoner-like term to include the induced magnetization of the 4d substrate. The results are based on the density functional theory in the vector-spin-density formulation employing the spin-polarized local density and generalized gradient approximation. The self-consistent relativistic total energy and force calculations have been carried out with the full-potential linearized augmented plane wave (FLAPW) method in the film geometry. The concept of total-energy calculations with incommensurable spin-spirals of wave vectors along the high-symmetry lines in the two-dimensional Brillouin zone was applied to search for the magnetic ground states. (orig.)

  14. Ab initio investigations of magnetic properties of ultrathin transition-metal films on 4d substrates

    Al-Zubi, Ali

    2010-12-22

    -transition metals (Tc, Ru, Rh, to Pd) are presented. The magnetic state of Fe changes gradually from noncollinear 120 Neel state for Fe films on Tc, and Ru, to the double-row-wise antiferromagnetic state on Rh, to the ferromagnetic one on Pd and Ag. The noncollinear state is a result of antiferromagnetic intersite exchange interactions in combination with the triangular lattice provided by the hexagonal surface termination of the (111) surfaces. A similar systematic trend is observed for a Co monolayer on these substrate, but shifted towards ferromagnetism equivalent to one element in the periodic table. Also the magnetic properties of Co chains on stepped Rh(111) surfaces is investigated. It is shown that the easy axis of the magnetization changes from out-of-plane in case of a Co monolayer to in-plane for the atomic chain. The Heisenberg model was extended by a Stoner-like term to include the induced magnetization of the 4d substrate. The results are based on the density functional theory in the vector-spin-density formulation employing the spin-polarized local density and generalized gradient approximation. The self-consistent relativistic total energy and force calculations have been carried out with the full-potential linearized augmented plane wave (FLAPW) method in the film geometry. The concept of total-energy calculations with incommensurable spin-spirals of wave vectors along the high-symmetry lines in the two-dimensional Brillouin zone was applied to search for the magnetic ground states. (orig.)

  15. History Matching of Production and 4D Seismic Data: Application to the Girassol Field, Offshore Angola Calage simultané des données de production et de sismique 4D : application au champ de Girassol, Offshore Angola

    Roggero F.

    2012-04-01

    Full Text Available Time-lapse seismic provides a source of valuable information about the evolution in space and time of the distribution of hydrocarbons inside reservoirs. Seismic monitoring improves our understanding of production mechanisms and makes it possible to optimize the recovery of hydrocarbons. Although 4D seismic data are increasingly used by oil companies, they are often qualitative, due to the lack of suitable interpretation techniques. Recent modeling experiments have shown that the integration of 4D seismic data for updating reservoir flow models is feasible. However, methodologies based on sequential interpretation of 4D seismic data, trial and error processes and fluid flow simulation tests require a great effort from integrated teams. The development of assisted history matching techniques is a significant improvement towards a quantitative use of 4D seismic data in reservoir modeling. This paper proposes an innovative methodology based on advanced history matching solutions to constrain 3D stochastic reservoir models to both production history and 4D seismic attributes. In this approach, geostatistical modeling, upscaling, fluid flow simulation, downscaling and petro-elastic modeling are integrated into the same history matching workflow. Simulated production history and 4D seismic attributes are compared to real data using an objective function, which is minimized with a new optimization algorithm based on response surface fitting. The gradual deformation method is used to constrain the facies realization, globally or locally, which populates the geological model at the fine scale. Moreover, a new method is proposed to update facies proportions during the optimization process according to 4D monitoring information. We present here a successful application to the Girassol field. Girassol is a large, complex and faulted turbidite field, located offshore Angola. First, a detailed geostatistical geological model was built to describe reservoir

  16. QSAR study of some pyrazolo[3,4-d]pyrimidine derivatives as the c-Src inhibitors

    Shukla, Bindesh Kumar; Yadava, Umesh

    2016-05-01

    Two dimensional quantitative structure activity relationship (QSAR) studies have been carried out on a series of 42 pyrazolo[3,4-d]pyrimidine derivatives to find out the structural requirements for the inhibition of c-SRC phosphorilation. The best predictions were obtained using Heuristic and Best MLR methods from the model where 33 compounds were considered in the training set and the remaining 9 in the test set. Both Best MLR and Heuristic methods indicate that squared correlation coefficient for training and test sets are very close to observed biological activities which designate the good correlation between the experimental and predicted activity. The results that are obtained from 2D-QSAR studies may provide useful insights into the roles of various substitution patterns on the pyrazolo[3,4-d]pyrimidine core and may also help to design more potent compounds.

  17. An historical analysis of the California Current circulation using ROMS 4D-Var: System configuration and diagnostics

    Neveu, Emilie; Moore, Andrew M.; Edwards, Christopher A.; Fiechter, Jérôme; Drake, Patrick; Crawford, William J.; Jacox, Michael G.; Nuss, Emma

    2016-03-01

    The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation tool has been used to compute two sequences of circulation analyses for the U.S. west coast. One sequence of analyses spans the period 1980-2010 and is subject to surface forcing derived from relatively low resolution atmospheric products from the Cross-Calibrated Multi-Platform wind product (CCMP) and the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis project. The second sequence spans the shorter period 1999-2012 and is subject to forcing derived from a high resolution product from the Naval Research Laboratory Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). The two analysis periods are divided into eight day windows, and all available satellite observations of sea surface temperature and sea surface height, as well as in situhydrographic profiles are assimilated into ROMS using 4D-Var. The performance of the system is monitored in terms of the cost function and the statistics of the innovations, and the impact of data assimilated on the circulation is assessed by comparing the posterior circulation estimates with the prior circulation and the circulation from a run of the model without data assimilation, with particular emphasis on eddy kinetic energy. This is part I of a two part series, and the circulation variability of the 4D-Var analyses will be documented in part II.

  18. p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging

    Morgane Hilpert

    2014-12-01

    Full Text Available Hematopoietic stem cells (HSCs are characterized by the capacity for self-renewal and the ability to reconstitute the entire hematopoietic compartment. Thrombopoietin maintains adult HSCs in a quiescent state through the induction of cell cycle inhibitors p57Kip2 and p19INK4d. Using the p19INK4d−/− mouse model, we investigated the role of p19INK4d in basal and stress-induced hematopoiesis. We demonstrate that p19INK4d is involved in the regulation of HSC quiescence by inhibition of the G0/G1 cell cycle transition. Under genotoxic stress conditions, the absence of p19INK4d in HSCs leads to accelerated cell cycle exit, accumulation of DNA double-strand breaks, and apoptosis when cells progress to the S/G2-M stages of the cell cycle. Moreover, p19INK4d controls the HSC microenvironment through negative regulation of megakaryopoiesis. Deletion of p19INK4d results in megakaryocyte hyperproliferation and increased transforming growth factor β1 secretion. This leads to fibrosis in the bone marrow and spleen, followed by loss of HSCs during aging.

  19. Content Of 2,4-D-14C Herbicide Residue In Water And Soil Of Irrigated Rice Field System

    The investigation of 2,4-D exp.-14C herbicide residue in water and soil of irrigated rice field system was carried out. Rice plant and weeds (Monochoria vaginalis Burn. F. Presl) were planted in 101 buckets using two kinds of soil condition, I.e. normal soil and 30 % above normal compact soil. After one week planting, the plants were sprayed with 1 u Ci of 2,4-D exp.-14C and 0,4 mg non labeled 2,4-D. The herbicide residue content was determined 0, 2, 4, 8 and 10 weeks after spraying with 2,4-D herbicide. The analysis was done using Combustion Biological Oxidizer merk Harvey ox-400, and counted with Liquid Scintillation Counter merk Beckman model LS-1801. The results indicates that the herbicide contents in water and soil decrease from the first spraying with herbicide until harvest herbicide Residue content in water after harvest was 0.87 x 10 exp.-6 ppm for soil normal condition, and 0.59 x 10 exp.-6 pm for the soil 30 % up normal condition, while herbicide content in soil was 1.54 x 10 exp.-6 ppm for soil normal condition and 1.48 x 10 exp.-6 ppm for soil 30 % up normal. 2,4-D herbicide residue content in rice after harvest was 0.27 x 10 exp.-6 ppm for normal soil condition and 0.25 x 10 exp.-6 ppm for the soil 30 % up normal. 2,4-D herbicide residue content in roots and leaves of weeds after harvest were respectively 0.29 x 10 exp.-6 ppm and 0.18 x 10 exp.-6 for normal soil condition, while for 30 % up normal soil were 0.25 x 10 exp.-5 ppm and 0.63 x 10 exp.-7 ppm. This result indicates that there is no effect pollution to surrounding area, because the herbicide content is still bellow the allowed detection limit, 0.05 ppm

  20. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  1. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no [Norwegian University of Science and Technology, 7491 Trondheim (Norway); Klein, Stefan [Norwegian University of Science and Technology, 7491 Trondheim, Norway and Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, 3000 CA Rotterdam (Netherlands); Hofstad, Erlend Fagertun; Langø, Thomas [SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Lindseth, Frank [Norwegian University of Science and Technology, 7491 Trondheim, Norway and SINTEF, Department Medical Technology, 7465 Trondheim (Norway); Ystgaard, Brynjulf [Department of Surgery, St. Olavs Hospital, 7030 Trondheim (Norway)

    2014-08-15

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe

  2. Measurement of bubble velocity using Capacitively Coupled Contactless Conductivity Detection (C4D) technique

    Baoliang Wang; Ying Zhou; Haifeng Ji; Zhiyao Huang; Haiqing Li

    2013-01-01

    The feasibility of applying Capacitively Coupled Contactless Conductivity Detection (C4D) technique to measurement of bubble velocity in gas-liquid two-phase flow in millimeter-scale pipe is investigated.And,a new method,which combines the C4D technique and the principle of cross-correlation velocity measurement,is proposed for the measurement of bubble velocity.This research includes two parts.First,based on the principle of C4D,a new five-electrode C4D sensor is developed.Then,with two conductivity signals obtained by the C4D sensor,the velocity measurement of bubble is implemented according to the principle of cross-correlation.The research results indicate that the C4D technique is highly effective and anticipates a broad potential in the field of two-phase flow.Experimental results show that the fiveelectrode C4D sensor is suitable for measuring the velocity of single bubbles with a relative error of less than 5%.

  3. Complement activation in astrocytomas: deposition of C4d and patient outcome

    Mäkelä Katri

    2012-12-01

    Full Text Available Abstract Background C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. Methods Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. Results The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test. However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann–Whitney test. There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p  Conclusion The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement.

  4. ICT4D2.0: the next phase of applying ICT for international development

    Heeks, R., A.V. Ospina, E. Adera

    2008-01-01

    ICT4D – the application of information and communication technologies for international development – is moving to a new phase. This will require new technologies, new approaches to innovation and implementation, new intellectual perspectives and, above all, a new view of the world's poor. All these must be understood if we are to harness digital technologies in the service of some of our world's most pressing problems. This paper explains the phase change – from "ICT4D 1.0" to "ICT4D 2...

  5. UPORABA MODULA MOGRAPH V CINEMI 4D ZA UVODNO ŠPICO FILMA

    Svetec, Kimi

    2016-01-01

    Cilj diplomske naloge je preučiti modul Cinema4D Mograph ter prikazati primere in postopke uporabe le-tega z uporabo najuporabnejših Mograph učinkov v animaciji za uvodno špico filma. Cinema 4D omogoča modeliranje poljubnih objektov v 3D ter poljubno animiranje gibanja teh objektov. Pri ustvarjanju animiranih videov je tako Cinema 4D pripomoček, ki nam omogoči ustvarjanje mnogih kombiniranih učinkov ter omogoča vključitev poljubne glasbe in poljubnih slik. S pomočjo programa Audacity smo že...

  6. Estimating the 4D Respiratory Lung Motion by Spatiotemporal Registration and Building Super-Resolution Image

    2011-01-01

    The estimation of lung motion in 4D-CT with respect to the respiratory phase becomes more and more important for radiation therapy of lung cancer. However, modern CT scanner can only scan a limited region of body at each couch table position. Thus, motion artifacts due to the patient’s free breathing during scan are often observable in 4D-CT, which could undermine the procedure of correspondence detection in the registration. Another challenge of motion estimation in 4D-CT is how to keep the ...

  7. Newton Law on the Generalized Singular Brane with and without 4d Induced Gravity

    Jung, Eylee; Kim, Sunghoon; Park, D. K.

    2003-01-01

    Newton law arising due to the gravity localized on the general singular brane embedded in $AdS_5$ bulk is examined in the absence or presence of the 4d induced Einstein term. For the RS brane, apart from the subleading correction, Newton potential obeys 4d-type and $5d$-type gravitational law at long- and short-ranges if it were not for the induced Einstein term. The 4d induced Einstein term generates an intermediate range at short distance, in which the $5d$ Newton potential $1/r^2$ emerges....

  8. Markov-Yukawa transversality principle and 3D-4D interlinkage of Bethe-Salpeter amplitudes

    This article is designed to focus attention on the Markov-Yukawa Transversality Principle (MYTP) as a novel paradigm for an exact 3D-4D interlinkage between the corresponding BSE amplitudes. This unique feature of MYTP owes its origin to a Lorentz- covariant 3D support to the BSE kernel. Two specific types of MYTP, which provide 3D support to the BSE kernel, are considered. Both lead to formally identical 3D BSE reductions but produces sharply different 4D structures. This is illustrated by the pion form factor. The reconstruction of the 4D qqq wave function is achieved by Green's function techniques

  9. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer

    Ding X

    2016-03-01

    Full Text Available Xiaojie Ding,1,2,* Lijuan Qiu,1,2,* Lijuan Zhang,3 Juemin Xi,1,2 Duo Li,1,2 Xinwei Huang,1,2 Yujiao Zhao,1,2 Xiaodang Wang,1,2 Qiangming Sun1,2 1Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, 3Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Provincial Tumor Hospital, Kunming, People’s Republic of China*These authors contributed equally to this workBackground: Semaphorin 4D (Sema4D belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current antiangiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC, however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF backgrounds.Methods: The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays.Results: Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF

  10. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. PMID:26861224

  11. A missense change in the ATG4D gene links aberrant autophagy to a neurodegenerative vacuolar storage disease.

    Kaisa Kyöstilä

    2015-04-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136 in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

  12. Low 2D:4D values are associated with video game addiction.

    Johannes Kornhuber

    Full Text Available Androgen-dependent signaling regulates the growth of the fingers on the human hand during embryogenesis. A higher androgen load results in lower 2D:4D (second digit to fourth digit ratio values. Prenatal androgen exposure also impacts brain development. 2D:4D values are usually lower in males and are viewed as a proxy of male brain organization. Here, we quantified video gaming behavior in young males. We found lower mean 2D:4D values in subjects who were classified according to the CSAS-II as having at-risk/addicted behavior (n = 27 compared with individuals with unproblematic video gaming behavior (n = 27. Thus, prenatal androgen exposure and a hyper-male brain organization, as represented by low 2D:4D values, are associated with problematic video gaming behavior. These results may be used to improve the diagnosis, prediction, and prevention of video game addiction.

  13. ATC Taskload Inherent to the Geometry of Stochastic 4-D Trajectory Flows with Flight Technical Errors

    National Aeronautics and Space Administration — A method to quantify the probabilistic controller taskload inherent to maintaining aircraft adherence to 4-D trajectories within flow corridors is presented. An...

  14. MILP-Based 4D Trajectory Planning for Tactical Trajectory Management Project

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to develop specialized algorithms and software decision-aiding tools for four-dimensional (4D) vehicle-centric, tactical trajectory...

  15. Low- and high-z highly accreting quasars in the 4D Eigenvector 1 context

    Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; D'Onofrio, Mauro; del Olmo, Ascensión; Martínez-Aldama, Mary Loli

    2014-01-01

    Highly accreting quasars are characterized by distinguishing properties in the 4D eigenvector 1 parameter space that make them easily recognizable over a broad range range of redshift and luminosity. The 4D eigenvector 1 approach allows us to define selection criteria that go beyond the restriction to Narrow Line Seyfert 1s identified at low redshift. These criteria are probably able to isolate sources with a defined physical structure i.e., a geometrically thick, optically thick advection-do...

  16. 4D CT and lung cancer surgical resectability: a technical innovation

    A 74-year-old man presents with a left upper lobe lung adenocarcinoma, which demonstrated a wide base intimately with the aortic arch. We utilised 4D CT technique with a wide field of view CT unit to preoperatively determine likely surgical resectability. We propose that 4D CT may be of use in further investigating lung cancer with likely invasion of adjacent structures.

  17. Structured Digital Storytelling for Eliciting Software Requirements in the ICT4D Domain

    Sinnig, Daniel; Pitula, Kristina; Becker, Richard; Radhakrishnan, T.; Forbrig, Peter

    2010-01-01

    Due to the specific challenges that ICT4D projects present, conventional requirements elicitation techniques are often inapplicable or insufficient. We address this shortcoming by introducing structured digital storytelling (SDS) as an alternative elicitation technique especially suited for the ICD4D domain. SDS is supported by our mobile elicitation tool designed around the needs and capabilities of the targeted user population. We embed SDS in a requirements elicitation and specification pr...

  18. Monitoring of SAGD Process: Seismic Interpretation of Ray+Born Synthetic 4D Data

    Joseph C; Etienne G.; Forgues E.; Lerat O.; Baroni A.; Renard G.; Bathellier E.

    2012-01-01

    The objective of this study is to evaluate which production information can be deduced from a 4D seismic survey during the Steam-Assisted Gravity Drainage (SAGD) recovery process. Superimposed on reservoir heterogeneities of geological origin, many factors interact during thermal production of heavy oil and bitumen reservoirs, which complicate the interpretation of 4D seismic data: changes in oil viscosity, in fluid saturations, in pore pressure and so on. This study is based on the real Han...

  19. Control of bone resorption by semaphorin 4D is dependent on ovarian function.

    Romain Dacquin

    Full Text Available Osteoporosis is one of the most common bone pathologies, which are characterized by a decrease in bone mass. It is well established that bone mass, which results from a balanced bone formation and bone resorption, is regulated by many hormonal, environmental and genetic factors. Here we report that the immune semaphorin 4D (Sema4D is a novel factor controlling bone resorption. Sema4D-deficient primary osteoclasts showed impaired spreading, adhesion, migration and resorption due to altered ß3 integrin sub-unit downstream signaling. In apparent accordance with these in vitro results, Sema4D deletion in sexually mature female mice led to a high bone mass phenotype due to defective bone resorption by osteoclasts. Mutant males, however, displayed normal bone mass and the female osteopetrotic phenotype was only detected at the onset of sexual maturity, indicating that, in vivo, this intrinsic osteoclast defect might be overcome in these mice. Using bone marrow cross transplantation, we confirmed that Sema4D controls bone resorption through an indirect mechanism. In addition, we show that Sema4D -/- mice were less fertile than their WT littermates. A decrease in Gnrh1 hypothalamic expression and a reduced number of ovarian follicles can explain this attenuated fertility. Interestingly, ovariectomy abrogated the bone resorption phenotype in Sema4D -/- mice, providing the evidence that the observed high bone mass phenotype is strictly dependent on ovarian function. Altogether, this study reveals that, in vivo, Sema4D is an indirect regulator of bone resorption, which acts via its effect on reproductive function.

  20. 4-D Cloud Water Content Fields Derived from Operational Satellite Data

    Smith, William L., Jr.; Minnis, Patrick

    2010-01-01

    In order to improve operational safety and efficiency, the transportation industry, including aviation, has an urgent need for accurate diagnoses and predictions of clouds and associated weather conditions. Adverse weather accounts for 70% of all air traffic delays within the U.S. National Airspace System. The Federal Aviation Administration has determined that as much as two thirds of weather-related delays are potentially avoidable with better weather information and roughly 20% of all aviation accidents are weather related. Thus, it is recognized that an important factor in meeting the goals of the Next Generation Transportation System (NexGen) vision is the improved integration of weather information. The concept of a 4-D weather cube is being developed to address that need by integrating observed and forecasted weather information into a shared 4-D database, providing an integrated and nationally consistent weather picture for a variety of users and to support operational decision support systems. Weather analyses and forecasts derived using Numerical Weather Prediction (NWP) models are a critical tool that forecasters rely on for guidance and also an important element in current and future decision support systems. For example, the Rapid Update Cycle (RUC) and the recently implemented Rapid Refresh (RR) Weather Research and Forecast (WRF) models provide high frequency forecasts and are key elements of the FAA Aviation Weather Research Program. Because clouds play a crucial role in the dynamics and thermodynamics of the atmosphere, they must be adequately accounted for in NWP models. The RUC, for example, cycles at full resolution five cloud microphysical species (cloud water, cloud ice, rain, snow, and graupel) and has the capability of updating these fields from observations. In order to improve the models initial state and subsequent forecasts, cloud top altitude (or temperature, T(sub c)) derived from operational satellite data, surface observations of

  1. Low digit ratio 2D:4D in alcohol dependent patients.

    Kornhuber, Johannes; Erhard, Gabriele; Lenz, Bernd; Kraus, Thomas; Sperling, Wolfgang; Bayerlein, Kristina; Biermann, Teresa; Stoessel, Christina

    2011-01-01

    The ratio of the lengths of the second and fourth finger (2D∶4D) has been described as reflecting the degree of prenatal androgen exposure in humans. 2D∶4D is smaller for males than females and is associated with traits such as left-handedness, physical aggression, attention-deficit-hyperactivity disorder and a genetic polymorphism of the androgen receptor. All of these traits are known to be correlated to the vulnerability for alcohol dependency. We therefore hypothesized low 2D∶4D in patients with alcohol dependency. In the present study on 131 patients suffering from alcohol dependency and 185 healthy volunteers, we found that alcohol dependent patients had smaller 2D∶4D ratios compared to controls with preserved sexual dimorphism but with reduced right-left differences. The detection of alcohol dependency based on 2D∶4D ratios was most accurate using the right hand of males (ROC-analysis: AUC 0.725, sensitivity 0.667, specificity 0.723). These findings provide novel insights into the role of prenatal androgen exposure in the development of alcohol dependency and for the use of 2D∶4D as a possible trait marker in identifying patients with alcohol dependency. PMID:21547078

  2. Low digit ratio 2D:4D in alcohol dependent patients.

    Johannes Kornhuber

    Full Text Available The ratio of the lengths of the second and fourth finger (2D∶4D has been described as reflecting the degree of prenatal androgen exposure in humans. 2D∶4D is smaller for males than females and is associated with traits such as left-handedness, physical aggression, attention-deficit-hyperactivity disorder and a genetic polymorphism of the androgen receptor. All of these traits are known to be correlated to the vulnerability for alcohol dependency. We therefore hypothesized low 2D∶4D in patients with alcohol dependency. In the present study on 131 patients suffering from alcohol dependency and 185 healthy volunteers, we found that alcohol dependent patients had smaller 2D∶4D ratios compared to controls with preserved sexual dimorphism but with reduced right-left differences. The detection of alcohol dependency based on 2D∶4D ratios was most accurate using the right hand of males (ROC-analysis: AUC 0.725, sensitivity 0.667, specificity 0.723. These findings provide novel insights into the role of prenatal androgen exposure in the development of alcohol dependency and for the use of 2D∶4D as a possible trait marker in identifying patients with alcohol dependency.

  3. Control of glyphosate resistant hairy fleabane (Conyza bonariensis with dicamba and 2,4-D Controle de buva (Conyza bonariensis resistente ao glyphosate com dicamba e 2,4-D

    D.J. Soares

    2012-06-01

    Full Text Available Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis. The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.Os herbicidas mimetizadores de auxinas como dicamba e 2,4-D são alternativas para o controle de buva resistente ao glyphosate. Com a possível futura liberação comercial de culturas resistentes ao dicamba e 2,4-D, a aplicação destes herbicidas reguladores de crescimento será uma provável alternativa de controle de buva resistente ao glyphosate. O objetivo desta pesquisa foi modelar por meio de curvas de dose-resposta a efic

  4. Progress in selection for sodium chloride, 2,4-D dichlorophenoxy acetic acid (2,4-D) and streptomycin tolerance in Citrus sinensis ovular callus lines

    Citrus sinensis (cultivar Shamouti) nucellar embryogenic callus lines with greatly increased tolerance to salinity (NaCl), 2,4-D and streptomycin were selected. Selected lines were found stable after removal of selection pressure. Gamma irradiation at 8-16 kR was also employed and found to speed up selections. Embryos from NaCl and 2,4-D tolerant lines also showed increased tolerance. Embryogenesis in selected lines, suppressed during selection procedures, was regained by growing cultures in the presence of galactose or lactose as the sole carbon source. A schedule was worked out furthering development of embryos into plantlets. Conditions for adventive shoot formation from embryonic shoot segments were established, thus allowing cloning of embryos. A procedure was worked out for suspension culture and agar plating of cell groups. (author)

  5. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  6. High temporal and high spatial resolution MR angiography (4D-MRA); Zeitlich und raeumlich hochaufgeloeste MR-Angiografie ('4D-MRA')

    Hadizadeh, D.R.; Marx, C.; Gieseke, J.; Willinek, W.A. [Bonn Univ. (Germany). Radiology; Schild, H.H.

    2014-09-15

    In the first decade of the twenty-first century, whole-body magnetic resonance scanners with high field strengths (and thus potentially better signal-to-noise ratios) were developed. At the same time, parallel imaging and 'echo-sharing' techniques were refined to allow for increasingly high spatial and temporal resolution in dynamic magnetic resonance angiography ('time-resolved' = TR-MRA). This technological progress facilitated tracking the passage of intravenously administered contrast agent boluses as well as the acquisition of volume data sets at high image refresh rates ('4D-MRA'). This opened doors for many new applications in non-invasive vascular imaging, including simultaneous anatomic and functional analysis of many vascular pathologies including arterio-venous malformations. Different methods were established to acquire 4D-MRA using various strategies to acquire k-space trajectories over time in order to optimize imaging according to clinical needs. These include 'keyhole'-based techniques (e.g. 4D-TRAK), TRICKS - both with and without projection -and HYPR-reconstruction, TREAT, and TWIST. Some of these techniques were first introduced in the 1980s and 1990s, were later enhanced and modified, and finally implemented in the products of major vendors. In the last decade, a large number of studies on the clinical applications of TR-MRA was published. This manuscript provides an overview of the development of TR-MRA methods and the 4D-MRA techniques as they are currently used in the diagnosis, treatment and follow-up of vascular diseases in various parts of the body. (orig.)

  7. FINGER LENGTH RATIO (2D:4D) IN LEFT- AND RIGHT-HANDED FEMALES: EVIDENCE SUPPORTING GESCHWIND AND GALABURDA HYPOTHESIS

    I. Pashalieva; Nikolova, P.

    2011-01-01

    The finger length ratio (2D:4D) is a biomarker for the prenatal levels of testosterone. The prenatal effects of testosterone on the brain are considered as a key factor in the etiology of left-handedness. In our previous study we established that handedness-related peculiarities in 2D:4D exist in males. In the present study right hand 2D:4D, left hand 2D:4D, average 2D:4D and the difference between right and left 2D:4D (Dr–l) were compared between left- and right-handed females. The results o...

  8. Thoracic Tumor Volume Delineation in 4D-PET/CT by Low Dose Interpolated CT for Attenuation Correction

    Huang, Tzung-Chi; Wang, Yao-Ching; Kao, Chia-Hung

    2013-01-01

    Purpose 4D-PET/CT imaging is an excellent solution for reducing the breathing-induced effects in both CT and PET images. In 4D-PET/CT, 4D-CT images are selected to match those of 4D-PET phase by phase and the corresponding phases are used for attenuation correction in 4D-PET. However, the high radiation dose that patients acquire while undergoing 4D-CT imaging for diagnostic purposes remains a concern. This study aims to assess low-dose interpolated CT (ICT) for PET attenuation correction (PE...

  9. Analytical methods for 2,4-D (Dichlorophenoxyacetic acid) determination; Metodos analiticos para la determinacion del 2,4-D (Acido diclorofenoxiacetico)

    Martinez G, M.S.M

    1999-06-01

    The 2,4-D herbicide is one of the main pesticides for controlling the bad grass in crops such as the water undergrowth. In Mexico the allowed bound of this pesticide is 0.05 mg/l in water of 2,4-D so it is required to have methods trusts and exacts, which can used in order to detected low concentration of it. In this work we show some for the conventional techniques and for establishing the 2,4-D concentrations. The UV-Vis spectrometer and liquids chromatography due that they are the most common used nowadays. Beside, we introduce a now developed technique, which is based on the neutronic activation analysis. Though use of the UV-Vis spectrometer technique it was possible target the concentrations interval between 1 and 200 mg/l. In the liquids chromatography interval was between 0.1 and 0.9, and by the neutronic activation analysis the interval was between 0.01 and 200 mg/l. (Author)

  10. Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cells of carrot

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    A mixed culture comprised of both embryonic globules and nonembryogenic callus was derived from seedling hypocotyls of Daucus carota cv. Scarlet Nantes on 2,4-D- containing medium using well-established methods. Then the mixed cultures were transferred to, and serially subcultured on, a hormone-free medium near pH 4. The medium contained 1 mM NH4+ as the sole nitrogen source. When cultured in this way, embryonic globules were able to multiply without development into later embryo stages. Nonembryogenic callus did not survive. Continuous culture of embryonic globules on this low pH hormone-free medium yielded cultures consisting entirely of preglobular stage proembryos (PGSPs). PGSP cultures have been maintained as such with continuous multiplication for nearly 2 years without loss of embryogenic potential. These hormone-free-maintained PGSPs continue their development to later embryo stages when cultured on the same hormone-free medium buffered at pH 5.8. We show that hormone-free medium near pH 4 can replace 2,4-D in its ability to sustain multiplication of 2,4-D-initiated embryogenic cells of carrot at an acceptable growth rate without their development into later embryo stages. This procedure provides selective conditions that do not permit the growth of non-embryogenic cells while providing an adequate environment for embryogenic cell proliferation and should prove invaluable in studying habituation.

  11. Photo-Fenton degradation of the herbicide 2,4-D in aqueous medium at pH conditions close to neutrality.

    Conte, Leandro O; Schenone, Agustina V; Alfano, Orlando M

    2016-04-01

    A theoretical and experimental study of the photo-Fenton degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in water is presented. A kinetic model derived from a reaction sequence is proposed using the ferrioxalate complex as iron source for conditions of pH = 5. The kinetic model was employed to predict the concentrations of 2,4-D, 2,4-dichlorophenol (2,4-DCP), hydrogen peroxide (HP) and oxalate (Ox) in a flat plate laboratory reactor irradiated with a solar simulator. Two types of incident irradiation levels were tested by different combinations of attenuation filters. The effects of the oxalate/Fe(+3) molar ratio (Ox/Fe), the reaction temperature (T) and the 2,4-D/HP molar ratio (R) on the photo-Fenton process were also investigated. For low radiation level and operating conditions of R = 50 and T = 50 °C, a 2,4-D conversion of 95.6% was obtained after 180 min. Moreover, the 2,4-D conversion was almost 100% in only 120 min when the system was operated under the same operating conditions and high radiation level. From the proposed model and the experimental data, the corresponding kinetic parameters were estimated applying a nonlinear regression method. A good agreement between the kinetic model and experimental data, for a wide range of simulated solar operating conditions, was observed. For 2,4-D, 2,4-DCP, HP and Ox concentrations, the calculated RMSE were 1.21 × 10(-2), 5.45 × 10(-3), 2.86 × 10(-1) and 2.65 × 10(-2) mM, respectively. PMID:26800432

  12. Constrained adaptive bias correction for satellite radiances assimilation in the ECMWF 4D-Var

    Han, Wei; Bormann, Niels

    2016-04-01

    Satellite radiance observations are typically affected by biases that arise from uncertainties in the absolute calibration, the radiative transfer modeling, or other aspects. These biases have to be removed for the successful assimilation of the data in NWP systems. Two key problems have been identified in bias correction: Firstly, bias corrections can drift towards unrealistic values in regions where there is strong model error and relatively few "anchor" observations, ie, observations that have little systematic error and therefore allow the separation between model and observation bias. Examples where this has been particularly problematic are channels sensitive to ozone or stratospheric temperature. Secondly, there is undesired interaction between the quality control and bias correction for observations where bias-corrected observation departures are used for quality control and where these departures show skewed distributions (e.g., in case of cloud detection). In the study, we investigated potential solutions to these problems by providing further constraints using potential available information, such as constraints on the size of the bias correction and innovative bias correction metrics using uncertainty estimation from calibration and radiative transfer. This has been studied in the full ECMWF global 4D-Var system, using data from microwave sounders which are sensitive to stratospheric temperature. The resulting enhanced bias corrections was assessed in the context of other assimilated observations (in particular radiosondes and GPS radio occultation measurements), and through comparisons of MLS temperature retrieval data in stratosphere and mesosphere. The constrained adaptive bias correction of AMSU-A stratospheric sounding channels reduces the biases in stratosphere and improves the medium range forecasts in both stratosphere and troposphere.

  13. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71

    Lizhen Han

    2015-06-01

    Full Text Available An indigenous bacterial strain capable of utilizing 2,4-dichlorophenoxyacetic acid as the sole carbon and energy source was isolated from a soil used for grown wheat with a long-term history of herbicide use in Beijing, China. The strain BJ71 was identified as Cupriavidus campinensis based on its 16S rRNA sequence analysis and morphological, physiological, and biochemical characteristics. The degradation characteristics of strain BJ71 were evaluated. The optimal conditions for 2,4-D degradation were as follows: pH 7.0, 30 °C, 3% (v/v inoculum size, and an initial 2,4-D concentration of 350 mg L−1. Up to 99.57% of the 2,4-D was degraded under optimal conditions after 6 days of incubation. Strain BJ71 was also able to degrade quizalofop and fluroxypyr. This is the first report of a 2,4-D-degrader containing tfdA gene that can utilize these two herbicides. In a biodegradation experiment, 87.13% and 42.53% of 2,4-D (initial concentration, 350 mg kg−1 was degraded in non-sterile and sterilized soil inoculated with BJ71, respectively, after 14 days. The 2,4-D degradation was more rapid in a soil microcosm including BJ71 than in a soil microcosm without BJ71. These results indicate that strain BJ71 is a potential candidate for the bioremediation of soil contaminated with the herbicide 2,4-D.

  14. 4D optimization of scanned ion beam tracking therapy for moving tumors

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-07-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.

  15. Evolution calculations of fuel for a GFR using MCNPX-C90 and Tripoli-4-D; Calculos de evolucion de combustible para un GFR usando MCNPX-C90 y TRIPOLI-4-D

    Reyes R, R.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Brun, E.; Dumonteil, E.; Malvagi, F., E-mail: emeric.brun@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternative, Service d' Etude des Reacteurs et de Mathematiques Appliquees, Saclay, DEN/DM2S/SERMA/LTSD, Bat 470, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    Burnt calculations were realized for a fuel model based on the technology of the Gas-cooled Fast Reactor, GFR. The fuel design is based on bars. The code MCNPX-CINDER90 and the CSADA method for the burnt calculations were used. Models of homogeneous and heterogeneous fuel assembly were studied; for the burnt calculations of the fuel homogeneous model was considered the tracking of three series (Tiers) of evolution of the fission products. The Tier 1 tracks a reduced group of fission products, the Tier 2 tracks to the arrangement of fission products that are contained in the library of cross sections XSDIR of MCNPX; and the Tier 3 tracks 1325 fission products. The results were compared with those obtained with Tripoli-4-D in function of the calculation methods: 1) Explicit Euler, as method of first order; and 2) CSADA, as method of second order. According to the results was observed that the infinite multiplication factor varies in function of the fission products quantity that are tracked. The calculation time used by MCNPX-C90 with the series Tier 3 is more than double than the used by Tripoli-4-D, therefore this last code has advantage over MCNPX-C90 in the case of neutrons analysis of fast reactors. (Author)

  16. A Brief Review of the Singularities in 4D and 5D Viscous Cosmologies Near the Future Singularity

    Brevik, I.; Gorbunova, O.

    2008-01-01

    Analytic properties of physical quantities in the cosmic fluid such as energy density \\rho(t) and Hubble parameter H(t) are investigated near the future singularity (Big Rip). Both 4D and 5D cosmologies are considered (the Randall-Sundrum II model in the 5D case), and the fluid is assumed to possess a bulk viscosity \\zeta. We consider both Einstein gravity and modified gravity, where in the latter case the Lagrangian contains a term R^\\alpha with \\alpha a constant. If \\zeta is proportional to...

  17. Corrections to ocean surface forcing in the California Current System using 4D variational data assimilation

    Broquet, G.; Moore, A. M.; Arango, H. G.; Edwards, C. A.

    The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction

  18. Association between PDE4D gene and ischemic stroke: recent advancements.

    Das, Satrupa; Roy, Sitara; Munshi, Anjana

    2016-07-01

    Stroke is a severe complication and a leading cause of death worldwide and genetic studies among different ethnicities has provided the basis for involvement of phosphodiesterase 4D (PDE4D) gene in cerebrovascular diseases. Recent advancements have evaluated the role of this gene in stroke and these studies have provided a stronger support for the involvement of this gene in stroke development and few studies also suggest that it may influence outcome. Furthermore, case-control studies and meta-analysis studies have provided strong evidence for certain variants in PDE4D to predispose to stroke only among certain ethnicities. Thus, this review focuses on recent progress made in PDE4D gene research involving genetic, molecular and pharmacological aspect. A strong conclusion has emerged that clearly indicates a pivotal role played by this gene in ischemic stroke globally. Studies have also noticeably highlighted that PDE4D gene/pathway can be a suitable drug target for managing stroke; however, a more comprehensive research is still required to understand the molecular and cellular intricacies this gene plays in stroke development, progression and its outcome. PMID:26004910

  19. 4D Scattering Amplitudes and Asymptotic Symmetries from 2D CFT

    Cheung, Clifford; Sundrum, Raman

    2016-01-01

    We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors o...

  20. Impact of 4D image quality on the accuracy of target definition.

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape. PMID:26577711

  1. Absorption and degradation of 14C-2, 4-D by some free-floating aquatic weeds

    Plants of Salvinia, Lemna, Azolla and Limnobium, which are free-floating aquatic weeds, were grown separately in glass dishes containing initially 400 ml of nutrient solution and 2 μCi of 14C-2,4-D under controlled conditions of temperature, light and relative humidity. The total uptake of 2,4-D by these plant species increased with the increasing duration of exposure to herbicide. 2,4-D uptake, calculated on per unit dry weight of weed, was maximum in case of Limnobium, followed by Salvinia, Lemna and Azolla. After 20 days of treatment, the highest radioactivity (24%) was obtained in the organic fraction of the extracts of Limnobium and Azolla; followed by Salvinia (8%) and Lemna (6%). In a separate experiment, root uptake and subsequent translocation of 14C-2,4-D was also studied. At all the stages of sampling, more than half to 3/4th of the absorbed 14C-2,4-D was found in the roots, and the remaining was present in the shoot. (author)

  2. Using 2D: 4D digit ratios to determine motor skills in children.

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills. PMID:27010133

  3. Alur Kerja Tahap Produksi Karakter Animasi Serial 3D Menggunakan Perangkat Lunak Maxon Cinema 4D

    Ardiyan

    2011-03-01

    Full Text Available 3D Animation serial for television needs have been showed in the national television program, especially fantasy theme and educational program for children. There are so many and sequential needs which tricked by instant and high-quality production so the work flow in creating 3D animation serial are facilitating the producers. The article will explain specifically how the software of Maxon Cinema 4D in process production in 3D animation serial. The article will also clarify and focus on how the work flow of Maxon Cinema 4D software in processing production and post-production stages. The writer does research including audio visual tutorial, end-result comparison and rendering time between some software, self-observation of work flow in creating 3D animation serial using Maxon Cinema 4D software and digital literature study (e-book.

  4. Attosecond delay of xenon $4d$ photoionization at the giant resonance and Cooper minimum

    Magrakvelidze, Maia; Chakraborty, Himadri S

    2016-01-01

    A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4d photoionization that involves the 4d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al, Phys. Rev. A 91, 033413 (2015)]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3p minimum [S. B. Schoun et al, Phys. Rev. Lett. 112, 153001 (2014)] is found. The result should encourage attosecond measurements of Xe 4d photoemission.

  5. Soccer players awarded one or more red cards exhibit lower 2D:4D ratios.

    Mailhos, Alvaro; Buunk, Abraham P; Del Arca, Denise; Tutte, Verónica

    2016-09-01

    Anatomical, cognitive and behavioral sex differences are widely recognized in many species. It has been proposed that some of these differences might result from the organizing effects of prenatal sex steroids. In humans, males usually exhibit higher levels of physical aggression and prowess. In this study, we analyze the relationship between second-to-fourth digit (2D:4D) ratios-a proxy for prenatal androgen levels-and foul play and sporting performance in a sample of junior soccer players from a professional Uruguayan soccer club. Our results show that the most aggressive players (i.e., those awarded one or more red cards) have a more masculine finger pattern (lower 2D:4D ratio), while no relationship could be found between sporting performance and 2D:4D ratios. The results are discussed in the context of previous findings. Aggr. Behav. 42:417-426, 2016. © 2015 Wiley Periodicals, Inc. PMID:26699684

  6. Live 4D optical coherence tomography for early embryonic mouse cardiac phenotyping

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.

    2016-03-01

    Studying embryonic mouse development is important for our understanding of normal human embryogenesis and the underlying causes of congenital defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development using optical coherence tomography (OCT). We have previously developed imaging approaches that combine static embryo culture, OCT imaging and advanced image processing to visualize the whole live mouse embryos and obtain 4D (3D+time) cardiodynamic datasets with cellular resolution. Here, we present the study of using 4D OCT for dynamic imaging of early embryonic heart in live mouse embryos to assess mutant cardiac phenotypes during development, including a cardiac looping defect. Our results indicate that the live 4D OCT imaging approach is an efficient phenotyping tool that can reveal structural and functional cardiac defects at very early stages. Further studies integrating live embryonic cardiodynamic phenotyping with molecular and genetic approaches in mouse mutants will help to elucidate the underlying signaling defects.

  7. Term structure of 4d-electron configurations and calculated spectrum in Sn-isonuclear sequence

    Theoretical calculations of term structure are carried out for the ground configurations 4dw, of atomic ions in the Sn isonuclear sequence. Atomic computations are performed to give a detailed account of the transitions in Sn+6 to Sn+13 ions. The spectrum is calculated for the most important excited configurations 4p5 4dn+1, 4dn-1 4f1, and 4dn-1 5p1 with respect to the ground configuration 4dn, with n=8-1, respectively. The importance of 4p-4d, 4d-4f, and 4d-5p transitions is stressed, as well as the need for the configuration-interaction CI treatment of the Δn=0 transitions. In the region of importance for extreme ultraviolet (EUV) lithography around 13.4nm, the strongest lines were expected to be 4dn-4p5 4dn+1 and 4dn-4dn-1 4f1

  8. Development of software tools for 4-D visualization and quantitative analysis of PHITS simulation results

    A suite of software tools has been developed to facilitate the development of apparatus using a radiation transport simulation code PHITS by enabling 4D visualization (3D space and time) and quantitative analysis of so-called dieaway plots. To deliver useable tools as soon as possible, the existing software was utilized as much as possible; ParaView will be used for the 4D visualization of the results, whereas the analyses of dieaway plots will be done with ROOT toolkit with a tool named “diana”. To enable 4D visualization using ParaView, a group of tools (angel2vtk, DispDCAS1, CamPos) has been developed for the conversion of the data format to the one which can be read from ParaView and to ease the visualization. (author)

  9. Lipiodol versus diaphragm in 4D-CBCT-guided stereotactic radiotherapy of hepatocellular carcinomas

    Chan, Mark K.H.; Lee, Venus; Chiang, C.L.; Lee, Francis A.S.; Law, Gilbert; Wong, Frank C.S.; Tung, Stewart Y.; Luk, Hollis [TuenMun Hospital, Department of Clinical Oncology, TuenMun, Hong Kong (China); Sin, N.Y.; Siu, K.L. [TuenMun Hospital, Department of Diagnostic Radiology, TuenMun, Hong Kong (China); Blanck, Oliver [University Clinic Schleswig-Holstein, Department of Radiation Oncology, Saphir Radiosurgery Center, Kiel (Germany)

    2016-02-15

    The purpose of this work was to investigate the potential of lipiodol as a direct tumor surrogate alternative to the diaphragm surrogate on four-dimensional cone-beam computed tomography (4D-CBCT) image guidance for stereotactic radiotherapy of hepatocellular carcinomas. A total of 29 hepatocellular carcinomas (HCC) patients treated by stereotactic radiotherapy following transarterial chemoembolization (TACE) with homogeneous or partial defective lipiodol retention were included. In all, 4-7 pretreatment 4D-CBCT scans were selected for each patient. For each scan, either lipiodol or the diaphragm was used for 4D registration. Resulting lipiodol/diaphragm motion ranges and position errors relative to the reconstructed midventilation images were analyzed to obtain the motion variations, and group mean (ΔM), systematic (Σ), and random (σ) errors of the treatment setup. Of the lipiodolized tumors, 55 % qualified for direct localization on the 4D-CBCT. Significant correlations of lipiodol and diaphragm positions were found in the left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions. ΔM and σ obtained with lipiodol and diaphragm were similar, agreed to within 0.5 mm in the LR and AP, and 0.3 mm in the CC directions, and Σ differed by 1.4 (LR), 1.1 (CC), and 0.6 (AP) mm. Variations of diaphragm motion range > 5 mm were not observed with lipiodol and in one patient with diaphragm. The margin required for the tumor prediction error using the diaphragm surrogate was 6.7 (LR), 11.7 (CC), and 4.1 (AP) mm. Image-guidance combining lipiodol with 4D-CBCT enabled accurate localization of HCC and thus margin reduction. A major limitation was the degraded lipiodol contrast on 4D-CBCT. (orig.) [German] Ziel dieser Studie war es, das Potential von Lipiodol als direktes Tumorsurrogat alternativ zum Zwerchfellsurrogat fuer die vierdimensionale Cone-beam-Computertomographie (4D-CBCT) in der stereotaktischen Strahlentherapie von hepatozellulaeren Karzinomen (HCC

  10. Digit ratio (2D:4D) and gender inequalities across nations.

    Manning, John T; Fink, Bernhard; Trivers, Robert

    2014-01-01

    Gender inequality varies across nations, where such inequality is defined as the disproportionate representation of one sex over the other in desirable social, economic, and biological roles (typically male over female). Thus in Norway, 40% of parliamentarians are women, in the USA 17%, and in Saudi Arabia 0%. Some of this variation is associated with economic prosperity but there is evidence that this cause and effect can go in either direction. Here we show that within a population the average ratio of index (2D) to ring (4D) finger lengths (2D:4D)-a proxy measure of the relative degree to which offspring is exposed in utero to testosterone versus estrogen-is correlated with measures of gender inequality between nations. We compared male and female 2D:4D ratios to female parliamentary representation, labor force participation, female education level, maternal mortality rates, and juvenile pregnancy rates per nation in a sample of 29 countries. We found those nations who showed higher than expected female fetal exposure to testosterone (low 2D:4D) and lower than expected male exposure to fetal testosterone (high 2D:4D) had higher rates of female parliamentary representation, and higher female labor force participation. In short, the more similar the two sexes were in 2D:4D, the more equal were the two sexes in parliamentary and labor force participation. The other variables were not as strongly correlated. We suggest that higher than expected fetal testosterone in females and lower fetal testosterone in males may lead to high female representation in the national labor force and in parliament. PMID:25300052

  11. Exome Sequencing Identifies PDE4D Mutations as Another Cause of Acrodysostosis

    Michot, Caroline; Le Goff, Carine; Goldenberg, Alice; Abhyankar, Avinash; Klein, Céline; Kinning, Esther; Guerrot, Anne-Marie; Flahaut, Philippe; Duncombe, Alice; Baujat, Genevieve; Lyonnet, Stanislas; Thalassinos, Caroline; Nitschke, Patrick; Casanova, Jean-Laurent; Le Merrer, Martine; Munnich, Arnold; Cormier-Daire, Valérie

    2012-01-01

    Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368∗]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368∗] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis. PMID:22464250

  12. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    XU Fei; WANG Ke-Lin; WAN Shao-Long; CHEN Qing

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we usenon-Abelian Berry phase to analyze the statistics of this membrane wave function. Our results show that the membranewave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensional spacethan 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  13. The Fractional Statistics of Generalized Haldane Wave Function in 4D Quantum Hall Effect

    WANGKe-Lin; WANShao-Long; CHENQing; XUFei

    2003-01-01

    Recently, a generalization of Laughlin's wave function expressed in Haldane's spherical geometry is con-structed in 4D quantum Hall effect. In fact, it is a membrane wave function in CP3 space. In this article, we use non-Abelian Berry phase to anaJyze the statistics of this membrane wave function. Our results show that the membrane wave function obeys fractional statistics. It is the rare example to realize fractional statistics in higher-dimensiona space than 2D. And, it will help to make clear the unresolved problems in 4D quantum Hall effect.

  14. Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI

    van der Geest, Rob J; Garg, Pankaj

    2016-01-01

    Purpose of the Review Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and ...

  15. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    Aristophanous, Michalis, E-mail: maristophanous@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Berbeco, Ross I.; Killoran, Joseph H. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Yap, Jeffrey T. [Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States)

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  16. Chern-Simons Actions and Their Gaugings in 4D, N=1 Superspace

    Becker, Katrin; Linch, William D; Robbins, Daniel

    2016-01-01

    We gauge the abelian hierarchy of tensor fields in 4D by a Lie algebra. The resulting non-abelian tensor hierarchy can be interpreted via an equivariant chain complex. We lift this structure to N=1 superspace by constructing superfield analogs for the tensor fields, along with covariant superfield strengths. Next we construct Chern-Simons actions, for both the bosonic and N=1 cases, and note that the condition of gauge invariance can be presented cohomologically. Finally, we provide an explicit realization of these structures by dimensional reduction, for example by reducing the three-form of eleven-dimensional supergravity into a superspace with manifest 4D, N=1 supersymmetry.

  17. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives

    Asma Agrebi; Fatma Allouche; Hamadi Fetoui; Fakher Chabchoub

    2014-01-01

    Several new pyrazolopyrimidine compounds were achieved from aminocyanopyarazole 1. The starting material 1 was initially coupled with orthoester at refluxed with various primary amines, ammonia, hydrazines and hydroxylamine to furnish a series of pyrazolo[3,4-d]pyrimidines. The reaction of imidate 2a-b with hydrazide derivatives led to the formation of pyrazolo[3,4-d][1,2,4]triazolo[4,3-c]pyrimidines. Some of the synthesized compounds 3a and 4c were evaluated for the...

  18. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    consideration, particularly for patients exhibiting motion amplitudes of above 1cm and a sufficiently large number of detected true coincidences during their post-irradiation PET scan. Despite the application of an optimised PET image reconstruction scheme, as retrieved from a dedicated phantom imaging study in the scope of this work, the small number of counts and the resulting high level of image noise were identified as a major limiting factor for the detection of motion-induced dose inhomogeneities within the patient. Moreover, the biological washout modelling of the irradiation-induced isotopes proved to be not sufficiently accurate and thereby impede a quantitative analysis of measured and simulated data under consideration of target motion. In future, improvements are particularly foreseen through dedicated noise-robust time-resolved (4D) image reconstruction algorithms, an improved tracking of the organ motion, e.g., by ultrasound (US) imaging, as implemented for the first time in 4D PET imaging in the scope of this work, as well as by patient-specific washout models.

  19. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    Kurz, Christopher

    2014-06-12

    consideration, particularly for patients exhibiting motion amplitudes of above 1cm and a sufficiently large number of detected true coincidences during their post-irradiation PET scan. Despite the application of an optimised PET image reconstruction scheme, as retrieved from a dedicated phantom imaging study in the scope of this work, the small number of counts and the resulting high level of image noise were identified as a major limiting factor for the detection of motion-induced dose inhomogeneities within the patient. Moreover, the biological washout modelling of the irradiation-induced isotopes proved to be not sufficiently accurate and thereby impede a quantitative analysis of measured and simulated data under consideration of target motion. In future, improvements are particularly foreseen through dedicated noise-robust time-resolved (4D) image reconstruction algorithms, an improved tracking of the organ motion, e.g., by ultrasound (US) imaging, as implemented for the first time in 4D PET imaging in the scope of this work, as well as by patient-specific washout models.

  20. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy

    Purpose: Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. Methods: For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an ''effective overlap volume histogram'' the authors derived an ''interpolated balanced planning target'' intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing

  1. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    Purpose: To evaluate a 4D-CBCT reconstruction technique both geometrically and dosimetrically Methods: A prior-knowledge guided 4DC-BCT reconstruction method named the motion-modeling and free-form deformation (MM-FD) has been developed. MM-FD views each phase of the 4D-CBCT as a deformation of a prior CT volume. The deformation field is first solved by principal component analysis based motion modeling, followed by constrained free-form deformation.The 4D digital extended-cardiac- torso (XCAT) phantom was used for comprehensive evaluation. Based on a simulated 4D planning CT of a lung patient, 8 different scenarios were simulated to cover the typical on-board anatomical and respiratory variations: (1) synchronized and (2) unsynchronized motion amplitude change for body and tumor; tumor (3) shrinkage and (4) expansion; tumor average position shift in (5) superior-inferior (SI) direction, (6) anterior-posterior (AP) direction and (7) SI, AP and lateral directions altogether; and (8) tumor phase shift relative to the respiratory cycle of the body. Orthogonal-view 30° projections were simulated based on the eight patient scenarios to reconstruct on-board 4D-CBCTs. For geometric evaluation, the volume-percentage-difference (VPD) was calculated to assess the volumetric differences between the reconstructed and the ground-truth tumor.For dosimetric evaluation, a gated treatment plan was designed for the prior 4D-CT. The dose distributions were calculated on the reconstructed 4D-CBCTs and the ground-truth images for comparison. The MM-FD technique was compared with MM-only and FD-only techniques. Results: The average (±s.d.) VPD values of reconstructed tumors for MM-only, FDonly and MM-FD methods were 59.16%(± 26.66%), 75.98%(± 27.21%) and 5.22%(± 2.12%), respectively. The average min/max/mean dose (normalized to prescription) of the reconstructed tumors by MM-only, FD-only, MM-FD methods and ground-truth tumors were 78.0%/122.2%/108.2%, 13%/117.7%/86%, 58

  2. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  3. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  4. 4d quantum geometry from 3d supersymmetric gauge theory and holomorphic block

    Han, Muxin

    2016-01-01

    A class of 3d N=2 supersymmetric gauge theories are constructed and shown to encode the simplicial geometries in 4-dimensions. The gauge theories are defined by applying the Dimofte-Gaiotto-Gukov construction [1] in 3d-3d correspondence to certain graph complement 3-manifolds. Given a gauge theory in this class, the massive supersymmetric vacua of the theory contain the classical geometries on a 4d simplicial complex. The corresponding 4d simplicial geometries are locally constant curvature (either dS or AdS), in the sense that they are made by gluing geometrical 4-simplices of the same constant curvature. When the simplicial complex is sufficiently refined, the simplicial geometries can approximate all possible smooth geometries on 4-manifold. At the quantum level, we propose that a class of holomorphic blocks defined in [2] from the 3d N=2 gauge theories are wave functions of quantum 4d simplicial geometries. In the semiclassical limit, the asymptotic behavior of holomorphic block reproduces the classical action of 4d Einstein-Hilbert gravity in the simplicial context.

  5. The 2D:4D digit ratio as biomarker for substance abuse

    Fernstrand, A.M.; Van Den Borne, L.; Lensvelt, L.M.H.; Ribbert, L.L.A.; De With, A.C.; Goede, L.X.Y.; Garssen, J.; Verster, J.C.

    2015-01-01

    Purpose: The second (2D, index finger) to fourth (4D, ring finger) digit ratio is a biomarker for prenatal testosterone and estrogen exposure. It has been hypothesized that the developmental origins of health and behavior are modulated by the presence or absence of prenatal sex hormones. Several stu

  6. 2D : 4D Is Negatively Associated to Aggressive Dominance in Men: A Response to Voracek

    van der Meij, Leander; Almela, Mercedes; Buunk, Abraham P.; Dubbs, Shelli; Salvador, Alicia

    2013-01-01

    We do not agree with the interpretation and evaluation of our article by Voracek. We feel that our results and our interpretation of the results are supported by our data analyses and do add to the current understanding of the relationship between 2D:4D and personality. We feel confident we can addr

  7. Contrast enhanced 4D-CT imaging for target volume definition in pancreatic ductal adenocarcinoma

    A procedure to improve target volume definition in pancreatic ductal adenocarcinoma by contrast enhanced 4D-CT imaging has been implemented for radiotherapy planning. The procedure allows good quality images to be obtained over the whole patient's breathing cycle in terms of anatomical details, pancreatic enhancement and vessel definition

  8. Experimental investigation of irregular motion impact on 4D PET-based particle therapy monitoring.

    Tian, Y; Stützer, K; Enghardt, W; Priegnitz, M; Helmbrecht, S; Bert, C; Fiedler, F

    2016-01-21

    Particle therapy positron emission tomography (PT-PET) is an in vivo and non-invasive imaging technique to monitor treatment delivery in particle therapy. The inevitable patient respiratory motion during irradiation causes artefacts and inaccurate activity distribution in PET images. Four-dimensional (4D) maximum likelihood expectation maximisation (4D MLEM) allows for a compensation of these effects, but has up to now been restricted to regular motion for PT-PET investigations. However, intra-fractional motion during treatment might differ from that during acquisition of the 4D-planning CT (e.g. amplitude variation, baseline drift) and therefore might induce inaccurate 4D PET reconstruction results. This study investigates the impact of different irregular analytical one-dimensional (1D) motion patterns on PT-PET imaging by means of experiments with a radioactive source and irradiated moving phantoms. Three sorting methods, namely phase sorting, equal amplitude sorting and event-based amplitude sorting, were applied to manage the PET list-mode data. The influence of these sorting methods on the motion compensating algorithm has been analysed. The event-based amplitude sorting showed a superior performance and it is applicable for irregular motions with ⩽ 4 mm amplitude elongation and drift. For motion with 10 mm baseline drift, the normalised root mean square error was as high as 10.5% and a 10 mm range deviation was observed. PMID:26733104

  9. Cytotoxicity of poly(96L/4D-lactide) : the influence of degradation and sterilization

    Cordewener, FW; Joziasse, CAP; Schmitz, JP; Bos, RRM; Rozema, FR; Pennings, AJ

    2000-01-01

    The cytotoxicity of poly(96L/4D-lactide) (PLA96), and of its accumulated degradation products, was investigated following different sterilization methods and pre-determined heat-accelerated degradation intervals. PLA96 samples sterilized by either steam, ethylene oxide, or gamma irradiation were lef

  10. Evaluation of Elekta SymmetryTM 4D IGRT system by using moving lung phantom

    Shin, Hun-Joo; Kay, Chul Seung; Seo, Jae-Hyuk; Lee, Gi-Woong; Kang, Ki-Mun; Jang, Hong Seok; Kang, Young-nam

    2015-01-01

    Purpose: 4D CBCT is a beneficial tool for the treatment of movable tumors, because it can help us to understand where the tumors are actually located and have a precise treatment plan. However, there is a limitation that general CBCT images cannot perfectly help the sophisticated registration. On the other hand, SymmetryTM 4D IGRT system of Elekta can offer the 4D CBCT registration option. In this study, we intend to evaluate the usefulness of SymmetryTM. Method and Materials: Planning CT images of the CIRS moving lung phantom were acquired from 4D MDCT. And they are sorted as 10 phases from 0% phase to 90% phase. The thickness of CT images was 1 mm. Acquired MDCT images were transferred to the contouring software and a virtual target was generated. An one arc VMAT plan was performed by using the treatment planning system on the virtual target. Finally, the movement of the phantom was verified through XVI SymmetryTM system. Results: The physical movement of CIRS moving lung phantom was +/- 10.0 mm in superior...

  11. Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations

    Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent

    2015-03-01

    To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.

  12. Discretization independence implies non-locality in 4D discrete quantum gravity

    The 4D Regge action is invariant under 5–1 and 4–2 Pachner moves, which define a subset of (local) changes of the triangulation. Given this fact, one might hope to find a local path integral measure that makes the quantum theory invariant under these moves and hence makes the theory partially triangulation invariant. We show that such a local invariant path integral measure does not exist for the 4D linearized Regge theory. To this end we uncover an interesting geometric interpretation for the Hessian of the 4D Regge action. This geometric interpretation will allow us to prove that the determinant of the Hessian of the 4D Regge action does not factorize over four-simplices or subsimplices. It furthermore allows us to determine configurations where this Hessian vanishes, which only appears to be the case in degenerate backgrounds or if one allows for different orientations of the simplices. We suggest a non-local measure factor that absorbs the non-local part of the determinant of the Hessian under 5–1 moves as well as a local measure factor that is preserved for very special configurations. (paper)

  13. 10D to 4D Euclidean Supergravity over a Calabi-Yau three-fold

    Sabra, Wafic

    2015-01-01

    We dimensionally reduce the bosonic sector of 10D Euclidean type IIA supergravity over a Calabi-Yau three-fold. The resulting theory describes the bosonic sector of 4D, N = 2 Euclidean supergravity coupled to vector- and hyper-multiplets.

  14. Four-dimensional computed tomography (4D CT). Concepts and preliminary development

    Four-dimensional computed tomography (4D CT) is a dynamic volume imaging system of moving organs with an image quality comparable to that of conventional CT. 4D CT will be realized by several technical breakthroughs for dynamic cone-beam CT: a large-area two-dimensional (2D) detector; high-speed data transfer system; reconstruction algorithms; ultra-high-speed reconstruction computer; and high-speed, continuously rotating gantry. Among these, development of the 2D detector is one of the main tasks because it should have as wide a dynamic range and as high a data acquisition speed (view rate) as present CT detectors. We are now developing a 4D CT scanner together with the key components. It will take one volume image in 0.5 sec with a 3D matrix of 512 x 512 x 512. This paper describes the concepts and designs of the 4D CT system, as well as preliminary development of the 2D detector. (author)

  15. Synthesis of novel pyrazolo[3,4-d]pyrimidinone derivatives as cytotoxic inhibitors

    Ameur Rahmouni

    2014-02-01

    Full Text Available Various α-fonctionalized iminoethers 2 were easily prepared from ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The reaction of iminoethers 2 with ammonia afforded 3-substitued-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4(5H-ones 3 which were also synthesized by the addition of formamide to ethyl 5-amino-3-substituted-1-phenyl-1H-pyrazole-4-carboxylate 1. The 5-amino-3-substitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H-ones 4 were obtained from hydrazonolysis of iminoethers 2. Otherwise, the condensation of these intermediates 2 with a series of some primary amines and hydroxylamine led respectively, to the corresponding 3,5-disubstitued-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H-ones 5 and the 3-substitued-5-hydroxy-1-phenyl-1H-pyrazolo[3,4-d] pyrimidin-4-(5H-ones 6. The synthesized compounds 1-6 were completely characterized by 1H NMR, 13C NMR, IR and HRMS. Some synthesized compounds were evaluated for their cytotoxic effect using the Human cervical adenocarcinoma Hela cell line.

  16. VMAT QA: Measurement-guided 4D dose reconstruction on a patient

    Nelms, Benjamin E.; Opp, Daniel; Robinson, Joshua; Wolf, Theresa K.; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2012-07-15

    Purpose: To develop and validate a volume-modulated arc therapy (VMAT) quality assurance (QA) tool that takes as input a time-resolved, low-density ({approx}10 mm) cylindrical surface dose map from a commercial helical diode array, and outputs a high density, volumetric, time-resolved dose matrix on an arbitrary patient dataset. This first validation study is limited to a homogeneous 'patient.'Methods: A VMAT treatment is delivered to a diode array phantom (ARCCHECK, Sun Nuclear Corp., Melbourne, FL). 3DVH software (Sun Nuclear) derives the high-density volumetric dose using measurement-guided dose reconstruction (MGDR). MGDR cylindrical phantom results are then used to perturb the three-dimensional (3D) treatment planning dose on the patient dataset, producing a semiempirical volumetric dose grid. Four-dimensional (4D) dose reconstruction on the patient is also possible by morphing individual sub-beam doses instead of the composite. For conventional (3D) dose comparison two methods were developed, using the four plans (Multi-Target, C-shape, Mock Prostate, and Head and Neck), including their structures and objectives, from the AAPM TG-119 report. First, 3DVH and treatment planning system (TPS) cumulative point doses were compared to ion chamber in a cube water-equivalent phantom ('patient'). The shape of the phantom is different from the ARCCHECK and furthermore the targets were placed asymmetrically. Second, coronal and sagittal absolute film dose distributions in the cube were compared with 3DVH and TPS. For time-resolved (4D) comparisons, three tests were performed. First, volumetric dose differences were calculated between the 3D MGDR and cumulative time-resolved patient (4D MGDR) dose at the end of delivery, where they ideally should be identical. Second, time-resolved (10 Hz sampling rate) ion chamber doses were compared to cumulative point dose vs time curves from 4D MGDR. Finally, accelerator output was varied to assess the linearity of

  17. Clinical and pathological correlations of C4d immunostaining and its infl uence on the outcome of kidney transplant recipients

    Virna Nowotny Carpio

    2011-09-01

    Full Text Available INTRODUCTION: C4d is a marker of antibody-mediated rejection (ABMR in kidney allografts, although cellular rejection also have C4d deposits. OBJECTIVE: To correlate C4d expression with clinico-pathological parameters and graft outcomes at three years. METHODS: One hundred forty six renal transplantation recipients with graft biopsies by indication were included. C4d staining was performed by paraffin-immunohistochemistry. Graft function and survival were measured, and predictive variables of the outcome were determined by multivariate Cox regression. RESULTS: C4d staining was detected in 48 (31% biopsies, of which 23 (14.7% had diffuse and 25 (16% focal distribution. Pre-transplantation panel reactive antibodies (%PRA class I and II were significantly higher in C4d positive patients as compared to those C4d negative. Both glomerulitis and pericapillaritis were associated to C4d (p = 0.002 and p < 0.001, respectively. The presence of C4d in biopsies diagnosed as no rejection (NR, acute cellular rejection (ACR or interstitial fibrosis/ tubular atrophy (IF/TA did not impact graft function or survival. Compared to NR, ACR and IF/TA C4d-, patients with ABMR C4d+ had the worst graft survival over 3 years (p = 0.034, but there was no difference between ABMR versus NR, ACR and IF/TA that were C4d positive (p = 0.10. In Cox regression, graft function at biopsy and high %PRA levels were predictors of graft loss. CONCLUSIONS: This study confirmed that C4d staining in kidney graft biopsies is a clinically useful marker of ABMR, with well defined clinical and pathological correlations. The impact of C4d deposition in other histologic diagnoses deserves further investigation.

  18. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    Lee, Taek-Soo; Higuchi, Takahiro; Lautamäki, Riikka; Bengel, Frank M.; Tsui, Benjamin M. W.

    2015-09-01

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  19. Exploring the functional diversity of the supraglacial environment: Microbial degradation of the pesticide 2,4-D on the Greenland Ice Sheet

    Stibal, M.; Bælum, J.; Holben, W. E.; Jacobsen, C. S.

    2012-12-01

    The surface of the Greenland ice sheet (GrIS) harbours a diverse community of heterotrophic microorganisms. Organic compounds of anthropogenic origin, including pesticides, are deposited on the GrIS; however, the fate of these compounds in the ice is currently unknown. In this study we determine the potential of the microbial community from the surface of the GrIS to mineralise the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). It is one of the most easily degraded compounds among the phenoxyacetic acid pesticides, and the ability to mineralise 2,4-D has been found to be widespread in microbial communities around the globe. Functional genes involved in the degradation pathway have also been characterised. Thus, 2,4-D represents a very suitable model compound to use in order to gain an insight into pollutant degradation dynamics in the rapidly changing Arctic region. We collected surface ice cores on the GrIS and incubated them for up to 529 days in microcosms simulating in situ conditions. We measured mineralisation of side-chain- and ring-labelled 14C-2,4-D in the samples and performed quantitative PCR targeting the tfdA gene, encoding an enzyme catalysing the first step in the degradation pathway of 2,4-D, in the DNA extracted from the ice after the experiments. We show that the microbial community on the surface of the GrIS is of low diversity, but contains microbes capable of degrading 2,4-D. The low diversity of the community and the similarity of the detected clones to those from other icy environment clones suggest that the bacterial community on the GrIS is selected from a pool of propagules deposited on the surface of the ice sheet, based on the level of adaptation to the conditions in the surface ice. The 2,4-D degraders are likely present in very low numbers, and they can mineralise 2,4-D at a rate of up to 1 nmol per m2 per day, equivalent to ~26 ng C m-2 d-1. We contend that the surface of the GrIS should not be considered to be a mere reservoir of

  20. Task-based evaluation of a 4D MAP-RBI-EM image reconstruction method for gated myocardial perfusion SPECT using a human observer study

    We evaluated the performance of a new 4D image reconstruction method for improved 4D gated myocardial perfusion (MP) SPECT using a task-based human observer study. We used a realistic 4D NURBS-based Cardiac-Torso (NCAT) phantom that models cardiac beating motion. Half of the population was normal; the other half had a regional hypokinetic wall motion abnormality. Noise-free and noisy projection data with 16 gates/cardiac cycle were generated using an analytical projector that included the effects of attenuation, collimator-detector response, and scatter (ADS), and were reconstructed using the 3D FBP without and 3D OS-EM with ADS corrections followed by different cut-off frequencies of a 4D linear post-filter. A 4D iterative maximum a posteriori rescaled-block (MAP-RBI)-EM image reconstruction method with ADS corrections was also used to reconstruct the projection data using various values of the weighting factor for its prior. The trade-offs between bias and noise were represented by the normalized mean squared error (NMSE) and averaged normalized standard deviation (NSDav), respectively. They were used to select reasonable ranges of the reconstructed images for use in a human observer study. The observers were trained with the simulated cine images and were instructed to rate their confidence on the absence or presence of a motion defect on a continuous scale. We then applied receiver operating characteristic (ROC) analysis and used the area under the ROC curve (AUC) index. The results showed that significant differences in detection performance among the different NMSE-NSDav combinations were found and the optimal trade-off from optimized reconstruction parameters corresponded to a maximum AUC value. The 4D MAP-RBI-EM with ADS correction, which had the best trade-off among the tested reconstruction methods, also had the highest AUC value, resulting in significantly better human observer detection performance when detecting regional myocardial wall motion

  1. A new model of Pde4d deficiency: Genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without cognitive effects

    Schaefer, Tori L.; Braun, Amanda A.; Amos-Kroohs, Robyn M.; Williams, Michael T.; Ostertag, Eric; Vorhees, Charles V.

    2012-01-01

    Phosphodiesterases (PDEs) are a superfamily of intracellular second messenger cyclic nucleotide hydrolyzing enzymes composed of 12 families. The Pde4 family has been implicated in depression and cognition and PDE4 inhibitors have been evaluated as antidepressants and possible cognitive enhancers. Pde4d−/− mice show an antidepressant phenotype and learning enhancement on some tests, but not others as do mice treated with PDE4 inhibitors. Here we report for the first time the behavioral phenoty...

  2. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET

    Feng, Tao; Wang, Jizhe; Fung, George; Tsui, Benjamin

    2016-01-01

    Respiratory motion (RM) and cardiac motion (CM) degrade the quality and resolution in cardiac PET scans. We have developed non-rigid motion estimation methods to estimate both RM and CM based on 4D cardiac gated PET data alone, and compensate the dual respiratory and cardiac (R&C) motions after (MCAR), during (MCDR), and before (MCBR) image reconstruction. In all three R&C motion correction methods, attenuation-activity mismatch effect was modeled by using transformed attenuation maps using the estimated RM. The difference of using activity preserving and non-activity preserving models in R&C correction was also studied. Realistic Monte Carlo simulated 4D cardiac PET data using the 4D XCAT phantom and accurate models of the scanner design parameters and performance characteristics at different noise levels were employed as the known truth and for method development and evaluation. Results from the simulation study suggested that all three dual R&C motion correction methods provide substantial improvement in the quality of 4D cardiac gated PET images as compared with no motion correction. Specifically, the MCDR method yields the best performance for all different noise levels compared with the MCAR and MCBR methods. While MCBR reduces computational time dramatically but the resultant 4D cardiac gated PET images has overall inferior image quality when compared to that from the MCAR and MCDR approaches in the ‘almost’ noise free case. Also, the MCBR method has better noise handling properties when compared with MCAR and provides better quantitative results in high noise cases. When the goal is to reduce scan time or patient radiation dose, MCDR and MCBR provide a good compromise between image quality and computational times.

  3. A 4D IMRT planning method using deformable image registration to improve normal tissue sparing with contemporary delivery techniques

    Li Yupeng

    2011-07-01

    Full Text Available Abstract We propose a planning method to design true 4-dimensional (4D intensity-modulated radiotherapy (IMRT plans, called the t4Dplan method, in which the planning target volume (PTV of the individual phases of the 4D computed tomography (CT and the conventional PTV receive non-uniform doses but the cumulative dose to the PTV of each phase, computed using deformable image registration (DIR, are uniform. The non-uniform dose prescription for the conventional PTV was obtained by solving linear equations that required motion-convolved 4D dose to be uniform to the PTV for the end-exhalation phase (PTV50 and by constraining maximum inhomogeneity to 20%. A plug-in code to the treatment planning system was developed to perform the IMRT optimization based on this non-uniform PTV dose prescription. The 4D dose was obtained by summing the mapped doses from individual phases of the 4D CT using DIR. This 4D dose distribution was compared with that of the internal target volume (ITV method. The robustness of the 4D plans over the course of radiotherapy was evaluated by computing the 4D dose distributions on repeat 4D CT datasets. Three patients with lung tumors were selected to demonstrate the advantages of the t4Dplan method compared with the commonly used ITV method. The 4D dose distribution using the t4Dplan method resulted in greater normal tissue sparing (such as lung, stomach, liver and heart than did plans designed using the ITV method. The dose volume histograms of cumulative 4D doses to the PTV50, clinical target volume, lung, spinal cord, liver, and heart on the 4D repeat CTs for the two patients were similar to those for the 4D dose at the time of original planning.

  4. A 4D IMRT planning method using deformable image registration to improve normal tissue sparing with contemporary delivery techniques

    We propose a planning method to design true 4-dimensional (4D) intensity-modulated radiotherapy (IMRT) plans, called the t4Dplan method, in which the planning target volume (PTV) of the individual phases of the 4D computed tomography (CT) and the conventional PTV receive non-uniform doses but the cumulative dose to the PTV of each phase, computed using deformable image registration (DIR), are uniform. The non-uniform dose prescription for the conventional PTV was obtained by solving linear equations that required motion-convolved 4D dose to be uniform to the PTV for the end-exhalation phase (PTV50) and by constraining maximum inhomogeneity to 20%. A plug-in code to the treatment planning system was developed to perform the IMRT optimization based on this non-uniform PTV dose prescription. The 4D dose was obtained by summing the mapped doses from individual phases of the 4D CT using DIR. This 4D dose distribution was compared with that of the internal target volume (ITV) method. The robustness of the 4D plans over the course of radiotherapy was evaluated by computing the 4D dose distributions on repeat 4D CT datasets. Three patients with lung tumors were selected to demonstrate the advantages of the t4Dplan method compared with the commonly used ITV method. The 4D dose distribution using the t4Dplan method resulted in greater normal tissue sparing (such as lung, stomach, liver and heart) than did plans designed using the ITV method. The dose volume histograms of cumulative 4D doses to the PTV50, clinical target volume, lung, spinal cord, liver, and heart on the 4D repeat CTs for the two patients were similar to those for the 4D dose at the time of original planning

  5. Phase 1 report: the 4D seismic market from 2000 to 2003

    This report synthesizes the phase 1 results of the joint industrial project, called ''4D Seismic: Technologies, Economics and Issues''. This project was conducted by IFP between November 2003 and April 2004, in collaboration with Compagnie Generale de Geophysique (CGG) and sponsored by Gaz de France and 4. Wave Imaging. Phase 1 offers an objective view of the 4D seismic market over the period 2000-2003. The market has been assessed from IFP extensive databases, gathering 115 4D projects conducted worldwide and from interviews of seven oil companies, both representing 90% of the activity in time-lapse seismic. This study provides sales estimation and sales/projects breakdown by: in-house/subcontracted activity, geography, onshore/offshore, reservoir rocks and recovery methods, technology/methodology, oil companies and service companies. The market of 4D seismic has been split into 4 segments: acquisition, processing, reservoir studies - feasibility, interpretation and seismic history matching -, borehole seismic (acquisition and processing). In addition, the market of passive seismic monitoring, another technique of seismic reservoir monitoring has also been estimated. The main sources, used to build the IFP databases, were: Worldwide Global E and P Service Reports from IHS Energy, World Geophysical News, an extensive bibliographic study through more than 200 articles, abstracts and summaries, a collaboration with CGG. For all market estimations, numbers computed from IFP databases and from interviews of oil companies were extrapolated from 90% to 100%, to quantify the total 4D activity. The estimations obtained were not rounded in order to preserve trends with a consistent computation from one year to another and from one market segment to another, despite uncertainties of about 10%. Quality controls were performed to validate the final estimations: volumes of 4D seismic data, computed from IFP databases, were checked by comparing processed data with acquired data

  6. 4'' + D VR technology for structural analysis and integrated maintenance of nuclear power plants

    There continues to be an increasing demand of electricity around the globe to fuel the industrial growth and to promote the human welfare. The economic activities have brought about richness in our material and cultural lives, in which process the electric power has been at the heart of the versatile energy sources. In order to timely and competitively respond to rapidly changing energy environment in the twenty-first century there is a growing need to build the advanced nuclear power plants in the unlimited K, which were confirmed by FTIR and 51V Ncommissioning. One can then realistically evaluate their construction time and cost per varying methods and options available from the leading-edge technology. In particular a great deal of efforts have yet to be made for time- and cost-dependent plant simulation and dynamically coupled database construction in the VR space. The operator training and personnel education may also benefit from the VR technology. The present work is being proposed in the three-dimensional space and time plus cost coordinates, i.e. four plus dimensional (4+ D) coordinates. The 4+ D VR application will enable the nuclear industry to narrow the technological gap from the other leading industries that have long since been employing the VR engineering. The 4+ D technology will help nurture public understanding of the special discipline of nuclear power plants. The technology will also facilitate public access to the knowledge on the nuclear science and engineering which has so far been monopolized by the academia, national laboratories and the heavy industry. The 4+ D virtual design and construction will open up the new horizon for revitalization of the nuclear industry over the globe in the foreseeable future. Considering the long construction and operation time for the nuclear power plants, the preliminary VR simulation capability for the plants will supply the vital information not only for the actual design and construction of the engineered

  7. A phantom for testing of 4D-CT for radiotherapy of small lesions

    Purpose: The use of time-resolved four-dimensional computed tomography (4D-CT) in radiotherapy requires strict quality assurance to ensure the accuracy of motion management protocols. The aim of this work was to design and test a phantom capable of large amplitude motion for use in 4D-CT, with particular interest in small lesions typical for stereotactic body radiotherapy. Methods: The phantom of “see-saw” design is light weight, capable of including various sample materials and compatible with several surrogate marker signal acquisition systems. It is constructed of polymethylmethacrylate (Perspex) and its movement is controlled via a dc motor and drive wheel. It was tested using two CT scanners with different 4D acquisition methods: the Philips Brilliance Big Bore CT (helical scan, pressure belt) and a General Electric Discovery STE PET/CT (axial scan, infrared marker). Amplitudes ranging from 1.5 to 6.0 cm and frequencies of up to 40 cycles per minute were used to study the effect of motion on image quality. Maximum intensity projections (MIPs), as well as average intensity projections (AIPs) of moving objects were investigated and their quality dependence on the number of phase reconstruction bins assessed. Results: CT number discrepancies between moving and stationary objects were found to have no systematic dependence on amplitude, frequency, or specific interphase variability. MIP-delineated amplitudes of motion were found to match physical phantom amplitudes to within 2 mm for all motion scenarios tested. Objects undergoing large amplitude motions (>3.0 cm) were shown to cause artefacts in MIP and AIP projections when ten phase bins were assigned. This problem can be mitigated by increasing the number of phase bins in a 4D-CT scan. Conclusions: The phantom was found to be a suitable tool for evaluating the image quality of 4D-CT motion management technology, as well as providing a quality assurance tool for intercenter/intervendor testing of commercial

  8. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  9. Resolution enhancement of lung 4D-CT via group-sparsity

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang [Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Lian, Jun [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2013-12-15

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  10. SU-E-J-187: Individually Optimized Contrast-Enhancement 4D-CT for Pancreatic Adenocarcinoma in Radiotherapy Simulation

    Xue, M; Patel, K; Regine, W; Lane, B; D' Souza, W; Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States); Klahr, P [Philips Healthcare, Cleveland, OH (United States)

    2014-06-01

    Purpose: To study the feasibility of individually optimized contrastenhancement (CE) 4D-CT for pancreatic adenocarcinoma (PDA) in radiotherapy simulation. To evaluate the image quality and contrast enhancement of tumor in the CE 4D-CT, compared to the clinical standard of CE 3D-CT and 4D-CT. Methods: In this IRB-approved study, each of the 7 PDA patients enrolled underwent 3 CT scans: a free-breathing 3D-CT with contrast (CE 3D-CT) followed by a 4D-CT without contrast (4D-CT) in the first study session, and a 4D-CT with individually synchronized contrast injection (CE 4D-CT) in the second study session. In CE 4D-CT, the time of full contrast injection was determined based on the time of peak enhancement for the test injection, injection rate, table speed, and longitudinal location and span of the pancreatic region. Physicians contoured both the tumor (T) and the normal pancreatic parenchyma (P) on the three CTs (end-of-exhalation for 4D-CT). The contrast between the tumor and normal pancreatic tissue was computed as the difference of the mean enhancement level of three 1 cm3 regions of interests in T and P, respectively. Wilcoxon rank sum test was used to statistically compare the scores and contrasts. Results: In qualitative evaluations, both CE 3D-CT and CE 4D-CT scored significantly better than 4D-CT (4.0 and 3.6 vs. 2.6). There was no significant difference between CE 3D-CT and CE 4D-CT. In quantitative evaluations, the contrasts between the tumor and the normal pancreatic parenchyma were 0.6±23.4, −2.1±8.0, and −19.6±28.8 HU, in CE 3D-CT, 4D-CT, and CE 4D-CT, respectively. Although not statistically significant, CE 4D-CT achieved better contrast enhancement between the tumor and the normal pancreatic parenchyma than both CE 3D-CT and 4DCT. Conclusion: CE 4D-CT achieved equivalent image quality and better contrast enhancement between tumor and normal pancreatic parenchyma than the clinical standard of CE 3D-CT and 4D-CT. This study was supported in part

  11. Thoracic tumor volume delineation in 4D-PET/CT by low dose interpolated CT for attenuation correction.

    Tzung-Chi Huang

    Full Text Available PURPOSE: 4D-PET/CT imaging is an excellent solution for reducing the breathing-induced effects in both CT and PET images. In 4D-PET/CT, 4D-CT images are selected to match those of 4D-PET phase by phase and the corresponding phases are used for attenuation correction in 4D-PET. However, the high radiation dose that patients acquire while undergoing 4D-CT imaging for diagnostic purposes remains a concern. This study aims to assess low-dose interpolated CT (ICT for PET attenuation correction (PETICT in thoracic tumor volume delineation. METHODS AND MATERIALS: Twelve thoracic cancer patients (10 esophageal and 2 lung cancer cases were recruited. All patients underwent 4D-PET/CT scans. The optical flow method based on image intensity gradient was applied to calculate the motion displacement in three dimensions for each voxel on two original extreme CT phases in the respiratory cycle, end-inspiration and end-expiration. The interpolated CTs were generated from two phases of the original 4D-CT using motion displacement. RESULTS: Tumor motion due to respiration was estimated in the anterior-posterior dimension, the lateral dimension and the superior-inferior dimension by the optical flow method. The PETICT and ICT (4D-PET ICT/ICT matched each other spatially in all the phases. The distortion of tumor shape and size resulting from respiratory motion artifacts were not observed in 4D-PETICT. The tumor volume measured by 4D-PET ICT/ICT correlated to the tumor volume measured by 4D-PET/CT (p = 0.98. CONCLUSIONS: 4D-PETICT consistently represented the interpretation of FDG uptake as effectively as 4D-PET. 4D-PET ICT/ICT is a low-dose alternative to 4D-CT and significantly improves the interpretation of PET and CT images, while solving the respiratory motion problem as effectively as 4D-PET/CT.

  12. M4D: a powerful tool for structured programming at assembly level for MODCOMP computers

    Structured programming techniques offer numerous benefits for software designers and form the basis of the current high level languages. However, these techniques are generally not available to assembly programmers. The M4D package was therefore developed for a large project to enable the use of structured programming constructs such as DO.WHILE-ENDDO and IF-ORIF-ORIF...-ELSE-ENDIF in the assembly code for MODCOMP computers. Programs can thus be produced that have clear semantics and are considerably easier to read than normal assembly code, resulting in reduced program development and testing effort, and in improved long-term maintainability of the code. This paper describes the M4D structured programming tool as implemented for MODCOMP'S MAX III and MAX IV assemblers, and illustrates the use of the facility with a number of examples

  13. Low- and high-z highly accreting quasars in the 4D Eigenvector 1 context

    Marziani, Paola; Negrete, C Alenka; Dultzin, Deborah; D'Onofrio, Mauro; del Olmo, Ascensión; Martínez-Aldama, Mary Loli

    2014-01-01

    Highly accreting quasars are characterized by distinguishing properties in the 4D eigenvector 1 parameter space that make them easily recognizable over a broad range range of redshift and luminosity. The 4D eigenvector 1 approach allows us to define selection criteria that go beyond the restriction to Narrow Line Seyfert 1s identified at low redshift. These criteria are probably able to isolate sources with a defined physical structure i.e., a geometrically thick, optically thick advection-dominated accretion disk (a "slim" disk). We stress that the importance of highly accreting quasars goes beyond the understanding of the details of their physics: their Eddington ratio is expected to saturate toward values of order unity, making them possible cosmological probes.

  14. The manifestly covariant Aharonov-Bohm effect in terms of the 4D fields

    Ivezic, Tomislav

    2014-01-01

    In this paper it is presented a manifestly covariant formulation of the Aharonov-Bohm (AB) phase difference for the magnetic AB effect . This covariant AB phase is written in terms of the Faraday 2-form F and using the decomposition of F in terms of the electric and magnetic fields as four-dimensional (4D) geometric quantities. It is shown that there is a static electric field outside a stationary solenoid with resistive conductor carrying steady current, which causes that the AB phase difference in the magnetic AB effect may be determined by the electric part of the covariant expression, i.e. by the local influence of the 4D electric field and not, as generally accepted,in terms of nonzero vector potential.

  15. AN PROFICIENT LS BASED SWITCHED PREDICTOR FOR LOSSLESS CONFINING OF 4-D MEDICAL

    UTSAV THAKAR

    2013-02-01

    Full Text Available Techniques for medical imaging like fMRI, CT, MRI produces large amount of digital data. This paper proposes a context based LS based predictors for lossless compression of such 4-D images. Redundancy inthe form of smoothness and uniform human anatomical structures as well as periodic motion of this structures and presence of high correlation in temporal domain of these 4-D medical image sequences has been exploited. Slope is defined as one of the criteria which predict the level of activity. Based on the estimated slope the current pixel is categorized into one of the seven classification bins. Optimal predictors are assigned to each bin and classification of bin boundaries and estimation of optimal predictors is doneoffline. The proposed method is computationally very simple as it does not require motion estimation which, in general, is a computationally complex process.

  16. Is digit ratio (2D:4D) a reliable pointer to speech laterality?

    Hudson, John M; Hodgson, Jessica C

    2016-03-15

    The relative length of the second and fourth digits (2D:4D ratio) is sexually dimorphic and a retrospective biomarker of prenatal hormonal exposure. Low ratios indicate higher prenatal testosterone (pT) and lower estrogen exposure, whereas the reverse pattern is associated with high ratios. Elevated levels of pT exposure have long been thought to modulate hemispheric specialisation; subsequently many studies use the 2D:4D ratio as a proxy index for pT to examine the effects of prenatal hormonal exposure on lateralised cognitive abilities. Here we used Transcranial Doppler ultrasonography and digit ratio to investigate whether pT has an influence on speech laterality. We tested 34 right and 14 left handed adults. Our results indicate that speech representation is unrelated to digit characteristics and therefore purportedly pT. We discuss these findings in relation to androgen theories of lateralisation. PMID:26747206

  17. Acquisition of 4D DIC microscopic data to determine cell contacts in Caenorhabditis elegans embryos.

    Walston, Timothy; Hardin, Jeff

    2010-12-01

    The Caenorhabditis elegans embryo is particularly amenable to microscopy and embryological studies because of its short developmental time, transparent shell, and nonpigmented cells. Acquisition of stacks of images throughout the thickness of the embryo over time is a crucial method for identifying the positions and contacts between cells. Such four-dimensional (4D) microscopy is a routine tool in laboratories that study early C. elegans development. Differential interference contrast (DIC) microscopy is the focus here because of its broad availability, common use for C. elegans imaging, and wide applicability to microscopic analysis of embryos of other organisms. This protocol describes the use of a custom script within μManager's Beanshell scripting language. The script is helpful for reducing the number of shutter open/close events during 4D acquisition. PMID:21123428

  18. Impact of 4D Channel Distribution on the Achievable Rates in Coherent Optical Communication Experiments

    Eriksson, Tobias A.; Fehenberger, Tobias; Andrekson, Peter A.; Karlsson, Magnus; Hanik, Norbert; Agrell, Erik

    2016-05-01

    We experimentally investigate mutual information and generalized mutual information for coherent optical transmission systems. The impact of the assumed channel distribution on the achievable rate is investigated for distributions in up to four dimensions. Single channel and wavelength division multiplexing (WDM) transmission over transmission links with and without inline dispersion compensation are studied. We show that for conventional WDM systems without inline dispersion compensation, a circularly symmetric complex Gaussian distribution is a good approximation of the channel. For other channels, such as with inline dispersion compensation, this is no longer true and gains in the achievable information rate are obtained by considering more sophisticated four-dimensional (4D) distributions. We also show that for nonlinear channels, gains in the achievable information rate can also be achieved by estimating the mean values of the received constellation in four dimensions. The highest gain for such channels is seen for a 4D correlated Gaussian distribution.

  19. Determination of 2,4-D in aqueous solution by neutron activation analysis

    A method based on neutron activation analysis was developed for the determination of fractions of milligrams of 2,4-D (2,4-dichlorophenoxy acetic acid) in aqueous solution in laboratory tests. The indirect determination of 2,4-D was based on the quantification of chlorine, 38Cl, produced by neutron activation. The range of application was 0.01 - 100 mg x l-1. No loss of 38Cl by chemical effects of the nuclear reaction was found. The advantages of the proposed method include high precision and sensitivity of determination. Results were compared with those obtained by UV-Vis spectrophotometry, where concentrations less than 1 mg x l-1 were not detected. (author)

  20. Hadron-quark vertex function. Interconnection between 3D and 4D wave function

    Interconnection between 3D and 4D forms of Bethe-Salpeter equation (EBS) with a kernel depending on relative momenta is used to derive hadron-quark vertex function in Lorentz invariance form. The vertex function which is directly related to a 4D wave function satisfying a corresponding EBS determines the natural continuation outside mass surface for the entire momentum space and serves the basis for computing amplitudes of transitions through appropriate loop quark diagrams. Two applications (fp values for P→ll-bar and Fπ for n0+yy) are discussed briefly to illustrate this formalism. An attention is paid to the problem of complex amplitudes for quark loops with a larger number of external hadrons.A possible solution of the problem is proposed. 29 refs

  1. Serodiagnosis of syphilis by enzyme-linked immunosorbent assay with purified recombinant Treponema pallidum antigen 4D.

    Radolf, J D; Lernhardt, E B; Fehniger, T E; Lovett, M A

    1986-06-01

    An enzyme-linked immunosorbent assay (ELISA) for syphilis has been developed that detects IgG antibody to purified recombinant Treponema pallidum surface antigen 4D. The 4D ELISA was capable of detecting 25 ng of 4D antigen-specific antibody. Neither 172 nonsyphilitic sera nor 20 false-positive sera in the Venereal Disease Research Laboratory test reacted in the 4D ELISA. The sensitivity of the 4D ELISA was comparable to that of the adsorbed fluorescent treponemal antibody test in primary, secondary, and latent disease. Most sera from patients with yaws or pinta were also reactive, a result indicating that a 4D antigen-like molecule also exists in the closely related pathogenic treponemes Treponema pertenue and Treponema carateum. PMID:3517186

  2. Computational biomechanics and experimental validation of vessel deformation based on 4D-CT imaging of the porcine aorta

    Hazer, Dilana; Finol, Ender A.; Kostrzewa, Michael; Kopaigorenko, Maria; Richter, Götz-M.; Dillmann, Rüdiger

    2009-02-01

    Cardiovascular disease results from pathological biomechanical conditions and fatigue of the vessel wall. Image-based computational modeling provides a physical and realistic insight into the patient-specific biomechanics and enables accurate predictive simulations of development, growth and failure of cardiovascular disease. An experimental validation is necessary for the evaluation and the clinical implementation of such computational models. In the present study, we have implemented dynamic Computed-Tomography (4D-CT) imaging and catheter-based in vivo measured pressures to numerically simulate and experimentally evaluate the biomechanics of the porcine aorta. The computations are based on the Finite Element Method (FEM) and simulate the arterial wall response to the transient pressure-based boundary condition. They are evaluated by comparing the numerically predicted wall deformation and that calculated from the acquired 4D-CT data. The dynamic motion of the vessel is quantified by means of the hydraulic diameter, analyzing sequences at 5% increments over the cardiac cycle. Our results show that accurate biomechanical modeling is possible using FEM-based simulations. The RMS error of the computed hydraulic diameter at five cross-sections of the aorta was 0.188, 0.252, 0.280, 0.237 and 0.204 mm, which is equivalent to 1.7%, 2.3%, 2.7%, 2.3% and 2.0%, respectively, when expressed as a function of the time-averaged hydraulic diameter measured from the CT images. The present investigation is a first attempt to simulate and validate vessel deformation based on realistic morphological data and boundary conditions. An experimentally validated system would help in evaluating individual therapies and optimal treatment strategies in the field of minimally invasive endovascular surgery.

  3. Complexation and extraction of series 4f, 5f and 4d ions by dialkyldithiophosphoric acids

    A study was carried out on the complexing and extracting properties of various dialkyldithiophosphoric acids towards ions of the 4f, 5f and 4d series. Sulphurated donors complex and extract ions of the 4f and 5f series less strongly than their oxygenated homologues. However the affinity of trivalent actinide ions for dialkythiophosphate ions is shown to be greater than that of lanthanides. The conditions of ruthenium extraction from nitric acid are defined

  4. C4d Presence in Kidney Allograft Biopsy: Sensitivity and Specifity of Immunoperoxidase vs Immunofluorescence

    Viana, H; Carvalho, F.; Santos, A.; Galvão, MJ; Nolasco, F.

    2009-01-01

    OBJECTIVES: Evaluate the sensitivity/specificity of immunoperoxidase method in comparison with the standard immunofluorescence. MATERIAL AND METHODS: Retrospective review of 87 biopsies made for allograft dysfunction. Immunofluorescence (IF) was performed in frozen allograft biopsies using monoclonal antibody anti-C4d from Quidel®. The indirect immunoperoxidase (IP) technique was performed in paraffin-embebbed tissue with polyclonal antiserum from Serotec®. Biopsies were independen...

  5. Chlorothalonil and 2,4-D losses in surface water discharge from a managed turf watershed.

    King, K W; Balogh, J C

    2010-08-01

    Managed turf sites (golf courses) are the most intensively managed landscapes in the urban environment. Yet, long-term watershed scale studies documenting the environmental transport of agrichemicals applied to these systems are rare. The objective of this study was to quantify the surface discharge losses of two commonly applied pesticides (chlorothalonil and 2,4-D) resulting from prevailing practices on a managed golf course. Inflow and outflow discharge waters on a subarea of Northland Country Club located in Duluth, MN were measured for both quantity and quality from April through November from 2003 to 2008. The median chlorothalonil outflow concentration (0.58 microg L(-1)) was significantly greater (p acute toxicity levels (7.6 microg L(-1)) reported for rainbow trout. No 2,4-D concentrations exceeded any human or aquatic species published toxicity level; however, the maximum measured 2,4-D concentration (67.1 microg L(-1)), which rarely occurred, did approach the 70 microg L(-1) maximum contaminant level (MCL) for that compound. Losses of both pesticides were detectable throughout the annual sampling period. Mean annual chlorothalonil loading was 10.5 g ha(-1) or 0.3% of applied, while mean annual 2,4-D loading was 4.9 g ha(-1) or 0.5% of applied. The findings of this study provide quantifiable evidence of agrichemical transport resulting from typical turfgrass management and highlight the need for implementation of best management practices to combat the offsite transport of agrichemicals used in professional turf management. PMID:20526481

  6. Segmentation of Carotid Arteries from 3D and 4D Ultrasound Images

    Mattsson, Per; Eriksson, Andreas

    2002-01-01

    This thesis presents a 3D semi-automatic segmentation technique for extracting the lumen surface of the Carotid arteries including the bifurcation from 3D and 4D ultrasound examinations. Ultrasound images are inherently noisy. Therefore, to aid the inspection of the acquired data an adaptive edge preserving filtering technique is used to reduce the general high noise level. The segmentation process starts with edge detection with a recursive and separable 3D Monga-Deriche-Canny operator. To r...

  7. Is a Single Respiratory Correlated 4D-CT Study Sufficient for Evaluation of Breathing Motion?

    Purpose: Respiratory correlated computed tomography has been shown to be effective for evaluation of breathing-induced motion of pulmonary tumors. This study investigated whether a single four-dimensional CT study (4D-CT) is representative and sufficient for treatment planning in stereotactic body radiotherapy (SBRT). Methods and Materials: Four repeated helical 4D-CT studies were acquired every 10 min for 10 patients with 14 pulmonary metastases. Patients remained immobilized in a stereotactic body frame (SBF) for 30 min; abdominal compression was applied to seven patients. Using amplitude based sorting, eight phases equally distributed over the breathing cycle were reconstructed for each 4D-CT study. Tumor position was defined in a total of 406 CT series and variability of breathing motion and mean tumor position were evaluated. Results: Peak-to-peak tumor motion was 9.9 mm ± 6.8 mm (mean ± standard deviation) and 9.0 mm ± 7.4 mm at time point 0 min (t0) and t30, respectively. In one patient with poor pulmonary function, continuous increase of breathing motion from 17.4 mm at t0 to 28.3 mm at t30 was seen. In five and two lesions, respectively, a drift of the mean tumor position greater than 3 mm and 5 mm was observed. A borderline significance was calculated for larger tumor position variability in midventilation phases compared with peak-ventilation phases of the breathing cycle (p = 0.08). Conclusion: Treatment planning based on a single 4D-CT study is reliable for the majority of patients. Increased intrafractional uncertainties were seen for patients with poor pulmonary function and with tumors located in the lower lobe

  8. Scatter correction of vessel dropout behind highly attenuating structures in 4D-DSA

    Hermus, James; Mistretta, Charles; Szczykutowicz, Timothy P.

    2015-03-01

    In Computed Tomographic (CT) image reconstruction for 4 dimensional digital subtraction angiography (4D-DSA), loss of vessel contrast has been observed behind highly attenuating anatomy, such as large contrast filled aneurysms. Although this typically occurs only in a limited range of projection angles, the observed contrast time course can be altered. In this work we propose an algorithm to correct for highly attenuating anatomy within the fill projection data, i.e. aneurysms. The algorithm uses a 3D-SA volume to create a correction volume that is multiplied by the 4D-DSA volume in order to correct for signal dropout within the 4D-DSA volume. The algorithm was designed to correct for highly attenuating material in the fill volume only, however with alterations to a single step of the algorithm, artifacts due to highly attenuating materials in the mask volume (i.e. dental implants) can be mitigated as well. We successfully applied our algorithm to a case of vessel dropout due to the presence of a large attenuating aneurysm. The performance was qualified visually as the affected vessel no longer dropped out on corrected 4D-DSA time frames. The correction was quantified by plotting the signal intensity along the vessel. Our analysis demonstrated our correction does not alter vessel signal values outside of the vessel dropout region but does increase the vessel values within the dropout region as expected. We have demonstrated that this correction algorithm acts to correct vessel dropout in areas with highly attenuating materials.

  9. Callogenesis in leaves of Kalanchoe pinnata Lam. by 2,4-D and BA action

    M.R.A. Santos

    2014-01-01

    Full Text Available The Kalanchoe pinnata Lam. is a bush species of the Crassulaceae that is distinguished by its important medicinal properties. Its leaves are used as cataplasm to treat headaches and wounds. There is evidence for a hypotensive and anti-inflammatory effect. Techniques of plant tissue culture have been applied to plant species that produce substances likely to be explored in pharmacology, cell suspension being the main technique. At the industrial level, this method utilizes bioreactors in order to produce secondary metabolites on a large scale. The objective of this study was to evaluate the effects of in vitro combinations of 2,4-dichlorophenoxiacetic acid (2,4-D and benzylaminopurine (BA on callus induction in leaf explants of K. pinnata. Leaf fragments were inoculated in MS medium supplemented with 3.0% sucrose, 0.8% agar and factorial combinations of 2,4-D (0.00, 4.52, 9.06, 18.12 µM and BA (0.00, 4.44, 8.88, 17.76 µM. The cultures were kept in the darkness at 24±2ºC for 50 days. The percentage of callus induction and the area of explants covered by callus cells were evaluated. In the absence of growth regulators, callus induction did not occur, with necrosis of all explants. The highest percentage of callus induction was 100%, obtained with the combination of 9.06 µM 2,4-D and 8.88 µM BA, but the calluses covered only 25% of the leaf area. The most efficient combination was 4.52 µM 2,4-D and 8.88 µM BA, resulting in 91% callus induction with 50 to 100% of the explants being covered by callus cells.

  10. An Ensemble 4D Seismic History Matching Framework with Sparse Representation Based on Wavelet Multiresolution Analysis

    Luo, Xiaodong; Bhakta, Tuhin; Jakobsen, Morten; Nævdal, Geir

    2016-01-01

    In this work we propose an ensemble 4D seismic history matching framework for reservoir characterization. Compared to similar existing frameworks in reservoir engineering community, the proposed one consists of some relatively new ingredients, in terms of the type of seismic data in choice, wavelet multiresolution analysis for the chosen seismic data and related data noise estimation, and the use of recently developed iterative ensemble history matching algorithms. Typical seismic data used f...

  11. A design of a DICOM-RT-based tool box for nonrigid 4D dose calculation.

    Wong, Victy Y W; Baker, Colin R; Leung, T W; Tung, Stewart Y

    2016-01-01

    The study was aimed to introduce a design of a DICOM-RT-based tool box to facilitate 4D dose calculation based on deformable voxel-dose registration. The computational structure and the calculation algorithm of the tool box were explicitly discussed in the study. The tool box was written in MATLAB in conjunction with CERR. It consists of five main functions which allow a) importation of DICOM-RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses along breathing cycle, d) presentation of temporal dose distribution at different time phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical application had been verified with nine clinical cases on retrospective-study basis. The logistic and the robustness of the tool box were tested with 27 applications and the results were shown successful with no computational errors encountered. In the study, the accumulated dose coverage as a function of planning CT taken at end-inhale, end-exhale, and mean tumor position were assessed. The results indicated that the majority of the cases (67%) achieved maximum target coverage, while the planning CT was taken at the temporal mean tumor position and 56% at the end-exhale position. The comparable results to the literature imply that the studied tool box can be reliable for 4D dose calculation. The authors suggest that, with proper application, 4D dose calculation using deformable registration can provide better dose evaluation for treatment with moving target. PMID:27074476

  12. A Proposal On Culling & Filtering A Coxeter Group For 4D, N = 1 Spacetime SUSY Representations

    Gates, D E A

    2016-01-01

    We review the mathematical tools required to cull and filter representations of the Coxeter Group $BC_4$ into providing bases for the construction of minimal off-shell representations of the 4D, $ {\\cal N}$ = 1 spacetime supersymmetry algebra. Of necessity this includes a description of the mathematical mechanism by which four dimensional Lorentz symmetry appears as an emergent symmetry in the context of one dimensional adinkras with four colors described by the Coxeter Group $BC_4$.

  13. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy

    Yurtsever, Aycan; Zewail, Ahmed H.

    2009-01-01

    Diffraction with focused electron probes is among the most powerful tools for the study of time-averaged nanoscale structures in condensed matter. Here, we report four-dimensional (4D) nanoscale diffraction, probing specific site dynamics with 10 orders of magnitude improvement in time resolution, in convergent-beam ultrafast electron microscopy (CB-UEM). As an application, we measured the change of diffraction intensities in laser-heated crystalline silicon as a function of time and fluence....

  14. 4D microscope-integrated OCT improves accuracy of ophthalmic surgical maneuvers

    Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Todorich, Bozho; Shieh, Christine; Kuo, Anthony; Toth, Cynthia; Izatt, Joseph A.

    2016-03-01

    Ophthalmic surgeons manipulate micron-scale tissues using stereopsis through an operating microscope and instrument shadowing for depth perception. While ophthalmic microsurgery has benefitted from rapid advances in instrumentation and techniques, the basic principles of the stereo operating microscope have not changed since the 1930's. Optical Coherence Tomography (OCT) has revolutionized ophthalmic imaging and is now the gold standard for preoperative and postoperative evaluation of most retinal and many corneal procedures. We and others have developed initial microscope-integrated OCT (MIOCT) systems for concurrent OCT and operating microscope imaging, but these are limited to 2D real-time imaging and require offline post-processing for 3D rendering and visualization. Our previously presented 4D MIOCT system can record and display the 3D surgical field stereoscopically through the microscope oculars using a dual-channel heads-up display (HUD) at up to 10 micron-scale volumes per second. In this work, we show that 4D MIOCT guidance improves the accuracy of depth-based microsurgical maneuvers (with statistical significance) in mock surgery trials in a wet lab environment. Additionally, 4D MIOCT was successfully performed in 38/45 (84%) posterior and 14/14 (100%) anterior eye human surgeries, and revealed previously unrecognized lesions that were invisible through the operating microscope. These lesions, such as residual and potentially damaging retinal deformation during pathologic membrane peeling, were visualized in real-time by the surgeon. Our integrated system provides an enhanced 4D surgical visualization platform that can improve current ophthalmic surgical practice and may help develop and refine future microsurgical techniques.

  15. Hybrid Skeletal-Surface Motion Graphs for Character Animation from 4D Performance Capture

    Collomosse, JP; Huang, P.; Hilton, A.; Tejera, M.

    2015-01-01

    We present a novel hybrid representation for character animation from 4D Performance Capture (4DPC) data which combines skeletal control with surface motion graphs. 4DPC data are temporally aligned 3D mesh sequence reconstructions of the dynamic surface shape and associated appearance from multiple view video. The hybrid representation supports the production of novel surface sequences which satisfy constraints from user specified key-frames or a target skeletal motion. Motion graph path opti...

  16. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles.

    Freydier, Laurène; Lundgren, Jonathan G

    2016-08-01

    Weed resistance to glyphosate and development of new GM crops tolerant to 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba is expected to lead to increased use of these herbicides in cropland. The lady beetle, Coleomegilla maculata is an important beneficial insect in cropland that is commonly used as an indicator species in safety evaluations of pesticides. Here, we examined the lethal and non-lethal effects of 2,4-D and dicamba active ingredients and commercial formulations to this lady beetle species, and tested for synergistic effects of the herbicides. Second instars of lady beetles were exposed to an experimental treatment, and their mortality, development, weight, sex ratio, fecundity, and mobility was evaluated. Using similar methods, a dose-response study was conducted on 2,4-D with and without dicamba. The commercial formulation of 2,4-D was highly lethal to lady beetle larvae; the LC90 of this herbicide was 13 % of the label rate. In this case, the "inactive" ingredients were a key driver of the toxicity. Dicamba active ingredient significantly increased lady beetle mortality and reduced their body weight. The commercial formulations of both herbicides reduced the proportion of males in the lady beetle population. The herbicides when used together did not act synergistically in their toxicity toward lady beetles versus when the chemistries were used independently. Our work shows that herbicide formulations can cause both lethal and sublethal effects on non-target, beneficial insects, and these effects are sometimes driven by the "inactive" ingredients. The field-level implications of shifts in weed management practices on insect management programs should receive further attention. PMID:27282375

  17. Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification

    Bustamante, Mariana; Petersson, Sven; Eriksson, Jonatan; Alehagen, Urban; Dyverfeldt, Petter; Carlhäll, Carljohan; Ebbers, Tino

    2015-01-01

    Background Flow volume quantification in the great thoracic vessels is used in the assessment of several cardiovascular diseases. Clinically, it is often based on semi-automatic segmentation of a vessel throughout the cardiac cycle in 2D cine phase-contrast Cardiovascular Magnetic Resonance (CMR) images. Three-dimensional (3D), time-resolved phase-contrast CMR with three-directional velocity encoding (4D flow CMR) permits assessment of net flow volumes and flow patterns retrospectively at any...

  18. Systematic Structure in the K-Edge Photoabsorption Spectra of the 4d Transition Metals: Theory

    Muller, J. E.; Jepsen, O.; Andersen, Ole Krogh; Wilkins, J. W.

    1978-01-01

    The K-edge photoabsorption spectra of the 4d metals calculated by the linear augmented-plane-wave method yield good agreement with the measured data. The prominent systematic features of the spectra, most easily discussed in terms of the l=1 projected density of final states, are simply related t...... the underlying band structure. The results for Zr, Mo, Pd, and Ag are presented here....

  19. Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation

    Qian, Zhen; Huang, Xiaolei; Metaxas, Dimitris N.; Axel, Leon

    2005-04-01

    In this paper we present a robust method for segmenting and tracking cardiac contours and tags in 4D cardiac MRI tagged images via spatio-temporal propagation. Our method is based on two main techniques: the Metamorphs Segmentation for robust boundary estimation, and the tunable Gabor filter bank for tagging lines enhancement, removal and myocardium tracking. We have developed a prototype system based on the integration of these two techniques, and achieved efficient, robust segmentation and tracking with minimal human interaction.

  20. Vertical D4-D2-D0 bound states on K3 fibrations and modularity

    Bouchard, Vincent; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2016-01-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibits some of the features of a generalized Hecke transform.

  1. 2D : 4D Asymmetry and Gender Differences in Academic Performance : Evidence from Moscow and Manila

    John V. C. Nye; Androuschak, Grigory; Desierto, Desirée; Jones, Garett; Yudkevich, Maria

    2012-01-01

    Exposure to prenatal androgens affects both future behavior and life choices. However, there is still relatively limited evidence on its effects on academic performance. Moreover, the predicted effect of exposure to prenatal testosterone (T) - which is inversely correlated with the relative length of the second to fourth finger lengths (2D:4D) - would seem to have ambiguous effects on academic achievement since traits like confidence, aggressiveness, or risk-taking are not uniformly positive ...

  2. Z-Earth: 4D topography from space combining short-baseline stereo and lidar

    Dewez, T. J.; Akkari, H.; Kaab, A. M.; Lamare, M. L.; Doyon, G.; Costeraste, J.

    2013-12-01

    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel size, they are today regarded as obsolete and inappropriate given the regularly updated sub-meter imagery coming through web services like Google Earth. Two features will thus help meet the current topographic data needs of the Geoscience communities: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and provision for regularly updated topography to tackle earth surface changes in 4D, while retaining the key for success: data availability at no charge. A new space borne instrumental concept called Z-Earth has undergone phase 0 study at CNES, the French space agency to fulfill these aims. The scientific communities backing this proposal are that of natural hazards, glaciology and biomass. The system under study combines a short-baseline native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Acquisition is designed for revisit time better than a year. Intended products not only target single pass digital surface models, color orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverage, but also time series of them. 3D change detection targets centimetre-scale horizontal precision and metric vertical precision, in complement of -now traditional- spectral change detection. To assess the actual concept value, two real-size experiments were carried out. We used sub-meter-scale Pleiades panchromatic stereo-images to generate digital surface models and check them against dense airborne lidar coverages, one heliborne set purposely flown in Corsica (50-100pts/sq.m) and a second one retrieved from OpenTopography.org (~10pts/sq.m.). In

  3. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  4. A Concise and Comprehensive Description of Shoulder Pathology and Procedures: The 4D Code System

    Laurent Lafosse

    2012-01-01

    Full Text Available Background. We introduce a novel description system of shoulder pathoanatomy. Its goal is to provide a comprehensive three-dimensional picture, with an additional component of time; thus, we call it the 4D code. Methods. Each line of the code starts with right versus left and a time designation. The pillar components are recorded regardless of pathology; they include subscapularis, long head of biceps tendon, supraspinatus, infraspinatus, and teres minor. Secondary elements can be added if there is observed pathology, including acromioclavicular joint, glenohumeral joint, labrum, tear configuration, location and extent of partial cuff tear, calcific tendonitis, fatty infiltration, and neuropathy. Results. We provide two illustrative examples of patients which show the ease and effectiveness of the 4D code. With a few simple lines, significant amount of information about patients’ pathology, surgery, and recovery can be easily conveyed. Discussion. We utilize existing validated classification systems for parts of the shoulder and provide a frame work to build a comprehensive picture. The alphanumeric code provides a simple language that is universally understood. The 4D code is concise yet complete. It seeks to improve efficiency and accuracy of the communication, documentation, and visualization of shoulder pathology within individual practices and between providers.

  5. Newton law on the generalized singular brane with and without 4d induced gravity

    Newton law arising due to the gravity localized on the general singular brane embedded in AdS5 bulk is examined in the absence or presence of the 4d induced Einstein term. For the RS brane, apart from the subleading correction, Newton potential obeys 4d- and 5d-type gravitational law at long- and short-ranges if it were not for the induced Einstein term. The 4d induced Einstein term generates an intermediate range at short distance, in which the 5d Newton potential 1/r2 emerges. For Neumann brane the long-range behavior of Newton potential is exponentially suppressed regardless of the existence of the induced Einstein term. For Dirichlet brane the expression of Newton potential is dependent on the renormalized coupling constant vren. At particular value of vren Newton potential on Dirichlet brane exhibits a similar behavior to that on RS brane. For other values the long-range behavior of Newton potential is exponentially suppressed as that in Neumann brane

  6. Structural requirements of pyrido[2,3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses.

    Caballero, Julio; Fernández, Michael; González-Nilo, Fernando D

    2008-06-01

    2D autocorrelation, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were undertaken for a series of pyrido[2,3-d]pyrimidin-7-ones to correlate cyclin-dependent kinase (CDK) cyclin D/CDK4 inhibition with 2D and 3D structural properties of 60 known compounds. QSAR models with considerable internal as well as external predictive ability were obtained. The relevant 2D autocorrelation descriptors for modeling CDK4/D inhibitory activity were selected by linear and nonlinear genetic algorithms (GAs) using multiple linear regression (MLR) and Bayesian-regularized genetic neural network (BRGNN) approaches, respectively. Both models showed good predictive statistics; but BRGNN model enables better external predictions. A weight-based input ranking scheme and Kohonen self-organized maps (SOMs) were carried out to interpret the final net weights. The 2D autocorrelation space brings different descriptors for CDK4/D inhibition, and suggests the atomic properties relevant for the inhibitors to interact with CDK4/D active site. CoMFA and CoMSIA analyses were developed with a focus on interpretative ability using coefficient contour maps. CoMSIA produced significantly better results. The results indicate a strong correlation between the inhibitory activity of the modeled compounds and the electrostatic and hydrophobic fields around them. PMID:18468903

  7. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  8. Sustainability Criteria Model: A Field Study of ICT4D Project

    Haslinda Sutan Ahmad Nawi; Nur Syufiza Ahmad Shukor; Suzana Basaruddin; Siti Fatimah Omar; Azizah Abdul Rahman; Rohaya Abu Hassan; Mohammad Ashri Abu Hassan

    2013-01-01

    Community ICT hubs provision in rural areas has been recognised as a promising tool to improve ICT literacy especially in developing regions. However, there are particular challenges in sustainable community ICT hubs provision that lead to low success rates and consequently derive economical, institutional, social, and cultural aspects consideration. The purpose of this study is to identify and understand the sustainability criteria of community ICT hubs implemented at 9 districts in one of t...

  9. Sustainability Criteria Model: A Field Study of ICT4D Project

    Haslinda Sutan Ahmad Nawi

    2013-01-01

    Full Text Available Community ICT hubs provision in rural areas has been recognised as a promising tool to improve ICT literacy especially in developing regions. However, there are particular challenges in sustainable community ICT hubs provision that lead to low success rates and consequently derive economical, institutional, social, and cultural aspects consideration. The purpose of this study is to identify and understand the sustainability criteria of community ICT hubs implemented at 9 districts in one of the most progressive states in Malaysia. This study uses case study as a strategy to collect its qualitative data through document review, observation, and interview involving 92 respondents. There are 8 sustainability criteria discovered, grouped within 3 sustainability dimensions: social/cultural; economical; and institutional.

  10. 4D seismic reservoir characterization, integrated with geo-mechanical modelling

    Angelov, P. V.

    2009-01-01

    Hydrocarbon production induces time-lapse changes in the seismic attributes (travel time and amplitude) both at the level of the producing reservoir and in the surrounding rock. The detected time-lapse changes in the seismic are induced from the changes in the petrophysical properties of the rock, i

  11. Building Spatiotemporal Anatomical Models using Joint 4-D Segmentation, Registration, and Subject-Specific Atlas Estimation

    Prastawa, Marcel; Awate, Suyash P.; Gerig, Guido

    2012-01-01

    Longitudinal analysis of anatomical changes is a vital component in many personalized-medicine applications for predicting disease onset, determining growth/atrophy patterns, evaluating disease progression, and monitoring recovery. Estimating anatomical changes in longitudinal studies, especially through magnetic resonance (MR) images, is challenging because of temporal variability in shape (e.g. from growth/atrophy) and appearance (e.g. due to imaging parameters and tissue properties affecti...

  12. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    belong to the most precise methods currently available. In clinical practice, however, there exists the problem that many medical facilities are not equipped with 4D imaging devices. Further, 4D images still offer only a snapshot of the patient-specific motion range and potential motion variability may limit the conclusions that can be drawn from them. To address these aspects, in the next part of the thesis - based on the optimized methods for motion field estimation in 4D CT image data and further including statistical motion information and models, respectively - model-based approaches for motion field estimation and prediction are developed. First, a novel approach for statistical modeling of lung motion in a patient collective is presented, and methods for adapting the model for prediction of patient-specific motion patterns are provided. The latter allow, for instance, the estimation of respiratory lung and lung tumor motion for radiation therapy treatment planning, if no temporally resolved image sequences are available for the patient; this use case is demonstrated. Further, techniques of multivariate statistics are applied to account for variations of motion patterns by integrating additional information provided by motion indicators used in 4D radiation therapy (e.g. abdominal belts or spirometer measurements) for a patient-specific, situation-related adaption of the motion fields computed using 4D images and the methods for motion field estimation described before. In the last part of the thesis, the developed methods are finally applied for assessing and analyzing the dosimetric impact of respiratory motion during radiation therapy of lung tumors. Both 3D conformal radiotherapy and intensity modulated radiotherapy are modeled as treatment modalities. In the case of intensity modulated radiotherapy, short delivery times for single radiation fields lead to the risk that the corresponding dose contributions are not only subject to a motion-induced dose blurring

  13. Carbaryl, 2,4-D, and Triclopyr adsorption in thatch-soil ecosystems.

    Raturi, S; Islam, K R; Caroll, M J; Hill, R L

    2005-01-01

    Thatch development in intensively managed turf sites may cause environmental concerns for greater sorption or leaching of applied chemicals in terrestrial ecosystems. To determine the adsorption potential of Carbaryl (1-Napthyl N-methylcarbamate), 2,4-D (2,4-dichloro-phenoxyacetic acid), and Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in turf ecosystems, composite thatch and underlying soil samples from three-and six-year-old stands of cool-season Southshore creeping bentgrass (Agrostis palustris Huds.) and warm-season Meyer zoysiagrass (Zoysia japonica Steud.) were collected. The samples were processed and analyzed for total organic carbon (COrg); extractable (CExt), humic (CHA) and fulvic acid (CFA); anthrone reactive nonhumic carbon (ARC) fractions; and CHA and CFA associated iron (Fe) contents. Pesticide adsorption capacity (Kf) and intensity (1/n), organic carbon partition coefficient (KOC) and Gibbs free energy change (deltaG) were calculated for thatch materials and the underlying soils using a modified batch/flow technique. Both bentgrass (BT) and zoysiagrass thatch (ZT) contained a greater concentration of CExt, CFA, CHA, and ARC than the respective soils (BS and ZS). The CExt, CFA, CHA, and ARC concentration was higher in BT compared with ZT. The BT contained a greater concentration of bound Fe in both CFA and CHA fractions than in BS, whereas ZT had more bound Fe in CHA fraction than in ZS. On average, the BT had a greater concentration of bound Fe in CExt, CFA, and CHA fractions than in the ZT. Among the pesticides, Carbaryl had higher Kf and 1/n values than 2,4-D and Triclopyr for both thatch and soil. Although the KOC and deltaG values of Carbaryl were higher in both BT and ZT than in the underlying soils, the KOC and deltaG values of 2,4-D were significantly higher in BS and ZS than in the overlying thatch materials. The 2,4-D and Triclopyr had higher leaching indices (LI) than Carbaryl for both BT and ZT materials than the respective soils

  14. Translocation of 14C-Labelled 2,4-D in Cereals

    2-methyl-4-chlorophenoxyacetic acid (MCPA) and 2,4-dichlorophenoxyacetic acid (2,4-D) often produce deformities in the straw and spikes of cereal plants when spraying before five or six leaves have developed. Barley and oat plants were given applications of 10 μl of a 0.5% solution of 14C-labelled 2,4-D (total activity, 0.3 (μCi) at the centre of the upper surface of each leaf. The experiments comprise six different stages of development: one, two, three, four, five and six leaves. This corresponds to field practice where plants with five and six leaves receive and take up nearly five i or six times as much 2,4-D as those with a single leaf. After application the plants were left 4 - 8 h under artificial light in a greenhouse. The area of application was covered with adhesive paper and then the plants were killed by the freeze-dry method or the plants were placed between several layers of warm blotting paper in a photographic drying press, where they were killed by heating to 60°C for 15 min. Afterwards the plants were mounted with rubber cement on white cartons and pressed to paper thinness in a specially constructed press. After desiccation and pressing for about a week the plants were placed on X-ray films for autoradiography: the period of exposure was three weeks. In young barley plants at the one-, two-, or three-leaf stage the radioactive 2,4-D is effectively translocated from the point of application to the stem and through the stem to the roots, thus passing through the floral and vegetative primordia. At the five- to six-leaf stage the translocation is slight and does not extend to the stem and roots or to the growing point as it does in younger plants. Oats show little translocation in the one-to two-leaf stage (in contrast to barley); 2,4-D is not transferred to the hypocotyl, the seed and the roots to such an extent as in barley. Translocation in oat plants becomes effective in the three- to four-leaf stage when 2,4-D is detected in all parts of the

  15. A novel fast helical 4D-CT acquisition technique to generate low-noise sorting artifact-free images at user-selected breathing phases

    Thomas, D.; Lamb, J.; White, B.; Jani, S.; Gaudio, S.; P. Lee; Ruan, D; McNitt-Gray, M; Low, D

    2014-01-01

    Purpose To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Methods and Materials Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breat...

  16. Evaluation of intrinsic respiratory signal determination methods for 4D CBCT adapted for mice

    Martin, Rachael; Pan, Tinsu, E-mail: tpan@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030 (United States); Rubinstein, Ashley; Court, Laurence [The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030 and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Ahmad, Moiz [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: 4D CT imaging in mice is important in a variety of areas including studies of lung function and tumor motion. A necessary step in 4D imaging is obtaining a respiratory signal, which can be done through an external system or intrinsically through the projection images. A number of methods have been developed that can successfully determine the respiratory signal from cone-beam projection images of humans, however only a few have been utilized in a preclinical setting and most of these rely on step-and-shoot style imaging. The purpose of this work is to assess and make adaptions of several successful methods developed for humans for an image-guided preclinical radiation therapy system. Methods: Respiratory signals were determined from the projection images of free-breathing mice scanned on the X-RAD system using four methods: the so-called Amsterdam shroud method, a method based on the phase of the Fourier transform, a pixel intensity method, and a center of mass method. The Amsterdam shroud method was modified so the sharp inspiration peaks associated with anesthetized mouse breathing could be detected. Respiratory signals were used to sort projections into phase bins and 4D images were reconstructed. Error and standard deviation in the assignment of phase bins for the four methods compared to a manual method considered to be ground truth were calculated for a range of region of interest (ROI) sizes. Qualitative comparisons were additionally made between the 4D images obtained using each of the methods and the manual method. Results: 4D images were successfully created for all mice with each of the respiratory signal extraction methods. Only minimal qualitative differences were noted between each of the methods and the manual method. The average error (and standard deviation) in phase bin assignment was 0.24 ± 0.08 (0.49 ± 0.11) phase bins for the Fourier transform method, 0.09 ± 0.03 (0.31 ± 0.08) phase bins for the modified Amsterdam shroud method, 0

  17. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    Neal, B; Chen, Q [University of Virginia, Charlottesville, VA (United States)

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  18. Fluorine-18-labeled [Nle4,D-Phe7]-α-MSH, an α-melanocyte stimulating hormone analogue

    The α-melanocyte stimulating hormone (α-MSH) analogue [N1e4,D-Phe7]-α-MSH was labeled with 18F using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) in >80% radiochemical yield. The IC50 values of [N1e4,D-Phe7]-α-MSH and para-fluorobenzoyl-[N1e4,D-Phe7]-α-MSH ([N1e4,D-Phe7,Lys11-(18F)PFB]-α-MSH) for inhibiting the binding of meta-[131I]iodobenzoyl-[N1e4,D-Phe7]-α-MSH ([N1e4,D-Phe7,Lys11-(131I)MIB]-α-MSH) to B16-F1 murine melanoma cells were 89 ± 9 pM and 112 ± 22 pM, respectively, suggesting that addition of 4-fluorobenzoate did not compromise α-MSH receptor binding affinity. Binding of [N1e4,D-Phe7,Lys11-(18F)PFB]-α-MSH was influenced by the specific activity of the preparation (400-1000 Ci/mmol). The normal tissue clearance of [N1e4,D-Phe7,Lys11-(18F)PFB]-α-MSH in mice was quite rapid, with little evidence for defluorination

  19. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia

  20. The impact of audio-visual biofeedback on 4D PET images: Results of a phantom study

    Yang, Jaewon; Yamamoto, Tokihiro; Cho, ByungChul; Seo, Youngho; Keall, Paul J.

    2012-01-01

    Purpose: Irregular breathing causes motion blurring artifacts in 4D PET images. Audiovisual (AV) biofeedback has been demonstrated to improve breathing regularity. To investigate the hypothesis that, compared with free breathing, motion blurring artifacts are reduced with AV biofeedback, the authors performed the first experimental phantom-based quantification of the impact of AV biofeedback on 4D PET image quality.

  1. 4D Flow of the Whole Heart and Great Vessels at 3T Using Real Time Self Respiratory Gating

    Uribe, Sergio Andres; Beerbaum, Philipp; Rasmusson, Allan;

    2008-01-01

    We present an extension of a self-respiratory technique to acquire 4D flow data. Self-navigation is obtained from k-space center profiles and the breathing signal is used in real time to gate the scan. The method allows us to acquire an isotropic non-angulated volume, 4D flow encoded, of the whole...

  2. Digit Ratio (2D:4D: A biomarker for prenatal sex steroids and adult sex steroids in challenge situations

    John eManning

    2014-01-01

    Full Text Available Digit ratio (2D:4D, which denotes the relative length of the 2nd and 4th digits, is considered to be a biomarker of the balance between foetal testosterone and oestrogen in a narrow window of early ontogeny. Evidence from this assertion is derived from direct and indirect measures of prenatal hormonal exposure (in experimental animals, via amniotic fluid samples and in the study of sex-typical traits in relation to 2D:4D. In contrast, the relationships between 2D:4D and levels of sex steroids in adults are less clear, as many correlational studies of 2D:4D and adult sex steroids have concluded that there is little in the way of associations. Here we suggest that in order to understand the link between 2D:4D and sex hormones one must consider both foetal organising and adult activating effects of testosterone and oestrogen. In particular, we hypothesise that 2D:4D correlates with early organising effects on the endocrine system that moderate activating effects in adulthood. We argue that this can be especially observed through an elevated propensity in adults to produce testosterone in challenging conditions such as aggressive and sexual encounters. We discuss this refinement of the 2D:4D paradigm in relation to the links between 2D:4D and sports performance, and aggression.

  3. Breathing adapted radiotherapy: a 4D gating software for lung cancer

    Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT

  4. On the use of EPID-based implanted marker tracking for 4D radiotherapy

    Four-dimensional (4D) radiotherapy delivery to dynamically moving tumors requires a real-time signal of the tumor position as a function of time so that the radiation beam can continuously track the tumor during the respiration cycle. The aim of this study was to develop and evaluate an electronic portal imaging device (EPID)-based marker-tracking system that can be used for real-time tumor targeting, or 4D radiotherapy. Three gold cylinders, 3 mm in length and 1 mm in diameter, were implanted in a dynamic lung phantom. The phantom range of motion was 4 cm with a 3-s 'breathing' period. EPID image acquisition parameters were modified, allowing image acquisition in 0.1 s. Images of the stationary and moving phantom were acquired. Software was developed to segment automatically the marker positions from the EPID images. Images acquired in 0.1 s displayed higher noise and a lower signal-noise ratio than those obtained using regular (>1 s) acquisition settings. However, the markers were still clearly visible on the 0.1-s images. The motion of the phantom blurred the images of the markers and further reduced the signal-noise ratio, though they could still be successfully segmented from the images in 10-30 ms of computation time. The positions of gold markers placed in the lung phantom were detected successfully, even for phantom velocities substantially higher than those observed for typical lung tumors. This study shows that using EPID-based marker tracking for 4D radiotherapy is feasible, however, changes in linear accelerator technology and EPID-based image acquisition as well as patient studies are required before this method can be implemented clinically

  5. Breathing adapted radiotherapy: a 4D gating software for lung cancer

    2011-01-01

    Purpose Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose. Methods and Materials Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT. Results Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case. Conclusions The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT. PMID:21702952

  6. TH-E-17A-04: Geometric Validation of K-Space Self-Gated 4D-MRI Vs. 4D-CT Using A Respiratory Motion Phantom

    Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gel embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase

  7. TH-E-17A-04: Geometric Validation of K-Space Self-Gated 4D-MRI Vs. 4D-CT Using A Respiratory Motion Phantom

    Yue, Y; Fan, Z; Yang, W; Pang, J; McKenzie, E; Deng, Z; Tuli, R; Sandler, H; Li, D; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2014-06-15

    Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gel embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine phase

  8. Unifying the PST and the auxiliary tensor field formulations of 4D self-duality

    Ivanov, E.A., E-mail: eivanov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region 141980 (Russian Federation); Nurmagambetov, A.J., E-mail: ajn@kipt.kharkov.ua [Akhiezer Institute for Theoretical Physics of NSC KIPT, Kharkov, UA 61108 (Ukraine); Zupnik, B.M., E-mail: zupnik@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region 141980 (Russian Federation)

    2014-04-04

    We unify the Lorentz- and O(2) duality-covariant approach to 4D self-dual theories by Pasti, Sorokin and Tonin (PST) with the formulation involving an auxiliary tensor field. We present the basic features of the new hybrid approach, including symmetries of the relevant generalized PST action. Its salient peculiarity is the unique form of the realization of the PST gauge symmetries. The corresponding transformations do not affect the auxiliary tensor field, which guarantees the self-duality of the nonlinear actions in which the O(2) invariant interactions are constructed out of the tensor field.

  9. Unifying the PST and the auxiliary tensor field formulations of 4D self-duality

    We unify the Lorentz- and O(2) duality-covariant approach to 4D self-dual theories by Pasti, Sorokin and Tonin (PST) with the formulation involving an auxiliary tensor field. We present the basic features of the new hybrid approach, including symmetries of the relevant generalized PST action. Its salient peculiarity is the unique form of the realization of the PST gauge symmetries. The corresponding transformations do not affect the auxiliary tensor field, which guarantees the self-duality of the nonlinear actions in which the O(2) invariant interactions are constructed out of the tensor field.

  10. Unifying the PST and the auxiliary tensor field formulations of 4D self-duality

    Ivanov, E A; Zupnik, B M

    2014-01-01

    We unify the Lorentz- and O(2) duality-covariant approach to 4D self-dual theories by Pasti, Sorokin and Tonin (PST) with the formulation involving an auxiliary tensor field. We present the basic features of the new hybrid approach, including symmetries of the relevant generalized PST action. Its salient peculiarity is the unique form of the realization of the PST gauge symmetries. The corresponding transformations do not affect the auxiliary tensor field, which guarantees the self-duality of the non-linear actions in which the O(2) invariant interactions are constructed out of the tensor field.

  11. Unifying the PST and the auxiliary tensor field formulations of 4D self-duality

    Ivanov, E. A.; Nurmagambetov, A. J.; Zupnik, B. M.

    2014-04-01

    We unify the Lorentz- and O(2) duality-covariant approach to 4D self-dual theories by Pasti, Sorokin and Tonin (PST) with the formulation involving an auxiliary tensor field. We present the basic features of the new hybrid approach, including symmetries of the relevant generalized PST action. Its salient peculiarity is the unique form of the realization of the PST gauge symmetries. The corresponding transformations do not affect the auxiliary tensor field, which guarantees the self-duality of the nonlinear actions in which the O(2) invariant interactions are constructed out of the tensor field.

  12. Crystal structure of 4-allylsulfanyl-1H-pyrazolo[3,4-d]pyrimidine

    Mohammed El Fal

    2014-09-01

    Full Text Available In the title compound, C8H8N4S, the pyrazolo[3,4-d]pyrimidine ring system is essentially planar, with a maximum deviation from the mean plane of 0.025 (3 Å. The allyl group is disordered over two sites in a 0.512 (6:0.488 (6 ratio. In the crystal, molecules are linked by pairs of N—H...N hydrogen bonds, forming inversion dimers with an R22(8 graph-set motif.

  13. Edge States in 4D and their 3D Groups and Fields

    Balachandran, A. P.; Bimonte, G.; Teotonio-Sobrinho, P.

    1993-01-01

    It is known that the Lagrangian for the edge states of a Chern-Simons theory describes a coadjoint orbit of a Kac-Moody (KM) group with its associated Kirillov symplectic form and group representation. It can also be obtained from a chiral sector of a nonchiral field theory. We study the edge states of the abelian $BF$ system in four dimensions (4d) and show the following results in almost exact analogy: 1) The Lagrangian for these states is associated with a certain 2d generalization of the ...

  14. Frontiers of 4d- and 5d-transition metal oxides

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  15. Dielectronic recombination of the 4p and 4d open sub-shell tungsten ions

    Dielectronic recombination rate coefficients are given theoretically for several highly charged tungsten ions. As 4p open sub-shell ions, Ga-, Ge-, As-, Br-, Kr-like ions are considered. Rb-like ion is further considered as a 4d open sub-shell ion. Theoretical calculations are carried out using a relativistic atomic code FAC. The effect of configuration interaction is taking into account. Inner-shell electron excitations play a significant role for the dielectronic recombination process. Simple analytical formulae are given for the total rate coefficients by fitting to the presently obtained numerical results.

  16. Does The Force From an Extra Dimension Contradict Physics in 4D?

    De Leon, J P

    2001-01-01

    We examine the question of whether violation of 4D physics is an inevitable consequence of existence of an extra non-compactified dimension. Recent investigations in membrane and Kaluza-Klein theory indicate that when the metric of the spacetime is allowed to depend on the extra coordinate, i.e., the cilindricity condition is dropped, the equation describing the trajectory of a particle in one lower dimension has an extra force with some abnormal properties. Among them, a force term parallel to the four-velocity of the particle and, what is perhaps more surprising, $u_{\\mu}f^{\\mu} \

  17. On 4d rank-one N=3 superconformal field theories

    Nishinaka, Takahiro

    2016-01-01

    We study the properties of 4d N=3 superconformal field theories whose rank is one, i.e. those that reduce to a single vector multiplet on their moduli space of vacua. We find that the moduli space can only be of the form C^3/Z_k for k=1,2,3,4,6, and that the supersymmetry automatically enhances to N=4 for k=1,2. In addition, we determine the central charges a and c in terms of k, and construct the associated 2d chiral algebras, which turn out to be exotic N=2 supersymmetric W-algebras.

  18. Digit ratio (2D:4D) is associated with breast cancer

    Patrícia Helena Costa Mendes; Ana Carolina de Campos Gomes; Priscila Bernadina Miranda Soares; Eduardo Gonçalves; Clayton Paraíso Macedo; Marise Fagundes Silveira; Daniella Reis Barbosa Martelli; Lívia Máris Ribeiro Paranaíba; Hercílio Martelli-Júnior

    2016-01-01

    Purpose: Digit ratio (2D:4D) has been considered as a proxy biomarker for prenatal hormonal exposure and may represent an individual’s predisposition to breast cancer. The purpose of the present study is to investigate whether there is a link between digit ratio and breast cancer in a Brazilian population.Methods: Digital measurements of the lengths of the index and ring fingers of both hands were obtained from women with breast cancer (n = 100) and age-matched controls (n = 100) using a digi...

  19. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Flammang, Aaron; Shea, Steven M. [Center for Applied Medical Imaging, Siemens Corporation, Corporate Technology, Baltimore, Maryland 21205 (United States); Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States)

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  20. Design for manufacturability from 1D to 4D for 90-22 nm technology nodes

    Balasinski, Artur

    2013-01-01

    This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes.  It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.

  1. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm2 with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  2. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  3. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  4. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Garcia-Cruz, Ulises [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico); Celis, Lourdes B. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Poggi, Hector [Department of Biotechnology and Bioengineering, CINVESTAV, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 D.F. (Mexico); Meraz, Monica, E-mail: meraz@xanum.uam.mx [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico)

    2010-07-15

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC{sub 50} values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC{sub 50} values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  5. 4D-MR flow analysis in patients after repair for tetralogy of Fallot

    Geiger, J.; Markl, M.; Jung, B.; Langer, M. [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Grohmann, J.; Stiller, B.; Arnold, R. [University Hospital Freiburg, Department of Congenital Heart Disease and Pediatric Cardiology, Freiburg (Germany)

    2011-08-15

    Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution {proportional_to} 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 {+-} 2.5 vs. 1.1 {+-} 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s {+-} 0.7 m/s) than controls (0.9 m/s {+-} 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)

  6. Use of projectional phase space data to infer a 4D particle distribution

    We consider beams which are described by a 4D transverse distribution f(x, y, x(prime), y(prime)), where x(prime) (triplebond) px/pz and z is the axial coordinate. A two-slit scanner is commonly employed to measure, over a sequence of shots, a 2D projection of such a beam's phase space, e.g., f(x, x(prime)). Another scanner might yield f(y, y(prime)) or, using crossed slits, f(x, y). A small set of such 2D scans does not uniquely specify f(x, y, x(prime), y(prime)). We have developed ''tomographic'' techniques to synthesize a ''reasonable'' set of particles in a 4D phase space having 2D densities consistent with the experimental data. These techniques are described in a separate document [A. Friedman, et. al., submitted to Phys. Rev. ST-AB, 2002]. Here we briefly summarize one method and describe progress in validating it, using simulations of the High Current Experiment at Lawrence Berkeley National Laboratory

  7. Inverse 4D conformal planning for lung SBRT using particle swarm optimization

    Modiri, A.; Gu, X.; Hagan, A.; Bland, R.; Iyengar, P.; Timmerman, R.; Sawant, A.

    2016-08-01

    A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%–41% for D max esophagus, 31%–68% for D max spinal cord and 7%–32% for V 13 lung.

  8. An energy transfer method for 4D Monte Carlo dose calculation.

    Siebers, Jeffrey V; Zhong, Hualiang

    2008-09-01

    This article presents a new method for four-dimensional Monte Carlo dose calculations which properly addresses dose mapping for deforming anatomy. The method, called the energy transfer method (ETM), separates the particle transport and particle scoring geometries: Particle transport takes place in the typical rectilinear coordinate system of the source image, while energy deposition scoring takes place in a desired reference image via use of deformable image registration. Dose is the energy deposited per unit mass in the reference image. ETM has been implemented into DOSXYZnrc and compared with a conventional dose interpolation method (DIM) on deformable phantoms. For voxels whose contents merge in the deforming phantom, the doses calculated by ETM are exactly the same as an analytical solution, contrasting to the DIM which has an average 1.1% dose discrepancy in the beam direction with a maximum error of 24.9% found in the penumbra of a 6 MV beam. The DIM error observed persists even if voxel subdivision is used. The ETM is computationally efficient and will be useful for 4D dose addition and benchmarking alternative 4D dose addition algorithms. PMID:18841862

  9. Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture

    Burgess, C P; Williams, M

    2015-01-01

    We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantiza...

  10. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  11. Data for Development: the D4D Challenge on Mobile Phone Data

    Blondel, Vincent D; Chan, Connie; Clerot, Fabrice; Deville, Pierre; Huens, Etienne; Morlot, Frédéric; Smoreda, Zbigniew; Ziemlicki, Cezary

    2012-01-01

    The Orange "Data for Development" (D4D) challenge is an open data challenge on anonymous call patterns of Orange's mobile phone users in Ivory Coast. The goal of the challenge is to help address society development questions in novel ways by contributing to the socio-economic development and well-being of the Ivory Coast population. Participants to the challenge are given access to four mobile phone datasets and the purpose of this paper is to describe the four datasets. The website http://www.d4d.orange.com contains more information about the participation rules. The datasets are based on anonymized Call Detail Records (CDR) of phone calls and SMS exchanges between five million of Orange's customers in Ivory Coast between December 1, 2011 and April 28, 2012. The datasets are: (a) antenna-to-antenna traffic on an hourly basis, (b) individual trajectories for 50,000 customers for two week time windows with antenna location information, (3) individual trajectories for 50,000 customers over the entire observatio...

  12. 4D FDG-PET based treatment planning for IGRT in the treatment of lung cancer

    AlexanderChi

    2014-08-01

    Full Text Available 18F fluorodeoxyglucose positron emission tomography (FDG-PET has changed the staging of, and the treatment response assessment for lung cancer over the past decades dramatically. The improved accuracy in tumor identification with FDG-PET has led to its increased utilization in target volume delineation for radiotherapy treatment planning in the treatment of lung cancer. Despite the increased ability to distinguish tumor and normal tissue with the help of PET/CT registration, how to best delineate the PET avid tumor volume continues to be controversial as the PET intensity can be influenced by multiple machine and patient related factors. One major factor influencing the PET intensity and image resolution in the thorax is respiratory motion. This problem may be minimized by 4D FDG-PET based treatment planning, which can further improve the resolution of tumor extent, and the delineation of the internal target volume. Here, we offer our perspectives on the utilization of 4D FDG-PET based treatment planning for thoracic image-guided radiotherapy.

  13. Direction Finding Using Multiple Sum and Difference Patterns in 4D Antenna Arrays

    Quanjiang Zhu

    2014-01-01

    Full Text Available Traditional monopulse systems used for direction finding usually face the contradiction between high angle precision and wide angle-searching field, and a compromise has to be made. In this paper, the time modulation technique in four-dimensional (4D antenna array is introduced into the conventional phase-comparison monopulse to form a novel direction-finding system, in which both high angle resolution and wide field-of-view are realized. The full 4D array is divided into two subarrays and the differential evolution (DE algorithm is used to optimize the time sequence of each subarray to generate multibeams at the center frequency and low sidebands. Then the multibeams of the two subarrays are phase-compared with each other and multiple pairs of sum-difference beams are formed at different sidebands and point to different spatial angles. The proposed direction-finding system covers a large field-of-view of up to ±60° and simultaneously maintains the advantages of monopulse systems, such as high angle precision and low computation complexity. Theoretical analysis and experimental results validate the effectiveness of the proposed system.

  14. 4D attosecond imaging with free electrons: Diffraction methods and potential applications

    Baum, Peter, E-mail: peter.baum@lmu.de [Max-Planck-Institute of Quantum Optics, and Ludwig-Maximilians-Universitaet Muenchen, Am Coulombwall 1, 85748 Garching (Germany); Zewail, Ahmed H., E-mail: zewail@caltech.edu [Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-10

    We consider here the extension of four-dimensional (4D) electron imaging methodology to the attosecond time domain. Specifically, we discuss the generation of attosecond electron pulses and the in situ probing with electron diffraction. The free electron pulses have a de Broglie wavelength on the order of picometers and a high degree of monochromaticity ({Delta}E/E{sub 0} {approx} 10{sup -4}); attosecond optical pulses have typically a wavelength of 20 nm and {Delta}E/E{sub 0} {approx} 0.5, where E{sub 0} is the central energy and {Delta}E is the energy bandwidth. Diffraction, and tilting of the electron pulses/specimen, permit the direct investigation of electron density changes in molecules and condensed matter. We predict the relevant changes in diffraction caused by electron density motion and give two examples as prototype applications, one that involves matter-field interaction, and the other is that of change in bonding order. This 4D imaging on the attosecond time scale is a pump-probe approach in free space and with free electrons.

  15. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC50 values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC50 values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  16. 4D-MR flow analysis in patients after repair for tetralogy of Fallot

    Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution ∝ 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 ± 2.5 vs. 1.1 ± 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s ± 0.7 m/s) than controls (0.9 m/s ± 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)

  17. PENGEMBANGAN PERANGKAT PEMBELAJARAN KETERAMPILAN GENERIK KOMUNIKASI NEGOSIASI SISWA SMK DENGAN METODE 4-D

    Siti Mazizatuz Zahroh

    2014-11-01

    Full Text Available Penelitian ini bertujuan untuk  mendeskripsikan, mengembangkan dan menghasilkan perangkat pembelajaran yang mampu melatihkan keterampilan generik komunikasi bernegosiasi siswa SMK dengan menggunakan metode 4D. Penelitian R&D ini dilaksanakan di SMKN 4 Surakarta yaitu pada siswa kelas X Program Keahlian Tata Busana. Tahapan pengembangan perangkat terdiri dari empat fase yaitu define, design, develop, dan disseminate. Tahap define mencakup kegiatan studi pustaka dan survey lapangan untuk keperluan identifikasi masalah dan need analysis, tahap design mencakup kegiatan perancangan produk awal, tahap develop mencakup kegiatan validasi pakar, revisi produk, ujicoba satu-satu dan kelompok kecil, sedangkan tahap disseminate mencakup kegiatan sosialisasi lapangan dan revisi produk akhir. Teknik pengumpulan data yang digunakan adalah teknik observasi, wawancara, dokumentasi, dan angket. Analisis data menggunakan teknik analisis deskriptif secara kuantitatif dan kualitatif. Hasil penelitian menunjukkan: (1 metode 4D merupakan metode yang fisibel dan efektif untuk digunakan dalam mengembangkan perangkat pembelajaran keterampilan generik komunikasi bernegosiasi; dan (2 perangkat pembelajaran yang dihasilkan mampu mengajarkan dan melatih keterampilan generik komunikasi bernegosiasi siswa kelas X SMKN 4 Surakarta. Kata kunci: perangkat pembelajaran, keterampilan generik komunikasi, negosiasi.

  18. 4d N=2 superconformal linear quivers with type IIA duals

    Aharony, Ofer; Berkooz, Micha

    2012-01-01

    We discuss the gravity duals of 4d N=2 superconformal field theories (SCFTs) arising from the low-energy limit of brane configurations of D4-branes stretched between and intersecting NS5-branes and D6-branes. This gives rise to a product of SU(N_i) groups, with bi-fundamental matter between adjacent groups, and extra fundamental hypermultiplets. The most general configuration in 11d (or type IIA) supergravity that is dual to a 4d N=2 SCFT (when the dual of this SCFT is a weakly curved background) was written down by Gaiotto and Maldacena, but finding it explicitly involves solving a complicated Toda equation. This equation simplifies only when the solution can be reduced to type IIA supergravity, so we ask for which SCFTs of this type is there a type IIA dual that is weakly coupled and weakly curved (away from NS5-branes and D6-branes). We find that such solutions (a special case of which was analyzed by Reid-Edwards and Stefanski) exist when there is a large number of gauge groups, with large ranks, and with...

  19. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives

    Asma Agrebi

    2014-05-01

    Full Text Available Several new pyrazolopyrimidine compounds were achieved from aminocyanopyarazole 1. The starting material 1 was initially coupled with orthoester at refluxed with various primary amines, ammonia, hydrazines and hydroxylamine to furnish a series of pyrazolo[3,4-d]pyrimidines. The reaction of imidate 2a-b with hydrazide derivatives led to the formation of pyrazolo[3,4-d][1,2,4]triazolo[4,3-c]pyrimidines. Some of the synthesized compounds 3a and 4c were evaluated for their anti-inflammatory, antipyretic and nociceptive activities. We start by studing the toxicity of these two molecules by measuring the corresponding DL50. The DL50 of 3a and 4c are estimated to 1333.2mg / kg and 1593.5mg / kg respectively. Pharmacological evaluation showed that compounds 3a and 4c at doses (5.5-22.2 mg / Kg, i.p exhibited anti-inflammatory activities compared to Ibuprofen (150 mg / Kg, i.p, used as a refer ence drug. Further, our study showed that the injection of derived pyrazolopyrimidines on hyperthermic animal leads to a decrease in temperature after 1 hours of treatment compared to paracetamol used as reference. In addition, the injection of derived pyrazolopyrimidines at different doses contains a potent nociceptive activity. This effect is dose-dependent compared to aspirin.

  20. SU-E-J-06: A Feasibility Study On Clinical Implementation of 4D-CBCT in Lung Cancer Treatment

    Hu, Y; Stanford, J; Duggar, W [University of Mississippi Med. Center, Jackson, MS (United States); Ruan, C [Brigham and Women' s Hospital / Harvard Medical School, Boston, MA (United States); Rajaguru, P [Univ. Mississippi Medical Center, UMC Cancer Center, Jackson, MS (United States); He, R [University of Mississippi Med. Center, Ridgeland, MS (United States); Yang, C [University of Mississippi Medical Center, Jackson, MS (United States)

    2014-06-01

    Purpose: Four-dimensional cone-beam CT (4D-CBCT) is a novel imaging technique to setup patients with pulmonary lesions in radiation therapy. This paper is to perform a feasibility study on the implementation of 4D-CBCT as image guidance for (1) SBRT and (2) Low Modulation (Low-Mod) IMRT in lung cancer treatment. Methods: Image artifacts and observers variability are evaluated by analyzing the 4D-CT QA phantom and patient 4D image data. There are two 4D-CBCT image artifacts: (1) Spatial artifact caused by the patient irregular breathing pattern will generate blurring and anatomy gap/overlap; (2) Cone beam scattering and hardening artifact will affect the image spatial and contrast resolution. The couch shift varies between 1mm to 3mm from different observers during the 4D-CBCT registration. Breath training is highly recommended to improve the respiratory regularity during CT simulation and treatment, especially for SBRT. Elekta XVI 4.5 Symmetry protocol is adopted in the patient 4DCBCT scanning and intensity-based registration. Physician adjustments on the auto-registration are involved prior to the treatment. Physician peer review on 4D-CBCT image acquisition and registration is also recommended to reduce the inter-observer variability. The average 4D-CT in reference volume coordinates is exported to MIM Vista 5.6.2 to manually fuse to the planning CT for further evaluation. Results: (1) SBRT: 4DCBCT is performed in dry-run and in each treatment fraction. Image registration and couch shift are reviewed by another physician on the 1st fraction before the treatment starts. (2) Low-Mod IMRT: 4D-CBCT is performed and peer reviewed on weekly basis. Conclusion: 4D-CBCT in SBRT dry-run can discover the ITV discrepancies caused by the low quality 4D-CT simulation. 4D-CBCT during SBRT and Low-Mod IMRT treatment provides physicians more confidence to target lung tumor and capability to evaluate inter-fractional ITV changes. More advanced 4D-CBCT scan protocol and