WorldWideScience

Sample records for 45-mhz needle transducer

  1. HIFU Transducer Characterization Using a Robust Needle Hydrophone

    Howard, Samuel M.; Zanelli, Claudio I.

    2007-05-01

    A robust needle hydrophone has been developed for HIFU transducer characterization and reported on earlier. After a brief review of the hydrophone design and performance, we demonstrate its use to characterize a 1.5 MHz, 10 cm diameter, F-number 1.5 spherically focused source driven to exceed an intensity of 1400 W/cm2at its focus. Quantitative characterization of this source at high powers is assisted by deconvolving the hydrophone's calibrated frequency response in order to accurately reflect the contribution of harmonics generated by nonlinear propagation in the water testing environment. Results are compared to measurements with a membrane hydrophone at 0.3% duty cycle and to theoretical calculations, using measurements of the field at the source's radiating surface as input to a numerical solution of the KZK equation.

  2. Novice performance of ultrasound-guided needle advancement: standard 38-mm transducer vs 25-mm hockey stick transducer.

    Davies, T; Townsley, P; Jlala, H; Dowling, M; Bedforth, N; Hardman, J G; McCahon, R A

    2012-08-01

    The optimal method to develop expertise in ultrasound-guided regional anaesthesia is unknown. Studies of laryngoscopic expertise in novices demonstrate that the choice of laryngoscope affects performance. In this study, we aimed to compare the effect of two different linear array transducers (38-mm standard vs 25-mm hockey stick) on novice performance of ultrasound-guided needle advancement. Following randomisation, participants watched a video model of expert performance of ultrasound-guided needle advancement. Recruits performed the modelled task on a turkey breast model. The median (IQR [range]) composite error score was statistically significantly larger for participants in the hockey stick transducer group compared with the standard transducer group; 10.0 (7.3-14.3 [2.5-29.0]) vs 7.5 (4.5-10.0 [2.0-28.0]) respectively, (p = 0.01). This study has demonstrated that performance of ultrasound-guided needle advancement by novice operators after simple video instruction is better (as assessed using a composite error score) with a standard 38-mm transducer than with a 25-mm hockey stick transducer. PMID:22506607

  3. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S.; Shung, K. Kirk

    2009-01-01

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of ...

  4. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S.; Shung, K. Kirk

    2009-10-01

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm-1 MHz-1 corresponding to an increase in Young's modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  5. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    Huang, C.-C. [Department of Electronic Engineering, Fu Jen Catholic University, Taipei 24205, Taiwan (China); Chen Ruimin; Zhou Qifa; Shung, K Kirk [NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Tsui, P.-H. [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Humayun, Mark S [Doheny Retina Institute, Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)], E-mail: j648816n@ms23.hinet.net

    2009-10-07

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 {+-} 0.02 to 0.520 {+-} 0.06 dB mm{sup -1} MHz{sup -1} corresponding to an increase in Young's modulus from 6 {+-} 0.4 to 96 {+-} 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  6. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm-1 MHz-1 corresponding to an increase in Young's modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  7. Cataract measurement by estimating the ultrasonic statistical parameter using an ultrasound needle transducer: an in vitro study

    A cataract is a clouding of the crystalline lens that reduces the amount of incoming light and impairs visual perception. Phacoemulsification is the most common surgical method for treating advanced cataracts, and the optimal phacoemulsification energy is determined by the lens hardness. A previous study proposed using the ultrasonic Nakagami image to complement the B-scan for distinguishing different degrees of lens hardening. However, it is difficult to implement the use of an imaging probe to detect the lens during phacoemulsification surgery in a clinical situation. To resolve this problem, this study applied an ultrasonic needle transducer to estimate the Nakagami parameter as an alternative for characterizing the cataract lens. Cataracts of porcine lenses were artificially induced in vitro, and the Young's modulus, backscattering intensities, and the Nakagami parameters were measured. The results showed that the backscattering intensity was not correlated with Young's modulus. In contrast, the average Nakagami parameter increased from 0.34 to 0.95 with increasing Young's modulus of the lens from 1.71 to 101 kPa. The above findings showed that the Nakagami parameter estimated with a needle transducer may be useful in differentiating different degrees of lens hardening, and implied that determining the optimal ultrasonic energy during clinical cataract surgery is possible if the needle transducer can be combined with the phacoemulsification probe to estimate the Nakagami parameter

  8. Implementation of a Rotational Ultrasound Biomicroscopy System Equipped with a High-Frequency Angled Needle Transducer — Ex Vivo Ultrasound Imaging of Porcine Ocular Posterior Tissues

    Tae-Hoon Bok

    2014-09-01

    Full Text Available The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ~ 330° and at a distance range of 6 ~ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ~ 220° and at a distance range of 7.5 ~ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.

  9. Ultrasonic transducer

    The invention concerns an ultrasonic piezoelectric transducer fitted in sealed boxes for use in liquid sodium cooled fast nuclear reactors. These transducers are immersed in the sodium. The box is so constructed that its enables a removable connexion to be made between the transducer box itself and the connector

  10. Pressure transducers

    Strain gauges pressure transducers types are presented. Models, characteristics and calibration procedures were also analysed. Initially, a theoretical study was accomplished to evaluate metallic alloys behavior on sensing elements manufacturing, and diaphragm was used as deflecting elements. Electrical models for potenciometric transducers were proposed at the beginning and subsequently comproved according our experiments. Concerning bridge transducers, existing models confirmed the conditions of linearity and sensitivity related to the electrical signal. All the work done was of help on the calibration field and pressure measurements employing unbounded strain gauge pressure transducers

  11. Transducer characterization

    For inservice inspection transducer characterization can be an important item if one wants to compare ultrasonic examination data obtained at different times (fingerprint). It is possible that the transducers used during previous examinations are lost or will become defect. In such a case it is most useful if one can check the characteristics of the replacement transducers. Some time ago an elegant characterization method was developed by the EURATOM Joint Research Centre of Ispra based on liquid crystals. This method is now under development at Neratoom and the results so far indicate that a robust characterization rig can be built at a reasonable price

  12. Magnetic transducer

    A description is given of a transducer system for identifying the presence and location of ferromagnetic materials and ferromagnetic discontinuities associated with a sample. This equipment includes a first source of a magnetic field in magnetic connection with the surface of the sample and so mounted that it may be moved along this surface and a Hall effect cell in magnetic connection with the first source, in a fixed position in relation to this first source and placed so as to be in magnetic connection with the sample. The object of this invention is a transducer able to detect the accumulation of corrosion products (scale) on the outer surfaces of steam generator tubes

  13. Ultrasonic transducer

    A description is given of an ultrasonic transducer capable of operating at high temperature and comprising a transducer crystal and a coupling piece. This coupling piece is composed of several thin plates, generally triangular in shape, in a material withstanding corrosion and high temperatures, these plates being applied one against the other by pressure. One of the edges of the coupling piece is designed so as to direct towards the junction surfaces of the various plates the ultrasonic waves reflected from the junction between the coupling piece and the piece to which the ultrasonic waves must be transmitted

  14. Ultrasonic transducer

    An ultrasonic transducer suitable for use up to a temperature of about 6000C comprises a stainless steel casing containing a lithium niobate piezoelectric element and a backing material of a powder which provides a partial pressure of oxygen and thereby prevents deterioration of the element by oxygen loss or contamination. The powder might be of lithium niobate or magnesia. (author)

  15. Needle counter

    Needle counter had been devised by Geiger about 60 years ago before the present GM counter appeared. It is suitable for the detection of weak radiation because it is limited in effective volume, if the background due to mainly cosmic ray is proportional to the effective volume of the counter. Recently the very low β detector having a needle counter as the main detector has been developed. It showed highly excellent performance in the measurements of small area samples, about ten times sensitive as compared with other detectors. The counter is installed in the very low radiation measuring well at Nokogiriyama, Chiba Prefecture, using a NaI scintillator as its guard counter. D. H. Wilkinson first treated a gas amplification counter theoretically and quantitatively. The authors have obtained good results in the comparison with the experiments of the counter using a generalized form of Wilkinson theory. The findings obtained through this study seem to be applicable to the electrode arrangement which is important for the counter design. It was found that the excellent rise time of induced pulses in a gas amplification counter was achieved in larger amplification factor and smaller convolution effect. In the detection of charged particles with small obstructing capability such as γ ray, faster rise time and higher pulses can be obtained with needle counters than wire counters. (Wakatsuki, Y.)

  16. Modelling and characterisation of a ultrasound-actuated needle for improved visibility in ultrasound-guided regional anaesthesia and tissue biopsy.

    Kuang, Y; Hilgers, A; Sadiq, M; Cochran, S; Corner, G; Huang, Z

    2016-07-01

    Clear needle visualisation is recognised as an unmet need for ultrasound guided percutaneous needle procedures including regional anaesthesia and tissue biopsy. With inadequate needle visibility, these procedures may result in serious complications or a failed operation. This paper reports analysis of the modal behaviour of a previously proposed ultrasound-actuated needle configuration, which may overcome this problem by improving needle visibility in colour Doppler imaging. It uses a piezoelectric transducer to actuate longitudinal resonant modes in needles (outer diameter 0.8-1.2mm, length>65mm). The factors that affect the needle's vibration mode are identified, including the needle length, the transducer's resonance frequency and the gripping position. Their effects are investigated using finite element modelling, with the conclusions validated experimentally. The actuated needle was inserted into porcine tissue up to 30mm depth and its visibility was observed under colour Doppler imaging. The piezoelectric transducer is able to generate longitudinal vibration with peak-to-peak amplitude up to 4μm at the needle tip with an actuating voltage of 20Vpp. Actuated in longitudinal vibration modes (distal mode at 27.6kHz and transducer mode at 42.2kHz) with a drive amplitude of 12-14Vpp, a 120mm needle is delineated as a coloured line in colour Doppler images, with both needle tip and shaft visualised. The improved needle visibility is maintained while the needle is advanced into the tissue, thus allowing tracking of the needle position in real time. Moreover, the needle tip is highlighted by strong coloured artefacts around the actuated needle generated by its flexural vibration. A limitation of the technique is that the transducer mode requires needles of specific lengths so that the needle's resonance frequency matches the transducer. This may restrict the choice of needle lengths in clinical applications. PMID:27022669

  17. Driving electrostatic transducers

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...

  18. Steerable real-time sonographically guided needle biopsy.

    Buonocore, E; Skipper, G J

    1981-02-01

    A method for dynamic real-time ultrasonic guidance for percutaneous needle biopsy has been successful in obtaining cytologic and histologic specimens from abdominal masses. The system depends on a real-time ultrasonic transducer that has been rigidly attached to a laterally placed steerable needle holder. Using simple trigonometric functions, a chart has been derived that gives the exact angulation and needle length to produce quick, reliable, guided needle placements. Examples of successful renal, hepatobiliary, and retroperitoneal biopsies are presented. Advantages of this technique include speed, accuracy, low cost, three-dimensional format, and the omission of contrast media and radiation. PMID:6781264

  19. Needle autopsy

    Philip Davis Marsden

    1997-04-01

    Full Text Available Often in tropical practice there is not time or conditions to do a proper autopsy on a patient who has died. A needle biopsy technique is described for limited closed autopsy examination to clariffy organ histology. In this way the clinician may resolve puzzling fatal disease.Muitas vezes, em clínicas de países tropicais, não há tempo nem condições para se realizar uma necropsia adequada em um paciente que foi a óbito. Um técnica de biópsia por punção é descrita para fins de exame em necropsia limitadamente fechada, para esclarecimento da histologia do órgão. Dessa maneira, o clínico pode resolver enigmas de doenças fatais.

  20. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves.

    Gachagan, Anthony; Hayward, Gordon; Banks, Robert

    2005-07-01

    This paper describes the development of a flexible piezoelectric transducer for the generation and detection of ultrasonic symmetrical Lamb waves in plate-like structures. This piezoplatelet transducer structure comprises an array of miniature piezoceramic plates embedded within a soft setting polymer filler material, combining the efficiency of the active piezoceramic phase with a degree of flexibility, which is a function of the platelet/polymer dimensions. For many condition-monitoring applications, the generation of ultrasonic Lamb waves is often appropriate, and this was achieved by incorporating interdigital design techniques via the transducer electrode pattern. The performance of the piezoplatelet transducer structure was evaluated using a combination of linear systems and finite-element modeling, substantiated by experimental results. Importantly, the transducer is shown to operate as an ensemble of platelets, each operating in the thickness mode and well decoupled from neighboring piezoelectric elements. Using this transducer configuration, an unimodal s1 Lamb wave, at 1.45 MHz, has been generated and detected in a 3-mm thick steel plate. Furthermore, a propagation distance of almost 1 m was recorded for s0 Lamb wave generation/detection in a fiber-reinforced composite plate. PMID:16212257

  1. Multilayer Ionic Transducers

    Akle, Barbar Jawad

    2003-01-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation, and control. The transducer consists of two to four individual layers each approximately 200 microns thick. The transducers are connected in parallel to minimize the electric field requirements for actuation. The tradeoff in deflection and force can be controlled by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produce...

  2. Needle Biopsy of the Lung

    ... Physician Resources Professions Site Index A-Z Needle Biopsy of the Lung Needle biopsy of the lung ... Needle Biopsy of Lung Nodules? What is Needle Biopsy of the Lung? A lung nodule is relatively ...

  3. Ring shaped magnetic field transducer based on the GMI effect

    In this paper the design of a magnetic-field-to-voltage transducer based on the giant magnetoimpedance phenomenon (GMI) is proposed, characterized by an innovative geometric configuration. In order to attain the best near-field sensibility and far-field immunity, the transducer's sensitive element and electronic circuit were planned and implemented. By thoroughly characterizing them it was possible to obtain an estimate of the transducer's sensibility, which is approximately 12 V Oe−1. This value is comparable to those observed in two of the most important existing magnetic sensors: the fluxgate and the Hall effect sensor. The main application of the developed transducer is the localization of magnetic foreign bodies in humans, based on a previously developed and tested SQUID sensor technique. In order to provide a better interpretation of the experimental results, a theoretical model of the magnetic field associated with a needle and of the signal it generates in the transducer was created. Measurements with a needle were performed to analyze the behavior of the prototype, which has a high sensitivity, as expected, but presents strong hysteresis, lack of linearity and low immunity to uniform fields. However, despite the improvements that can still be done and have already been identified, the developed transducer has many promising applications, and has the advantage of reduced fabrication and operation costs

  4. Handbook of force transducers

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  5. Experiments with Ultrasonic Transducers.

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  6. Modeling of ultrasound transducers

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...

  7. Crossflow force transducer

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related

  8. Improved transvenous liver biopsy needle

    Henriksen, Jens Henrik Sahl; Matzen, P; Christoffersen, P;

    1979-01-01

    A modified type of the standard transvenous cholangiography biopsy needle is described. The modified tranvenous liver biopsy needle caused only minimal artefactual changes of the liver biopsy specimens. The new type of biopsy needle is a modified Menghini needle. The conventional Menghini needle...... should be avoided for transvenous catheter biopsies because of risk of leaving catheter fragments in the liver....

  9. Precessing Ferromagnetic Needle Magnetometer

    Jackson Kimball, Derek F.; Sushkov, Alexander O.; Budker, Dmitry

    2016-05-01

    A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, N ℏ≫I Ω (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin N ℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t-3 /2. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.

  10. Pressure Transducer Locations

    National Aeronautics and Space Administration — Files are located here, defining the locations of the pressure transducers on the HIRENASD model. These locations also correspond to the locations that analysts...

  11. Pleural needle biopsy

    ... et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 19. Ly A. Fine-needle aspiration biopsy technique and specimen ... Respiratory system. In: Watson N. Chapman and Nakielny's Guide ...

  12. Intracerebral sewing needle.

    Yolas, C; Aydin, M D; Ozdikici, M; Aydin, N; Onder, A

    2007-01-01

    A 9-year-old male patient complaining of seizure attack was admitted to the neurosurgery department. Radiologic investigations revealed a 5-cm-long metallic sewing needle extending from the right frontal cortex to the right lateral ventricle. Burr hole surgery was performed and the needle was grasped with biopsy forceps and removed with endoscopic guidance. The patient recovered without any complications. PMID:17786012

  13. Review on vibration transducers

    The vibrational behavior of a rotating machine at a certain rotational speed is carried out by a suitable non-contact transducer placed in precise selected position relative to the rotating machine. For the proper application of vibration measuring devices to the vibration parameters, these devices are classified with respect to the citation frequency and machine frequency. Sensors and transducers are categorized according to their applications. One variable can be converted into other by using electrical integrating or differentiating circuit. The differentiation accentuates the high frequency end of the spectrum while integration reduces the high frequency components. This paper presents different types of transducers, which can be used for vibration analysis purposes in rotating machinery. Factually sensors play an important role in the measurement of vibrations. Their characteristics are discussed and the sensitivity of mounting, installation and working principle is presented. The transduction mechanism has been discussed in a straightforward manner and comparison between different sensors and transduction is presented here. (author)

  14. Circular PVDF Airborne Transducer

    JIAO Li-hua; XU Li-mei; HONG Hu

    2007-01-01

    With the required increased audio pressure of the parametric ultrasonic transducer array and the difficulty to theoretically analyse the complex ultrasonic structure in audio beam application, an computafionally efficient model is desired to describe the characteristic of the parametric ultrasonic transducer array for the system design and optimization. By applying the symmetry boundary conditions at the mid-plane in the thickness direction, a finite element model based on the half thickness simplification is presented to analyze the parametric circular transducer which is designed by gluing the poly Vinylidene fluoride film (PVDF). The validity of the proposed model is confirmed by a comparison of finite element aalysis results with the theoretical value and experimental data, which show that they are making a good agreement with each other.

  15. Konstruktion af transducer

    Henriksen, Lars; Nielsen, Martin Pram

    Formålet med dette midtvejsprojekt er at udarbejde en transducer til måling af pressers stivhed. Dette er gjort på baggrund af en gennemgang af både presse- og stativ-typer samtidig med at udbøjningssituationen beskrives. Der introduceres en ide, der udgør grundkonceptet for opmålingsproceduren o...... færdige transducer – Load cellen. Strain gauge sørger for dataopsamlingen fra load cellen. Disse kalibreres således at transduceren er klar til de videre målinger der ligger i forlængelse af dette projekt....

  16. Nano-optomechanical transducer

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  17. Fine needle aspiration of the thyroid

    Thyroid nodule fine needle aspirate biopsy; Biopsy - thyroid - skinny-needle; Skinny-needle thyroid biopsy ... cleaned. A thin needle is inserted into the thyroid, and a sample of thyroid cells and fluid ...

  18. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  19. Mechanics of needle-tissue interaction

    Roesthuis, Roy J.; Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak

    2011-01-01

    When a needle is inserted into soft tissue, interac- tion forces are developed at the needle tip and along the needle shaft. The needle tip force is due to cutting of the tissue, and the force along the needle shaft is due to friction between needle and tissue. In this study, the friction force is d

  20. Numerical transducer modelling

    Cutanda, Vicente

    . However, there are several difficulties to be addressed that are derived from the size, internal structure and precision requirements that are characteristic of these devices. One of them, the presence of very close surfaces (e.g. the microphone diaphragm and back-electrode), leads to machine precision......Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches...

  1. Numerical Transducer Modeling

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... tools and implementation techniques are described and performance tests are carried out. The equations that govern the motion of fluids with losses and the corresponding boundary conditions are reduced to a form that is tractable for the Boundary Element Method (BEM) by adopting some hypotheses...... that are allowable in this case: linear variations, absence of flow, harmonic time variation, thermodynamical equilibrium and physical dimensions much larger than the molecular mean free path. A formulation of the BEM is also developed with an improvement designed to cope with the numerical difficulty associated...

  2. Optically transduced MEMS magnetometer

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  3. On a New Optical Transducer

    Cornel Bit

    2015-07-01

    Full Text Available This paper presents a new type of mechano – optical force transducer which to be used in different mechanical experimental investigations. This transducer has been integrated within a mechanical modulus, providing a useful tool for this kind of measurements. The use of optical methods for the elastic contact measurements has several important advantages.

  4. On a New Optical Transducer

    Cornel Bit

    2015-01-01

    This paper presents a new type of mechano – optical force transducer which to be used in different mechanical experimental investigations. This transducer has been integrated within a mechanical modulus, providing a useful tool for this kind of measurements. The use of optical methods for the elastic contact measurements has several important advantages.

  5. Circuit for Driving Piezoelectric Transducers

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  6. Micromachined Integrated Transducers for Ultrasound Imaging

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  7. A Direct Driver for Electrostatic Transducers

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...

  8. Effect of ultrasonic transducer frequency on the registration of ultrasound to CT vertebral images

    Muratore, Diane M.; Herring, Jeannette L.; Dawant, Benoit M.; Galloway, Robert L., Jr.

    1999-05-01

    Researchers of computer-assisted surgical systems are seeking to reduce the invasiveness of spinal procedures through the use of intra-operative ultrasound (US). Given a favorable registration of vertebral US images to pre-operative CT scans, the individual vertebrae in physical space would be mapped to the patient's corresponding image space. In this work a method is proposed for transcutaneous localization of a lumbar vertebra in US images and a subsequent registration of vertebral surfaces from US and CT. In this study, US scans of a life-size plastic spine phantom were obtained using B-mode transducers of frequencies 3.5 and 4.5 MHz. The spine was immersed in a water tank and images from the L2 vertebra were captured in the transverse plane. A point-to-surface registration that is a modification of the Besl/McKay algorithm was applied to extracted US vertebral surface points and a triangulated surface representation of corresponding CT scans. The results of this registration have been qualitatively assessed, and both data sets visually algin along the entire L2 vertebra. Presently, more than 250,000 lumbo-sacral spinal surgeries are performed annually; consequently, minimizing the intervention in this region could have an extensive positive effect for both the procedure and the patient.

  9. Smart needles for percutaneous interventions

    Henken, K.R.

    2014-01-01

    The development of advanced needles for diagnostic and therapeutic purposes such as ablation and brachytherapy in the liver has offered minimally invasive therapies to patients that were previously untreatable. This thesis focuses on accurate placement of such needles guided by magnetic resonance im

  10. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at ...

  11. Needle Thoracotomy in Trauma.

    Rottenstreich, Misgav; Fay, Shmuel; Gendler, Sami; Klein, Yoram; Arkovitz, Marc; Rottenstreich, Amihai

    2015-12-01

    Tension pneumothorax is one of the leading causes of preventable death in trauma patients. Needle thoracotomy (NT) is the currently accepted first-line intervention but has not been well validated. In this review, we have critically discussed the evidence for NT procedure, re-examined the recommendations by the Advanced Trauma Life Support organization and investigated the safest and most effective way of NT. The current evidence to support the use of NT is limited. However, when used, it should be applied in the 2nd intercostal space at midclavicular line using a catheter length of at least 4.5 cm. Alternative measures should be studied for better prehospital management of tension pneumothorax. PMID:26633663

  12. An enzyme logic bioprotonic transducer

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdHx electrode as a bioprotonic transducer that connects H+ currents in solution into an electronic signal. This transducer exploits the reversible formation of PdHx in solution according to PdH↔Pd + H+ + e−, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic AND gate for glucose and NAD+. PdHx formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output

  13. Frequency Steered Acoustic Transducer Project

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  14. An enzyme logic bioprotonic transducer

    Miyake, Takeo; Keene, Scott; Deng, Yingxin; Rolandi, Marco, E-mail: rolandi@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120 (United States); Josberger, Erik E. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120 (United States); Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States)

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdH{sub x} electrode as a bioprotonic transducer that connects H{sup +} currents in solution into an electronic signal. This transducer exploits the reversible formation of PdH{sub x} in solution according to PdH↔Pd + H{sup +} + e{sup −}, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic AND gate for glucose and NAD{sup +}. PdH{sub x} formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  15. Characterization of Dielectric Electroactive Polymer transducers

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah;

    2014-01-01

    This paper analysis the small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide...

  16. Ultrasonic Transducer Irradiation Test Results

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  17. Ultrasonic Transducer Irradiation Test Results

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  18. Pressure transducers for cryogenic liquids

    Pavlovskyy I. V.

    2007-12-01

    Full Text Available The developed universal construction of tensoresistive pressure transducer for cryogenic liquids (liquid nitrogen and liquid helium is described. The study of strain gauges characteristics on the basis of p-type Si whiskers with different boron concentration, mounted on the invar spring elements (beams, in the wide ranges of strain ε=±1,2·10-3 and temperature 4,2-300 К for transducers simulation were carried out. It was shown that using heavily doped silicon strain gages gives the possibility to develop pressure transducers for liquid nitrogen and liquid helium based on the classic piezoresistance. The significant increasing of the pressure transducers sensitivity for liquid helium could be achieved by using the strain gages on the basis of silicon with boron concentration in the vicinity of metal-insulator transition based on the non-classic piezoresitance. Developed pressure transducers for cryogenic liquids with strain gauges on the basis of doped p-type Si whiskers are presented.

  19. Auto-positioning ultrasonic transducer system

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  20. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  1. 3D transrectal ultrasound prostate biopsy using a mechanical imaging and needle-guidance system

    Bax, Jeffrey; Cool, Derek; Gardi, Lori; Montreuil, Jacques; Gil, Elena; Bluvol, Jeremy; Knight, Kerry; Smith, David; Romagnoli, Cesare; Fenster, Aaron

    2008-03-01

    Prostate biopsy procedures are generally limited to 2D transrectal ultrasound (TRUS) imaging for biopsy needle guidance. This limitation results in needle position ambiguity and an insufficient record of biopsy core locations in cases of prostate re-biopsy. We have developed a multi-jointed mechanical device that supports a commercially available TRUS probe with an integrated needle guide for precision prostate biopsy. The device is fixed at the base, allowing the joints to be manually manipulated while fully supporting its weight throughout its full range of motion. Means are provided to track the needle trajectory and display this trajectory on a corresponding TRUS image. This allows the physician to aim the needle-guide at predefined targets within the prostate, providing true 3D navigation. The tracker has been designed for use with several end-fired transducers that can be rotated about the longitudinal axis of the probe to generate 3D images. The tracker reduces the variability associated with conventional hand-held probes, while preserving user familiarity and procedural workflow. In a prostate phantom, biopsy needles were guided to within 2 mm of their targets, and the 3D location of the biopsy core was accurate to within 3 mm. The 3D navigation system is validated in the presence of prostate motion in a preliminary patient study.

  2. Pressure transducers for cryogenic liquids

    Pavlovskyy I. V.; Kutrakov A. P.; Maryamova I. I.; Druzhinin A. A.

    2007-01-01

    The developed universal construction of tensoresistive pressure transducer for cryogenic liquids (liquid nitrogen and liquid helium) is described. The study of strain gauges characteristics on the basis of p-type Si whiskers with different boron concentration, mounted on the invar spring elements (beams), in the wide ranges of strain ε=±1,2·10-3 and temperature 4,2-300 К for transducers simulation were carried out. It was shown that using heavily doped silicon strain gages gives the possibili...

  3. Calculations for Piezoelectric Ultrasonic Transducers

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...... and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacememnt and electric potential is given. The influence of a fluid half-space is also...

  4. Programmable and automatic calibrator for radio sources at 45 MHz

    Aparici, J.; May, J.; Salas, F.; Ventura, J.

    1981-12-01

    The design, construction and operation of a standard calibrator is presented. The calibrator consists of saturated diodes controlled by an indirect feed-back system and a digital-to-analog converter. The advantages over similar designs are described, as for instance, high-resolution in the calibration scale, good stability, very fast calibrations, use of balanced electronic switches, etc.

  5. Multi sensor transducer and weight factor

    Immer, Christopher D. (Inventor); Lane, John (Inventor); Eckhoff, Anthony J. (Inventor); Perotti, Jose M. (Inventor)

    2004-01-01

    A multi-sensor transducer and processing method allow insitu monitoring of the senor accuracy and transducer `health`. In one embodiment, the transducer has multiple sensors to provide corresponding output signals in response to a stimulus, such as pressure. A processor applies individual weight factors to reach of the output signals and provide a single transducer output that reduces the contribution from inaccurate sensors. The weight factors can be updated and stored. The processor can use the weight factors to provide a `health` of the transducer based upon the number of accurate versus in-accurate sensors in the transducer.

  6. Proceedings of transducer 84 conference

    In the broad and varied field of sensors this conference reviews thermal sensors for temperature measurements, gas sensors for gas analysis (for example analysis of exhaust gases from vehicles), optical fiber sensors, applications for optics, mechanics, robotics and signal processing. In particular one of the applications concerns acoustical transducers operating in liquid sodium for LMFBR reactors

  7. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers

    Peng, J.; Lau, S.T.; Chao, C.; Dai, J.Y.; Chan, H.L.W. [The Hong Kong Polytechnic University, Department of Applied Physics and Materials Research Center, Hong Kong (China); Luo, H.S. [Chinese Academy of Sciences, The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai (China); Zhu, B.P.; Zhou, Q.F.; Shung, K.K. [University of Southern California, Department of Biomedical Engineering and NIH Transducer Resource Center, Los Angeles, CA (United States)

    2010-01-15

    In this work, a novel high-frequency ultrasonic transducer structure is realized by using PMNPT-on-silicon technology and silicon micromachining. To prepare the single crystalline PMNPT-on-silicon wafers, a hybrid processing method involving wafer bonding, mechanical lapping and wet chemical thinning is successfully developed. In the transducer structure, the active element is fixed within the stainless steel needle housing. The measured center frequency and -6 dB bandwidth of the transducer are 35 MHz and 34%, respectively. Owing to the superior electromechanical coupling coefficient (k{sub t}) and high piezoelectric constant (d{sub 33}) of PMNPT film, the transducer shows a good energy conversion performance with a very low insertion loss down to 8.3 dB at the center frequency. (orig.)

  8. Irradiation Testing of Ultrasonic Transducers

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. (authors)

  9. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa−1 and 0.073 µV (W cm−2)−1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa−1 and 6.153 mV (W cm−2)−1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa

  10. Automatic calibration system for pressure transducers

    1968-01-01

    Fifty-channel automatic pressure transducer calibration system increases quantity and accuracy for test evaluation calibration. The pressure transducers are installed in an environmental tests chamber and manifolded to connect them to a pressure balance which is uniform.

  11. Needle biopsy of the breast.

    Millis, R R

    1984-01-01

    Recently, there has been a considerable increase in the use of both fine-needle aspiration biopsy (aspiration cytology) and tissue-core needle biopsy of the breast. In patients with suspected breast cancer, needle biopsy is frequently used to confirm the diagnosis before treatment is planned. This allows a more thoughtful approach to the patient and full screening for possible metastatic disease prior to definitive surgery. Needle biopsy techniques are simple, rapid, can be performed in the doctor's office, and save time, equipment, and hospital beds. Complications are few. Aspiration cytology has the advantage that it is quick to perform, the preparation can be examined almost immediately and, in the event of an unsatisfactory smear, the procedure can be repeated. However, the diagnosis is based on purely cytological evaluation, and the information obtained is somewhat limited. Reported accuracy rates range from 42 to 96%. False positive reports are rare but have occurred in most centers, and a high degree of accuracy will only be obtained by experienced practitioners. Tissue-core needle biopsy has the advantage that the diagnosis is based on histopathological assessment, but the procedure is slightly more time consuming, is more traumatic for the patient, and the equipment is more expensive. Accuracy rates range from 67 to 98.5%. During the past 4 years, 329 tissue-core (Tru-Cut) biopsies have been performed in the Guy's Hospital Breast Unit, with an accuracy rate of 83% in the diagnosis of carcinoma. The procedure has been acceptable to most patients, and complications have been minimal. Studies comparing the use of aspiration cytology and tissue-core needle biopsy in the diagnosis of mammary carcinoma have produced variable results. Both methods have advantages and disadvantages, and the choice of technique must depend on the clinical situation and the preferences and skills of the practitioners involved in the management of the patient. PMID:6377049

  12. Magnetic needles and superparamagnetic cells

    Superparamagnetic nanoparticles can be attached in great numbers to pathogenic cells using specific antibodies so that the magnetically-labeled cells themselves become superparamagnets. The cells can then be manipulated and drawn out of biological fluids, as in a biopsy, very selectively using a magnetic needle. We examine the origins and uncertainties in the forces exerted on magnetic nanoparticles by static magnetic fields, leading to a model for trajectories and collection times of dilute superparamagnetic cells in biological fluids. We discuss the design and application of such magnetic needles and the theory of collection times. We compare the mathematical model to measurements in a variety of media including blood

  13. Measuring Thicknesses With In Situ Ultrasonic Transducers

    Dunn, Daniel E.; Cerino, Joseph R.

    1995-01-01

    Several pulsed ultrasonic transducers attached to workpiece for measurement of changes in thicknesses of workpiece at transducer locations during grinding and polishing, according to proposal. Once attached, each transducer remains attached at original position until all grinding and polishing operations complete. In typical application, workpiece glass or ceramic blank destined to become component of optical system.

  14. Genetics Home Reference: Melnick-Needles syndrome

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions Melnick-Needles syndrome Melnick-Needles ...

  15. Dry needling — peripheral and central considerations

    Dommerholt, Jan

    2011-01-01

    Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects...

  16. Autosizing Control Panel for Needle Bearing

    Prof.A.R.Wadhekar,; Ms Jyoti R. Rajput

    2016-01-01

    A needle roller bearing is a bearing which uses small cylindrical rollers. Bearings are used to reduce friction of any rotating surface. Needle bearings have a large surface in contact with the bearing outer surfaces as compared to ball bearings. There is less added clearance(Diameter of the shaft and the diameter of the bearing are different) so they are much compact. The structure consists of a needle cage which contains the needle rollersthemselves and an outer race (The housin...

  17. High temperature ultrasonic transducers: review

    Kažys, R.; Voleišis, A.; Voleišienė, B.

    2008-01-01

    The problems of development of high-temperature ultrasonic transducers for modern science and technology applications are analysed. More than 10 piezoelectric materials suitable for operation at high temperatures are overviewed. It is shown that bismuth titanate based piezoelectric elements are most promisable. Bonding methods of piezoelectric elements to a protector and backing are discussed. Thermosonic gold-to-gold bonding is most modern and possesses unique features. Our achievements in t...

  18. Elongation Transducer For Tensile Tests

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  19. 21 CFR 880.5580 - Acupuncture needle.

    2010-04-01

    ... in 21 CFR 801.109, (2) Device material biocompatibility, and (3) Device sterility. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acupuncture needle. 880.5580 Section 880.5580 Food... § 880.5580 Acupuncture needle. (a) Identification. An acupuncture needle is a device intended to...

  20. Calculations for piezoelectric ultrasonic transducers

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a body which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation losses as well as internal losses may be important. Due to the complexity of the problem, a closed form solution is the exception rather than the rule. For this reason, it is necessary to use approximate methods for the analysis. Equivalent circuits, the Rayleigh-Ritz method, Mindlin plate theory and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacement and electric potential is given. The influence of a fluid half-space is also given, in the form of a complex stiffness matrix. A special stacking procedure, for analysis of the backing has been developed. This procedure gives a saving, which is similar to that of the fast fourier transform algorithm, and is also wellsuited for analysis of finite and infinite waveguides. Results obtained by the finite element method are shown and compared with measurements and exact solutions. Good agreement is obtained. It is concluded that the finite element method can be a valueable tool in analysis and design of ultrasonic transducers. (author)

  1. Acoustic transducer for nuclear reactor monitoring

    Disclosed is a transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer. 8 claims, 1 figure

  2. Endoscopic Therapeutic Device Using Focused Ultrasonic Small Transducer

    Yasui, Akihiro; Haga, Yoichi; Chen, Jiun-Jie; Iseki, Hiroshi; Esashi, Masayoshi; Wada, Hiroshi

    In this research, an ultrasonic probe (5.5 mm in diameter), which has a concave PZT transducer at its tip, was fabricated for ultrasonic treatments such as sonoporation and sonodynamic therapy in the human body using a catheter and/or endoscope. Ultrasound has the potential to enhance cytotoxicity of drugs such as porphyrins, a process referred to as sonodynamic therapy, and also to deliver macromolecules such as plasmid DNA, a process referred to as sonoporation. The fabricated probe was then experimentally characterized by measuring the acoustic intensity distribution around the focal point, using a PVDF needle-type ultrasonic hydrophone. When the PZT transducer was driven by a 120 Volts peak-to-peak AC signal at 1.83 MHz, the ultrasound output was successfully focused at the focal point, with a peak intensity of 24.9 W/cm2 (0.87 MPa). Using the fabricated probe, cultured Chinese Hamster Ovary (CHO) cells were exposed to ultrasound (1.83 MHz, continuous wave, peak acoustic pressure of 0.5 MPa) for 2 s in the presence of microbubbles MB-3 and Green Fluorescent Protein (GFP) plasmid DNA. As a result of sonication, the expression of GFP was observed in CHO cells.

  3. Effect and Safety of Deep Needling and Shallow Needling for Functional Constipation

    Wu, Jiani; Liu, Baoyan; Li, Ning; Sun, Jianhua; Wang, Lingling; Wang, Liping; Cai, Yuying; Ye, Yongming; Liu, Jun; Wang, Yang; Liu, Zhishun

    2014-01-01

    Abstract Aupuncture is widely used for functional constipation. Effect of acupuncture might be related to the depth of needling; however, the evidence is limited. This trial aimed to evaluate the effect and safety of deep needling and shallow needling for functional constipation, and to assess if the deep needling and shallow needling are superior to lactulose. We conducted a prospective, superiority-design, 5-center, 3-arm randomized controlled trial. A total of 475 patients with functional ...

  4. Usefulness of ultrasound-guided core needle biopsy in the diagnosis of cervical lymphadenopathy

    To evaluate the efficacy of ultrasound-guided percutaneous core-needle biopsy in establishing histopathologic diagnoses of cervical lymphadenopathy. Seventy nine patients with cervical lymphadenopathy without a history of malignancy or recent infection underwent ultrasound-guided core-needle biopsies. Lymph node tissues were obtained by 2 to 4 times of freehand core-needle biopsy technique using a 7.5-12 MHz ultrasound transducer and a short-excursion (12 mm), spring-loaded automated gun with an 16-gauge cutting needle. We evaluated diagnostic yields of biopsies and related complication. Histologic diagnoses were conclusive in 73 cases (92.4%) including 57 benign causes (24 cases of tuberculous lymphadenitis, 19 cases of reactive hyperplasia, 14 cases of Kikuchi Disease and 2 cases of nonspecific lymphadenitis) and 12 malignancies (8 cases of metastatic lymphadenopathy, 7 cases of lymphoma). In 5 of 7 patients with lymphoma, histologic subclassification was established with obtained tissue to guide treatment. No complications were seen after biopsy. Ultrasound-guided core-needle biopsy of cervical lymphadenopathy is a safe, minimally invasive alternative to surgical biopsy, enabling a histologic diagnosis for treatment planning in the majority of cases.

  5. In-plane ultrasonic needle tracking using a fiber-optic hydrophone

    Xia, Wenfeng, E-mail: wenfeng.xia@ucl.ac.uk; Desjardins, Adrien E. [Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Mari, Jean Martial [Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom and GePaSud, University of French Polynesia, Faa’a 98702, French Polynesia (France); West, Simeon J. [Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU (United Kingdom); Ginsberg, Yuval; David, Anna L. [Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX (United Kingdom); Ourselin, Sebastien [Center for Medical Imaging Computing, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With

  6. In-plane ultrasonic needle tracking using a fiber-optic hydrophone

    Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With

  7. Transducers

    Chakraborty, B.

    stream_size 27 stream_content_type text/plain stream_name Encycl_Microcomputers_18_335.pdf.txt stream_source_info Encycl_Microcomputers_18_335.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  8. Biomechanical performance of new cardiovascular needles.

    Thacker, J G; Ferguson, R E; Rodeheaver, G T; Edlich, R F

    2001-01-01

    Cardiovascular needles are now being manufactured from new stainless steel alloys containing high concentrations of nickel, Surgalloy and Ethalloy. The purpose of this study was to compare the biomechanical performance of a cardiovascular needle made of Surgalloy with a comparably sized needle made of Ethalloy. The parameters of biomechanical performance included sharpness, maintenance of sharpness, resistance to bending, and ductility. Because the biomechanical performance of these needles was remarkably similar, cardiovascular needles made of either the Surgalloy or Ethalloy alloys are recommended for cardiovascular surgery. PMID:11495105

  9. Radiation-resistant pressure transducers

    Full text : The sensitive element of vibrofrequency tensor converter (VTC) is an electromechanical resonator of string type with electrostatic excitation of longitudinal mechanical vibrations. The string is made from tensosensitive thread-like monocrystal n-Ge1-x Six (length 1-5 mm, diameter 8-12 mcm) with current outlet and strictly fixed by ends at plate or deformable surface (in elastic element) at 50 mcm apartheid. With increasing Si atomic percent in n-Ge1-x Six the converter tens sensitivity increases. There has been shown the scheme of pressure transducer which contains monocrystalline silicon membrane and string tens converter from thread-like monocrystal Ge-Si. Using method, when crystal position on membrane while it deforms by pressure, corresponds to free (uptight) state, allowed to obtain the maximum sensitivity in measurement of pressure fluctuation. The transducers of absolute and pressure differential of this type can be used in automated systems of life activity. The high sensitivity of string transducers to pressure exceeding 100 hertz/mm (water column) permits to use them in devices for measuring gas concentration. The combination of optical and deformation methods of measurements forms the basis of their operation. The pressure change occurs due to the fact that gas molecules absorbing the quanta of incident light, become at excited state and then excitation energy of their vibrational-rotatory degrees of freedom converts to the energy of translational motion of molecules, i.e. to heat appropriate to pressure increase. Using these tens converters of high pressure one can prevent the possible accidents on oil pipe-like Baku-Tibilisi-Ceyhan

  10. Silicon Integrated Cavity Optomechanical Transducer

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  11. Evaluation of pressure transducers. Dynamic tests

    The evaluation of a pressure transducer consists in checking its specifications. The tests of rapidity with a shock tube are important because they allow to find out transducer response time under a pressure step and also its natural frequency and damping. These last two data define the whole dynamic work of a fast transducer as the accuracy of the amplitude versus frequency function, the phase rotation, limit of use, overload. Several tests carried out on ETCA shock tube are described

  12. Usefulness of Core Needle Biopsy for Thyroid Nodules with Macrocalcifications: Comparison with Fine-Needle Aspiration

    Yi, Kyung Sik; Kim, Ji-Hoon; Na, Dong Gyu; Seo, Hyobin; Min, Hye Sook; Won, Jae-Kyung; Yun, Tae Jin; Ryoo, Inseon; Kim, Su Chin; Choi, Seung Hong; Sohn, Chul-Ho

    2015-01-01

    Background: This study was performed to determine the benefits of core needle biopsy (CNB), as compared with fine-needle aspiration (FNA), for the diagnosis of thyroid nodules with macrocalcifications.

  13. Extraordinary Vessels Needling for Vascular Dementia

    YU Jin; LAI Xin-sheng; HUANG Qiu-tang; XIAO Yuan-chun

    2003-01-01

    Purpose To observe the clinical efficacy of extraordinary vessels needling in treating vascular dementia. Method 39 cases vascular dementia were treated by acupoints selected from the eight extraordinary meridians and the time needling techniques such as eight methods of spiritual turtle, in accordance with time period and pattern identifition. Results 2 cases were cured, 30 cases improved and 7 cases failed; the total effective rate was 82.1%. Conclusion Extraordinary vessels needling has positive effects in treating vascular dementia.

  14. Exploration of New Electroacupuncture Needle Material

    Sanghun Lee; Gwang-Ho Choi; Chang Hoon Lee; Yu Kyoung Kim; Saebhom Lee; Sungjin Cho; Sunhee Yeon; Sun-Mi Choi; Yeon-Hee Ryu

    2012-01-01

    Background. Electro Acupuncture (EA) uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microsco...

  15. Standards for dielectric elastomer transducers

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  16. Freehand biopsy guided by electromagnetic needle tracking

    Ewertsen, C; Nielsen, Marie Kristina Rue; Nielsen, M Bachmann

    2011-01-01

    To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking.......To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking....

  17. Tetrahedral mesh for needle insertion

    Syvertsen, Rolf Anders

    2007-01-01

    This is a Master’s thesis in how to make a tetrahedral mesh for use in a needle insertion simulator. It also describes how it is possible to make the simulator, and how to improve it to make it as realistic as possible. The medical simulator uses a haptic device, a haptic scene graph and a FEM for realistic soft tissue deformation and interaction. In this project a tetrahedral mesh is created from a polygon model, and then the mesh has been loaded into the HaptX haptic scene graph. The object...

  18. Hot foil transducer skin friction sensor

    Vranas, T. (Inventor)

    1982-01-01

    The device utilizes foil transducers with only one edge exposed to the fluid flow. The surfaces are polished producing a foil transducer that does not generate turbulence while sufficiently thick to carry the required electrical current for high temperature fluid flow. The assembly utilizes a precut layered metal sandwich with attached electrodes eliminating a need for welding and individual sensor calibration.

  19. Pushdown machines for the macro tree transducer

    Engelfriet, Joost; Vogler, Heiko

    1986-01-01

    The macro tree transducer can be considered as a system of recursive function procedures with parameters, where the recursion is on a tree (e.g., the syntax tree of a program). We investigate characterizations of the class of tree (tree-to-string) translations which is induced by macro tree transduc

  20. Thermodynamic Pressure/Temperature Transducer Health Check

    Immer, Christopher D. (Inventor); Eckhoff, Anthony (Inventor); Medelius, Pedro J. (Inventor); Deyoe, Richard T. (Inventor); Starr, Stanley O. (Inventor)

    2004-01-01

    A device and procedure for checking the health of a pressure transducer in situ is provided. The procedure includes measuring a fixed change in pressure above ambient pressure and a fixed change in pressure below ambient pressure. This is done by first sealing an enclosed volume around the transducer with a valve. A piston inside the sealed volume is increasing the pressure. A fixed pressure below ambient pressure is obtained by opening the valve, driving the piston The output of the pressure transducer is recorded for both the overpressuring and the underpressuring. By comparing this data with data taken during a preoperative calibration, the health of the transducer is determined from the linearity, the hysteresis, and the repeatability of its output. The further addition of a thermometer allows constant offset error in the transducer output to be determined.

  1. Geographical and climatic limits of needle types of one- and two-needled pinyon pines

    Cole, K.L.; Fisher, J.; Arundel, S.T.; Cannella, J.; Swift, S.

    2008-01-01

    Aim: The geographical extent and climatic tolerances of one- and two-needled pinyon pines (Pinus subsect. Cembroides) are the focus of questions in taxonomy, palaeoclimatology and modelling of future distributions. The identification of these pines, traditionally classified by one- versus two-needled fascicles, is complicated by populations with both one- and two-needled fascicles on the same tree, and the description of two more recently described one-needled varieties: the fallax-type and californiarum-type. Because previous studies have suggested correlations between needle anatomy and climate, including anatomical plasticity reflecting annual precipitation, we approached this study at the level of the anatomy of individual pine needles rather than species. Location: Western North America. Methods: We synthesized available and new data from field and herbarium collections of needles to compile maps of their current distributions across western North America. Annual frequencies of needle types were compared with local precipitation histories for some stands. Historical North American climates were modelled on a c. 1-km grid using monthly temperature and precipitation values. A geospatial model (ClimLim), which analyses the effect of climate-modulated physiological and ecosystem processes, was used to rank the importance of seasonal climate variables in limiting the distributions of anatomical needle types. Results: The pinyon needles were classified into four distinct types based upon the number of needles per fascicle, needle thickness and the number of stomatal rows and resin canals. The individual needles fit well into four categories of needle types, whereas some trees exhibit a mixture of two needle types. Trees from central Arizona containing a mixture of Pinus edulis and fallax-type needles increased their percentage of fallax-type needles following dry years. All four needle types occupy broader geographical regions with distinctive precipitation regimes

  2. Using Portable Transducers to Measure Tremor Severity

    Elble, Rodger J.; McNames, James

    2016-01-01

    Background Portable motion transducers, suitable for measuring tremor, are now available at a reasonable cost. The use of these transducers requires knowledge of their limitations and data analysis. The purpose of this review is to provide a practical overview and example software for using portable motion transducers in the quantification of tremor. Methods Medline was searched via PubMed.gov in December 2015 using the Boolean expression “tremor AND (accelerometer OR accelerometry OR gyroscope OR inertial measurement unit OR digitizing tablet OR transducer).” Abstracts of 419 papers dating back to 1964 were reviewed for relevant portable transducers and methods of tremor analysis, and 105 papers written in English were reviewed in detail. Results Accelerometers, gyroscopes, and digitizing tablets are used most commonly, but few are sold for the purpose of measuring tremor. Consequently, most software for tremor analysis is developed by the user. Wearable transducers are capable of recording tremor continuously, in the absence of a clinician. Tremor amplitude, frequency, and occurrence (percentage of time with tremor) can be computed. Tremor amplitude and occurrence correlate strongly with clinical ratings of tremor severity. Discussion Transducers provide measurements of tremor amplitude that are objective, precise, and valid, but the precision and accuracy of transducers are mitigated by natural variability in tremor amplitude. This variability is so great that the minimum detectable change in amplitude, exceeding random variability, is comparable for scales and transducers. Research is needed to determine the feasibility of detecting smaller change using averaged data from continuous long-term recordings with wearable transducers. PMID:27257514

  3. Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid

    ... Index A-Z Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid An ultrasound-guided thyroid biopsy ... Thyroid? What is Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid? During a fine needle aspiration ...

  4. Freehand biopsy guided by electromagnetic needle tracking

    Ewertsen, C; Nielsen, Marie Kristina Rue; Nielsen, M Bachmann

    2011-01-01

    To evaluate the overall accuracy and time spent on biopsy guided by electromagnetic needle tracking in a phantom compared with the standard technique of US-guided biopsy with an attached steering device. Furthermore, to evaluate off-plane biopsy guided by needle tracking....

  5. [Textual research on the fire needle and the fire needle therapy].

    Liu, T; Zhu, J P; Zhang, Q C

    2016-03-01

    There are different names of the fire needle therapy in the Huang di nei jing (Inner Canon of Huangdi) such as Zu-zhen (), Cui-zhen (,), Fan-zhen (), Huo-cui (), Cui (,,), Cuici ,), Fan zhen jie ci (). It is claimed that the lance needle, the round sharp needle and the long needle recorded in this Classic are puncturing tools for the fire needle therapy. In the Eastern Han Dynasty, Zhang Zhongjing expanded the indications for the fire needle therapy and Huo-zhen () firstly appeared in the Jin kui yu han jing(Classic of the Jade Box and Golden Chamber). The application of the fire needle therapy had been further expanded to a lot of internal and external disorders form the Wei-Jin-Southern and Northern Dynasties to the Ming and Qing Dynasties. There are more detailed records on the manipulation and the tools of the fire needle therapy during this period. In the 1970s, Huo zhen liao fa () was proposed and still in use today. However the Bai-zhen (plain needle) in ancient literature is equal to the filiform needle and should not be regarded as the former name of the fire needle. PMID:27255194

  6. Laser needle guide for the sonic flashlight.

    Wang, David; Wu, Bing; Stetten, George

    2005-01-01

    We have extended the real-time tomographic reflection display of the Sonic Flashlight to a laser guidance system that aims to improve safety and accuracy of needle insertion, especially for deep procedures. This guidance system is fundamentally different from others currently available. Two low-intensity lasers are mounted on opposite sides of a needle aimed parallel to the needle. The needle is placed against a notch in the Sonic Flashlight mirror such that the laser beams reflect off the mirror to create bright red spots on the flat panel display. Due to diffuse reflection from these spots, the virtual image created by the flat panel display contains the spots, identifying the projected destination of the needle at its actual location in the tissue. We have implemented our design and validated its performance, identifying several areas for potential improvement. PMID:16685901

  7. Single crystal cylinder transducers for sonar applications

    Robinson, Harold; Stevens, Gerald; Buffman, Martin; Powers, James

    2005-04-01

    A segmented cylinder transducer constructed of single crystal lead magnesium niobate-lead titanate (PMN-PT) has been under development at NUWC and EDO Corporation for several years. The purpose of this development was to provide an extremely compact, high power broadband source. By virtue of their extraordinary material properties, ferroelectric single crystals are the ideal transduction material for developing such compact broadband systems. This presentation shall review the evolution of the transducer design as well as present the results of a successful in-water test conducted at NUWC in October of 2003. It shall be shown that design changes intended to eliminate spurious modes limiting the transducer bandwidth first observed in 2002 were successful, resulting in a transducer with a clean frequency response and an effective coupling factor of 0.85. The measured transducer admittance was in nearly exact agreement with theoretical predictions. The NUWC in-water tests demonstrated that the single crystal cylinder achieved an admittance bandwidth (based on the Stansfield criterion) of over 100%, while the tuned power factor was 0.8 or more over 2.5 octaves of frequency. Additionally, the transducer produced 12 dB higher source levels than a similarly sized PZT transducer. [Work sponsored by DARPA.

  8. Compact Orthomode Transducers Using Digital Polarization Synthesis

    Morgan, Matthew A; Boyd, Tod A

    2010-01-01

    In this paper we present a novel class of compact orthomode transducers which use digital calibration to synthesize the desired polarization vectors while maintaining high isolation and minimizing mass and volume. These digital orthomode transducers consist of an arbitrary number of planar probes in a circular waveguide, each of which is connected to an independent receiver chain designed for stability of complex gain. The outputs of each receiver chain are then digitized and combined numerically with calibrated, complex coefficients. Measurements on two prototype digital orthomode transducers, one with three probes and one with four, show better than 50 dB polarization isolation over a 10 C temperature range with a single calibration.

  9. Apical pressures developed by needles for canal irrigation.

    Bradford, C E; Eleazer, P D; Downs, K E; Scheetz, J P

    2002-04-01

    Drying instrumented canals with pressurized air may result in patient morbidity or even fatality. Low pressure and side vent needles have been suggested to lessen the danger. This study observed apical pressures from different needles inserted deeply into small round and ovoid canals as instrumentation progressed. Low-pressure (5 psi) air was injected through the needles, and apical pressures were recorded after each instrument. Pressures varied greatly within each test group. Generalities that can be drawn are that binding the needle within the canal gives higher pressures than with the needle slightly short of binding and that pressures were higher with apexes instrumented to size 30 and higher. With the needle tightly bound, neither needle size, needle design, nor canal shape resulted in statistically significant mean pressure differences. With the needle slightly withdrawn, larger bore needles gave higher pressures than small diameter needles. Caution is advised with the clinical use of pressurized air in the drying of root canals. PMID:12043877

  10. Effect of needle tract bleeding on occurrence of pneumothorax after transthoracic needle biopsy

    Purpose: Occasionally bleeding along the needle trajectory is observed at post-biopsy computed tomographic sections. This study was designed to evaluate the possible effect of needle tract bleeding on the occurrence of pneumothorax and on requirement of chest tube insertion. Materials and methods: Two hundred eighty-four needle biopsies performed in 275 patients in whom the needle traversed the aerated lung parenchyma were retrospectively reviewed. Bleeding along the needle tract, occurrence of pneumothorax and need for chest tube insertion, type and size of the needle, size of the lesion, length of the lung traversed by the needle, presence or absence of emphysema were noted. Effect of these factors on the rate of pneumothorax and needle-tract bleeding was evaluated. The data were analyzed by χ2 test. Results: Pneumothorax developed in 100 (35%) out of 284 procedures requiring chest tube placement in 16 (16%). Variables that were significantly associated with an increased risk of pneumothorax were depth of the lesion (P 0.05). However, analysis of the relation between length of lung traversed by the needle, tract-bleeding and pneumothorax rate indicated that tract-bleeding had a preventive effect on development of pneumothorax (P 0.05). Conclusion: Bleeding in the needle tract has a preventive effect on the occurrence of the pneumothorax in deep-seated lesions and in the presence of emphysema, although it does not affect the overall rate of pneumothorax

  11. Micromachined Tunneling Displacement Transducers for Physical Sensors

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.; Vote, E. C.

    1993-01-01

    We have designed and constructed a series of tunneling sensors which take advantage of the extreme position sensitivity of electron tunneling. In these sensors, a tunneling displacement transducer, based on scanning tunneling microscopy principles, is used to detect the signal-induced motion of a sensor element. Through the use of high-resonant frequency mechanical elements for the transducer, sensors may be constructed which offer wide bandwidth, and are robust and easily operated. Silicon micromachining may be used to fabricate the transducer elements, allowing integration of sensor and control electronics. Examples of tunneling accelerometers and infrared detectors will be discussed. In each case, the use of the tunneling transducer allows miniaturization of the sensor as well as enhancement of the sensor performance.

  12. Liquid level transducer for cryogenic applications

    Full text: The cryogenic isotope separation equipment is a special one, encountered in few research centers in the world. Beside the main equipment, the separation column, a broad range of measuring devices and actuators are involved in the technological process. The proper sensors and transducers exhibit special features, so that the common, industrial versions can not be accepted. An original type of sensor and a general purpose electronic adapter are presented in this paper. The liquid level transducer is a capacitive version, which consists in the mechanical sensor and the electronic adapter with local indication and output voltage signal transmission functions. The testing and calibration of the transducer was performed at the National Institute for Research and Development of Isotopic and Molecular Technology using dedicated equipment. The transducer is reproducible (with errors of reproducibility smaller than 2%) and will be used in automatic control of the 13C separation plant by CO cryogenic distillation. (author)

  13. Innovations in piezoelectric materials for ultrasound transducers

    Shrout, Thomas R.; Park, Seung Eek E.; Lopath, Patrick D.; Meyer, Richard J., Jr.; Ritter, Timothy A.; Shung, K. Kirk

    1998-05-01

    Piezoelectric material lie at the heart of ultrasonic transducers. Recent advances in materials development include submicron piezoelectric ceramics (PZT) which lead to improvements in feature size, i.e. aspect ratio, element width, etc., for linear arrays and high frequency transducers. In contrast to fine grain ceramics, single crystal materials based on Relaxor-PT ferroelectrics offer electromechanical coupling coefficients > 90 percent with a range of dielectric permittivity allowing flexibility in transducer engineering in regard to electrical impedance matching. Using KLM modeling, very high bandwidth performance > 120 percent is projected. Specific examples of high frequency 1-3 composites and 1D linear array transducers fabricated from new piezoelectric materials, including sol-gel derived PZT fibers, are presented.

  14. A magnifying scratch-gage force transducer

    Scott, C. E.

    1969-01-01

    Single-component scratch-gage transducer incorporates a unique motion magnification scheme to increase the magnitude of the load measuring scratch approximately 15 times over that of conventional models. It is small, load carrying and high in natural frequency.

  15. Ultrasonic wave transducer for high temperature barrier

    This transducer is made by a metallic body pivoting on a support fixed to the barrier and an internal vitroceramic waveguide in contact on the barrier and on the other end on a piezoelectric ceramic element

  16. Development of High Frequency Miniature Ultrasound Transducers

    Manh, Tung

    2013-01-01

    Small, high frequency (≥ 10MHz) broadband ultrasound transducers are required in modern medical imaging systems to provide short range, high resolution images for studying of microstructures in soft tissues, such as the composition of small tumors or a vessel wall. The manufacturing of these probes using conventional methods, i.e. lapping and dicing, becomes difficult and expensive for high frequency applications and there is a need to produce small ultrasound transducers with low cost and hi...

  17. Piezoelectric and acoustic materials for transducer applications

    Safari, Ahmad

    2008-01-01

    Discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today's transducer technology, and the principles used in transducer designIncludes examples of a wide range of applications of such materials along with the appertaining rationalesProvides a comprehensive, yet concise, reference to all the pertinent aspects of piezoelectric materialsContains contributions from a select-group of distinguished researchers

  18. Fine-needle aspiration by vacuum tubes.

    Holmquist, N D

    1989-07-01

    Fine-needle aspiration of subcutaneous masses, accepted in many parts of Europe and the Americas as a routine diagnostic technique, employs a syringe holder to facilitate the creation of a vacuum to withdraw cells. This investigation demonstrates that a vacuum tube used in venipuncture can be used to supply the negative pressure to suck cells into the needle. This apparatus is more readily available than a syringe holder in hospitals and clinics, and particularly provides the operator with a more dexterous approach to the mass because the fingers holding the needle can be much closer to the mass being immobilized by the other hand. PMID:2750713

  19. Distribution of elements in needles of Pinus massoniana (Lamb.) was uneven and affected by needle age

    Macronutrients (P, S, K, Na, Mg, Ca), heavy metals (Fe, Zn, Mn, Cu, Pb, Cr, Ni, Cd) and Al concentrations as well as values of Ca/Al in the tip, middle, base sections and sheaths of current year and previous year needles of Pinus massoniana from Xiqiao Mountain were analyzed and the distribution patterns of those elements were compared. The results indicated that many elements were unevenly distributed among the different components of needles. Possible deficiency of P, K, Ca, Mn and Al toxicity occurred in needles under air pollution. Heavy metals may threaten the health of Masson pine. Needle sheaths were good places to look for particulate pollutants, in this case including Fe, Cu, Zn, Pb, Cr, Cd and Al. - Pine needle sections as bioindicator for heavy metals and nutrient deficiency particularly needle sheath for particle pollutants

  20. Distribution of elements in needles of Pinus massoniana (Lamb.) was uneven and affected by needle age

    Macronutrients (P, S, K, Na, Mg, Ca), heavy metals (Fe, Zn, Mn, Cu, Pb, Cr, Ni, Cd,) and Al concentrations as well as values of Ca/Al in the tip, middle and base sections, and sheaths of current year and previous year needles of Pinus massoniana from Xiqiao Mountain were analyzed and the distribution patterns of those elements were compared. The results indicated that many elements were unevenly distributed among the different components of needles. Possible deficiency of P, K, Ca, Mn and Al toxicity occurred in needles under air pollution. Heavy metals may threaten the health of Masson pine. Needle sheaths were good places to look for particulate pollutants, in this case including Fe, Cu, Zn, Pb, Cr, Cd and Al. - Pine needle sections as bioindicator for heavy metals and nutrient deficiency particularly needle sheath for particle pollutants

  1. Pine needle abortion biomarker detected in bovine fetal fluids

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  2. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  3. Sliding Mode Control of Steerable Needles.

    Rucker, D Caleb; Das, Jadav; Gilbert, Hunter B; Swaney, Philip J; Miga, Michael I; Sarkar, Nilanjan; Webster, Robert J

    2013-10-01

    Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy delivery, provided they can be adequately controlled based on medical image information. We propose a novel sliding mode control law that can be used to deliver the tip of a flexible asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The proposed control strategy requires no a priori knowledge of model parameters, has bounded input speeds, and requires little computational resources. We show that if the standard nonholonomic model for tip-steered needles holds, then the control law will converge to desired targets in a reachable workspace, within a tolerance that can be defined by the control parameters. Experimental results validate the control law for target points and trajectory following in phantom tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness to disturbances caused by tissue deformation. PMID:25400527

  4. Acoustic transducer with method of construction

    The transducer is suited for application at high temperatures in the presence of active corrosive sodium. Its basic element is a piezoelectric active element enclosed in a casing of sodium-compatible material such as stainless steel. The lead circonate or lead titanate ceramics crystal together with the rear side of the transducer front plate is connected coaxially to an ultrasonic transducer lens. The transducer lens is a concave cutout segment in the bottom side of the transducer front plate. A spring-loaded contact piece provides the electrical connection of the back electrode of the crystal. A supporting element between the rear side of the crystal and the contact piece serves to maintain the electrical voltage between them. The supporting element consists of a loosely interweaved wire ball with multiple points of contact between the contact piece and the crystal, but it may also be an attenuator pad of high-temperature silicon rubber with a heavy addition of tungsten powder. The crystal is connected to the transducer front plate with a lead alloy bob (1.5% Ag; 5% Sn; 93.5% Pb) which is resistant to the temperatures and radiation values of fast breeder reactors. Before installation, the crystal is covered with a copper electrode of a thickness of 2 microns on the side facing the transducer front plate and with a platinum electrode of a thickness of 2 microns on the opposite side. The lead alloy will then cover the copper electrode and not expose the platinum electrode to corrosion. (ORU/AK)

  5. Finite element model of needle electrode sensitivity

    Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.

    2010-04-01

    We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.

  6. Preliminary work of a smart needling project

    Yan, Kaiguo; Liu, Tien-I.; Ling, Keck Voon; Yu, Yan; O'Dell, Walter; Sing, Ng Wan

    2005-04-01

    Precise needle placement is vital for the success of a wide variety of percutaneous surgical procedures. Insertions into soft tissues can be difficult to learn and to perform, due to tissue deformation, needle deflection and limited visual feedback. Little quantitative information is known about the interaction between needles and soft tissues during puncture. We are carrying out a "smart needling" project in which a fairly long, but slender biopsy needle will be controlled to hit the target that is inside human body, automatically and precisely. This paper reports the preliminary work which is to prove that translational oscillation of the needle can reduce target movement, and at the same time to find the optimal settings of the important factors that will produce the least target movement. The experiment platform comprises of an oscillatory needle restricted to translate horizontally. A position-trackable catheter was embedded in the phantom to act as the target. Two-Level factorial design was adopted and an exploratory data analysis (EDA) approach was used for analysis. The final results showed that oscillation at high frequency band from 2kHz to 20kHz can reduce target movement. Translation speed, oscillation frequency and amplitude are all important factors. But phantoms with different elasticities may have different best settings of these factors. For example, for soft phantoms, lower frequency, higher speed and smaller amplitude are desired for minimal target movement. Optimization searching engine will be designed correspondingly to control the needle in optimal working conditions that can produce minimal target movement.

  7. Dry needling versus acupuncture: the ongoing debate.

    Zhou, Kehua; Ma, Yan; Brogan, Michael S

    2015-12-01

    Although Western medical acupuncture (WMA) is commonly practised in the UK, a particular approach called dry needling (DN) is becoming increasingly popular in other countries. The legitimacy of the use of DN by conventional non-physician healthcare professionals is questioned by acupuncturists. This article describes the ongoing debate over the practice of DN between physical therapists and acupuncturists, with a particular emphasis on the USA. DN and acupuncture share many similarities but may differ in certain aspects. Currently, little information is available from the literature regarding the relationship between the two needling techniques. Through reviewing their origins, theory, and practice, we found that DN and acupuncture overlap in terms of needling technique with solid filiform needles as well as some fundamental theories. Both WMA and DN are based on modern biomedical understandings of the human body, although DN arguably represents only one subcategory of WMA. The increasing volume of research into needling therapy explains its growing popularity in the musculoskeletal field including sports medicine. To resolve the debate over DN practice, we call for the establishment of a regulatory body to accredit DN courses and a formal, comprehensive educational component and training for healthcare professionals who are not physicians or acupuncturists. Because of the close relationship between DN and acupuncture, collaboration rather than dispute between acupuncturists and other healthcare professionals should be encouraged with respect to education, research, and practice for the benefit of patients with musculoskeletal conditions who require needling therapy. PMID:26546163

  8. Needle Insertion with Duty-Cycled Rotation into Multiple Media

    Lehocky, Craig A.; Riviere, Cameron N.

    2012-01-01

    Thin, flexible needles can be steered along nonlinear paths to reach deep anatomical structures within the human body. This study builds upon previous work involving steering of bevel-tipped needles by inserting while rotating in a duty-cycled fashion. Here we investigate how needle material and radius, duty cycle, and tissue stiffness affect needle curvature. Needles were inserted into media while rotated at a specified duty cycle and the curvature was measured. A linear relationship between...

  9. High Temperature, High Power Piezoelectric Composite Transducers

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  10. Development of high temperature ultrasonic transducers

    Structural health monitoring (SHM) techniques are needed to maintain the reliability of power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings, crack growth in the materials and material evaluation) under the working condition of power plants. We have evaluated lithium niobate (LiNbO3) single crystal which is well known as a high Curie temperature piezoelectric material to develop high temperature ultrasonic transducers. The LiNbO3 was bonded onto a stainless steel substrate. The experimental transducer was heated in an electric furnace while measuring the bottom echoes from the substrate. We confirmed that the experimental high temperature transducer could work up to 1000degC. Thermal and chemical stability of LiNbO3 were confirmed using TG measurement up to 1260degC (melting point). Additionally, we have developed single and array transducers for high temperature ultrasonic measurement based on those experimental data. (author)

  11. High temperature, high power piezoelectric composite transducers.

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  12. Ultrasonic comb transducer for smart materials

    Rose, J. L.

    1998-04-01

    Installation of a small multi-element comb type ultrasonic transducer is proposed as a component of a smart structure. It can be used in either an active or passive mode in carrying out ultrasonic bulk or guided wave nondestructive evaluation. Theoretical methods are developed and experimental results are presented for guided wave generation and mode control with this very efficient and versatile novel comb type ultrasonic transducer. Excitation and probe design is crucial in mode selection. The comb transducer generates waves that are influenced by such parameters as number of elements, spacing between elements, dimension, pulsing sequence, and pressure distribution. The excited elastic field depends on the excitation frequency, plate thickness, and elastic properties. Techniques are studied to optimize the applied loading and the comb transducer design parameters so that only modes that are most sensitive to particular material characteristics can be generated. Complete understanding of the comb transducer parameters and their impact on the elastic field allows us to efficiently generate higher order modes as well as low phase velocity modes which are valuable in composite material characterization. Sample experiments are presented for various plate and tube like structures.

  13. Mechano-electric optoisolator transducer with hysteresis

    Ciuruş, I. M.; Dimian, M.; Graur, A.

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  14. Quantum limit in resonant vacuum tunneling transducers

    Onofrio, Roberto

    2010-01-01

    We propose an electromechanical transducer based on a resonant-tunneling configuration that, with respect to the standard tunneling transducers, allows larger tunneling currents while using the same bias voltage. The increased current leads to an increase of the shot noise and an increase of the momentum noise which determine the quantum limit in the system under monitoring. Experiments with micromachined masses at 4.2 K could show dominance of the momentum noise over the Brownian noise, allowing observation of the quantum-mechanical noise at the mesoscopic scale.

  15. Percutaneous needle aspiration biopsy of chest lesions: effectiveness when using an 18-gauge needle

    Kim, Seong Min; Jung, Gyoo Sik; Kim, So Sun; Huh, Jin Do; Joh, Young Duk; Huh, Bang [College of Medicine, Kosin National University, Busan (Korea, Republic of)

    1995-01-15

    Results of 181 percutaneous needle aspiration biopsies performed with an 18-gauge needle during a period of 3 years were analyzed to determine efficacy and safety of the procedure. Biposies were performed in patients that could not be diagnosed by bronchoscopy or sputum cytology. The biopsy procedure with 18-gauge Crown needle was guided by fluoroscopy. The biopsy specimen placed in 10% formalin solution were histologically confirmed. In 160 patients (89%), the positive diagnosis was made by percutaneous needle aspiration biopsy. There were 153 lung lesions (120 malignant and 33 benign lesions) and 7 mediastinal lesions. The diagnostic accuracy of malignant and benign disease was 91% and 80% respectively. Complications included pneumothorax (n = 11) and hemothorax (n = 1): six of them required treatment with chest tube and the remainder showed spontaneous resorption. PCNB with an 18-gauge needle provided a reliable, relatively safe diagnostic tool to establish the diagnosis of both malignant and benign chest lesions.

  16. Percutaneous needle aspiration biopsy of chest lesions: effectiveness when using an 18-gauge needle

    Results of 181 percutaneous needle aspiration biopsies performed with an 18-gauge needle during a period of 3 years were analyzed to determine efficacy and safety of the procedure. Biposies were performed in patients that could not be diagnosed by bronchoscopy or sputum cytology. The biopsy procedure with 18-gauge Crown needle was guided by fluoroscopy. The biopsy specimen placed in 10% formalin solution were histologically confirmed. In 160 patients (89%), the positive diagnosis was made by percutaneous needle aspiration biopsy. There were 153 lung lesions (120 malignant and 33 benign lesions) and 7 mediastinal lesions. The diagnostic accuracy of malignant and benign disease was 91% and 80% respectively. Complications included pneumothorax (n = 11) and hemothorax (n = 1): six of them required treatment with chest tube and the remainder showed spontaneous resorption. PCNB with an 18-gauge needle provided a reliable, relatively safe diagnostic tool to establish the diagnosis of both malignant and benign chest lesions

  17. DIY guide-needle-assisted conjunctivodacryocystorhinostomy (CDCR).

    Paik, Ji-Sun; Kim, Su-Ah; Doh, Sang-Hee

    2013-01-01

    In this study, we introduce DIY guide-needle-assisted conjunctivodacryocystorhinostomy (CDCR), in which a guide needle helps in measuring the initial Jones tube length for insertion and reduces unnecessary handling for tube changes. Three CDCR procedures were conducted in which the length of the Jones tube was calculated using a 22-gauge DIY guide needle, and a prospective study of tube position change and migration, (a major cause of CDCR failure) was done. Wound healing was almost complete within 4 weeks postoperatively in the osteotomy site, but in cases of partial middle turbinectomy, a little more time was necessary. There was a slight change in Jones tube position in the nasal cavity compared with the expected position of original tube tip, but no tube migration from the caruncle fixation position had occurred by the final follow-up time. This guide-needle-assisted CDCR has multiple advantages, such as easy measurement of the proper initial tube size, utilization of the initial needle path, and easy replacement of tubes. Finally, this approach to CDCR can be readily applied because it uses materials ordinarily found in hospitals to create the devices needed for the procedure, so there is no additional cost. PMID:22526574

  18. Medically relevant ElectroNeedle technology development.

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  19. Broadband, High-Temperature Ultrasonic Transducer

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  20. Ferroelectret non-contact ultrasonic transducers

    Bovtun, V.; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-09-01

    Dielectric and electromechanical properties of the cellular polypropylene ferroelectret films (EMFIT), combining strong piezoelectric response with a low density and softness, evidence their high potential for the air-coupled ultrasonic applications. The disadvantage of the low coupling factor is compensated by the extremely low acoustic impedance, which provides excellent matching to air and promises efficient sound transmission through the air transducer interface. The influence of the electrodes on the electromechanical properties was investigated. Electron beam evaporation technology was adapted to the EMFIT films, and films with both-sided Au and Al electrodes were prepared without reducing or suppressing of the electromechanical properties. Finally, prototype transducers based on the EMFIT films were developed. In spite of the simple construction and absence of matching layers, high sensitivity of the EMFIT transducers was proved in the air-coupled ultrasonic experiment. Amplitude and delay time scanned images of the polyethylene step wedge with holes, obtained in both pulse-echo and transmission modes, demonstrate that non-contact ultrasonic imaging and testing with EMFIT transducers is possible.

  1. Ferroelectret non-contact ultrasonic transducers

    Bovtun, Viktor; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-01-01

    Roč. 88, č. 4 (2007), s. 737-743. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrets * polymers * ultrasonic transducers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.857, year: 2007

  2. Transducer Joint for Kidney-Stone Ultrasonics

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  3. Electromechanically active polymer transducers: research in Europe

    Carpi, Federico; Graz, Ingrid; Jager, Edwin;

    2013-01-01

    referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible...

  4. Amperometric biosensors based on carbon composite transducers

    Lu, Fang

    1998-12-01

    Much current work in analytical chemistry is devoted to design of biosensors. One particular area in this field is the development of enzyme-based amperometric biosensors for the quantitative determination of a series of substrates in clinical, environmental, industrial and agricultural significance. This dissertation focuses on the design of improved amperometric biosensors based on carbon composite transducers. The use of metallized carbons as transducer materials results in remarkably selective amperometric biosensors. Such enzyme-based transducers eliminate major electroactive interferences, and hence circumvent the need for mediators or membrane barriers. The remarkable selectivity of metal-dispersed carbons is attributed to their strong, preferential, electrocatalytic capacity towards the reductive detection of biologically-generated hydrogen peroxide. Such electrocatalytic activity allows metal-dispersed biosensors to be operated at the optimal potential region between +0.1 and -0.2 V, where the unwanted reactions are neglected resulting in the lowest noise level. Several new materials (e.g., ruthenium on carbon, rhodium on carbon, etc.) and constructions (e.g., carbon fiber, electrochemical co-deposition transducer, etc.) were applied in the development of novel enzyme-based transducers in order to improve the selectivity and applicability of amperometric biosensors. The susceptibility of first-generation oxidase amperometric biosensing to oxygen fluctuations can be improved by using oxygen-rich fluorocarbons as the pasting binders in carbon paste enzyme transducers. Such binders provide an internal supply of oxygen resulting in efficient detection in oxygen-deficit conditions. In particular, the use of poly-chlorotrifluorethylene (Kel-F) oil as carbon paste binder results in a well-defined response and an identical signal up to 40 mM glucose in both the presence and absence of oxygen. Comparing with mediated or wired enzyme-based transducers, such internal

  5. ["Sham Needle"--Design and Application of A Double-blind Placebo Needle Assembly].

    Yan, Liu; Ma, Li-hong

    2016-02-01

    The blind study design, particularly the double-blind study design is a very important method for diminishing placebo effect and reducing bias in clinical medical trial. Enlightened by Streitberger's and Park's sham needle design, the authors of the present paper introduce a newly designed sham needle device (Yan's sham-needle) for controlled double-blind trials of acupuncture. This sham needle device consists of needle, tube and base. The bottom of the tube is completely sealed and it can never arouse any invasive stimulation on the subject's skin when the sham needle is downward pressed on the body surface. Meanwhile, this sham device is filled with sponge which is able to simulate soft tissues of the acupoint area. By combining words suggestions or hints before trials and the same shape as verum device, this sham-needle device reduces the risk of blind-breaking and makes it possible to conduct controlled double-blind trials. Primary practice showed that this device may provide a new and practical tool for researching the placebo effect of acupuncture therapy. PMID:27141628

  6. Syringe and Needle Size, Syringe Type, Vacuum Generation, and Needle Control in Aspiration Procedures

    Purpose: Syringes are used for diagnostic fluid aspiration and fine-needle aspiration biopsy in interventional procedures. We determined the benefits, disadvantages, and patient safety implications of syringe and needle size on vacuum generation, hand force requirements, biopsy/fluid yield, and needle control during aspiration procedures. Materials and Methods: Different sizes (1, 3, 5, 10, and 20 ml) of the conventional syringe and aspirating mechanical safety syringe, the reciprocating procedure device, were studied. Twenty operators performed aspiration procedures with the following outcomes measured: (1) vacuum (torr), (2) time to vacuum (s), (3) hand force to generate vacuum (torr-cm2), (4) operator difficulty during aspiration, (5) biopsy yield (mg), and (6) operator control of the needle tip position (mm). Results: Vacuum increased tissue biopsy yield at all needle diameters (P < 0.002). Twenty-milliliter syringes achieved a vacuum of −517 torr but required far more strength to aspirate, and resulted in significant loss of needle control (P < 0.002). The 10-ml syringe generated only 15% less vacuum (−435 torr) than the 20-ml device and required much less hand strength. The mechanical syringe generated identical vacuum at all syringe sizes with less hand force (P < 0.002) and provided significantly enhanced needle control (P < 0.002). Conclusions: To optimize patient safety and control of the needle, and to maximize fluid and tissue yield during aspiration procedures, a two-handed technique and the smallest syringe size adequate for the procedure should be used. If precise needle control or one-handed operation is required, a mechanical safety syringe should be considered.

  7. King Injo's Disease and Burnt Needle Therapy

    KIM In-Sook

    2004-12-01

    Full Text Available This paper investigates an interrelationship between burnt needle therapy(번침 and King Injo'sdisease. From 1633 (Year 11 in King Injo's reign to May 5, 1649 (Year 27 King in Injo's reign, right before his death, King Injo(인조 was treated with burnt needles by Yi Hyeongik(이형익, an acupuncturist when the king had health problems. This study arises from two questions: why was King Injo often treated with burnt needles? and what effect did burnt needles have? Burnt needle therapy is a combined form of acupuncture and moxibustion. Yi Hyeongik was famous for eradicating pathogenic factors. He was appointed as a doctor in the Royal Hospital. The medical definition for pathogenic factors is that they are disease-causing factors. Understanding the pathogenic factor for King Injo's disease could make it possible to find the interrelationship between burnt needles and the king's disease. In the Joseon era, the prevalent belief about diseases was that diseases could be caused by homeopathic magic. Some people thought homeopathic magic caused King Injo's disease.  The actual reasons for King Injo's disease were the participation in the excessive rites of Queen Mother Inmok's funeral and the constant oppression from the Ching Dynasty after disgraceful defeat in the war. When King Injo started to be sick, homeopathic magic cases were found in the royal palace. The king's incurable disease was believed to have happened as a result of homeopathic magic. King Injo's suspicion toward Princess Jeongmyeong(정명공주 derived from her mother, Queen Mother Inmok(인목대비. Moral justification for King Injo's coup was Gwanghaegun(광해군 or Prince Gwanghae's immoral conduct toward Queen Mother Inmok. After he was installed, King Injo obeyed the Queen Mother and showed her every attention. Meanwhile, he treated Princess Jeongmyeong with respect, maximized the moral justification for the coup, and solidified the royal authority. However, constant

  8. Foil-strain-gauge-based displacement transducers and calibration device for displacement transducers

    Materials testing performed on various specimen materials with different techniques often reveal measuring method problems which cannot be solved by using commercial devices which are either too expensive or else are non-existent altogether. The institute remedied this situation by developing a number of laboratory devices of their own make two of which, i.e. a special displacement transducer and a device for the calibration and characteristics determination of transducers, are demonstrated in this report. (orig./HP)

  9. Mounting technique for pressure transducers minimizes measurement interferences

    Lanham, R. N.; Taylor, C. E.; Balmer, C. E.; Hwang, C.

    1975-01-01

    Miniaturized transducers are fabricated from commercially available four-arm semiconductor gages; transducers are connected as bridge circuit and mounted on internal face of small diaphragm. Jacket made of conductive plastic may be needed to avoid buildup or static charges.

  10. Development of ultrasonic transducer for nondestructive testing of fruit

    In this study, the ultrasonic transducers for contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the impedance between piezoelectric material and fruit, various wear plates were fabricated and evaluated. And to control the bandwidth of ultrasonic wave of the transducer, various backing materials were fabricated and evaluated. The wear plate of the transducer was specially designed and fabricated considering the curvature of fruit. Two kinds of transducers such as 100 kHz of central frequency with 40 mm of transducer diameter and 200 kHz of central frequency with 20 mm diameter were developed. Nondestructive evaluation of the fruit will be possible with the developed ultrasonic transducers.

  11. Hydro acoustic transducer's calibration by the reciprocity

    This paper presents a calibration technique of underwater acoustic transducers, hydroacoustics, known as three-transducer spherical-wave reciprocity and performs an assessment of the type B standard uncertainty of the results obtained for the frequency measurement used

  12. Transbronchial needle aspiration. An underused diagnostic technique.

    Dasgupta, A; Mehta, A C

    1999-03-01

    Despite its proven usefulness, TBNA is not widely used. An American College of Chest Physicians (ACCP) survey showed that only 11.8% of pulmonologists use TBNA. Most pulmonologists in the 1980s were not formally trained in TBNA. This lack of training has unfortunately translated to minimal emphasis on TBNA in current training programs in a large number of institutions. Technical problems with the procedure (faulty site selection, incomplete needle penetration, catheter kinking that prevents adequate suction, etc.), the confusing array of needles, low diagnostic yields, unproven concerns regarding the safety of the procedure, inadequate cytopathology support, and bronchoscopic damage have all perpetuated the image of limited usefulness for this procedure. Limitations to the practice of TBNA are: Lack of training during fellowship Technical inadequacies Lack of cytopathologists trained in TBNA interpretation Fear of bronchoscope damage Safety issues Failure to reproduce published successes Reservations regarding usefulness of TBNA results Hands-on experience with TBNA, developing familiarity and expertise with only a few needles, and paying careful attention to anatomy, procedure techniques, and specimen acquisition may all help to increase yield. The following lists how better results can be obtained with TBNA: Preprocedure Review TBNA instruction tapes Attend hands-on courses Practice with lung models Review patient's CAT scans Familiarize with one-two cytology and histology needle Obtain a trained assistant Procedural Identify target site Needle to airway angle at least greater than 45 degrees Insert entire length of the needle Use scope channel to support the catheter Release suction before withdrawing needle (for staging) Specimen acquisition Avoid delay in preparing slides Adequate sampling (at least two) Use smear method for cytology specimen Analyze all samples flush solutions cell block Postprocedure Find an experienced cytopathologist Review your procedure

  13. 21 CFR 870.2890 - Vessel occlusion transducer.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vessel occlusion transducer. 870.2890 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2890 Vessel occlusion transducer. (a) Identification. A vessel occlusion transducer is a device used to provide an...

  14. The Single Needle Lockstitch Machine. Module 1.

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on parts of the machine, one in a series on the single needle lockstitch sewing machine for student self-study, contains eight sections. Each section contains the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final…

  15. Thin needle aspiration biopsy of endocrine organs.

    Koss, L G

    1979-01-01

    The purpose of this paper is to summarize the advantages and disadvantages of the fine needle aspiration technique in reference to the endocrine organs. The principles of technique and interpretation are presented. The application of aspiration biopsies to the breast, the prostate, the pancreas and the thyroid are briefly discussed. PMID:485094

  16. Particulate contamination of sterile syringes and needles.

    Taylor, S A

    1982-08-01

    Commercially available sterile needles and syringes have been examined for particulate contamination using the Hiac light blockage technique. The number of particles delivered was small compared with the total number permitted for large volume parenterals. Where syringes are used in particle counting techniques, the contribution of particles should be taken into account. PMID:6126558

  17. Scar endometriosis: Diagnosis by fine needle aspiration

    Pachori, Geeta; Sharma, Rashmi; Sunaria, Ravi Kant; Bayla, Tushar

    2015-01-01

    Endometriosis is defined as the presence of a functioning endometrium outside the uterus. Abdominal wall endometriosis is a rare entity. Most of the abdominal wall endometriosis occurs in or around surgical scars following caesarean section or hysterectomy. We report a case of scar endometriosis following caesarean section and diagnosed by fine needle aspiration cytology (FNAC). Excision biopsy confirmed the FNAC diagnosis of scar endometriosis.

  18. Mechanics of Flexible Needles Robotically Steered through Soft Tissue

    Misra, S.; Reed, K.B.; Schafer, B.W.; Ramesh, K.T.; Okamura, A.M.

    2010-01-01

    The tip asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. This enables robotic needle steering, which can be used in medical procedures to reach subsurface targets inaccessible by straight-line trajectories. However, accurate path planning

  19. 21 CFR 884.6100 - Assisted reproduction needles.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction needles. 884.6100 Section... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6100 Assisted reproduction needles. (a) Identification. Assisted reproduction needles are devices used in...

  20. 21 CFR 868.5150 - Anesthesia conduction needle.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia conduction needle. 868.5150 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5150 Anesthesia conduction needle. (a) Identification. An anesthesia conduction needle is a device used to inject local anesthetics into a patient...

  1. Needle core biopsy for breast lesions: An audit of 467 needle core biopsies

    Selvi Radhakrishna; Anu Gayathri; Deepa Chegu

    2013-01-01

    Background: Breast cancer is the commonest cancer among women in urban India. Triple assessment includes clinical, radiological and cytological assessment of breast lesions. Guided core needle biopsy has replaced fine needle aspiration cytology in most of the western countries. In resource poor countries FNAC is still a very valuable and cost effective method to diagnose breast lesions. Pitfalls include increased rates of non diagnostic smears, and inadequate smears. Further procedures may be...

  2. Acoustic transducer apparatus with reduced thermal conduction

    Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)

    1990-01-01

    A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.

  3. Irradiation test of special low cost transducers

    Safeguards requirements are such that some applications of the ultrasonic signature principle ask for very simple and low cost transducers to be used as sensors integrated in seals, for easy continuous and/or remote control of fissile materials storage. Such nonexpensive sensors must be of good quality and have often to withstand radiation fields which are typical of fissile masterials wet storage (for irradiated fuel bundles). Irradiation tests have been performed to ensure the good stability of transducer characteristics when taking into account the actual conditions of use. These irradiations were carried out at the TRITON reactor, Commissariat a l'Energie Atomique (C.E.A.), Fontenay-aux-Roses, France, in close collaboration with the Commission of the European Communities, Non Destructive Testing Laboratories of the Joint Research Centre at Ispra, Italy

  4. Hybrid neural network models of transducers

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input–single output and multi input–multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance

  5. Orbital angular momentum-entanglement frequency transducer

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the information carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 nm to 525 nm for OAM qubits, OAMpolarization hybrid entangled states, and OAM entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link betwe...

  6. Electromechanical transducer for acoustic telemetry system

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  7. Ultrasonic transducer design for uniform insonation

    Techniques used in transducer development for acoustical imaging have been evaluated for the purpose of producing broad, uniform ultrasonic fields from planar radiators. Such fields should be useful in hyperthermia, physical therapy, and ultrasonic bioeffects studies. Fourier inversion of the circ function yielded a source velocity distribution proportional to (P/r) exp ((-ik/2Z) (2Z/sup 2/+r/sup 2/)) J/sub 1/(krP/Z), where r is the radial source coordinate, k is the wave number, and P is the desired radius of uniform insonation at a depth Z in water. This source distribution can be truncated without significantly degrading the solution. A simpler solution consists of exponentially shading the edge of an otherwise uniformly excited disk transducer. This approach was successfully approximated experimentally

  8. Micromachined Ultrasonic Transducers for 3-D Imaging

    Christiansen, Thomas Lehrmann

    Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D...... ultrasound imaging results in expensive systems, which limits the more wide-spread use and clinical development of volumetric ultrasound. The main goal of this thesis is to demonstrate new transducer technologies that can achieve real-time volumetric ultrasound imaging without the complexity and cost...... capable of producing 62+62-element row-column addressed CMUT arrays with negligible charging issues. The arrays include an integrated apodization, which reduces the ghost echoes produced by the edge waves in such arrays by 15:8 dB. The acoustical cross-talk is measured on fabricated arrays, showing a 24 d...

  9. A symmetrical low temperature pressure transducer

    Helvensteijn, B. P. M.; VanSciver, S. W.

    1990-03-01

    The design and operating characteristics of a fully differential pressure transducer are described. The device is intended for use with He II heat transfer experiments where it operates in vacuum and at low temperatures (Tcapacitance change to an ac output voltage. The sensitivity is roughly 5 μV/Pa. For the present application, the capacitor and electronics have acceptable performance, with a mean noise level of ±5 Pa.

  10. Orbital angular momentum-entanglement frequency transducer

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photons orbital angular momentum OAM degrees of freedom is preferred in harnessing the ...

  11. Language of Transducer Manipulation: Codifying Terms for Effective Teaching.

    Bahner, David P; Blickendorf, J Matthew; Bockbrader, Marcia; Adkins, Eric; Vira, Amar; Boulger, Creagh; Panchal, Ashish R

    2016-01-01

    There is a need for consistent, repetitive, and reliable terminology to describe the basic manipulations of the ultrasound transducer. Previously, 5 basic transducer motions have been defined and used in education. However, even with this effort, there is still a lack of consistency and clarity in describing transducer manipulation and motion. In this technical innovation, we describe an expanded definition of transducer motions, which include movements to change the transducer's angle of insonation to the target as well as the location on the body to optimize the ultrasound image. This new terminology may allow for consistent teaching and improved communication in the process of image acquisition. PMID:26679204

  12. Silver doped 0.9PMN-PT-0.1PZT composite films for very high frequency ultrasonic transducer applications

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 μC/cm2 at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29 % (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications. (orig.)

  13. Silver doped 0.9PMN-PT-0.1PZT composite films for very high frequency ultrasonic transducer applications

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Wei, Qiang; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-05-01

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 μC/cm2 at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29 % (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications.

  14. Silver Doped 0.9PMN-PT-0.1PZT Composite Films for very High Frequency Ultrasonic Transducer Applications.

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Wei, Qiang; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2013-05-01

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+ 2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 µC/cm(2) at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29% (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications. PMID:23814408

  15. Silver doped 0.9PMN-PT-0.1PZT composite films for very high frequency ultrasonic transducer applications

    Hsu, Hsiu-Sheng [University of Southern California, Department of Biomedical Engineering and NIH Transducer Resource Center, Los Angeles, CA (United States); University of Southern California, Mork Family Department of Chemical Engineering and Materials Science, Los Angeles, CA (United States); Benjauthrit, Vatcharee; Zhou, Qifa; Shung, K.K. [University of Southern California, Department of Biomedical Engineering and NIH Transducer Resource Center, Los Angeles, CA (United States); Wei, Qiang; Huang, Yuhong [Chemat Technology Inc., Northridge, CA (United States)

    2013-05-15

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 {mu}C/cm{sup 2} at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29 % (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications. (orig.)

  16. Class D audio amplifiers for high voltage capacitive transducers

    Nielsen, Dennis

    implications of driving the non-linear transducer of the DEAP. 2-level modulated high voltage amplifiers driving the capacitive load of the DEAP transducer are addressed in chapter 4. An amplifier with fourth order output filter and full-state self-oscillating hysteresis based control loop is proposed...... on a silicone film. As a consequence a capacitive transducer emerges, which can be shaped into the loudspeaker membrane itself, rolled up into a transducer driving a membrane or being part of an active suspension system for the membrane. In order to document the full potential of the DEAP transducer, suitable....... Due to the similarities between the electrostatic loudspeaker and the DEAP transducer, the state-of-the-art has a special focus on amplifiers for electrostatic loudspeakers. Amplifiers for other type of capacitive transducers like piezoelectric ones are also considered. Finally the current state...

  17. New Methods and Transducer Designs for Ultrasonic Diagnostics and Therapy

    Rybyanets, A. N.; Naumenko, A. A.; Sapozhnikov, O. A.; Khokhlova, V. A.

    Recent advances in the field of physical acoustics, imaging technologies, piezoelectric materials, and ultrasonic transducer design have led to emerging of novel methods and apparatus for ultrasonic diagnostics, therapy and body aesthetics. The paper presents the results on development and experimental study of different high intensity focused ultrasound (HIFU) transducers. Technological peculiarities of the HIFU transducer design as well as theoretical and numerical models of such transducers and the corresponding HIFU fields are discussed. Several HIFU transducers of different design have been fabricated using different advanced piezoelectric materials. Acoustic field measurements for those transducers have been performed using a calibrated fiber optic hydrophone and an ultrasonic measurement system (UMS). The results of ex vivo experiments with different tissues as well as in vivo experiments with blood vessels are presented that prove the efficacy, safety and selectivity of the developed HIFU transducers and methods.

  18. Accuracy of needle position measurements using fiber Bragg gratings.

    Henken, Kirsten; Van Gerwen, Dennis; Dankelman, Jenny; Van Den Dobbelsteen, John

    2012-11-01

    Accurate placement of the needle tip is essential in percutaneous therapies such as radiofrequency ablation (RFA) of liver tumors. Use of a robotic system for navigating the needle could improve the targeting accuracy. Real-time information on the needle tip position is needed, since a needle deflects during insertion in tissue. Needle shape can be reconstructed based on strain measurements within the needle. In the current experiment we determined the accuracy with which the needle tip position can be derived from strain measurements using Fiber Bragg Gratings (FBGs). Three glass fibers equipped with two FBGs each were incorporated in a needle. The needle was clamped at one end and deformed by applying static radial displacements at one or two locations. The FBG output was used for offline estimation of the needle shape and tip position. During deflections of the needle tip up to 12.5 mm, the tip position was estimated with a mean accuracy of 0.89 mm (std 0.42 mm). Adding a second deflection resulted in an error of 1.32 mm (std 0.48 mm). This accuracy is appropriate for applications such as RFA of liver tumors. The results further show that the accuracy can be improved by optimizing the placement of FBGs. PMID:22455615

  19. The research of knitting needle status monitoring setup

    Liu, Lu; Liao, Xiao-qing; Zhu, Yong-kang; Yang, Wei; Zhang, Pei; Zhao, Yong-kai; Huang, Hui-jie

    2013-09-01

    In textile production, quality control and testing is the key to ensure the process and improve the efficiency. Defect of the knitting needles is the main factor affecting the quality of the appearance of textiles. Defect detection method based on machine vision and image processing technology is universal. This approach does not effectively identify the defect generated by damaged knitting needles and raise the alarm. We developed a knitting needle status monitoring setup using optical imaging, photoelectric detection and weak signal processing technology to achieve real-time monitoring of weaving needles' position. Depending on the shape of the knitting needle, we designed a kind of Glass Optical Fiber (GOF) light guides with a rectangular port used for transmission of the signal light. To be able to capture the signal of knitting needles accurately, we adopt a optical 4F system which has better imaging quality and simple structure and there is a rectangle image on the focal plane after the system. When a knitting needle passes through position of the rectangle image, the reflected light from needle surface will back to the GOF light guides along the same optical system. According to the intensity of signals, the computer control unit distinguish that the knitting needle is broken or curving. The experimental results show that this system can accurately detect the broken needles and the curving needles on the knitting machine in operating condition.

  20. Needle tip localization using stylet vibration.

    Harmat, Adam; Rohling, Robert N; Salcudean, Septimiu E

    2006-09-01

    Power Doppler ultrasound is used to localize the tip of a needle by detecting physical vibrations. Two types of vibrations are investigated, lateral and axial. The lateral vibrations are created by rotating a stylet, whose tip is slightly bent, inside a stationary cannula while the stylet is completely within the cannula. The minute deflection at the needle tip when rotated causes tissue motion. The axial vibration is induced by extending and retracting a straight stylet inside a stationary cannula. The stylet's tip makes contact with the tissue and causes it to move. The lateral vibration method was found to perform approximately the same under a variety of configurations (e.g., different insertion angles and depths) and better than the axial vibration method. Tissue stiffness affects the performance of the lateral vibration method, but good images can be obtained through proper tuning of the ultrasound machine. PMID:16965974

  1. [Cytologic diagnosis of abdominal lesions with fine needle aspiration guided by ultrasound].

    Candia, P; Rojas, M; Alvarado, M; Garassini, M A; Römer, M A

    1990-01-01

    The purpose of this work was to analyse the advantages and disadvantages of puncture-aspiration with fine needle, guided by ultrasonography, trying to determine its usefulness in our hospitals and its reliability in the diagnosis of intraabdominal lesions of different locations. 29 punctures were practiced on 19 patients, 9 women and 10 men of ages comprised between 34 and 94 years, with lesions in different organs of the abdominal cavity diagnosed by ultrasonography with real time equipment and lineal 3.5 and 5 MHz transducers. After cleaning and antisepsis a Chiba needle is introduced under ultrasonographic vision, up to the location of the lesion, the guide is removed and under a negative pressure, the sample is taken, which is later dried into the air and coloured using the May-Grünwald-Giemsa Technique. Only in one case it was not possible to obtain adequate material for the cytological study. There were 11 positive cases for malignity and 7 negative, one of which was a false negative. The sensibility of the method was of 91.6% with a specificity of 100% and a reliability of 89.4%. We definitely believe that the method is practical, very easy to carry out in our hospitals with a minimum amount of risk, and most of all, dependable to clarify certain diagnoses. PMID:2152268

  2. CT Guided Needle Biopsies in Pulmonary Nodules

    Nargess Afzali

    2011-05-01

    Full Text Available determine the prevalence of pulmonary pathologies"nby CT-guided needle biopsy in pulmonary nodules."nPatients and Methods: We performed CT guided"nneedle biopsy on 78 cases of pulmonary nodules. Lung"nCT scan with a 64-Slice MSCT was done for all patients"nbefore the needle biopsy. All biopsies were performed"nby one experienced interventional radiologist by"nusing a semiautomatic coaxial 18 guage needle. The"nresults were confirmed by two pathologists who were"nunaware of each other's reports. Because of different"npathologic diagnosis two cases were excluded from the"nstudy."nResults: The study population included 43 men and"n33 women with the mean age of 62 years. The mean"nlesion diameter was 22 mm (±7 mm. Thirty-nine"ncases were diagnosed as malignant lesions. Benign"npulmonary conditions were diagnosed in 37 patients."nThe most common malignant lesion was pulmonary"nadenocarcinoma (26%, squamous cell carcinoma"nand bronchoalveolar carcinoma were the next ones."nPulmonary metastasis was seen in three cases and non"nHodgkin lymphoma in three patients. The prevalence"nof adenocarcinoma was not significantly different"nbetween men and women (p value=0.01. The mean age"nof the patients with malignant lesions was 74 years and"n56 years in the others. The difference was significant"n(p=0.05. Tuberculosis was the most common cause of"nbenign lesions (14.4% of all cases, intersitial fibrosis"nand anthracosis were the next most common."nConclusion: Most pulmonary nodules were malignant"nand pulmonary adenocarcinoma was the most"nfrequent. Among benign lesions tuberculosis was the"nmost common."nKeywords: Pulmonary Nodules, Needle Biopsy, CT"nGuide

  3. A retractable barb needle for drug darts

    G.L. van Rooyen

    1973-07-01

    Full Text Available The mechanism and action of a new retractable barbneedle for drug darts are described. This dart needle is particularly successful in obviating unnecessary flight reactions andtrauma in darted animals, and facilitates the complete injection of the drug dose before the barb is retracted and the dart is dislogded from the animal. The whole process is completed within a few seconds and the expended dart can usually be retrieved in the immediate vicinity where the animal was darted.

  4. Fine Needle Aspiration Cytology of Parathyroid Lesions

    Heo, Ilyeong; Park, Sunhoo; Jung, Chang Won; Koh, Jae Soo; Lee, Seung-Sook; Seol, Hyesil; Choi, Hee Seung; Cho, Soo Youn

    2013-01-01

    Background There has been an increase in the use of fine needle aspiration cytology (FNAC) for the diagnosis of parathyroid lesions (PLs). Differentiation between a thyroid lesion and a PL is not easy because of their similar features. We reviewed parathyroid aspirates in our institution and aimed to uncover trends in diagnostic criteria. Methods We selected 25 parathyroid aspirates (from 6 men and 19 women) confirmed surgically or immunohistochemically from 2006 to 2011. Results Major archit...

  5. Pulmonary actinomycosis in fine needle aspiration cytology

    Patel Keyuri; Gupta Gurudutt; Shah Menka; Patel Purvesh

    2009-01-01

    Pulmonary actinomycosis is a rare bacterial lung disease caused by one of two types of bacteria, Actinomyces or Propioni. Pulmonary actinomycosis in the lung causes lung cavities, lung nodules, and pleural effusion. We report here a case of pulmonary actinomycosis that was diagnosed by fine needle aspiration cytology (FNAC). A 45 year-old male with a history of smoking and alcohol abuse, presented with complaints of cough with hemoptysis, right-sided chest pain, and fever of two months′...

  6. Exploration of New Electroacupuncture Needle Material

    Sanghun Lee

    2012-01-01

    Full Text Available Background. Electro Acupuncture (EA uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microscope (SEM after 0.5 mA, 60 min stimulation. The straightness was measured using a gap length of 100 mm, and tensile testing was performed by imposing a maximum tensile load. Results. Phosphor bronze, Ni coated SS304, were deemed inappropriate materials because of mild-to-moderate cytotoxicity and corrosion. Ti-6Al-4V and SS316 showed no cytotoxicity or corrosion. Ti-6Al-4V has a 70 times higher cost and 2.5 times lower conductivity than SS316. The results of both straightness and tensile testing confirmed that SS316 can be manufactured as a standard product. Conclusion. As a result, we confirmed that SS316 can be used a new EA electrode material. We hope that a further study of the maximum capacity of low-frequency stimulation using an SS316 for safe operation.

  7. Exploration of new electroacupuncture needle material.

    Lee, Sanghun; Choi, Gwang-Ho; Lee, Chang Hoon; Kim, Yu Kyoung; Lee, Saebhom; Cho, Sungjin; Yeon, Sunhee; Choi, Sun-Mi; Ryu, Yeon-Hee

    2012-01-01

    Background. Electro Acupuncture (EA) uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microscope (SEM) after 0.5 mA, 60 min stimulation. The straightness was measured using a gap length of 100 mm, and tensile testing was performed by imposing a maximum tensile load. Results. Phosphor bronze, Ni coated SS304, were deemed inappropriate materials because of mild-to-moderate cytotoxicity and corrosion. Ti-6Al-4V and SS316 showed no cytotoxicity or corrosion. Ti-6Al-4V has a 70 times higher cost and 2.5 times lower conductivity than SS316. The results of both straightness and tensile testing confirmed that SS316 can be manufactured as a standard product. Conclusion. As a result, we confirmed that SS316 can be used a new EA electrode material. We hope that a further study of the maximum capacity of low-frequency stimulation using an SS316 for safe operation. PMID:22675386

  8. Ultrasound-guided robot for flexible needle steering.

    Neubach, Zipi; Shoham, Moshe

    2010-04-01

    The success rate of medical procedures involving needle insertion is often directly related to needle placement accuracy. Due to inherent limitations of commonly used freehand needle placement techniques, there is a need for a system providing for controlled needle steering for procedures that demand high positional accuracy. This paper describes a robotic system developed for flexible needle steering inside soft tissues under real-time ultrasound imaging. An inverse kinematics algorithm based on a virtual spring model is applied to calculate needle base manipulations required for the tip to follow a curved trajectory while avoiding physiological obstacles. The needle tip position is derived from ultrasound images and is used in calculations to minimize the tracking error, enabling a closed-loop needle insertion. In addition, as tissue stiffness is a necessary input to the control algorithm, a novel method to classify tissue stiffness from localized tissue displacements is proposed and shown to successfully distinguish between soft and stiff tissue. The system performance was experimentally verified by robotic manipulation of the needle base inside a phantom with layers of varying stiffnesses. The closed-loop experiment with updated tissue stiffness parameters demonstrated a needle-tip tracking error of approximately 1 mm and proved to be significantly more accurate than the freehand method. PMID:19709957

  9. The effects of needle deformation during lumbar puncture

    Hasan Hüseyin Özdemir

    2015-01-01

    Full Text Available Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP. Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1% of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3% of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%. Forty-seven (41.5% patients experienced post lumbar puncture headache (PLPH and 13 (11.5% patients experienced intracranial hypotension (IH. No statistically significant correlation between the degree of deflection and headache was found (P > 0.05. Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH.

  10. The effects of needle deformation during lumbar puncture

    Özdemir, Hasan Hüseyin; Demir, Caner F.; Varol, Sefer; Arslan, Demet; Yıldız, Mustafa; Akil, Eşref

    2015-01-01

    Objective: The aim of this study is to assess deformation of the tip and deflection from the axis of 22-gauge Quincke needles when they are used for diagnostic lumbar puncture (LP). Thus, it can be determined whether constructional alterations of needles are important for predicting clinical problems after diagnostic LP. Materials and Methods: The 22-gauge Quincke needles used for diagnostic LP were evaluated. A specially designed protractor was used for measurement and evaluation. Waist circumference was measured in each patient. Patients were questioned about headaches occurring after LP. Results: A total of 115 Quincke-type spinal needles used in 113 patients were evaluated. No deflection was detected in 38 (33.1%) of the needles. Deflection between 0.1° and 5° occurred in 43 (37.3%) of the needles and deflection ≥ 5.1° occurred in 34 patients (29.6%). Forty-seven (41.5%) patients experienced post lumbar puncture headache (PLPH) and 13 (11.5%) patients experienced intracranial hypotension (IH). No statistically significant correlation between the degree of deflection and headache was found (P > 0.05). Epidural blood patch was performed for three patients. Deformity in the form of bending like a hook occurred in seven needles and IH occurred in six patients using these needles. Two of the needles used in three patients requiring blood patch were found to be bent. Conclusion: Deformation of needles may increase complications after LP. Needle deformation may lead to IH. In case of deterioration in the structure of the needle, termination of the puncture procedure and the use of a new needle could reduce undesirable clinical consequences, especially IH. PMID:25883480

  11. Embedded ultrasonic transducers for active and passive concrete monitoring.

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer's axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  12. Electronic scanning pressure measuring system and transducer package

    Coe, C. F. (Inventor); Parra, G. T.

    1984-01-01

    An electronic scanning pressure system that includes a plurality of pressure transducers is examined. A means obtains an electrical signal indicative of a pressure measurement from each of the plurality of pressure transducers. A multiplexing means is connected for selectivity supplying inputs from the plurality of pressure transducers to the signal obtaining means. A data bus connects the plurality of pressure transducers to the multiplexing means. A latch circuit is connected to supply control inputs to the multiplexing means. An address bus is connected to supply an address signal of a selected one of the plurality of pressure transducers to the latch circuit. In operation, each of the pressure transducers is successively scanned by the multiplexing means in response to address signals supplied on the address bus to the latch circuit.

  13. Using FOCUS to determine the radiation impedance for square transducers

    Jennings, Matthew R.; McGough, Robert J.

    2012-10-01

    The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.

  14. Acoustic lens for capacitive micromachined ultrasonic transducers

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing. (paper)

  15. Polyvinylidene fluoride - a polymer as transducer material

    Polyvinylidene fluoride or PVDF is a flexible, thin piezo film and long chain semicrystalline polymer containing repeated of CH/sub 2/ - CH/sub 2/. In order to obtain desired piezoelectric properties PVDF is poled by subjecting it to high electric field. In poled PVDF piezoelectric constants have different values for each axis and one constant per axis. PVDF polymer exhibits generator and motor action. Usually 1000 A /sup o/ thick vacuum-deposited aluminum electrodes are formed on both sides of the sheet. Polymer material of PVDF can be used as a sensing element with temperature range of -40 /sup 0/ C to 100 /sup 0/C and a frequency range of 10/sup -3/ to 10/sup -9/ Hz. This paper includes as experimental observation of exciting aluminium open-ended tube at its resonance using PVDF transducer and maintained in this condition using phase lock loop or PLL. The tube is free to resonate when 9-micrometer thin polyvinylidene fluoride transducer is energized. It is observed that a film of such material can easily be used to produced the requisite vibrations in the tube. (author)

  16. Fluoroscopically guided transforaminal epidural dry needling for lumbar spinal stenosis using a specially designed needle

    Ahn Kang

    2010-08-01

    Full Text Available Abstract Background This report describes the methodological approach and clinical application of a minimally invasive intervention to treat lumbar spinal stenosis (LSS. Methods Thirty-four patients with LSS underwent fluoroscopically guided transforaminal epidural dry needling using a specially designed flexed Round Needle. The needle was inserted 8-12 cm lateral to the midline at the level of the stenosis and advanced to a position between the anterior side of the facet joint and pedicle up to the outer-third of the pedicle. The needle was advanced medially and backed laterally within a few millimetres along the canal side of the inferior articular process between the facet joint and pedicle. The procedure was completed when a marked reduction in resistance was felt at the tip of the needle. The procedure was performed bilaterally at the level of the stenosis. Results The average follow-up period was 12.9 ± 1.1 months. The visual analogue scale (VAS pain score was reduced from 7.3 ± 2.0 to 4.6 ± 2.5 points, the Oswestry Disability Index (ODI score decreased from 41.4 ± 17.2 to 25.5 ± 12.6% and the average self-rated improvement was 52.6 ± 33.1%. The VAS scores indicated that 14 (41.2% patients reported a "good" to "excellent" treatment response, while 11 (32.4% had a "good" to "excellent" treatment response on the ODI and 22 (64.7% had a "good" to "excellent" treatment response on the self-rated improvement scale. Conclusions These results suggest that fluoroscopically guided transforaminal epidural dry needling is effective for managing LSS.

  17. Long-Term Stability of the NIST Conical Reference Transducer

    Fick, Steven E.; Proctor, Thomas M.

    2011-01-01

    The National Institute of Standards and Technology (NIST) Conical Reference Transducer (CRT) is designed for purposes requiring frequency response characteristics much more uniform than those attainable with ultrasonic transducers conventionally used for acoustic emission (AE) nondestructive testing. The high performance of the CRT results from the use of design elements radically different from those of conventional transducers. The CRT was offered for sale for 15 years (1985 to 2000). Each ...

  18. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    Ernst Niederleithinger; Julia Wolf; Frank Mielentz; Herbert Wiggenhauser; Stephan Pirskawetz

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequen...

  19. Comparative study of acceleration transducers for biomedical applications

    Buchczik, Dariusz; Wyżgolik, Roman; Pietraszek, Stanisław

    2006-10-01

    The results of comparative studies of the metrological parameters of acceleration transducers constructed in Institute of Electronics, Silesian University of Technology is presented in this article. The construction of the transducers is based on commercially available monolithic accelerometers and optimized for biomedical applications. The parameters determined during the tests are similar to the parameters of the monolithic accelerometers declared by their manufacturers. It proofs that both the mechanical and the electronic construction of the transducers are correct.

  20. Needle Fracture during Endoscopic Ultrasound-Guided Fine-Needle Aspiration of Suspicious Thoracic Lymph Nodes

    Bartosz Adamowicz

    2016-01-01

    Full Text Available Endoscopic ultrasound fine-needle aspiration (EUS-FNA is used to make a cytopathologic diagnosis of suspicious lesions located around the gastrointestinal tract. It is a safe technique with few complications. The most common complications of EUS-FNA are related to pancreatic lesions (pancreatitis, bleeding, and abdominal pain. Rare complications have been noted such as stent malfunction, air embolism, infection, neural and vascular injuries, and tumor cell seeding. There are very few studies examining equipment malfunctions. We report a case of needle fracture during the EUS-FNA of suspicious thoracic lymph nodes in a 79-year-old man investigated for unexplained weight loss.

  1. Measurement component technology ; vol 1, cryogenic pressure measurement technology, high pressure flange seals, hydrogen embrittlement of pressure transducer material, close coupled Vs. remote transducer installation ...

    Hayakawa, K K; Iwata, M M; Lytle, C F; Chrisco, R M; Greenough, C S; Walling, J A

    1972-01-01

    Measurement component technology ; vol 1, cryogenic pressure measurement technology, high pressure flange seals, hydrogen embrittlement of pressure transducer material, close coupled Vs. remote transducer installation ...

  2. High Temperature Ultrasonic Transducer for Real-time Inspection

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  3. Modeling of multilayered piezoelectric transducers with ultrasonic welding application

    Güney, Murat; Eskinat, Esref

    2007-04-01

    Mechanical components of sandwiched piezoelectric transducers are modeled using one-dimensional wave transmission and piezoelectric equations. Using the impedance method, resonance frequencies, stress and displacement distributions along the multilayered piezoelectric transducers of different dimensions and materials are obtained. The calculated resonance frequencies and the impedances are experimentally verified. For ultrasonic welding of plastics, the effect of the parts to be welded on the resonance frequency of the whole system is investigated regarding both material damping and piezoelectric losses. Using the methods developed, several piezoelectric transducers are analysed for different designs. The obtained results can be used to better understand the qualitative relations between the design variables of ultrasonic piezoelectric transducers.

  4. Evaluation of several ultrasonic flowmeter transducers in cryogenic environment

    Moughon, W. C.

    1981-04-01

    Eighteen piezoelectric ultrasonic flowmeter transducers were laboratory tested to determine their suitability and long range reliability for use by the National Transonic Facility (NTF) to measure the flow rate of 450 Kg/sec of liquid nitrogen (LN2). Tests included thermally cycling each transducer 50 to 150 times over a temperature range of 295 K (ambient) to 77 K (LN2). The transducers were submerged in liquid nitrogen for 1 to 4 hours and the signal strength and quality noted. Results disclose that the current state-of-the-art ultrasonic flow transducers are very reliable and will meet the stringent requirements of the NTF.

  5. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle

    Yu-Tao Li; Li-Na Tang; Yong Ning; Qing Shu; Feng-Xia Liang; Hua Wang; Guo-Jun Zhang

    2016-01-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip su...

  6. Numerical description of discharge characteristics of the plasma needle

    Brok, WJM Wouter; Bowden, MD Mark; van Dijk; Mullen, van der, JJAM Joost; Kroesen, GMW Gerrit

    2005-01-01

    The plasma needle is a small atmospheric, nonthermal, radio-frequency discharge, generated at the tip of a needle, which can be used for localized disinfection of biological tissues. Although several experiments have characterized various qualities of the plasma needle, discharge characteristics and electrical properties are still not well known. In order to provide initial estimates on electrical properties and quantities such as particle densities, we employed a two-dimensional, time-depend...

  7. Lab in a needle for epidural space identification

    Carotenuto, B.; Micco, A.; Ricciardi, A.; Amorizzo, E.; Mercieri, M.; Cutolo, A.; Cusano, A.

    2016-05-01

    This work relies on the development of a sensorized medical needle with an all-optical guidance (Lab in a Needle) system for epidural space identification. The device is based on the judicious integration of a Fiber Bragg grating sensor inside the lumen of an epidural needle to discriminate between different types of tissue and thus providing continuous and real time measurements of the pressure experienced by the needle tip during its advancement. Experiments carried out on an epidural training phantom demonstrate the validity of our approach for the correct and effective identification of the epidural space.

  8. Serrated needle design facilitates precise round window membrane perforation.

    Stevens, James P; Watanabe, Hirobumi; Kysar, Jeffrey W; Lalwani, Anil K

    2016-07-01

    The round window membrane (RWM) has become the preferred route, over cochleostomy, for the introduction of cochlear implant electrodes as it minimizes inner ear trauma. However, in the absence of a tool designed for creating precise perforation, current practices lead to tearing of the RWM and significant intracochlear pressure fluctuations. On the basis of RWM mechanical properties, we have designed a multi-serrated needle to create consistent holes without membrane tearing or damaging inner ear structures. Four and eight-serrated needles were designed and produced with wire electrical discharge machining (EDM). The needle's ability to create RWM perforations was tested in deidentified, commercially acquired temporal bones with the assistance of a micromanipulator. Subsequently, specimens were imaged under light and scanning electron microscopy (SEM). The needles created consistent, appropriately sized holes in the membrane with minimal tearing. While a four-serrated crown needle made rectangular/trapezoid perforations, the octagonal crown formed smooth oval holes within the membrane. Though designed for single use, the needle tolerated repeated use without significant damage. The serrated needles formed precise perforations in the RWM while minimizing damage during cochlear implantation. The octagonal needle design created the preferred oval perforation better than the quad needle. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1633-1637, 2016. PMID:26914984

  9. Polychlorinated naphthalenes in pine needles from Poland

    Orlikowska, A.; Falandysz, J.; Bochentin, I. [Dept. of Environmental Chemistry and Ecotoxicology, Univ. of Gdansk (Poland); Hanari, N.; Wyrzykowska, B.; Yamashita, N. [National Inst. of Advanced Industrial Science and Technology (AIST), EMTECH, Tsukuba (Japan)

    2004-09-15

    Polychlorinated naphthalenes (PCNs) are a group of 75 compounds, which have been commercially produced and used in a wide range of industrial applications for the sake of their specific chemical properties. They are recognized as good electrical insulators and also as water and flame resistant materials. Technical PCNs formulations were mainly used as capacitor dielectrics, engine oil additives, electroplating stop-off compounds, in wire insulations and as paper, wood and fabric preservatives. Moreover, they have been formed during production of PCBs formulations. Although recently most countries have stopped synthesis of PCNs, they still are widely distributed in the environment. Nowadays the principal sources of these compounds are municipal solid wastes incineration, metallurgical and chloro-alkali processes. In last years PCNs concentrations in the environment have posed the cynosure of big group of scientists in the whole world. The relatively high concentrations are regarded as an environmental problem. Because they are persistent, toxic and lipophilic they might be bioaccumulated in living organisms and generate the danger for animals and humans. It is essentially to monitor their levels in air, regional transport, as well as estimate specific sources. It is possible by using as a biomonitors pine tree needles. These trees are considered as the very suitable passive indicators for monitoring of PCNs concentrations in the troposphere. This is because the surface wax layer of the needles poses an ability to absorb these lipophilic compounds from the surrounding air. In the current study pine needles were employed as biomonitors of PCNs concentrations in the ambient air of Poland. This country with its past history of production and use of different applications including these compounds, as well as with its location in the centre of Europe, presents the interesting region to these researches.

  10. Transbronchial needle aspiration "by the books"

    Kupeli Elif

    2011-01-01

    Full Text Available Background : Training for advanced bronchoscopic procedures is acquired during the interventional pulmonology (IP Fellowship. Unfortunately a number of such programs are small, limiting dissemination of formal training. Objective : We studied success of conventional transbronchial needle aspiration (C-TBNA in the hands of physicians without formal IP training. Methods : A technique of C-TBNA was learned solely from the literature, videos and practicing on inanimate models at "Hands-On" courses. Conventional TBNA with 21 and/or 19 gauge Smooth Shot Needles (Olympus® , Japan was performed on consecutive patients with undiagnosed mediastinal lymphadenopathy. Results : Thirty-four patients (male 23, mean age 54.9 ± 11.8 years underwent C-TBNA. Twenty-two patients had nodes larger than 20 mms. Suspected diagnoses were malignancy in 20 and nonmalignant conditions in 14. Final diagnoses were malignancy 17, sarcoidosis 4, reactive lymph nodes 12, and tuberculosis 1. Final diagnosis was established by C-TBNA in 14 (11 malignancy, 3 sarcoidosis; yield 41.1%, mediastinoscopy in 14, transthoracic needle aspiration in 3, peripheral lymph node biopsies in 2 and by endobronchial biopsy in 1. Nodal size had an impact on outcome (P = 0.000 while location did not (P = 0.33. C-TBNA was positive in 11/20 when malignancy was suspected (yield 55%, while 3/14 when benign diagnosis was suspected (yield 21.4% (P = 0.05. Sensitivity, specificity, PPV, NPV, and diagnostic accuracy were 66.6%, 100%, 100%, 65%, and 79.4%, respectively. There were no complications or scope damage. Conclusion : Conventional-TBNA can be learned by the books and by practicing on inanimate models without formal training and results similar to those published in the literature could be achieved.

  11. Needle-based confocal laser endomicroscopy

    Giovannini, Marc

    2015-01-01

    New applications of confocal laser endomicroscopy were developed as pCLE in the bile duct and nCLE for pancreatic cystic tumors, pancreatic masses and lymph nodes. The aim of this paper would be to give you an update in this new technology and to try to define its place in the diagnosis of cystic and solid pancreatic masses. The material used was a 19G EUS-needle in which the stylet was replaced by the Confocal mini-probe. The mini-probe (0.632 mm of diameter) is pre-loaded and screwed by a l...

  12. Risk of Needle-track Seeding After Diagnostic Image-guided Core Needle Biopsy in Breast Cancer

    Knight, Rebecca; Horiuchi, Kent; Parker, Steve H.; Ratzer, Erick R.; Fenoglio, Michael E.

    2002-01-01

    Objective: Image-guided core needle biopsy (IGCNB) is an accepted technique for sampling nonpalpable mammographically detected suspicious breast lesions. However, the concern for needle-track seeding in malignant lesions remains. An alternative to IGCNB is needle-localization breast biopsy (NLBB). No study has been done to compare the local recurrence rate of breast cancer after IGCNB versus NLBB. Methods: We have retrospectively reviewed the local recurrence of breast cancer in patients diag...

  13. Practical means for pressure transducer response verification

    Recent concern of possible deterioration in the dynamic response of safety-related sensors has led to broadened U.S. Nuclear Regulatory Commission requirements in periodic testing. Time response checks must now extend through the entire protection channel, including the sensor element. To accommodate this requirement, a testing unit and test methodology were developed to permit practical in-situ response measurement for pressure and differential pressure transducers. Comparison tests were made against Statham strain gauges and a representative sample of pressure sensors in commercial use. These tests served to validate the test approach and also to characterize dynamic behavior of sensors employed in safety applications. Supplementary investigations of test accuracy and potential sensor-line effects were performed

  14. Development of piezoelectric composites for transducers

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  15. Linear ultrasonic motor using quadrate plate transducer

    Jiamei JIN; Chunsheng ZHAO

    2009-01-01

    A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr, Ti)O3 piezo-electric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator's neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimen-sion in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than 150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

  16. Modeling piezoelectric ultrasonic transducers for physiotherapy

    Applications of ultrasound are well known in medical and aesthetic skin and subcutaneous fatty tissue mobilization treatments. The basic transducer used consists of a piezoelectric disk adhered to a metal delay line in capsule shape. The capsule design is critical since the two bonded elements have vibration modes which can cause very inefficient designs and vibration distributions very irregular if they are not properly studied and utilized. This must be known to avoid distributions of heat and sound pressure that could be ineffective or harmful. In this paper, using Finite Element Method and laser interferometric vibrational analysis, it has reached a piston-type solution that allows properly implement sound pressure vibration dose. (Author)

  17. Ultrasonic 2D matrix PVDF transducer

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  18. CT-guided transthoracic cutting needle biopsy of intrathoracic lesions: Comparison between coaxial and single needle technique

    Purpose: To evaluate the complication rates and diagnostic accuracy of two different CT-guided transthoracic cutting needle biopsy techniques: coaxial method and single needle method. Methods: This study involved 198 consecutive subjects with 198 intrathoracic lesions. The first 98 consecutive subjects received a single needle cutting technique and the next 100 consecutive subjects received a coaxial technique. Both groups were compared in relation the diagnostic accuracy and complication rates. Results: No significant difference was found between the two groups concerning patient characteristics, lesions and procedure variables. There was a borderline statistical difference in the incidence of pneumothorax at within 24-h post biopsy between patients in the single needle group (5%) and the coaxial group (13%) (P = 0.053). Little difference was found in the pneumothorax rate at immediately post biopsy between the two groups, which was 28% in the single needle group and 31% in the coaxial group. There was no significant difference in the hemoptysis rate between the two groups, which was 9.2% in the single needle group and 11% in the coaxial group. Both techniques yielded an overall diagnostic accuracy of 98% for malignant lesions with similar sensitivity (single needle: 96.9% vs. coaxial: 96.4%) and specificity (single needle: 100% vs. coaxial: 100%). Conclusion: There is little difference in the pneumothorax rates and bleeding complications between patients who either received a single needle or a coaxial transthoracic cutting biopsy. Both techniques produce an overall diagnostic accuracy of 98% for malignant lesions.

  19. Three-dimensional needle-tip localization by electric field potential and camera hybridization for needle electromyography exam robotic simulator.

    He, Siyu; Gomez-Tames, Jose; Yu, Wenwei

    2016-01-01

    As one of neurological tests, needle electromygraphy exam (NEE) plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. PMID:27382339

  20. Quality assurance with measuring transducers through EMP planning

    Measuring transducers in industrial application are subjected to various interferences. These are discussed as well as possible protection measures. The described measuring transducers are of modular design. Thus in individual cases it is possible to prevent the interference there where it occurs through special interference protection modules. The required measuring means for the testing of the EMP are introduced. (orig.)

  1. Thermal dispersion method for an ultrasonic phased-array transducer

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  2. AXIAL DEFFLECTION STUDIES OF RING SHAPED FORCE TRANSDUCER: A REVIEW

    SUDHIR KUMAR,

    2011-01-01

    Full Text Available The ring shaped force transducers are widely used in practice and are available in varying capacities from few hundred newtons to mega newtons. The present paper discusses the deflection studies of thering shaped force transducers under action of axial forces. Various methods leading to the measurement of deflection have been discussed and compared here.

  3. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  4. Metal cap flexural transducers for air-coupled ultrasonics

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  5. Development of sodium-immersible piezoelectric pressure transducers

    After a short description of the working principle of piezoelectric pressure transducers the special conditions for their utilization in liquid sodium are discussed. A general survey is given of pressure transducers developed in the CINR at Rossendorf. Finally, selected methods for calibration are described. (author)

  6. Design and performance of the drag-disc turbine transducer

    Averill, R.H.; Goodrich, L.D.; Ford, R.E.

    1979-01-01

    Mass flow rates at the Loss-of-Fluid Test (LOFT) facility, EG and G Idaho, Inc., at the Idaho National Engineering Laboratory, are measured with the drag-disc turbine transducer (DTT). Operational description of the DTT and the developmental effort are discussed. Performance data and experiences with this transducer have been evaluated and are presented in this paper.

  7. A Force Transducer from a Junk Electronic Balance

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  8. Needle placement accuracy during stereotactic localization mammography

    Aim: To derive a mathematical model to describe the relationship between lesion position in the breast and measurements derived from the stereoradiographs to enable more accurate sampling of a lesion during stereotactic mammographic needle placement. Materials and methods: The affect that registration errors have on the accuracy of needle placement when identifying the lesion on the stereoradiographs was investigated using the mathematical model. Results: The focus-to-film distance of the x-ray tube and the horizontal distance of the lesion from the centre of rotation have little effect on error. Registration errors for lesions lying at a greater perpendicular distance in the breast from the centre of rotation produce smaller localization errors when compared with lesions sited closer. Lesion registration errors during marking of the stereoradiographs are exacerbated by decreasing the angle of x-ray tube swing. Conclusions: When problems are encountered in making an accurate registration of the lesion on the stereoradiographs, consider the following error reducing strategies: (1) employ an approach that places the lesion the maximum distance away from the film cassette; (2) avoid reducing the angle of tube swing; and (3) consider sampling superficial and deep to, as well as at, the location indicated. The possibility of erroneous tissue sampling should be borne in mind when reviewing the pathology report.

  9. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    Ernst Niederleithinger

    2015-04-01

    Full Text Available Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, … as well as damages in an early state or the detection of acoustic events (e.g., crack opening. Besides application in civil engineering our setups can also be used for model studies in geosciences.

  10. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  11. Flexible ultrasonic array transducer for thickness measurement of curved pipes

    The feeder pipes in a Pressurized Heavy Water Reactor (PHWR) has a very complicated form with bent pipes. In this study, we have fabricated the Polyvinylidene fluoride (PVDF) array transducer to meet the dimension requirement passing smoothly along the pipe and have evaluated the signals in order to increase the accuracy of measurement. A contact array transducer was fabricated using commercially available PVDF film samples. Each pulse echo signals were acquired and analyzed using the pulser/receiver, The array transducer was demonstrated to show a serviceable performance as a contact transducer. Pulse echo reflections from a back-wall of feeder pipe were shown as a typical wideband signal. Ultrasonic signals were analyzed by considering the center frequency, band width and waveform. PVDF array transducer for thickness measurement can be applied to monitor the integrity of feeder pipes in PHWR.

  12. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  13. Design of matching layers for high-frequency ultrasonic transducers

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-09-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  14. Three-dimensional needle-tip localization by electric field potential and camera hybridization for needle electromyography exam robotic simulator

    He SY

    2016-06-01

    Full Text Available Siyu He,1 Jose Gomez-Tames,1 Wenwei Yu1,2 1Medical System Engineering Department, Graduate School of Engineering, 2Center for Frontier Medical Engineering, Chiba University, Chiba, Japan Abstract: As one of neurological tests, needle electromygraphy exam (NEE plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. Keywords: needle-tip localization, needle EMG exam, top-hat transform, tissue-like phantom, voltage distribution simulation

  15. Synthesis of nano-crystalline multifibrous zirconia needle

    Graphical abstract: - Highlights: • Zirconia needles have been successfully prepared by simple inorganic sol–gel route. • The shape of the needles was retained after firing with aspect ratio > 400. • Needles are composed of multiple fibres. • Fibres are composed of nano crystals. - Abstract: Zirconia needles have been successfully synthesized using a simple inorganic sol–gel process without using any template. The method employs mixture of zirconium oxychloride octahydrate and sulphuric acid in aqueous medium. This process requires heat treatment at 40 °C for 2 h in an oven for nucleus formation. Complete formation of needle occurs after 17 days. The green needle retained its original shape after calcination at 1200 °C. Fired needles were of 1–2 cm in length and 5–50 μm in diameter and possess monoclinic phase. Needles are composed of multiple fibres. Depending on the heat treatment temperature, crystallite size varies in the range of 8 to around 300 nm

  16. Coaxial needle insertion assistant with enhanced force feedback.

    De Lorenzo, Danilo; Koseki, Yoshihiko; De Momi, Elena; Chinzei, Kiyoyuki; Okamura, Allison M

    2013-02-01

    Many medical procedures involving needle insertion into soft tissues, such as anesthesia, biopsy, brachytherapy, and placement of electrodes, are performed without image guidance. In such procedures, haptic detection of changing tissue properties at different depths during needle insertion is important for needle localization and detection of subsurface structures. However, changes in tissue mechanical properties deep inside the tissue are difficult for human operators to sense, because the relatively large friction force between the needle shaft and the surrounding tissue masks the smaller tip forces. A novel robotic coaxial needle insertion assistant, which enhances operator force perception, is presented. This one-degree-of-freedom cable-driven robot provides to the operator a scaled version of the force applied by the needle tip to the tissue, using a novel design and sensors that separate the needle tip force from the shaft friction force. The ability of human operators to use the robot to detect membranes embedded in artificial soft tissue was tested under the conditions of 1) tip force and shaft force feedback, and 2) tip force only feedback. The ratio of successful to unsuccessful membrane detections was significantly higher (up to 50%) when only the needle tip force was provided to the user. PMID:23193302

  17. 21 CFR 868.5090 - Emergency airway needle.

    2010-04-01

    ... provide an emergency airway during upper airway obstruction. (b) Classification. Class II (performance... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emergency airway needle. 868.5090 Section 868.5090...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5090 Emergency airway needle....

  18. Laser-Controlled Growth of Needle-Shaped Organic Nanoaggregates

    Balzer, Frank; Rubahn, Horst-Günter

    2002-01-01

    Arrays of mutually parallel oriented, single-crystalline, needle-like structures of light-emitting p-hexaphenyl molecules are generated in the focus of an argon ion laser. The cross sectional dimensions of the needles are of the order of 100 to 200 nm with lengths up to several hundred micrometers...

  19. A new method for quantifying the needling component of acupuncture treatments

    Davis, Robert T; Churchill, David L; Badger, Gary J; Dunn, Julie; Langevin, Helene M

    2012-01-01

    Objectives The highly variable nature of acupuncture needling creates challenges to systematic research. The goal of this study was to test the feasibility of quantifying acupuncture needle manipulation using motion and force measurements. It was hypothesised that distinct needling styles and techniques would produce different needle motion and force patterns that could be quantified and differentiated from each other. Methods A new needling sensor tool (Acusensor) was used to record needling...

  20. Indications for needle catheter jejunostomy in elective abdominal surgery.

    Heberer, M; Bodoky, A; Iwatschenko, P; Harder, F

    1987-06-01

    Needle catheter jejunostomy for postoperative nutritional support is now employed worldwide. However, there is a large discrepancy regarding indications for this technique which this study attempts to rectify. The need for nutritional support after elective abdominal procedures in 464 patients was analyzed and compared with the experience with needle catheter jejunostomy in 42 patients. The results show that needle catheter jejunostomy is indicated after extensive operations of the upper gastrointestinal tract, for example, esophagectomy, total gastrectomy, and the Whipple procedure. With minor upper gastrointestinal operations, or procedures of the lower gastrointestinal tract, needle catheter jejunostomy should be performed only in patients with poor nutritional status or in the presence of postoperative chemotherapy or radiotherapy. In an unclear situation, liberal insertion of the needle catheter jejunostomy and a postponed decision on enteral feeding is recommended, as there is no significant catheter-related morbidity. PMID:3109269

  1. Effect of physical disturbance on the structure of needle coke

    Zhao, Shi-Gui; Wang, Bao-Cheng; Sun, Quan

    2010-10-01

    Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturbance on the structure of needle coke. The structure of needle coke is characterized by scanning electron microscope and x-ray diffractometer, and the influence mechanism is analysed. Results showed that the structure and property of needle coke could be effectively improved by magnetic field and ultrasonic cavitations, such as degree of order, degree of graphitization and crystallization. Comparatively speaking, the effect of magnetic field was greater. The graphitization degree of needle coke prepared under the effect of magnetic field is up to 45.35%.

  2. CUDA accelerated simulation of needle insertions in deformable tissue

    Patriciu, Alexandru

    2012-10-01

    This paper presents a stiff needle-deformable tissue interaction model. The model uses a mesh-less discretization of continuum; avoiding thus the expensive remeshing required by the finite element models. The proposed model can accommodate both linear and nonlinear material characteristics. The needle-deformable tissue interaction is modeled through fundamental boundaries. The forces applied by the needle on the tissue are divided in tangent forces and constraint forces. The constraint forces are adaptively computed such that the material is properly constrained by the needle. The implementation is accelerated using NVidia CUDA. We present detailed analysis of the execution timing in both serial and parallel case. The proposed needle insertion model was integrated in a custom software that loads DICOM images, generate the deformable model, and can simulate different insertion strategies.

  3. The New-Generation Technology for Making Petroleum Needle Coke

    Shi Changzhi; Shen Haiping; Long Jun; Xie Changjiang

    2003-01-01

    The current technology for producing the petroleum needle coke is apt to cause overflow of feedstock from the coke drums, instability in operation of coking unit, low mechanical strength of petroleum coke, and high percentage of coke powder, leading to difficulties in improving the overall quality of needle coke. Therefore, we have developed a new technology for producing the needle coke,featuring the manipulation of temperature range in a narrow scale at high pressure coupled with feedstock alternations. This new kind of technology has been successfully applied in a 60kt/a commercial coking unit. Provided that demand for the feedstock quality is satisfied, petroleum needle coke meeting the international quality standard can be manufactured using RIPP's technology for producing petroleum needle coke.

  4. Comparative assessment of the sensitivity of localized surface plasmon resonance transducers and interference-based Fabry-Perot transducers

    Localized surface plasmon resonance (LSPR) transducers have been widely investigated for use in sensing applications. An alternative approach based on interference from thin films (Fabry-Perot interferometers) has been previously advanced, offering a rather high sensitivity. Both methods involve easily produced substrates and simple optical setups. Here, the sensitivity offered by typical transducers of the two kinds in a usual sensing scenario is compared quantitatively, using experimental and simulated data, and their respective advantages are discussed. To facilitate the comparison a simple sensitivity parameter is proposed. It is concluded that LSPR transducers offer superior sensitivity for analytes and recognition interfaces of small dimensions (up to several nanometers), especially in a wet environment, while the interference transducers become advantageous for thicker layers in dry conditions. For LSPR transducers, significantly higher sensitivity is obtained by using reflection, rather than transmission, measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Comparative assessment of the sensitivity of localized surface plasmon resonance transducers and interference-based Fabry-Perot transducers

    Kedem, O.; Vaskevich, A.; Rubinstein, I. [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2012-11-15

    Localized surface plasmon resonance (LSPR) transducers have been widely investigated for use in sensing applications. An alternative approach based on interference from thin films (Fabry-Perot interferometers) has been previously advanced, offering a rather high sensitivity. Both methods involve easily produced substrates and simple optical setups. Here, the sensitivity offered by typical transducers of the two kinds in a usual sensing scenario is compared quantitatively, using experimental and simulated data, and their respective advantages are discussed. To facilitate the comparison a simple sensitivity parameter is proposed. It is concluded that LSPR transducers offer superior sensitivity for analytes and recognition interfaces of small dimensions (up to several nanometers), especially in a wet environment, while the interference transducers become advantageous for thicker layers in dry conditions. For LSPR transducers, significantly higher sensitivity is obtained by using reflection, rather than transmission, measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Evaluation of vascular puncture needles with specific modifications for enhanced ultrasound visibility: In vitro study

    Nobuyuki Kawai

    2012-01-01

    Full Text Available AIM: To determine which modification to a vascular puncture needle results in increased visualization during ultrasound (US-guided vascular puncture. METHODS: We evaluated US images of a phantom made of degassed gelatin and each of the following four modified versions of a commercially available vascular puncture needle (18 G: re-cut needle, dimple needle, rough-surface needle (rough over the sections of needle located 3-6 mm from the tip, and a needle with four side holes (side holes covered by the sheath. An unmodified commercially available puncture needle was used as a control. Five interventional radiologists evaluated image quality according to the following classification grade: I, invisible; II, poor; III, moderate; IV, good; V, excellent. RESULTS: The highest score for needle visualization was obtained for the needle with four side holes. The re-cut needle scored the same as the control. Multiple comparisons were conducted using overall evaluation scores among the commercially available needle, dimple needle, rough-surface needle (3-6 mm, and the needle with four side holes. A significantly higher score was obtained for the needle with four side holes (P < 0.05/6. CONCLUSION: The needle with four side holes was prominently visualized and gained a significantly higher score (compared with the other needles in a phantom evaluation.

  7. Experimental study of needle-tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics.

    Jiang, Shan; Li, Pan; Yu, Yan; Liu, Jun; Yang, Zhiyong

    2014-10-17

    A thorough understanding of needle-tissue interaction mechanics is necessary to optimize needle design, achieve robotically needle steering, and establish surgical simulation system. It is obvious that the interaction is influenced by numerous variable parameters, which are divided into three categories: needle geometries, insertion methods, and tissue characteristics. A series of experiments are performed to explore the effect of influence factors (material samples n=5 for each factor) on the insertion force. Data were collected from different biological tissues and a special tissue-equivalent phantom with similar mechanical properties, using a 1-DOF mechanical testing system instrumented with a 6-DOF force/torque (F/T) sensor. The experimental results indicate that three basic phases (deformation, insertion, and extraction phase) are existent during needle penetration. Needle diameter (0.7-3.2mm), needle tip (blunt, diamond, conical, and beveled) and bevel angle (10-85°) are turned out to have a great influence on insertion force, so do the insertion velocity (0.5-10mm/s), drive mode (robot-assisted and hand-held), and the insertion process (interrupted and continuous). Different tissues such as skin, muscle, fat, liver capsule and vessel are proved to generate various force cures, which can contribute to the judgement of the needle position and provide efficient insertion strategy. PMID:25169657

  8. Miniature, high efficiency transducers for use in ultrasonic flow meters

    Saikia, Meghna

    This thesis is concerned with the development of a new type of miniature, high efficiency transducer for use in ultrasonic flow meters. The proposed transducer consists of a thin plate of a suitable piezoelectric material on which an inter-digital transducer is fabricated for the generation and detection of plate acoustic waves. When immersed in a fluid medium, this device can convert energy from plate acoustic waves (PAWs) into bulk acoustic waves (BAWs) and vice versa. It is shown that this mode coupling principle can be used to realize efficient transducers for use in ultrasonic flow meters. This transducer can be mounted flush with the walls of the pipe through which fluid is flowing, resulting in minimal disturbance of fluid flow. A prototype flow cell using these transducers has been designed and fabricated. The characteristics of this device have been measured over water flow rates varying from 0 to 7.5 liters per minute and found to be in good agreement with theory. Another attractive property of the new transducers is that they can be used to realize remotely read, passive, wireless flow meters. Details of methods that can be used to develop this wireless capability are described. The research carried out in this thesis has applications in several other areas such as ultrasonic nondestructive evaluation (NDE), noncontact or air coupled ultrasonics, and for developing wireless capability in a variety of other acoustic wave sensors.

  9. Flexible ultrasonic transducers for structural health monitoring

    Flexible ultrasonic transducers (FUTs) which have on-site installation capability are presented for non-destructive evaluation (NDE) and structural health monitoring (SHM) purposes. These FUTs typically consist of a 70 μm thick piezoelectric lead-zirconate-titanate (PZT) composite (PZT-c) coated by a sol-gel spray technique on a 75 μm thick titanium (Ti) membrane. Such an FUT was glued onto a steel pipe of 101 mm in diameter and 4.5 mm in wall thickness and heated at up to 200oC with the glue serving as a high temperature ultrasonic couplant. The pipe thickness measurement accuracy at 200oC is estimated to be 13 μm. FUTs were also glued onto the end edge of a 2 mm thick aluminum (Al) plate to generate and receive predominantly shear-horizontal (SH) plate acoustic waves (PAWs) to detect simulated line defects at temperatures of up to 100oC. FUTs, glued onto a graphite/epoxy (Gr/Ep) composite plate, were also used for the detection of an artificial disbond. An induction type non-contact method for the evaluation of Al plates and Gr/Ep composites using FUTs is also demonstrated. (author)

  10. Ozone production of hollow-needle-to-mesh negative corona discharge enhanced by dielectric tube on the needle electrode

    For the hollow-needle-to-mesh negative corona discharge in air, we studied the effect of placing the dielectric tube on the needle electrode and the effect of various positions of the end of this tube with respect to the tip of the needle electrode on the concentration of ozone produced by the discharge, the ozone production yield and the discharge V–A characteristics. We found that the placement of the dielectric tube on the needle electrode with a suitable position of this tube end with respect to the tip of the needle electrode for a particular discharge power led to a more than fourfold increase in the concentration of ozone produced by the discharge and also, for a constant airflow, the ozone production yield. (fast track communication)