WorldWideScience

Sample records for 4-channel surface coils

  1. Evaluation of a 4-channel phased-array coil for MR cardiac imaging. Quantitative assessment of signal to noise ratio improvement

    Recently, the utility of cardiac MR imaging has been increasing for morphological and functional analysis of the heart. However, since the image acquisition time is substantially shortened with recent fast cardiac MR sequences, it is often difficult to obtain a good signal to noise ratio (SNR) in fast cardiac MR imaging. The purpose of the current study was to optimize the design of a 4-channel multi-coil array for cardiac MR imaging, and to compare the performance of this new coil array with that of other product coils by evaluation of the SNR in a phantom and in healthy volunteers. In the phantom study using SE and FGR sequences, the cardiac coils provided significantly better SNR values than those for the other coils, not only in the peripheral part but also in the center of the phantom (p<0.01). When the SNR values were calculated for the anterior, septal, posteroinferior and lateral walls of the volunteer hearts, the SNR values obtained using the cardiac coil were significantly better than those with any of the other coils evaluated in all 4 myocardial segments (p<0.01). These results suggest that the new 4-channel cardiac multi-coil array is useful for MR imaging of the heart. (author)

  2. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major...

  3. Research and development of MRI surface coil for TMJ MR imaging; Modulated Helmholtz surface coil

    Kukimoto, Yoshiaki; Kukimoto, Kyoko (Kameda General Hospital, Kamogawa, Chiba (Japan)); Shirakawa, Toyomi

    1989-12-01

    Internal derangements of the temporomandibular joint (TMJ) are a major cause of jaw pain and dysfunction as well as other related clinical symptoms. TMJ diagnosis is the abnormal position and appearance of the disk. Most X-ray-based methods are useful for evaluating bony abnormalities, but their reduced soft-tissue contrast often makes the diagnostic evaluation of TMJ disorders difficult. Magnetic resonance (MR) imaging is a very recent addition to the medical diagnostic of TMJ diseases. MR imaging can produce high-quality tomographic images of greater soft-tissue contrast without ionizing radiation or known biological hazards. MR system was circular type Simens Magnetom 1.5 tesla. Display matrix was 256x256. A Modulated Helmholtz type coil of 17 cm in diameter was developed in Kameda General Hospital in order to increase signal to noise ratio in the area of bilateral TMJs. The distance between two coils was 16-20 cm. The head was placed in supine position in the center of two surface coils. A Modulated Helmholtz type coil: 1. Modulated Helmholtz type coil was used as an emitter and a receiver. 2. Modulated Helmholtz type coil had a pair of 17 cm coils, which were movable according to head width of each patient. 3. MR imaging of bilateral TMJs was taken at once because of no necessity to reset a surfacecoil. 4. It was easy to set positioning of the head. (author).

  4. Surface coil imaging of the kidney transplant

    Seventy-five MR imaging examinations were performed on 51 patients who had received renal allografts. Studies were performed using a 1.5-T superconductive unit operating at 0.5 T, in spin-echo mode with varying pulsing factors. Surface coils were systematically used for signal detection. After qualitative analysis of the MR imaging appearances of the kidneys, results were correlated with the patients' clinical conditions and with pathological studies. T-1 weighted images were the most sensitive in revealing corticomedullary differentiation (CMD). All normally functioning kidneys had the same typical appearance, with excellent CMD. Acute tubular necrosis with good prognosis had a similar appearance. On average, CMD was altered during acute rejection episodes, but it remained preserved in 31% of cases. In such cases, the cortex thickness and the kidney's behavior during multiecho sequences were valuable factors that improved accurate discrimination of acute rejection

  5. Selective amine labeling of cell surface proteins guided by coiled-coil assembly.

    Yano, Yoshiaki; Furukawa, Nami; Ono, Satoshi; Takeda, Yuki; Matsuzaki, Katsumi

    2016-11-01

    Covalent labeling of target proteins in living cells is useful for both fluorescence live-cell imaging and the subsequent biochemical analyses of the proteins. Here, we report an efficient method for the amine labeling of membrane proteins on the cell surface, guided by a noncovalent coiled-coil interaction. A carboxyl sulfosuccinimidyl ester introduced at the C-terminus of the coiled-coil probe reacted with target proteins under mild labeling conditions ([probe] = 150 nM, pH 7.4, 25°C) for 20 min. Various fluorescent moieties with different hydrophobicities are available for covalent labeling with high signal/background labeling ratios. Using this method, oligomeric states of glycophorin A (GpA) were compared in mammalian CHO-K1 cells and sodium dodecyl sulfate (SDS) micelles. In the cell membranes, no significant self-association of GpA was detected, whereas SDS-PAGE suggested partial dimerization of the proteins. Membrane cholesterol was found to be an important factor that suppressed the dimerization of GpA. Thus, the covalent functionality enables direct comparison of the oligomeric state of membrane proteins under various conditions. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 484-490, 2016. PMID:26285787

  6. Improving MRI surface coil decoupling to reduce B1 distortion

    Larson, Christian

    As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.

  7. Pulmonary MR angiography with phased-array surface coils

    To optimize and apply projection MR angiography of pulmonary vasculature with the use of spoiled GRASS (gradient recalled acquisition in a steady [SPGR]) and surface coils for noninvasive evaluation of pulmonary vascular disease. Four healthy volunteers were examined at 1.5 T to compare flow-compensated GRASS and SPGR sequences, flip angles of 10 degrees - 60 degrees, section thicknesses of 3-10 mm, and body coil as well as Helmholz pair and phased-array surface coils. Acquisition time per section was within 10 seconds, allowing breath holding. Optimal combination of imaging parameters was based on observation by three radiologists and signal-to-noise measurements. With the use of 30-40 contiguous sections encompassing the lung, intrathoracic vasculature was segmented with a UNIX/X-windows-based package dubbed VIDA. Three-dimensional anatomy was visualized by a brightest pixel projection algorithm with right-left and cephalad-caudad rotations. SPGR (TR, 34 msec; TE, 13 msec; flip angle, 30 degrees, 4-mm thick sections, 25-cm field of view, 256 x 128, two excitations, 8.7 sec/section) with phased-array surface coils provided the most satisfactory images. The projected images showed pulmonary vasculature with resolution of vessels beyond segmental branches. The result was reproducible among volunteers. After optimization, the technique was applied to a patient with pulmonary embolism, revealing clot in the right descending pulmonary artery and lack of flow in its anterior and lateral branches. This MR angiographic technique shows promise for noninvasive demonstration of pulmonary vascular disease

  8. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.

    2011-06-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  9. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    Magnetic Resonance Imaging (MRI) of nuclei other than 1H (e.g. 13C) allows for characterisation of metabolic processes. Imaging of such nuclei, however, requires development of sensitive MRI coils. This paper describes the design of surface receive coils for 13C imaging in small animals. The design...... is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented...

  10. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    Giovannetti, G.; Frijia, F.; Hartwig, V.;

    2013-01-01

    coil performance evaluation in terms of coil resistance, sample-induced resistance and magnetic field pattern. Experimental SNR-vs.-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), showed good agreement with the theoretical SNR-vs.-depth profiles. Moreover, the...... performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested by...

  11. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Solis S.E.; Tomasi D.; Hernandez J.A.; Rodriguez A.O.

    2012-01-01

    A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations...

  12. Two-dimensional dc surface motor using window shaped coils; Tagata coil wo mochiita chokuryu surface motor

    Kano, Y.; Yamaguchi, M.; Sugawara, M. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-08-20

    The authors have been pursuing the possibility of using a two-dimensional de motor used for a driver of meal assist apparatus. In this paper, a new type dc surface motor using window shaped coils (DSM) is proposed by the authors. And the thrust equations of the DSM is shown following the exciting method of the window shaped coils. The driving characteristics of the DSM are summarized as follows: 1. The maximum flux density of the air gap is calculated at 0.35 teslas when the exciting current is 1.8 amperes. The flux density achieves only 20 % conpered with maximum flux density (1.8 teslas) of the yokes(SS41). 2. The thrust constant of the x-direction and y-direction are 2.93, 2.70 N/A respectively, so these difference is within only 8 %. And the maximum static thrust is over 5 newtons when the exciting current was 1.8 amperes. 3. It is recognized that the positioning control accuracy is good within 7.5 % when the DSM is controlled by PD-control method. 11 refs., 10 figs., 2 tabs.

  13. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  14. Slotted surface coil with reduced g-factor for SENSE imaging.

    Ocegueda, K; Rodriguez, A O

    2006-01-01

    A new coil design inspired on the slot-and-hole magnetron tube is proposed for SENSE imaging. To investigate its g-factor behaviour: an SNR formula was derived using the quasi-static approach, and combined with the ultimate g-factor formula to compute the ultimate-factor-g-vs-depth plots. A g-factor expression was derived for the circular coil using the same approach for comparison purposes. SNR-vs-depth profiles of an 4-slot coil showed an important improvement over the circular coil. The 4-slot coil g-factor can be up to 58.32% lower than that of a single circular-shaped coil. This improvement makes the slotted surface coil a good choice for SENSE imaging. PMID:17946922

  15. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  16. Analyses and Comparison of Bulk and Coil Surface Samples from the DWPF Slurry Mix Evaporator

    Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows ∼5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

  17. ANALYSES AND COMPARISON OF BULK AND COIL SURFACE SAMPLES FROM THE DWPF SLURRY MIX EVAPORATOR

    Hay, M.; Nash, C.; Stone, M.

    2012-02-17

    Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows {approx}5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

  18. MRI of prostate zonal anatomy with an endorectal surface coil

    The development of an endorectal surface coil now permits a partial study of the anatomical model developed by McNeal. Axial and coronal views, which were used to establish the model can be obtained in a short period of time with fast spin echo sequences. Axial views are performed along the proximal urethra and coronal views are performed along the axis of the distal urethra and the ejaculatory duts. Anatomical boundaries of the transitional zone are well delineated on axial views, illustrating the concept of 'inner gland'. The prostatic capsule and the neuro-vascular bundles, pathways of extension of the cancer out of the prostate are also well delineated. Coronal sections allow a very good anatomical study of the caudal junction of the vas deferens and the seminal vesicles (the so called weak space), pathway of tumor extension to the seminal vesicles. Differences in signal of the prostatic zones make the outer gland cancers very conspicuous as well as some transitional cancers which can show, in some cases, an homogeneous hyposignal. (authors). 15 refs., 14 figs

  19. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Solis S.E.; Tomasi D.; Hernandez J.A.; Rodriguez A.O.

    2012-01-01

    A coil array was composed of two slott ed surface coils forming a structure with two plates at 90°, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic fi eld of this coil array were performed at 170 MHz using the fi nite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulati...

  20. Electronic decoupling of receive-only surface coils with transmission lines during radio frequency excitation

    The authors report a method of detuning surface coils during B/sub 1/ excitation with diodes on the transmission line. This method was compared with two conventional detuning schemes. Experiments were performed on a General Electric whole-body scanner. Identical 12-cm planar surface coils, with nondistributive capacitance design, were studied with three detuning networks. The first two were on the coil: (1) crossed PIN diodes parallel to the receiver coil and (2) the same network with an inductor in series with diodes. The third network had crossed diodes to ground located on the transmission line between the coil and the preamplifier. The reactance of the transmission lines were set according to the following equation: Z/sub 1/ = (Z/sub m/ + Z/sub t/), where Z/sub 1/, Z/sub m/, and Z/sub t/ are the impedances of the line, the matching, and the tuning capacitors, respectively, for a series matched circuit. The reactance of the portion of cable between the coil and diodes was altered by varying the cable length or with a Pi-L circuit. The third network provided the most efficient decoupling of surface coil from the transmit coil during B/sub 1/ excitation. This was evidenced by greater homogeneity, symmetry, and signal-to-noise ratio of the images of a uniform phantom produced at right angles to the coil with the third detuning scheme. The authors offer this method as a convenient way to detune receive-only surface coils for imaging and spectroscopy

  1. Correcting surface coil excitation inhomogeneities in single-shot SPEN MRI

    Schmidt, Rita; Mishkovsky, Mor; Hyacinthe, Jean-Noel; Kunz, Nicolas; Gruetter, Rolf; Comment, Arnaud; Frydman, Lucio

    2015-10-01

    Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.

  2. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    Measuring spin-spin relaxation times (T2) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm3 for a conventional volume birdcage coil and only of 1.7 mm3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a previous

  3. Modulation of water surface waves with a coiling-up-space metasurface

    H. T. Sun; Wang, J.S.; Cheng, Y; Wei, Q.; X. J. Liu

    2016-01-01

    We have designed a gradient-index (GRIN) metasurface to modulate water surface waves (WSWs). The metasurface is composed of an array of coiling-up-space units with a deep sub-wavelength scale, and can focus/scatter WSWs when the units are arranged elaborately and pierced into water. The modulation of WSWs has been ascribed to the relative effective refractive GRIN of the coiling-up-space units, which can be tuned by changing the parameters such as the plate length of units. This work may have...

  4. Modulation of water surface waves with a coiling-up-space metasurface

    H. T. Sun

    2016-05-01

    Full Text Available We have designed a gradient-index (GRIN metasurface to modulate water surface waves (WSWs. The metasurface is composed of an array of coiling-up-space units with a deep sub-wavelength scale, and can focus/scatter WSWs when the units are arranged elaborately and pierced into water. The modulation of WSWs has been ascribed to the relative effective refractive GRIN of the coiling-up-space units, which can be tuned by changing the parameters such as the plate length of units. This work may have potential application in energy extraction of water wave.

  5. Modulation of water surface waves with a coiling-up-space metasurface

    Sun, H. T.; Wang, J. S.; Cheng, Y.; Wei, Q.; Liu, X. J.

    2016-05-01

    We have designed a gradient-index (GRIN) metasurface to modulate water surface waves (WSWs). The metasurface is composed of an array of coiling-up-space units with a deep sub-wavelength scale, and can focus/scatter WSWs when the units are arranged elaborately and pierced into water. The modulation of WSWs has been ascribed to the relative effective refractive GRIN of the coiling-up-space units, which can be tuned by changing the parameters such as the plate length of units. This work may have potential application in energy extraction of water wave.

  6. Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T.

    van der Zwaag, Wietske; Marques, José P; Hergt, Martin; Gruetter, Rolf

    2009-10-01

    In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes. PMID:19261421

  7. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  8. High-frequency analysis on surface micromachined on-chip transformers with stacked interwinding coil structures

    On-chip micro-transformers with a stacked interwinding coil have been developed. The transformer is fabricated using simple and cost-effective MEMS surface micromachining. High-frequency characteristics of the transformer are analyzed by comparing its performances for various coil structures and substrate materials, respectively. The results show that the RF performance of the glass-based transformer is improved compared to that of a silicon-based transformer. An analysis of various coil configuration leads to the conclusion that the metal-to-metal capacitance has a significant influence on the RF characteristics. The process fabrication of the device is simple, highlighting good prospects for future three-dimensional RF-MEMS device application

  9. Comparison of surface and saddle endoanal coil to evaluate anal sphincter in infants and young childern: experimental study using phantom and cats

    We designed an inside-out-type endoanal surface and saddle coil to evaluate the anal sphincter of young children who have difficulty in controlling defecation after the correction of anorectal malformation, and compared two coils using an imaging phantom and cats. Using two coils, T1-and T2- weighted axial and coronal images of the phantom and of the anorectal region of cats were obtained, and the results were compared in terms of changes in signal intensity and SNR according to the distance from the coil's surface. We also compared the capability of the coils to delineate the internal and external anal sphincter of cat anorectum, both of which are important in the control of defection. The saddle coil was slightly superior to the surface coil in terms of SNR, but inferior in terms of the signal intensity of the region of interest of the cat's anorectum. Moreover, artifacts of low signal intensity appeared in an azimuthal direction on axial images acquired using the saddle coil and prohibited delineation of the whole of the anal sphincter. In terms of image quality, the surface coil was therefore superior to the saddle coil. Our findings suggest that among inside-out-type endoanal coils, the surface coil may be superior to the saddle coil in MR imaging to evaluate the anal sphincter of young children

  10. A new holder and surface MRI coil for the examination of the newborn infant hip

    A special holder was developed for examination of the infant hip joint using MRI. This holder allows the infant hip joint to be examined both in a neutral position and in various defined functional positions. A special integrated surface coil, also developed for this purpose, provides the high spatial resolution required for assessment of the fine joint structures. Thirty infants were examined and the new device has proved useful in advanced hip dysplasia, therapy-resistant subluxation and luxation, and for operative therapy planning (reconstruction of the acetabular roof, redirectional osteotomies). Interpretation errors due to misprojection can be eliminated to a large extent since the holder allows standardized and reproducible positioning. (orig.)

  11. MRI of the shoulder joint with surface coils at 1.5 Tesla

    High spatial resolution magnetic resonance images of the shoulder were obtained in axial, sagittal and coronal orientations using a 1.5 T imaging system and anatomically shaped, wrap-around surface coils. Variations in scapular position induced by patient positioning change the relationship of the planes to the shoulder anatomy and make reproducibility of sagittal and coronal planes difficult. We, therefore, use - after axial orientation - image-oblique planes perpendicular and parallel to the glenoid fossa. In this manner MRI can visualise the anatomic structures of the shoulder including rotator cuff, long biceps tendon, articular capsule, articular cartilage, muscles and bones due to the high soft tissue contrast of MRI. (orig.)

  12. A retunable surface coil for high field 31P and 1H magnetic resonance evaluations of the living mouse leg

    This study presents a retunable surface coil that can be adjusted to at least two Larmor frequencies sequentially without the need to remove the coil from the magnet and while avoiding interference between channels. A prototype 1H/31P surface coil for the analysis of the in vivo mouse leg under electrical stimulation was designed for operation at 11.75 T. The coil has a high-quality factor of over 100 for both operational frequencies. To demonstrate the capabilities of this simple design, in vivo experiments were conducted to acquire high-resolution 1H images and 31P spectra of the C57BL/6 mouse leg, both with high temporal resolution. Proton diffusion tensor imaging was also performed to evaluate rodent skeletal muscle architecture. This design makes the acquisition of physiological data about both muscle structure and energetics (PCr, ATP and Pi) possible in a single experimental session

  13. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. PMID:20535812

  14. Magnetic resonance imaging of cervical carcinoma using an endorectal surface coil

    Introduction: The objective of this trial is to investigate the diagnostic value of magnetic resonance imaging (MRI) with an endorectal surface coil for precise local staging of patients with histologically proven cervical cancer by comparing the radiological, clinical, and histological results. Materials and methods: Women with cervical cancer were recruited for this trial between February 2007, and September 2010. All the patients were clinically staged according to the FIGO classification and underwent radiological staging by MRI that employed an endorectal surface coil. The staging results after surgery were compared to histopathology in all the operable patients. Results: A total of 74 consecutive patients were included in the trial. Forty-four (59.5%) patients underwent primary surgery, whereas 30 (40.5%) patients were inoperable according to FIGO and underwent primary radiochemotherapy. The mean age of the patients was 50.6 years. In 11 out of the 44 patients concordant staging results were obtained by all three staging modalities. Thirty-two of the 44 patients were concordantly staged by FIGO and histopathological examination, while only 16 were concordantly staged by eMRI and histopathological examination. eMRI overstaged tumors in 14 cases and understaged them in 7 cases. Conclusions: eMRI is applicable in patients with cervical cancer, yet of no benefit than staging with FIGO or standard pelvic MRI. The most precise preoperative staging procedure still appears to be the clinical examination

  15. Magnetic resonance imaging of cervical carcinoma using an endorectal surface coil

    Brocker, Kerstin A., E-mail: kerstin.brocker@med.uni-heidelberg.de [Department of Obstetrics and Gynecology, University of Heidelberg Medical School, Voßstr. 9, 69115 Heidelberg (Germany); Alt, Céline D., E-mail: celine.alt@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University of Heidelberg Medical School, INF 110, 69120 Heidelberg (Germany); Gebauer, Gerhard, E-mail: gebauer.frauen@marienkrankenhaus.org [Department of Obstetrics and Gynecology, Kath. Marienkrankenhaus Hamburg, Alfredstr. 9, 22087 Hamburg (Germany); Sohn, Christof, E-mail: christof.sohn@med.uni-heidelberg.de [Department of Obstetrics and Gynecology, University of Heidelberg Medical School, Voßstr. 9, 69115 Heidelberg (Germany); Hallscheidt, Peter, E-mail: hallscheidt@yahoo.de [Radiologie Darmstadt am Alice-Hospital, Dieburger Str. 29-31, 64287 Darmstadt (Germany)

    2014-07-15

    Introduction: The objective of this trial is to investigate the diagnostic value of magnetic resonance imaging (MRI) with an endorectal surface coil for precise local staging of patients with histologically proven cervical cancer by comparing the radiological, clinical, and histological results. Materials and methods: Women with cervical cancer were recruited for this trial between February 2007, and September 2010. All the patients were clinically staged according to the FIGO classification and underwent radiological staging by MRI that employed an endorectal surface coil. The staging results after surgery were compared to histopathology in all the operable patients. Results: A total of 74 consecutive patients were included in the trial. Forty-four (59.5%) patients underwent primary surgery, whereas 30 (40.5%) patients were inoperable according to FIGO and underwent primary radiochemotherapy. The mean age of the patients was 50.6 years. In 11 out of the 44 patients concordant staging results were obtained by all three staging modalities. Thirty-two of the 44 patients were concordantly staged by FIGO and histopathological examination, while only 16 were concordantly staged by eMRI and histopathological examination. eMRI overstaged tumors in 14 cases and understaged them in 7 cases. Conclusions: eMRI is applicable in patients with cervical cancer, yet of no benefit than staging with FIGO or standard pelvic MRI. The most precise preoperative staging procedure still appears to be the clinical examination.

  16. Stochastization of Magnetic Field Surfaces in Tokamaks by an Inner Coil

    A 3-D code has been developed in order to simulate the magnetic field lines in circular cross-section tokamaks. The toroidal magnetic field can be obtained from the individual fields of circular coils arranged around the torus, or alternatively, as a ripple-less field. The poloidal field is provided by a given toroidal current density profile. Proposing initial conditions for a magnetic filed line, it is integrated along the toroidal angle coordinate, and Poincare maps can be obtained at any desired cross section plane. Following this procedure, the code allows the mapping of magnetic field surfaces for the axisymmetric case. For this work, the density current profile is chosen to be bell-shaped, so that realistic safety factor profiles can be obtained. This code is used in order to study the braking up of external surfaces when the symmetry is broken by an inner coil with tilted circular loops, with the purpose of modelling the behaviour of ergodic divertors, such as those devised for TEXTOR

  17. High resolution MR imaging of the anal sphincter using an intravaginal surface coil

    MR imaging was performed using a 1.0 T unit. In 10 females (6 nullipara, one primipara without and three primipara with postpartum faecal incontinence) a surface coil, originally designed for endorectal use, was placed into the vagina. Transverse oblique T1-weighted spin echo and double echo turbo spin echo sequences with T2- and proton density-weighting were acquired parallel to the puborectal, rectococcygeal and anorectal planes. Three readers analysed the images in consensus. The anatomic structures of the external and internal sphincter as well as the mucosa were differentiated in all cases with a good contrast. The best results were yielded by the proton density weighting. In one case of faecal incontinence a sphincter defect after repair of a complete rupture of the anal sphincter was shown. In another case irregularities in the structure of the external sphincter and perineum were visualised. (orig./MG)

  18. Electronically Tunable Surface-Coil-Type Resonator for L-Band EPR Spectroscopy

    Hirata, Hiroshi; Walczak, Tadeusz; Swartz, Harold M.

    2000-01-01

    The automatic frequency control (AFC) circuit in conventional electron paramagnetic resonance (EPR) spectrometers automatically tunes the microwave source to the resonance frequency of the resonator. The circuit works satisfactorily for samples stable enough that the geometric relations in the resonance structure do not change in a significant way. When EPR signals are measured during in vivo experiments with small rodents, however, the distance between the signal source and the surface-coil detector can change rapidly. When a conventional AFC circuit keeps the oscillator tuned to the resonator under those conditions, the resultant frequency change may exceed ±5 MHz and markedly shift the position of the EPR signal. Such a shift results in unacceptable effects on the spectra, especially when the experimenter is dealing with narrow EPR lines. The animal movement also causes a mismatching of the resonator and the 50-ohm transmission line. Direct results of this mismatching are increased noise; shifts in the position of the baseline; and a high probability of overdriving the signal preamplifier with consequent loss of the EPR signal. We therefore designed, built, and tested a new surface-coil resonator using varactor diodes for tuning the resonance frequency to the fixed frequency oscillator and for capacitive matching of the resonator to the 50-ohm transmission line. The performance of the automatic matching system was tested in vivo by measuring EPR spectra of lithium phthalocyanine implanted in rats. Stability and sensitivity of the spectrometer were evaluated by measuring EPR spectra with and without the use of the automatic matching system. The overall experimental performance of the spectrometer was found to significantly improve during in vivo experiments using the automatic matching system. Excellent matching between the 50-ohm transmission line and the resonator was maintained under all experimental circumstances that were tested. This should allow us now to

  19. MR imaging of rectal cancer using endorectal surface coil. Histopathological correlation

    Using a endorectal coil for MRI of receive only, extent and lymph node metastasis of tumor was checked for 55 cases of rectal cancer. MRI was performed with a 1.5 Tesla superconducting MR unit using tailored endorectal surface coils and fast spin echo (FSE) capabilities before surgery. And images compared with histopathological findings of specimens resected by surgery. After a submucosal saline injection using an endoscope, an image was obtained in 11 cases that may contain the early stage cancer. Normal intestinal wall was described as 5-6 layers including mucus and rectal fat tissue in T2-weighted image with FSE. The mucous membrane layer showed low signal, submucous membrane showed high signal, peculiar muscle layer showed low signal. In the diagnosis of depth of carcinomatous invasion, M-carcinoma was described as thickening of the mucous membrane layer in T2-weighted image, SM-carcinoma was as a tumor of low signal intensity in high signal area and asymmetry of a boundary with the submucous membrane and tumor. When a tumor invased to the peculiar muscle layer, the submucous membrane completely lacerated, and it was recognized as thickening of the muscle layer, laceration, and tumor with high intensity in muscle layer. When a tumor invased into rectal fat tissue, outside edge of tumor was showed as asymmetry in T1-weighted image, and described as laceration of the outer longitudinal muscle layer in T2-weighted image. MRI agreed well with histopathological findings in 45 cases. Submucous saline injection made thickening in submucous membrane and was useful for discrimination of M-carcinoma and SM1-3 carcinoma. The shape of the lymph node of the diameter about 5 mm was able to be evaluated because of diagnosing ability of the lymph node metastasis such as sensitivity 78.9% and specificity 74.1%. (K.H.)

  20. Characteristics of eddy current testing using surface coils on small curvature radius space

    An eddy current testing (ECT) is used as a method for inspection techniques of stress corrosion cracking (SCC) defects on welded areas in nuclear power plants. A number of welded areas have small curvature radius (several mm) spaces. We evaluated the eddy current density distributions affected by curved geometry of 5 mm in curvature radius using a simulated electromagnetic field calculation. Calculated results indicated that decrease of eddy current density and extend of its distribution width are caused by increase of the distance between specimen surface and the ECT probe (lift-off) and/or curved geometry. In order to increase eddy current density and narrow its distribution width, we applied a ferromagnetic core to an ECT probe. This core was in close contact with the cross coil in the ECT probe. We numerically confirmed that the core is effective to increase eddy current density and reduce eddy current density distribution width. Furthermore we performed the defect detection test using the prototype ECT probe applied a ferromagnetic core. The prototype ECT probe detected defects at a higher sensitivity on small curvature radius space. (author)

  1. Image analysis from surface scanning with an absolute eddy current coil

    The aim of this work is to implement processing and analysis tools applied to eddy current imaging. These cartographies are issued from steam generator tubes testing using an absolute coil. The first is to eliminate the perturbations due to probe lift-off changes which generate low frequency oscillations on the image. The principle of the processing is to rebuild a complete surface of the noise using only the points around the defect area. The geometric origin of these perturbations led to a model based on sinusoidal functions. The method consists of gradually decomposing the image into a sum of basic sinusoidal surfaces. In order to take into account all kind of cartographies (especially rolling zone) some preprocessing must be applied. The results obtained with this 'cartography flattening'are satisfactory and the phase of analysis could begin with good condition of signal ratio. The second part of this work dealt with the choice and the perfection of image processing tools which would fit the most with the defect characterization. The aim of this characterization is to give the orientation and main size of the detected defect. A morphological skeleton representation has been chosen to illustrate the defect architecture and to allow sizing. A set of tools has been elaborated to obtain an (automatic) processing according to threshold. The results for single defect are satisfactory since the sizing error is around ± 25% and orientation is nearly always correctly given. The processing for area with several defects is more complex and new complementary research directions are proposed. (author)

  2. SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam

    Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materials were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)

  3. The lifting scheme of 4-channel orthogonal wavelet transforms

    PENG Lizhong; CHU Xiaoyong

    2006-01-01

    The 4-channel smooth wavelets with linear phase and orthogonality are designed from the 2-channel orthogonal wavelets with high transfer vanishing moments. Reversely, for simple lifting scheme of such 4-channel orthogonal wavelet transforms, a new 2-channel orthogonal wavelet associated with this 4-channel wavelet is constructed. The new 2-channel wavelet has at least the same number of vanishing moments as the associated 4-channel one. Finally, by combining the two such 2-channel wavelet systems, the lifting scheme of 4-channel orthogonal wavelet transform, which has simple structure and is easy to apply, is presented.

  4. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  5. Quantification of phosphorus metabolites in human calf muscle and soft-tissue tumours from localized MR spectra acquired using surface coils

    Doyle, V. L.; Payne, G. S.; Collins, D. J.; Verrill, M. W.; Leach, M. O.

    1997-04-01

    Metabolite concentrations determined from MR spectra provide more specific information than peak area ratios. This paper presents a method of quantification that allows metabolite concentrations to be determined from in vivo MR spectra acquired using a surface coil and ISIS localization. Corrections for the effects of field inhomogeneity produced by surface coils are based on a measured and calibrated spatial sensitivity field map for the coil. Account is taken of imperfections in pulse performance, coil loading effects and relaxation effects, the latter making use of published metabolite relaxation times. The technique is demonstrated on model solutions. The concentrations of the main metabolites in normal human calf muscle measured using this method are [PCr] = ; [Pi] = ; [NTP] = . Quantification of spectra acquired from soft-tissue tumours in patients both pre- and post-treatment showed that changes in metabolite concentrations are more sensitive to metabolic changes than changes in peak area ratios.

  6. Experimental study of coil selection considered from subject size

    We examined the index of coil selection in consideration of subject size to measure signal-to-noise ratio (SNR) and uniformity in a phantom experiment. The QD-Head, 8-channel-Head, and 8-channel-Head-Neck coil were used for head examination, QD-Body, 4-channel-TORSO, and 8-channel-Body coil were used for body examination. In the examination of the head, measurements were performed at various positions in a coil. The SNR measured by the QD-Head coil showed the highest values for 9 cm or 12 cm diameters of the phantom, and 10 cm to 15 cm distance from the coil entrance. The QD-Head coil also showed adequate uniformity at most sizes of phantoms. In the body examination, both multi-channel coils showed an SNR higher than the QD-Body coil for all sizes, but they were inferior to the QD-Body coil in uniformity. The 4-channel-TORSO coil showed an SNR higher than the 8-channel-Body coil when a phantom with a diameter of 21 cm or less was used. Since sensitivity distributions differ according to various cases, the 8-channel coil does not necessarily always show a high SNR. It is necessary to perform coil selection according to the subject's size and purpose. (author)

  7. MR findings of facial nerve on oblique sagittal MRI using TMJ surface coil: normal vs peripheral facial nerve palsy

    To evaluate the findings of normal facial nerve, as seen on oblique sagittal MRI using a TMJ (temporomandibular joint) surface coil, and then to evaluate abnormal findings of peripheral facial nerve palsy. We retrospectively reviewed the MR findings of 20 patients with peripheral facial palsy and 50 normal facial nerves of 36 patients without facial palsy. All underwent oblique sagittal MRI using a T MJ surface coil. We analyzed the course, signal intensity, thickness, location, and degree of enhancement of the facial nerve. According to the angle made by the proximal parotid segment on the axis of the mastoid segment, course was classified as anterior angulation (obtuse and acute, or buckling), straight and posterior angulation. Among 50 normal facial nerves, 24 (48%) were straight, and 23 (46%) demonstrated anterior angulation; 34 (68%) showed iso signal intensity on T1W1. In the group of patients, course on the affected side was either straight (40%) or showed anterior angulation (55%), and signal intensity in 80% of cases was isointense. These findings were similar to those in the normal group, but in patients with post-traumatic or post-operative facial palsy, buckling, of course, appeared. In 12 of 18 facial palsy cases (66.6%) in which contrast materials were administered, a normal facial nerve of the opposite facial canal showed mild enhancement on more than one segment, but on the affected side the facial nerve showed diffuse enhancement in all 14 patients with acute facial palsy. Eleven of these (79%) showed fair or marked enhancement on more than one segment, and in 12 (86%), mild enhancement of the proximal parotid segment was noted. Four of six chronic facial palsy cases (66.6%) showed atrophy of the facial nerve. When oblique sagittal MR images are obtained using a TMJ surface coil, enhancement of the proximal parotid segment of the facial nerve and fair or marked enhancement of at least one segment within the facial canal always suggests pathology of

  8. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 2: new vs. old imaging concept

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Metz, Klaus A. [University Hospital Essen, Department of Pathology and Neuropathology, Essen (Germany); Bornfeld, Norbert; Holdt, Markus [University Hospital Essen, Department of Ophthalmology, Essen (Germany); Temming, Petra; Schuendeln, Michael M. [University Hospital Essen, Department of Pediatric Hematology and Oncology, Essen (Germany)

    2015-08-15

    High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up. (orig.)

  9. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 2: new vs. old imaging concept

    High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up. (orig.)

  10. Coiled tubing

    Oil and gas wells that flow on initial completion eventually reach a condition of liquid loading that kills the wells. This results form declining reservoir pressure, decreased gas volume (velocity), increased water production and other factors that cause liquids to accumulate at the bottom of the well and exert back pressure on the formation. This restricts or in some cases prevents fluid entry into the wellbore form the formation. Flowing production can be restored or increased by reducing surface backpressure, well bore stimulation, pressure maintenance or by installing a string of smaller diameter tubing. This paper reports on installation (hanging off) of a concentric string of coiled tubing inside existing production tubing which is an economically viable, safe, convenient and effective alterative for returning some of these liquid loaded )logged-up) wells to flowing status

  11. CAMAC based 4-channel 12-bit digitizer

    With the development in Fusion research a large number of diagnostics are being used to understand the complex behaviour of plasma. During discharge, several diagnostics demand high sampling rate and high bit resolution to acquire data for rapid changes in plasma parameters. For the requirements of such fast diagnostics, a 4-channel simultaneous sampling, high-speed, 12-bit CAMAC digitizer has been designed and developed which has several important features for application in CAMAC based nuclear instrumentation. The module has independent ADC per channel for simultaneous sampling and digitization, and 512 Ksamples RAM per channel for on-board storage. The digitizer has been designed for event based acquisition and the acquisition window gives post-trigger as well as pre-trigger (software selectable) data that is useful for analysis. It is a transient digitizer and can be operated either in pre/post trigger mode or in burst mode. The record mode and the active memory size are selected through software commands to satisfy the current application. The module can be used to acquire data at high sampling rate for short time discharge e.g. 512 ms at 1MSPS. The module can also be used for long time discharge at low sampling rate e.g. 512 seconds at 1KSPS. This paper describes the design of digitizer module, development of VHDL code for hardware logic, Graphical User Interface (GUI) and important features of module from application point of view. The digitizer has CPLD based hardware logic, which provides flexibility in configuring the module for different sampling rates and different pre/post trigger samples through GUI. The digitizer can be operated with either internal (for testing/acquisition) or external (synchronized acquisition) clock and trigger. The digitizer has differential inputs with bipolar input range ±5V and it is being used with sampling rate of 1 MSamples Per Second (MSPS) per channel but it also supports higher sampling rate up to 3MSPS per channel. A

  12. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain

    Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  13. Evaluation of reconstructed orbital wall fractures: high-resolution MRI using a microscopy surface coil versus 16-slice MSCT

    Wiener, E.; Settles, M.; Rummeny, E. [Institut fuer Roentgendiagnostik, Klinikum rechts der Isar, Munich (Germany); Kolk, A.; Neff, A. [Klinik fuer Mund-Kiefer-Gesichtschirurgie, Klinikum rechts der Isar, Munich (Germany)

    2005-06-01

    We evaluated high-resolution magnetic resonance imaging (MR) using a 47-mm microscopy surface coil in comparison to 16-slice multislice CT (MSCT) for postsurgical imaging of reconstructed orbital walls. Twenty-five patients with 27 internal orbital wall fractures were imaged prospectively after reconstruction with resorbable polydioxanone sulfate (PDS) sheets. Coronal high-quality T1- and T2-weighted MR images were obtained with an in-plane resolution of 350 {mu}m within a measure time of 6-7 min for each sequence. Nineteen symptomatic patients underwent MSCT as the current gold standard. In MRI the PDS foil appears in T1- and T2-weighted images as a thin, low-signal-intensity linear structure. In CT it appears hyperdense in comparison to soft tissue and slightly hypodense in comparison to cortical bone. PDS foils could be clearly depicted in 20 out of 25 patients (80%) with MRI and in 13 out of 19 patients (68%) with MSCT. An inadequate foil position or size could be diagnosed in eight patients with MRI and in only three patients with MSCT. In ten symptomatic patients secondary surgery could be avoided because of regular MRI findings except mild hematoma and muscle edema. High-resolution MRI of the orbit using a 47-mm microscopy coil is a promising method to accurately demonstrate normal and pathologic conditions in symptomatic patients after orbital wall reconstruction with PDS foils. (orig.)

  14. Compact stellarator coils

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  15. Ressonância magnética das vias lacrimais: estudo comparativo entre bobinas de superfície convencionais e microscópicas Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    Luiz de Abreu Junior

    2008-08-01

    Full Text Available OBJETIVO: A ressonância magnética tem sido utilizada para avaliar as vias lacrimais, com vantagens em relação à dacriocistografia por raios-X. O objetivo deste trabalho é obter imagens de alta resolução utilizando bobinas de superfície microscópicas para avaliação de estruturas normais das vias lacrimais, comparando com o aspecto observado utilizando-se bobinas de superfície convencionais. MATERIAIS E MÉTODOS: Cinco voluntários assintomáticos, sem histórico de lacrimejamento, submeteram-se a ressonância magnética de alto campo, com bobinas de superfície (convencional e microscópica, com seqüência STIR após instilação de soro fisiológico. A identificação das estruturas anatômicas normais das vias lacrimais foi comparada utilizando-se as duas bobinas. Mediante uso de um sistema de escore, um valor médio de cada estrutura foi calculado por dois examinadores, consensualmente. RESULTADOS: Em 90% das vezes houve aumento do escore, atribuído à estrutura anatômica no estudo com a bobina microscópica. Em média, houve aumento de 1,17 ponto no escore, por estrutura anatômica visualizada, quando se utilizou a bobina microscópica. Observou-se, ainda, melhora subjetiva da relação sinal-ruído ao se utilizar a bobina microscópica. CONCLUSÃO: A dacriocistografia por ressonância magnética com bobinas microscópicas é um método adequado para o estudo das vias lacrimais, resultando em imagens de melhor qualidade quando comparada ao uso de bobinas de superfície convencionais.OBJECTIVE: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high-resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. MATERIALS AND METHODS: Five asymptomatic volunteers with no history of

  16. ALEPH Coil

    ALEPH was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The detector was used by a collaboration of hundreds of physicists, mostly from Europe but also from China and the USA. The ALEPH superconducting magnet coils provide a very uniform magnetic field of 1.5 Tesla. The current in the coil is about 5000 A and the stored energy is 136 MJ. The coils are cooled by liquid Helium. Two correction coils serve to improve the uniformity of the field. This piece is connected to OBJ-DE-054.

  17. Microcalcifications clinically normal breast: the value of high field, surface coil, Gd-DTPA-enhanced MRI

    State-of-the-art screening mammography allows the detection of nonpalpable breast lesions in approximately 30% of patients. The presence of clustered microcalcifications without evidence of solid tumors usually requires further investigations, mainly biopsy. A 1.5-T magnet with a single breast coil was used to evaluate 32 patients with indeterminate mammography suggestive of microcalcifications prior to surgery. Both spin-echo (SE) and gradient-echo (GE; 2D fast low-angle shot [FLASH]) techniques were utilized before and after injection of 0.2 mmol/kg Gd-DTPA. Upon surgery tumor diameters ranged between 3 and 10 mm. Use of MRI demonstrated 87.5% overall accuracy, 83.3% sensitivity, and 92.9% specificity. False-negative MRI results were in situ carcinomas less than 5 mm in size. All the correctly diagnosed carcinomas measured between 5 and 10 mm. Partial volume is probably the greatest limit of this technique and lesions equal to or smaller than 5 mm are only rarely detected. The GE and SE sequences demonstrated comparable results. (orig.)

  18. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla

    van Kalleveen, Irene M. L.; Boer, VO; Luijten, Peter R.; Klomp, DWJ

    2015-01-01

    Purpose: Going to ultrahigh field MRI (e. g., 7 Tesla [ T]), the nonuniformity of the B_1 field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B_1, its field remains nonuniform. In this work, an RF pulse was designed tha

  19. FRP surfaces and frictional properties of structural materials in superconducting coils

    To make spacers from a plate made of the Dyneema fiber reinforced plastic (DFRP), a diamond cutter is generally used. When the plate is cut, the many agnail-like Dyneema fibers remain on the face. Hence we polished the face and measured the frictional coefficients on the faces with and without the agnail-like fibers. According to the experimental results the frictional coefficients on the surfaces with/without the Dyneema fibers showed almost the same value at the cryogenic temperatures (77 and 4 K). Therefore, during fabricating process of spacers made of DFRP, it is not necessary to polish the surfaces of DFRP spacers and to remove the agnail-like fibers after cutting the spacers from a viewpoint of the frictional coefficients

  20. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al2O3) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  1. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    Chowdhury, Anirban, E-mail: anirban.chowdhury@gmail.com [Research and Development, Tata Steel Limited, Jamshedpur 831001 (India); Iyyappan, Ramasamy [Flat Product Technology Group, Tata Steel Limited, Jamshedpur 831001 (India); Majumdar, Dipanwita; Singha, Achintya [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)

    2014-11-14

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al{sub 2}O{sub 3}) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry.

  2. Quantification of phosphorus metabolites in human calf muscle and soft-tissue tumours from localized MR spectra acquired using surface coils

    Doyle, V.L.; Payne, G.S.; Collins, D.J.; Leach, M.O. [CRC Clinical Magnetic Resonance Research Group, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom); Verrill, M.W. [Sarcoma Unit, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom)

    1997-04-01

    Metabolite concentrations determined from MR spectra provide more specific information than peak area ratios. This paper presents a method of quantification that allows metabolite concentrations to be determined from in vivo {sup 31}P MR spectra acquired using a surface coil and ISIS localization. Corrections for the effects of B{sub 1} field inhomogeneity produced by surface coils are based on a measured and calibrated spatial sensitivity field map for the coil. Account is taken of imperfections in pulse performance, coil loading effects and relaxation effects, the latter making use of published metabolite relaxation times. The technique is demonstrated on model solutions. The concentrations of the main {sup 31}P metabolites in normal human calf muscle measured using this method are [PCr] = 26.9{+-}4.1 mM; [Pi] = 3.6{<=}1.2 mM; [NTP] = 6.8{+-}1.8 mM. Quantification of spectra acquired from soft-tissue tumours in patients both pre- and post-treatment showed that changes in metabolite concentrations are more sensitive to metabolic changes than changes in peak area ratios. (author)

  3. An in vitro L-band EPR study with whole human teeth in a surface coil resonator

    L-band EPR measurements were done in vitro on extracted human teeth with the objective to evaluate the feasibility of retrospective in vivo EPR dosimetry. In a recent study, the relative contributions of individual tooth components (enamel, crown dentin and root) to the total response of a whole tooth inside an L-band surface coil resonator was investigated. In the present work, the gamma-dose response curves were evaluated for different EPR signal evaluation methods, using 35 whole teeth with absorbed doses in the range 1-100 Gy. The paper reports on the first attempt to deconvolute the single composite L-band EPR line in components due to CO2- and native radicals. The L-band EPR spectrum of teeth could be approximated by combining powder-simulated spectra of orthorhombic and quasi-axial signals of the CO2- radical and an isotropic signal of the native radicals. Among the applied EPR signal evaluation methods, the evaluation by spectrum deconvolution revealed the lowest detection limit for absorbed dose. A detection limit of about 0.5 Gy was estimated for the currently available L-band equipment

  4. New method of determining coil misalignments in the ITER tokamak on the base of sensitive vacuum magnetic measurements with the use of a 'Saw Tooth' coil providing the creation of stellarator resonance magnetic surfaces

    The paper presents a new highly sensitive 'e-beam' method of determining misalignments of elements in the ITER magnetic system on the base of magnetic measurements (MM). For the period of MM experiments it is suggested to make a 'tokamak-stellarator' hybrid (ITER-S) by means of addition to the ITER magnetic system of a new, not helical Saw Tooth-shaped Coil (STC) in order to provide the creation of 'resonance' magnetic surfaces with the angles of rotational transform t = n/m = 1/2 or t = 1/3. In one of variants the STC parts can be introduced into the vacuum vessel through the largest port and assembled into a single coil. We propose a highly sensitive 'e-beam' method using the luminescent rod, i.e. the fastest and most accurate method giving a direct pictures of magnetic surface structure. In the method proposed the basic component of the equipment is a small (diameter∼1.5mm) metal rod coated with a thin phosphor layer. In other poloidal cross-section the electron gun, movable along the minor radius of the torus, is placed. The pictures of many 'magnetic surfaces' are obtained by photographing the light emitted by phosphor due to electrons striking the rod. Experiments on the Uragan-3M torsatron have shown that up to 15 contours of 'magnetic surfaces' can be registered. The typical resolution δr along the minor radius is of the order of δr ∼ (3-5)mm. The calculations of the ITER-S magnetic configuration show that due to the turn of the poloidal field coil PF3 (radius Rc = 12.01 m) around the axis X direction at an angle α = 1' the resonance structure is formed with t = 1/2 and the maximum island width δo ∼50 mm. Under this tilt the maximum misalignment of coil elements from the design position Δα is only 3.5 mm. The vertical and horizontal magnetic field components in the resonance region are changing by the value bj ∼ (0.5 - 0.6) G, that corresponds approximately to the relative value of perturbation bj/Bo ∼ 1*10-5. Generally in similar cases one

  5. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 1: MRI vs. histopathology

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Metz, Klaus A. [University Hospital Essen, Department of Pathology and Neuropathology, Essen (Germany); Bornfeld, Norbert; Holdt, Markus [University Hospital Essen, Department of Ophthalmology, Essen (Germany); Temming, Petra; Schuendeln, Michael M. [University Hospital Essen, Department of Pediatric Hematology and Oncology, Essen (Germany)

    2015-08-15

    A reliable detection of metastatic risk factors is important for children with retinoblastoma to choose the right therapeutic regimen. First studies using high-resolution magnetic resonance imaging (MRI) with orbit surface coils were promising. The aim of this study was therefore to evaluate the ability of high-resolution MRI to detect metastatic and especially advanced metastatic risk factors in a large group of children with retinoblastoma. One hundred forty-three consecutive children with retinoblastoma (148 enucleated eyes, 64 girls, 79 boys, mean age 19.7 ± 15.3) who received pretherapeutical high-resolution MRI with orbit surface coils on 1.5 T MR scanner systems between 2007 and 2012 and subsequent primary enucleation within 14 days were included in this retrospective study. Image analysis was performed by two neuroradiologists experienced in ocular imaging in consensus. Histopathology served as gold standard. Sensitivity/specificity for the detection of metastatic risk factors using high-resolution MRI with orbit surface coils were 60 %/88.7 % for postlaminar optic nerve infiltration, 65.5 %/95.6 % for choroidal invasion, 100 %/99.3 % for scleral invasion, and 100 %/100 % for peribulbar fat invasion, respectively. The results increased for the detection of advanced metastatic risk factors, 81.8 %/89.1 % for deep postlaminar optic nerve infiltration, 70.6 %/97.6 % for massive choroidal invasion. High-resolution MRI is clinically valuable for the detection of metastatic, especially of advanced metastatic risk factors in children with retinoblastoma. (orig.)

  6. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 1: MRI vs. histopathology

    A reliable detection of metastatic risk factors is important for children with retinoblastoma to choose the right therapeutic regimen. First studies using high-resolution magnetic resonance imaging (MRI) with orbit surface coils were promising. The aim of this study was therefore to evaluate the ability of high-resolution MRI to detect metastatic and especially advanced metastatic risk factors in a large group of children with retinoblastoma. One hundred forty-three consecutive children with retinoblastoma (148 enucleated eyes, 64 girls, 79 boys, mean age 19.7 ± 15.3) who received pretherapeutical high-resolution MRI with orbit surface coils on 1.5 T MR scanner systems between 2007 and 2012 and subsequent primary enucleation within 14 days were included in this retrospective study. Image analysis was performed by two neuroradiologists experienced in ocular imaging in consensus. Histopathology served as gold standard. Sensitivity/specificity for the detection of metastatic risk factors using high-resolution MRI with orbit surface coils were 60 %/88.7 % for postlaminar optic nerve infiltration, 65.5 %/95.6 % for choroidal invasion, 100 %/99.3 % for scleral invasion, and 100 %/100 % for peribulbar fat invasion, respectively. The results increased for the detection of advanced metastatic risk factors, 81.8 %/89.1 % for deep postlaminar optic nerve infiltration, 70.6 %/97.6 % for massive choroidal invasion. High-resolution MRI is clinically valuable for the detection of metastatic, especially of advanced metastatic risk factors in children with retinoblastoma. (orig.)

  7. Use of the 3D-M APTOR Code in the Study of Magnetic Surfaces Break-up due to External Non-Axisymmetric Coils

    Full text: We show how the outer magnetic surfaces can be broken up in a spherical tokamak, by breaking the axisymmetry using an inner tilted coil. The configuration chosen for this work is that of the MEDUSA small spherical tokamak, a small glass chamber device, which allows the introduction of such a coil. The simulation is carried out with the 3D-MAPTOR code developed by the authors. Given an initial condition for the magnetic field, it is integrated from the plasma current profile and the external currents, such as the toroidal and the vertical field. Poincare maps along the toroidal angle and the image of the field, as seen from above can be plotted. The latter allows the identification of parameters for which the ripple effect is significant. (author)

  8. Rotor assembly including superconducting magnetic coil

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  9. Image analysis from surface scanning with an absolute eddy current coil; Analyse d`images obtenues par balayage de surface avec un capteur ponctuel courants de Foucault

    Attaoui, P.

    1994-10-19

    The aim of this work is to implement processing and analysis tools applied to eddy current imaging. These cartographies are issued from steam generator tubes testing using an absolute coil. The first is to eliminate the perturbations due to probe lift-off changes which generate low frequency oscillations on the image. The principle of the processing is to rebuild a complete surface of the noise using only the points around the defect area. The geometric origin of these perturbations led to a model based on sinusoidal functions. The method consists of gradually decomposing the image into a sum of basic sinusoidal surfaces. In order to take into account all kind of cartographies (especially rolling zone) some preprocessing must be applied. The results obtained with this `cartography flattening`are satisfactory and the phase of analysis could begin with good condition of signal ratio. The second part of this work dealt with the choice and the perfection of image processing tools which would fit the most with the defect characterization. The aim of this characterization is to give the orientation and main size of the detected defect. A morphological skeleton representation has been chosen to illustrate the defect architecture and to allow sizing. A set of tools has been elaborated to obtain an (automatic) processing according to threshold. The results for single defect are satisfactory since the sizing error is around {+-} 25% and orientation is nearly always correctly given. The processing for area with several defects is more complex and new complementary research directions are proposed. (author).

  10. 4-Channel readout ASIC for MaPMT

    MaPMTs is widely used, but conventional PCB circuits can not satisfy their demands because of the defects of large volume, high power dissipation and noise. The 4-channel readout ASIC for MaPMT is designed for solving these problems with 0.35 μm CMOS technology. The circuit is composed of Pre-Amp, gain adjusting, and CR-RC shaper with Pole-zero cancling. The test results show power dissipation is 66 mW; gain 62.2 mV/pC; dynamic range 13 pC, INL=1.5%; SNR=9.1. The performances meet design requires. (authors)

  11. Inhibition of auxin transport and auxin signaling and treatment with far red light induces root coiling in the phospholipase-A mutant ppla-I-1. Significance for surface penetration?

    Perrineau, F; Wimalasekera, R; Effendi, Y; Scherer, G F E

    2016-06-01

    When grown on a non-penetretable at a surface angle of 45°, Arabidopsis roots form wave-like structures and, in wild type rarely, but in certain mutants the tip root even may form circles. These circles are called coils. The formation of coils depends on the complex interaction of circumnutation, gravitropism and negative thigmotropism where - at least - gravitropism is intimately linked to auxin transport and signaling. The knockout mutant of patatin-related phospholipase-AI-1 (pplaI-1) is an auxin-signaling mutant which forms moderately increased numbers of coils on tilted agar plates. We tested the effects of the auxin efflux transport inhibitor NPA (1-naphthylphtalamic acid) and of the influx transport inhibitor 1-NOA (1-naphthoxyacetic acid) which both further increased root coil formation. The pPLAI-1 inhibitors HELSS (haloenol lactone suicide substrate=E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) and ETYA (eicosatetraynoic acid) which are auxin signaling inhibitors also increased coil formation. In addition, far red light treatment increased coil formation. The results point out that a disturbance of auxin transport and signaling is one potential cause for root coils. As we show that the mutant pplaI-1 penetrates horizontal agar plates better than wild type plants root movements may help penetrating the soil. PMID:27058428

  12. Designing Stable Antiparallel Coiled Coil Dimers

    曾宪纲; 周海梦

    2001-01-01

    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  13. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel

    Boušová, Kristýna; Jirků, Michaela; Bumba, Ladislav; Bednárová, Lucie; Šulc, Miroslav; Franěk, M.; Vyklický ml., Ladislav; Vondrášek, Jiří; Teisinger, Jan

    2015-01-01

    Roč. 205, Oct 2015 (2015), s. 24-32. ISSN 0301-4622 R&D Projects: GA ČR(CZ) GAP207/11/0717; GA ČR(CZ) GA15-11851S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388971 ; RVO:61388963 Keywords : binding site * circular dichroism * molecular modeling * PIP2 * surface plasmon resonance * TRPM4 channel Subject RIV: CE - Biochemistry Impact factor: 1.986, year: 2014

  14. Dynamics of liquid rope coiling

    Habibi, Mehdi; Maleki, Maniya; Golestanian, Ramin; Ribe, Neil M.; Bonn, Daniel

    2006-12-01

    We present a combined experimental and numerical investigation of the coiling of a liquid “rope” falling on a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of “inertio-gravitational” coiling, the systematic dependence of the radii of the coil and the rope on the experimental parameters, and the “secondary buckling” of the columnar structure generated by high-frequency coiling. Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and we present experimental observations of four distinct branches of such states in the frequency-fall height space. The transitions between coexisting states have no characteristic period, may take place with or without a change in the sense of rotation, and usually (but not always) occur via an intermediate “figure of eight” state. We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show that they agree well with the predictions of a “slender-rope” numerical model. Finally, we use dimensional analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of (dimensionless) flow rate and surface tension parameters.

  15. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Glenn E White

    Full Text Available BACKGROUND: The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS: Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE: SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence

  16. Movable coil type magnetic drives

    In movable coil type magnetic drives suitable to reactor control element drives, if it is intended to increase the retaining force thereof, there has been a problem that the size of the device is increased. Then in electromagnetic coils surrounding a plunger mounted to a driving shaft, auxiliary annular poles are disposed to each of inner ends of poles at both ends of the coils so as to cover almost of the surface on the side of the plunger. As a result, the magnetic bonding force between the electromagnetic coils and the plunger is enhanced, and the retaining force for the driving shaft can be increased by a small sized device without increasing current supplied to the electromagnetic coils and the number of the electromagnetic coils. The present invention is not limited to reactor control element drives, but it can be applied to various kinds of fields such as a driving device for moving materials in contactless manner, for example, in a case of removing drum cans containing radioactive materials or harmful materials. (N.H.)

  17. Multichannel magnetic stimulation system design considering mutual couplings among the stimulation coils.

    Han, Byung H; Chun, In K; Lee, Sang C; Lee, Soo Y

    2004-05-01

    We introduce some simulation and experiment results of the multichannel magnetic stimulator development that has been carried out as an initial attempt to realize a multichannel functional magnetic stimulator. For efficient functional magnetic stimulations, precise spatial localization of stimulation sites without any movements of the stimulation coils is very important. We have found that the mutual coupling effect among the adjacent stimulation coils in the coil array has to be considered in the determination of the charge voltages in some coil array configurations. Experimental results obtained with a 4-channel magnetic stimulator are presented. PMID:15132507

  18. Suppression of magnetic surface breaking by simple extra coils in a finite beta equilibrium of helical system

    A simple method is proposed to suppress actively the breaking of magnetic surfaces which occurs in l = 2 Heliotron/Torsatron equilibria, by which fairly high beta equilibria with clearly nested magnetic surfaces can be realized without changing other physical properties such as the rotational transform profile and the well depth. (author)

  19. Increased Vessel Depiction of the Carotid Bifurcation with a Specialized 16-Channel Phased Array Coil at 3T

    Tate, Quinn; Kim, Seong-Eun; Treiman, Gerald; Parker, Dennis L.; Hadley, J. Rock

    2012-01-01

    The purpose of this work was to design and construct a multi-channel receive-only RF coil for 3 Tesla magnetic resonance imaging of the human carotid artery and bifurcation with optimized signal to noise ratio in the carotid vessels along the full extent of the neck. A neck phantom designed to match the anatomy of a subject with a neck representing the body habitus often seen in subjects with carotid arterial disease, was constructed. Sixteen circular coil elements were arranged on a semi-rigid fiberglass former that closely fit the shape of the phantom, resulting in a 16-channel bilateral phased array coil. Comparisons were made between this coil and a typical 4-channel carotid coil in a study of 10 carotid vessels in 5 healthy volunteers. The 16-channel carotid coil showed a 73% average improvement in signal to noise ratio (SNR) at the carotid bifurcation. This coil also maintained an SNR greater than the peak SNR of the 4-channel coil over a vessel length of 10 cm. The resulting increase in SNR improved vessel depiction of the carotid arteries over an extended field of view, and demonstrated better image quality for higher parallel imaging reduction factors compared to the 4-channel coil. PMID:22777692

  20. Cooling arrangement for a superconducting coil

    A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs

  1. Sticky water surfaces: helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface.

    Schach, Denise; Globisch, Christoph; Roeters, Steven J; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K; Backus, Ellen H G; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias

    2014-12-14

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface. PMID:25494788

  2. Sticky water surfaces: Helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface

    Schach, Denise; Globisch, Christoph; Roeters, Steven J.; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K.; Backus, Ellen H. G.; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias

    2014-12-01

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface.

  3. Diagnosis of breast cancer with MR imaging using the magnetization transfer contrast and a newly-developed breast surface coil for the supine position

    We developed a new breast surface coil for the supine position. The subjects consisted of 9 patients with breast cancer varying from 46 to 60 years of age (average: 52). The cancer image of the SPGR (CE+) method was compared with that of the FSMTC (MTC-SPGR (CE+)) method and that of the FSMTC (MTC-SPGR with fat-saturation (CE+)) method in the sagittal section after injection of Gd-DTPA (0.1 mmol/kg). Quantitative analyses were performed before and after injection of Gd-DTPA in 6 patients. Three patients were excluded from the quantitative analyses owing to the clear detection of tumors in the fat tissue. Signal intensity measurements were systematically performed in each region of interest (ROI), i.e. the cancer lesion, the surrounding mammary gland. Statistical analyses showed significant differences between the lesions using the FSMTC (MTC-SPGR (CE+)), and the FSMTC (MTC-SPGR with fat-saturation (CE+)) methods and the lesions using the SPGR (CE+) method after injection of contrast medium. (p<0.01). (author)

  4. Optimal coil orientation for transcranial magnetic stimulation.

    Lars Richter

    Full Text Available We study the impact of coil orientation on the motor threshold (MT and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1 ± 18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54 ± 18% in units of maximum stimulator output. There was a significant difference of 8.0 ± 5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus ([Formula: see text]. Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells.

  5. The JET divertor coil

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  6. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging

    To implement, examine, and compare three multichannel transmit/receive coil configurations for cardiovascular MR (CMR) at 7T. Three radiofrequency transmit-receive (TX/RX) coils with 4-, 8-, and 16-coil elements were used. Ten healthy volunteers (seven males, age 28 ± 4 years) underwent CMR at 7T. For all three RX/TX coils, 2D CINE FLASH images of the heart were acquired. Cardiac chamber quantification, signal-to-noise ratio (SNR) analysis, parallel imaging performance assessment, and image quality scoring were performed. Mean total examination time was 29 ± 5 min. All images obtained with the 8- and 16-channel coils were diagnostic. No significant difference in ejection fraction (EF) (P > 0.09) or left ventricular mass (LVM) (P > 0.31) was observed between the coils. The 8- and 16-channel arrays yielded a higher mean SNR in the septum versus the 4-channel coil. The lowest geometry factors were found for the 16-channel coil (mean ± SD 2.3 ± 0.5 for R = 4). Image quality was rated significantly higher (P < 0.04) for the 16-channel coil versus the 8- and 4-channel coils. All three coil configurations are suitable for CMR at 7.0T under routine circumstances. A larger number of coil elements enhances image quality and parallel imaging performance but does not impact the accuracy of cardiac chamber quantification. (orig.)

  7. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging

    Winter, Lukas; Graessl, Andreas; Hezel, Fabian; Thalhammer, Christof [Max-Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility, Berlin (Germany); Kellman, Peter [National Institutes of Health/NHLBI, Laboratory of Cardiac Energetics, Bethesda, MD (United States); Renz, Wolfgang [Max-Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility, Berlin (Germany); Siemens Healthcare, Erlangen (Germany); Knobelsdorff-Brenkenhoff, Florian von; Schulz-Menger, Jeanette [Max-Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility, Berlin (Germany); HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Berlin (Germany); Charite Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Tkachenko, Valeriy [Charite Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany); Niendorf, Thoralf [Max-Delbrueck Center for Molecular Medicine, Berlin Ultrahigh Field Facility, Berlin (Germany); Charite Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Berlin (Germany)

    2012-10-15

    To implement, examine, and compare three multichannel transmit/receive coil configurations for cardiovascular MR (CMR) at 7T. Three radiofrequency transmit-receive (TX/RX) coils with 4-, 8-, and 16-coil elements were used. Ten healthy volunteers (seven males, age 28 {+-} 4 years) underwent CMR at 7T. For all three RX/TX coils, 2D CINE FLASH images of the heart were acquired. Cardiac chamber quantification, signal-to-noise ratio (SNR) analysis, parallel imaging performance assessment, and image quality scoring were performed. Mean total examination time was 29 {+-} 5 min. All images obtained with the 8- and 16-channel coils were diagnostic. No significant difference in ejection fraction (EF) (P > 0.09) or left ventricular mass (LVM) (P > 0.31) was observed between the coils. The 8- and 16-channel arrays yielded a higher mean SNR in the septum versus the 4-channel coil. The lowest geometry factors were found for the 16-channel coil (mean {+-} SD 2.3 {+-} 0.5 for R = 4). Image quality was rated significantly higher (P < 0.04) for the 16-channel coil versus the 8- and 4-channel coils. All three coil configurations are suitable for CMR at 7.0T under routine circumstances. A larger number of coil elements enhances image quality and parallel imaging performance but does not impact the accuracy of cardiac chamber quantification. (orig.)

  8. High resolution MR imaging of the anal sphincter using an intravaginal surface coil; Hochaufloesende Magnetresonanztomographie des Analsphinkters mit einer intravaginalen Oberflaechenspule

    Mueller-Schimpfle, M. [Radiologische Klinik, Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Franz, H. [Frauenklinik, Tuebingen Univ. (Germany); Lobinger, B. [Radiologische Klinik, Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Claussen, C.D. [Radiologische Klinik, Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany)

    1995-06-01

    MR imaging was performed using a 1.0 T unit. In 10 females (6 nullipara, one primipara without and three primipara with postpartum faecal incontinence) a surface coil, originally designed for endorectal use, was placed into the vagina. Transverse oblique T{sub 1}-weighted spin echo and double echo turbo spin echo sequences with T{sub 2}- and proton density-weighting were acquired parallel to the puborectal, rectococcygeal and anorectal planes. Three readers analysed the images in consensus. The anatomic structures of the external and internal sphincter as well as the mucosa were differentiated in all cases with a good contrast. The best results were yielded by the proton density weighting. In one case of faecal incontinence a sphincter defect after repair of a complete rupture of the anal sphincter was shown. In another case irregularities in the structure of the external sphincter and perineum were visualised. (orig./MG) [Deutsch] Die Magnetresonanztomographie (MRT) wurde an einem 1,0-Tesla-Geraet durchgefuehrt. Bei 10 Frauen (6 Nulliparae, eine Primipara ohne und drei Primiparae mit postpartaler Stuhlinkontinenz) wurde eine Oberflaechenspule, die urspruenglich zur endorektalen Anwendung konzipiert war, intravaginal eingefuehrt. Es wurden T{sub 1}-gewichtete Spin-Echo-Sequenzen sowie Doppel-Echo-Turbo-Spin-Echo-Sequenzen mit T{sub 2}- und Protonendichtegewichtung parallel zur puborektalen, rektokokzygealen und anorektalen Ebene akquiriert. Drei Auswerter analysierten die Aufnahmen im Konsensmodus. Die anatomischen Strukturen des Musculus sphincter ani externus und internus sowie die Mukosa konnten in allen Faellen gut differenziert werden. Das beste Ergebnis wurde mit der Protonendichte-Gewichtung erzielt. In einem Fall von Stuhlinkontinenz zeigte sich ein kombinierter Defekt des M. sphincter ani internus und externus nach Naht eines Dammrisses III. Grades. In einem weiteren Fall waren Irregularitaeten im Perineum und externen Sphinkteranteil darzustellen. (orig./MG)

  9. Active internal corrector coils

    Thompson, P.A.; Cottingham, J.; Dahl, P.; Fernow, R.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Hahn, H.; Herrera, J.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained.

  10. Active internal corrector coils

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. Some of the design and construction features of powered internal trim coils and a sampling of the test results obtained are described

  11. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. PMID:26786101

  12. The jet divertor coils

    This paper reports on the JET Tokamak which is to be modified to incorporate a divertor. A coil system in the vacuum vessel has been developed, which can produce a range of different divertor plasmas. The divertor coils are of conventional construction and are contained in this Inconel cases. They will be assembled in the vacuum vessel, welded into their cases and impregnated with epoxy resin

  13. LHCb magnet coils arrive

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  14. Ocular MR imaging. Evaluation of different coil setups in a phantom study

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T1-weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality. (author)

  15. NCSX Toroidal Field Coil Design

    Kalish, M.; Rushinski, J.; Myatt, L.; Brooks, A.; Dahlgren, F.; Chrzanowski, J.; Reiersen, W.; Freudenberg, K.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements.

  16. TFTR toroidal field coil design

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 180 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  17. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla

    Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.

    2014-09-01

    This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.

  18. TFTR coil case design

    The TFTR (TOKAMAK Fusion Test Reactor) TF (Toroidal Field) coil cases are highly loaded structures designed within severe constraints. Foremost among these are basic machine geometry, material characteristics of both the case and the copper/epoxy matrix it supports, and overall cost. Scoping and parametric studies have been performed continuously since conceptual design. The progression of design decisions including coil shape, support locations and their stiffnesses, material selection, and element sizing are described. The significant variables are identified for each of the studies. The current coil case design is presented in detail along with aspects of the design still under consideration. Questions that remain involve the effects of limitations placed upon the coil materials (copper, epoxy) themselves. Resolution of these questions is to be accomplished by development tests of coil elements similar to those in the current design. Two alternate designs have been held in reserve pending completion of the development tests. Each is briefly described as to its basic configuration, potential for improvement, and its effect on the overall device

  19. Antiparallel coiled-coil-mediated dimerization of myosin X.

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-10-23

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor's lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or by replacement of the anti-CC with a parallel coiled coil with a similar length compromised the filopodial induction activity of myosin X. We further show that the anti-CC and the single α-helical domain of myosin X are connected by a semirigid helical linker. The anti-CC-mediated dimerization may enable myosin X to walk on both single and bundled actin filaments. PMID:23012428

  20. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  1. Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation

    Brisse, Herve J. [Institut Curie, Department of Radiology, Paris (France); Institut CURIE, Imaging Department, Paris (France); Graaf, Pim de; Rodjan, Firazia; Jong, Marcus C. de; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Galluzzi, Paolo [Neuroimaging and Neurointerventional Unit (NINT) Azienda Ospedaliera e Universitaria Senese, Siena (Italy); Cosker, Kristel; Savignoni, Alexia [Institut Curie, Department of Biostatistics, Paris (France); Maeder, Philippe [Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Goericke, Sophia [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Aerts, Isabelle [Institut Curie, Department of Pediatric Oncology, Paris (France); Desjardins, Laurence [Institut Curie, Department of Ophthalmology, Paris (France); Moll, Annette C. [VU University Medical Center, Department of Ophthalmology, Amsterdam (Netherlands); Hadjistilianou, Theodora [Azienda Ospedaliera Universitaria Senese, Department of Ophthalmology, Siena (Italy); Toti, Paolo [University of Siena, Department of Medical Biotechnologies, Pathology Unit, Siena (Italy); Valk, Paul van der [VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Sastre-Garau, Xavier [Institut Curie, Department of Biopathology, Paris (France); Collaboration: European Retinoblastoma Imaging Collaboration (ERIC)

    2015-05-01

    To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 x 0.3 mm{sup 2}). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. (orig.)

  2. Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation

    To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 x 0.3 mm2). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. (orig.)

  3. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia

    Ryskamp, Daniel A; Jo, Andrew O; Frye, Amber M;

    2014-01-01

    retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations that...

  4. NET model coil test possibilities

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb3Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb3TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.)

  5. TEXT tf coil bonding system

    An extensive bond test program was conducted prior to manufacturing and bonding the toroidal field (TF) coils for the Texas Experimental Tokamak (TEXT). The bonding materials consisted of fiberglass cloth with pre-impregnated, 'B' staged Hexcel F-159 resin. Approximately 100 double lap bond samples were constructed to test quality, strength, and repeatability of the bonds. The variables investigated included surface machining methods, surface preparations, bond sample size (planform area), bonding pressure, bonding temperature, and the number of laminations bonded simultaneously. Double lap shear tests conducted at room temperature resulted in ultimate shear strengths for all variables in the range of 3000 to 7000 psi with an average value of 5650 psi. Fatigue tests were also conducted to demonstrate bond integrity over the anticipated cycle lifetime of the TEXT machine (10/sup 6/ cycles) under simulated worst case conditions. 2 refs

  6. Modular coils: a promising toroidal-reactor-coil system

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  7. Degradation analysis of REBCO coils

    RE-Ba-Cu-O (REBCO) layer-wound coils were operated to investigate their properties under electromagnetic forces in an external magnetic field of up to 17.2 T. While REBCO coils were successfully operated under electromagnetic forces over 200 MPa, some showed degradation after quenching. To develop high-temperature superconducting (HTS) magnets, the reasons for the degradation of REBCO coils should be investigated. In this study, the degraded REBCO coils were carefully rewound. The critical current (Ic) of the rewound REBCO conductor was measured to check the damaged parts in the degraded REBCO coils, and the possible causes for the degradation were discussed. (paper)

  8. CENP-K and CENP-H may form coiled-coils in the kinetochores

    2009-01-01

    Kinetochores are large proteinaceous structure on the surface of chromosomes’ primary constriction during mitosis. They link chromosomes to spindle microtubules and also regulate the spindle assem- bly checkpoint, which is crucial for correct chromosome segregation in all eukaryotes. The better known core networks of kinetochores include the KMN network (K, KNL1; M, Mis12 complex; N, Ndc80 complex)and CCAN (constitutive centromere-associated network). However, the detailed molecular mechanism of the kinetochore protein network remains unclear. This study demonstrates that CENP-H and CENP-K form quite stable subcomplex by TAP (tandem affinity purification) with HEK 293 cells which express TAP-CENP-K, with the ratio of purified CENP-H and CENP-K being close to 1︰1 even with high salt. Bioinformatic analysis suggests that CENP-H and CENP-K are enriched with coiled-coil regions. This implies that CENP-H and CENP-K form heterodimeric coiled-coils. Furthermore, the func- tional regions which form the complex are respectively located on their N- and C-terminals, but the association between the C-terminals is more complex. It is possible that this is the first identified het- erodimeric coiled-coils within the inner kinetochore, which is directly involved in the attachment be- tween kinetochores and the spindle microtubules.

  9. Solution structure of the coiled-coil trimerization domain from lung surfactant protein D

    Surfactant protein D (SP-D) is one of four known protein components of the pulmonary surfactant lining the lung alveoli. It is involved in immune and allergic responses. SP-D occurs as a tetramer of trimers. Trimerization is thought to be initiated by a coiled coil domain. We have determined the solution structure of a 64-residue peptide encompassing the coiled coil domain of human SP-D. As predicted, the domain forms a triple-helical parallel coiled coil. As with all symmetric oligomers, the structure calculation was complicated by the symmetry degeneracy in the NMR spectra. We used the symmetry-ADR (ambiguous distance restraint) structure calculation method to solve the structure. The results demonstrate that the leucine zipper region of SP-D is an autonomously folded domain. The structure is very similar to the independently determined X-ray crystal structure, differing mainly at a single residue, Tyr248. This residue is completely symmetric in the solution structure, and markedly asymmetric in the crystalline phase. This difference may be functionally important, as it affects the orientation of the antigenic surface presented by SP-D

  10. Solution structure of the coiled-coil trimerization domain from lung surfactant protein D

    Kovacs, Helena [Bruker BioSpin AG (Switzerland); O' Donoghue, Sean I. [European Molecular Biology Laboratory (Germany); Hoppe, Hans-Juergen [University of Oxford, MRC Immunochemistry Unit (United Kingdom); Comfort, David [University of Oxford, Department of Biochemistry (United Kingdom); Reid, Kenneth B.M. [University of Oxford, MRC Immunochemistry Unit (United Kingdom); Campbell, Iain D. [University of Oxford, Department of Biochemistry (United Kingdom); Nilges, Michael [European Molecular Biology Laboratory (Germany)], E-mail: nilges@pasteur.fr

    2002-10-15

    Surfactant protein D (SP-D) is one of four known protein components of the pulmonary surfactant lining the lung alveoli. It is involved in immune and allergic responses. SP-D occurs as a tetramer of trimers. Trimerization is thought to be initiated by a coiled coil domain. We have determined the solution structure of a 64-residue peptide encompassing the coiled coil domain of human SP-D. As predicted, the domain forms a triple-helical parallel coiled coil. As with all symmetric oligomers, the structure calculation was complicated by the symmetry degeneracy in the NMR spectra. We used the symmetry-ADR (ambiguous distance restraint) structure calculation method to solve the structure. The results demonstrate that the leucine zipper region of SP-D is an autonomously folded domain. The structure is very similar to the independently determined X-ray crystal structure, differing mainly at a single residue, Tyr248. This residue is completely symmetric in the solution structure, and markedly asymmetric in the crystalline phase. This difference may be functionally important, as it affects the orientation of the antigenic surface presented by SP-D.

  11. Berberine via suppression of transient receptor potential vanilloid 4 channel improves vascular stiffness in mice

    Wang, Jie; Guo, Tao; Peng, Qi-sheng; Yue, Shou-Wei; Wang, Shuang-Xi

    2015-01-01

    Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic ...

  12. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  13. Performance correlation between YBa2Cu3O7‑δ coils and short samples for coil technology development

    Wang, X.; Dietderich, D. R.; Godeke, A.; Gourlay, S. A.; Marchevsky, M.; Prestemon, S. O.; Sabbi, G. L.

    2016-06-01

    A robust fabrication technology is critical to achieve the high performance in YBa2Cu3O{}7-δ (YBCO) coils as the critical current of the brittle YBCO layer is subject to the strain-induced degradation during coil fabrication. The expected current-carrying capability of the magnet and its temperature dependence are two key inputs to the coil technology development. However, the expected magnet performance is not straightforward to determine because the short-sample critical current depends on both the amplitude and orientation of the applied magnetic field with respect to the broad surface of the tape-form conductor. In this paper, we present an approach to calculate the self-field performance limit for YBCO racetrack coils at 77 and 4.2 K. Critical current of short YBCO samples was measured as a function of the applied field perpendicular to the conductor surface from 0 to 15 T. This field direction limited the conductor critical current. Two double-layer racetrack coils, one with three turns and the other with 10 turns, were wound and tested at 77 and 4.2 K. The test coils reached at least 80% of the expected critical current. The ratio between the coil critical currents at 77 and 4.2 K agreed well with the calculation. We conclude that the presented approach can determine the performance limit in YBCO racetrack coils based on the short-sample critical current and provide a useful guideline for assessing the coil performance and fabrication technology. The correlation of the coil critical current between 77 K and 4.2 K was also observed, allowing the 77 K test to be a cost-effective tool for the development of coil technology.

  14. Podocyte Purinergic P2X4 Channels Are Mechanotransducers That Mediate Cytoskeletal Disorganization.

    Forst, Anna-Lena; Olteanu, Vlad Sorin; Mollet, Géraldine; Wlodkowski, Tanja; Schaefer, Franz; Dietrich, Alexander; Reiser, Jochen; Gudermann, Thomas; Mederos Y Schnitzler, Michael; Storch, Ursula

    2016-03-01

    Podocytes are specialized, highly differentiated epithelial cells in the kidney glomerulus that are exposed to glomerular capillary pressure and possible increases in mechanical load. The proteins sensing mechanical forces in podocytes are unconfirmed, but the classic transient receptor potential channel 6 (TRPC6) interacting with the MEC-2 homolog podocin may form a mechanosensitive ion channel complex in podocytes. Here, we observed that podocytes respond to mechanical stimulation with increased intracellular calcium concentrations and increased inward cation currents. However, TRPC6-deficient podocytes responded in a manner similar to that of control podocytes, and mechanically induced currents were unaffected by genetic inactivation of TRPC1/3/6 or administration of the broad-range TRPC blocker SKF-96365. Instead, mechanically induced currents were significantly decreased by the specific P2X purinoceptor 4 (P2X4) blocker 5-BDBD. Moreover, mechanical P2X4 channel activation depended on cholesterol and podocin and was inhibited by stabilization of the actin cytoskeleton. Because P2X4 channels are not intrinsically mechanosensitive, we investigated whether podocytes release ATP upon mechanical stimulation using a fluorometric approach. Indeed, mechanically induced ATP release from podocytes was observed. Furthermore, 5-BDBD attenuated mechanically induced reorganization of the actin cytoskeleton. Altogether, our findings reveal a TRPC channel-independent role of P2X4 channels as mechanotransducers in podocytes. PMID:26160898

  15. Kv4 channel blockade reduces motor and neuropsychiatric symptoms in rodent models of Parkinson's disease.

    Aidi-Knani, Sabrine; Regaya, Imed; Amalric, Marianne; Mourre, Christiane

    2015-02-01

    The striatum, a major input structure of basal ganglia, integrates glutamatergic cortical and thalamic inputs to control psychomotor behaviors. Nigrostriatal dopamine (DA) neurodegeneration in Parkinson's disease causes a loss of spinal and glutamatergic synapses in the striatal medium spiny neurons (MSNs). Adaptive responses, a form of homeostatic plasticity, to these changes are caused by a decrease in a potassium Kv4 channel-dependent inactivating A-type potassium (KIA) current that increases the intrinsic excitability of MSNs. Nevertheless, the functional outcome of these compensatory mechanisms does not allow adequate behavioral recovery in vivo. We thus addressed the question of whether further blockade of Kv4 activity could enhance the striatal responsiveness of MSNs to DA depletion and restore normal function in vivo. To test this hypothesis, we examined the effects of a selective blocker of Kv4 channels, AmmTX3, on the motor, cognitive, and emotional symptoms produced by 6-hydroxydopamine lesions of the nigrostriatal DA pathway in rats. Striatal infusion of AmmTX3 (0.2-0.4 μg) reduced motor deficits, decreased anxiety, and restored short-term social and spatial memories. These results underlie the importance of Kv4 channels as players in the homeostatic responses, and, more importantly, provide a potential target for adjunctive therapies for Parkinson's disease. PMID:25356731

  16. Test results of the SMES model coil. Mechanical performance

    The mechanical performance of a SMES model coil was measured by strain gauges, displacement gauges and acoustic emission (AE) sensors attached to the coil surface during an overcharge test. The displacements of the SMES model coil were proportional to the squared currents during charging up until 35.4 kA. It was clear that the coil became deformed elastically by the electromagnetic force during overcharging. The test results obtained by the measurement of strains were compared with calculated results obtained by finite element method analysis. As a result of the comparison, good agreement was found in both stresses, and the values were sufficiently small. It was demonstrated that the coil had no problem regarding mechanical performance. It was clarified that AE signals significantly decreased in the current region after repeated excitation. Furthermore, the characteristics of AE signals were different from the coil windings with coil supports. The wave of AE signals in the windings was minimal ms and more than 100 kHz, and in the coil support more than 10 ms but less than 40 kHz. (author)

  17. Structural analysis and verification of the ITER TF model coil test conditions

    An FE-model already used during the design of the test assembly consisting of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC), the EURATOM LCT-coil and the Inter Coil Structure (ICS) was extended to allow for predictions of tests, which will be performed in the TOSKA facility. For the first test step, with the TFMC current loaded alone (single coil test), predictions are given for 80 kA, the design current. Because of some uncertainty in the friction behaviour between winding pack (WP) and coil case, a parameter study was performed describing the limiting cases of the coil behaviour. Since the mechanical sensors could be installed only on the outer coil case surface, the possibility of deriving from this information details of the internal coil behaviour also is discussed

  18. Formulation for a practical implementation of electromagnetic induction coils optimized using stream functions

    Reed, Mark A.; Scott, Waymond R.

    2016-05-01

    Continuous-wave (CW) electromagnetic induction (EMI) systems used for subsurface sensing typically employ separate transmit and receive coils placed in close proximity. The closeness of the coils is desirable for both packaging and object pinpointing; however, the coils must have as little mutual coupling as possible. Otherwise, the signal from the transmit coil will couple into the receive coil, making target detection difficult or impossible. Additionally, mineralized soil can be a significant problem when attempting to detect small amounts of metal because the soil effectively couples the transmit and receive coils. Optimization of wire coils to improve their performance is difficult but can be made possible through a stream-function representation and the use of partially convex forms. Examples of such methods have been presented previously, but these methods did not account for certain practical issues with coil implementation. In this paper, the power constraint introduced into the optimization routine is modified so that it does not penalize areas of high current. It does this by representing the coils as plates carrying surface currents and adjusting the sheet resistance to be inversely proportional to the current, which is a good approximation for a wire-wound coil. Example coils are then optimized for minimum mutual coupling, maximum sensitivity, and minimum soil response at a given height with both the earlier, constant sheet resistance and the new representation. The two sets of coils are compared both to each other and other common coil types to show the method's viability.

  19. Calculation method of Tesla coil

    Коломієць, Роман Олександрович

    2015-01-01

    Tesla coil, despite the simplicity of its design may be called one of the least studied electronic devices. The article is an attempt to bring in various experimental results of general theoretical framework, which is the basis of exact calculation method of Tesla coils. Such calculation should be the starting point to create devices based on it. In order to develop such methods were considered the general principles of designing Tesla coil, reviewed the most famous mathematical models of its...

  20. The transient receptor potential vanilloid 4 channel modulates uterine tone during pregnancy.

    Ying, Lihua; Becard, Margaux; Lyell, Deirdre; Han, Xiaoyuan; Shortliffe, Linda; Husted, Cristiana Iosef; Alvira, Cristina M; Cornfield, David N

    2015-12-23

    The importance of gaining insight into the mechanisms underlying uterine quiescence and contractility is highlighted by the absence of an effective strategy to prevent or treat preterm labor, the greatest cause of perinatal mortality and morbidity worldwide. Although current evidence suggests that in myometrial smooth muscle cells (mSMCs) calcium homeostasis is modulated near term to promote uterine contractility, the efficacy of blocking voltage-operated calcium channels is limited by dose-related cardiovascular side effects. Thus, we considered whether uterine contractility might be modulated by calcium entry via transient receptor potential vanilloid 4 (TRPV4) channels. In mSMC, TRPV4 gene and protein expression increased with gestation, and TRPV4-mediated Ca(2+) entry and contractility were increased in mSMC from pregnant compared to nonpregnant rats. Cell membrane TRPV4 expression was specifically increased, whereas the expression of β-arrestin-1 and β-arrestin-2, molecules that can sequester TRPV4 in the cytoplasm, decreased. Physical interaction of β-arrestin-2 and TRPV4 was apparent in nonpregnant, but absent in pregnant, mouse uterus. Moreover, direct pharmacologic activation of TRPV4 increased uterine contraction, but oxytocin-induced myometrial contraction was blocked by pharmacologic inhibition of TRPV4 and decreased in mice with global deletion of TRPV4. Finally, TRPV4 channel blockade prolonged pregnancy in two distinct in vivo murine models of preterm labor, whereas the absence of either β-arrestin-1 or β-arrestin-2 increased susceptibility to preterm labor. These data suggest that TRPV4 channel activity modulates uterine contractility and might represent a therapeutic target to address preterm labor. PMID:26702092

  1. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  2. Failure probability of ceramic coil springs

    Nohut, Serkan; Schneider, Gerold A.

    2009-01-01

    Ceramic springs are commercially available and a detailed reliability analysis of these components would be useful for their introduction in new applications. In this paper an analytical and a numerical analyses of the failure probability for coil springs under compression is presented. Based on analytically derived relationships and numerically calculated results, fitting functions for volume and surface flaws will be introduced which provide the prediction of the failure probability of cera...

  3. Evaluation of plasma-based transmit coils for magnetic resonance.

    Webb, A G; Aussenhofer, S A

    2015-12-01

    In this work a new concept for designing transmit coils for magnetic resonance using a plasma is introduced. Unlike conventional coils, a plasma can be turned on and off, eliminating electrical interactions between coils, and enabling radiofrequency-invisibility when desired. A surfatron has been designed to produce a surface-mode wave which propagates along the inner surface of a commercial fluorescent lighting tube. NMR spectra and images have been produced using the plasma as the transmit coil and a copper-based monopole to receive the signal. The transmit efficiency of the plasma tube was estimated, and is currently much lower than that of an equivalently-sized metal-based structure: however, there are many potential methods for increasing the efficiency using a custom-built plasma tube. PMID:26529202

  4. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)

  5. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  6. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders; Casadio, Rita

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...

  7. An Evaluation for the Development of 4-channel RSPT and its Application for the OPR1000 Nuclear Power Plants

    An evaluation project for the development and adaptation of 4-channel reed switch position transmitter (RSPT) has been performed by Korea Power Eng. Company, Inc. (KOPEC) as a contractor of Korea Hydro and Nuclear Power Co. Ltd (KHNP). The 4-channel RSPT is to replace the 2-channel RSPT which is currently installed for all the Optimized Power Reactor 1000 (OPR1000) type nuclear power plants (NPP). The 2-channel RSPT design of OPR1000 could lead an unwanted reactor trip caused by the deviation of a 12-finger control element assembly (CEA) position at each RSPT channel. In addition, the inconsistent channel numbers between 4-channel core protection calculator system (CPCS) and 2-channel RSPT made the system configuration and interface design of the CPCS overly complex. Thus, the 4-channel RSPT development is needed to enhance the OPR1000 plant safety and availability. In this project, while maintaining the existing OPR1000 interfacing system boundary, the 4-channel RSPT manufacturability and the proposed CPCS design with the 4-channel RSPT have been evaluated for their implementation feasibility. A reliability analysis of the proposed CPCS has been also performed. Algorithm changes and the effect of design change regarding interfacing components are also suggested

  8. Superconducting poloidal coils for STARFIRE commercial reactor

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  9. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

    Henry H Jerng

    Full Text Available Reactive oxygen species (ROS regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a. Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13. To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly

  10. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation.

    Jerng, Henry H; Pfaffinger, Paul J

    2014-01-01

    Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed

  11. Improved Sensing Coils for SQUIDs

    Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho

    2007-01-01

    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.

  12. Development of a 4-channel TTL scaler for detector signal counting

    At NISER-IOP Experimental High Energy Physics (EHEP) laboratory various gas detectors such as Gas Electron Multiplier (GEM), Resistive Plate Chamber (RPC), Single Wire Proportional Chamber (SWPC) and scintillator detectors have been developed. During the characterisation of these detectors signals are counted in general with source and without source. A rising edge triggered 4-channel TTL (Transistor Transistor Logic) scaler has been developed to record the number of pulses in a given interval of time. The four channels are independent and each channel is capable of capturing maximum 4,294,967,295 (232-1) number of pulses i.e. each channel can count maximum 4,294,96,295 (232-1) number of signals. The details of the design, fabrication and calibration of the scaler is presented

  13. Vasorelaxant effects of novel Kv7.4 channel enhancers ML213 and NS15370

    Jepps, Thomas Andrew; Bentzen, B H; Stott, J B;

    2014-01-01

    in both rodent and human blood vessels. Recently, two novel Kv7 channel enhancers have been identified, ML213 and NS15370, that show increased potency, particularly on Kv7.4 channels. The aim of this study was to characterise the effects of these novel enhancers in different rat blood vessels and compare...... them to Kv7 enhancers (S-1, BMS-204352, retigabine) described previously. We also sought to determine the binding sites of the new Kv7 enhancers. KEY RESULTS: Both ML213 and NS15370 relaxed segments of rat thoracic aorta, renal artery and mesenteric artery in a concentration-dependent manner....... In the mesenteric artery ML213 and NS15370 displayed EC50 's of 0.74 μM and 0.026 μM, respectively, which were far lower than other Kv7 enhancers tested. Current-clamp experiments revealed both novel enhancers at low concentrations caused significant hyperpolarisation in mesenteric artery smooth muscle cells...

  14. Compact 4-channel AWGs for CWDM and LAN WDM in data center monolithic applications

    Pan, Pan; An, Junming; Wang, Yue; Zhang, Jiashun; Wang, Liangliang; Qi, Ying; Han, Qin; Hu, Xiongwei

    2015-12-01

    InP-based 4-channel AWGs for Coarse Wavelength Division Multiplexing (CWDM) with channel spacing of 20 nm and Local Area Network (LAN) WDM with channel spacing of 800 GHz are designed and fabricated. The deep-ridge waveguide is used to make the chip compact, chip size of AWG for CWDM is 0.55×3.9 mm2 and for LAN WDM is 1.6×3 mm2. The measured results indicate that, the insertion losses are -5 dB and -7 dB, crosstalk levels are below -25 dB and -24 dB for AWG with 20 nm channel spacing and 800 GHz channel spacing, respectively. These AWGs can be integrated with lasers and detectors array monolithically for data center applications.

  15. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S [Jockey Club MRI Centre, University of Hong Kong, Hong Kong (China)

    2005-08-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi{sub (2-x)}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio.

  16. Dynamic allostery of protein alpha helical coiled-coils

    Hawkins, R. J.; Mcleish, T.C.B.

    2005-01-01

    Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free ener...

  17. ASTROMAG coil cooling study

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  18. Heat resistant driving coil and control rod drive mechanism

    Ceramic materials are used for each part of driving coils and used as the driving coils for a driving shaft. That is, a cylindrical bobbin having outwardly protruding flanges on the entire circumference at the upper and the lower portions is made of stainless steels. Ceramics sheets are appended as necessary to the outer circumferential surface of the bobbin. Then, ceramic electric wires are wound around the outer circumference of the bobbin by a required number of turns to constitute coils. The electric wire is prepared by coating the conductor of nickel-plated copper with ceramic coating material, disposing an insulation material to the outer circumference thereof the further coating the outside with ceramic coating material. This can improve the heat resistance and, since the control rod drives using such heat resistant driving coils can operate at a high temperature. It requires no cooling device and can simplify the reactor and its peripheral structures. (T.M.)

  19. Coil end design for the LHC dipole magnet

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  20. A Novel Coil Distribution for Transverse Flux Induction Heating

    Sun, Yu; Wang, Youhua; Yang, Xiaoguang; Pang, Lingling

    For solving the problem of inhomogeneous temperature distribution on the surface of the work piece at the transverse flux induction heating (TFIH) device outlet, a novel coil distribution of the inductor is presented in this paper. The relationship between coil geometry and temperature distribution was analyzed firstly. According to the theoretical analysis results, the novel coil geometry was designed in order to get a uniform temperature distribution. Then the non-linear coupled electromagnetic- thermal problem in TFIH was simulated. The distributions of the magnetic flux density and eddy current of the novel and the traditional rectangular coil geometry were presented. Finally, a prototype was developed according to the numerical results. The experimental results of the temperature distribution agreed with the numerical analysis.

  1. Rapid mixing of viscous liquids by electrical coiling

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung

    2016-02-01

    The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics.

  2. Embedded optical microfiber coil resonator

    Xu, Fei; Brambilla, Gilberto

    2007-01-01

    The embedding of an optical microfiber coil resonator in Teflon is demonstrated. Resonances in excess of 9dB and Q-factors greater than 6000 have been observed. The device is compact, robust and portable.

  3. Adjustable Induction-Heating Coil

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  4. Coil for LEAR extraction septum

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  5. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  6. High resolution MRI via endorectal coil. Results in rectal tumors

    10 volunteers and in 31 patients with suspected rectal tumors were examined. In 17 patients (n=17) with rectal carcinoma, of which 15 subsequently underwent radical surgery, the preoperatively obtained tumor stage was compared with histology. In 12 patients (n=12) with rectal adenoma (severe and medium graded epithelial dysplasias according to the WHO) who underwent endoscopy the results of the endorectal surface coil examination were compared with endoscopy and histology. In 4 patients (n=4) with large rectal adenomas the surface coil was used before and as follow-up after endoscopic electro laser resection and the absence of adenoma after therapy also in the deeper layers of the rectal wall could be confirmed. Visualization of anatomical structures of rectum and adjacent structures is improved by the use of the endorectal surface coil. The diagnosis of carcinoma and adenoma of the rectum and the documentation of the exact extension can be reached with high accuracy (85%). (orig./MG)

  7. S/N Ratio of 4-Channel A/D Geological Radar Non-uniform Sampling Signals

    2007-01-01

    Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D.A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced.First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal.Based on the S/N ratio of a 2-channel A/D, alternating, non-uniform sampling signal, we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula.From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced.The simulation result shows that the deduced expression is correct.

  8. Fabrication of Spiral Micro Coil Lines for Electromagnetic Actuators

    Setomoto, Masaru; Matsumoto, Yoshifumi; Yamashita, Shuhei; Noda, Daiji; Hattori, Tadashi

    With the recent progress in downsizing and the sophistication of various industrial products, the need for more compact actuators is increasing. Actuators account for the larger percentage of volume and weight of a product compared with other parts and devices. We have proposed fabrication process of spiral micro coils that employs X-ray lithography. This process will be effective for fabricating coils of a high aspect ratio lines. Reducing the size of coil lines and increasing their aspect ratio are expected to reduce the size and increase the output of actuators. Using this process, we formed spiral coil lines that can be used in electromagnetic actuators. X-ray lithography was used to form a high aspect ratio helical structure on the surface of an acrylic resin pipe. As a measure to suppress void generation, which is one of the shortcomings of electroplating processes, the sputtering apparatus and plating equipment were improved, a pretreatment process was additionally provided, and the actual electroplating method was improved. As a result, a void-free metallic deposit could be formed on a thin coil line. At the final step of this research study, we etched the coil line to determine optimal etching conditions.

  9. Interpretation of measured data and the resolution analysis of the RTP 4-channel pulsed radar

    The resolution of a 4-channel pulsed radar being built at Rijnhuisen for the RTP tokamak is analyzed. The achievable resolution mainly depends on the accuracy of the time-of-flight measurements and the number of sampling frequencies; since the technological solution and the configuration have already been set, emphasis is put on interpretation of the measured data (the inversion problem) and minimization of the overall error. For this purpose, a specific neural network - the Multi Layer Perceptron (MLP) - has successfully been applied. Central density in the range of 0.2-0.6 x 1020 m-3 was considered, i.e., one above the critical density for all four frequencies but not so high as to restrict the measurements to just the edge of the plasma. By balancing the inversion error and the time measurement error, for a wide class of density profiles the overall error in estimating the reflection point position of between 0.72 cm (for the lowest frequency) and 0.52 cm (for the highest frequency) root mean square was obtained, assuming an RMS error of 70 ps in the time of flight measurements. This is probably much better than what could be obtained by the Abel transform. Moreover, mapping with the MLP is considerably faster, and it should be considered for routine multichannel pulsed radar data processing. (author) 2 tabs., 4 figs., 6 refs

  10. Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla

    Solis-Najera, S. E.; Rodriguez, A. O.

    2014-11-01

    Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

  11. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  12. Targeted polymer therapeutics with a coiled coil motif

    Pechar, Michal; Pola, Robert; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Kabešová, Martina; Kovář, Marek

    Heraklion : University of Crete, 2012. s. 28. [BIONANOTOX 2012 - "Biomaterials and Bionanomaterials: Recent Problems and Safety Issues", Russian-Hellenic Symposium with International Participation and Young Scientists School /3./, Advanced Research Workshop on Nanotechnologies & Bioanalytical Advances for Improved Public Security and Enviromental Safety and Health. 06.05.2012-13.05.2012, Heraklion] R&D Projects: GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388963 ; RVO:68378050 ; RVO:61388971 Keywords : drug carriers * coiled coil * HPMA Subject RIV: CD - Macromolecular Chemistry

  13. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site

  14. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikane, Asuka [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Higuchi, Yoshiki [Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Wakamatsu, Kaori [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-05-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.

  15. Improvement of SNR and acquisition acceleration using a 32-channel head coil compared to a 12-channel head coil at 3T

    Background: Magnetic resonance imaging (MRI) techniques continue to improve in manifold ways. Besides field strength and sequence optimization, technical advances in coil design and sensitivity yield to increase the signal detection and therefore improve image quality. Purpose: To evaluate the performance of signal-to-noise ratio (SNR) and parallel acquisition technique (PAT) acceleration of a dedicated 32-channel head coil compared with a standard 12-channel head coil. Material and Methods: In a clinical 3T setting, spatial resolved SNR values for unaccelerated imaging and PAT with acceleration factors of 2-6 of a 32-channel head coil were evaluated in relation to a 12-channel head coil. SNR was determined quantitatively using proton-density-weighted in-vivo examinations in five healthy volunteers. Quantitative SNR maps for unaccelerated and PAT imaging were calculated using unfiltered MR raw data. Results: Up to three-fold higher SNR values were achieved with the 32-channel head coil, which diminished towards the center to an increase of 40 % compared with the 12-channel head coil. When using PAT, the 32-channel head coil resulted in a lower spatial-dependent quantitative noise enhancement, varying between 0 % at R = 2 and 33 % at R = 5. Conclusion: The 32-channel head coil provided superior SNR both with and without PAT compared with a 12-channel head coil, especially close to the brain surface. Using PAT, the unavoidable noise enhancement is diminished up to acceleration factors of 6 for the 32-channel head coil. Therefore, the 32-channel head coil is considered as a preferable tool for high-resolution neuroradiological imaging

  16. Spectroscopy With Surface Coils and Decoupling

    2015-12-23

    Adrenal Cortical Cancer; Brain Cancer; Breast Cancer; CNS Cancer; Colon Cancer; HEENT Cancer; Hodgkin's Disease; Kaposi's Sarcoma; Liver Cancer; Lung Cancer; Non-Hodgkin's Lymphoma; Ovarian Cancer; Pancreatic Cancer; Prostate Cancer; Rectal Cancer; Renal Cancer; Sarcoma; Squamous Cell Carcinoma; Thyroid Cancer

  17. MR surface coil imaging of kidney transplant

    MR appearance of the kidney transplant is evaluated on a series of 80 examinations performed on a supraconductive unit operating at 0.5 T. Normal function kidneys displayed a clearly delineated corticomedullary differentiation (CMD); the ratio between the thickness of cortex and medulla didn't exceed 0.6. The same appearance was observed in non complicated acute tubular necrosis. Complete loss of CMD was the major finding in acute rejection (74% of the cases), but it was not specific as it was also observed in chronic rejection and in acute glomerulonephritis. Cortex thickening was helpful for the detection of rejected transplants with visible CMD. The sensitivity of MR in the detection of acute rejection was 94%. Specificity of MR findings for acute rejection depended on the transplant age: it varied from 100% for examinations performed during the first 3 months after transplantation, to less than 50% for examinations of the second year

  18. Deformation of Linked Polymer Coils

    董朝霞; 李明远; 吴肇亮; 林梅钦

    2003-01-01

    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  19. Cooling device of superconducting coils

    This device is rotating around an horizontal axis. The superconducting coils are contained in a cryogenic enclosure feeded in liquid helium forced circulation. They are related to an electric generator by electric mains each of them comprising a gas exchanger, and an exchanger-evaporator set between the cryogenic device and those exchangers. The exchanger-evaporator is aimed at dissipating the heat arriving by conductors connected to the superconducting coils. According to the invention, the invention includes an annular canalization with horizontal axis in which the connection conductors bathe in liquid helium

  20. Integrated-blanket-coil (IBC) applications to the TITAN reversed-field pinch reactor

    The Integrated-Blanket-Coil (IBC) concept has been adopted for use in the toroidal field and divertor coil systems of the TITAN-I lithium/vanadium design. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils into a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch (RFP) reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (-- 0.36 T) leads to relatively low coil currents. Examination of nuclear, magnetic, thermal-hydraulic, electrical and design integration issues indicates that the IBC coils are a viable and attractive option for the TITAN reactor

  1. 4 channel, 20 ps resolution, monolithic time-to-amplitude converter for multichannel TCSPC systems

    Crotti, Matteo; Rech, Ivan; Labanca, Ivan; Ghioni, Massimo

    2012-06-01

    Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting (TCSPC) and many applications exploiting TCSPC have been developing in several fields, such as medicine and chemistry. The use of multianode PMTs and of single photon avalanche diode arrays led to the development of acquisition systems with several parallel channels, to employ the TCSPC technique in even more applications. Since TCSPC basically consists in the photons arrival time measurement, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity and, in order to implement multidimensional systems, it has to be integrated to reduce both cost and area. To accomplish all these specifications, we have designed and fabricated a 4 channel fully integrated time-to-amplitude converter (TAC), built in 0.35 μm Si-Ge technology, characterized by a variable full scale range from 11 ns to 89 ns, very good time resolution (better than 20 ps FWHM), low differential nonlinearity (better than 0.04 LSB peak-peak and less than 0.2% LSB rms), high counting rate (16 MHz), low and constant power dissipation (50 mW) and low area occupation (340 × 390 μm2 per channel). Our measurements also show a very little crosstalk between converters integrated on the same chip; this feature together with low power and low area make the fabricated converter suitable for parallelization, so that it can be the starting point for future acquisition chains with a high number of parallel channels.

  2. B1 Homogenization in MRI by Multi-layer Coupled Coils

    Wang, Shumin; Murphy-Boesch, Joseph; Merkle, Hellmut; Koretsky, Alan P.; Duyn, Jeff H.

    2009-01-01

    Transmit B1+ field homogenization in high-field (> 3.0 T) human MRI is challenging due to radio frequency (RF) wavelength effects. An approach based on appropriately coupling surface coils to a volume coil was investigated. Electro-magnetic simulation results demonstrated the feasibility and effectiveness of this method in proton MRI of the human head at 7.0 T.

  3. Large Coil Program magnetic system design study

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  4. Finite element coiled cochlea model

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  5. Coil Optimization for HTS Machines

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech; Træholt, Chresten; Pedersen, N.F.; Rodriguez Zermeno, Victor Manuel

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T. The...

  6. Coupled Coils, Magnets and Lenz's Law

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  7. Performance of an induction coil gun

    Shokair, I.R.; Cowan, M.; Kaye, R.J.; Marder, B.M.

    1993-10-01

    Performance of an electromagnetic induction launcher is considered for three types of armatures. These are: Solid, 1-element wound and 16-element wound aluminum ar natures. The one element wound armature has uniform current density throughout. Because of the radial distribution of the current density, the wound armature can withstand field reversal (working against embedded flux in the armature) and still maintain low temperature. Slingshot simulations were performed, for several configurations. Best performance was obtained for a single element wound armature with two field reversals. For a 60 kg projectile, 10.5 cm coil inner radius and 5.5 cm coil build, the velocity after 50 meters of launcher length (670 stages) exceeded 3.5 km/sec with an overall efficiency of about 45%. For the same parameters the solid and 16-element wound armatures reach a velocity of about 3.3 km/sec after 800 stages (60 meters of launcher length) but without field reversal. A velocity of 3.5 km/sec is possible after 60 meters of launcher length with the 16-element wound armature with one field reversal, but the temperature is close to the melting temperature of aluminum. In all simulations with a solid armature, melting of some of the surface material occurs. However, it is shown that most of the melting occurs after contribution has been made to the forward going pressure, that is, melting does not affect the electrical performance of the launcher. The effect of coil firing tune jitter on launcher performance is also considered and is found to be very small for realistic perturbations. For {plus_minus}2 {mu}-secs random jitter, the reduction in the final velocity for a 60 meter launcher with a solid armature is less than 0.1% and the increase in temperature is only 2%. This result holds for all types of armatures.

  8. Performance of an induction coil launcher

    Shokair, I.R.; Cowan, M.; Kaye, R.J.; Marder, B.M.

    1993-12-31

    Performance of an electromagnetic induction launcher is considered for three types of armatures. These are: Solid, 1-element wound and 16-element wound aluminum armatures. The one element wound armature has uniform current density throughout. Because of the uniformity of the current density, the wound armature can withstand field reversal and still maintain low temperature. Slingshot simulations were performed for several configurations. Best performance was obtained for a single element wound armature with two field reversals. For a 60 kg projectile, 10.5 cm coil inner radius and 5.5 cm coil build, the velocity after 50 meters of launcher length (670 stages) exceeded 3.5 km/sec with an overall efficiency of about 45%. For the same parameters the solid and 16-element wound armatures reach a velocity of about 3.3 km/sec after 800 stages (60 meters of launcher length) but without field reversal. A velocity of 3.5 km/sec is possible after 60 meters of launcher length with the 16-element wound armature with one field reversal, but the temperature is close to the melting temperature of aluminum. In all simulations with a solid armature, melting of some of the surface material occurs. However, it is shown that most of the melting occurs after contribution has been made to the forward going pressure, that is, melting does not affect the electrical performance of the launcher. The effect of coil firing time jitter on launcher performance is also considered and is found to be very small for realistic perturbations. For {plus_minus} 2 {mu}-secs random jitter, the reduction in the final velocity for a 60 meter launcher with a solid armature is less than 0.1% and the increase in temperature is only 2%. This result holds for all types of armatures.

  9. Design and modelling of a SMES coil

    Yuan, Weijia; Campbell, A. M.; Coombs, T. A.

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  10. Design and modelling of a SMES coil

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  11. MR angiography after coiling of intracranial aneurysms

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion with coils is an approximately 20% risk of reopening of the aneurysm as a result of coil impaction, dissolution of thrombus, or growth of the aneurysm and 10% of coiled patients need additional tre...

  12. Nonlinear Dynamics of Coiling in Viscoelastic Jets

    Majmudar, Trushant; Hartt, William; McKinley, Gareth

    2010-01-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain less well understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great detail; buckling instability in viscous jets leads to regular periodic coiling of the jet that exhibits a non-trivial frequency dependence with the height of the fall. Very few experimental or theoretical studies exist for continuous viscoelastic jets beyond the onset of the first instability. Here, we present a systematic study of the effects of viscoelasticity on the dynamics of free surface continuous jets of surfactant solutions that form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of the jet and uncover a transition from periodic to doubly-periodic or quasi-periodic to a multi-frequency, possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the "leaping shampoo effect" or the Kaye effe...

  13. Thermal Fatigue Test Apparatus for Large Superconducting Coils

    Kephart, J. T.; Fitzpatrick, B. K.; Chen, J.; Lopez, J.; Millar, M.; Wong, L.; Zimmerman, M.; Kostic, J.; Rakus, C.

    2008-03-01

    ABSTRACT The United States Navy has a continued interest in the development of High Temperature Superconductivity (HTS) to provide power dense, efficient propulsion and electrical power generation. These machines have large HTS rotor coils that will undergo many thermal cycles during the life of the ship. Thermal fatigue tests for large coils are necessary to understand any degradation and life issues that could arise. The Naval Surface Warfare Center Carderock Division (NSWCCD) has sponsored Rowan University to design and build a device that will assist in the thermal fatigue testing of a superconducting coil. It was designed to be autonomous with programmable cool down and warm-up rates and varying temperature from ambient temperature (300K) down to 77K. A typical test would include thermally cycling a coil a specified number of times, then performing a critical current test on the coil and repeating the test cycle as many times as desired. This paper introduces the thermal cycling test setup and presents preliminary calibration data.

  14. Development of SMART CRDM Coil Design

    A control rod drive mechanism (CRDM) is an electromagnetic device which drives a control rod assembly linearly to regulate reactivity of a nuclear core. Driving force is electromagnetic force generated from coils installed outside of a motor housing. The magnetic parts of a motor assembly installed inside of a motor housing are magnetized when a coil is activated, and adhere to each other to produce latching or driving force as a result. A coil assembly consists of a lifting coil, a movable latch coil and a stationary latch coil as shown in Fig. 1. The latch coils make a drive shaft engaged with or released from latches, and the lift coil makes a drive shaft and a control rod assembly move up or drop. A CRDM control system supplies controlled electric current to a specified coil in order, and then a control rod assembly moves up or down. The coil assembly for SMART CRDM has been developed based on the design concept of a coil assembly for control element drive mechanism (CEDM) of the OPR1000, and modified to satisfy dedicated design requirements for SMART reactor. Some of representative design requirements are the lifting capacity of 3200N which is greater, the lifting step of 15.875mm which is longer than that for CEDM, and one step driving instead of two step driving. Design process through an electromagnetic analysis for a lift coil is described herein as a representative example, and representative results of the analysis are presented

  15. Inductively coupled wireless RF coil arrays.

    Bulumulla, S B; Fiveland, E; Park, K J; Foo, T K; Hardy, C J

    2015-04-01

    As the number of coils increases in multi-channel MRI receiver-coil arrays, RF cables and connectors become increasingly bulky and heavy, degrading patient comfort and slowing workflow. Inductive coupling of signals provides an attractive "wireless" approach, with the potential to reduce coil weight and cost while simplifying patient setup. In this work, multi-channel inductively coupled anterior arrays were developed and characterized for 1.5T imaging. These comprised MR receiver coils inductively (or "wirelessly") linked to secondary or "sniffer" coils whose outputs were transmitted via preamps to the MR system cabinet. The induced currents in the imaging coils were blocked by passive diode circuits during RF transmit. The imaging arrays were totally passive, obviating the need to deliver power to the coils, and providing lightweight, untethered signal reception with easily positioned coils. Single-shot fast spin echo images were acquired from 5 volunteers using a 7-element inductively coupled coil array and a conventionally cabled 7-element coil array of identical geometry, with the inductively-coupled array showing a relative signal-to-noise ratio of 0.86 +/- 0.07. The concept was extended to a larger 9-element coil array to demonstrate the effect of coil element size on signal transfer and RF-transmit blocking. PMID:25523607

  16. Experimental studies on effect of wire coiled coil matrix turbulators with and without bonding on the wall of the test section of concentric tube heat exchanger

    Selvam S.

    2012-01-01

    Full Text Available This paper presents the effect of bonding and without bonding of wire coiled coil matrix turbulator on the heat transfer for a fully developed turbulent flow. Experiments are conducted by maintaining constant wall temperature. Tests are performed on 3 different wire coiled coil matrix turbulators of different pitches of 5, 10 and 15 mm without bonding of the turbulator. Three similar types of heat exchangers are fabricated and the wire coiled coil matrix turbulators with different pitches of 5, 10 and 15mm are inserted in the heat exchangers and bonding is done on the surface of the tube section. Results have indicated that the heat transfer rate enhances inversely with the pitch of the wire coiled coil matrix turbulator with bonding. With a pitch of 5 mm, the turbulators without bonding have resulted in almost 25.4% enhancement when compared with plain tube. On the other hand, for pitches of 10 mm and 15 mm the enhancement were 20.7% and 16.8%, respectively. The empirical correlations developed for turbulators with and without bonding results in ±6% deviation for Nusselt number and ±3% for friction factor. Similarly with a pitch of 5 mm, the turbulators with bonding have resulted in almost 42% enhancement. For pitches of 10mm and 15mm the enhancements were 34.7% and 25%, respectively.

  17. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani

    Srivastava, Vijay Kumar; Rana, Ajay Kumar; Sahasrabuddhe, Amogh A.; Gupta, C M; Pratap, J.V.

    2013-01-01

    The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed and purified to homogeneity. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup.

  18. Relation between the shape of high frequency heating coil and the temperature distribution in specimen during thermal fatigue test

    The high frequency heating apparatus used for thermal fatigue tests, the relation between the shape of heating coils, and the temperature distribution of specimens was experimentally examined for SUS 304 stainless steel. Relations between heating coil dimensions and heating rate, the most ideal coil shape for various specimen types, and the effects of temperature range and specimen shape on temperature distribution are described. Results show that the heating rate increases with decreasing distance from specimen surface to heating coil and with increasing coil tube diameter. For the general cylindrical and hour glass type specimens, the most ideal coil shapes are a separate type and a parallel type coil, respectively, as judged from the point of temperature distribution. (U.S.)

  19. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  20. ANL experimental program for pulsed superconducting coils

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started in aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pulsed coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  1. Using e-beam mapping to detect coil misalignment in NCSX

    The primary object of the e-beam mapping simulation program on NCSX is to develop requirements for the hardware and machine capabilities necessary for the actual e-beam mapping experiments. The magnetic flux surface configuration was constructed using a numerical code, based on the Biot-Savart law, to calculate the magnetic field components and trace the field line trajectory many times around the torus. Magnetic surfaces are then mapped by recording the field line intersections with toroidal cross-sections of the magnetic system, much as in an actual e-beam mapping experiment. In the course of these calculations, a catalog of many hundreds of vacuum magnetic configurations was compiled, each with varying sensitivity to the coil displacements. The NCSX coils were designed to provide good magnetic surfaces at high beta with significant bootstrap current. The coil set includes separately powered modular, toroidal field, and poloidal field coils, and can produce a wide range of magnetic configurations. Many of the vacuum field configurations with low order rational surfaces have finite, stellarator-symmetric islands present. Nevertheless, despite the presence of these islands, configurations have been found which will allow, we believe, the identification of modular and poloidal field coil displacements of < 0.5 mm. There was generally less sensitivity to toroidal field coil displacement, and a novel approach of energizing a subset of the toroidal field coils at higher current is proposed. By using half of the toroidal field coils, at twice the current, it is possible to detect alignment errors of less than approximately 1 mm. These results assume that the spatial resolution of the e-beam mapping apparatus is of order 5 mm, a previously achieved result for the luminescent rod method. We have also investigated the possibility of performing the initial e-beam mapping (and possibly start-up) studies in NCSX using two or fewer power supplies for the coils in the magnetic

  2. Coiled transmission line pulse generators

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  3. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    Tsukamoto, Akira, E-mail: tsukamot@istec.or.jp [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Enpuku, Keiji [Department of Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Sugisaki, Masaki; Arai, Eiichi [Metals Exploration Department, Japan Oil, Gas and Metals Corporation, 2-10-1 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Tanabe, Keiichi [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2013-01-15

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz{sup 1/2}. -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa{sub 2}Cu{sub 3}O{sub y} coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz{sup 1/2} in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil.

  4. Coiled tubing sidetrack: Slaughter Field case history

    Hightower, C.M.; Blount, C.G.; Ward, S.L.; Martin, R.F.; Cantwell, D.L.; Ackers, M.J.

    1995-03-01

    The paper describes the successful sidetrack of an oil well in the Slaughter Field in West Texas using coiled tubing (CT). Several first-time CT operations performed during this workover include: setting a whipstock in casing on CT; cutting a window with CT; using mud pulse measurement-while-drilling (MWD) with CT in a real well; use of a fluid-operated orientation tool for in-hole toolface changes; successful use of an autodriller to maintain weight on bit while drilling. Directional control of the sidetracked hole proved to be ineffective due to a surface software problem. The resultant wellbore was not horizontal as planned, but instead closely paralleled the original well for much of its length. However, the previously non-productive well flowed 1,000 barrels of fluid per day (BFPD) from the sidetrack following the workover.

  5. Self-correction coil: operation mechanism of self-correction coil

    We discuss here the operation mechanism of self-correction coil with a simple model. At the first stage, for the ideal self-correction coil case we calculate the self-inductance L of self-correction coil, the mutual inductance M between the error field coil and the self-correction coil, and using the model the induced curent in the self-correction coil by the external magnetic error field and induced magnetic field by the self-correction coil. And at the second stage, we extend this calculation method to non-ideal self-correction coil case, there we realize that the wire distribution of self-correction coil is important to get the high enough self-correction effect. For measure of completeness of self-correction effect, we introduce the efficiency eta of self-correction coil by the ratio of induced magnetic field by the self-correction coil and error field. As for the examples, we calculate L, M and eta for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, we can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case. This means that by using the self-correction coil we can improve the field quality about two orders

  6. Remote maintenance of tandem mirror hybrid coils

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  7. Large coil test facility conceptual design report

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  8. E-coil: an inverse boundary element method for a quasi-static problem

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)

    2010-06-07

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  9. Multichannel receiver coils for improved coverage in cardiac metabolic imaging using prepolarized 13C substrates.

    Dominguez-Viqueira, William; Lau, Angus Z; Chen, Albert P; Cunningham, Charles H

    2013-07-01

    MR imaging using hyperpolarized (13)C substrates has become a promising tool to study real-time cardiac-metabolism in vivo. For such fast imaging of nonrecoverable prepolarized magnetization it is important to optimize the RF-coils to obtain the best signal-to-noise ratio possible, given the required coverage. In this work, three different receiver-coil configurations were computed in pig and human models. The sensitivity maps were demonstrated in phantoms and in vivo experiments performed in pigs. Signal-to-noise ratio in the posterior heart was increased up to 80% with the best multichannel coil as expected. These new coil configurations will allow imaging of the different metabolite signals even in the posterior regions of the myocardium, which is not possible with a single-channel surface-coil. PMID:22907595

  10. Monte Carlo-based Noise Compensation in Coil Intensity Corrected Endorectal MRI

    Lui, Dorothy; Haider, Masoom; Wong, Alexander

    2015-01-01

    Background: Prostate cancer is one of the most common forms of cancer found in males making early diagnosis important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification and noise level variations. Methods: In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity corrected endorectal MRI which allows for effective noise compensation and preservation of details within the prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil i...

  11. A study on I-V characteristics of conduction-cooled HTS coil

    A conduction-cooled high-temperature superconducting (HTS) coil consisting of two double pancake coils was fabricated. The current-voltage (I-V) characteristics of HTS coil were obtained at different temperatures by using GM cryocooler. Using OPERA 2D, magnetic field (Br) perpendicular to the surface of the tape at each layer of HTS coil was obtained. In order to compare with the measured values, I-V curve of the HTS coil was simulated, in the basis of the magnetic field dependence of the critical current (Ic) in Bi-2223 tapes and index of n-value. Results showed pretty good agreement between the simulated and the measured critical currents at 77.3 K and 40 K, with a bit difference under simple assumption of index of n value

  12. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Meier Iris

    2005-11-01

    Full Text Available Abstract Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.

  13. An improved current potential method for fast computation of stellarator coil shapes

    Landreman, Matt

    2016-01-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure [Merkel, Nucl. Fusion 27, 867 (1987)], its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, and it eliminates two pathologies of NE...

  14. Development of a new error field correction coil (C-coil) for DIII-D

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 1013 cm-3, nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  15. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. PMID:26177815

  16. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    Ishiguri, Shinichi, E-mail: kckyg592@ybb.ne.j [Fukui National College of Technology, Geshi Sabae, Fukui 916-8507 (Japan); Funamoto, Taisuke [Fukui National College of Technology, Geshi Sabae, Fukui 916-8507 (Japan)

    2011-06-15

    Highlights: {yields} We analyze high-temperature superconducting (HTS) coils with anisotropic properties. {yields} To improve performances of the HTS coil, we propose a graded coil. {yields} It was clarified the stored energy improves largely with an optimum graded coil. - Abstract: In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil's edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil's critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  17. Power loss problems in EXTRAP coil systems

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  18. Argonne National Laboratory superconducting pulsed coil program

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  19. AC loss performance of CS insert coil

    The ITER Central Solenoid (CS) model coil and the CS insert coil were fabricated, and the test was carried out. The AC loss measurement of the coil is one of the most important tests to determine coil performance. The AC loss of a short sample conductor for the CS insert coil was measured by using the calorimetric method, and the coupling time constants of the conductor were estimated to be 30 ms and 20 ms for pulse and discharge tests, respectively. The AC loss of the CS insert coil was measured by using the calorimetric method for pulse and discharge tests. The coupling time constant estimated from the result of the pulse tests was 34 ms and almost equal to that of the short sample. The coupling time constant for the discharge test was estimated to be 140 ms and about 4 times that of the pulse test. (author)

  20. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  1. Acoustic rainbow trapping by coiling up space

    Xu Ni; Ying Wu; Ze-Guo Chen; Li-Yang Zheng; Ye-Long Xu; Priyanka Nayar; Xiao-Ping Liu; Ming-Hui Lu; Yan-Feng Chen

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping differe...

  2. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  3. Response of superconducting coils to internal heating

    Development testing of six different superconducting toroidal field coils from four countries in the Large Coil Task has included investigation of each coil's tolerance for various forms of heating, such as may be encountered in the magnets of a fusion reactor. Embedded heaters and temperature and voltage sensors in the coils were used in stability tests, simulated nuclear heating tests, and measurements of current-sharing temperature at high fields and currents. Results were gratifying and promise to be useful in design of magnets for reactors

  4. Defect-Free Carbon Nanotube Coils.

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  5. A precise technique for manufacturing correction coil

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  6. Tesla coil theoretical model and experimental verification

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  7. Self-correction coil: Operation mechanism of self-correction coil

    Hosoyama, K.

    1983-06-01

    The operation mechanism of self-correction coil is extended with a simple model. For the ideal self-correction coil case, The self-inductance L of the self-correction coil is calculated. This calculation method is extended to a non-ideal self-correction coil case. For measure of completeness of self-correction coil is measured by the ratio of induced magnetic field by the self-correction coil and error field. Examples are L, M and N calculated for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, one can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case.

  8. Offset coil designs for superconducting magnets, a logical development

    Dipoles and quadrupoles for any new, large proton ring must be stronger, smaller and have better field shape (systematic error) than those used in the Doubler. The present two-shell designs are rigid in that the coils are too thin but cannot be relatively fatter without destroying the field quality. An examination of the coil shapes for dipoles and quadrupoles which produce perfect fields from a uniform current density shows clearly that our persistent use of a circular form for the inner surface of the coils is a poor approximation. When this is corrected by ''offsets'' there is a striking improvement both in the strength of fields and in the field quality. The same analysis makes clear that the efficient use of superconductor and the overall magnet size is determined by the perfect coil shapes. Any reasonable magnet will not differ significantly from the ideal for these parameters. This will be particularly helpful in setting design goals for very large quadrupoles. The offset two-shell dipole design preserves the mechanical features of the highly successful, resilient doubler magnets while greatly extending the performance

  9. Superconducting Coil of Po Dipole

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  10. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Meier Iris; Stahlberg Eric A; Schraegle Shannon J; Rose Annkatrin

    2005-01-01

    Abstract Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previousl...

  11. Modulation of elasticity in functionally distinct domains of the tropomyosin coiled-coil

    Lakkaraju, Sirish Kaushik; Hwang, Wonmuk

    2009-01-01

    Alpha-helical coiled-coils are common protein structural motifs. Whereas vast information is available regarding their structure, folding, and stability, far less is known about their elastic properties, even though they play mechanical roles in many cases such as tropomyosin in muscle contraction or neck stalks of kinesin or myosin motor proteins. Using computer simulations, we characterized elastic properties of coiled-coils, either globally or locally. Global bending stiffness of standard ...

  12. Coiled-Coil Response to Mechanical Force: Global Stability and Local Cracking

    Kreuzer, Steven M.; Elber, Ron

    2013-01-01

    Coiled coils are important structural motifs formed by two or more amphipathic α-helices that twist into a supercoil. These motifs are found in a wide range of proteins, including motor proteins and structural proteins, that are known to transmit mechanical loads. We analyze atomically detailed simulations of coiled-coil cracking under load with Milestoning. Milestoning is an approach that captures the main features of the process in a network, quantifying kinetics and thermodynamics. A 112-r...

  13. Test results of the 100 kWh SMES model coil. AC loss performance

    In order to establish a technology needed for a small-scale 100 kWh SMES device, a SMES model coil was fabricated. Performance tests were carried out at the Japan Atomic Energy Research Institute (JAERI) in 1996. After that, the coil was installed in facilities of the Lawrence Livermore National Laboratory (LLNL) and tested in 1998, in collaboration between Japan and the United States. The AC loss results at LLNL were in good agreement with those at JAERI. It was reconfirmed from the results that the coupling loss of the coil consists of two components with short and long time constants. We found out from the signals of Hall probes that the current loops with long decay time constants were induced in the CIC conductor. These loops could enhance additional AC loss in the coil. To reduce the AC loss, we made small-sized CIC conductor of strands having a CuNi surface, a fabricated the small coil. The measured AC loss of the small coil was reduced to about 1/6. The CuNi surface on the strands was demonstrated to be effective to reduce AC loss in the coil. (author)

  14. A comparative study of flat coil and coil sensor for landslide detection

    Sanjaya, Edi; Muslimin, Ahmad Novi; Djamal, Mitra; Suprijadi, Handayani, Gunawan; Ramli

    2016-03-01

    The landslide is one of the most costly catastrophic events in terms of human lives and infrastructure damage, thus an early warning monitoring for landslides becomes more and more important. Currently existing monitoring systems for early warning are available in terms of monolithic systems. This is a very cost-intensive way, considering installation as well as operational and personal expenses. We have been developing a landslide detection system based on flat coil and coil sensor. The flat coil element being developed is an inductive proximity sensor for detection mass of soil movement. The simple method of flat coil manufactures and low cost, is an attraction that is still inspired to develop flat coil sensors. Meanwhile, although it has a drawback in terms of their size, the coil sensor is still required in many fields due to their sensitivity and robustness. The simple method of coil manufacture and the materials are commonly available and low cost, is an attraction that is still inspired to develop induction coil sensors. A comparative study of alternative configuration of sensor based on flat coil elements and a coil in application to landslide detection has been discussed in this paper. The purpose of this comparison is to show the ideal conditions and the challenges for each sensor. Furthermore, a comparison between flat coil and coil sensor is presented.

  15. Mathematical model and its application of radial effective thermal conductivity for coil heat transfer in HPH furnace

    Wu, Wenfei; Yu, Fan; Zhang, Xinxin; Zuo, Yi

    2002-05-01

    Temperature uniformity of steel coils in High Performance Hydrogen bell-type annealing furnace has a significant effect on their quality and production. The hot rolled coil can be considered as a periodically laminated material composed of steel layers and interface layers in radial direction. A new formula for the radial effective thermal conductivity has been proposed, which is based on surface characteristic, strip thickness and compressive stress of the rolled coil. Furthermore, it has been used to develop a heat transfer mathematical model for steel coils in the HPH furnace. The calculated annealing curves using this mathematical model are in good agreement with the experimental data.

  16. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  17. Discrete control of TRPV4 channel function in the distal nephron by protein kinases A and C.

    Mamenko, Mykola; Zaika, Oleg L; Boukelmoune, Nabila; Berrout, Jonathan; O'Neil, Roger G; Pochynyuk, Oleh

    2013-07-12

    We have recently documented that the Ca(2+)-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca(2+) responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca(2+)]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular determinants of TRPV4 activity and subcellular distribution. We found that activation of the PKC pathway with phorbol 12-myristate 13-acetate significantly increased [Ca(2+)]i responses to flow without affecting the subcellular distribution of TRPV4. Inhibition of PKC with bisindolylmaleimide I diminished cellular responses to elevated flow. In contrast, activation of the PKA pathway with forskolin did not affect TRPV4-mediated [Ca(2+)]i responses to flow but markedly shifted the subcellular distribution of the channel toward the apical membrane. These actions were blocked with the specific PKA inhibitor H-89. Concomitant activation of the PKA and PKC cascades additively enhanced the amplitude of flow-induced [Ca(2+)]i responses and greatly increased basal [Ca(2+)]i levels, indicating constitutive TRPV4 activation. This effect was precluded by the selective TRPV4 antagonist HC-067047. Therefore, the functional status of the TRPV4 channel in the distal nephron is regulated by two distinct signaling pathways. Although the PKA-dependent cascade promotes TRPV4 trafficking and translocation to the apical membrane, the PKC-dependent pathway increases the activity of the channel on the plasma membrane. PMID:23709216

  18. Discrete Control of TRPV4 Channel Function in the Distal Nephron by Protein Kinases A and C*

    Mamenko, Mykola; Zaika, Oleg L.; Boukelmoune, Nabila; Berrout, Jonathan; O'Neil, Roger G.; Pochynyuk, Oleh

    2013-01-01

    We have recently documented that the Ca2+-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca2+ responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca2+]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular determinants of TRPV4 activity and subcellular distribution. We found that activation of the PKC pathway with phorbol 12-myristate 13-acetate significantly increased [Ca2+]i responses to flow without affecting the subcellular distribution of TRPV4. Inhibition of PKC with bisindolylmaleimide I diminished cellular responses to elevated flow. In contrast, activation of the PKA pathway with forskolin did not affect TRPV4-mediated [Ca2+]i responses to flow but markedly shifted the subcellular distribution of the channel toward the apical membrane. These actions were blocked with the specific PKA inhibitor H-89. Concomitant activation of the PKA and PKC cascades additively enhanced the amplitude of flow-induced [Ca2+]i responses and greatly increased basal [Ca2+]i levels, indicating constitutive TRPV4 activation. This effect was precluded by the selective TRPV4 antagonist HC-067047. Therefore, the functional status of the TRPV4 channel in the distal nephron is regulated by two distinct signaling pathways. Although the PKA-dependent cascade promotes TRPV4 trafficking and translocation to the apical membrane, the PKC-dependent pathway increases the activity of the channel on the plasma membrane. PMID:23709216

  19. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel.

    Hui Liu

    Full Text Available Brugada syndrome (BrS is a condition defined by ST-segment alteration in right precordial leads and a risk of sudden death. Because BrS is often associated with right bundle branch block and the TRPM4 gene is involved in conduction blocks, we screened TRPM4 for anomalies in BrS cases. The DNA of 248 BrS cases with no SCN5A mutations were screened for TRPM4 mutations. Among this cohort, 20 patients had 11 TRPM4 mutations. Two mutations were previously associated with cardiac conduction blocks and 9 were new mutations (5 absent from ~14'000 control alleles and 4 statistically more prevalent in this BrS cohort than in control alleles. In addition to Brugada, three patients had a bifascicular block and 2 had a complete right bundle branch block. Functional and biochemical studies of 4 selected mutants revealed that these mutations resulted in either a decreased expression (p.Pro779Arg and p.Lys914X or an increased expression (p.Thr873Ile and p.Leu1075Pro of TRPM4 channel. TRPM4 mutations account for about 6% of BrS. Consequences of these mutations are diverse on channel electrophysiological and cellular expression. Because of its effect on the resting membrane potential, reduction or increase of TRPM4 channel function may both reduce the availability of sodium channel and thus lead to BrS.

  20. Performance of external and internal coil configurations for prostate investigations at 7 Tesla

    Metzger, Gregory J.; Van de Moortele, Pierre-Francois; Akgun, Can; Snyder, Carl J.; Moeller, Steen; Strupp, John; Andersen, Peter; Shrivastava, Devashish; Vaughan, Tommy; Ugurbil, Kamil; Adriany, Gregor

    2010-01-01

    Three different coil configurations were evaluated through simulation and experimentally to determine safe operating limits and evaluate subject size dependent performance for prostate imaging at 7 Tesla. The coils included a transceiver endorectal coil (trERC), a 16 channel transceiver external surface array (trESA) and a trESA combined with a receive-only ERC (trESA+roERC). While the transmit B1 (B1+) homogeneity was far superior for the trESA, the maximum achievable B1+ is subject size dep...

  1. Magnetic field on the baseball coil

    An expression is developed in spherical harmonics for the magnetic field of a baseball coil. A simple dipole-layer model for the coil, and the computer program, MAFCO, yield comparable expansion coefficients, and give practically identical fields near the center of the baseball. 13 refs

  2. Novel transcranial magnetic stimulation coil for mice

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  3. Operator coil monitoring Acceptance Test Procedure

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  4. The bar coil for NMR tomograph

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  5. Coil Optimization for High Temperature Superconductor Machines

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech; Rodriguez Zermeno, Victor Manuel; Træholt, Chresten; Pedersen, Niels Falsig

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  6. Epoxide insulation for Tokamak coils

    The construction and testing of 12-tonne toroidal-field electromagnets for the Joint European Torus by Brown Boveri and Cie (Mannheim) are described. The principle of Tokamak confinement of a plasma which acts as the secondary winding of a transformer is explained. The Cu conductors are sanded and coated with epoxide adhesive before being wrapped in 7mm thick woven glass fibre, dried by heating under vacuum, impregnated and encapsulated in 1.2 tonnes of Araldite, which is solidified under pressure of 4 atmospheres and hardened for ten hours at 1500C. The prototype withstood tests involving 25,000 flexure cycles at 1.1 MN and 2 Hz, 2,000 quarter-hour 10kA heating cycles between 840 and 200C, and exposure to 500 million rads. 32 such coils were constructed at the rate of one every three weeks. (M.B.D.)

  7. Recent advances in helix-coil theory.

    Doig, Andrew J

    2002-12-10

    Peptide helices in solution form a complex mixture of all helix, all coil or, most frequently, central helices with frayed coil ends. In order to interpret experiments on helical peptides and make theoretical predictions on helices, it is therefore essential to use a helix-coil theory that takes account of this equilibrium. The original Zimm-Bragg and Lifson-Roig helix-coil theories have been greatly extended in the last 10 years to include additional interactions. These include preferences for the N-cap, N1, N2, N3 and C-cap positions, capping motifs, helix dipoles, side chain interactions and 3(10)-helix formation. These have been applied to determine energies for these preferences from experimental data and to predict the helix contents of peptides. This review discusses these newly recognised structural features of helices and how they have been included in helix-coil models. PMID:12488008

  8. MIT 12 Tesla Coil test results

    Test results from the MIT 12 Tesla Coil experiment are presented. The coil was tested in the High Field Test Facility (HFTF) of the Lawrence Livermore National Laboratory in October 1984 and January 1985. The experiment measured the performance of an Internally Cooled, Cabled Superconductor (ICCS) of practical size, intended for use in magnetic fusion experiments. The MIT coil carried 15 kA at 11 T for 5 min with no sign of instability. A half turn length in a 10 T field was able to absorb a heat load in 4 msec of more than 200 mJ/cm3 of cable volume while carrying a current of 12 kA. The MIT coil successfully met the performance requirements of the Department of Energy's 12 Tesla Coil Program

  9. LONGSHOT operation with anode-side magnetic field coils

    The LONGSHOT experiment uses a radially magnetically-insulated ion diode to generate an annular ion beam for ion-ring formation studies. The insulating magnetic field had been produced by coils on the cathode side of the diode gap, and flux-shaping conducting surfaces on the anode side. In this configuration, the about 100 keV, about 50 A/cm2, 400 nsec proton beam showed at least 2.50 half-angle divergence 15 cm from the gap, after traversing the cross-magnetic field region of the return flux of the insulating field coils. We have recently eliminated this return flux by relocating the coils to the anode side of the gap so that the return flux is behind the anode and out of the beam path. With proper location and configuration of coils and anode surface and using a flux-excluding cathode tip we now get the same or greater ion current output, but the divergence 15 cm from the gap is reduced to 0 half-angle. Divergence is measured by apertures followed by damage targets. This improvement is presumably due to elimination of all magnetic field downstream of the gap. It is significant that the ion optics are not degraded by using a flux-excluding cathode, which gives highly distorted, curved applied magnetic field lines at the cathode. This gap, in both original and new configurations, gives ion current densities a factor of 30 or more above Child-Langmuir flow for the geometric gap, so the virtual cathode electron flow must be located very near the anode surface, and the diamagnetism of the electron flow must modify the magnetic field in such a way as to produce a flat effective cathode. Experimental results from the present diode, and also preliminary results from LONGSHOT II, a scaled-up version of this new configuration, are presented

  10. Design description of the Large Coil Test Facility pulse-coil support and transport system

    In order to simulate the transient fields which would be imposed on superconducting toroidal field coils in an operating tokamak reactor, the Large Coil Test Facility (LCTF) test stand includes a set of pulse coils. This set of pulse coils is designed to be moved from one test location to another within the LCTF vacuum vessel while the vessel is operating under vacuum and the test stand and test coils are at an operating temperature of 4.2K. This operating environment and the extremely high magnetic loads have necessitated some unique design features for the pulse coil support and transport system. The support structure for the pulse coil must react high overturning moments and axial loads induced on the pulse coil by the interaction of the pulse field with the field generated by the large test coils. These loads are reacted into the test stand support structure or spider frame by an arrangement of six pedestals and a support beam. In order to move the pulse coil set from one test location to another, the support beam containing the pulse coils must be driven across rollers mounted on the pedestals, then clamped securely to react the loads. Because these operations must be performed in a vacuum environment at cryogenic tmperature, special consideration was given to component design

  11. A study on geometry effect of transmission coil for micro size magnetic induction coil

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  12. Intra-coil interactions in split gradient coils in a hybrid MRI-LINAC system

    Tang, Fangfang; Freschi, Fabio; Sanchez Lopez, Hector; Repetto, Maurizio; Liu, Feng; Crozier, Stuart

    2016-04-01

    An MRI-LINAC system combines a magnetic resonance imaging (MRI) system with a medical linear accelerator (LINAC) to provide image-guided radiotherapy for targeting tumors in real-time. In an MRI-LINAC system, a set of split gradient coils is employed to produce orthogonal gradient fields for spatial signal encoding. Owing to this unconventional gradient configuration, eddy currents induced by switching gradient coils on and off may be of particular concern. It is expected that strong intra-coil interactions in the set will be present due to the constrained return paths, leading to potential degradation of the gradient field linearity and image distortion. In this study, a series of gradient coils with different track widths have been designed and analyzed to investigate the electromagnetic interactions between coils in a split gradient set. A driving current, with frequencies from 100 Hz to 10 kHz, was applied to study the inductive coupling effects with respect to conductor geometry and operating frequency. It was found that the eddy currents induced in the un-energized coils (hereby-referred to as passive coils) positively correlated with track width and frequency. The magnetic field induced by the eddy currents in the passive coils with wide tracks was several times larger than that induced by eddy currents in the cold shield of cryostat. The power loss in the passive coils increased with the track width. Therefore, intra-coil interactions should be included in the coil design and analysis process.

  13. Performance improvement of a high-temperature superconducting coil by separating and grading the coil edge

    Ishiguri, Shinichi; Funamoto, Taisuke

    2011-06-01

    In this paper, we establish a model to analyze the transport current performance of a high-temperature superconducting (HTS) coil, considering the dependencies of critical current and n-value of an HTS tape on magnetic field and magnetic field angles. This analysis shows that relatively large electric fields appear at the coil’s edges, preventing improvement in the transport current performance of the coil. To solve this problem, in this paper, we propose a graded coil in which several coil edges of different heights are separated and graded. Analysis of its performance shows that the coil’s critical current increases, thus confirming that there exists an optimum coil cross section at which the stored energy and central magnetic field improve 2.1 times and 45%, respectively, compared with a typical rectangular coil that employs the same total length of the HTS tape. It is recommended that these results of the coil should be applied to SMES.

  14. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani

    The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed and purified to homogeneity. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Leishmania donovani coronin CRN12 is an actin-binding protein which consists of two domains: an N-terminal WD repeat domain and a C-terminal coiled-coil domain. The coiled-coil domain is 53 residues in length. Helix–helix interactions in general and coiled coils in particular are ubiquitous in the structure of proteins and play a significant role in the association among proteins, including supramolecular assemblies and transmembrane receptors that mediate cellular signalling, transport and actin dynamics. The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed, purified to homogeneity and the N-terminal 6×His tag was successfully removed by thrombin cleavage. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Diffraction-quality crystals were obtained and data extending to 2.46 Å resolution were collected at 100 K on BM14, ESRF, Grenoble, France. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 118.0, b = 50.6, c = 46.0 Å, β = 111.0°. Matthews coefficient (VM) calculations suggested the presence of 4–6 molecules in the asymmetric unit, corresponding to a solvent content of ∼33–55%, and are consistent with self-rotation function calculations

  15. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  16. Integrated-blanket-coil applications in the TITAN-I reversed-field pinch reactor

    The TITAN-I Reversed-Field Pinch reactor incorporates the Integrated-Blanket-Coil (IBC) concept for the toroidal field and divertor field coil systems. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils in a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (∼0.36 T) leads to relatively low coil currents. Design of IBC components addresses four areas: (1) Neutronics, including tritium breeding and blanket energy multiplication; (2) thermal hydraulics, including magnetohydrodynamic (MHD) pressure drops; (3) magnetics, including field magnitude and topology; and (4) electrical engineering of the circuit determining the power supply requirements. The TF-IBC approach, in comparison to copper coils, offers several advantages for a compact RFP reactor: Increased access for coolant and auxiliary services, improved viability for single-piece maintenance, and reduced magnetic ripple in the toroidal magnetic field. In the divertor system, improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC relative to copper coils. (orig.)

  17. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  18. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    Jo, Andrew O; Ryskamp, Daniel A; Phuong, Tam T T;

    2015-01-01

    facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but...... Ca(2+) entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when...... complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and...

  19. An Overview Of The ITER In-Vessel Coil Systems

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable 'natural' small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  20. An Overview Of The ITER In-Vessel Coil Systems

    Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E

    2009-09-24

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  1. MR imaging in osteoarthritis: hardware, coils, and sequences.

    Link, Thomas M

    2010-02-01

    Whole-organ assessment of a joint with osteoarthritis (OA) requires tailored MR imaging hardware and imaging protocols to diagnose and monitor degenerative disease of the cartilage, menisci, bone marrow, ligaments, and tendons. Image quality benefits from increased field strength, and 3.0-T MR imaging is used increasingly for assessing joints with OA. Dedicated surface coils are required for best visualization of joints affected by OA, and the use of multichannel phased-array coils with parallel imaging improves image quality and/or shortens acquisition times. Sequences that best show morphologic abnormalities of the whole joint include intermediate-weighted fast-spin echo sequences. Also quantitative sequences have been developed to assess cartilage volume and thickness and to analyze cartilage biochemical composition. PMID:19962095

  2. Switching transients in a superconducting coil

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed

  3. TFTR TF coil thermal analysis and test

    A water cooling passage leak which developed in a TFTR toroidal field (TF) coil has precipitated interest in developing alternative cooling options for this coil system. A test on a spare coil was performed to establish a low power heating schedule and to determine the efficacy of gas cooling the TF coils. A computer analysis was also performed using the test results to benchmark the code. The investigation of gas cooling was initiated as a contingency in the event of future irreparable leaks developing in the TF coil cooling passages. It is generally acknowledged that gas leakage into the electrical insulation would have a relatively benign effect on its dielectric strength whereas recent experience on TFTR indicates a substantial degradation of dielectric strength when wetted with water (the use of high dielectric silicone oil as an alternative coolant, is discussed elsewhere in these proceedings). The purpose of the low power heating test was to establish the proper current settings and IR drop to maintain the TF coil at a prescribed temperature of 80 degree C, in preparation for an elevated temperature dry-out cycle on the leaking coil in TFTR. 3 figs., 9 tabs

  4. Examination of measurement and its method of compensation of the sensitivity distribution using phased array coil for body scan

    Kimura, T; Iizuka, A; Taniguchi, Y; Ishikuro, A; Hongo, T; Inoue, H; Ogura, A

    2003-01-01

    The influence on the quality of images by measurement of a sensitivity distribution and the use of a sensitivity compensation filter was considered using an opposite-type phased array coil and volume-type phased array coil. With the opposite-type phased array coil, the relation between coil interval and filter was investigated for the image intensity correction (IIC) filter, surface coil intensity correction (SCIC) filter (GE), and the Normalize filter (SIEMENS). The SCIC filter and Normalize filter showed distance dependability over the coil interval of signal-to-noise ratio (SNR) and uniformity was observed, and the existence of an optimal coil interval was suggested. Moreover, with the IIC filter, distance dependability over a coil interval was small, and the decrease in contrast with use was remarkable. On the other hand, with the volume-type phased array coil, the overlap of an array element was investigated to determine the influence it had on sensitivity distribution. Although the value stabilized in t...

  5. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins

    Sunitha Margaret S; Nair Anu G; Charya Amol; Jadhav Kamalakar; Mukhopadhyay Sami; Sowdhamini Ramanathan

    2012-01-01

    Abstract Background Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant. Findings We have updated our coiled-coil validation webserver, now called COILCHECK...

  6. Phase reconstruction from multiple coil data using a virtual reference coil

    Parker, Dennis L.; Payne, Allison; Todd, Nick; Hadley, J. Rock

    2013-01-01

    Purpose This paper develops a method to obtain optimal estimates of absolute magnetization phase from multiple-coil MRI data. Methods The element-specific phases of a multi-element receiver coil array are accounted for by using the phase of a real or virtual reference coil that is sensitive over the entire imaged volume. The virtual-reference coil is generated as a weighted combination of measurements from all receiver coils. The phase-corrected multiple coil complex images are combined using the inverse covariance matrix. These methods are tested on images of an agar phantom, an in vivo breast, and an anesthetized rabbit obtained using combinations of four, nine, and three receiver channels, respectively. Results The four- and three- channel acquisitions require formation of a virtual-reference receiver coil while one channel of the nine-channel receive array has a sensitivity profile covering the entire imaged volume. Referencing to a real or virtual coil gives receiver phases that are essentially identical except for the individual receiver channel noise. The resulting combined images, which account for receiver channel noise covariance, show the expected reduction in phase variance. Conclusions The proposed virtual reference coil method determines a phase distribution for each coil from which an optimal phase map can be obtained. PMID:24006172

  7. CS model coil experimental log book

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  8. Design status of the NET toroidal coils

    The Toroidal Field Coil System consists of 16 superconducting coil windings, their coil casings and the intercoil structure. All of these components are located inside a common cryostat vessel and will therefore be at a temperature of about 4.50 degK during operation of the machine. The 16 coils are arranged in a toroidal configuration in order to provide a magnetic field for the confinement of the ring shaped plasma. The inner legs of the D-shaped coils form a vault which is subjected to the centering forces that are caused by the toroidal field itself. The interaction between the poloidal field and the toroidal currents creates Lorentz Forces which are perpendicular to the TF coil plane. Intercoil structure and vault have to resist these forces. The huge size of the coils in combination with the fact that an A15 conductor material has to be used require techniques that are somewhat beyond the present state of the art. Therefore, a conductor and magnet development program has been launched. The development studies carried out by Associated Laboratories in cooperation with NET Team have resulted in several flow cooled composite conductors. Futheron, full size conductor samples were manufactured and two subsize conductors were manufactured and wound into two 12 T model coils. Proposals for the manufacture of the coil winding, the power supply and quench protection system, the cooling system and the instrumentation have been worked out in the course of these studies. To ensure the feasibility of the cois two study contracts have been placed with industry. This report will stress the most difficult aspects of the coil manufacture, the assembly of the winding in its steel casing and the assembly of the 16 coils with the intercoil structure to a toroidal configuration. The results of the thermomechanical and electromagnetic analysis (e.g. eddy currents in coils case, stress, a.c. losses) - will be reported and their impact on the design of the TF system will be

  9. Helical coil thermal hydraulic model

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model

  10. Twisted and coiled ultralong multilayer graphene ribbons

    Cranford, Steven; Buehler, Markus J.

    2011-07-01

    The mechanical behavior and properties of multilayer graphene sheets and nanoribbons have been a subject of intensive research in recent years, due to their potential in electronic, structural and thermal applications. Calculations of effective properties range from molecular dynamic simulations to use of structural mechanical continuum models. Here, structural and elastic parameters are obtained via full atomistic simulations, and a two-dimensional mesoscopic model for a sheet of graphene is developed utilizing coarse-grain bead-spring elements with rotational-spring potentials. The assertion of energy conservation between atomistic and mesoscale models through elastic strain energy is enforced to arrive at model parameters, incorporating normal and shear strains, out-of-plane bending and intramolecular interactions. We then apply our mesoscopic model to investigate the structure and conformational behavior of twisted ultralong multilayer graphene ribbons with lengths of hundreds of nanometers, representing several millions of individual atoms, beyond the accessible regime of full atomistic molecular dynamics. We find a distinct transition from a twisted (saddle-like) configuration to a helical (coil-like) configuration as a function of imposed rotation and number of graphene layers. Further, for single layer graphene ribbons, multiple, stable configurations occur at discrete rotations due to the surface adhesion. The model developed and applied here can be more generally used to investigate properties of other two-dimensional membrane and ribbon-like systems for mesoscale hierarchical material design.