WorldWideScience

Sample records for 4-methylnitrosamino-1-3-pyridyl-1-butanone induce cyclooxygenase-2

  1. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  2. Effects of antibodies induced by a conjugate vaccine on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone absorptive transport, metabolism, and proliferation of human lung cells.

    De Buck, Stefan S; Schellenberger, Mario T; Ensch, Corinne; Muller, Claude P

    2010-08-01

    One of the most abundant and potent lung carcinogen is the nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The monoclonal antibody P9D5 induced with a NNK-conjugate vaccine was used to investigate the ability of NNK-specific antibodies to modulate NNK-induced adverse effects as well as its absorptive transport and metabolism in two lung cancer cell lines (Calu-3 and NCI-H82). Transport experiments in Calu-3 cells with a 50-fold molar excess of apical P9D5 increased the recovery of coadministered apical NNK, with a concomitant decrease in NNK transepithelial transport of more than 50% compared to controls. In contrast, basolateral P9D5 did neither influence transepithelial transport of NNK nor its disappearance from the apical compartment. Calu-3 cells were also found to reduce NNK to NNAL and a 65-fold molar excess of NNK-specific antibody inhibited this metabolic conversion by 46 and 54% compared to irrelevant control antibody after 48 and 72 hr, respectively. The biological relevance of NNK redistribution by antibody was demonstrated by reversion of NNK-induced cell proliferation in NCI-H82 cells. Repartitioning of tobacco carcinogens by antibody may reduce their early effective peak concentrations in susceptible target organs and thus relieve overloaded local DNA repair mechanisms and diminish carcinogen-induced cell proliferation. These in vitro data therefore suggest that a prophylactic antibody response may be associated with a reduced risk of cancer. PMID:19960439

  3. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  4. The regulation of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone-induced lung tumor promotion by estradiol in female A/J mice.

    Rong-Jane Chen

    Full Text Available Epidemiological studies indicate that women are at a higher risk developing lung cancer than men are. It is suggested that estrogen is one of the most important factors in lung cancer development in females. Additionally, cigarette smoke, and environmental pollutants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, may play salient roles in female lung carcinogenesis. However, the mechanisms responsible for the interaction of these factors in the promotion of lung cancer are still poorly understood. The present study was designed to explore two ideas: first, the synergistic lung tumorigenic effects of 4-(methylnitrosamino-1-(3-pyridyl-butanol (NNK combined with TCDD, 17β-estradiol (E2 or both through a long-term treatment experiment, and second, to identify early changes in the inflammatory and signaling pathways through short-term treatment experiments. The results indicate that A/J mice given E2 had strong effects in potentiating NNK-induced activation of MAPK signaling, NFκB, and COX-2 expression. In the long-term exposure model, E2 had a strong tumor promoting effect, whereas TCDD antagonized this effect in A/J mice. We conclude that treatment with NNK combined with either E2 or TCDD induces lung carcinogenesis and the promotion effects could be correlated with lung inflammation. E2 was shown to potentiate NNK-induced inflammation, cell proliferation, thereby leading to lung tumorigenesis.

  5. Synergism between 2,3,7,8-tetrachlorodibenzo-p-dioxin and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone on lung tumor incidence in mice

    Wang Yingjan [Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan (China); Chang Han [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Kuo, Yu-Chun; Wang, Chien-Kai [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan (China); Siao, Shih-He [Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan (China); Chang, Louis W. [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan (China); Lin Pinpin, E-mail: pplin@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan (China)

    2011-02-15

    Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen, TCDD only induced oxidative DNA damages. In our present study, we combined TCDD with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to investigate their tumorigenic effects on lung tumor formation in A/J mice. Application of NNK at a tumorigenic dose (2 mg/mouse) induced lung adenoma in both male and female A/J mice. Neither application of NNK at a non-tumorigenic dose (1 mg/mouse) nor repeated application of TCDD alone increased tumor incidence. Following the single injection of NNK at a non-tumorigenic dose (1 mg/mouse), repeated application of TCDD significantly increased the lung tumor incidence in female, but not in male, A/J mice 24 weeks later. Utilizing the real-time RT-PCR array, we found that P16 mRNA was significantly reduced in female lung, but not male lung, of NNK/TCDD co-treated A/J mice. With immunohistochemical staining, we confirmed that nuclear P16 protein was reduced in the lungs of NNK/TCDD co-treated female mice. These data suggest that P16 reduction at least partially contributed to synergistic effects of TCDD in lung tumorigenesis.

  6. Synergism between 2,3,7,8-tetrachlorodibenzo-p-dioxin and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone on lung tumor incidence in mice

    Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen, TCDD only induced oxidative DNA damages. In our present study, we combined TCDD with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to investigate their tumorigenic effects on lung tumor formation in A/J mice. Application of NNK at a tumorigenic dose (2 mg/mouse) induced lung adenoma in both male and female A/J mice. Neither application of NNK at a non-tumorigenic dose (1 mg/mouse) nor repeated application of TCDD alone increased tumor incidence. Following the single injection of NNK at a non-tumorigenic dose (1 mg/mouse), repeated application of TCDD significantly increased the lung tumor incidence in female, but not in male, A/J mice 24 weeks later. Utilizing the real-time RT-PCR array, we found that P16 mRNA was significantly reduced in female lung, but not male lung, of NNK/TCDD co-treated A/J mice. With immunohistochemical staining, we confirmed that nuclear P16 protein was reduced in the lungs of NNK/TCDD co-treated female mice. These data suggest that P16 reduction at least partially contributed to synergistic effects of TCDD in lung tumorigenesis.

  7. Tissue distribution of the tobacco-specific carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and its metabolites in F344 rats

    The tissue distribution of the tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in the F344 rat was studied by whole-body autoradiography and high-performance liquid chromatography. The results of the wholebody autoradiography experiments indicate that the substance is able to freely cross biological membranes and reach all tissues of the body. A high level of tissue-bound metabolites occurred in the mucosa of the ethmoturbinates, in the lung, and the liver, which are the targets for the carcinogenicity of NNK in F344 rats. However, tissue-bound radioactivity was also present in non-target tissues such as the lateral nasal gland(Steno's gland), the tracheal mucosa, and the mucosa of the nasopharyngeal duct. A high level of unbound radioactivity occurred in the preputial gland, submaxillary and adrenal glands, and the urinary and gastrointestinal systems. High localization of unbound radioactivity was observed in the stomach lumen not only after p.o. but also after i.v. administration of NNK. Analysis of extracts of the stomach contents by high-performance liquid chromatography indicated that, due to their basicity, NNK and its metabolites were trapped in the gastric juice and later reabsorbed from the intestinal tract. Analysis of unbound metabolites in various tissues and in the urine after i.v. or p.o. administration of [carbonyl-14C]NNK indicated metabolism and excretion of products resulting from alpha-carbon hydroxylation, carbonyl reduction, and pyridine N-oxidation of NNK. In vitro autoradiography experiments showed that NNK is metabolized in the mucosa of the ethmoturbinates, the lung, and the liver, suggesting that the tumors are induced by metabolites formed locally in the target tissues. In the lung, the labeling was higher in the bronchial tree than in the lung parenchyma

  8. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays†

    Krishnan, Sadagopan; Hvastkovs, Eli G.; Bajrami, Besnik; Schenkman, John B.; Rusling, James F.

    2008-01-01

    Electrochemiluminescent (ECL) arrays containing polymer ([Ru(bpy)2(PVP)10]2+, PVP = polyvinylpyridine), DNA, and selected enzymes were employed to elucidate cytochrome (cyt) P450 dependent metabolism of the tobacco specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Bioactivated NNK metabolites formed upon H2O2-enzymatic activation were captured as DNA adducts and detected simultaneously from 36 spot arrays by capturing and quantifying emitted ECL with an overhead CCD c...

  9. Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate

    The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC), on tumor progression. First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight) in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays. NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC group. (1) A single dose of 25 mg/kg body weight

  10. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays†

    Krishnan, Sadagopan; Hvastkovs, Eli G.; Bajrami, Besnik; Schenkman, John B.; Rusling, James F.

    2012-01-01

    Electrochemiluminescent (ECL) arrays containing polymer ([Ru(bpy)2(PVP)10]2+, PVP = polyvinylpyridine), DNA, and selected enzymes were employed to elucidate cytochrome (cyt) P450 dependent metabolism of the tobacco specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Bioactivated NNK metabolites formed upon H2O2-enzymatic activation were captured as DNA adducts and detected simultaneously from 36 spot arrays by capturing and quantifying emitted ECL with an overhead CCD camera. Increased ECL emission was dependent on NNK exposure time. Of the enzymes tested, the activity toward NNK bioactivation was cyt P450 1A2 > 2E1 > 1B1 ≈ chloroperoxidase (CPO) > myoglobin (Mb) in accordance with reported in vivo studies. Cyt P450/polyion films were also immobilized on 500 nm diameter silica nanospheres for product analysis by LC-MS. Analysis of the nanosphere film reaction media provided ECL array validation and quantitation of the bioactivated NNK hydrolysis product 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) confirming production of reactive metabolites in the films. Chemical screening in this fashion allows rapid clarification of enzymes responsible for genotoxic activation as well as offering insight into cyt P450-related toxicity and mechanisms. PMID:19156262

  11. Facile Synthesis of CeO2-LaFeO3 Perovskite Composite and Its Application for 4-(Methylnitrosamino-1-(3-Pyridyl-1-Butanone (NNK Degradation

    Kaixuan Wang

    2016-04-01

    Full Text Available A facile and environmentally friendly surface-ion adsorption method using CeCO3OH@C as template was demonstrated to synthesize CeO2-LaFeO3 perovskite composite material. The obtained composite was characterized by X-ray diffraction (XRD, fourier transform infrared spectra (FT-IR, field-emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, thermo-gravimetric analysis and differential scanning calorimetry (TG-DSC, N2 adsorption/desorption isotherms and X-ray photoelectron spectra (XPS measurements. The catalytic degradation of nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK was tested to evaluate catalytic activity of the CeO2-LaFeO3 composite. Much better activity was observed for the CeO2-LaFeO3 composite comparing with CeO2 and LaFeO3. These results suggested that perovskite composite materials are a promising candidate for the degradation of tobacco-specific nitrosamines (TSNAs.

  12. Analysis of Pyridyloxobutyl and Pyridylhydroxybutyl DNA Adducts in Extra-hepatic Tissues of F344 Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol

    Zhang, Siyi; Wang, Mingyao; Villalta, Peter W.; Lindgren, Bruce R.; Upadhyaya, Pramod; Lao, Yanbin; Hecht, Stephen S.

    2009-01-01

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) are potent pulmonary carcinogens in rats. NNK and NNAL require metabolic activation to express their carcinogenicity. Cytochrome P450-catalyzed α-hydroxylation at the methyl position of NNK or NNAL generates reactive intermediates, which alkylate DNA to form pyridyloxobutyl (POB)-DNA adducts or pyridylhydroxybutyl (PHB)-DNA adducts. NNK ...

  13. Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    Srinivasan, Padmanabhan; Thrower, Edwin C; Gorelick, Fred S; Said, Hamid M

    2016-05-15

    Thiamin is essential for normal metabolism in pancreatic acinar cells (PAC) and is obtained from their microenvironment through specific plasma-membrane transporters, converted to thiamin pyrophosphate (TPP) in the cytoplasm, followed by uptake of TPP by mitochondria through the mitochondrial TPP (MTPP) transporter (MTPPT; product of SLC25A19 gene). TPP is essential for normal mitochondrial function. We examined the effect of long-term/chronic exposure of PAC in vitro (pancreatic acinar 266-6 cells) and in vivo (wild-type or transgenic mice carrying the SLC25A19 promoter) of the cigarette smoke toxin, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), on the MTPP uptake process. Our in vitro and in vivo findings demonstrate that NNK negatively affects MTPP uptake and reduced expression of MTPPT protein, MTPPT mRNA, and heterogenous nuclear RNA, as well as SLC25A19 promoter activity. The effect of NNK on Slc25a19 transcription was neither mediated by changes in expression of transcriptional factor NFY-1 (known to drive SLC25A19 transcription), nor due to changes in methylation profile of the Slc25a19 promoter. Rather, it appears to be due to changes in histone modifications that involve significant decreases in histone H3K4-trimethylation and H3K9-acetylation (activation markers). The effect of NNK on MTPPT function is mediated through the nonneuronal α7-nicotinic acetylcholine receptor (α7-nAChR), as indicated by both in vitro (using the nAChR antagonist mecamylamine) and in vivo (using an α7-nAchR(-/-) mouse model) studies. These findings demonstrate that chronic exposure of PAC to NNK negatively impacts PAC MTPP uptake. This effect appears to be exerted at the level of Slc25a19 transcription, involve epigenetic mechanism(s), and is mediated through the α7-nAchR. PMID:26999808

  14. Enhancements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism and carcinogenic risk via NNK/arsenic interaction

    Epidemiological studies indicated an enhancement of cigarette smoke-induced carcinogenicity, including hepatocellular carcinoma, by arsenic. We believe that arsenic will enhance the expression of hepatic CYP2A enzyme and NNK metabolism (a cigarette smoke component), thus its metabolites, and carcinogenic DNA adducts. Male ICR mice were exposed to NNK (0.5 mg/mouse) and sodium arsenite (0, 10, or 20 mg/kg) daily via gavaging for 10 days and their urine was collected at day 10 for NNK metabolite analysis. Liver samples were also obtained for CYP2A enzyme and DNA adducts evaluations. Both the cyp2a4/5 mRNA levels and the CYP2A enzyme activity were significantly elevated in arsenic-treated mice liver. Furthermore, urinary NNK metabolites in NNK/arsenic co-treated mice also increased compared to those treated with NNK alone. Concomitantly, DNA adducts (N7-methylguanine and O6-methylguanine) were significantly elevated in the livers of mice co-treated with NNK and arsenic. Our findings provide clear evidence that arsenic increased NNK metabolism by up-regulation of CYP2A expression and activity leading to an increased NNK metabolism and DNA adducts (N7-methylguanine and O6-methylguanine). These findings suggest that in the presence of arsenic, NNK could induce greater DNA adducts formation in hepatic tissues resulting in higher carcinogenic potential

  15. NNK-Induced Lung Tumors: A Review of Animal Model

    Hua-Chuan Zheng; Yasuo Takano

    2011-01-01

    The incidence of lung adenocarcinoma has been remarkably increasing in recent years due to the introduction of filter cigarettes and secondary-hand smoking because the people are more exposed to higher amounts of nitrogen oxides, especially 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK), which is widely applied in animal model of lung tumors. In NNK-induced lung tumors, genetic mutation, chromosome instability, gene methylation, and activation of oncogenes have been found so as to disrup...

  16. Curcumin down regulates smokeless tobacco-induced NF-κB activation and COX-2 expression in human oral premalignant and cancer cells

    Smokeless tobacco (ST) consumption is a major cause of oral cancer in South East Asia including India. Recently, we showed that exposure to smokeless tobacco extract (STE) (khaini) results in increased expression and activation of nuclear factor-κB (NF-κB) and its downstream target cyclooxygenase-2 (COX-2) in human oral cell systems in vitro. The present study was designed to test the hypothesis that curcumin may inhibit the activation of NF-κB in ST exposed oral premalignant and cancer cells. Exposure of oral premalignant and cancer cells to curcumin resulted in significant decrease in cell viability and induced apoptosis. STE-induced nuclear translocation and DNA-binding activity of NF-κB were inhibited in curcumin pretreated oral premalignant and cancer cells in vitro. Curcumin treatment led to decreased expression of NF-κB and COX-2. The tobacco specific nitrosamine, 4-(methylnitrosamino-)-1-(3-pyridyl)-1-butanone (NNK), is one of the carcinogenic components of STE (khaini). We demonstrate that curcumin pretreatment abrogated NNK-induced activation of NF-κB and COX-2 expression, suggesting that NNK is one of the factors in STE (khaini) modulated by curcumin. In conclusion, our findings demonstrate for the first time that curcumin downregulates STE (khaini) or NNK-induced NF-κB and COX-2 in oral premalignant and cancer cells in vitro

  17. Evaluation of tobacco specific nitrosamines exposure by quantification of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human hair of non-smokers.

    Pérez-Ortuño, Raúl; Martínez-Sánchez, Jose M; Fu, Marcela; Fernández, Esteve; Pascual, José A

    2016-01-01

    Chronic exposure to specific carcinogens present in secondhand smoke has been associated with different types of cancers. Hair is an ideal matrix to develop a proper biomarker as it absorbs substances in circulation and allows measuring their average concentration over long periods of time. A method was developed for the simultaneous quantification of nicotine, cotinine, NNN, NNK and NNAL in 20 mg human hair samples. Concentrations were significantly different depending on the declared exposure. This study shows for the first time that NNK is present in hair samples from non-smokers in concentrations much higher than any other tobacco specific nitrosamine. NNN could also be detected in samples from the most exposed non-smokers while, as previously reported, NNAL was undetectable. NNK correlates well with nicotine and cotinine (rsp = 0.774 and rsp = 0.792 respectively, p secondhand smoke. PMID:27112239

  18. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  19. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway

    Zhang Dong

    2011-11-01

    Full Text Available Abstract Background Smoking and stress, pancreatic cancer (PanCa risk factors, stimulate nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. Results The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. Conclusions The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  20. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  1. Comparison of hepatocarcinogen-induced gene expression profiles in conventional primary rat hepatocytes with in vivo rat liver.

    Doktorova, Tatyana Y; Ellinger-Ziegelbauer, Heidrun; Vinken, Mathieu; Vanhaecke, Tamara; van Delft, Joost; Kleinjans, Jos; Ahr, Hans-Juergen; Rogiers, Vera

    2012-09-01

    At present, substantial efforts are focused on the development of in vitro assays coupled with "omics" technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the observed in vitro findings. In the current study, hepatocarcinogen-induced gene expression profiles generated after the exposure of conventional cultures of primary rat hepatocytes to three non-genotoxic carcinogens (methapyrilene hydrochloride, piperonyl butoxide, and Wy-14643), three genotoxic carcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-nitrofluorene), and two non-carcinogens (nifedipine and clonidine) are compared with previously obtained in vivo data after oral administration for up to 14 days of the same hepatocarcinogens to rats. In addition to the comparison of deregulated genes and functions per compound between in vivo and in vitro models, the major discriminating cellular pathways found in vivo in livers of exposed rats were examined for deregulation in vitro. Further, in vivo-derived gene signatures for the identification of genotoxic versus non-genotoxic carcinogens are used to classify in vitro-tested hepatocarcinogens and non-carcinogens. In the primary hepatocyte cultures, two out of the three tested genotoxic carcinogens mimicked the in vivo-relevant DNA damage response and were correctly assessed. Exposure to the non-genotoxic hepatocarcinogens, however, triggered a relatively weak response in the in vitro system, with no clear similarities to in vivo. This study contributes to the further optimization of toxicogenomics predictive tools when applied in in vitro settings. PMID:22484513

  2. Chemopreventive Effects of the p53-Modulating Agents CP-31398 and Prima-1 in Tobacco Carcinogen-Induced Lung Tumorigenesis in A/J Mice

    Chinthalapally V. Rao

    2013-09-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group or 34 weeks (15 mice/group to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001 lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001 lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation.

  3. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver

    Application of recently developed gene expression techniques using microarrays in toxicological studies (toxicogenomics) facilitate the interpretation of a toxic compound's mode of action and may also allow the prediction of selected toxic effects based on gene expression changes. In order to test this hypothesis, we investigated whether carcinogens at doses known to induce liver tumors in the 2-year rat bioassay deregulate characteristic sets of genes in a short term in vivo study and whether these deregulated genes represent defined biological pathways. Male Wistar rats were dosed with the four nongenotoxic hepatocarcinogens methapyrilene (MPy, 60 mg/kg/day), diethylstilbestrol (DES, 10 mg/kg/day), Wy-14643 (Wy, 60 mg/kg/day), and piperonylbutoxide (PBO, 1200 mg/kg/day). After 1, 3, 7, and 14 days, the livers were taken for histopathological evaluation and for analysis of the gene expression profiles on Affymetrix RGU34A arrays. The expression profile of the four nongenotoxic carcinogens were compared to the profiles of the four genotoxic carcinogens 2-nitrofluorene (2-NF), dimethylnitrosamine (DMN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and aflatoxin B1 (AB1) from a similar study reported previously. By using statistical and clustering tools characteristically deregulated genes were extracted and functionally classified. Distinct cellular pathways were affected by the nongenotoxic carcinogens compared to the genotoxic carcinogens which at least partly correlated with the two-stage model of carcinogenesis. Characteristic to genotoxic carcinogens were a DNA damage response and the activation of proliferative and survival signaling. Nongenotoxic carcinogens showed responses to oxidative DNA or protein damage, as well as cell cycle progression and signs of regeneration. Many of the gene alterations found with the nongenotoxic carcinogens imply compound-specific mechanisms. Although neither a single gene nor a single pathway will be sufficient to

  4. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver

    Ellinger-Ziegelbauer, Heidrun [Bayer Healthcare AG, Department of Molecular and Genetic Toxicology, Aprather Weg 18a, 42096 Wuppertal (Germany)]. E-mail: heidrun.ellinger-ziegelbauer@bayerhealthcare.com; Stuart, Barry [Bayer Crop Science, Department of Toxicology, Stilwell, KS (United States); Wahle, Brad [Bayer Crop Science, Department of Toxicology, Stilwell, KS (United States); Bomann, Werner [Bayer Crop Science, Department of Toxicology, Stilwell, KS (United States); Ahr, Hans Juergen [Bayer Healthcare AG, Department of Molecular and Genetic Toxicology, Aprather Weg 18a, 42096 Wuppertal (Germany)

    2005-08-04

    Application of recently developed gene expression techniques using microarrays in toxicological studies (toxicogenomics) facilitate the interpretation of a toxic compound's mode of action and may also allow the prediction of selected toxic effects based on gene expression changes. In order to test this hypothesis, we investigated whether carcinogens at doses known to induce liver tumors in the 2-year rat bioassay deregulate characteristic sets of genes in a short term in vivo study and whether these deregulated genes represent defined biological pathways. Male Wistar rats were dosed with the four nongenotoxic hepatocarcinogens methapyrilene (MPy, 60 mg/kg/day), diethylstilbestrol (DES, 10 mg/kg/day), Wy-14643 (Wy, 60 mg/kg/day), and piperonylbutoxide (PBO, 1200 mg/kg/day). After 1, 3, 7, and 14 days, the livers were taken for histopathological evaluation and for analysis of the gene expression profiles on Affymetrix RG{sub U}34A arrays. The expression profile of the four nongenotoxic carcinogens were compared to the profiles of the four genotoxic carcinogens 2-nitrofluorene (2-NF), dimethylnitrosamine (DMN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and aflatoxin B1 (AB1) from a similar study reported previously. By using statistical and clustering tools characteristically deregulated genes were extracted and functionally classified. Distinct cellular pathways were affected by the nongenotoxic carcinogens compared to the genotoxic carcinogens which at least partly correlated with the two-stage model of carcinogenesis. Characteristic to genotoxic carcinogens were a DNA damage response and the activation of proliferative and survival signaling. Nongenotoxic carcinogens showed responses to oxidative DNA or protein damage, as well as cell cycle progression and signs of regeneration. Many of the gene alterations found with the nongenotoxic carcinogens imply compound-specific mechanisms. Although neither a single gene nor a single pathway will be

  5. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  6. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss

    Akram Pourbakht

    2013-01-01

    Objective(s): Noise-induced hearing loss (NIHL) is the major cause of acquired hearing loss.  Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is a non- steroidal anti- inflammatory drug (NSAID) with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS) and cochlear damage caused by high level 4- kHz noise exposure to verify the differences with those pretreated with celecoxib. Materials and Methods: Ten male albin...

  7. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN

    Tobacco use is a major public health problem worldwide. Tobacco-related cancers cause millions of deaths annually. Although several tobacco agents play a role in the development of tumors, the potent effects of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are unique. Metabolically activated NNK and NNN induce deleterious mutations in oncogenes and tumor suppression genes by forming DNA adducts, which could be considered as tumor initiation. Meanwhile, the binding of NNK and NNN to the nicotinic acetylcholine receptor promotes tumor growth by enhancing and deregulating cell proliferation, survival, migration, and invasion, thereby creating a microenvironment for tumor growth. These two unique aspects of NNK and NNN synergistically induce cancers in tobacco-exposed individuals. This review will discuss various types of tobacco products and tobacco-related cancers, as well as the molecular mechanisms by which nitrosamines, such as NNK and NNN, induce cancer

  8. Novel effects of the cyclooxygenase-2-selective inhibitor NS-398 on IL-1β-induced cyclooxygenase-2 and IL-8 expression in human ovarian granulosa cells.

    Ou, Hui-Ling; Sun, David; Peng, Yen-Chun; Wu, Yuh-Lin

    2016-08-01

    Ovulation is a critical inflammation-like event that is central to ovarian physiology. IL-1β is an immediate early pro-inflammatory cytokine that regulates production of several other inflammatory mediators, such as cyclooxygenase 2 (COX)-2 and IL-8. NS-398 is a selective inhibitor of COX-2 bioactivity and thus this drug is able to mitigate the COX-2-mediated production of downstream prostaglandins and the subsequent inflammatory response. Here we have investigated the action of NS-398 using a human ovarian granulosa cell line, KGN, by exploring IL-1β-regulated COX-2 and IL-8 expression. First, NS-398, instead of reducing inflammation, appeared to further enhance IL-1β-mediated COX-2 and IL-8 production. Using selective inhibitors targeting various signaling molecules, MAPK and NF-κB pathways both seemed to be involved in the impact of NS-398 on IL-1β-induced COX-2 and IL-8 expression. NS-398 also promoted IL-1β-mediated NF-κB p65 nuclear translocation but had no effect on IL-1β-activated MAPK phosphorylation. Flow cytometry analysis demonstrated that NS-398, in combination with IL-1β, significantly enhanced cell cycle progression involving IL-8. Our findings demonstrate a clear pro-inflammatory function for NS-398 in the IL-1β-mediated inflammatory response of granulosa cells, at least in part, owing to its augmenting effect on the IL-1β-induced activation of NF-κB. PMID:27312705

  9. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss

    Akram Pourbakht

    2013-05-01

    Full Text Available Objective(s: Noise-induced hearing loss (NIHL is the major cause of acquired hearing loss.  Celecoxib, a cyclooxygenase-2 (COX-2 inhibitor, is a non- steroidal anti- inflammatory drug (NSAID with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS and cochlear damage caused by high level 4- kHz noise exposure to verify the differences with those pretreated with celecoxib. Materials and Methods: Ten male albino guinea pigs (300-350 g in weight were randomly allocated into two groups: the primal group was exposed to 4- kHz octave band noise at 102 dB SPL for 3 hrs (group 1, n=5;  the latter pretreated with 50 mg/ kg celecoxib for 3 days, then  exposed to noise (group 2, n=5.  Before exposure and one hr after noise exposure, threshold shifts were evaluated with auditory brainstem responses (ABR and finally the animals were euthanized for histological evaluation.  Results: Comparing the threshold shifts before/after noise exposure with those pretreated, we found out that TTS caused by noise exposure did not show significant mitigation by celecoxib.  By observing the organ of Corti at lower middle turn of cochlea in celecoxib pretreated group, considerable hair cell loss was discovered. Conclusion:The current study clearly confirmed that celecoxib had no attenuation against temporary noise-induced hearing loss.

  10. Inhibition of cyclooxygenase-2 by NS398 attenuates noise-induced hearing loss in mice

    Sun, Yu; Yu, Jintao; Lin, Xi; Tang, Wenxue

    2016-01-01

    Noise-induced hearing loss (NIHL) is an important occupational disorder. However, the molecular mechanisms underlying NIHL have not been fully clarified; therefore, the condition lacks effective therapeutic methods. Cyclooxygenase-2 (Cox-2) is an inducible enzyme involved in the synthesis of prostaglandins, and has been implicated in many pathophysiological events, such as oxidative stress and inflammation. In this study, we investigated the possible role of Cox-2 in the mechanisms of NIHL and the therapeutic effect of the Cox-2 inhibitor NS398 on NIHL using a mouse model. We demonstrated that Cox-2 is constitutively expressed in the mouse cochlea, and its expression could be dramatically up-regulated by high levels of noise exposure. Furthermore, we demonstrated that pre-treatment with the Cox-2 inhibitor NS398 could inhibit Cox-2 expression during noise overstimulation; and could attenuate noise-induced hearing loss and hair cell damage. Our results suggest that Cox-2 is involved in the pathogenesis of NIHL; and pharmacological inhibition of Cox-2 has considerable therapeutic potential in NIHL. PMID:26934825

  11. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia

    2006-01-01

    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  12. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  13. Modulation of Ionizing Radiation-Induced G2 Arrest by Cyclooxygenase-2 and its Inhibitor Celecoxib

    Purpose: Prolongation or attenuation of ionizing radiation (IR)-induced G2-M arrest in cyclooxygenase-2 (COX-2) overexpressing or celecoxib-treated cells, respectively, has been previously observed. To better understand the molecular mechanisms involved, we investigated the molecules involved in G2 checkpoint pathways after treatment with IR ± celecoxib. Methods and Materials: Various molecules in the G2 checkpoint pathways were investigated in HCT-116-Mock and -COX-2 cells. Western blot, reverse transcriptase polymerase chain reaction, confocal microscopy, and fluorescence activated cell sorter (FACS) analyses were performed to investigate whether expression and activity of the ataxia telangiectasia and rad3-related (ATR) could be modulated by COX-2 and its selective inhibitors. Results: COX-2 overexpression increased expression and activity of ATR after IR exposure. Celecoxib downregulated ATR in all tested cell lines independent of COX-2 expression, but downregulation was greater in COX-2 overexpressing cells after cells were irradiated. Celecoxib pretreatment before radiation caused strongly inhibited G2 arrest. Conclusions: COX-2 appears to prolong IR-induced G2 arrest by upregulating ATR. Celecoxib downregulated ATR preferentially in irradiated COX-2 overexpressing cells. Celecoxib may radiosensitize cancer cells by inhibiting G2 arrest through ATR downregulation.

  14. Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure.

    Min Zheng

    Full Text Available BACKGROUND: The paraventricular nucleus (PVN of the hypothalamus plays an important role in the progression of heart failure (HF. We investigated whether cyclooxygenase-2 (COX-2 inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS and renin-angiotensin system (RAS in rats with adriamycin-induced heart failure. METHODOLOGY/PRINCIPAL FINDING: Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg. On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW and lung to body weight (LW/BW ratios, heart rate (HR, left ventricular end-diastolic pressure (LVEDP, left ventricular peak systolic pressure (LVPSP and maximum rate of change in left ventricular pressure (LV±dp/dtmax were improved in HF+CLB rats. Angiotensin II (ANG II, norepinephrine (NE, COX-2 and glutamate (Glu in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. CONCLUSIONS: These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure.

  15. Cyclooxygenase 2 pathway and its therapeutic inhibition in superantigen-induced toxic shock.

    Rajagopalan, Govindarajan; Asmann, Yan W; Lytle, Anna K; Tilahun, Ashenafi Y; Theuer, Jayne E; Smart, Michele K; Patel, Robin; David, Chella S

    2008-12-01

    Bacterial superantigens are a family of exotoxins that are the most potent T-cell activators known. Because of their ability to induce strong immune activation, superantigens have been implicated in a variety of diseases ranging from self-limiting food poisoning to more severe toxic shock syndrome (TSS) and have the potential to be used as agents of bioterrorism. Nonetheless, the precise molecular mechanisms by which T-cell activation by superantigens lead to acute systemic inflammatory response, multiple organ dysfunction, and ultimately death are unclear. Inadequate understanding of the pathogenesis has resulted in lack of development of effective therapy for superantigen-induced TSS. To fill these deficiencies, we systematically dissected the molecular pathogenesis of superantigen-induced TSS using the humanized human leukocyte antigen-DR3 transgenic mouse model by microarray-based gene expression profiling. Splenic expression of prostaglandin-endoperoxide synthase 2 (PTGS-2; also called cyclooxygenase 2 or COX-2) gene was increased by several hundred folds shortly after systemic superantigen (staphylococcal enterotoxin B [SEB]) exposure. In addition, expressions of several genes associated with eicosanoid pathway were significantly modulated by SEB, as analyzed by dedicated software. Given the importance of the COX-2 pathway in inflammation, we examined whether therapeutic inhibition of COX-2 by a highly selective inhibitor, CAY10404, could be beneficial. Our studies showed that i.p. administration of CAY10404 (50 mg/kg) immediately after challenge with 10 microg of SEB was unable to inhibit SEB-induced in vivo cytokine/chemokine production or T-cell activation/proliferation and did not prevent superantigen-associated thymocyte apoptosis. PMID:18496243

  16. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model

  17. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  18. Selective cyclooxygenase-2 inhibitor ameliorates cholecystokinin-octapeptide-induced acute pancreatitis in rats

    Sang-Wan Seo; Won-Seok Jung; Tai-Guang Piao; Seung-Heon Hong; Ki-Jung Yun; Rae-Kil Park; Min-Kyo Shin; Ho-Joon Song; Sung-Joo Park

    2007-01-01

    AIM: To investigate the effect of selective Cyclooxygenase-2 (COX-2) inhibitor 4-[5-(4-Chloro-phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide (SC-236), on the cholecystokinin (CCK)-octapeptideinduced acute pancreatitis (AP) in rats.METHODS: Wistar rat weighing 240 g to 260 g were divided into three groups. (1) Normal DNISO treated group, (2) SC-236 at 4 mg/kg treated group; SC-236 systemically administered via the intravenous (i.v.) catheter, followed by 75 μg/kg CCK octapeptide subcutaneously three times, after 1,3 and 5 h. This whole procedure was repeated for 5 d. (3) Dimethyl sulfoxide (DMSO) treated group: an identical protocol was used in this group as in the SC-236 cohort (see 2. above). Repeated CCK octapeptide treatment resulted in a typical experimentally induced pancreatitis in the Wistar rats.RESULTS: SC-236 improved the severity of CCK-octapeptide-induced AP as measured by laboratory criteria [the pancreatic weight/body weight (p.w/ b.w) ratio, the level of serum amylase and lipase]. The SC-236 treated group showed minimal histologic evidence of pancreatitis and a significant reduction in myeloperoxidase activity. SC-236 also increased heat shock protein (HSP)-60 and HSP72 compared with the DMSO-treated group in the CCK-octapeptide-induced AP and also reduced the pancreatic levels of COX-2. Furthermore, SC-236 reduced proinflammatory cytokine synthesis and inhibited NF-κB activation compared with the DMSO-treated group in the CCK-octapeptide-induced AP.CONCLUSION: Our results suggested that COX-2 plays pivotal role in the development of AP and COX-2 inhibitors may play a beneficial role in preventing AP.

  19. Selective Cyclooxygenase-2 Inhibitor Prevents Cisplatin-induced Tumorigenesis in A/J Mice

    Okada,Toshiaki

    2012-06-01

    Full Text Available Cisplatin is used to treat lung cancer;however, it is also a known carcinogen. Cyclooxygenase-2 (COX-2 inhibitors have been shown to prevent carcinogen-induced experimental tumors. We investigated the effect of a COX-2 inhibitor, celecoxib, on cisplatin-induced lung tumors. One hundred twenty 4-week-old A/J mice were divided into 6 groups:group 1, no treatment;group 2, low-dose celecoxib (150mg/kg;group 3, high-dose celecoxib (1,500mg/kg;group 4, cisplatin alone;group 5, cisplatin plus low-dose celecoxib;and group 6, cisplatin plus high-dose celecoxib. Mice in groups 4-6 were administered cisplatin (1.62mg/kg, i.p. once a week for 10 weeks between 7 and 16 weeks of age. All mice were sacrificed at week 30. Tumor incidence was 15.8% in group 1, 25% in group 2, 26.3% in group 3, 60% in group 4, 50% in group 5, and 50% in group 6. Tumor multiplicity was 0.2, 0.3, 0.3, 1.3, 1.0, and 0.6 in groups 1-6, respectively. Tumor multiplicity in the cisplatin-treated mice was reduced by celecoxib treatment in a dose-dependent manner (p<0.05, group 4 vs. group 6. Celecoxib significantly reduced COX-2 expression in cisplatin-induced tumors (p<0.01, group 4 vs. group 6.

  20. Reversible suppression of cyclooxygenase 2 (COX-2 expression in vivo by inducible RNA interference.

    Anne K Zaiss

    Full Text Available Prostaglandin-endoperoxide synthase 2 (PTGS2, also known as cyclooxygenase 2 (COX-2, plays a critical role in many normal physiological functions and modulates a variety of pathological conditions. The ability to turn endogenous COX-2 on and off in a reversible fashion, at specific times and in specific cell types, would be a powerful tool in determining its role in many contexts. To achieve this goal, we took advantage of a recently developed RNA interference system in mice. An shRNA targeting the Cox2 mRNA 3'untranslated region was inserted into a microRNA expression cassette, under the control of a tetracycline response element (TRE promoter. Transgenic mice containing the COX-2-shRNA were crossed with mice encoding a CAG promoter-driven reverse tetracycline transactivator, which activates the TRE promoter in the presence of tetracycline/doxycycline. To facilitate testing the system, we generated a knockin reporter mouse in which the firefly luciferase gene replaces the Cox2 coding region. Cox2 promoter activation in cultured cells from triple transgenic mice containing the luciferase allele, the shRNA and the transactivator transgene resulted in robust luciferase and COX-2 expression that was reversibly down-regulated by doxycycline administration. In vivo, using a skin inflammation-model, both luciferase and COX-2 expression were inhibited over 80% in mice that received doxycycline in their diet, leading to a significant reduction of infiltrating leukocytes. In summary, using inducible RNA interference to target COX-2 expression, we demonstrate potent, reversible Cox2 gene silencing in vivo. This system should provide a valuable tool to analyze cell type-specific roles for COX-2.

  1. Progressive Metaplastic and Dysplastic Changes in Mouse Pancreas Induced by Cyclooxygenase-2 Overexpression

    Jennifer K.L. Colby

    2008-08-01

    Full Text Available Cyclooxygenase-2 (COX-2 overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2 in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas. Histologic evaluation revealed a chronic pancreatitis-like state characterized by acinar-to-ductal metaplasia and a well-vascularized fibroinflammatory stroma that develops by 3 months. By 6 to 8 months, strongly dysplastic features suggestive of pancreatic ductal adenocarcinoma emerge in the metaplastic ducts. Increased proliferation, cellular atypia, and loss of normal cell/tissue organization are typical features in transgenic pancreata. Alterations in biomarkers associated with human inflammatory and neoplastic pancreatic disease were detected using immunohistochemistry. The abnormal pancreatic phenotype can be completely prevented by maintaining mice on a diet containing celecoxib, a well-characterized COX-2 inhibitor. Despite the high degree of atypia, only limited evidence of invasion to adjacent tissues was observed, with no evidence of distant metastases. However, cell lines derived from spontaneous lesions are aggressively tumorigenic when injected into syngeneic or nude mice. The progressive nature of the metaplastic/dysplastic changes observed in this model make it a valuable tool for examining the transition from chronic inflammation to neoplasia.

  2. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl2 affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl2 (first dose 4.6 mg kg−1, subsequent doses 0.07 mg kg−1 day−1, 30 days) and cultured aortic VSMC stimulated with HgCl2 (0.05–5 μg/ml) were used. Treatment of rats with HgCl2 decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl2: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl2. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl2-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl2 exposure induces vascular remodeling. ► HgCl2 induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl2 induces MAPK activation, oxidative stress and COX-2 expression. ► Inhibition of

  3. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  4. Triptolide Inhibits Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in Human Colon Cancer and Leukemia Cells

    Xiangmin TONG; Shui ZHENG; Jie JIN; Lifen ZHU; Yinjun LOU; Hangping YAO

    2007-01-01

    Triptolide (TP), a traditional Chinese medicine, has been reported to be effective in the treatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines. This study investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia (K562), and elucidates the possible molecular mechanism involved. SW114 and K562 cells were treated with different doses of TP (0, 5, 10, 20, or 50 ng/ml). The cell viability was assessed by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation of both tumor cell lines in a dose-dependent manner. To further investigate its mechanisms, the products prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay (ELISA). Our data showed that TP strongly inhibited the production of NO and PGE2. Consistent with these results, the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulated both at the mRNA level and the protein expression level, as shown by real-time RT-PCR and Western blotting. These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activity could be involved in the antitumor mechanisms of TP.

  5. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate

    Xu, Xiao-Ming; Sansores-Garcia, Leticia; Chen, Xian-Ming; Matijevic-Aleksic, Nevenka; Du, Min; Kenneth K. Wu

    1999-01-01

    The pharmacological action of salicylate cannot be explained by its inhibition of cyclooxygenase (COX) activity. In this report, the effects of aspirin and sodium salicylate on COX-2 expressions in human umbilical vein endothelial cells and foreskin fibroblasts were evaluated. Aspirin and sodium salicylate at therapeutic concentrations equipotently blocked COX-2 mRNA and protein levels induced by interleukin-1β and phorbol 12-myristate 13-acetate. The suppressing effect was more pronounced in...

  6. Inhibition of cyclo-oxygenase-2 exacerbates ischaemia-induced acute myocardial dysfunction in the rabbit

    Rossoni, Giuseppe; Muscara, Marcelo N.; Cirino, Giuseppe; Wallace, John L

    2002-01-01

    The effects of treatment with a number of cyclo-oxygenase inhibitors, (celecoxib, meloxicam, DuP-697 and aspirin) on ischaemia-reperfusion-induced myocardial dysfunction were examined using an in vitro perfused rabbit heart model.Ischaemia resulted in myocardial dysfunction, as indicated by a significant increase in left ventricular end diastolic pressure and marked changes in coronary perfusion pressure and left ventricular developed pressure. In the post-ischaemic state, coronary perfusion ...

  7. Silkworm Thorn Stem Extract Targets RSK2 and Suppresses Solar UV-Induced Cyclooxygenase-2 Expression

    Jong-Eun Kim

    2015-10-01

    Full Text Available Excessive exposure to solar UV (sUV is associated with numerous human skin disorders, such as carcinogenesis, skin photoaging and skin inflammation. Silkworm Thorn (Cudraniatricuspidata, SW is a plant belonging to the Moraceae family and widely present throughout Korea, China, and Japan. Most parts of the tree (including the fruit, leaf, stem, root, and bark is consumable as a functional food or tea. In this study, we found that SW extract (SWE inhibited the elevated expression of sUV-induced cyclooxygenase (COX-2 levels in both HaCaT and JB6 cells. Levels of nuclear factor-κB and activator protein-1, two crucial transcription factors involved in COX-2 expression, were elevated by sUV treatment. Treatment with SWE abolished this activation. SWE also inhibited sUV-induced histone H3 phosphorylation. However, sUV-induced phosphorylation of Akt, c-Jun N-terminal kinase and p38 kinase remained unchanged in the presence of SWE. SWE inhibited RSK2 activity, and pull-down assays using SWE-Sepharose beads revealed that SWE binds directly with RSK2 in an ATP-competitive manner. These results suggest a potential for SWE to be developed as a cosmeceutical material and functional food constituent for the promotion of skin health.

  8. Reduced sulfur mustard-induced skin toxicity in cyclooxygenase-2 knockout and celecoxib-treated mice

    Sulfur mustard (SM), a potent vesicant and chemical warfare agent, induces tissue damage involving an inflammatory response, including vasodilatation, polymorphonuclear infiltration, production of inflammatory mediators, and cyclooxygenase activity. To evaluate the role of cyclooxygenase-1 and -2 (COX-1, COX-2) in sulfur mustard-induced skin toxicity, we applied the agent to the ears of wildtype (WT) and COX-1- and COX-2-deficient mice. In the latter, ear swelling 24 and 48 h after exposure was significantly reduced (P < 0.05) by 55% and 30%, respectively, compared to WT. Quantitative histopathology revealed no epidermal ulceration in COX-2-deficient mice but some degree of severity in WT. COX-2-deficient mice showed significant reductions (P < 0.05) in severity of epidermal necrosis (29%), acute inflammation (42%), and hemorrhage (25%), compared to the WT mice. COX-1 deficiency resulted in significant exacerbation (P < 0.05) in severity of some parameters, including increases of 4.6- and 1.2-fold in epidermal ulceration and epidermal necrosis, respectively, compared to WT. Postexposure treatment of normal male ICR mice with the selective COX-2 inhibitor celecoxib resulted in significant reductions of 27% (P < 0.05) and 28% (P < 0.01) in ear swelling at intervals of 40 and 60 min between exposure and treatment, respectively. Histopathological evaluation revealed significant reductions (P < 0.05) in subepidermal microblister formation (73%) and dermal necrosis (32%), compared to the control group. These findings may indicate that COX-2 participates in the early stages of sulfur mustard-induced acute skin toxicity and that COX-1 might exert some protective function against this chemical insult

  9. Expression of cyclooxygenase-2 in radiation-induced oral mucositis in rats

    Objective: To detect the mRNA and protein levels of COX-2 in the tissues with radiation- induced oral mucosa(ROM) in rats and explore the mechanism of COX-2 in ROM. Methods: The Sprague- Dawley (SD) rat model of ROM was established. Both sides of buccal mucosa were excised. The cDNA of COX- 2 was synthesized using the semi-quantitative RT-PCR. The Streptavidin-Biotin-Complex Method (SABC Method) was employed to determine the localization, intensity and distribution of COX-2 protein expression. Results: The SD rat model of ROM was established. The results of RT-PCR showed that mRNA of COX-2 could be expressed in the left buccal mucosa but rarely in the right buccal mucosa. Immunohistochemical analysis of COX-2 demonstrates that COX-2 protein can be expressed in the left side mucosa. Conclusions: The mRNA and protein of COX-2 can be expressed in the mucosa of ROM. The expressions of COX-2 have correlation with the severity of ROM. (authors)

  10. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1

  11. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Rong-Jane Chen

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  12. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer. PMID:15561779

  13. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia. PMID:18276135

  14. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm2) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser473) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  15. Leptin potentiates IFN-γ-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A.1

    Raso, Giuseppina Mattace; Pacilio, Maria; Esposito, Emanuela; Coppola, Anna; Di Carlo, Raffaele; Meli, Rosaria

    2002-01-01

    Leptin, a pleiotropic hormone believed to regulate body weight, has recently been associated with inflammatory states and immune activity. Here we have studied the effect of leptin on expression of IFN-γ-induced nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2), both prominent markers of macrophage activation, using the murine macrophage J774A.1 cell line. After 24 h of incubation, leptin (1–10 μg ml−1) potently synergized with IFN-γ (100 U ml−1) in nitric oxide (NO) release, evaluated as nitrite and nitrate (NOx), and prostaglandin E2 (PGE2) production in culture medium. The observed increase of NO and PGE2 was related to enhanced expression of the respective inducible enzyme isoforms, measured in mRNA and protein by RT–PCR and Western blot analysis, respectively. When cells were stimulated only with leptin, a weak induction of NO and PGE2 release and of the expression of related inducible enzymes was observed. Moreover IFN-γ increased the expression of the functional form of leptin receptor (Ob-Rb) and this effect was potentiated by leptin in a concentration-dependent manner. These data suggest that macrophages, among the peripheral immune cells, represent a target for leptin and confirm the relevance of this hormone in the pathophysiology of inflammation. PMID:12411410

  16. Acanthopanax koreanum roots inhibit the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW 264.7 macrophages

    Eun-Jin Yang

    2016-03-01

    Full Text Available Acanthopanax koreanum is a popular plant found on Jeju Island, Korea and is commonly used to prevent the side effects of consumption of alcoholic beverages. However, this plant has not been properly utilized as a medicinal material. In this study, we investigated the anti-inflammatory effects of the 70% ethanol extract of A. koreanum roots (AKR-E. The results indicated that the AKR-E (200 μg/mL inhibited the lipopolysaccharide (LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW 264.7 macrophages by 41.2% and 78.9%, respectively. These effects were accompanied by concentration-dependent decreases in the expression levels of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 proteins. Additionally, the AKR-E inhibited the expression of pro-inflammatory cytokines, including interleukin (IL-6 (22.7% and IL-1β (74%. These data showed that the AKR-E had protective effects against the induction of LPS-induced inflammation in RAW 264.7 macrophages.

  17. Cyclooxygenase-2 level and culture conditions influence NS398-induced apoptosis and caspase activation in lung cancer cells.

    Chang, H C; Weng, C F

    2001-01-01

    Cyclooxygenases (COXs) catalyze the synthesis of prostaglandins (PGs) from arachidonic acid. Overexpression of COX-2 is frequently found in human cancers and is suggested to play an important role in tumorigenesis. Recent studies indicated that COX-2 inhibitors exert potent anti-cancer effects on a number of cancers. Interestingly, some COX-2 inhibitors potently induce apoptosis, while other COX-2 inhibitors primarily induce growth inhibition. Therefore, there is a variability in the effects that different COX-2 inhibitors have on cancer cells. In this study, we demonstrated that induction of apoptosis of high COX-2-expressing A549 lung cancer cells by a specific COX-2 inhibitor NS398 was observed in cells cultured under serum-free condition. However, this drug induced G1 growth arrest rather than apoptosis in A549 cells maintained in 10% serum medium. Conversely, low COX-2-expressing H226 lung cancer cells were resistant to NS398-induced apoptosis under both serum-free and serum-containing conditions. Moreover, our results showed that NS398-induced apoptosis is associated with activation of caspase-3, a cysteine protease that plays a crucial role in the execution phase of apoptosis. These results suggest that the cytotoxic effect of COX-2 inhibitors on cancer cells may be influenced by extracellular environments and the anti-cancer action of these inhibitors in vivo needs careful evaluation. Additionally, a correlation between the level of COX-2 expression and the extent of apoptosis induced by COX-2 inhibitors was found. PMID:11605058

  18. Scutellaria baicalensis Alleviates Cantharidin-Induced Rat Hemorrhagic Cystitis through Inhibition of Cyclooxygenase-2 Overexpression

    Li-Chun Lin

    2012-05-01

    Full Text Available Cantharidin, an active component in mylabris, is used in traditional Chinese medicine (TCM to treat scabies and hepatoma, but accompanied by hemorrhagic cystitis. Evidence shows that cantharidin induces human bladder carcinoma cell death through COX-2 overexpression in vitro. In TCM, Scutellaria baicalensis is usually used to cure mylabris-induced hematuria. This work was undertaken to determine the mechanisms of cantharidin-induced rat hemorrhagic cystitis and explore the uroprotective effect of S. baicalensis. In vitro results showed cantharidin could induce cytotoxicity through prostaglandin (PGE2 overproduction of T24 cells. Boiling-water extract of S. baicalensis (SB-WE could significantly inhibit PGE2 production and COX-2 expression in lipo-polysaccharide-induced RAW 264.7 cells, indicating obvious anti-inflammatory abilities. In vivo results indicated that cantharidin caused rat hemorrhagic cystitis with hematuria via c-Fos and COX-2 overexpression. SB-WE was given orally to cantharidin-treated rats, whereby hematuria level, elevated PGE2 and COX-2 protein overexpression were significantly and dose-dependently inhibited by SB-WE. The anti-inflammatory components of SB-WE are baicalin and wogonin, whose contents were 200.95 ± 2.00 and 31.93 ± 0.26 μg/mg, respectively. In conclusion, cantharidin induces rat cystitis through c-Fos and COX-2 over-expression and S. baicalensis can prevent the resulting hematuria because of its anti-inflammatory effects.

  19. Dual inhibitory effects of furonaphthoquinone compound on enzyme activity and lipopolysaccharide-induced expression of cyclooxygenase-2 in macrophages

    2-Methyl-2-(2-methylpropenyl)-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (NFD-37) is a synthetic furonaphthoquinone compound. In the present study, the NFD-37 compound was found to inhibit prostaglandin (PG) E2 production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7. NFD-37 compound exhibited a preferred inhibition on enzyme activity of cyclooxygenase (COX)-2 over COX-1. Further, NFD-37 compound attenuated LPS-induced synthesis of both mRNA and protein of COX-2, and suppressed LPS-induced COX-2 promoter activity in the macrophages, indicating that the furonaphthoquinone compound could down-regulate LPS-induced COX-2 expression at the transcription level. Even though COX-2 promoter behaves as a sophisticated biosensor for host defense, nuclear factor (NF)-κB activation has been evidenced to play a major mechanism for LPS-induced COX-2 expression in macrophages. NFD-37 compound exhibited a dose-dependent inhibitory effect on LPS-induced phosphorylation of inhibitory κBα (IκBα) protein, and subsequently inhibited IκBα degradation, DNA binding activity of NF-κB complex as well as NF-κB transcriptional activity in macrophages RAW 264.7. In another experiment, NFD-37 compound inhibited both COX-2 promoter activity and GST-IκBα phosphorylation elicited by an expression vector encoding IκB kinase β. Taken together, NFD-37 compound inhibited enzyme activity of COX-2 but also suppressed COX-2 expression depending on NF-κB activation, and thus could provide an invaluable tool to investigate pharmacological potential in the excess PG-related disorders

  20. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo

  1. The cyclooxygenase-2 pathway via the PGE2 EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination

    Palumbo, Sara; Toscano, Christopher D.; Parente, Laura; Weigert, Roberto; Bosetti, Francesca

    2011-01-01

    Cyclooxygenases (COX)-1 and -2 are key enzymes required for the conversion of arachidonic acid (AA) to eicosanoids, potent mediators of inflammation. In patients with multiple sclerosis (MS), COX-2 derived prostaglandins (PGs) are elevated in the cerebrospinal fluid and COX-2 is upregulated in demyelinating plaques. However, it is not known whether COX-2 activity contributes to oligodendrocyte death. In cuprizone-induced demyelination, oligodendrocyte apoptosis and a concomitant increase in t...

  2. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells

    Guomin Niu; Songmei Yin; Shuangfeng Xie; Yiqing Li; Danian Nie; Liping Ma; Xiuju Wang; Yudan Wu

    2011-01-01

    Quercetin is one of the naturally occurring dietary flavo-nol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.

  3. Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells.

    Yamazaki, Ryuta; Kusunoki, Natsuko; Matsuzaki, Takeshi; Hashimoto, Shusuke; Kawai, Shinichi

    2002-11-01

    Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells. PMID:12417326

  4. Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat

    Muñoz Eduardo

    2005-01-01

    Full Text Available Abstract Background Previous studies suggest that the cyclooxygenase-2 (COX-2 inhibitor nimesulide has a remarkable protective effect against different types of brain injury including ischemia. Since there are no reports on the effects of nimesulide on permanent ischemic stroke and because most cases of human stroke are caused by permanent occlusion of cerebral arteries, the present study was conducted to assess the neuroprotective efficacy of nimesulide on the cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion (pMCAO in the rat. Methods Ischemia was induced by permanent occlusion of the middle cerebral artery in rats, via surgical insertion of a nylon filament into the internal carotid artery. Infarct volumes (cortical, subcortical and total and functional recovery, assessed by neurological score evaluation and rotarod performance test, were performed 24 h after pMCAO. In initial experiments, different doses of nimesulide (3, 6 and 12 mg/kg; i.p or vehicle were administered 30 min before pMCAO and again at 6, 12 and 18 h after stroke. In later experiments we investigated the therapeutic time window of protection of nimesulide by delaying its first administration 0.5–4 h after the ischemic insult. Results Repeated treatments with nimesulide dose-dependently reduced cortical, subcortical and total infarct volumes as well as the neurological deficits and motor impairment resulting from permanent ischemic stroke, but only the administration of the highest dose (12 mg/kg was able to significantly (P Conclusions These data show that nimesulide protects against permanent focal cerebral ischemia, even with a 2 h post-treatment delay. These findings have important implications for the therapeutic potential of using COX-2 inhibitors in the treatment of stroke.

  5. Aciculatin inhibits lipopolysaccharide-mediated inducible nitric oxide synthase and cyclooxygenase-2 expression via suppressing NF-κB and JNK/p38 MAPK activation pathways

    Chen Chien-Chih

    2011-05-01

    Full Text Available Abstract Objectives Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl-5-hydroxy-2-(4-hydroxyphenyl-7-methoxy-4H-chromen-4-one, one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS-activated macrophages. Methods We used nitrate and prostaglandin E2 (PGE2 assays to examine inhibitory effect of aciculatin on nitric oxide (NO and PGE2 levels in LPS-activated mouse RAW264.7 macrophages and further investigated the mechanisms of aciculatin suppressed LPS-mediated iNOS/COX-2 expression by western blot, RT-PCR, reporter gene assay and confocal microscope analysis. Results Aciculatin remarkably decreased the LPS (1 μg/mL-induced mRNA and protein expression of iNOS and COX-2 as well as their downstream products, NO and PGE2 respectively, in a concentration-dependent manner (1-10 μM. Such inhibition was found, via immunoblot analyses, reporter gene assays, and confocal microscope observations that aciculatin not only acts through significant suppression of LPS-induced NF-κB activation, an effect highly correlated with its inhibitory effect on LPS-induced IκB kinase (IKK activation, IκB degradation, NF-κB phosphorylation, nuclear translocation and binding of NF-κB to the κB motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of JNK/p38 mitogen-activated protein kinases (MAPKs. Conclusion Our results demonstrated that aciculatin exerts potent anti-inflammatory activity through its dual inhibitory effects on iNOS and COX-2 by regulating NF-κB and JNK/p38 MAPK pathways.

  6. Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: Evidence for the role of TNF-α and cyclooxygenase-2

    Steenport, Michel; Faisal Khan, K.M.; Du, Baoheng; Barnhard, Sarah E.; Dannenberg, Andrew J.; Falcone, Domenick J.

    2009-01-01

    MMP-9 (gelatinase B) participates in a variety of diverse physiologic and pathologic processes. We recently characterized a cyclooxygenase-2 (Cox-2)→PGE2→EP4 receptor axis that regulates macrophage MMP-9 expression. In the current studies, we determined whether MMPs, commonly found in inflamed and neoplastic tissues, regulate this prostanoid-EP receptor axis leading to enhanced MMP-9 expression. Results demonstrate that exposure of murine peritoneal macrophages and RAW264.7 macrophages to MMP...

  7. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis

    Shukla, Samriddhi; Sinha, Sonam; Khan, Sajid; Kumar, Sudhir; Singh, Kavita; Mitra, Kalyan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-01-01

    Lack of effective anti-metastatic drugs creates a major hurdle for metastatic lung cancer therapy. For successful lung cancer treatment, there is a strong need of newer therapeutics with metastasis-inhibitory potential. In the present study, we determined the anti-metastatic and anti-angiogenic potential of a natural plant triterpenoid, Cucurbitacin B (CuB) against non-small cell lung cancer (NSCLC) both in vitro and in vivo. CuB demonstrated a strong anti-migratory and anti-invasive ability against metastatic NSCLC at nanomolar concentrations. CuB also showed significant tumor angiogenesis-inhibitory effects as evidenced by the inhibition of migratory, invasive and tube-forming capacities of human umbilical vein endothelial cells. CuB-mediated inhibition of angiogenesis was validated by the inhibition of pre-existing vasculature in chick embryo chorio-allantoic membrane and matrigel plugs. Similarly, CuB inhibited the migratory behavior of TGF-β1-induced experimental EMT model. The CuB-mediated inhibition of metastasis and angiogenesis was attributable to the downregulation of Wnt/β-catenin signaling axis, validated by siRNA-knockdown of Wnt3 and Wnt3a. The CuB-mediated downregulation of Wnt/β-catenin signaling was also validated using 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis model in vivo. Collectively, our findings suggest that CuB inhibited the metastatic abilities of NSCLC through the inhibition of Wnt/β-catenin signaling axis. PMID:26905250

  8. Development of novel approach to diagnostic imaging of lung cancer with 18F-Nifene PET/CT using A/J Mice treated with NNK

    Galitovskiy V

    2013-04-01

    Full Text Available Development of novel methods of early diagnosis of lung cancer is one of the major tasks of contemporary clinical and experimental oncology. In this study, we utilized the tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung cancer in A/J mice as an animal model for development of a new imaging technique for early diagnosis of lung cancer. Lung cancer cells in A/J mice overexpress nicotinic acetylcholine receptors. Longitudinal CT scans were carried out over a period of 8 months after NNK treatment, followed by PET/CT scans with 18F-Nifene that binds to α4-made nicotinic receptors with high affinity. PET/CT scans of lungs were also obtained ex vivo. CT revealed the presence of lung nodules in 8-month NNK-treated mice, while control mice had no tumors. Imaging of live animals prior to necropsy allowed correlation of results of tumor load via PET/CT and histopathological findings. Significant amount of 18F-Nifene was seen in the lungs of NNK-treated mice, whereas lungs of control mice showed only minor uptake of 18F-Nifene. Quantitative analysis of the extent and amount of 18F-Nifene binding in lung in vivo and ex vivo demonstrated a higher tumor/nontumor ratio due to selective labeling of tumor nodules expressing abundant α4 nicotinic receptor subunits. For comparison, we performed PET/CT studies with 18F-FDG, which is used for the imaging diagnosis of lung cancer. The tumor/nontumor ratios for 18F-FDG were lower than for 18F-Nifene. Thus, we have developed a novel diagnostic imaging approach to early diagnosis of lung cancer using 18F-Nifene PET/CT. This technique allows quantitative assessment of lung tumors in live mice, which is critical for establishing tumor size and location, and also has salient clinical implications.

  9. Ergolide, sesquiterpene lactone from Inula britannica, inhibits inducible nitric oxide synthase and cyclo-oxygenase-2 expression in RAW 264.7 macrophages through the inactivation of NF-κB

    Whan Han, Jeung; Gon Lee, Byeong; Kee Kim, Yong; Woo Yoon, Jong; Kyoung Jin, Hye; Hong, Sungyoul; Young Lee, Hoi; Ro Lee, Kang; Woo Lee, Hyang

    2001-01-01

    We investigated the mechanism of suppression of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) by ergolide, sesquiterpene lactone from Inula britannica.iNOS activity in cell-free extract of LPS/IFN-γ-stimulated RAW 264.7 macrophages was markedly attenuated by the treatment with ergolide. Its inhibitory effect on iNOS was paralleled by decrease in nitrite accumulation in culture medium of LPS/IFN-γ-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Howe...

  10. An Analysis of the Role of Tobacco-Specific Nitrosamines in the Carcinogenicity of Tobacco Smoke

    Brown, Buddy G.; Borschke, August J.; Doolittle, David J.

    2003-01-01

    Cigarette smoke is a complex mixture consisting of more than 4500 chemicals, including several tobacco-specific nitrosamines (TSNA). TSNA typically form in tobacco during the post-harvest period, with some fraction being transferred into mainstream smoke when a cigarette is burned during use. The most studied of the TSNA is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). NNK has been shown to be carcinogenic in laboratory animals. Studies examining the carcinogenicity of NNK frequently ...

  11. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Schuller Hildegard M; Dhar Madhu; Plummer Howard K

    2005-01-01

    Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was t...

  12. An Asp49 Phospholipase A2 from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E2 Production via Activation of NF-κB, p38MAPK, and PKC in Macrophages

    Vanessa Moreira

    2014-01-01

    Full Text Available Phospholipases A2 (PLA2 are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PGE2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2. Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

  13. Cyclooxygenase-2 immunoreactivity in collagenous colitis

    Wildt, Signe; Rumessen, Jüri J; Csillag, Claudio;

    2009-01-01

    Collagenous colitis (CC) is an inflammatory bowel disease of unknown aetiology and pathogenesis. In ulcerative colitis and Crohn's disease, prostaglandins may be involved in the pathogenesis of inflammation, and increased expression of cyclo-oxygenase-2 (COX-2) has been detected. The purpose of...

  14. Cyclooxygenase-2 in Cardiovascular Biology

    Murphy, Joseph F.

    2008-01-01

    Cyclooxygenase (COX), also known as prostaglandin endoperoxide synthase, is the key enzyme required for the conversion of arachidonic acid to prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2. Generally, the COX-1 enzyme is produced constitutively (e.g. in gastric mucosa), whereas COX-2 is highly inducible (e.g. at sites of inflammation and cancer). Traditional non-steroidal anti-inflammatory drugs (NSAIDs) inhibit both enzymes, and a new class of COX-2 selective inhibito...

  15. Cyclooxygenase-2 in Cardiovascular Biology

    Joseph F. Murphy

    2008-01-01

    Full Text Available Cyclooxygenase (COX, also known as prostaglandin endoperoxide synthase, is the key enzyme required for the conversion of arachidonic acid to prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2. Generally, the COX-1 enzyme is produced constitutively (e.g. in gastric mucosa, whereas COX-2 is highly inducible (e.g. at sites of inflammation and cancer. Traditional non-steroidal anti-inflammatory drugs (NSAIDs inhibit both enzymes, and a new class of COX-2 selective inhibitors (COXIBs preferentially inhibit the COX-2 enzyme. This review summarizes our current understanding of the role of COX-1 and COX-2, with emphasis on their role on cardiovascular biology.

  16. Tongxinluo Inhibits Cyclooxygenase-2, Inducible Nitric Oxide Synthase, Hypoxia-inducible Factor-2α/Vascular Endothelial Growth Factor to Antagonize Injury in Hypoxia-stimulated Cardiac Microvascular Endothelial Cells

    Yan-Ning Li; Xiu-Juan Wang; Bin Li; Kun Liu; Jin-Sheng Qi; Bing-Hui Liu; Ye Tian

    2015-01-01

    Background:Endothelial dysfunction is considered as the initiating process and pathological basis of cardiovascular disease.Cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS),inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS)are key enzymes with opposing actions in inflammation and oxidative stress,which are believed to be the major driver of endothelial dysfunction.And in hypoxia (Hx),Hx-inducible factor (HIF)-1 α and HIF-2α are predominantly induced to activate vascular endothelial growth factor (VEGF),resulting in abnormal proliferation.Whether and how Tongxinluo (TXL) modulates COX-2,PGIS,iNOS,eNOS,HIF-1 α,HIF-2α,and VEGF in Hx-stimulated human cardiac microvascular endothelial cells (HCMECs) have not been clarified.Methods:HCMEC were treated with CoCl2 to mimic Hx and the mRNA expressions of COX-2,PGIS,iNOS,eNOS,HIF-1α,HIF-2α,and VEGF were first confirmed,and then their mRNA expression and protein content as well as the cell pathological alterations were evaluated for TXL treatment with different concentrations.In addition,the effector molecular of inflammation prostaglandin E2 (PGE2)and the oxidative marker nitrotyrosine (NT) was adopted to reflect HCMEC injury.Results:Hx could induce time-dependent increase of COX-2,iNOS,HIF-2α,and VEGF in HCMEC.Based on the Hx-induced increase,TXL could mainly decrease COX-2,iNOS,HIF-2α,and VEGF in a concentration-dependent manner,with limited effect on the increase of PGIS and eNOS.Their protein contents verified the mRNA expression changes,which was consistent with the cell morphological alterations.Furthermore,high dose TXL could inhibit the Hx-induced increase of PGE2 and NT contents,attenuating the inflammatory and oxidative injury.Conclusions:TXL could inhibit inflammation-related COX-2,oxidative stress-related iNOS,and HIF-2α/VEGF to antagonize Hx-induced HCMEC injury.

  17. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    Nagahama, Yu [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Obama, Takashi [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Usui, Michihiko [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Kanazawa, Yukari [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Iwamoto, Sanju [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Suzuki, Kazushige [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Miyazaki, Akira [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Yamaguchi, Tomohiro [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Itabe, Hiroyuki, E-mail: h-itabe@pharm.showa-u.ac.jp [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan)

    2011-10-07

    Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  18. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    Highlights: → OxLDL-induced responses in human gingival epithelial cells were studied. → OxLDL enhanced the production of IL-8, IL-1β and PGE2 in Ca9-22 cells. → An NF-κB inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. → Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E2 (PGE2) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE2-producing enzymes, cyclooxygenase-2 and microsomal PGE2 synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-κB) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-κB pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  19. Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-κB-activated cyclooxygenase-2/prostaglandin E2 up-regulation.

    Kuo-Cheng Lan

    Full Text Available Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF-κB-p65 phosphorylation and cyclooxygenase (COX-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor to inhibit prostaglandin E2 (PGE2 production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.

  20. Cellular mechanisms involved during oxytocin-induced prostaglandin F2alpha production in endometrial epithelial cells in vitro: role of cyclooxygenase-2.

    Asselin, E; Drolet, P; Fortier, M A

    1997-11-01

    PGs are important regulators of reproductive processes. At the time ofluteolysis in vivo, PGF2alpha is produced by endometrial cells, in response to oxytocin (OT). The mechanism by which OT induces the release of PGF2alpha remains to be defined. We have used 13 different cultures of bovine epithelial endometrial cells to study the effect of OT on the regulation of PGF2alpha and to identify the possible involvement of cyclooxygenases (COXs). OT induced a dose-dependent increase of both inositol phosphates (IPs) and [Ca2+]i concentration in epithelial cells labeled with [3H]-myoinositol or loaded with fura-2 (using a fluorescent microscope imaging system), respectively. OT induced a dose-dependent increase of both PGF2alpha production and COX-2 gene expression (as demonstrated by RT-PCR and Northern blots). PGF2alpha production was increased from 13.3 +/- 2.0 to 166.8 +/- 22.5 ng/ml (P gene expression (as determined by densitometric analysis) was increased 5.1 +/- 0.7-fold (P sheep, for COX-1, respectively. COX-2 was found to bear 84%, 86%, and 87% of homology in relation to rat, guinea pig, and human, respectively. Collectively, these results demonstrate, for the first time, that COX-2 is involved in the mechanism by which OT regulates PGF2alpha production in the endometrium. PMID:9348208

  1. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  2. Ciliary neurotrophic factor (CNTF plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE2 release and interferon-γ-induced CD40 in murine microglia

    Li Hong

    2009-03-01

    Full Text Available Abstract Background Ciliary neurotrophic factor (CNTF has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF, which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects. Methods We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains. Results We show that murine microglia express CNTF receptor α (CNTFRα, which can be induced by interferon-γ (IFNγ. Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and β-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRα (sCNTFRα as has been observed for IL-6. When used in combination, CNTF and sCNTFRα collaborated with IFNγ to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRα complex, however, failed to increase MHC class II expression beyond that induced by IFNγ. The combination of CNTF and sCNTFRα, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE2 secretion (although CNTF was 30 times less potent than LPS. Surprisingly, Cox-2

  3. Translocation of NF-κB and expression of cyclooxygenase-2 are enhanced by ketamine-induced ulcerative cystitis in rat bladder.

    Juan, Yung-Shun; Lee, Yi-Lun; Long, Cheng-Yu; Wong, Jhen-Hong; Jang, Mei-Yu; Lu, Jian-He; Wu, Wen-Jeng; Huang, Yen-Shun; Chang, Wei-Chiao; Chuang, Shu-Mien

    2015-08-01

    The number of ketamine abusers has increased significantly recently. Ketamine abusers exhibit urinary frequency, urgency, and at times urinary incontinence. Our aim was to investigate the role of transcription factor NF-κB and cyclooxygenase (COX)-2 in ketamine-induced cystitis. Sprague-Dawley rats were distributed into three groups, which received saline or treatment with ketamine or ketamine combined with a Cox-2 inhibitor (parecoxib). In addition, the toxic effect of ketamine and its metabolites were examined by primary urothelial cell culture. The ketamine-treated group displayed bladder hyperactivity and decreased bladder capacity. Treatment with ketamine + COX-2 inhibitor prevented these bladder dysfunctions. These bladder dysfunctions were accompanied by increases in the expression of NF-κB and COX-2 at the protein and mRNA levels. Ketamine treatment also enhanced bladder interstitial fibrosis, whereas ketamine + Cox-2 inhibitor decreased the intensity of fibrosis. Treatment of primary urothelial cells in vitro with ketamine or urine obtained from ketamine-treated rats stimulated the expression of NF-κB p65 and COX-2. Ketamine also initiated NF-κB translocation from cell cytoplasm to nucleus. Treatment with NF-κB inhibitor suppressed Cox-2 mRNA expression. Promoter-deletion analysis revealed that NF-κB was a necessary transcription factor for COX-2 gene (Ptgs2) activation. These results demonstrate that the regulation of COX-2 via the NF-κB pathway is involved in the inflammatory signaling of ketamine-induced cystitis in rat urinary bladder. PMID:26073037

  4. o,p'-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways

    Dichlorodiphenyltrichloroethane (DDT) has been used as an insecticide to prevent the devastation of malaria in tropical zones. However, many reports suggest that DDT may act as an endocrine disruptor and may have possible carcinogenic effects. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of o,p'-DDT on COX-2 gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Exposure to o,p'-DDT markedly enhanced the production of prostaglandin E2 (PGE2), a major COX-2 metabolite, in murine macrophages. Furthermore, o,p'-DDT dose-dependently increased the levels of COX-2 protein and mRNA. Transfection with human COX-2 promoter construct, electrophoretic mobility shift assays and DNA-affinity protein-binding assay experiments revealed that o,p'-DDT activated the activator protein 1 (AP-1) and cyclic AMP response element (CRE) sites, but not the NF-κB site. Phosphatidylinositol 3 (PI3)-kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by the o,p'-DDT-induced AP-1 and CRE activation. These results demonstrate that o,p'-DDT induced COX-2 expression via AP-1 and CRE activation through the PI3-K/Akt/ERK, JNK, and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the carcinogenic effects of o,p'-DDT

  5. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  6. Ergolide, sesquiterpene lactone from Inula britannica, inhibits inducible nitric oxide synthase and cyclo-oxygenase-2 expression in RAW 264.7 macrophages through the inactivation of NF-kappaB.

    Whan Han, J; Gon Lee, B; Kee Kim, Y; Woo Yoon, J; Kyoung Jin, H; Hong, S; Young Lee, H; Ro Lee, K; Woo Lee, H

    2001-06-01

    We investigated the mechanism of suppression of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) by ergolide, sesquiterpene lactone from Inula britannica. iNOS activity in cell-free extract of LPS/IFN-gamma-stimulated RAW 264.7 macrophages was markedly attenuated by the treatment with ergolide. Its inhibitory effect on iNOS was paralleled by decrease in nitrite accumulation in culture medium of LPS/IFN-gamma-stimulated RAW 264.7 macrophages in a concentration-dependent manner. However, its inhibitory effect does not result from direct inhibition of the catalytic activity of NOS. Ergolide markedly decreased the production of prostaglandin E(2) (PGE(2)) in cell-free extract of LPS/IFN-gamma-stimulated RAW 264.7 macrophages in a concentration-dependent manner, without alteration of the catalytic activity of COX-2 itself. Ergolide decreased the level of iNOS and COX-2 protein, and iNOS mRNA caused by stimulation of LPS/IFN-gamma in a concentration-dependent manner, as measured by Western blot and Northern blot analysis, respectively. Ergolide inhibited nuclear factor-kappaB (NF-kappaB) activation, a transcription factor necessary for iNOS and COX-2 expression in response to LPS/IFN-gamma. This effect was accompanied by the parallel reduction of nuclear translocation of subunit p65 of NF-kappaB as well as IkappaB-alpha degradation. In addition, these effects were completely blocked by treatment of cysteine, indicating that this inhibitory effect of ergolide could be mediated by alkylation of NF-kappaB itself or an upstream molecule of NF-kappaB. Ergolide also directly inhibited the DNA-binding activity of active NF-kappaB in LPS/IFN-gamma-pretreated RAW 264.7 macrophages. These results demonstrate that the suppression of NF-kappaB activation by ergolide might be attributed to the inhibition of nuclear translocation of NF-kappaB resulted from blockade of the degradation of IkappaB and the direct modification of active NF-kappaB, leading to the

  7. Furosemide stimulates macula densa cyclooxygenase-2 expression in rats

    Mann, Birgitte; Hartner, A; Jensen, B L;

    2001-01-01

    BACKGROUND: During a low salt intake, maintenance of renal blood flow and renin secretion depends on intact formation of prostaglandins. In the juxtaglomerular apparatus, the inducible isoform of cyclooxygenase, cyclooxygenase-2 (COX-2), is restricted to the macula densa and the cortical thick...... ascending limb of Henle (cTALH) cells, and is inversely regulated by dietary salt intake. This study aimed to elucidate whether the effect of NaCl on macula densa COX-2 expression is mediated by transepithelial transport of NaCl. METHODS: To this end, male Sprague-Dawley rats received subcutaneous infusions...... tubule, causes a selective stimulation of COX-2 expression in the macula densa region. This up-regulation may be of relevance for macula densa signaling, which links tubular salt transport rate with glomerular filtration rate and renin secretion....

  8. Quantitative analysis of the relative mutagenicity of five chemical constituents of tobacco smoke in the mouse lymphoma assay.

    Guo, Xiaoqing; Heflich, Robert H; Dial, Stacey L; Richter, Patricia A; Moore, Martha M; Mei, Nan

    2016-05-01

    Quantifying health-related biological effects, like genotoxicity, could provide a way of distinguishing between tobacco products. In order to develop tools for using genotoxicty data to quantitatively evaluate the risk of tobacco products, we tested five carcinogens found in cigarette smoke, 4-aminobiphenyl (4-ABP), benzo[a]pyrene (BaP), cadmium (in the form of CdCl2), 2-amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in the mouse lymphoma assay (MLA). The resulting mutagenicity dose responses were analyzed by various quantitative approaches and their strengths and weaknesses for distinguishing responses in the MLA were evaluated. L5178Y/Tk (+/-) 3.7.2C mouse lymphoma cells were treated with four to seven concentrations of each chemical for 4h. Only CdCl2 produced a positive response without metabolic activation (S9); all five chemicals produced dose-dependent increases in cytotoxicity and mutagenicity with S9. The lowest dose exceeding the global evaluation factor, the benchmark dose producing a 10%, 50%, 100% or 200% increase in the background frequency (BMD10, BMD50, BMD100 and BMD200), the no observed genotoxic effect level (NOGEL), the lowest observed genotoxic effect level (LOGEL) and the mutagenic potency expressed as a mutant frequency per micromole of chemical, were calculated for all the positive responses. All the quantitative metrics had similar rank orders for the agents' ability to induce mutation, from the most to least potent as CdCl2(-S9) > BaP(+S9) > CdCl2(+S9) > MeIQ(+S9) > 4-ABP(+S9) > NNK(+S9). However, the metric values for the different chemical responses (i.e. the ratio of the greatest value to the least value) for the different chemicals ranged from 16-fold (BMD10) to 572-fold (mutagenic potency). These results suggest that data from the MLA are capable of discriminating the mutagenicity of various constituents of cigarette smoke, and that quantitative analyses are available

  9. Lung Carcinogenic Bioassay of CuO and TiO2 Nanoparticles with Intratracheal Instillation Using F344 Male Rats

    YOKOHIRA, MASANAO; Hashimoto, Nozomi; YAMAKAWA, KEIKO; Suzuki, Satoshi; Saoo, Kousuke; KUNO, TOSHIYA; Imaida, Katsumi

    2009-01-01

    Toxicity assessment of nanoparticles, now widespread in our environment, is an important issue. We have focused attention on the carcinogenic potential of copper oxide (CuO) and titanium dioxide (TiO2). In experiment 1, a sequential pilot study, the effectiveness of a carcinogenic bioassay featuring intraperitoneal injection (i.p.) of 20 mg 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) or 0.1% N-bis(2-hydroxypropyl)nitrosamine (DHPN) in drinking water for 2 weeks was examined. Based on...

  10. Pathologic Cellular Events in Smoking-Related Pancreatitis

    Thrower, Edwin [Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520 (United States); Veterans Affairs Connecticut Healthcare, West Haven, CT 06516 (United States)

    2015-04-29

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis.

  11. Pathologic Cellular Events in Smoking-Related Pancreatitis

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis

  12. Untersuchungen zur Ätiologie des ösophagealen Adenokarzinoms in Abhängigkeit zur Myosminbelastung durch die Ernährung

    Heppel, Christopher

    2009-01-01

    Die beiden tabakspezifischen Nitrosamine (TSNA) 4 (Methylnitrosamino) 1-(3 pyridyl)-1-butanon (NNK) und N'-Nitrosonornicotin (NNN) sind kanzerogene Inhaltstoffe des Tabakrauchs. NNK erzeugt im Tierversuch vor allem Tumoren in Lunge, Leber, Bauchspeicheldrüse und der Nasenhöhle. NNN führt dagegen zu Ösophagustumoren, aber auch zu Tumoren der Nasenhöhle. Unter metabolischer Aktivierung bilden beide TSNA eine reaktive Zwischenstufe, die mit Biomolekülen reagiert und nach Hydrolyse 4-Hydroxy-(3-p...

  13. Tobacco Carcinogen NNK Transporter MRP2 Regulates CFTR Function in Lung Epithelia: Implications for Lung Cancer

    Li, Chunying; Schuetz, John D.; Naren, Anjaparavanda P.

    2010-01-01

    Lung cancer is the leading cause of cancer death in the United States. About 85% of all lung cancers are linked to tobacco smoke, in which more than 50 lung carcinogens have been identified and one of the most abundant is 4-(methylnitrosamino)-1-(3-pyridyl)- 1-butanone (NNK). The human lung epithelium constitutes the first line of defense against tobacco specific carcinogens, in which apically-localized receptors, transporters, and ion channels in the airway may play a critical role in this n...

  14. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    A E Karateev

    2009-06-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  15. 17β-estradiol and progesterone upregulate cyclooxygenase-2 expression in the human gingival fibroblasts

    Ostad S. N.; Motahhary P.; Beshkar M.; Ghahremani M.H.

    2006-01-01

    Gingivitis is associated with 60-75% of all pregnancies and elevated levels of 17β-estradiol and progesterone is known to increase gingival inflammation and the proinflammatory prostaglandins in the human gingiva. Since cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for the production of prostaglandins at the sites of inflammation, it is plausible to hypothesize that 17β- estradiol and progesterone could contribute to gingival inflammation by upregulation of COX...

  16. Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan

    Cheng, Huei-Hsuan; Kuo, Cheng-Chin; Yan, Jiann-Long; Chen, Hua-Ling; Lin, Wei-Chung; Wang, Kai-Hsuan; Tsai, Kelvin K.-C.; Guvén, Hayrettin; Flaberg, Emilie; Szekely, Laszlo; Klein, George; Wu, Kenneth K.

    2012-01-01

    Cyclooxygenase-2 (COX-2) expression is induced by mitogenic and proinflammatory factors. Its overexpression plays a causal role in inflammation and tumorigenesis. COX-2 expression is tightly regulated, but the mechanisms are largely unclear. Here we show the control of COX-2 expression by an endogenous tryptophan metabolite, 5-methoxytryptophan (5-MTP). By using comparative metabolomic analysis and enzyme-immunoassay, our results reveal that normal fibroblasts produce and release 5-MTP into t...

  17. Adiponectin Promotes Revascularization of Ischemic Muscle through a Cyclooxygenase 2-Dependent Mechanism ▿ †

    Ohashi, Koji; Ouchi, Noriyuki; Sato, Kaori; Higuchi, Akiko; Ishikawa, Tomo-o; Herschman, Harvey R.; Kihara, Shinji; Walsh, Kenneth

    2009-01-01

    Adiponectin is a fat-derived plasma protein that has cardioprotective roles in obesity-linked diseases. Because cyclooxygenase 2 (COX-2) is an important modulator of endothelial function, we investigated the possible contribution of COX-2 to adiponectin-mediated vascular responses in a mouse hind limb model of vascular insufficiency. Ischemic insult increased COX-2 expression in endothelial cells of wild-type mice, but this induction was attenuated in adiponectin knockout mice. Ischemia-induc...

  18. The effect of risedronate on osteogenic lineage is mediated by cyclooxygenase-2 gene upregulation

    Valenti, Maria Teresa; Giannini, Sandro; Donatelli, Luca; Zanatta, Mirko; Bertoldo, Francesco; Sella, Stefania; Vilei, Maria Teresa; Ossi, Elena; Realdi, Giuseppe; Lo Cascio, Vincenzo; Dalle Carbonare, Luca

    2010-01-01

    Introduction The purpose of this study was to evaluate the effects of risedronate (Ris) in the modulation of bone formation in rats with glucocorticoid (GC)-induced osteoporosis by histomorphometric, immunohistochemical and gene expression analyses. Methods We analyzed structure, turnover and microarchitecture, cyclooxygenase 2 (COX-2) levels and osteocyte apoptosis in 40 female rats divided as follows: 1) vehicle of methylprednisolone (vGC) + vehicle of risedronate (vRis); 2) Ris 5 μg/Kg + v...

  19. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

    Thomas J. Hannan

    2014-11-01

    Full Text Available The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs. Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

  20. Endoglin regulates cyclooxygenase-2 expression and activity.

    Jerkic, Mirjana; Rivas-Elena, Juan V; Santibanez, Juan F; Prieto, Marta; Rodríguez-Barbero, Alicia; Perez-Barriocanal, Fernando; Pericacho, Miguel; Arévalo, Miguel; Vary, Calvin P H; Letarte, Michelle; Bernabeu, Carmelo; López-Novoa, Jose M

    2006-08-01

    The endoglin heterozygous (Eng(+/-)) mouse, which serves as a model of hereditary hemorrhagic telangiectasia (HHT), was shown to express reduced levels of endothelial NO synthase (eNOS) with impaired activity. Because of intricate changes in vasomotor function in the Eng(+/-) mice and the potential interactions between the NO- and prostaglandin-producing pathways, we assessed the expression and function of cyclooxygenase (COX) isoforms. A specific upregulation of COX-2 in the vascular endothelium and increased urinary excretion of prostaglandin E(2) were observed in the Eng(+/-) mice. Specific COX-2 inhibition with parecoxib transiently increased arterial pressure in Eng(+/-) but not in Eng(+/+) mice. Transfection of endoglin in L6E9 myoblasts, shown previously to stimulate eNOS expression, led to downregulation of COX-2 with no change in COX-1. In addition, COX-2 promoter activity and protein levels were inversely correlated with endoglin levels, in doxycyclin-inducible endothelial cells. Chronic NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester induced a marked increase in COX-2 only in the normal Eng(+/+) mice. N(omega)-nitro-l-arginine methyl ester also increased COX-2 expression and promoter activity in doxycyclin-inducible endoglin expressing endothelial cells, but not in control cells. The level of COX-2 expression following transforming growth factor-beta1 treatment was less in endoglin than in mock transfected L6E9 myoblasts and was higher in human endothelial cells silenced for endoglin expression. Our results indicate that endoglin is involved in the regulation of COX-2 activity. Furthermore, reduced endoglin levels and associated impaired NO production may be responsible, at least in part, for augmented COX-2 expression and activity in the Eng(+/-) mice. PMID:16840721

  1. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Rojas Monica A

    2010-04-01

    Full Text Available Abstract Background We previously found that cyclooxygenase 2 (COX-2 was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD model of multiple sclerosis (MS (Carlson et al. J.Neuroimmunology 2006, 149:40. This suggests that COX-2 may contribute to death of oligodendrocytes. Objective The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination. Methods The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes in vitro. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death. Results COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death in vitro. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA. Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a

  2. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis

    Müller-Decker, Karin; Neufang, Gitta; Berger, Irina; Neumann, Melanie; Marks, Friedrich; Fürstenberger, Gerhard

    2002-01-01

    Genetic and pharmacological evidence suggests that overexpression of cyclooxygenase-2 (COX-2) is critical for epithelial carcinogenesis and provides a major target for cancer chemoprevention by nonsteroidal antiinflammatory drugs. Transgenic mouse lines with keratin 5 promoter-driven COX-2 overexpression in basal epidermal cells exhibit a preneoplastic skin phenotype. As shown here, this phenotype depends on the level of COX-2 expression and COX-2-mediated prostaglandin accumulation. The tran...

  3. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB

    Benoit, Valérie; Moraes, E.; Dar, N A; Taranchon, E.; Bours, Vincent; Hautefeuille, A.; Taniere, P; Chariot, Alain; Scoazec, J Y; Gallo, C. V. D.; Merville, Marie-Paule; Hainaut, Pierre

    2006-01-01

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-dama...

  4. Molecular Imaging of Cyclooxygenase-2 in Canine Transitional Cell Carcinomas In Vitro and In Vivo

    Cekanova, Maria; Uddin, Md. Jashim; Bartges, Joseph W.; Callens, Amanda; Legendre, Alfred M.; Rathore, Kusum; Wright, Laura; Carter, Amanda; Marnett, Lawrence J

    2013-01-01

    The enzyme cyclooxygenase-2 (COX-2) is induced at high levels in tumors, but not in surrounding normal tissues, which makes it an attractive target for molecular imaging of cancer. We evaluated the ability of novel optical imaging agent, fluorocoxib A to detect urinary bladder canine transitional cell carcinomas (K9TCC). Here, we show that fluorocoxib A uptake overlapped with COX-2 expression in primary K9TCC cells in vitro. Using subcutaneously implanted primary K9TCC in athymic mice, we dem...

  5. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors: clinical and histological correlation

    Francisco Fontes Cintra

    2011-01-01

    Full Text Available OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course-as monitored by sequential imaging techniques-even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of proangiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase- 2 expression. RESULTS: The significant variables that were associated with poor outcome were 1 higher-grade chondrosarcomas, 2 tumors that developed in flat bones, and 3 over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields. Moreover, CD34 expression (measured using the Chalkley method revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain-at least in part-the more aggressive biological course that is taken by these tumors. CONCLUSIONS

  6. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors – clinical and histological correlation

    Cintra, Francisco Fontes; Etchebehere, Mauricio; Gonçalves, José Carlos Barbi; Cassone, Alejandro Enzo; Amstalden, Eliane Maria Ingrid

    2011-01-01

    OBJECTIVES: To study the role of angiogenesis and cyclooxygenase-2 expression in cartilaginous tumors and correlate these factors with prognosis. INTRODUCTION: For chondrosarcoma, the histological grade is the current standard for predicting tumor outcome. However, a low-grade chondrosarcoma can follow an aggressive course—as monitored by sequential imaging techniques—even when it is histologically indistinguishable from an enchondroma. Therefore, additional tools are needed to help identify the biological potential of these tumors. The degree of angiogenesis that is induced by the tumor could assist in this task. Angiogenesis can be quantified by measuring the expression of vascular endothelial growth factor and CD34, and cyclooxygenase-2 can induce angiogenesis by stimulating the production of pro-angiogenic factors. METHODS: In total, 21 enchondromas and 58 conventional chondrosarcomas were studied by examining the clinical and histopathological findings in conjunction with the immunostaining markers of angiogenesis and cyclooxygenase-2 expression. RESULTS: The significant variables that were associated with poor outcome were 1) higher-grade chondrosarcomas, 2) tumors that developed in flat bones, and 3) over-expression of CD34 (with a median count that was higher than 5.9 vessels in 5 high power fields). Moreover, CD34 expression (measured using the Chalkley method) revealed significantly higher microvessel density in flat bone chondrosarcomas. DISCUSSION: Previous studies have shown a positive correlation between Chalkley microvessel density and histological grade; however, in our sample, we found that the former is predictive of the outcome. Chondrosarcomas in flat bones have been shown to correlate with a poor prognosis. We also found that CD34 microvessel density values were significantly higher in flat-bone chondrosarcomas. This could explain—at least in part—the more aggressive biological course that is taken by these tumors. CONCLUSIONS: These

  7. Effect of etoricoxib, a cyclooxygenase-2 selective inhibitor on aberrant crypt formation and apoptosis in 1,2 dimethyl hydrazine induced colon carcinogenesis in rat model Efecto del etoricoxib, un inhibidor selectivo de la ciclooxigenasa-2, sobre la formación de criptas aberrantes y la apoptosis en un modelo murino de carcinogénesis de colon inducidad por 1,2-dimetilhidracina

    Sharma, P.; J Kaur; S. N. Sanyal

    2010-01-01

    Etoricoxib, a second generation selective cyclooxygenase-2 (COX-2) inhibitor had been studied for the chemopreventive response at its therapeutic anti-inflammatory dose in 1,2-dimethylhydrazine (DMH) induced colon carcinogenesis in rat model. Eight to ten weeks old male rats of Sprague-Dawley strain were divided into four groups. While group 1 served as control and received the vehicle of the drugs, group 2 and 3 were administered freshly prepared DMH in 1mM EDTA-saline (pH 7.0) (30 mg/kg bod...

  8. Mechanism underlying the reversal of contractility dysfunction in experimental colitis by cyclooxygenase-2 inhibition.

    Khan, I; Oriowo, M A

    2006-03-01

    Inflammatory bowel diseases are associated with reduced colonic contractility and induction of cyclooxygenase-2. In this study a possible role of cyclooxygenase-2 in and the underlying mechanism of the reduced contractility were investigated in experimental colitis. The effects of meloxicam, a cyclooxygenase-2 selective inhibitor were examined on colonic contractility and MAP kinase p38 and ERK(1/2) expression. Colitis was induced in Sprague-Dawley male rats by intra-colonic instillation of trinitrobenzenesulphonic acid (TNBS; 40 mg/rat in 50 ethanol). The animals were divided into three groups. Group 1 (n=9) received meloxicam (3 mg/kg-day) gavage 1 h before and 1 day (Group 2) after induction of colitis. Group 3 (n=9) received phosphate buffered saline (PBS) in a similar manner and served as colitic control. The non colitic control animals received meloxicam in a similar manner. The animals were sacrificed after 5 days of treatment, colon was cleaned with PBS and colonic smooth muscle was obtained which was used in this study. Meloxicam treatment given 1 h before or 1 day after administration of colitis restored the reduced colonic contractility without affecting the sensitivity to carbachol. The levels of colonic smooth muscle IL-1beta mRNA, PGE(2), ERK(1/2), p38, malondialdehyde, myeloperoxidase activity and colonic mass were increased, whereas the body weight was decreased due to TNBS. The changes except colonic muscle mass and p38 expression were reversed by meloxicam treatment. These findings indicate that restoration of reduced colonic contractility by meloxicam is mediated by ERK(1/2), and that ERK(1/2) may serve as an important anti inflammatory target for treatment of colitis. PMID:16835710

  9. Ultraviolet C Irradiation Induces Different Expression of Cyclooxygenase 2 in NIH 3T3 Cells and A431 Cells: The Roles of COX-2 Are Different in Various Cell Lines

    Ming-Hsiu Wu

    2012-04-01

    Full Text Available Ultraviolet C (UVC is a DNA damage inducer, and 20 J/m2 of UVC irradiation caused cell growth inhibition and induced cell death after exposure for 24–36 h. The growth of NIH 3T3 cells was significantly suppressed at 24 h after UVC irradiation whereas the proliferation of A431 cells was inhibited until 36 h after UVC irradiation. UVC irradiation increased COX-2 expression and such up-regulation reached a maximum during 3–6 h in NIH 3T3 cells. In contrast, UVC-induced COX-2 reached a maximum after 24–36 h in A431 cells. Measuring prostaglandin E2 (PGE2 level showed a biphasic profile that PGE2 release was rapidly elevated in 1–12 h after UVC irradiation and increased again at 24 h in both cell lines. Treatment with the selective COX-2 inhibitor, SC-791, during maximum expression of COX-2 induction, attenuated the UVC induced-growth inhibition in NIH 3T3 cells. In contrast, SC-791 treatment after UVC irradiation enhanced death of A431 cells. These data showed that the patterns of UVC-induced PGE2 secretion from NIH 3T3 cells and A431 cells were similar despite the differential profile in UVC-induced COX-2 up-regulation. Besides, COX-2 might play different roles in cellular response to UVC irradiation in various cell lines.

  10. Elevated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in primary sclerosing cholangitis : Implications for cholangiocarcinogenesis

    Ishii, Yasutaka

    2014-01-01

    Cholangiocarcinoma (CCA) occurs frequently in primary sclerosing cholangitis (PSC). Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) induced by inflammation are believed to mediate prostaglandin E2 (PGE2) production thereby promoting carcinogenesis. Their expression in PSC-associated CCA tissues and non-neoplastic bile duct epithelial cells (BDECs) in PSC was investigated. COX-2 and mPGES-1 levels in 15 PSC patients (7 with CCA) were scored using immunohistochemica...

  11. 环氧化酶2抑制剂对大鼠机械通气所致肺损伤肺水代谢的影响%Effect of cyclooxygenase 2 inhibitor on pulmonary water metabolism of ventilator-induced lung injury in rats

    金立达; 王良荣; 熊响清; 林丽娜; 单鸳露

    2013-01-01

    Objective: To investigate the effect of cyclooxygenase 2 inhibitor on pulmonary water metabolism of ventilator-induced lung injury in rats. Methods: Thirty healthy adult male SD rats weighing 300-350 g were randomly divided into 3 groups (n =10 each): group TV (traditional tidal volume VT=8 mL/kg); group HV (high tidal volume VT=40 mL/kg) and group HV+NS398 (pretreated with NS398 8 mg/kg before ventilation). The animals were anesthe-tized with intraperitoneal 20% urethane 8 mL/kg, tracheotomized, intubated and mechanically ventilated for 4 h. Group HV+NS398 8 mg/kg was intraperitoneally injected at 30 min before mechanical ventilation. The animals were sacrificed at 4 h after mechanical ventilation. The lungs were removed for determination the concentration of protein in bronchoalveolar lavage fluid (BALF), TNF- a concentration, lung permeability index (LPI) and wet to dry weight ratio (W/D). Expression of aquaporin 1 (AQP1) and aquaporin 5 (AQP5) was analyzed with Western blot. Results: The BALF concentration of TNF-a and expression of AQP1 and AQP5 decreased significantly in group HV than that in group TV. The LPI and W/D were higher in group HV than that in group TV. Cyclooxygenase-2 inhibitor significantly attenuated the HV-induced changes listed above in group HV+NS398. Conclusion: Cyclooxygenase 2 inhibitor attenuates ventilation-induced lung injury in rats. Its mechanism may relate to upregulate expression of aquaporin 1 and aquaporin 5, strengthen the active reabsorption and exchange of fluid between alveolar space and alveolar epithelium barrier during edema in VILI.%目的:探讨环氧化酶2 (COX-2)抑制剂对大鼠机械通气所致肺损伤(VILI)肺水代谢的影响.方法:健康成年雄性SD大鼠30只,体质量300~ 350 g,随机分为3组(n=10),对照组(TV组,潮气量8 mL/kg)、机械通气肺损伤组(HV组,潮气量40 mL/kg)、NS398预处理组(HV+NS398组).NS398预处理组于机械通气前30 min腹腔注射COX-2抑制剂NS398 8 mg

  12. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines. PMID:16888001

  13. TTF-1 action on the transcriptional regulation of cyclooxygenase-2 gene in the rat brain.

    Chang Ho Yun

    Full Text Available We have recently found that thyroid transcription factor-1 (TTF-1, a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2, the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain.

  14. Cobalt Protoporphyrin Upregulates Cyclooxygenase-2 Expression Through a Heme Oxygenase-Independent Mechanism.

    Lin, Hsiao-Yun; Tsai, Chon-Haw; Lin, Chingju; Yeh, Wei-Lan; Tsai, Cheng-Fang; Chang, Pei-Chun; Wu, Ling-Hsuan; Lu, Dah-Yuu

    2016-09-01

    Cobalt protoporphyrin (CoPP) is a potent HO-1 inducer and generally known to be an antioxidant in various cell types. Little is known about the CoPP-induced cyclooxygenase-2 (COX-2) expression and its downstream signaling in microglial cells. In current study, CoPP caused concentration- and time-dependent increases in COX-2 expression in microglial cells. Furthermore, activation of apoptosis signal-regulating kinase (ASK) 1/MAP kinase involved in CoPP-induced COX-2 expression in microglia. CoPP also induced P2X7 receptor activation, and treatment of P2X7 inhibitors effectively reduced CoPP-induced COX-2 expression. Protein inhibitor of activated STAT (PIAS) 1 is reported to be involved in modulating anti-inflammatory response through negative regulation of transcription factors. Interestingly, treatment with CoPP markedly induced PIAS1 degradation which is regulated by PI3K, Akt, and glycogen synthase kinase 3α/β (GSK3α/β) signaling pathways. These results suggest that CoPP induces COX-2 expression through activating P2X7 receptors and ASK1/MAP kinases as well as PIAS1 degradation signaling pathways. Our study provides a new insight into the regulatory effect of CoPP on neuroinflammation in microglial cells. PMID:26255181

  15. Exposure and Metabolic Activation Biomarkers of Carcinogenic Tobacco-Specific Nitrosamines.

    Hecht, Stephen S; Stepanov, Irina; Carmella, Steven G

    2016-01-19

    Lung cancer is the leading cause of cancer death in the world, and cigarette smoking is its main cause. Oral cavity cancer is another debilitating and often fatal cancer closely linked to tobacco product use. While great strides have been made in decreasing tobacco use in the United States and some other countries, there are still an estimated 1 billion men and 250 million women in the world who are cigarette smokers and there are hundreds of millions of smokeless tobacco users, all at risk for cancer. Worldwide, lung cancer kills about three people per minute. This Account focuses on metabolites and biomarkers of two powerful tobacco-specific nitrosamine carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN), considered to be among the main causes of lung cancer and oral cavity cancer in people who use tobacco products. Three properties of NNK and NNN are critical for successful biomarker studies: they are present in all tobacco products, they are tobacco-specific and are not found in any other product, and they are strong carcinogens. NNK and NNN are converted in humans to urinary metabolites that can be quantified by mass spectrometry as biomarkers of exposure to these carcinogens. They are also metabolized to diazonium ions and related electrophiles that react with DNA to form addition products that can be detected and quantified by mass spectrometry. These urinary metabolites and DNA addition products can serve as biomarkers of exposure and metabolic activation, respectively. The biomarkers of exposure, in particular the urinary NNK metabolites 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, have been extensively applied to document tobacco-specific lung carcinogen uptake in smokers and nonsmokers exposed to secondhand tobacco smoke. Highly sensitive mass spectrometric methods have been developed for quantitative analysis of these NNK metabolites as well as metabolites of NNN in human urine

  16. The Impact of Clean Indoor Air Exemptions and Preemption Policies on the Prevalence of a Tobacco-Specific Lung Carcinogen Among Nonsmoking Bar and Restaurant Workers

    Stark, Michael J.; Rohde, Kristen; Maher, Julie E.; Pizacani, Barbara A.; Dent, Clyde W.; Bard, Ronda; Carmella, Steven G.; Benoit, Adam R.; Thomson, Nicole M.; Hecht, Stephen S.

    2007-01-01

    Objectives. We studied the impact of clean indoor air law exemptions and preemption policies on the prevalence of a tobacco-specific lung carcinogen—4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)—among nonsmoking bar and restaurant workers. Methods.secondhand smoke were compared with results from participants who were exposed to it. Results. Participants exposed to workplace secondhand smoke were more likely to have any detectable level of NNAL (P=.005) and higher mean levels of NNAL (P < .001) compared with nonexposed participants. Increased levels of NNAL were also associated with hours of a single workplace exposure (P=.005). Conclusions. Nonsmoking employees left unprotected from workplace secondhand smoke exposure had elevated levels of a tobacco-specific carcinogen in their bodies. All workers—including bar and restaurant workers—should be protected from indoor workplace exposure to cancer-causing secondhand smoke. PMID:17600262

  17. Cyclooxygenase-2 and Ki67 Expression in Oral Leukoplakia: a Clinicopathological Study

    Alper Sinanoglu; Merva Soluk-Tekkesin; Vakur Olgac

    2015-01-01

    ABSTRACT Objectives Oral leukoplakia is a precancerous lesion of the oral mucosa. The upregulation of Ki67 and cyclooxygenase-2 has been reported in both dysplastic and non-dysplastic tissues. The aim of this clinicopathological study was to investigate the prognostic value of Ki67 and cyclooxygenase-2 expression for oral leukoplakia. Material and Methods A total of 50 samples were investigated and the study group consisted of 30 oral leukoplakia samples. Samples of 10 intact oral mucosa and ...

  18. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  19. Localization of cyclooxygenase-2 in mice vas deferens and its effects on fertility upon suppression using nimesulide-A preferential cyclooxygenase-2 inhibitor

    Accumulating evidence on constitutive expression of cyclooxygenase-2 (COX-2), one of the isoforms of enzyme cyclooxygenase (COX) the other isoform being cyclooxygenase-1 (COX-1), questions the safety profile of non-steroidal anti-inflammatory drugs (NSAIDs). This COX-2 isoform which is induced not only during inflammation but also by factors such as cytokines, steroid hormones and mitogenic stimuli is constitutively expressed in brain, kidney and reproductive organs. Present NSAIDs, particularly COX-2 inhibitors is no longer considered safe since suppression of COX-2 in tissues which it is constitutively expressed may lead to adverse effects. Though intense expression of COX-2 in vas deferens is proved, lack of information with respect to its function has attracted a wide scope for research as to whether COX-2 in vas deferens contributes to male fertility. In the present study, the authors investigated the localization of COX-2 as well as COX-1 in mice vas deferens and also assessed the activity of COX-2 and total prostaglandin (PG) levels in vas deferens. Further they suppressed the expression of COX-2 using a preferential COX-2 inhibitor nimesulide and analyzed the sperm from vas deferens for any defects. COX-2 was intensely expressed in the epithelial cells of mice vas deferens and nimesulide was able to effectively suppress most of COX-2 expression. A decrease in PG levels was observed initially but interestingly, the levels tend to rise on sustained suppression of COX-2. The motility of sperm was affected severely after 6 h of nimesulide administration that suggested a crucial role of COX-2 towards fertility of mice sperm

  20. Cyclooxygenase-2 Expression in Chronic Gastritis and Gastric Carcinoma, Correlation with Prognostic Parameters

    Background: Cyclooxygenase-2 (Cox-2) is the inducible form of cyclooxygenase enzyme. Cox-2 is induced in numerous processes such as cellular growth, differentiation, inflammation and tumorigenesis. Purpose: Assessment of Cox-2 expression in chronic gastritis s and gastric carcinoma. Material and Methods: Sixteen chronic gastritis (CG) and 43 gastric carcinoma cases were subjected to an immunohistochemical approach using anti Cox-2 antibody. Results: All CG cases displayed positive epithelial Cox-2 expression with only 25% positivity for stromal expression. Eighty six percent of gastric carcinoma showed epithelial Cox-2 expression that was significantly correlated with lymph node involvement (p=0.01), advanced stage (p=0.01), high micro vessel density (MVD) (p=0.0001), vascular invasion (p=0.002), peri neural invasion (p=0.0 I) and low apoptotic count (p<0.0001). Stromal Cox-2 expression was seen in 79% of gastric carcinoma cases and was significantly associated with low apoptotic count (p=0.0007), vascular invasion (p=0.001) and high micro vessel density (MVD) (p=0.0003). Only stromal Cox2 expression was significantly higher in gastric carcinoma than chronic gastritis (p=0.0001). Conclusions: Cox-2 appears to be involved in gastric carcinoma progression as it promotes angio genesis, suppresses apoptosis and facilitates invasion and metastasis Double expression of Cox-2 in gastric carcinoma epithelium and stroma and significant association between them demonstrate a paracrine cross effect between stromal and malignant epithelium

  1. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  2. Elevated cyclooxygenase-2 expression correlates with diminished survival in carcinoma of the cervix treated with radiotherapy

    Purpose: The purpose of this study was to examine the relationship between overall survival and prognostic factors in carcinoma of the cervix treated with radiation therapy. A clinicopathologic study was performed on 24 patients. Methods and Materials: Formalin-fixed, paraffin-embedded tumor biopsies were stained for Cyclooxygenase-2 (COX-2), Topoisomerase I, Topoisomerase II, and p53. Clinical factors such as stage, grade, tumor size, pre- and post-treatment hemoglobin level, and radiotherapy dose were also evaluated. Results: Median follow-up was 75 months for living patients. The only immunohistochemical or clinical factor that was associated with improved survival was decreased COX-2 distribution staining. High COX-2 distribution staining was associated with decreased overall survival (p=0.021) and decreased disease-free survival (p=0.015) by log-rank comparison of Kaplan-Meier survival curves. The 5-year overall survival rates for tumors with low vs. high COX-2 distribution values were 75% and 35%, respectively. COX-2 staining intensity was found to correlate positively with tumor size (p=0.022). Conclusion: These findings indicate that increased expression of COX-2 portends a diminished survival in patients with invasive carcinoma of the cervix treated with radiotherapy. Because COX-2 is an early-response gene involved in angiogenesis and inducible by different stimuli, these data may indicate opportunity to intervene with specific inhibitors of COX-2 in carcinoma of the cervix

  3. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen;

    2011-01-01

    Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body and...... retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  4. 17β-estradiol and progesterone upregulate cyclooxygenase-2 expression in the human gingival fibroblasts

    Ostad S. N.

    2006-07-01

    Full Text Available Gingivitis is associated with 60-75% of all pregnancies and elevated levels of 17β-estradiol and progesterone is known to increase gingival inflammation and the proinflammatory prostaglandins in the human gingiva. Since cyclooxygenase-2 (COX-2 is an inducible enzyme responsible for the production of prostaglandins at the sites of inflammation, it is plausible to hypothesize that 17β- estradiol and progesterone could contribute to gingival inflammation by upregulation of COX-2 expression and subsequent prostaglandin formation. To examine this hypothesis, primary cultures of human gingival fibroblasts (HGFs from either sex were established. The cells were treated with different concentrations (10-5, 10-7, and 10-9 M of 17β-estradiol and progesterone, and expression of COX-2 protein was detected immunocytochemically. The growth potential and proliferation of these cells were studied using trypan blue exclusion method and MTT assay. The results show that both 17β-estradiol and progesterone upregulate COX-2 expression in the HGFs significantly. In addition, progesterone is more effective than 17β-estradiol to induce COX-2 expression at 10-5M but not at lower concentration (10-9M. Furthermore, cells prepared from either sex do not show any difference in COX-2 expression following hormone treatment and neither hormones show any changes in proliferation of these cells. In conclusion, the results of this investigation clearly illustrate significant regulatory effects of 17β-estradiol and progesterone on COX-2 expression in the cultured HGFs. Thus, one possible pathogenetic mechanism of the female sex hormone-associated gingivitis in vivo may be the synthesis of proinflammatory prostaglandins via upregulation of COX-2 expression by gingiva in response to elevated levels of circulating estrogens and progesterone.

  5. Cyclooxygenase-2 expression in hepatocytes attenuates non-alcoholic steatohepatitis and liver fibrosis in mice.

    Motiño, Omar; Agra, Noelia; Brea Contreras, Rocío; Domínguez-Moreno, Marina; García-Monzón, Carmelo; Vargas-Castrillón, Javier; Carnovale, Cristina E; Boscá, Lisardo; Casado, Marta; Mayoral, Rafael; Valdecantos, M Pilar; Valverde, Ángela M; Francés, Daniel E; Martín-Sanz, Paloma

    2016-09-01

    Cyclooxygenase-2 (COX-2) is involved in different liver diseases but little is known about the significance of COX-2 in the development and progression of non-alcoholic steatohepatitis (NASH). This study was designed to elucidate the role of COX-2 expression in hepatocytes in the pathogenesis of steatohepatitis and hepatic fibrosis. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either fed methionine-and-choline deficient (MCD) diet to establish an experimental non-alcoholic steatohepatitis (NASH) model or injected with carbon tetrachloride (CCl4) to induce liver fibrosis. In our animal model, hCOX-2-Tg mice fed MCD diet showed lower grades of steatosis, ballooning and inflammation than Wt mice, in part by reduced recruitment and infiltration of hepatic macrophages, with a corresponding decrease in serum levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice showed a significant attenuation of the MCD diet-induced increase in oxidative stress and hepatic apoptosis observed in Wt mice. Even more, hCOX-2-Tg mice treated with CCl4 had significantly lower stages of fibrosis and less hepatic content of collagen, hydroxyproline and pro-fibrogenic markers than Wt controls. Collectively, our data indicates that constitutive hepatocyte COX-2 expression ameliorates NASH and liver fibrosis development in mice by reducing inflammation, oxidative stress and apoptosis and by modulating activation of hepatic stellate cells, respectively, suggesting a possible protective role for COX-2 induction in NASH/NAFLD progression. PMID:27321932

  6. Effects of cyclooxygenase-2 on sinusoidal capillarization in cirrhotic rats induced by carbon tetrachloride%环氧合酶-2在四氯化碳诱导肝硬化大鼠肝窦毛细血管化形成中的作用

    涂传涛; 王吉耀; 郭津生

    2009-01-01

    目的 观察环氧合酶-2(COX-2)在实验性肝硬化大鼠肝窦毛细血管化形成中的作用.方法 腹腔注射CCl4每周2次共8周诱导雄性SD大鼠肝硬化模型.将SD大鼠分成3组:正常对照组(n=10)、模型对照组(n=15)和罗非昔布治疗组(10 mg·kg-1·d-1,n=15).光镜下观察肝组织标本,电镜观察肝窦超微结构改变.用Western印迹和免疫组化法检测基底膜蛋白主要成分层粘连蛋白(LN)和Ⅳ型胶原,同时通过Ⅷ因子相关抗原(vWF)免疫组化标记微血管牛成密度.结果 与模型对照组相比,罗非昔布干预治疗能减少肝纤维化面积(分别为30.7±8.9和23.5±6.5,P<0.05).光镜及电镜提示,在模型对照组可见肝窦内皮细胞窗孔减少、缩小,有完整的基底膜形成,Disse腔隙内有大量的胶原纤维沉积,罗非昔布组上述病变有所减轻.随着肝硬化的形成,肝组织微血管密度明显升高,罗非昔布组肝组织微血管密度(6.4±0.7)较模型对照组(11.3±1.6)明显降低(P<0.01).肝硬化时肝组织表达Ⅳ型胶原和LN蛋白明显增加(分别为3.8±0.4和3.7±0.5),罗非昔布能降低Ⅳ犁胶原和LN的表达(分别为3.0±0.5和3.0±0.5;与模型对照组相比两者均为Pcyclooxygenase-2 (COX-2) in sinusoidal capillarization in liver cirrhotic rats. Methods The SD rats were intraperitoneally injected with carbon tetrachloride (CCl4) twice a week for 8 weeks to induce liver cirrhosis. The rats were randomly divided into three groups: normal control group (n= 10), model control group (n= 15) and rofecoxib treated group (received 10 mg/kg of rofecoxib daily, n = 15). Liver histopathology was examined by light microscopy, and sinusoidal ultrastructure was observed by transmission electron microscopy. Furthermore, the level of basement membrane proteins (collagen type

  7. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen;

    2011-01-01

    retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  8. Redox reactions of the selected cyclooxygenase-2 inhibitors in supramolecular nanocavities

    Gál, Miroslav; Kocábová, Jana; Hromadová, Magdaléna

    Banff : ISE, 2007. s. 13-13. [Annual Meeting of the International Society of Electrochemistry /58./. 09.09.2007-14.09.2007, Banff] R&D Projects: GA AV ČR KJB400400603 Institutional research plan: CEZ:AV0Z40400503 Keywords : cyclooxygenase-2 * supramolecular nanocavities * redox reactions Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Cyclooxygenase-2 expression in pigs infected experimentally with Mycoplasma hyopneumoniae.

    Andrada, M; Quesada-Canales, O; Suárez-Bonnet, A; Paz-Sánchez, Y; Espinosa de Los Monteros, A; Rodríguez, F

    2014-01-01

    Porcine enzootic pneumonia, primarily caused by Mycoplasma hyopneumoniae (Mh), is a contagious disease characterized by catarrhal bronchointerstitial pneumonia. Previous studies have evaluated immunohistochemically the distribution of Mh, different cellular populations and cytokines during Mh-induced pneumonia. Cyclooxygenase (COX)-2 is overexpressed during inflammatory responses by different cell types in the lung. The aim of this study was to elucidate the possible role of COX-2 in the pathogenesis of porcine enzootic pneumonia. COX-2 protein was detected by immunohistochemistry in formalin-fixed, paraffin wax-embedded lung tissues from 10 pigs infected experimentally with Mh. Ten pigs were inoculated intranasally with Mh and killed in pairs weekly from 1 to 5 weeks post inoculation. Three Mh-free pigs were taken as controls. Bronchial and bronchiolar epithelial cells, bronchial submucosal glands and a small number of macrophages in the bronchoalveolar exudate expressed COX-2. COX-2 protein was always associated with areas of pneumonia and expression was minimal in lungs from control pigs. These results suggest that COX-2 plays a role in the pathogenesis of Mh-infection. PMID:24925603

  10. Cyclooxygenase-2 Inhibition Restored Endothelium-Mediated Relaxation in Old Obese Zucker Rat Mesenteric Arteries

    EricJ Belin De Chantemèle; Anne-LaureGuihot; DanielHenrion

    2010-01-01

    Metabolic syndrome is associated with reduced endothelial vasodilator function. It is also associated with the induction of cyclooxygenase-2 (COX2), which produces vasoactive prostanoids. The frequency of metabolic syndrome increases with age and aging per se is a risk factor associated with reduced endothelium-mediated relaxation. Nevertheless, the combined effect of aging and metabolic syndrome on the endothelium is less known. We hypothesized that COX2 derived prostanoids may affect endoth...

  11. Comparative analysis of clinicopathological correlations of cyclooxygenase-2 expression in resectable pancreatic cancer

    Marketa; Hermanova; Petr; Karasek; Jiri; Tomasek; Jiri; Lenz; Jiri; Jarkovsky; Petr; Dite

    2010-01-01

    AIM:To perform a comparative analysis of clinicopathological correlations of cyclooxygenase2 (COX2) expression in pancreatic cancer, examined by monoclonal and polyclonal antibodies.METHODS: The COX2 expression in 85 resection specimens of pancreatic ductal adenocarcinoma was immunohistochemically examined using both monoclonal and polyclonal antibodies. The final immunoscores were obtained by multiplying the percentage of positive cells with the numeric score reflecting the staining intensity.COX2 expressi...

  12. Inhibition of Bacterial Multidrug Resistance by Celecoxib, a Cyclooxygenase-2 Inhibitor▿

    Kalle, Arunasree M.; Rizvi, Arshad

    2010-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs ins...

  13. COMPARISON OF SELECTIVE AND NON SELECTIVE CYCLO-OXYGENASE 2 INHIBITORS IN EXPERIMENTAL COLITIS EXACERBATION: role of leukotriene B4 and superoxide dismutase

    José Wander BREGANÓ

    2014-09-01

    Full Text Available Context Nonsteroidal anti-inflammatory drugs are considered one of the most important causes of reactivation of inflammatory bowel disease. With regard to selective cyclo-oxygenase 2 inhibitors, the results are controversial in experimental colitis as well as in human studies. Objectives The aim this study is to compare nonsteroidal anti-inflammatory drugs effects, selective and non selective cyclo-oxygenase 2 inhibitors, in experimental colitis and contribute to the understanding of the mechanisms which nonsteroidal anti-inflammatory drugs provoke colitis exacerbation. Methods Six groups of rats: without colitis, with colitis, and colitis treated with celecoxib, ketoprofen, indometacin or diclofenac. Survival rates, hemoglobin, plasmatic albumin, colonic tissue of interleukin-1ß, interleukin-6, tumor necrosis factor alpha, prostaglandin E2, catalase, superoxide dismutase, thiobarbituric acid-reactive substances, chemiluminescence induced by tert-butil hydroperoxides, and tissue and plasmatic leukotriene B4 were determined. Results The groups treated with diclofenac or indometacin presented lower survival rates, hemoglobin and albumin, higher tissue and plasmatic leukotriene B4 and tissue superoxide dismutase than the group treated with celecoxib. Ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib, concerning to survival rate and albumin. The groups without colitis, with colitis and with colitis treated with celecoxib showed leukotriene B4 and superoxide dismutase lower levels than the groups treated with nonselective cyclo-oxygenase 2 inhibitors. Conclusions Diclofenac and indometacin presented the highest degree of induced colitis exacerbation with nonsteroidal anti-inflammatory drugs, celecoxib did not show colitis exacerbation, and ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib. These results suggest that leukotriene B4 and superoxide dismutase can be

  14. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  15. Cyclooxygenase-2 Expression in Non-Small Cell Lung Cancer Correlates With Hypertrophic Osteoarthropathy.

    Rotas, Ioannis; Cito, Giovanni; Letovanec, Igor; Christodoulou, Michel; Perentes, Jean Y

    2016-02-01

    Hypertrophic osteoarthrpathy (HO) is a rare paraneoplasic syndrome associated with non-small cell lung cancer (NSCLC). The pathophysiology of HO is unknown but was recently related to enhanced levels of urine prostaglandin E2 (PGE2). Here, we report the case of a patient that presented HO in association with a resectable left upper lobe NSCLC. Following surgery and adjuvant chemotherapy, HO resolved and did not recur with development of a brain metastasis 1 year later. Interestingly, tumor cyclooxygenase-2, an enzyme responsible the synthesis of PGE2, was expressed in the primary tumor but not in the resected metastasis. PMID:26777972

  16. Expression of cyclooxygenase-2 in neoplasms of the mammary gland in bitches.

    Badowska-Kozakiewicz, A M; Malicka, E

    2010-01-01

    The aim of the study was to investigate the cyclooxygenase-2 expression in correlation with other neoplasm traits such as: histological type, the differentiation grade, proliferative activity, estrogenic receptor, as well as Hsp70 and p53 proteins expression. Material for the investigation comprised mammary gland tumours, collected from dogs, the patients of veterinary clinics, during surgical procedures. All together 14 adenomas, 66 complex carcinomas, 47 simple carcinomas and 6 solid carcinomas were studied. Evaluations were conducted with histopathological and immunohistochemical methods using suitable antibodies. Expression of COX-2 was observed in 95% of cancers, in case of which, the complex cancers constituted the highest percentage (48.4%). The highest expression of COX-2 was revealed in simple and complex cancers and in cancers with the 3rd degree of histological malignancy. The significant correlation between expression of COX-2 and high mean value of the mitotic index was found. The high expression of COX-2 was also correlated with the expression of protein p53 and expression of the protein Hsp 70. Obtained results suggest that cyclooxygenase-2 may be a prognostic factor, but it requires detailed clinical confirmation. PMID:20731190

  17. Uteroplacental insufficiency alters nephrogenesis and downregulates cyclooxygenase-2 expression in a model of IUGR with adult-onset hypertension.

    Baserga, Mariana; Hale, Merica A; Wang, Zheng Ming; Yu, Xing; Callaway, Christopher W; McKnight, Robert A; Lane, Robert H

    2007-05-01

    Clinical and animal studies indicate that intrauterine growth restriction (IUGR) following uteroplacental insufficiency (UPI) reduces nephron number and predisposes toward renal insufficiency early in life and increased risk of adult-onset hypertension. In this study, we hypothesized that the inducible enzyme cyclooxygenase-2 (COX-2), a pivotal protein in nephrogenesis, constitutes a mechanism through which UPI and subsequent glucocorticoid overexposure can decrease nephron number. We further hypothesized that UPI downregulates the key enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts corticosterone to inert 11-dehydrocorticosterone, thereby protecting both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) from the actions of corticosterone. Following bilateral uterine ligation on the pregnant rat, UPI significantly decreased renal COX-2, 11beta-HSD2, and GR mRNA and protein levels, but upregulated expression of MR at birth. At day 21 of life, 11beta-HSD2, GR, and also MR mRNA and protein levels were downregulated. UPI did not affect blood pressures (BP) at day 21 of life but significantly increased systolic BP in both genders at day 140. We conclude that in our animal model, UPI decreases fetal COX-2 expression during a period of active nephrogenesis in the IUGR rat, which is also characterized by decreased nephron number and adult-onset hypertension. PMID:17272666

  18. Cyclooxygenase 2 (rs2745557) Polymorphism and the Susceptibility to Benign Prostate Hyperplasia and Prostate Cancer in Egyptians.

    Fawzy, Mohamed S; Elfayoumi, Abdel-Rahman; Mohamed, Randa H; Fatah, Ihab R Abdel; Saadawy, Sara F

    2016-06-01

    Cyclooxygenase-2 (COX-2), an inducible isoform of cyclooxygenase, has been reported to be correlated with tumorigenesis, tumor progression, and metastasis. We aimed to evaluate the association between COX-2 (rs2745557) polymorphism and prostate cancer (PCa), benign prostate hyperplasia (BPH) risk. We also assessed the influence of other risk factors such as obesity, smoking, diabetes in modulating the risk of PCa in Egyptian men. COX-2 (rs2745557) was genotyped in 112 PC patients, 111 BPH and 120 subjects as a control group. COX-2 and PSA levels were measured by ELISA. We found that GG genotype was associated with a 17-fold increased risk for PCa and 20-fold increased the risk for BPH more than AA genotype. Also, G allele carriers of COX-2 were associated with metastatic cancer (OR = 1.3, P GG genotype may lead to increasing the risk of developing BPH (OR = 3.3, 4, and 2.7, respectively) and of developing PCa (OR = 2.9, 4.9, and 3.2, respectively). Our results showed evidence suggesting the involvement of the COX-2 (rs2745557) polymorphism and its protein in PCa or BPH initiation and progression. Also, the coexistence of COX-2 (rs2745557) and obesity, smoking, or diabetes may lead to the development of PCa or BPH. PMID:26920155

  19. Elevated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in primary sclerosing cholangitis: ιmplications for cholangiocarcinogenesis.

    Ishii, Yasutaka; Sasaki, Tamito; Serikawa, Masahiro; Minami, Tomoyuki; Okazaki, Akihito; Yukutake, Masanobu; Ishigaki, Takashi; Kosaka, Keiichi; Mouri, Teruo; Yoshimi, Satoshi; Shimizu, Akinori; Tsuboi, Tomofumi; Chayama, Kazuaki

    2013-10-01

    Cholangiocarcinoma (CCA) occurs frequently in primary sclerosing cholangitis (PSC). Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) induced by inflammation are believed to mediate prostaglandin E2 (PGE2) production thereby promoting carcinogenesis. Their expression in PSC-associated CCA tissues and non-neoplastic bile duct epithelial cells (BDECs) in PSC was investigated. COX-2 and mPGES-1 levels in 15 PSC patients (7 with CCA) were scored using immunohistochemical staining. The results were compared with those obtained in CCA tissues and non-neoplastic BDECs (controls) of 15 sporadic CCA patients. Non-neoplastic BDECs from large and small bile ducts were investigated separately. The mRNA expression levels of COX-2 and mPGES-1 in CCA tissues were analyzed by quantitative polymerase chain reaction. Ki-67 immunostaining was performed to evaluate cell proliferation. COX-2 was strongly expressed in PSC-associated CCA tissues and non-neoplastic BDECs in PSC. This expression was significantly upregulated in both compared with sporadic CCA tissues and non-neoplastic BDECs in sporadic CCA (both Pcholangiocarcinogenesis. PMID:23900502

  20. Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells.

    Chiappini, Florencia; Bastón, Juan Ignacio; Vaccarezza, Agustina; Singla, José Javier; Pontillo, Carolina; Miret, Noelia; Farina, Mariana; Meresman, Gabriela; Randi, Andrea

    2016-06-01

    Hexachlorobenzene (HCB) is an organochlorine pesticide that induces toxic reproductive effects in laboratory animals. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). Endometriosis is characterized by the presence of functional endometrial tissues outside the uterine cavity. Experimental studies indicate that exposure to organochlorines can interfere with both hormonal regulation and immune function to promote endometriosis. Altered expression of metalloproteinases (MMPs) in patients with endometriosis, suggests that MMPs may play a critical role. In the endometriotic lesions, prostaglandin E2 (PGE2) produced by cyclooxygenase-2 (COX-2), binds to its EP4 receptor (EP4), and via c-Src kinase induces MMPs activation, promoting endometriosis. We examined the HCB action on MMP-2 and MMP-9 activities and expression, COX-2 levels, PGE2 signaling, and the AhR involvement in HCB-induced effects. We have used different in vitro models: (1) human endometrial stromal cell line T-HESC, (2) primary cultures of Human Uterine Fibroblast (HUF), and (3) primary cultures of endometrial stromal cells from eutopic endometrium of control (CESC) and subjects with endometriosis (EESC). Our results show that HCB enhances MMP-2 and MMP-9 activities in T-HESC, HUF and ESC cells. The MMP-9 levels were elevated in all models, while the MMP-2 expression only increased in ESC cells. HCB enhanced COX-2 and EP4 expression, PGE2 secretion and the c-Src kinase activation in T-HESC. Besides, we observed that AhR is implicated in these HCB-induced effects. In conclusion, our results show that HCB exposure could contribute to endometriosis development, affecting inflammation and invasion parameters of human endometrial cells. PMID:27038655

  1. Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells.

    Antonio Rossi

    Full Text Available The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF. In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2, a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E(2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position -2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function.

  2. Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A2 in human cancer cells: Implication in apoptosis resistance

    Cyclooxygenase-2 (COX-2) is inducible by myriad stimuli. The inducible COX-2 in primary cultured human cells has been reported to localize to nuclear envelope, endoplasmic reticulum, nucleus and caveolae. As COX-2 plays an important role in tumor growth, we were interested in its subcellular location in cancer cells. We examined COX-2 localization in several cancer cell lines by confocal microscopy. A majority of COX-2 was colocalized with heat shock protein 60, a mitochondrial protein, in colon cancer (HT-29, HCT-15 and DLD-1), breast cancer (MCF7), hepatocellular cancer (HepG2) and lung cancer cells (A549) with a similar distribution pattern. By contrast, COX-2 was not localized to mitochondria in human foreskin fibroblasts or endothelial cells. Immunoblot analysis of COX-2 in mitochondrial and cytosolic fractions confirmed localization of COX-2 to mitochondria in HT-29 and DLD-1 cells but not in fibroblasts. Calcium-independent phospholipase A2 was colocalized with heat shock protein 60 to mitochondria not only in cancer cells (HT-29 and DLD-1) but also in fibroblasts. HT-29 which expressed more abundant mitochondrial COX-2 than DLD-1 was highly resistant to arachidonic acid and H2O2-induced apoptosis whereas DLD-1 was less resistant and human fibroblasts were highly susceptible. Treatment of HT-29 cells with sulindac or SC-236, a selective COX-2 inhibitor, resulted in loss of resistance to apoptosis. These results suggest that mitochondrial COX-2 in cancer cells confer resistance to apoptosis by reducing the proapoptotic arachidonic acid

  3. Premedication with cyclooxygenase-2 inhibitor meloxicam reduced postoperative pain in patients after oral surgery.

    Aoki, T; Yamaguchi, H; Naito, H; Shiiki, K; Izawa, K; Ota, Y; Sakamoto, H; Kaneko, A

    2006-07-01

    The efficacy of the selective cyclooxygenase-2 (COX-2) inhibitor meloxicam for treatment of postoperative oral surgical pain was assessed in a randomized controlled trial. Patients undergoing unilateral mandibular 3rd molar extraction surgery were allocated to 3 groups, A, B and C. After oral premedication of meloxicam 10 mg in group A, ampiroxicam 27 mg in group B and placebo in group C, surgery was completed within 30 min under local anaesthesia using 2% lidocaine. For postoperative pain relief the patients were allowed to take oral loxoprofen (60 mg per tablet). Postoperative pain was evaluated at the clinic on the 1st, 7th and 14th postoperative day (POD) using a visual analogue scale (VAS), as was the number of loxoprofen tablets consumed, and the results were compared among the 3 groups with statistical significance of Psurgery and 1 POD was significantly lower in group A than in group C (Psurgery. PMID:16540287

  4. Immunoexpression of cyclooxygenase-2 in primary gastric carcinomas and lymph node metastases

    Paulo RC Almeida; Francisco VA Ferreira; Cássio C Santos; Francisco D Rocha-Filho; Raul RP Feitosa; Esther AA Falc(a)o; Belise K Cavada; Roberto CP Lima-Júnior; Ronaldo A Ribeiro

    2012-01-01

    AIM:To evaluate immunoexpression of cyclooxygenase-2 (COX-2) in primary gastric carcinomas and respective lymph node metastases.METHODS:Immunohistochemistry to analyze COX-2 expression was performed on tissue microarray slices obtained from 36 specimens of gastrectomy and satellite lymph nodes from patients with gastric carcinoma.RESULTS:Immunostaining was seen in most cases,and COX-2 expression was higher in lymph node metastases than in corresponding primary gastric tumors of intestinal,diffuse and mixed carcinomas,with a statistically significant difference in the diffuse histotype (P=0.0108).CONCLUSION:COX-2 immunoexpression occurs frequently in primary gastric carcinomas,but higher expression of this enzyme is observed in lymph node metastases of the diffuse histotype.

  5. Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice.

    Litteljohn, Darcy; Mangano, Emily N; Hayley, Shawn

    2008-08-01

    Parkinson's disease and other motor disorders of midbrain basal ganglia dopaminergic functioning are often characterized by alterations of brainstem and limbic systems with accompanying co-morbid anxiety and depressive symptoms. Accumulating evidence suggests that inflammatory processes may play an important role in such neurodegenerative and psychiatric pathology. In this regard, inhibition of the inflammatory enzyme cyclooxygenase-2 (COX-2) was reported to limit the impact of stressors as well as the neurodegenerative effects of dopaminergic toxins. The present investigation assessed the impact of the putative dopamine toxin paraquat (a widely used herbicide) upon motor functioning, behavioural indices of anxiety-like states and central monoamine levels and whether these effects were altered in mice lacking COX-2. Indeed, paraquat did induce motor impairment and altered dopamine utilization within the striatum, and COX-2 deletion moderately attenuated these effects. Conversely, COX-2 deficiency enhanced the impact of paraquat upon indices of anxiety (open field exploration) and on serotonergic, noradrenergic and dopaminergic alterations within two brain regions implicated in stressor-related pathologies, namely the dorsal hippocampus and medial prefrontal cortex. These results suggest that COX-2 might differentially influence the motor and psychiatric symptoms associated with environmental toxin exposure. Furthermore, these data indicate that the neurochemical impact of paraquat is not restricted to the nigrostriatal dopamine pathway but also involves stressor-sensitive limbic regions. It is possible that COX-2 may play a dual role by contributing to the motor impairment induced by paraquat, but acting to moderate the effects of paraquat upon processes aligned with anxiety and depression. PMID:18657183

  6. Exacerbation of inflammatory bowel disease by nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors:Fact or fiction?

    Mario Guslandi

    2006-01-01

    The existence of a possible link between inflammatory bowel disease (IBD) and nonsteroidal anti-inflammatory drugs (NSAIDs) has been repeatedly suggested. Recently, a few studies have addressed the issue of a possible,similar effect by selective cyclooxygenase-2 inhibitors (COXIBs). The present article reviews the available scientific evidence for this controversial subject.

  7. Vascular endothelial growth factor and not cyclooxygenase 2 promotes endothelial cell viability in the pancreatic tumor microenvironment.

    Toomey, Desmond P

    2010-07-01

    Cyclooxygenase 2 (COX-2) and vascular endothelial growth factor (VEGF), often coexpressed in cancer, are associated with poor prognosis. However, results from pancreatic cancer trials of their inhibitors were disappointing. This study delineated the role of COX-2 and nonsteroidal anti-inflammatory drugs in angiogenesis and VEGF regulation.

  8. Expression of cyclooxygenase-2 and its pathogenic effects in nonalcoholic fatty liver disease

    Mingbo Cao; Lei Dong; Xiaolan Lu; Jinyan Luo

    2008-01-01

    Objective:To investigate the expression of cyclooxygenase-2 and its pathological effect in the experimental nonalcoholic fatty fiver of rats, and to explore its possible mechanism. Methods:The rat NAFLD model was established by giving a fat-enriched diet. The blood samples were obtained form abdominal aorta and the levels of serum ALT, AST and IL-1, changes in the hepatic tissue 6-k-PGF1 α TXB2 were measured. The expression level of COX-2 in rats livers were assayed by immunohistochemistry, RT-PCR and Western-blot. Results: Light microscope analysis revealed that hepatocytes were injured in the model group and slightly in the treatment group. The levels of serum TXB2 and IL-1 in the fatty liver rats were increased. Compared with the model group, the IL-] and TXB2 increased significantly(P<0.05), on the contrary, compared with the normal group, the hepatic tissue 6-Keto-prostagland decreased significantly in the model group(P<0.05), the treatment group also increased but P>0.05. There was no positive expression of COX-2 in hepatic tissue of normal rats. In the model group, there was positive expression of COX-2 antigen and the number of COX positive cells progressively increased at 4, 8, 12 wks. The intensity of expression of COX-2 had significantly increased(P<0.05) and the intensity of COX-2 expression in the treated group decreased remarkably compared with the model group(P < 0.05). The expression of COX-2 mRNA and the level of COX-2 protein were significantly stronger in the liver of model rats compared with normal rats, and significantly weaker in treated rats, than in 8W and 12W model rats(P<0.05). Conclusion:The increase of COX-2 expression in NAFLD is closely associated with the severity of liver inflammation and damage. COX-2 may play an important role in the progression of rat NAFLD, and the expression of COX-2 mRNA is downregulated by cyclooxygenase-2 inhibitor, which can depress the oxidative stress and control inflammatory response

  9. Effect of etoricoxib, a cyclooxygenase-2 selective inhibitor on aberrant crypt formation and apoptosis in 1,2 dimethyl hydrazine induced colon carcinogenesis in rat model Efecto del etoricoxib, un inhibidor selectivo de la ciclooxigenasa-2, sobre la formación de criptas aberrantes y la apoptosis en un modelo murino de carcinogénesis de colon inducidad por 1,2-dimetilhidracina

    P. Sharma

    2010-02-01

    Full Text Available Etoricoxib, a second generation selective cyclooxygenase-2 (COX-2 inhibitor had been studied for the chemopreventive response at its therapeutic anti-inflammatory dose in 1,2-dimethylhydrazine (DMH induced colon carcinogenesis in rat model. Eight to ten weeks old male rats of Sprague-Dawley strain were divided into four groups. While group 1 served as control and received the vehicle of the drugs, group 2 and 3 were administered freshly prepared DMH in 1mM EDTA-saline (pH 7.0 (30 mg/kg body wt/week, subcutaneously. Group 3 was also given a daily treatment of etoricoxib (0.6 mg/kg body wt orally while the group 4 received the same amount of etoricoxib only, prepared in 0.5% carboxymethyl cellulose. Animals were sacrificed at the end of 6 weeks, body weight recorded and the colons were subjected to macroscopic and histopathological studies. The maximum number of raised mucosal lesions called the multiple plaque lesions (MPL were found in the DMH group which significantly reverted back in the DMH + etoricoxib group, while very few MPLs were recorded in the control and etoricoxib only group. Similarly, the number of aberrant crypt foci (ACF, the point of future carcinogenic growth, was recorded more in the DMH group and significantly less in the DMH + etoricoxib group. The histopathological analysis showed the presence of severe hyperplasia, occasional dysplasia and aggregates of lymphoid cells in the localized regions. Etoricoxib group showed near normal histological features with the crypt architecture and the surrounding stromal tissue remaining intact. To ascertain the molecular mechanism of such anti-carcinogenic features the colonocytes were isolated and studied in primary culture for the evidence of apoptosis by fluorescent staining and genotoxic changes by single cell gel electrophoresis assay (comet assay which shows that the DMH treated animals produced much less apoptotic nuclei but more comet producing cell, while these features were

  10. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  11. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  12. Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma

    Terence C. Tang; Ronnie T. Poon; Cecilia P. Lau; Dan Xie; Sheung Tat Fan

    2005-01-01

    AIM: Recent studies suggested that cyclooxygenase-2(COX-2) enhances tumor angiogenesis via upregulationof vascular endothelial growth factor (VEGF). AlthoughCOX-2 expression has been demonstrated in hepatocellularcarcinoma (HCC), the significance of COX-2 in progressionof HCC remains unclear. This study evaluated the clinico-pathological correlation of COX-2 level and its relationshipwith VEGF level in HCC.METHODS: Fresh tumor tissues were obtained from 100patients who underwent resection of HCC. COX-2 proteinexpression was examined by immunohistochemistry, andquantitatively by an enzyme immunometric assay (EIA)of tumor cytosolic COX-2 levels. Tumor cytosolic VEGFlevels were measured by an ELISA.RESULTS: Immunostaining showed expression of COX-2in tumor cells. Tumor cytosolic COX-2 levels correlatedwith VEGF levels (r = 0.469, P<0.001). Correlation withclinicopathological features showed significantly highertumor cytosolic COX-2 levels in the presence of multipletumors (P = 0.027), venous invasion (P = 0.030),microsatellite lesions (P = 0.037) and advanced tumorstage (P = 0.008). Higher tumor cytosolic COX-2 levelswere associated with worse patient survival.CONCLUSION: This study shows that elevated tumorCOX-2 levels correlate with elevated VEGF levels andinvasiveness in HCC, suggesting that COX-2 plays a significantrole in the progression of HCC.

  13. Expression of p63 and Cyclooxygenase-2 and Their Correlation in Skin Tumors

    WU Yan; LIU Houjun; LI Jiawen

    2007-01-01

    To study the expression of p63 and cyclooxygenase-2 (cox-2) in skin tumors and evaluate the correlation between p63 and cox-2, the expressions of cox-2 and p63 were measured by streptavidin-peroxidase complex immunohistochemical technique in 17 cases of skin squamous cell carcinoma (SCC), 19 cases of Bowen's disease(Bowen), 11 cases of actinic keratosis(AK), 12 cases of seborreic keratosis(SK) and 13 specimens of normal skin. Our results showed that the expression of p63 in skin squamous cell carcinoma, Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while the expression of p63 in seborreic keratosis was significantly higher than that in normal skin. The expression of cox-2 in skin squamous cell carcinoma,Bowen's disease and actinic keratosis were significantly higher than that in seborreic keratosis, while no statistical difference was noted in the expression of cox-2 between seborreic keratosis and normal skin. Cox-2 expression was positively correlated with the high p63 expression in malignant skin tumors. The increased expression of cox-2 and p63 may play an important role in the development of skin tumors and work synergetically in malignant skin tumors.

  14. Upregulation of prostaglandin receptor EP1 expression involves its association with cyclooxygenase-2.

    Rapita Sood

    Full Text Available While many signals cause upregulation of the pro-inflammatory enzyme cyclooxygenase -2 (COX-2, much less is known about mechanisms that actively downregulate its expression. We have recently shown that the prostaglandin EP1 receptor reduces the expression of COX-2 in a pathway that facilitates its ubiquitination and degradation via the 26S proteasome. Here we show that an elevation of COX-2 intracellular levels causes an increase in the endogenous expression of prostaglandin EP1. The increase in EP1 levels does not occur at the transcriptional level, but is rather associated with complex formation between the receptor and COX-2, which occurs both in vitro and in mammalian tissues. The EP1-COX-2 complex is disrupted following binding of arachidonic acid to COX-2 and accompanied by a parallel reduction in EP1 levels. We propose that a transient interaction between COX-2 and EP1 constitutes a feedback loop whereby an increase in COX-2 expression elevates EP1, which ultimately acts to downregulate COX-2 by expediting its proteasomal degradation. Such a post translational mechanism may serve to control both the ligand-generating system of COX-2 and its reception system.

  15. Study of Osteoarthritis Treatment with Anti-Inflammatory Drugs: Cyclooxygenase-2 Inhibitor and Steroids

    Hongsik Cho

    2015-01-01

    Full Text Available Patients with osteoarthritis (OA, a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs, and cyclooxygenase-2 (COX-2 selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM. To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2. The chondrocytes were then treated with either a steroid (prednisone, a nonspecific COX inhibitor NSAID (piroxicam, or a COX-2 selective NSAID (celecoxib. Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  16. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  17. Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.

    Candelario-Jalil, E.; Akundi, R. S.; Bhatia, H. S.; Lieb, K; Appel, K.; Munoz, E.; Hull, M.; Fiebich, B. L.

    2006-01-01

    Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose...

  18. NS-398, a Cyclooxygenase-2-Specific Inhibitor, Delays Skeletal Muscle Healing by Decreasing Regeneration and Promoting Fibrosis

    Shen, Wei; Li, Yong; Tang, Ying; Cummins, James; Huard, Johnny

    2005-01-01

    Nonsteroidal anti-inflammatory drugs are often prescribed after muscle injury. However, the effect of nonsteroidal anti-inflammatory drugs on muscle healing remains primarily controversial. To further examine the validity of using these drugs after muscle injury, we investigated the working mechanism of NS-398, a cyclooxygenase-2-specific inhibitor. In vitro experiments showed that NS-398 inhibited the proliferation and maturation of differentiated myogenic precursor cells, suggesting a detri...

  19. Association of cyclooxygenase-2 expression with Hp-cagA infection in gastric cancer

    Xiao-Lin Guo; Li-Er Wang; Shu-Yan Du; Chen-Ling Fan; Li Li; Peng Wang; Yuan Yuan

    2003-01-01

    AIM: To observe the expression of cyclooxygenase-2 (COX-2) and to investigate the association between COX-2expression and infection with cytotoxic-associated gene A( cagA) positive strair Helicobacter pylori ( Hp) in humangastric cancer, and subsequently to provide fresh ideas forthe early prevention of gastric cancer.METHODS: 32 Specimens of gastric cancer andcorresponding adjacent normal gastric mucosa were obtainedfrom patients who had undergone surgical operations ofgastric cancer. All the samples including 1 case of stomachmalignant lymphoma and 31 cases of gastric adenocarcinomawere confirmed by pathology diagnosis. The expression ofCOX-2 in 32 specimens of gastric cancer and correspondingadjacent normal gastric mucosa was quantitativelydetermined and analyzed with Flow Cytometry, and the levelsof COX-2 protein were compared between specimens withcagA+ Hp infection and those without cagA+ Hp infection.The cagA gene in 32 specimens of gastric cancer wasdetected bypolymerase chain reaction (PCR) method.RESULTS: Twenty-seven of 32 (84 %) specimens of gastriccancer showed over-expression of COX-2, compared withthe adjacent normal gastric mucosa. cagA+ gene weredetected from 19 specimens of gastric cancer, but not fromthe other 13 specimens. The levels of COX-2 protein in 19specimens of gastric cancer with cagA+ Hp infection (thenumber of positive cells was 73.82±18.2) were significantlyhigher than those in the 13 specimens without cagA+ Hpinfection (the number of positive cells was 35.92±22.1).CONCLUSION: COX-2 is overexpressed in gastric cancerand cagA+Hp infection could up-regulate the expression ofCOX-2 in gastric cancer in human. There may also existanother way or channel to regulate the expression of COX-2 in gastric cancer in addition to cagA+Hp infection.Therefore, applying COX-2 selective inhibitors could be aneffective and promising way to prevent gastric cancer.

  20. Cyclooxygenase-2 (COX-2) expression in locally advanced cervical cancer patients undergoing chemoradiation plus surgery

    Purpose: To investigate whether cyclooxygenase-2 (COX-2) could be a marker of clinical outcome in cervical cancer patients undergoing concomitant chemoradiation plus surgery. Methods and Materials: The study included 33 locally advanced cervical cancer patients; all underwent neoadjuvant chemoradiation, and responsive patients underwent radical surgery. Immunohistochemistry was performed with rabbit antiserum against COX-2. Results: COX-2 integrated density values (IDVs) in the tumor component ranged from 1.4 to 72.3 (median 15.0); in stromal inflammatory cells, COX-2 IDVs ranged from 1.4 to 96.0 (median 16.0). A statistically significant inverse relation was found between the COX-2 IDVs of the tumor vs. the stromal inflammatory component (r=-0.52, p=0.0017). When the ratio between COX-2 IDV in the tumor vs. the stromal compartment was ≤1, it was considered to indicate cervical tumor with COX-2 expression in the tumor component lower or equivalent to COX-2 expression in the stroma. According to the chosen cutoff value, 17 (51.5%) of 33 were scored as having a high (>1) tumor/stroma COX-2 IDV ratio. Patients with a high tumor/stroma COX-2 IDV ratio had a shorter disease-free survival than did those with a low tumor/stroma COX-2 IDV ratio (p=0.030). Similarly, those with a high tumor/stroma COX-2 IDV ratio had a shorter overall survival (p=0.033). Conclusion: The assessment of COX-2 status in both the tumor and the stromal compartment could provide additional information in the prognostic characterization of cervical cancer patients administered concomitant chemoradiation plus surgery

  1. Expression Pattern of Cyclooxygenase-2 in Normal Rat Epidermis and Pilosebaceous Unit during Hair Cycle

    As an important member of the cyclooxygenase isoenzymes, cyclooxygenase-2 (COX-2) mainly catalyzes the first two steps in prostanoid synthesis. In mammalian animals, although COX-2 was thought to be rarely expressed in most normal tissues and was usually upregulated in a variety of epithelial tumors and inflammatory reactions, recently it was reported that COX-2 could localize in the epidermis as well as the pilosebaceous unit of the normal human and mouse skin. Until now, the function of COX-2 in normal skin has remained unknown. To investigate the possible roles of COX-2 in normal skin by RT-PCR and immunochemistry, we studied the expression pattern of COX-2 in hair cycle of the normal rat skin. The expression of COX-2 mRNA was detected in normal rat skin sample and was related to the hair follicle cycle. When the hair cycle entered catagen and telogen, COX-2 mRNA transcription in skin increased significantly. Furthermore, the location of COX-2 immunoreactivity showed that COX-2 protein is mainly concentrated in the epidermis and pilosebaceous unit. In the stratified epidermis, the strong COX-2 protein expression was detected in the suprabasal layers of epidermis in anagen and declined in catagen and telogen. In hair follicle, COX-2 protein was obviously expressed in the outer root sheath of the anagen hair follicle, and was barely detectable in catagen as well as telogen. In the sebaceous gland, the COX-2 protein expression became more intense in catagen and telogen, with an increase in sebaceous gland size. Our results suggested that COX-2 was not specific to some abnormal tissues and was indeed involved in the normal physiology of rat skin, such as the differentiation of epidermis, the morphogenesis of the hair follicle, the transformation of hair cycle stages, and the lipid production of the sebaceous gland

  2. Immunohistochemical Expression of Cyclooxygenase-2 in Urinary Bladder Transitional Cell Carcinomas

    F Niki

    2012-07-01

    Full Text Available Background: Transitional Cell Carcinoma (TCC is the most common type of urinary bladder cancer. Cyclooxygenase-2 (COX-2, a key enzyme in prostaglandins biosynthesis, has been introduced as a new candidate for targeted therapy in this cancer. In this study, we investigated the expression of COX-2 in urinary bladder TCCs and its relationship with clinicopathological parameters such as tumor grade and stage. Methods: This cross-sectional study was performed in the Pathology department of Sina Hospital in Tehran, Iran during 2006-2011. Pathology reports of patients with definite diagnosis of urinary bladder TCCs who had undergone Transurethral Resection (TUR were reviewed and 40 cases were selected. Subsequently, COX-2 expression was assessed immunohistochemically by the examination of paraffin embedded tissue blocks. Staining in more than 5% of tumor cells was considered as positive expression. Results: COX-2 was expressed in 52.5% of the patients. High-grade tumors revealed a higher (87.5% COX-2 expression versus other grades of the lesions and there was a statistically significant difference in COX-2 expression between them (P<0.001. Patients age was also related to the expression of this marker (P=0.03. In contrast, this marker did not correlate with other characteristics including gender, lymphatic invasion or tumor stage. In addition, perineurial or vascular invasions were not detected in any of the patients. Conclusion: COX-2 expression was seen in more than half of our patients and it had a marked relation to tumor differentiation. Accordingly, this molecule may be a useful tumor marker in the assessment of urinary bladder cancers.

  3. Cyclooxygenase-2 suppresses the anabolic response to PTH infusion in mice.

    Shilpa Choudhary

    Full Text Available We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2 knockout (KO on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD, μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.

  4. Effects of aspirin on atherosclerosis and the cyclooxygenase-2 expression in atherosclerotic rabbits

    GUO Yi; WANG Qi-zhang; TANG Bing-shan; ZUO Yan-fang; LI Fang-ming; JIANG Xin; WANG Ling; MA Ke-fu

    2006-01-01

    Background Atherosclerosis is a complex vascular inflammatory disease. Aspirin is a mainstay in the prevention of vascular complications of atherosclerosis. In this study, the effectiveness of aspirin in suppressing atherosclerosis and the inflammation process was evaluated in rabbits fed with a high fat diet.Methods Eighteen male New Zealand rabbits were randomly divided into 3 groups: control group, untreated cholesterol-fed group, aspirin treated cholesterol-fed group, which were fed for 12 weeks. After 12 weeks, the aorta was harvested for pathologic morphology observation. Immunohistochemical analysis of cyclooxygenase-2 (COX-2), macrophage and vascular smooth muscle cell (VSMC) was performed. The statistical analysis was performed by the statistical program SPSS 10.0.Results The aorta plaque/intima size (P/I) by pathologic morphology observation was 0%, (59.6± 13.7)% and (36.3± 16.5)% in the control, untreated cholesterol-fed group and aspirin treated group, respectively. The maximum plaque thickness, the degree of artery stenosis and the proportion of the intimal circumference occupied by atheroma of the 3 groups were significantly different from each other (P<0.01). The expression of COX-2 and macrophage in plaque of the aspirin treated group were decreased compared with that in untreated cholesterol-fed group. However, no difference was found in the expression of VSMC between the aspirin treated and the untreated cholesterol-fed group.Conclusion The mechanism of atherosclerosis suppression by aspirin in cholesterol-fed rabbits is related to the inhibition of COX-2 expression together with the reduced inflammation followed by, but not related to the hypolipidemic effects.

  5. Survival effects of cyclooxygenase-2 and 12-lipooxygenase in Egyptian women with operable breast cancer

    A A Zeeneldin

    2009-01-01

    Full Text Available Background: Breast cancer (BC is the commonest among women in Egypt as well as in many other countries. Cyclo-oxygenase-2 (COX-2 and 12-lipo-oxygenase (12-LOX are over-expressed in 30-40% of patients and carry a poor prognosis. The objectives of this study were to correlate COX-2 and 12-LOX expression with various clinico-pathologic patients′ characteristics and their impact on overall survival (OS and disease free survival (DFS in Egyptian women with operable BC. Materials and Methods: This prospective study included 57 consecutive BC cases presenting to the Egyptian National Cancer Institute. Sections from BC and nearby normal tissues were examined for expression of COX-2 and 12-LOX using reverse transcriptase polymerase chain reaction. Results: The patients′ median age was 45 years. Fifty-three percent were premenopausal. Stage II and III disease represented 25 and 75% respectively. Adjuvant chemotherapy, radiotherapy and tamoxifen were used in 90, 75 and 60% respectively. Sixty percent had hormone-receptor positive tumors and 28% over-expressed HER2/neu. Forty-nine and sixty-five percent showed over-expression of COX-2 and 12-LOX respectively. Patients with higher TNM stage or who developed visceral metastases had significantly higher COX-2 expression. For the whole group of patients, the median DFS was 37 months, while the median OS was not reached. OS or DFS did not differ significantly between patients with normal and over-expression of COX-2. DFS but not OS was significantly higher in 12-LOX over-expression compared to normal expression. Conclusion: COX-2 over-expression was associated with poor prognostic criteria in BC, but did not affect DFS or OS. 12-LOX over-expression was associated with better DFS, but not OS.

  6. Secretory phospholipase A2 mediates progression of acute liver injury in the absence of sufficient cyclooxygenase-2

    Previous studies have shown that injury initiated by toxicants progresses even after most of the toxicant is eliminated from the body. One mechanism of progression of injury is the extracellular appearance of hydrolytic enzymes following leakage or upon cell lyses. Under normal conditions, after exposure to low to moderate doses of toxicants, secretory phospholipase A2 (sPLA2) and other hydrolytic enzymes are known to appear in the extracellular spaces in order to cleanup the post-necrotic debris in tissues. We tested the hypothesis that sPLA2 contributes to progression of toxicant-initiated liver injury because of hydrolysis of membrane phospholipids of hepatocytes in the perinecrotic areas in the absence of sufficient cyclooxygenase-2 (COX-2). Male Sprague-Dawley rats were administered either a moderately hepatotoxic dose (MD, 2 ml CCl4/kg, ip) or a highly hepatotoxic dose (HD, 3 ml CCl4/kg, ip) of CCl4. After MD, liver sPLA2 and COX-2 were co-localized in the necrotic and perinecrotic areas and their activities in plasma and liver increased before decreasing in tandem with liver injury (ALT and histopathology) leading to 100% survival. In contrast, after the HD, high extracellular and hepatic sPLA2 activities were accompanied by minimal COX-2 activity and localization in the liver throughout the time course. This led to progression of liver injury and 70% mortality. These data suggested a destructive role of sPLA2 in the absence of sufficient COX-2. Time- and dose-dependent destruction of hepatocytes by sPLA2 in isolated hepatocyte incubations confirmed the destructive ability of sPLA2 when present extracellularly, suggesting its ability to spread injury in vivo. These findings suggest that sPLA2, secreted for cleanup of necrotic debris upon initiation of hepatic necrosis, requires the co-presence of sufficiently induced COX-2 activity to prevent the run-away destructive action of sPLA2 in the absence of the tissue protective mechanisms afforded by COX-2

  7. Aspirin inhibits the proliferation of tobacco-related esophageal squamous carcinomas cell lines through cyclooxygenase 2 pathway

    ZHOU Qiao-Zhi; LIU Hai-bo; DING Xin-chun; LI Peng; ZHANG Shu-tian; YU Zhong-lin

    2007-01-01

    Background Cigarette smoking has been verified as the risk factor of esophageal squamous cell carcinoma(ESCC).Overexpression of cyclooxygenase 2(COX-2)is shown in ESCC.The objective of this study was to investigate the effects of cigarette smoking ethanol extract(EE)on the proliferation of the human ESCC cell Iines,and to explore the correlation between the proliferation rate of human ESCC cell lines and the expression pattern of COX-2.Whether aspirin can inhibit the proliferation of the ESCC cell lines pretreated with EE.and regulate the mRNA expression levels of COX-2 are also examined.Methods Two human ESCC cell Iines were selected.EC109 was poorly differentiated and EC9706 was highly differentiated.EC109 and EC9706 were treated with EE and aspirin for different time course.The cell growth of ESCC was measured by MTT reduction assay and the expression of COX-2 was measured by RT-PCR and Western blot analysis.Results EE promoted the proliferation of EC109 and EC9706 in dose- and time-dependent manners.In the concentration range (10-100 μg/ml for EE)and in the time range(24-72 hours)after addition of EE,the cell proliferation was prominent in an up-scaled manner respectively.Aspirin could inhibit the proliferation of cell lines EC109 and EC9706.pretreated with EE for 5 hours,in a dose-dependent manner.In the concentration range (0.5-8.0 mmol/L for aspirin),the cell growth inhibition was prominent in an up-scaled manner accordingly (P<0.05).The effect of EE on cell proliferation was correlated with the up-regulation of COX-2 gene.However,the cell growth inhibition of aspirin was correlated with the down-regulation of COX-2 gene.Conclusions EE can stimulate the proliferation of human ESCC cell lines EC109 and EC9706,most likely through up-regulating the expression of COX-2.Aspirin can inhibit the proliferation of ESCC cell lines induced by EE,which suggests it may be advantageous in the chemoprevention and therapy of human tobacco-related ESCC.And its effect is

  8. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional...

  9. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  10. Cyclooxygenase-2 inhibitor is a robust enhancer of anticancer agents against hepatocellular carcinoma multicellular spheroids

    Cui J

    2014-02-01

    Full Text Available Jie Cui,1,2 Ya-Huan Guo,3 Hong-Yi Zhang,4 Li-Li Jiang,1 Jie-Qun Ma,1 Wen-Juan Wang,1 Min-Cong Wang,1 Cheng-Cheng Yang,1 Ke-Jun Nan,1 Li-Ping Song5 1Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, 2Department of Oncology, Yan'an University Affiliated Hospital, Yan'an, 3Department of Oncology, Shaanxi Province Cancer Hospital, Xi'an, 4Department of Urology, Yan'an University Affiliated Hospital, Yan'an, 5Department of Radiotherapy, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, People's Republic of China Purpose: Celecoxib, an inhibitor of cyclooxygenase-2 (COX2, was investigated for enhancement of chemotherapeutic efficacy in cancer clinical trials. This study aimed to determine whether celecoxib combined with 5-fluorouracil or sorafenib or gefitinib is beneficial in HepG2 multicellular spheroids (MCSs, as well as elucidate the underlying mechanisms. Methods: The human hepatocellular carcinoma cell line HepG2 MCSs were used as in vitro models to investigate the effects of celecoxib combined with 5-fluorouracil or sorafenib or gefitinib treatment on cell growth, apoptosis, and signaling pathway. Results: MCSs showed resistance to drugs compared with monolayer cells. Celecoxib combined with 5-fluorouracil or sorafenib exhibited a synergistic action. Exposure to celecoxib (21.8 µmol/L plus 5-fluorouracil (8.1 × 10-3 g/L or sorafenib (4.4 µmol/L increased apoptosis but exerted no effect on COX2, phosphorylated epidermal growth-factor receptor (p-EGFR and phosphorylated (p-AKT expression. Gefitinib (5 µmol/L, which exhibits no growth-inhibition activity as a single agent, increased the inhibitory effect of celecoxib. Gefitinib (5 µmol/L plus celecoxib (21.8 µmol/L increased apoptosis. COX2, p-EGFR, and p-AKT were inhibited. Conclusion: Celecoxib combined with 5-fluorouracil or sorafenib or gefitinib may be superior to single-agent therapy in HepG2

  11. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn2+. Zn2+ exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn2+-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the κB-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn2+. Inhibition of NFκB activation did not block Zn2+-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn2+ exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn2+ exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn2+

  12. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2+ patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2− patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2+ and COX-2− patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT

  13. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    Mestre, Francisco [Service of Radiation Therapy, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Rodriguez, Jose [MD Anderson Cancer Center, Madrid (Spain); Ramos, Rafael [Service of Pathology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Garcia, Juan Fernando [Spanish National Cancer Research Centre, Madrid (Spain); Martinez-Serra, Jordi [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Casasus, Marta; Nicolau, Cristina [Service of Radiation Therapy, Policlinica Miramar, Palma de Mallorca (Spain); Bento, Leyre; Herraez, Ines [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain); Lopez-Perezagua, Paloma [Service of Radiology, IDISPA, Palma de Mallorca (Spain); Daumal, Jaime [Service of Nuclear Medicine, IDISPA, Palma de Mallorca (Spain); Besalduch, Joan [Service of Hematology, University Hospital Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca (Spain)

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  14. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    Castrop, H; Kammerl, M; Mann, Birgitte;

    2000-01-01

    Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) expression in the kidney are localized to the cortical thick ascending limb of the loop of Henle (cTALH), including the macula region, and increase after salt restriction. Because of the similar localization and regulation of n...... prostanoid excretion. These findings suggest that under these conditions the control of nNOS and COX-2 gene expression in the macula densa regions of the kidney cortex are not dependent on each other....

  15. Curcumin attenuates cyclooxygenase-2 expression via inhibition of the NF-κB pathway in lipopolysaccharide-stimulated human gingival fibroblasts.

    Hu, Ping; Huang, Ping; Chen, Min Wei

    2013-05-01

    Porphyromonas gingivalis lipopolysaccharide (LPS) induces the expression of the cyclooxygenase-2 (COX-2), which contributes to the process of periodontitis. Curcumin, a constituent of turmeric, exhibits anti-inflammatory properties. We have investigated the anti-inflammatory effect of curcumin in human gingival fibroblasts (HGFs) stimulated by P. gingivalis LPS and its mechanism of action. HGFs pretreated with curcumin were stimulated by P. gingivalis LPS. COX-2 mRNA and protein expressions were analysed by real-time PCR and Western blot analysis. Activation of nuclear factor kappa B (NF-κB) was analysed by the NF-κB-dependent luciferase activity and electrophoretic mobility-shift assay (EMSA). Curcumin inhibited COX-2 mRNA and protein synthesis in LPS-stimulated HGFs in a dose-dependent manner. P. gingivalis LPS activated NF-κB-dependent transcription in HGFs, which were also downregulated by pretreatment with curcumin. Therefore, curcumin can inhibit P. gingivalis LPS-induced COX-2 expression, which may be due to the inhibition of the NF-κB pathway. PMID:23494805

  16. Nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) expression in the irradiated colorectum is associated with subsequent histopathological changes

    Purpose: Recent studies have proposed that mucositis development is the same throughout the gastrointestinal tract (GIT), as it is formed from one structure embryologically. Radiation-induced oral mucositis studies have outlined the key involvement of nuclear factor κB (NFκB) and cyclooxygenase-2 (Cox-2) in its pathobiology. The purpose of this study was therefore to investigate the expression of NFκB and Cox-2 in the irradiated colorectum and to correlate these with the associated histopathologic changes. Methods and Materials: Colorectal tissues from 28 colorectal cancer patients treated with preoperative radiotherapy were analyzed for histopathologic changes using a variety of tissue staining methods. The expression of NFκB and Cox-2 in these tissues was investigated using immunohistochemistry. Changes in expression of these proteins were then correlated with the histopathologic changes. Results: Radiation therapy caused injury to the normal colorectal tissue surrounding tumor site, particularly around the blood vessels. These changes were reflected in changes in NFκB and Cox-2 expression. Conclusions: We conclude that different regions of the GIT, the colorectum, and oral cavity have similar underlying mechanisms of radiation-induced mucositis. Understanding these mechanisms will allow new approaches to be developed to specifically target steps in the evolution of alimentary mucositis

  17. Lysyl Oxidase, A Critical Intra- and Extra-Cellular Target in the Lung for Cigarette Smoke Pathogenesis

    Lijun Chen

    2011-01-01

    Full Text Available Cigarette smoke (CS, a complex chemical mixture, contains more than 4,800 different compounds, including oxidants, heavy metals, and carcinogens, that individually or in combination initiate or promote pathogenesis in the lung accounting for 82% of chronic obstructive pulmonary disease (COPD deaths and 87% of lung cancer deaths. Lysyl oxidase (LO, a Cu-dependent enzyme, oxidizes peptidyl lysine residues in collagen, elastin and histone H1, essential for stabilization of the extracellular matrix and cell nucleus. Considerable evidences have shown that LO is a tumor suppressor as exemplified by inhibiting transforming activity of ras, a proto oncogene. CS condensate (CSC, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and cadmium (Cd, major components of CS, down-regulate LO expression at such multiple levels as mRNA, protein and catalytic activity in lung cells in vitro and in vivo indicating LO as a critical intra- and extracellular target for CS pathogenesis in the lung. In view of multiple biological functions and regulation characteristics of the LO gene, molecular mechanisms for CS damage to lung LO and its role in emphysema and cancer pathogenesis are discussed in this review.

  18. Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke.

    Lu, Jianli; Zhang, Leichen; Lewis, Ramsey S; Bovet, Lucien; Goepfert, Simon; Jack, Anne M; Crutchfield, James D; Ji, Huihua; Dewey, Ralph E

    2016-07-01

    Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field-grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well-documented animal carcinogens found in tobacco products. PMID:26800860

  19. Tobacco-specific N-nitrosamines NNN and NNK levels in cigarette brands between 2000 and 2014.

    Gunduz, I; Kondylis, A; Jaccard, G; Renaud, J-M; Hofer, R; Ruffieux, L; Gadani, F

    2016-04-01

    The evolution of the levels of tobacco-specific N-nitrosamines (TSNA), N-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in mainstream (MS) cigarette smoke is investigated based on smoke and tobacco chemistry data of cigarette brands sold by Philip Morris International (PMI) between 2000 and 2014. A total of 315 cigarette samples representing a wide range of product and design characteristics manufactured by PMI between 2008 and 2014 were analyzed and compared to a previously published dataset of PMI brands manufactured in 2000. The data indicate that there is a substantial reduction of NNN and NNK levels in tobacco fillers and MS cigarette smoke per mg of tar and per mg of nicotine using Health Canada Intense (HCI) machine-smoking regime. This observed reduction in NNN and NNK levels in MS cigarette smoke is also supported by the downward trend observed on NNN and NNK levels in USA flue-cured Virginia and Burley tobacco lots from 2000 to 2014 crops, reflecting effectiveness of measures taken on curing and agricultural practices designed to minimize TSNA formation in tobacco. PMID:26806560

  20. Genotoxicity study on nicotine and nicotine-derived nitrosamine by accelerator mass spectrometry

    The authors have studied DNA adduction with 14C-labelled nicotine and nicotine-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by accelerator mass spectrometry (AMS) in mouse liver at doses equivalent to low-level exposure of humans. The dose ranges of nicotine and NNK administered were from 0.4 μg to 4.0 x 102 μg·kg-1, and from 0.1 μg to 2.0 x 104 μg·kg-1, respectively. In the exposure of mice to either nicotine or NNK, the number of DNA adducts increased linearly with increasing dose. The detection limit of DNA adducts was 1 adduct per 1011 nucleotide molecules. This limit is 1-4 orders of magnitude lower than that of other techniques used for quantification of DNA adducts. The results of the animal experiments enabled us to speculate that nicotine is a potential carcinogen. According to the procedure for 14C-labelled-NNK synthesis, the authors discuss the ultimate chemical speciation of NNK bound to DNA. From the animal tests the authors derived a directly perceivable relation between tobacco consumption and DNA adduction as the carcinogenic risk assessment

  1. Strain-Specific Spontaneous and NNK-Mediated Tumorigenesis in Pten+/− Mice

    Mary Christine Hollander

    2008-08-01

    Full Text Available Pten is a negative regulator of the Akt pathway, and its inactivation is believed to be an etiological factor in many tumor types. Pten+/- mice are susceptible to a variety of spontaneous tumor types, depending on strain background. Pten+/- mice, in lung tumor-sensitive and -resistant background strains, were treated with a tobacco carcinogen, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, to determine whether allelic Pten deletion can cooperate with NNK in carcinogenesis in lung or other tissues. In lung tumor-resistant C57BL/6 Pten+/- or +/+ mice, NNK treatment did not lead to any lung tumors and did not increase the incidence or severity of tumors previously reported for this strain. In contrast, in a lung tumor-susceptible pseudo-A/J strain, there was a dose-dependent increase in lung tumor size in Pten+/- compared with +/+ mice, although there was no increase in multiplicity. No other tumor types were observed in pseudo-A/J Pten+/- mice regardless of NNK treatment. Lung tumors from these Pten+/- mice had K-ras mutations, retained Pten expression and had similar Akt pathway activation as lung tumors from +/+ mice. Therefore, deletion of a single copy of Pten does not substantially add to the lung tumor phenotype conferred by mutation of K-ras by NNK, and there is likely no selective advantage for loss of the second Pten allele in lung tumor initiation.

  2. NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication

    Yan, Wei; Yun, Yang; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-03-01

    Air pollution has been reported to be associated with increased risks of cognitive impairment and neurodegenerative diseases. Because NO2 is a typical primary air pollutant and an important contributor to secondary aerosols, NO2-induced neuronal functional abnormalities have attracted greater attention, but the available experimental evidence, modulating mechanisms, and targeting medications remain ambiguous. In this study, we exposed C57BL/6J and APP/PS1 mice to dynamic NO2 inhalation and found for the first time that NO2 inhalation caused deterioration of spatial learning and memory, aggravated amyloid β42 (Aβ42) accumulation, and promoted pathological abnormalities and cognitive defects related to Alzheimer’s disease (AD). The microarray and bioinformation data showed that the cyclooxygenase-2 (COX-2)-mediated arachidonic acid (AA) metabolism of prostaglandin E2 (PGE2) played a key role in modulating this aggravation. Furthermore, increasing endocannabinoid 2-arachidonoylglycerol (2-AG) by inhibiting monoacylglycerol lipase (MAGL) prevented PGE2 production, neuroinflammation-associated Aβ42 accumulation, and neurodegeneration, indicating a therapeutic target for relieving cognitive impairment caused by NO2 exposure.

  3. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  4. Protective effects of 2,3-diaryl-substituted indole-based cyclooxygenase-2 inhibitors on oxidative modification of human low density lipoproteins in vitro.

    Pietzsch, Jens; Laube, Markus; Bechmann, Nicole; Pietzsch, Franz-Jacob; Kniess, Torsten

    2016-01-01

    It has been suggested that 2,3-diaryl-substituted indole-based cyclooxygenase-2 (COX-2) inhibitors (2,3-diaryl-indole coxibs) do not only appear as potent anti-inflammatory agents but also show the ability to scavenge reactive oxygen species (ROS). This led to the hypothesis that 2,3-diaryl-indole coxibs also may act as potent inhibitors of oxidative modification of low-density lipoprotein (LDL), which is considered a key factor in atherogenesis. The aim of this study was to explore i) the reactivity of a series of new synthesized 2,3-diaryl-indoles with several well characterized LDL oxidation systems and ii) subsequent effects on an inflammatory/atherogenic microenvironment. The results demonstrate that under the present experimental conditions2,3-diaryl-indoles showed potent ROS scavenging activity and were able to markedly inhibit LDL oxidation. Subsequently, this led to a substantial decrease of modified LDL uptake by scavenger receptors in THP-1 macrophages in vitro and in rats in vivo. Moreover, modified LDL-mediated monocyte/neutrophil adhesion to endothelial cells, macrophage NFκB activation, as well as macrophage and endothelial cell cytokine release was diminished in vitro. The reduction of modified LDL-induced atherogenic effects by antioxidant 2,3-diaryl-indole coxibs may widen the therapeutic window of COX-2 targeted treatment. PMID:25547413

  5. Clinical significance of cyclooxygenase-2 expression in extranodal natural killer (NK)/T-cell lymphoma, nasal type

    Purpose: To determine whether there are any differences in therapeutic response, patterns of systemic recurrence, and prognosis of patients with extranodal natural killer (NK)/T-cell lymphoma, nasal type, by the cyclooxygenase-2 (COX-2) expression. Patients and Methods: Thirty-four patients with Ann Arbor Stage I and II extranodal NK/T-cell lymphoma who underwent chemotherapy or radiotherapy, or both, were retrospectively reviewed. These patients were divided into two groups according to their immunohistochemical staining for COX-2 expressions: a COX-2-negative group (n = 10 patients) and a COX-2-positive group (n = 24 patients). The treatment response, patterns of treatment failure, and survival data for the patients were compared between the COX-2-positive and negative groups. Results: There was no significant difference in the clinical profiles between the COX-2-negative and COX-2-positive groups. All patients (100%) in the COX-2-negative group achieved complete response after initial treatment, whereas only 14 patients (58%) in the COX-2-positive group achieved complete response (p = 0.03). Compared with the patients in the COX-2-negative group, those in the COX-2-positive group had a significantly lower 2-year systemic recurrence-free survival rate (100% for the COX-2-negative group vs. 54% for the COX-2-positive group) (p = 0.02) and a decreased 5-year overall survival rate (70% for the COX-2-negative group vs. 32% for the COX-2-positive group) (p = 0.06). Conclusion: Cyclooxygenase-2 expression can serve as a predictive factor for poor treatment response, higher systemic recurrence, and unfavorable prognosis in patients with extranodal NK/T-cell lymphoma, nasal type

  6. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita.

    Shantanu Shukla

    Full Text Available Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2 activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was -52.35 KCal/mol against a binding free energy of -8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the

  7. Effects of Acute and Chronic Cold Stress on Expression of Cyclooxygenase-2 and Prostaglandin E Synthase mRNA in Quail Intestine

    J Fu, CP Liu1, ZW Zhang1, W Liao2 and SW Xu1,*

    2013-07-01

    Full Text Available The cold temperature, a common environmental stress, reduces the immunity and re-production activities of the poultry. This study aims to investigate the role of acute and chronic cold exposure in the regulation of cyclooxygenase-2 (COX-2 and prostaglandin E synthase (PTGES expression in the duodenum, jejunum, and ileum of quail. A total of 96 quail with 15 days of age were randomly allocated into 12 groups (8 each group for exposure to acute (up to 12 h and chronic (up to 20 days cold temperature (12±1°C. After that, different segments of the intestine were harvested and subjected to morphology observations under the light and electronic microscopes. qRT-PCR was performed to analyze expression of COX-2 and PTGES, and DNA sequencing was performed to analyze PCR products. The data showed that under acute cold stress, expression of COX-2 and PTGES mRNA was first decreased and then increased in the duodenum, jejunum, and ileum of quail. However, chronic cold stress induced expression of COX-2 and PTGES mRNA in the duodenum, jejunum and ileum of quail, which was then reduced after 20 days of cold exposure. Morphologically, significant changes were also observed in the duodenum, jejunum and ileum after both acute and chronic cold stresses to the animals. The data from the current study indicated that both acute and chronic cold stresses were able to induce inflammation responses in the duodenum, jejunum and ileum, which might be due to the cold-damaged intestinal morphology.

  8. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  9. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B2 receptor agonist) and des-Arg9-bradykinin- (selective B1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE2. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg9-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B2 receptors, but not those on B1. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma. - Highlights:

  10. Helicobacter pylori, cyclooxygenase-2 and evolution of gastric lesions: results from an intervention trial in China.

    Zhang, Yang; Pan, Kai-Feng; Zhang, Lian; Ma, Jun-Ling; Zhou, Tong; Li, Ji-You; Shen, Lin; You, Wei-Cheng

    2015-12-01

    To investigate the role of cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) in the process of Helicobacter pylori-induced gastric carcinogenesis, a prospective study based on an intervention trial was conducted in Linqu County, China. A total of 1401 subjects with histopathologic diagnosis were investigated at baseline, among those, 919 completed subsequent interventions (anti-H.pylori and/or celecoxib treatment). Expressions of COX-2 and Ki-67 were assessed by immunohistochemistry, and PGE2 levels were measured by enzyme immunoassay before and after interventions, respectively. We found a grade-response relationship between COX-2 expression level and risk of advanced gastric lesions at baseline. Stratified analysis indicated an additive interaction between COX-2 expression and H.pylori infection on the elevated risk of advanced gastric lesions. The odds ratios (ORs) for both factors combined were 9.31 [95% confidence interval (CI): 4.13-20.95] for chronic atrophic gastritis, 16.26 (95% CI: 7.29-36.24) for intestinal metaplasia and 21.13 (95% CI: 7.87-56.75) for dysplasia, respectively. After interventions, COX-2 expression and Ki-67 labeling index (LI) were decreased in anti-H.pylori group (OR: 1.65, 95% CI: 1.36-1.99 for COX-2; OR: 1.78, 95% CI: 1.49-2.12 for Ki-67) or anti-H.pylori followed by celecoxib group (OR: 1.41, 95% CI: 1.17-1.70 for COX-2; OR: 1.63, 95% CI: 1.37-1.94 for Ki-67). PGE2 levels were decreased in all treatment groups. Furthermore, the regression of gastric lesions was associated with the decrease of COX-2 expression or Ki-67 LI after interventions. Our findings indicate that H.pylori-induced COX-2/PGE2 pathways play an important role on the progression of precancerous gastric lesions in a Chinese population. PMID:26449252

  11. Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion.

    Nithipatikom, Kasem; Isbell, Marilyn A; Lindholm, Paul F; Kajdacsy-Balla, Andre; Kaul, Sushma; Campell, William B

    2002-01-01

    The PC-3 Low Invasive cells and the PC-3 High Invasive cells were used to investigate the correlation of the COX-2 expression and its arachidonic acid metabolites, prostaglandins, with their invasiveness through Matrigel using a Boyden chamber assay. The COX-2 expression in PC-3 High Invasive cells was approximately 3-fold higher than in PC-3 Low Invasive cells while the COX-1 expression was similar in both cell sublines. When incubated with arachidonic acid, PGE2 was the major prostaglandin produced by these cells. PC-3 High Invasive cells produced PGE2 approximately 2.5-fold higher than PC-3 Low Invasive cells. PGD2 was the second most abundant prostaglandin produced by these cells. Both indomethacin (a nonspecific COX inhibitor) and NS-398 (a specific COX-2 inhibitor) inhibited the production of prostaglandins and the cell invasion. PGE2 alone did not induce the cell invasion of PC-3 Low Invasive cells. However, PGE2 reversed the inhibition of cell invasion by NS-398 and enhanced the cell invasion of the PC-3 High Invasive cells. In contrast, PGD2 slightly inhibited the cell invasion. These results suggest that in the PC-3 Low Invasive cells, COX-2-derived PGE2 may not be sufficient to induce cell invasion while in the PC-3 High Invasive cells, PGE2 may be sufficient to act as an enhancer for the cell invasion. Further, PGD2 may represent a weak inhibitor and counteracts the effect of PGE2 in the cell invasion. PMID:12498388

  12. Interleukin-6 and Cyclooxygenase-2 downregulation by fatty-acid fractions of Ranunculus constantinopolitanus

    Al-Saghir Jamal A

    2009-11-01

    (1:5:8:1 ratio, reduced ET-induced IL-6 levels in SCp2 cells without affecting cell viability or morphology. When compared to fish oil, conjugated linoleic acid (CLA and to individual FAs as palmitic, linoleic, oleic and stearic acid or to a mix of these FAs (1:5:8:1 ratio, Y2+3 exhibited higher potency in reducing ET-induced IL-6 levels within a shorter period of time. Y2+3 also reduced COX-2 expression in IL-1-treated Mode-K cells. Conclusion Our studies demonstrate the existence of potential anti-inflammatory bioactivities in R. constantinopolitanus and attribute them to a FA mix in this plant.

  13. The Expression of Cyclooxygenase-2 in Cervical Cancers and Hela Cells Was Regulated by Estrogen/Progestogen

    LI Yunguang; PU Demin; LI Yanli

    2007-01-01

    To investigate the relationship between the expression of cyclooxygenase-2 (COX-2) and menstrual cycle, the regulatory effects of 17-β-estradiol (E2) and medroxyprogesterone acetate (MPA) on the expression of COX-2 in cervical cancer Hela cells were examined. Cervical cancer specimens were obtained from 47 pre-menopausal patients. The phase of menstrual cycle was determined by case history and HE staining of uterine endometrium. COX-2 was immunohistochemically stained by SABC staining and the staining intensity was determined with computerized image analysis system.Hela cells were incubated with alcohol, E2, E2+MPA, MPA for 12, 24 and 48 h respectively. The expression of COX-2 in Hela cells was detected by Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Our results showed that the expression of COX-2 was significantly higher during proliferative phase than secretory phase (P<0.05), but there was no difference in the positive rate between proliferative phase and secretory phase (P>0.05). Incubation with E2 could significantly enhance the expression of COX-2 continually. On the contrary, E2+MPA and MPA alone could decrease the expression of COX-2 as compared with the control and E2 group (P<0.05 and P<0.01 respectively). It is concluded that the expression of COX-2 in cervical cancer of pre-menopausal patients and Hela cells was regulated by estrogen/progestogen.

  14. Design and synthesis of [(125)I]Pyricoxib: A novel (125)I-labeled cyclooxygenase-2 (COX-2) inhibitors.

    Tietz, Ole; Dzandzi, James; Bhardwaj, Atul; Valliant, John F; Wuest, Frank

    2016-03-15

    Cyclooxygenase-2 (COX-2) is the key enzyme in the prostaglandin synthesis pathway which is involved in various pathophysiological conditions. The enzyme is membrane bound and located inside of the endoplasmic reticulum and nuclear membrane. Effective perfusion of inhibitors to the active site requires lipophilic drugs, which consequently display high unspecific background accumulation, for example, in fatty tissues. The objective of this work was the development of a small molecule radiolabeled with a long-lived iodine radioisotope to enable longer imaging times and better target-to-background ratios. A group of iodinated compounds (8-10) was synthesized and identified as selective COX-2 inhibitors (COX-2 IC50=0.85-13 μM). Molecular docking results provided the theoretical support for the experimental COX-2 inhibition data. Furthermore, a novel (125)I-containing trifluoro-pyrimidine compound ([(125)I]Pyricoxib) was prepared via radioiododestannylation reaction as potent and selective COX-2 inhibitor. Radiosynthesis of [(125)I]Pyricoxib was accomplished with innovative fluorous chemistry using fluorous chloroamine-T (F-CAT) as novel oxidizing agent in high radiochemical yields of 91 ± 4%. PMID:26898334

  15. Quantitative assessment of the association of COX-2 (Cyclooxygenase-2 immunoexpression with prognosis in human osteosarcoma: a meta-analysis.

    Zhe Wang

    Full Text Available BACKGROUND: Numerous studies examining the relationship between Cyclooxygenase-2 (COX-2 immunoexpression and clinical outcome in osteosarcoma patients have yielded inconclusive results. METHODS: We accordingly conducted a meta-analysis of 9 studies (442 patients that evaluated the correlation between COX-2 immunoexpression and clinical prognosis (death. Pooled odds ratios (OR and risk ratios (RR with 95% confidence intervals (95% CI were calculated using the random-effects or fixed-effects model. RESULTS: Meta-analysis showed no significant association between COX-2 positivity and age, gender, tumor location, histology, stage, metastasis or 90% necrosis. Conversely, COX-2 immunoexpression was associated with overall survival rate (RR=2.12; 95% CI: 1.10-3.74; P=0.009 and disease-free survival rate (RR=1.63; 95% CI: 1.17-2.28; P=0.004 at 2 years. Sensitivity analysis performed by omitting low quality studies showed that the pooled results were stable. CONCLUSIONS: COX-2 positivity was associated with a lower 2-year overall survival rate and disease-free survival rate. COX-2 expression change is an independent prognostic factor in patients with osteosarcoma.

  16. Effects of IL-4 on cyclooxygenase-2 and platelet-derived growth factor in the lungs of COPD rats

    Yan Li; Shengdao Xiong; Weining Xiong; Yongjian Xu

    2007-01-01

    Objective: To explore the role of interleukin 4 (IL-4), expressions of cyclooxygenase-2 (COX-2) and platelet-derived growth factor (PDGF) in the model of chronic obstructive pulmonary disease (COPD), in the lungs of rats. Methods: Male Wistar rats were used to build up the model of COPD. Rats were randomly divided into the control group and model group, the IL-4 group and the dexamethasone group. The expressions of COX-2, PDGF-A and PDGF-B in the lung tissue were detected by western blotting and RT-PCR. Results: The expressions of COX-2, PDGF-A and PDGF-B in the model group were increased significantly.Those expressions in the IL-4 and dexamethasone group were notably decreased. Conclusion: IL-4 and dexamethasone could interfere in the establishment of COPD. The expressions of COX-2 and PDGF in the lung tissue of COPD were increased significantly and IL-4 and dexamethasone could decrease those expressions.

  17. Isomeric iodinated analogs of nimesulide: Synthesis, physicochemical characterization, cyclooxygenase-2 inhibitory activity, and transport across Caco-2 cells.

    Yamamoto, Yumi; Arai, Jun; Hisa, Takuya; Saito, Yohei; Mukai, Takahiro; Ohshima, Takashi; Maeda, Minoru; Yamamoto, Fumihiko

    2016-08-15

    Isomeric iodinated derivatives of nimesulide, with an iodine substituent on the phenoxy ring, were prepared with the aim of identifying potential candidate compounds for the development of imaging agents targeting cyclooxygenase-2 (COX-2) in the brain. Both the experimental logP7.4 and pKa values for these iodinated analogs were in the acceptable range for passive brain penetration. The para-iodo-substituted analog was a more potent and selective COX-2 inhibitor than nimesulide, with a potency that was comparable to the reference drug, celecoxib. Iodination at the ortho- or meta-position of the phenoxy ring was associated with a substantial loss of COX-2 inhibitory activity. Transport studies across Caco-2 cell monolayers in the presence and absence of a P-glycoprotein (P-gp) inhibitor, verapamil, indicated that the para-iodo-substituted analog was not a P-gp transport substrate; this feature is a prerequisite for potential in vivo brain imaging compounds. The para-iodo-substituted analog of nimesulide appears to be an attractive candidate for the development of radioiodine-labeled tracers for in vivo brain imaging of COX-2 levels. PMID:27325447

  18. CYCLO-OXYGENASE 2 IS PRESENT IN THE MAJORITY OF LESIONAL SKIN FROM PATIENTS WITH AUTOINMUNE BLISTERING DISEASES

    Ana Maria Abreu Velez

    2013-10-01

    Full Text Available Introduction: The in situ immune response within skin biopsies from patients affected by autoimmune skin blistering diseases (ABDs is not well characterized. Aim: Based on the fact that the ABD immune response is considered an adaptive immune response, both an innate immune response and inflammation would be expected in these diseases. Our investigation investigates the presence of cyclo-oxygenase-2 (COX-2, since this enzyme is commonly involved in innate immune responses. Methods: We utilized immunohistochemistry (IHC to evaluate the presence of COX-2 in lesional skin biopsies of patients affected by ABDs. We tested 30 patients with endemic pemphigus foliaceus (EPF, 15 controls from the endemic area, and 15 biopsies from healthy controls from the USA. We also tested archival biopsies from patients with selected ABDs, including 20 patients with bullous pemphigoid, 20 with pemphigus vulgaris, 8 with pemphigus foliaceus and 12 with dermatitis herpetiformis. Results: Most ABD biopsies stained positive for COX-2 in the lesional blister and/or the dermal inflammatory infiltrate, accentuated in the upper neurovascular plexus. In BP and EPF, the COX-2 staining was also seen in the sweat glands. All controls were negative. Conclusions: We document that COX-2 is expressed in lesional skin of patients with ABDs.

  19. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dose-dependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  20. Selective cyclooxygenase-2 inhibition prevents bone resorption Inibidor seletivo de cicloxigenase-2 prevenindo reabsorção óssea

    Carlos Augusto Nassar

    2005-03-01

    Full Text Available The aim of the present work was to evaluate the effect of a selective cyclooxygenase-2 (COX-2 inhibitor (meloxicam on the alveolar bone loss progression in experimentally induced periodontitis. Forty (40 Wistar rats were separated into 8 experimental groups (n = 5. Cotton ligatures were placed at the gingival margin level of the lower right first molars of some rats. Four groups were treated for 5 or 15 days with an oral dose of 15 mg/kg of body weight/day of the selective COX-2 inhibitor. The other groups were used as positive control (sham or negative control in each experimental period. Standardized digital radiographs were taken after sacrifice at 5 and 15 days to measure the amount of bone loss at the mesial root surface of the first molar tooth in each rat. The treatment with meloxicam did not induce weight alteration or other visible systemic manifestations. One way analysis of variance (ANOVA indicated that groups treated with meloxicam, after 5 days, had significantly less alveolar bone loss (p O objetivo deste trabalho foi avaliar o efeito de um inibidor seletivo da cicloxigenase-2 (COX-2 (meloxicam na progressão da perda óssea alveolar durante o desenvolvimento da doença periodontal experimental induzida. Quarenta (40 ratos Wistar foram separados em 8 grupos experimentais (n = 5. Ligaduras de fio de algodão foram colocadas na margem gengival do primeiro molar inferior direito de alguns ratos. Quatro grupos foram tratados por 5 ou 15 dias com uma dose oral de 15 mg/kg de peso corporal/dia do inibidor seletivo de COX-2. Os outros grupos foram usados como controle positivo (sham e controle negativo dentro de cada período experimental. Radiografias digitais padronizadas foram realizadas para medir a perda óssea na região mesial do primeiro molar inferior de cada rato. O efeito do tratamento com meloxicam não induziu alteração de peso ou outras manifestações sistêmicas visíveis. A Análise de Variância (ANOVA indicou que os

  1. Epithelium-specific Ets transcription factor-1 acts as a negative regulator of cyclooxygenase-2 in human rheumatoid arthritis synovial fibroblasts

    Lee, Chan-Mi; Gupta, Sahil; Wang, Jiafeng; Johnson, Elizabeth M.; Crofford, Leslie J.; Marshall, John C.; Kapoor, Mohit; Hu, Jim

    2016-01-01

    Background Rheumatoid arthritis (RA) is characterized by excessive synovial inflammation. Cyclooxygenase-2 (COX-2) is an enzyme that catalyzes the conversion of arachidonic acid (AA) into prostaglandins. Epithelium-specific Ets transcription factor-1 (ESE-1) was previously demonstrated to upregulate COX-2 in co-operation with nuclear factor kappa B (NFκB) in macrophages and chondrocytes. However, the role of ESE-1 in RA pathology has remained unclear. In this study, we aimed to elucidate the ...

  2. Cyclooxygenase-2 transactivates the epidermal growth factor receptor through specific E-prostanoid receptors and Tumor Necrosis Factor-α converting enzyme

    Al-Salihi, Mazin A.; Ulmer, Scott C.; Doan, Thao; Nelson, Cory D.; Crotty, Tracy; Prescott, Stephen M.; Stafforini, Diana M.; Topham, Matthew K.

    2007-01-01

    Cyclooxygenase-2 is often highly expressed in epithelial malignancies and likely has an active role in tumor development. But how it promotes tumorigenesis is not clearly defined. Recent evidence suggests that this may involve transactivation of the epidermal growth factor receptor through E-prostanoid receptors, but reports differ about the mechanism by which this occurs. We found that E-prostanoid receptors 2–4, but not 1, transactivated the epidermal growth factor receptor. This required m...

  3. Up-Regulation of Cyclooxygenase 2 and Matrix Metalloproteinases-2 and -9 in Cutaneous Squamous Cell Carcinoma: Active Role of Inflammation and Tissue Remodeling in Carcinogenesis

    Lee, Jeong-Hoon; Piao, Mei Shan; Choi, Jee-Young; Yun, Sook Jung; Lee, Jee-Bum; Lee, Seung-Chul

    2013-01-01

    Background Tissue inflammation and remodeling have been extensively studied in various tumors in relation with their invasiveness and metastasis. Objective The purpose of this study was to investigate the change in tissue inflammation and remodeling markers in cutaneous squamous cell carcinoma (SCC). Methods Expression levels of cyclooxygenase-2 (COX-2) as an inflammatory marker and matrix metalloproteinases-2 and -9 (MMPs 2/9) as remodeling markers were studied in mouse and human SCCs. Weste...

  4. Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells

    Ganesh Radhakrishnan

    2012-09-01

    Full Text Available Abstract Background Arachidonic acid metabolite, generated by cyclooxygenase (COX, is implicated in the colorectal cancer (CRC pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX pathway. Cancer cell viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2. Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if this process antagonizes the anti-cancer effect in colorectal cancer cells. Methods Three colorectal cancer cell lines (HCA7, HT-29 & LoVo expressing 5-LOX and different levels of COX-2 expression were used. The effects of aspirin (a non-selective COX inhibitor and rofecoxib (COX-2 selective on prostaglandin E2 (PGE2 and leukotriene B4 (LTB4 secretion were quantified by ELISA. Proliferation and viability were studied by quantifying double-stranded DNA (dsDNA content and metabolic activity. Apoptosis was determined by annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent substrate assay. Results COX inhibitors suppressed PGE2 production but enhanced LTB4 secretion in COX-2 expressing cell lines (P  Conclusions This study provides evidence of shunting between COX and 5-LOX pathways in the presence of unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors.

  5. Expression of Prostaglandin-Synthesizing Enzymes (Cyclooxygenase 1, Cyclooxygenase 2) in the Ovary of the Quail (Coturnix japonica).

    Rodler, D; Sinowatz, F

    2015-01-01

    Cyclooxygenase is known to be the ratelimiting enzyme in the production of prostaglandins. So far, in different bird species there have been found two isoforms of cyclooxygenases (COX), cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). These isoforms along with prostaglandins are regarded to possess a determining influence on the success in female reproduction. Only in a few bird species the expression sites of cyclooxygenases have been investigated. In this study we report on the expression of COX-1 and COX-2 in the ovary of the quail (Coturnix japonica) using PCR, immunohistochemistry and non-radioactive in situ hybridization techniques. Using real time-polymerase chain reaction (RT-PCR), a distinct signal for COX-1 and COX-2 could be shown in small and large follicles of quail ovary. Antibodies to COX-1 distinctly labelled smooth muscle cells of the stroma, whereas COX-2 showed marked immunostaining in the thecal glands and the ovarian surface epithelium. In the same location, a signal of the corresponding mRNAs of COX-1 and COX-2 was found using in situ hybridization. This expression pattern in the quail is therefore completely different from the localization of COX-1 and COX-2 in the hen and ostrich, which suggests different functions of the cyclooxygenases in this small galliform avian species. According to our results, in quails COX-2 is involved in the synthesis of prostaglandins in the ovary's interstitial glands, which until now have been considered mainly as steroid-secreting cells. COX-1, which is expressed in the smooth muscles of the stroma, possibly plays a role in ovulation. PMID:26441201

  6. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    Zhiqiang Li; Qingming Shu; Lingzhi Li; Maolin Ge; Yongliang Zhang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott’s method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cycloox-ygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and pro-tein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury.

  7. Characterization of the effects of cyclooxygenase-2 inhibition in the regulation of apoptosis in human small and non-small cell lung cancer cell lines.

    Alam, Mahmood

    2012-02-03

    BACKGROUND: Cyclooxygenase-2 enzyme (COX-2) is overexpressed in human non-small cell lung cancer (NSCLC) but is not expressed in small cell lung cancer. Selective COX-2 inhibitors have been shown to induce apoptosis in NSCLC cells, an effect which is associated with the regulation of intracellular MAP kinase (MAPK) signal pathways. Our aims were to characterize the effects of COX-2 inhibition by rofecoxib on apoptosis in human NSCLC and small cell lung cancer cell lines. METHODS: The human NSCLC cell line NCI-H2126 and small cell lung cancer cell line DMS-79 were used. Constitutive COX-2 protein levels were first determined by Western blot test. Levels of apoptosis were evaluated by using propidium iodide staining on FACScan analysis after incubation of NCI-H2126 and DMS-79 with p38 MAPK inhibitor SB202190 (25 ?microM), NF-kappaB inhibitor SN50 (75 microg\\/mL), and rofecoxib at 100 and 250 microM. All statistical analysis was performed by analysis of variance. RESULTS: Western blot test confirmed the presence of COX-2 enzyme in NCI-H2126 and absence in DMS-79. Interestingly, rofecoxib treatment demonstrated a dose-dependent increase in apoptosis in both cell lines. Given this finding, the effect of rofecoxib on NF-kappaB and p38 MAPK pathways was also examined. Apoptosis in both cell lines was unaltered by SN50, either alone or in combination with rofecoxib. A similar phenomenon was observed in NCI-H2126 cells treated with SB202190, either alone or in combination with rofecoxib. In contrast, p38 MAPK inhibition greatly upregulated DMS-79 apoptosis in a manner that was unaltered by the addition of rofecoxib. CONCLUSIONS: Rofecoxib led to a dose-dependent increase in apoptosis in both tumor cell lines. This effect occurred independently of COX-2, NF-kappaB, and p38 MAPK pathways in DMS-79 cells. As such, rofecoxib must act on alternative pathways to regulate apoptosis in human small cell lung cancer cells.

  8. Cyclo-oxygenase-2 selective inhibitors and nonsteroidal anti-inflammatory drugs: balancing gastrointestinal and cardiovascular risk

    McQuay Henry J

    2007-08-01

    Full Text Available Abstract Background Differences between gastrointestinal and cardiovascular effects of traditional NSAID or cyclooxygenase-2 selective inhibitor (coxib are affected by drug, dose, duration, outcome definition, and patient gastrointestinal and cardiovascular risk factors. We calculated the absolute risk for each effect. Methods We sought studies with large amounts of information to calculate annualised rates for clearly defined gastrointestinal (complicated upper gastrointestinal perforations, ulcers, or bleeds, but not symptomatic or endoscopic ulcers and serious cardiovascular outcomes (antiplatelet trial collaborators – APTC – outcome of fatal or nonfatal myocardial infarction or stroke, or vascular death. Results Meta-analyses and large randomised trials specifically analysing serious gastrointestinal bleeding or cardiovascular events occurring with five different coxibs had appropriate data. In total there were 439 complicated upper gastrointestinal events in 49,006 patient years of exposure and 948 serious cardiovascular events in 99,400 patient years of exposure. Complicated gastrointestinal events occurred less frequently with coxibs than NSAIDs; serious cardiovascular events occurred at approximately equal rates. For each coxib, the reduction in complicated upper gastrointestinal events was numerically greater than any increase in APTC events. In the overall comparison, for every 1000 patients treated for a year with coxib rather than NSAID, there would be eight fewer complicated upper gastrointestinal events, but one more fatal or nonfatal heart attack or stroke. Three coxib-NSAID comparisons had sufficient numbers of events for individual comparisons. For every 1000 patients treated for a year with celecoxib rather than an NSAID there would be 12 fewer upper gastrointestinal complications, and two fewer fatal or nonfatal heart attacks or strokes. For rofecoxib there would be six fewer upper gastrointestinal complications, but three

  9. Experimental study on selective cyclooxygenase-2 inhibitor combined with radiotherapy for human prostate carcinoma xenografts in nude mice

    Objective: To investigate the anti-tumor and radiation-enhancement effects and observe a coordinate repression of celecoxib, a selected cyclooxygenase -2 inhibitor in prostate carcinoma. Methods: An animal model of human prostate carcinoma in BALC/C male nude mice was establised by injecting suspension of PC-3 cells and the mice were randomly divided into 4 groups which were interfered with celecoxib, radiation, and both celecoxib and radiation respectively, with 6 rats in each group. The effect of treatment was assessed by tumor growth delay (TGD) and radiosensitization enhancement effector (EF); the tumor tissues were collected and assessed for the detection of cyclooxygense-2 mRNA and prostaglandin E2 by RT-PCR and ELISA, and histopathological changes of transplanted mouse's important organs were observed. Results: The time that the longest diameters of all tumors growing from 8.0mm to 12.0mm for the control group and the celecoxib group was(6.18 ± 0.72)d and(7.87 ± 0.76)d, respectively ,while the time for the radiation group and celecoxib + radiation group was (9.16 ± 0.89)d and (12.62 ± 1.28)d respectively. The growth of tumors was significantly different among these groups (P2 levels between the control group and other groups (P2 levels between the radiation group and celecoxib + radiation group (P>0.05). Significant correlations were found between the growth delayed by celecoxib and the drop of prostaglandin E2 levels (r=0.807); Analysis of variance showed that there was no significant difference in cyclooxygense-2 mRNA among these four groups (P > 0.05). No significant toxic pathological changes of transplanted mouse's important organs were observed. Conclusion: Our results suggest a coordinative repression between celecoxib and radiation in inhibiting human prostate carcinoma xenografts by the anti-tumor and radiation-enhancement, which is safe and effective in some extent and may contribute to enlighten the future study and clinical therapy of

  10. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  11. Analysis of proteins associated with the expression of cyclooxygenase-2 and the biosynthesis of PGE2 in breast cancer cells with different metastatic potential

    V. E. Shevchenko

    2014-07-01

    Full Text Available The proteome of lysates of the breast tumor cell lines MCF-7, BT-474, and ZR-75-1 was mapped, resulting in the sequence of 340 proteins. The proteins associated with the biosynthesis of PGE2 and with the regulation of cyclooxygenase-2 expression were identified and their relative expression levels were determined. Potential goals for the targeted therapy of breast cancer, such as prostaglandin E2 and D2 receptors, pros- taglandin E synthase, 15-hydroxyprostaglandin dehydrogenase and leukotriene-A4 -hydrolase, are of special interest in this group.

  12. Effects of Acute and Chronic Cold Stress on Expression of Cyclooxygenase-2 and Prostaglandin E Synthase mRNA in Quail Intestine

    J Fu, CP Liu1, ZW Zhang1, W Liao2 and SW Xu1,*

    2013-01-01

    The cold temperature, a common environmental stress, reduces the immunity and re-production activities of the poultry. This study aims to investigate the role of acute and chronic cold exposure in the regulation of cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES) expression in the duodenum, jejunum, and ileum of quail. A total of 96 quail with 15 days of age were randomly allocated into 12 groups (8 each group) for exposure to acute (up to 12 h) and chronic (up to 20 days) cold t...

  13. Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system

    STOELTZING, OLIVER; Liu, Wenbiao; Fan, Fan; Wagner, Christine; Stengel, Kathrin; Somcio, Ray J.; Reinmuth, Niels; Parikh, Alexander A; Hicklin, Daniel J.; Ellis, Lee M.

    2007-01-01

    Both the insulin-like growth factor-I receptor (IGF-IR) and cyclooxygenase-2 (COX-2) are frequently overexpressed in pancreatic cancer. We hypothesized that IGF-IR is directly involved in induction of COX-2 and sought to investigate signaling pathways mediating this effect. Pancreatic cancer cells (L3.6pl) were stably transfected with a dominant-negative receptor (IGF-IR DN) construct or empty vector (pcDNA). Cells were stimulated with IGF-I to determine activated signaling intermediates and ...

  14. Pioglitazone ameliorates nonalcoholic steatohepatitis by down-regulating hepatic nuclear factor-kappa B and cyclooxygenases-2 expression in rats

    ZHAO Jia-sheng; ZHU Feng-shang; LIU Su; YANG Chang-qing; CHEN Xi-mei

    2012-01-01

    Background Pioglitazone is effective in nonalcoholic steatohepatitis (NASH),but the mechanisms of action are not completely understood.This study was designed to investigate the effects of pioglitazone on hepatic nuclear factor-kappa B (NF-κB) and cyclooxygenases-2 (COX-2) expression in NASH rats.Methods Thirty Sprague-Dawley male rats were randomly assigned to a control group (n=10),NASH group (n=10),and pioglitazone treatment group (n=10).Liver tissues were processed for histology by hematoxylin & eosin and Masson stained.Serum alanine aminotransferase (ALT),cholesterol,triglyceride,fasting blood glucose (FBG),fasting insulin (FINS) levels and biochemical parameters of antioxidant enzyme activities,tumor necrosis factor alpha (TNF-α),prostaglandin E2 (PGE2) levels in serum and liver were measured.The mRNA and protein expression of peroxisome proliferator-activated receptor gamma (PPARy),NF-κB and COX-2 were determined by real-time polymerase chain reaction,Westem blotting and immunohistochemistry.One-way analysis of variance (ANOVA) and Wilcoxon's signed-rank test was used for the statistical analysis.Results There were severe steatosis,moderate inflammatory cellular infiltration and fibrosis in NASH rats.After pioglitazone treatment,steatosis,inflammation and fibrosis were significantly improved compared with the NASH group(X2=20.40,P <0.001; )X2=20.17,P <0.001; X2=13.98,P=0.002).Serum ALT,cholesterol,triglyceride,FBG,FINS levelswere significantly elevated in the NASH group (P <0.05).In the NASH group,total anti-oxidation competence (T-AOC),superoxide dismutase (SOD),catalase (CAT),glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) levels inserum and liver were conspicuous disordered than those parameters in the control group.Meanwhile,TNF-α and PGE2levels in serum and liver were significantly increased compared with the control group.Immunohistochemistry showedNF-KB and COX-2 expression in liver was significantly elevated.However,PPARy level

  15. Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes

    Uddhav P. Kelavkar

    2009-07-01

    Full Text Available The main objectives of our study were to determine the bioavailability of omega-3 (ω-3 to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs metabolizing 15-lipoxygenase-1 (15-LO-1 and cyclooxygenase-2 (COX-2 pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat diet groups: high ω-6 linoleic acid (LA, high ω-3 stearidonic acid (SDA PUFAs, and normal (control diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67 and apoptosis (caspase-3 in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase of ω-6 catabolic

  16. Inhibition of cyclooxygenase-2 in experimental severe acute pancreatitis Inibição da Ciclo-Oxigenase-2 na pancreatite aguda grave experimental

    José Luiz Jesus de Almeida

    2006-08-01

    Full Text Available BACKGROUND: The standard treatment for acute pancreatitis (AP is still based on supportive care. The search for a new drug that could change the natural history of the disease is a continuing challenge for many researchers. The aim of this study is to evaluate the effect of a cyclooxygenase-2 (COX-2 inhibitor on experimental AP in rats. METHODS: The animals were divided into 2 groups: Group 1 (n = 30-animals with taurocholate-induced AP treated with parecoxib (40 mg/kg. Group 2 (n = 30-animals with taurocholate-induced AP that received saline. The COX-2 inhibitor (parecoxib was injected immediately after AP induction, through the penis dorsal vein. The parameters evaluated were histology, serum levels of amylase, IL-6 and IL-10, and mortality rate. RESULTS: The serum levels of IL-6 and IL-10 in the parecoxib-treated group were lower than the control group. The amylase serum levels and the mortality rate remained unchanged in the treated animals. Histologic morphology also was unaltered, except for fat necrosis, which was higher in parecoxib-treated rats. CONCLUSION: Inhibition of Cox-2 decreases the systemic release of inflammatory cytokines, but has a poor effect on the direct pancreas injury caused by taurocholate.INTRODUÇÃO: O tratamento padrão para a pancreatite aguda permanece baseado em medidas de suporte. A busca por uma droga que altere a história natural da doença ainda é um desafio para muitos pesquisadores. O objetivo deste estudo é avaliar o efeito de um inibidor da COX-2 na pancreatite aguda grave experimental (PA em ratos. MÉTODO: Os animais foram divididos em dois Grupos: Grupo 1 (n=30 - animais com PA induzida por taurocolato e tratados com parecoxib (40mg/Kg. Grupo 2 (n=30 - animais com PA induzida por taurocolato que receberam solução salina. O inibidor de COX-2 (parecoxib foi injetado imediatamente após a indução, através da veia dorsal do pênis. Os parâmetros avaliados foram histologia, níveis séricos de

  17. Tobacco-Specific Nitrosamines in Electronic Cigarettes: Comparison between Liquid and Aerosol Levels

    Konstantinos E. Farsalinos

    2015-07-01

    Full Text Available Introduction: Although electronic cigarette (EC liquids contain low levels of tobacco-specific nitrosamines (TSNAs, studies evaluating the levels emitted to the aerosol are scarce. The purpose of this study was to compare the levels of TSNAs between liquids and generated aerosol. Methods: Three EC liquids were obtained from the market. An additional (spiked sample was prepared by adding known amounts of standard TSNAs solutions to one of the obtained liquids. N-nitrosonornicotine (NNN, N-nitrosoanatabine (NAT, N-nitrosoanabasine (NAB and 4-(methylnitrosamino1-(3-pyridyl-1-butanone (NNK were measured. Three 100-puff sets from each liquid were trapped in filter pads and were subsequently analyzed for the presence of TSNAs. The expected levels of TSNAs (calculated based on the liquid consumption were compared with the measured levels in the aerosol. Results: Only NAB was found at trace levels in two commercial liquids (1.2 and 2.3 ng/g, while the third contained 1.5 ng/g NAB and 7.7 ng/g NNN. The 100-puff sets resulted in 336–515 mg liquid consumption, with no TSNAs being detected in the aerosol. The spiked sample contained 42.0–53.9 ng/g of each of the TSNAs. All TSNAs were detected in the aerosol with the measured levels being statistically similar to the expected amounts. A significant correlation between expected and measured levels of TSNAs in the aerosol was found (r = 0.83, p < 0.001. Conclusion: The findings of this study show that exposure of EC users to TSNAs can be accurately assessed based on the levels present in the liquid, without the need to analyze the aerosol.

  18. Development, validation, and application of a liquid chromatography-tandem mass spectrometry method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human hair.

    Yao, Li; Yang, Jun; Guan, Ya-feng; Liu, Bai-zhan; Zheng, Sai-jing; Wang, Wei-miao; Zhu, Xiao-lan; Zhang, Zhi-dan

    2012-11-01

    The tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a valuable biomarker for human exposure to the carcinogenic nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in tobacco and tobacco smoke. In this work, an efficient and sensitive method for the analysis of NNAL in human hair was developed and validated. The hair sample was extracted by NaOH solution digestion, purified by C(18) solid-phase extraction (SPE) and molecularly imprinted solid-phase extraction, further enriched by reverse-phase ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) into 1.0 % aqueous formic acid, and finally analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Good linearity was obtained in the range of 0.24-10.0 pg/mg hair with a correlation coefficient of 0.9982, when 150 mg hair was analyzed. The limit of detection and lower limit of quantification were 0.08 and 0.24 pg/mg hair, respectively. Accuracies determined from hair samples spiked with three different levels of NNAL ranged between 87.3 and 107.7 %. Intra- and inter-day relative standard deviations varied from 4.1 to 8.5 % and from 6.9 to 11.3 %, respectively. Under the optimized conditions, an enrichment factor of 20 was obtained. Finally, the developed method was applied for the analysis of NNAL in smokers' hair. The proposed sample preparation procedure combining selectivity of two-step SPE and enrichment of DLLME significantly improves the purification and enrichment of the analyte and should be useful to analyze NNAL in hair samples for cancer risk evaluation and cancer prevention in relation to exposure to the tobacco-specific carcinogen NNK. PMID:22926132

  19. Cyclooxygenase-2 expression is related to nuclear grade in ductal carcinoma in situ and is increased in its normal adjacent epithelium

    Shim, Veronica; Gauthier, Mona L.; Sudilovsky, Daniel; Mantei, Kristin; Chew, Karen L.; Moore, Dan H.; Cha, Imok; Tlsty, Thea D.; Esserman, Laura J.

    2003-01-01

    Cyclooxygenase-2 (COX-2) is emerging as an important cancer biomarker and is now an experimental target for solid tumor treatment.However, no study has exclusively focused on COX-2 expression in early lesions such as ductal carcinoma in situ (DCIS). We examined COX-2 expression by immunohistochemistry in 46 cases of women undergoing surgical resection for DCIS. We found that COX-2 expression was detected in 85% of all DCIS specimens, with increased COX-2 staining correlating with higher nuclear grade. Strikingly, COX-2 staining intensity in the normal adjacent epithelium was stronger than in the DCIS lesion itself. Our observations demonstrate that COX-2 is up-regulated in the normal adjacent epithelium and supports the hypothesis that the surrounding epithelial tissue is part of the disease process in DCIS.

  20. In vitro and In Silico Studies on Curcumin and Its Analogues as Dual Inhibitors for cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2

    Nunung Yuniarti

    2012-03-01

    Full Text Available Curcumin has been widely reported as an anti-inflammatory agent isolated from the plant Curcuma longa L. (turmeric. This anti-inflammatory activity was associated with the ability of this compound to inhibit the activity of both cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2 in arachidonic acid metabolism. Dual COX-1 and COX-2 inhibitors are preferred to be employed in the therapy of chronic inflammatory diseases compared to selective inhibitors, since it was reported that the use of selective inhibitors led to severe adverse side effect. In the present study, in vitro and in silico assays on curcumin and its analogues as dual inhibitors for both COX-1 and COX-2 were performed. The results provide theoretical contribution in understanding the ligand-protein interactions at the molecular level to develop new curcumin analogues which possess better anti-inflammatory activity as well as to avoid unsolicited side effects.

  1. Lipopolysaccharide and a social stressor influence behaviour, corticosterone and cytokine levels: divergent actions in cyclooxygenase-2 deficient mice and wild type controls.

    Hayley, Shawn; Mangano, Emily; Strickland, Michael; Anisman, Hymie

    2008-06-15

    Administration of the endotoxin, lipopolysaccharide (LPS) diminished motor activity and increased plasma corticosterone as well as circulating levels of interleukin-1beta (IL-1beta), IL-6, tumor necrosis-factor-alpha (TNF-alpha) and IL-10. Among cyclooxygenase-2 (COX-2) knockout mice the behavioural, corticosterone and cytokine variations promoted by LPS were moderately (home cage activity, corticosterone, TNF-alpha) or largely (IL-6) reduced. However, if mice were exposed to a psychosocial stressor (social disruption associated with grouping mice with novel cage-mates after a period of isolation) coupled with LPS treatment, then the effects of the COX-2 deletion were absent, or there was a synergistic or additive elevation apparent (e.g., in the case of TNF-alpha, IL-6 and corticosterone). Evidently, COX-2 deletion may have either pro- or anti-inflammatory actions, depending upon the psychosocial context in which immune activation occurs. PMID:18455806

  2. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction

    Gislason, Gunnar H; Jacobsen, Søren; Rasmussen, Jeppe Nørgaard;

    2006-01-01

    BACKGROUND: The selective cyclooxygenase-2 (COX-2) inhibitors and other nonselective nonsteroidal antiinflammatory drugs (NSAIDs) have been associated with increased cardiovascular risk, but the risk in patients with established cardiovascular disease is unknown. We analyzed the risk of...... of the drugs. There were trends for increased risk of rehospitalization for MI associated with the use of both the selective COX-2 inhibitors and the nonselective NSAIDs. CONCLUSIONS: Selective COX-2 inhibitors in all dosages and nonselective NSAIDs in high dosages increase mortality in patients with...... rehospitalization for acute myocardial infarction (MI) and death related to the use of NSAIDs including selective COX-2 inhibitors in patients with prior MI. METHODS AND RESULTS: All patients with first-time MI between 1995 and 2002 as well as all prescription claims for NSAIDs after discharge were identified from...

  3. Use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs in high doses increases mortality and risk of reinfarction in patients with prior myocardial infarction

    Sørensen, Rikke; Abildstrøm, Steen Zabell; Torp-Pedersen, C.;

    2008-01-01

    The selective cyclooxygenase-2 (COX-2) inhibitors and other nonselective nonsteroidal antiinflammatory drugs (NSAIDs) have been associated with increased cardiovascular risk, but the risk in patients with established cardiovascular disease is unknown. In the present study, we analyzed the risk of...... register of drug dispensing from pharmacies. We found a dose-dependent increase in risk of death for both the selective COX-2 inhibitors and the nonselective NSAIDs (all of the drugs tested). There were trends for increased risk of re-MI associated with the use of both the selective COX-2 inhibitors and...... rehospitalization for acute myocardial infarction (re-MI) and death related to the use of NSAIDs including selective COX-2 inhibitors in patients with a prior myocardial infarction (MI). We included 58,432 patients discharged alive after a first MI, and subsequent use of all NSAIDs was identified from a nationwide...

  4. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2.

    Xu, Yaping; Zhao, Wenxiu; Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-02-23

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  5. Interventional effect of flunarizine on the expression of cyclooxygenase-2 and plasminogen activator inhibitor type-1 during experimental Cerebral ischemia/reperfusion in gerbils

    Wensheng Zhou; Zhiping Hu; Yan Hong

    2006-01-01

    BACKGROUND:Some researches suggest that induced cyclooxygenase-2 (COX-2) can cause brain injury through a series of ways at the phase of cerebral ischemia/hypoxia.Plasminogen activator inhibitor type-1(PAI-1)is a kind of inhibitor of serine stretch protein enzyme and is able to protect cell surface and microvascular basement membrane from degradation of protease and also protect contact surface among cells so as to maintain integrality of tissue structure.However,correlation of protective effect of flunarizine on brain with COX-2 and PAI-1 should be studied further.OBJECTIVE:To observe the effect of flunadzine on expressions of COX-2 and PAI-1 protein in forebrain and degree of brain injury among gerbils after cerebral ischemia.DESIGN:A randomized controlled animal study.SEITING:Department of Neurology,the Second Xiangya Hospital of Central South University;Department of Neurology,Mawangdui Hospital of Hunan Province.MATERIALS:A total of 40 healthy gerbils,of both genders,aged 9 months,weighing(90±10)g,were selected in this study.Anti-COX-2 multi-antibody,anti-PAI-1 multi-antibody,SABC immunohistochemical kit and DAB kit were provided by Wuhan Boster Biological Engineering Co.,Ltd.;and flunarizine capsule was provided by Xi'an Yangsen Pharmaceutical Company(batch number:041018726,dosage:5 mg/pill).METHODS:The experiment was Carried out in Laboratory of Mental Disease,Hunan Provincial Gedatdcs Institute affiliated by Hunan Provincial Mawangdui Hospital from January 2004 to March 2005.① All gerbils were randomly divided into cerebral ischemia group,flunarizine intervention group,sham operation group and normal control group with 10 in each group.Gerbils in normal control group were only cut off their heads.Gerbils in sham operation group were only dissected their bilateral common carotid arteries and sacdficad 1 day later.Gerbils in cerebral ischemia group and flunanzine intervention group were anesthetized,centrally cut open skin of neck,bluntly dissected

  6. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH)2D3 and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression

  7. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    Brozek, Wolfgang, E-mail: wolfgang.brozek@gmx.at; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S. [Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-07-26

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH){sub 2}D{sub 3} and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.

  8. COX-2: Where are we in 2003? - Specific cyclooxygenase-2 inhibitors and aspirin-exacerbated respiratory disease

    Crofford, Leslie J.

    2002-01-01

    The use of analgesic anti-inflammatory agents in patients with asthma is clinically challenging because of the prevalence (10–20%) of aspirin hypersensitivity. Aspirin-exacerbated respiratory disease (AERD), or aspirin-induced asthma, is characterized by asthma and rhinitis triggered by the ingestion of aspirin and non-steroidal anti-inflammatory drugs. AERD is associated with upper and lower respiratory-tract mucosal inflammation, progressive sinusitis, nasal polyposis, and asthma regardless...

  9. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease

    Hunter Randy L

    2006-03-01

    Full Text Available Abstract Background Accumulating evidence suggests that inflammation plays an important role in the progression of Parkinson's disease (PD. Among many inflammatory factors found in the PD brain, cyclooxygenase (COX, specifically the inducible isoform, COX-2, is believed to be a critical enzyme in the inflammatory response. Induction of COX-2 is also found in an experimental model of PD produced by administration of 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Method COX-2-deficient mice or C57BL/6 mice were treated with MPTP to investigate the effects of COX-2 deficiency or by using various doses of valdecoxib, a specific COX-2 inhibitor, which induces inhibition of COX-2 on dopaminergic neuronal toxicity and locomotor activity impairment. Immunohistochemistry, stereological cell counts, immunoblotting, an automated spontaneous locomotor activity recorder and rotarod behavioral testing apparatus were used to assess microglial activation, cell loss, and behavioral impariments. Results MPTP reduced tyrosine hydroxylase (TH-positive cell counts in the substantia nigra pars compacta (SNpc; total distance traveled, vertical activity, and coordination on a rotarod; and increased microglia activation. Valdecoxib alleviated the microglial activation, the loss of TH-positive cells and the decrease in open field and vertical activity. COX-2 deficiency attenuated MPTP-induced microglial activation, degeneration of TH-positive cells, and loss of coordination. Conclusion These results indicate that reducing COX-2 activity can mitigate the secondary and progressive loss of dopaminergic neurons as well as the motor deficits induced by MPTP, possibly by suppression of microglial activation in the SNpc.

  10. Protein Never in Mitosis Gene A Interacting-1 regulates calpain activity and the degradation of cyclooxygenase-2 in endothelial cells

    Likhotvorik Rostislav I; Huang Yongcheng; Shah Vaibhav; Schneider Ryan A; Liu Tongzheng; Keshvara Lakhu; Hoyt Dale G

    2009-01-01

    Abstract Background The peptidyl-proline isomerase, Protein Never in Mitosis Gene A Interacting-1 (PIN1), regulates turnover of inducible nitric oxide synthase (iNOS) in murine aortic endothelial cells (MAEC) stimulated with E. coli endotoxin (LPS) and interferon-γ (IFN). Degradation of iNOS was reduced by a calpain inhibitor, suggesting that PIN1 may affect induction of other calpain-sensitive inflammatory proteins, such as cyclooxygenase (COX)-2, in MAEC. Methods MAEC, transduced with lenti...

  11. Mechanisms underlying aspirin-mediated growth inhibition and apoptosis induction of cyclooxygenase-2 negative colon cancer cell line SW480

    2008-01-01

    AIM: To investigate the effects of aspirin (acetylsalicylic acid) on proliferation and apoptosis of colorectal can- cer cell line $W480 and its mechanism. METHODS: Cyclooxygenase (COX)-2 negative colorec- tal cancer cell line SW480 was treated with aspirin at concentrations of 2.5 retool/L, 5.0 retool/L, 10.0 mmol/L for different periods in vitro. Anti-proliferation effect of aspirin on SW480 was detected by 3-(4,5-dimeth- ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and apoptosis were observed by flow cytometry (FCM). Transmission electron microscope (TEM) was used for morphological study. Apoptosis-as- sociated genes were detected by immunohistochemical staining and Western blotting. RESULTS: Aspirin inhibited SW480 proliferation and induced apoptosis in a dose- and time-dependent manner. Treatment with different concentrations of aspirin significantly increased the proportions of cells at the G0/G1 phase and decreased the proportions of cells at the S- and G2/M phases in a concentration- dependent manner. Aspirin not only induced apoptosis but also caused cell necrosis at a high concentration as well. After treatment with aspirin, SW480 cells displayed typically morphological features of apoptosis and necrosis under TEM, and increased the Bcl-2 expression in cells, but the expression of Bax was down regulated. CONCLUSION: Aspirin inhibits proliferation and induces apoptosis of SW480 cells. Its anti-tumor mechanism may arrest cell cycle and shift Bax/Bcl-2 balance in cells.

  12. Inhibition of cyclooxygenase-2 activity by celecoxib does not lead to radiosensitization of human prostate cancer cells in vitro

    Purpose: To evaluate the potential radiosensitizing effect of the specific COX-2 inhibitor celecoxib (Celebrex[reg]) on prostate carcinoma cells in vitro. Materials and methods: The influence of celecoxib (concentration range 5 to 75 μM) on radiation-induced cellular and clonogenic survival was investigated in prostate carcinoma cell lines PC-3, DU145, LNCaP and normal prostate epithelial cells (PrEC). Western blot analysis and ELISA were used to determine the impact of radiation alone or radiation combined with celecoxib treatment on COX-2 expression and prostaglandin E2 synthesis. To evaluate induction of celecoxib-induced apoptosis cell cycle analysis has been performed. Results: Celecoxib (5, 10 and 25 μM) in combination with single-dose irradiation of 2 Gy induced a significant radiosensitization in normal prostate epithelial cells which could not be observed for any of the prostate carcinoma cell lines investigated. Increased COX-2 protein expression in PC-3 cells was obvious only after IR with 15 Gy, while PGE2 production was elevated following irradiation (2-15 Gy) in a dose-dependent manner. Treatment with celecoxib alone or in combination with IR led to a dose-dependent increase in COX-2 protein expression. Nevertheless pre-treatment with celecoxib caused a marked reduction of radiation-induced enzyme activity as tested at the level of PGE2 production, both in PC-3 and DU145 cells. Following fractionated irradiation with single doses of 2 Gy, elevated COX-2 protein expression as well as enhanced PGE2 production was observed already after the second fraction in PC-3 cells. Pre-treatment with celecoxib reduced the amount of PGE2 significantly, but not of COX-2 protein. Conclusions: Our data obtained for the human prostate cancer cell lines do not indicate that a marked inhibition of prostaglandin E2 synthesis by celecoxib leads to enhanced radiosensitization. Thus, in terms of radiosensitization the analysed prostate cancer cells can be classified as non

  13. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  14. Protein Never in Mitosis Gene A Interacting-1 regulates calpain activity and the degradation of cyclooxygenase-2 in endothelial cells

    Liu, Tongzheng; Schneider, Ryan A; Shah, Vaibhav; Huang, Yongcheng; Likhotvorik, Rostislav I; Keshvara, Lakhu; Hoyt, Dale G

    2009-01-01

    Background The peptidyl-proline isomerase, Protein Never in Mitosis Gene A Interacting-1 (PIN1), regulates turnover of inducible nitric oxide synthase (iNOS) in murine aortic endothelial cells (MAEC) stimulated with E. coli endotoxin (LPS) and interferon-γ (IFN). Degradation of iNOS was reduced by a calpain inhibitor, suggesting that PIN1 may affect induction of other calpain-sensitive inflammatory proteins, such as cyclooxygenase (COX)-2, in MAEC. Methods MAEC, transduced with lentivirus encoding an inactive control short hairpin (sh) RNA or one targeting PIN1 that reduced PIN1 by 85%, were used. Cells were treated with LPS/IFN, calpain inhibitors (carbobenzoxy-valinyl-phenylalaninal (zVF), PD150606), cycloheximide and COX inhibitors to determine the effect of PIN1 depletion on COX-2 and calpain. Results LPS or IFN alone did not induce COX-2. However, treatment with 10 μg LPS plus 20 ng IFN per ml induced COX-2 protein 10-fold in Control shRNA MAEC. Induction was significantly greater (47-fold) in PIN1 shRNA cells. COX-2-dependent prostaglandin E2 production increased 3-fold in KD MAEC, but did not increase in Control cells. The additional increase in COX-2 protein due to PIN1 depletion was post-transcriptional, as induction of COX-2 mRNA by LPS/IFN was the same in cells containing or lacking PIN1. Instead, the loss of COX-2 protein, after treatment with cycloheximide to block protein synthesis, was reduced in cells lacking PIN1 in comparison with Control cells, indicating that degradation of the enzyme was reduced. zVF and PD150606 each enhanced the induction of COX-2 by LPS/IFN. zVF also slowed the loss of COX-2 after treatment with cycloheximide, and COX-2 was degraded by exogenous μ-calpain in vitro. In contrast to iNOS, physical interaction between COX-2 and PIN1 was not detected, suggesting that effects of PIN1 on calpain, rather than COX-2 itself, affect COX-2 degradation. While cathepsin activity was unaltered, depletion of PIN1 reduced calpain activity

  15. Protein Never in Mitosis Gene A Interacting-1 regulates calpain activity and the degradation of cyclooxygenase-2 in endothelial cells

    Likhotvorik Rostislav I

    2009-06-01

    Full Text Available Abstract Background The peptidyl-proline isomerase, Protein Never in Mitosis Gene A Interacting-1 (PIN1, regulates turnover of inducible nitric oxide synthase (iNOS in murine aortic endothelial cells (MAEC stimulated with E. coli endotoxin (LPS and interferon-γ (IFN. Degradation of iNOS was reduced by a calpain inhibitor, suggesting that PIN1 may affect induction of other calpain-sensitive inflammatory proteins, such as cyclooxygenase (COX-2, in MAEC. Methods MAEC, transduced with lentivirus encoding an inactive control short hairpin (sh RNA or one targeting PIN1 that reduced PIN1 by 85%, were used. Cells were treated with LPS/IFN, calpain inhibitors (carbobenzoxy-valinyl-phenylalaninal (zVF, PD150606, cycloheximide and COX inhibitors to determine the effect of PIN1 depletion on COX-2 and calpain. Results LPS or IFN alone did not induce COX-2. However, treatment with 10 μg LPS plus 20 ng IFN per ml induced COX-2 protein 10-fold in Control shRNA MAEC. Induction was significantly greater (47-fold in PIN1 shRNA cells. COX-2-dependent prostaglandin E2 production increased 3-fold in KD MAEC, but did not increase in Control cells. The additional increase in COX-2 protein due to PIN1 depletion was post-transcriptional, as induction of COX-2 mRNA by LPS/IFN was the same in cells containing or lacking PIN1. Instead, the loss of COX-2 protein, after treatment with cycloheximide to block protein synthesis, was reduced in cells lacking PIN1 in comparison with Control cells, indicating that degradation of the enzyme was reduced. zVF and PD150606 each enhanced the induction of COX-2 by LPS/IFN. zVF also slowed the loss of COX-2 after treatment with cycloheximide, and COX-2 was degraded by exogenous μ-calpain in vitro. In contrast to iNOS, physical interaction between COX-2 and PIN1 was not detected, suggesting that effects of PIN1 on calpain, rather than COX-2 itself, affect COX-2 degradation. While cathepsin activity was unaltered, depletion of PIN1

  16. Curcumin improves prostanoid ratio in diabetic mesenteric arteries associated with cyclooxygenase-2 and NF-κB suppression

    Sirada Rungseesantivanon

    2010-12-01

    Full Text Available Sirada Rungseesantivanon1, Naris Thengchaisri4, Preecha Ruangvejvorachai2, Suthiluk Patumraj31Interdepartment of Physiology, Graduate School, 2Department of Pathology, 3Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 4Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, ThailandBackground: Curcumin, the active ingredient from turmeric rhizomes, has been shown to have a wide range of pharmacological properties including antioxidant and anti-inflammatory effects. Curcumin has been reviewed for its multiple molecular action on inhibiting tumor angiogenesis via its mechanisms of cyclooxygenase (COX-2, and vascular endothelial growth factor (VEGF inhibition. In this present study, we aimed to assess the effects of curcumin on preventing diabetes-induced vascular dysfunction in association with COX-2, nuclear factor-κB (NF-κB expression, and prostanoid production.Methods: Twelve-week-old male Wistar rats were separated into five groups: 1 diabetes with 0.9% normal saline (DM-NSS; n = 10, 2 diabetes treated with curcumin 30 mg/kg (n = 10, 3 diabetes treated with curcumin 300 mg/kg (n = 10, 4 the control with 0.9% normal saline (n = 10, and 5 the control treated with 300 mg/kg (n = 10. Daily oral feeding of curcumin was started at 6 weeks after the streptozotocin injection. Levels of 6-keto prostaglandin (PG F1α and thromboxane (TX B2 were determined from mesenteric perfusates using enzyme immunoassay kits. Protein kinase C (PKC-ßII and COX-2 with NF-κB levels were analyzed in the mesenteric arteries by immunofluorescent staining and immunohistochemistry, respectively.Results: The ratio of 6-keto-PGF1α and TXB2 was significantly decreased in DM-NSS compared with the control (P < 0.05. Double-immunofluorescent staining with specific antibodies for PKC-βII and a-smooth muscle actins showed that the diabetic mesenteric arteries contained increased

  17. Design, Synthesis, and Evaluation of an (18)F-Labeled Radiotracer Based on Celecoxib-NBD for Positron Emission Tomography (PET) Imaging of Cyclooxygenase-2 (COX-2).

    Kaur, Jatinder; Tietz, Ole; Bhardwaj, Atul; Marshall, Alison; Way, Jenilee; Wuest, Melinda; Wuest, Frank

    2015-10-01

    A series of novel fluorine-containing cyclooxygenase-2 (COX-2) inhibitors was designed and synthesized based on the previously reported fluorescent COX-2 imaging agent celecoxib-NBD (3; NBD=7-nitrobenzofurazan). In vitro COX-1/COX-2 inhibitory data show that N-(4-fluorobenzyl)-4-(5-p-tolyl-3-trifluoromethylpyrazol-1-yl)benzenesulfonamide (5; IC50 =0.36 μM, SI>277) and N-fluoromethyl-4-(5-p-tolyl-3-trifluoromethylpyrazol-1-yl)benzenesulfonamide (6; IC50 =0.24 μM, SI>416) are potent and selective COX-2 inhibitors. Compound 5 was selected for radiolabeling with the short-lived positron emitter fluorine-18 ((18) F) and evaluated as a positron emission tomography (PET) imaging agent. Radiotracer [(18) F]5 was analyzed in vitro and in vivo using human colorectal cancer model HCA-7. Although radiotracer uptake into COX-2-expressing HCA-7 cells was high, no evidence for COX-2-specific binding was found. Radiotracer uptake into HCA-7 tumors in vivo was low and similar to that of muscle, used as reference tissue. PMID:26287271

  18. STUDY ON THE EXPRESSION OF CYCLOOXYGENASE-2 IN HEPATOCELLULAR CARCINOMA CELL LINES AND ON THE GROWTH INHIBITION EFFECT OF NS-398

    2006-01-01

    Objective: To investigate the expression of cyclooxygenase -2 (COX-2) in hepatocellular carcinoma cell lines and to explore the effect of NS-398, a selective inhibitor for COX-2, on HepG-2 cell line. Methods: Immunohistochemistry and RT-PCR were used to investigate COX-2 expression in 6 HCC cell lines. MTT and Flowcytometry were used to evaluate the effect of the selective inhibitor of COX-2, NS-398, on HepG-2 cell lines. Results: All six HCC cell lines showed COX-2 expression at protein level. Five out of 6 cell lines showed COX-2 expression at mRNA level. NS-398 could suppress the growth of HepG-2 cell line, in a time and dose dependant manner. Conclusion: NS-398, a selective inhibitor of COX-2, showed inhibition effect on HepG-2 HCC cell line. The efficacy of inhibition was time and dose dependent, providing a new evidence for chemoprovention of hepatocellular carcinorma with COX-2 selective inhibitors.

  19. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    Xiao, Haibo [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Tian, Yue [Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Yang, Yang; Hu, Fengqing; Xie, Xiao; Mei, Ju [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China); Ding, Fangbao, E-mail: drnail@sina.com [Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092 (China)

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cell proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.

  20. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2.

    Lee, Shun-Mei; Chang, Jan-Yi; Wu, Jiann-Shing; Sheu, Dey-Chyi

    2015-07-01

    Neokestose is a 6G-fructooligosaccharide (FOS) and an important prebiotic. When FOS are ingested by patients with colorectal cancer, they may come into contact with cancer cells prior to being fermented by bifidobacteria in the colon. In the present study, the effects of neokestose on cell proliferation, cell cycle and apoptosis of the colorectal cancer cell line Caco-2 were investigated to evaluate its anti-cancer effect. An MTT assay showed that neokestose-treated Caco-2 cells exhibited a significant and dose-dependent loss of viability. Flow cytometric analysis indicated that the sub-G1 population of Caco-2 cells was significantly increased following treatment with neokestose, and the percentage of Caco-2 cells in the stage of late apoptosis was also significantly increased in a dose-dependent manner. Western blot analysis showed that the overexpression of nuclear factor-κB, a central molecule responsible for the transition from inflammation to cancer, and cyclooxygenase-2, an important enzyme in colorectal tumorigenesis, in colorectal carcinoma cells was inhibited by neokestose. Accordingly, the present study provided in vitro evidence that neokestose may be used as a dietary chemopreventive agent, whose application is more rational than that of COX-2 inhibitors or aspirin for preventing colorectal cancer. PMID:25815878

  1. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  2. Expression of Cyclooxygenase-2 mRNA and Identification of Its Splice Variant in Human Myometrium Obtained from Women in Labor

    HUANG Yinping; WAN Jingyuan; YE Duyun; WU Ping; HUANG Yanjun; ZHANG Li; ZHOU Xiaoyan; HUANG Yunfeng; YUAN Ping; ZHANG Daijuan

    2005-01-01

    In order to investigate the expression of cyclooxygenase-2 (COX-2) in human lower segments of myometrium obtained from women in labor and those not in labor and identify the splicing variant of COX-2, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of COX-2. The primers were designed and synthesized according to the sequence of rat COX-2 splice variant which was discovered firstly by us. Then the splicing variant of COX-2 in human myometrium from woman in labor was identified, cloned into vector and sequenced. The results showed that the expression of COX-2 mRNA was lower in human myometrium obtained from women who were not in labor than that in labor women and a new band of COX-2 was obtained in myometrium from labor woman. The fragment included an unspliced intron, which pitched between exons 7 and 8. It was suggested that COX-2 gene was not only expressed highly in human myometrium from woman in labor, but also produced splicing variant by alternative splicing.

  3. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model

    Cekanova, Maria; Uddin, Md. Jashim; Legendre, Alfred M.; Galyon, Gina; Bartges, Joseph W.; Callens, Amanda; Martin-Jimenez, Tomas; Marnett, Lawrence J.

    2012-11-01

    We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.

  4. Evaluation of [{sup 11}C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation

    Vries, Erik F.J. de [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen (Netherlands)], E-mail: e.f.j.de.vries@ngmb.umcg.nl; Doorduin, Janine; Dierckx, Rudi A.; Waarde, Aren van [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen (Netherlands)

    2008-01-15

    Background: Overexpression of cyclooxygenase type 2 (COX-2) is triggered by inflammatory stimuli, but it also plays a prominent role in the initiation and progression of various diseases. This study aims to investigate [{sup 11}C]rofecoxib as a positron emission tomography (PET) tracer for COX-2 expression. Methods: [{sup 11}C]Rofecoxib was prepared by methylation of its sulphinate precursor. Regional brain distribution and specific binding of [{sup 11}C]rofecoxib in healthy rats was studied by ex vivo biodistribution and autoradiography. Regional brain distribution and PET imaging studies were also performed on rats with severe encephalitis, caused by nasal infection with herpes simplex virus (HSV). Finally, ex vivo biodistribution and blocking studies were carried in rats with a sterile inflammation, induced by intramuscular turpentine injection. Results: [{sup 11}C]rofecoxib brain uptake in control animals corresponded with the known distribution of COX-2. Pretreatment with NS398 significantly reduced tracer uptake in the cingulate/frontopolar cortex, whereas the reduction in hippocampus approached significance. Ex vivo autoradiography also revealed preferential tracer uptake in hippocampus and cortical areas that could be blocked by NS398. In HSV-infected animals, [{sup 11}C]rofecoxib uptake was moderately increased in all brain regions, but it could not be blocked with indomethacin. Yet, some PET images revealed increased tracer uptake in brain areas with microglia activation. In turpentine-injected animals, [{sup 11}C]rofecoxib uptake in inflamed muscle was not higher than in control muscle and could not be blocked with NS398. Indomethacin caused a slight reduction in muscle uptake. Conclusions: Despite the apparent correlation between [{sup 11}C]rofecoxib uptake and COX-2 distribution in healthy rats, [{sup 11}C]rofecoxib could not unambiguously detect COX-2 overexpression in two rat models of inflammation.

  5. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2

    Gabasa, Marta; Royo, Dolores; Molina-Molina, Maria; Roca-Ferrer, Jordi; Pujols, Laura; Picado, Cesar

    2013-01-01

    Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression. PMID:23755232

  6. Soy Saponins Meditate the Progression of Colon Cancer in Rats by Inhibiting the Activity of β-Glucuronidase and the Number of Aberrant Crypt Foci but Not Cyclooxygenase-2 Activity

    Yu-Wei Guo; Yue-Hwa Chen; Wan-Chun Chiu; Hsiang Liao; Shyh-Hsiang Lin

    2013-01-01

    Objective. The effect of extracted crude soybean saponins on preneoplastic lesions, aberrant crypt foci (ACF), and the related mechanism were investigated. Research Methods and Procedures. Rats were assigned into five groups according to different doses of extracted crude soybean saponins and received 1,2-dimethylhydrazine (DMH) injection in week 5. In week 15, all rats were sacrificed. The number of ACFs, the cyclooxygenase-2 (COX-2) protein expression, the level of prostaglandins E2 (PGE2),...

  7. Effect of phytic acid from rice and corn on morphology, cell proliferation, apoptosis and cyclooxygenase-2 expression in swine jejunal explants

    Elisângela Olegário da Silva

    2014-06-01

    Full Text Available Phytic acid (IP6 is a potent antioxidant present in several natural foods. Beneficial effects on colon cancer and inflammation have been associated to IP6 in several studies, however, scarce data about the effect on small intestine are available. The aim of the present study was to evaluate the effect of different doses of IP6 from rice and corn on intestinal morphology, cellular proliferation, apoptosis and cyclooxygenase-2 (Cox-2 expression using swine jejunal explants as experimental model. This report demonstrated that explants treated with 0.5 mM, 2.5 mM and 5 mM of IP6 from rice and 2.5 mM and 5 mM from corn showed higher villi height compared to control. Explants treated with 2.5 mM and 5 mM IP6 from rice exhibited a significant reduction on intestinal histological changes (villi atrophy and fusion, edema, lymphatic vessel dilation, loss of apical enterocytes, cell vacuolation, necrotic debris, morphology of enterocytes and microvilli and number of villi. The cellular proliferation decreased in the explants treated with the dosages of 2.5 mM and 5 mM from rice and a significant decrease in cell apoptosis was observed in the treatments with 2.5 mM IP6 from rice and 5 mM IP6 from corn compared to the control. The explants treated with 2.5 mM and 5 mM IP6 from rice and corn showed a significant reduction of the Cox-2 expression. Higher dosages of IP6 from rice and corn used in this experiment increased the viability and preservation of intestinal tissue as evidenced by morphological and immunohistochemical assays.

  8. Non-steroidal anti-inflammatory drugs, Cyclooxygenase-2 inhibitors and paracetamol use in Queensland and in the whole of Australia

    Tett Susan E

    2008-09-01

    Full Text Available Abstract Background Cross national drug utilization studies can provide information about different influences on physician prescribing. This is important for medicines with issues around safety and quality of use, like non selective non-steroidal anti-inflammatory drugs (ns-NSAIDs and cyclo-oxygenase-2 (COX-2 inhibitors. To enable comparison of prescription medicine use across different jurisdictions with a range of population sizes, data first need to be compared within Australia to understand whether use in a smaller sub-population may be considered as representative of the total use within Australia. The aim of this study was to compare the utilization of non selective NSAID, COX-2 inhibitors and paracetamol between Queensland and Australia. Method Dispensing data were obtained for concession beneficiaries for Australia for ns-NSAIDs, COX-2 inhibitors and paracetamol subsidized by the PBS over the period 1997–2003. The same data were purchased for Queensland. Data were converted to Defined Daily Dose (DDD/1000 beneficiaries/day (World Health Organization anatomical therapeutic chemical classification, 2005. Results Total NSAID and paracetamol consumption were similar in Australia and Queensland. Ns-NSAID use decreased sharply with the introduction of COX-2 inhibitors (from approximately 80 to 40 DDD/1000 beneficiaries/day. Paracetamol was constant (approximately 45 DDD/1000 beneficiaries/day. COX-2 inhibitors consumption was initially higher in Queensland than in the whole of Australia. Conclusion Despite initial divergence in celecoxib use between Queensland and Australia, the use of ns-NSAIDs, COX-2 inhibitors and paracetamol overall, in concession beneficiaries, was comparable in Australia and Queensland.

  9. Cyclooxygenase-2 overexpression is common in serrated and non-serrated colorectal adenoma, but uncommon in hyperplastic polyp and sessile serrated polyp/adenoma

    Kirkner Gregory J

    2008-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2, PTGS2 plays an important role in colorectal carcinogenesis. COX-2 overexpression in colorectal cancer is inversely associated with microsatellite instability (MSI and the CpG island methylator phenotype (CIMP. Evidence suggests that MSI/CIMP+ colorectal cancer may arise through the serrated tumorigenic pathway through various forms of serrated neoplasias. Therefore, we hypothesized that COX-2 may play a less important role in the serrated pathway. Methods By immunohistochemistry, we assessed COX-2 expression in 24 hyperplastic polyps, 7 sessile serrated polyp/adenomas (SSA, 5 mixed polyps with SSA and adenoma, 27 traditional serrated adenomas, 515 non-serrated adenomas (tubular adenoma, tubulovillous adenoma and villous adenoma, 33 adenomas with intramucosal carcinomas, 96 adenocarcinomas with serration (corkscrew gland and 111 adenocarcinomas without serration. Results Strong (2+ COX-2 overexpression was more common in non-serrated adenomas (28% = 143/515 than in hyperplastic polyps (4.2% = 1/24, p = 0.008 and serrated polyps (7 SSAs and 5 mixed polyps (0% = 0/12, p = 0.04. Furthermore, any (1+/2+ COX-2 overexpression was more frequent in non-serrated adenomas (60% = 307/515 than in hyperplastic polyps (13% = 3/24, p Conclusion COX-2 overexpression is infrequent in hyperplastic polyp, SSA and mixed polyp with SSA and adenoma, compared to non-serrated and serrated adenoma. COX-2 overexpression becomes more frequent as tumors progress to higher grade neoplasias. Our observations suggest that COX-2 may play a less significant role in the serrated pathway of tumorigenesis; however, COX-2 may still play a role in later stage of the serrated pathway.

  10. Estrogen-Dependent Prognostic Significance of Cyclooxygenase-2 Expression in Early-Stage Invasive Breast Cancers Treated With Breast-Conserving Surgery and Radiation

    Purpose: To evaluate the prognostic significance of cyclooxygenase-2 (COX-2) in breast cancer patients treated with conservative surgery and radiation therapy (CS+RT). Methods and Materials: Between 1975 and 2003, we retrieved specimens from 504 breast cancer patients treated with CS+RT. The specimens were constructed into tissue microarrays processed and stained for estrogen receptor (ER), progesterone receptor, Her2/neu, and COX-2. Each core was scored as positive or negative. All data including demographics, clinical, pathologic, staging, and outcome variables were entered into a computerized database. Results: Expression of COX-2 was positive in 58% of cases and correlated with younger age (p = 0.01) and larger tumor size (p 0.001). Expression of COX-2 was predictive of local relapse (relative risk[RR], 3.248; 95% confidence interval [CI], 1.340-7.871; p = 0.0091), distant metastasis (RR, 2.21; 95% CI, 1.259-3.896; p = 0.0058), and decreased survival (RR, 2.321; 95% CI, 1.324-4.071; p = 0.0033). Among ER-positive patients, COX-2 expression was predictive of worse local control (85% vs. 93%, p = 0.04), distant metastasis (75% vs. 95%, p = 0.002) and worse survival (65% vs. 94%, p = 0.002). Among ER-negative tumors COX-2 expression was not significantly correlated with local control (87 vs. 95%, p = 0.12), distant metastasis (73% vs. 78%, p = 0.39), or survival (77% vs. 87%, p 0.15). Conclusions: In breast cancer patients treated with CS+RT, COX-2 expression is associated with younger age, larger tumor size, worse local control, distant metastasis, and worse overall survival. The significance is limited to hormone receptor-positive tumors, consistent with the known effect of COX-2/PGE2 on aromatase activity. Use of COX-2 inhibitors in estrogen-dependent breast cancers warrants further investigation