WorldWideScience

Sample records for 3t3-l1 adipocyte differentiation

  1. Alteration of proteoglycan metabolism during the differentiation of 3T3- L1 fibroblasts into adipocytes

    1991-01-01

    3T3-L1 fibroblasts were induced to differentiate to 3T3-L1 adipocytes by dexamethasone, isobutyl-methylxanthine, and insulin. To study how differentiation affects extracellular matrix production, the accumulation of proteoglycans was studied by labeling the 3T3-L1 cells with [35S]sulphate for 24 h. The labeled proteoglycans were isolated from the medium and cell layer extracts by anion-exchange chromatography. They were then taken to gel filtration chromatography on Superose 6 before or after...

  2. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 Cells.

    Ukita, Mayumi; Yamaguchi, Taihiko; Ohata, Noboru; Tamura, Masato

    2016-06-01

    Sclerostin, a secreted protein encoded by the Sost gene, is produced by osteocytes and is inhibited by osteoblast differentiation and bone formation. Recently, a functional association between bone and fat tissue has been suggested, and a correlation between circulating sclerostin levels and lipid metabolism has been reported in humans. However, the effects of sclerostin on adipogenesis remain unexplored. In the present study, we examined the role of sclerostin in regulating adipocyte differentiation using 3T3-L1 preadipocytes. In these cells, sclerostin enhanced adipocyte-specific gene expression and the accumulation of lipid deposits. Sclerostin also upregulated CCAAT/enhancer binding protein β expression but not cell proliferation and caspase-3/7 activities. Sclerostin also attenuated canonical Wnt3a-inhibited adipocyte differentiation. Recently, the transcriptional modulator TAZ has been involved in the canonical Wnt signaling pathway. Sclerostin reduced TAZ-responsive transcriptional activity and TAZ-responsive gene expression. Transfection of 3T3-L1 cells with TAZ siRNA increased the lipid deposits and adipogenic gene expression. These results show that sclerostin upregulates adipocyte differentiation in 3T3-L1 cells, suggesting a possible role for the osteocyte-derived sclerostin as a regulator of fat metabolism and as a reciprocal regulator of bone and adipose tissues metabolism. J. Cell. Biochem. 117: 1419-1428, 2016. © 2015 Wiley Periodicals, Inc. PMID:26553151

  3. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation.

    Joo, Jeong In; Kim, Dong Hyun; Yun, Jong Won

    2010-11-01

    Chaga mushroom (Inonotus obliquus) has long been used as a folk medicine due to its numerous biological functions such as antibacterial, antiallergic, antiinflammatory and antioxidative activities. In the present study, it was found that the I. obliquus hot water extract (IOWE) activated adipogenesis of 3T3-L1 preadipocytes. Even in the absence of adipogenic stimuli by insulin, the IOWE strongly induced adipogenesis of 3T3-L1 preadipocytes. The major constituent of IOWE was glucose-rich polysaccharides with a molecular mass of 149  kDa. IOWE enhanced the differentiation of 3T3-L1 preadipocytes, increasing TG (triacylglycerol) accumulation that is critical for acquisition of the adipocyte phenotype, in a dose-dependent manner. IOWE stimulated gene expression of C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome proliferator-activated receptors γ) during adipocyte differentiation, and induced the expression of PPARγ target genes such as aP2 (adipocyte protein 2), LPL (lipoprotein lipase) and CD36 (fatty acid translocase). Immunoblot analysis revealed that IOWE increased the expression of adipogenic makers such as PPARγ and GLUT4 (glucose transporter 4). The luciferase reporter assay demonstrated that IOWE did not exhibit PPARγ ligand activity. Although these results require further investigation, the ability of natural mushroom product to increase PPARγ transcriptional activities may be expected to be therapeutic targets for dyslipidemia and type 2 diabetes. PMID:21031614

  4. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  5. Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation

    Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE2, the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE2 and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-γ. The inhibitory effect of PGE2 but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE2 in 3T3-L1 adipocyte differentiation

  6. Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells.

    Liu, Qing; Kim, Seon Beom; Ahn, Jong Hoon; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2012-01-01

    To search for anti-diabetic and insulin-sensitising natural products, the effect on adipocyte differentiation was investigated by assessing fat accumulation in 3T3-L1 preadipocytes using Oil Red O staining. Fractionation and separation of n-hexane and CHCl₃ fractions of Morinda officinalis (Rubiaceae) using several chromatographic methods led to the isolation of three anthraquinones, 1,2-dimethoxyanthraquinone (1), alizarin-2-methyl ether (2) and rubiadin-1-methyl ether (3). Among them, alizarin-2-methyl ether (2) showed the strongest enhancing activity, followed by rubiadin-1-methyl ether (3) and 1,2-dimethoxyanthraquinone (1). At a concentration of 100 µM, alizarin-2-methyl ether (2) enhanced adipocyte differentiation by up to 131% (compared to insulin-treated cells). Thus, these compounds could be beneficial in the treatment of diabetes. PMID:22008000

  7. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    Jang, Min Kyung; Kim, Cho Hee [School of Korean Medicine, Pusan National University, 30 Beom-eo ri, Mulguem-eup, Yangsan-si, Gyeongnam 609-735 (Korea, Republic of); Seong, Je Kyung [Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr [School of Korean Medicine, Pusan National University, 30 Beom-eo ri, Mulguem-eup, Yangsan-si, Gyeongnam 609-735 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  8. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor γ (PPARγ) targets and PPARγ itself, however, nobiletin did not exhibit PPARγ ligand activity. We observed the expression of CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor for PPARγ, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulated kinase (ERK), which play important roles in C/EBPβ expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB

  9. Flavanone exhibits PPARγ ligand activity and enhances differentiation of 3T3-L1 adipocytes

    Flavanones are class of polyphenolic compounds, some of which are found in foods and provide health benefits. In this study, we show that flavanone significantly enhances differentiation of 3T3-L1 preadipocytes. During adipogenesis, flavanone enhanced expression of genes and accumulation of proteins that are involved in adipocyte function. Some reports have indicated that flavanone inhibits proliferation of mammalian cells, and down-regulates expression of growth-related proteins. Such proteins include phosphorylated ERK1/2, cyclins, and Cdks that are important for an early event in adipogenesis, mitotic clonal expansion (MCE). We demonstrated that flavanone did not inhibit MCE or expression of MCE-related proteins, except for a modest inhibition of cyclin D1 expression. Using luciferase reporter assays, we found that flavanone acted as a peroxisome proliferator-activated receptor γ (PPARγ) ligand in a dose-dependent manner. Together, our results suggest that flavanone enhances adipogenesis, at least in part, through its PPARγ ligand activity.

  10. Lipid Droplets Characterization in Adipocyte Differentiated 3T3-L1 Cells: Size and Optical Density Distribution

    V. Rizzatti; F. Boschi; Pedrotti, M.; E. Zoico; A. Sbarbati; Zamboni, M.

    2013-01-01

    The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs) embedded in the cytoplasm. The number and the size distributio...

  11. Differentiation of the insulin-sensitive glucose transporter in 3T3-L1 adipocytes

    3T3-L1 fibroblasts differentiate in culture to resemble adipocytes both morphologically and biochemically. Insulin-sensitive glucose transport, as measured by 2-deoxy-[1-14C]- glucose uptake in the undifferentiated cell is small (2X). In contrast, the rate of glucose transport in fully differentiated cells is elevated 15-fold over basal in the presence of insulin. To determine if this is due to an increase in the number of transporters/cell or accessibility to the transporters, the number of transporters was measured in subcellular fractions over differentiation using a 3H-cytochalasin B binding assay. The increase in the rate of insulin-sensitive glucose transport directly parallels an increase in the number of transporters which reside in an insulin-responsive intracellular compartment. This observation was confirmed by identifying the transporters by immunoblotting using an antibody generated against the human erythrocyte transporter. The molecular weight of this transporter increases over differentiation from a single band of 40kDa to a heterogeneous triplet of 40, 44 and 48kDa. These data suggest that the transporter undergoes differential processing and that the functional, insulin-responsive transporter may be different from the insulin-insensitive (basal) transporter

  12. Purple Sweet Potato Leaf Extract Induces Apoptosis and Reduces Inflammatory Adipokine Expression in 3T3-L1 Differentiated Adipocytes

    Shou-Lun Lee

    2015-01-01

    Full Text Available Background. Purple sweet potato leaves (PSPL are widely grown and are considered a healthy vegetable in Taiwan. PSPL contain a high content of flavonoids, and the boiling water-extracted PSPL (PSPLE is believed to prevent metabolic syndrome. However, its efficacy has not yet been verified. Therefore, we investigated the effect of PSPLE on adipocytes. Methods. The differentiated 3T3-L1 cells used in this study were derived from preadipocytes that were differentiated into adipocytes using an adipogenic agent (insulin, dexamethasone, and 3-isobutyl-1-methylxanthine; approximately 90% of the cells were differentiated using this method. Results. Treating the differentiated 3T3-L1 cells with PSPLE caused a dose-dependent decrease in the number of adipocytes rather than preadipocytes. In addition, treatment with PSPLE resulted in apoptosis of the differentiated 3T3-L1 cells as determined by DAPI analysis and flow cytometry. PSPLE also increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP. Furthermore, PSPLE induced downregulation of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α gene expression in the differentiated 3T3-L1 cells. Conclusions. These results suggest that PSPLE not only induced apoptosis but also downregulated inflammation-associated genes in the differentiated 3T3-L1 cells.

  13. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy); Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  14. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  15. Effects of homocysteine on adipocyte differentiation and CD36 gene expression in 3T3-L1 adipocytes.

    Mentese, Ahmet; Alver, Ahmet; Sumer, Aysegul; Demir, Selim

    2016-03-01

    The aim of this study was to investigate the effects of homocysteine (Hcy), a risk factor for cardiovascular diseases, hypertension, stroke and obesity, on expression of CD36 that regulates uptake of oxidized low-density lipoprotein (Ox-LDL) by adipocytes and differentiation of 3T3-L1 cells to adipocytes. Cell viability was determined using MTT assay, and density of triglycerides were measured with Oil Red O staining. The expression levels of CD36 were analyzed using SYBR green assay by quantitative RT-PCR. Our results showed that the addition of Hcy inhibited differentiation of 3T3-L1 preadipocytes in a dose-dependent manner without a significant cell toxicity (p  0.05) compared to differentiated adipocytes. Hcy reduced adipocyte differentiation, but had no effect on the expression level of CD36 in vitro conditions. The effect of Hcy on uptake and clearance of Ox-LDL by adipose tissue now needs to be investigated in vivo. PMID:26691520

  16. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution

    V. Rizzatti

    2013-08-01

    Full Text Available The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.

  17. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan); Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan)

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  18. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes

  19. Mammalian ste20-like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARγ.

    Byoung Hee Park

    Full Text Available The mammalian ste20 kinase (MST signaling pathway plays an important role in the regulation of apoptosis and cell cycle control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1, a scaffolding protein that functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome proliferator-activated receptor γ (PPARγ, a transcription factor that plays a key role in adipogenesis. The interaction of endogenous SAV1 and PPARγ was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARγ. Overexpression of MST2 and SAV1 increased PPARγ levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARγ protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to increase at 2 days when PPARγ expression also begins to increase. MST2 and SAV1 significantly increased PPARγ transactivation, and SAV1 was shown to be required for the activation of PPARγ by rosiglitazone. Finally, differentiation of 3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results suggest that PPARγ activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis.

  20. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea. PMID:26833256

  1. Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

    Zhang, Xian-Hua; Huang, Bo; Choi, Soo-Kyong; Seo, Jung-Sook

    2012-01-01

    Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethan...

  2. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression

    Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP)α and peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, and PPARγ turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBPβ, a transcriptional activator of the C/EBPα and PPARγ genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBPα and PPARγ genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBPβ occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G1-S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBPβ, and subsequently inhibited MCE as well as adipocyte differentiation

  3. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  4. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling.

    Jin, Min; Wu, Yutao; Wang, Jing; Chen, Jian; Huang, Yiting; Rao, Jinpeng; Feng, Chun

    2016-05-20

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study, we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. PMID:27103442

  5. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation.

    Zhang, Juan; Tang, Hongju; Zhang, Yuqing; Deng, Ruyuan; Shao, Li; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2014-05-01

    Quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important in the effort to gain insight into the molecular mechanisms underlying adipogenesis. However, the expression profile of a target gene may be misinterpreted due to the unstable expression of the reference genes under different experimental conditions. Therefore, in this study, we investigated the expression stability of 10 commonly used reference genes during 3T3-L1 adipocyte differentiation. The mRNA expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and transferrin receptor (TFRC) significantly increased during the course of 3T3-L1 adipocyte differentiation, which was decreased by berberine, an inhibitor of adipogenesis. Three popular algorithms, GeNorm, NormFinder and BestKeeper, identified 18 ribosomal RNA and hydroxymethylbilane synthase (HMBS) as the most stable reference genes, while GAPDH and TFRC were the least stable ones. Peptidylprolyl isomerase A [PIPA (cyclophilin A)], ribosomal protein, large, P0 (36-B4), beta-2-microglobulin (B2M), α1-tubulin, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and β-actin showed relatively stable expression levels. The choice of reference genes with various expression stabilities exerted a profound influence on the expression profiles of 2 target genes, peroxisome proliferator-activated receptor (PPAR)γ2 and C/EBPα. In addition, western blot analysis revealed that the increased protein expression of GAPDH was markedly inhibited by berberine during adipocyte differentiation. This study highlights the importance of selecting suitable reference genes for qRT-PCR studies of gene expression during the process of adipogenesis. PMID:24626784

  6. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Highlights: → Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. → Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. → Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. → Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  7. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Kang, Seong-Il [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Ko, Hee-Chul [Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Lee, Nam-Ho [Department of Chemistry, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Kim, Se-Jae, E-mail: sjkim@jejunu.ac.kr [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  8. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation.

    Yao, Yang; Zhu, Yingying; Gao, Yue; Shi, Zhenxing; Hu, Yibo; Ren, Guixing

    2015-10-01

    This study was performed to investigate the effect of quinoa saponins (QS) on the differentiation of 3T3-L1 preadipocytes. QS inhibited triglyceride (TG) accumulation in the mature adipocytes, evidenced by oil-red O staining and intracellular quantification. Real time-PCR analysis and western blot analysis showed that QS significantly down-regulated the mRNA and protein expression of key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer-binding protein alpha (C/EBPα), however, they had no significant effect on CCAAT/enhancer-binding protein beta (C/EBPβ) and CCAAT/enhancer-binding protein delta (C/EBPδ) which are the upstream regulators for adipogenesis compared with mature adipocytes. QS also reduced mRNA and protein expression of sterol regulatory element-binding protein-1c (SREBP-1c) related to the late stage of adipogenesis. Furthermore, lipoprotein lipase (LPL), adipocyte protein 2 (aP2) and glucose transporter 4 (Glut4), as adipocyte specific genes, were decreased in mature adipocytes by QS treatment. These findings indicate that QS are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation. PMID:26242624

  9. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. PMID:27117918

  10. cis9, trans11-Conjugated Linoleic Acid Differentiates Mouse 3T3-L1 Preadipocytes into Mature Small Adipocytes through Induction of Peroxisome Proliferator-activated Receptor γ.

    Sakuma, Satoru; Nishioka, Yuki; Imanishi, Ryohta; Nishikawa, Kenji; Sakamoto, Hirotada; Fujisawa, Junji; Wada, Koichiro; Kamisaki, Yoshinori; Fujimoto, Yohko

    2010-09-01

    Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-characterized. In the present study, the effects of cis(c)9, trans(t)11-CLA on the differentiation of mouse 3T3-L1 preadipocytes into mature adipocytes were examined. Treatment with c9, t11-CLA in the presence of insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (differentiation cocktail) significantly stimulated the accumulation of triacylglycerol. The microscopic observation of cells stained by Oil Red O demonstrated that c9, t11-CLA increases the amount and proportion of small mature adipocytes secreting adiponectin, a benign adipocytokine, when compared to the differentiation cocktail alone. Furthermore, c9, t11-CLA increased bioactive peroxisome proliferator-activated receptor γ (PPARγ) levels in a nuclear extract of 3T3-L1 cells, suggesting the enhancing effect of this fatty acid on the nuclear transmission of PPARγ, a master regulator of adipocyte differentiation, in 3T3-L1 cells. These results suggest that the therapeutic effects of c9, t11-CLA on lifestyle-related diseases are partially due to the enhanced formation of small adipocytes from preadipocytes via PPARγ stimulation. PMID:20838573

  11. Verapamil inhibits 3T3-L1 preadipocyte differentiation

    Nan Gu; Shi Liu; Xirong Guo; Li Fei; Xiaoqin Pan; Mei Guo; Ronghua Chen

    2009-01-01

    Objective: To investigate the effect of the calcium channel blocker verapamil on adipocyte differentiation and its mechanism of action. Methods: Preadipocytes from 3T3-L1 strain mouse embryos were cultured and differentiated into matured adipocytes in vitro. Verapamil was added to the culture medium in the concentration of 30 μmol/L on Day 0. Cell differentiation was determined by Oil Red O staining and marker gene mRNA expression was evaluated and compared by RT-PCR. The fluo-3/AM probe and laser scanning confocal microscopy were used to measure intracellular calcium concentrations. Results: ①The differentiation rate of 3T3-L1 preadipocytes exposed to verapamil was lower than that of untreated cells. ②Verapamil promoted the retention of pref-1 gene expression. Lipoprotein lipase expression in the verapamil group was significantly lower than that in the control group on Day 4, Day 6 and Day 8 (P 0.05). Conclusion: In 3T3-L1 preadipocytes verapamil significantly reduced adipocyte differentiation, down-regulated the mRNA expression of three marker genes for adipocytes differentiation, and prolonged the mRNA expression of an inhibitor of differentiation. The inhibitory effect of verapamil on differentiation may involve its role as a blocker of calcium influx in adipocytes.

  12. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy;

    2002-01-01

    We have undertaken a systematic proteomic approach to purify and identify secreted factors that are differentially expressed in preadipocytes versus adipocytes. Using one-dimensional gel electrophoresis combined with nanoelectrospray tandem mass spectrometry, proteins that were specifically secre...

  13. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1986-05-01

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/sup 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.

  14. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (αGs), assayed by radiolabeling in the presence of cholera toxin and [32P]NAD+, increased upon differentiation as previously described by others. The amounts of αGi and αGo assayed by radiolabeling in the presence of pertussis toxin and [32P]NAD+ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain αGo and with one raised against theβ-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of αGo and also demonstrate an increase in the amount of the β-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes

  15. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy; Scherer, Philipp E; Podtelejnikov, Alexandre V; Molina, Henrik; Bickel, Perry E; Andersen, Jens S; Fernandez, Minerva M; Bunkenborg, Jacob; Roepstorff, Peter; Kristiansen, Karsten; Lodish, Harvey F; Mann, Matthias; Pandey, Akhilesh

    2002-01-01

    cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several...

  16. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  17. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells.

    Cordonier, Elizabeth L; Jarecke, Sarah K; Hollinger, Frances E; Zempleni, Janos

    2016-06-01

    Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation. PMID:27041646

  18. Buddleja officinalis Maximowicz Extract Inhibits Lipid Accumulation on Adipocyte Differentiation in 3T3-L1 Cells and High-Fat Mice

    Jin-Kyu Kim

    2012-07-01

    Full Text Available Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we elucidated that Buddleja officinalis Maximowicz extract significantly inhibited lipid accumulation during 3T3-L1 adipocyte differentiation. Furthermore, Buddleja officinalis Maximowicz extract reduced the body weight gain induced through feeding a high-fat diet to C57BL/6 mice. The treatment of Buddleja officinalis Maximowicz extract significantly reduced the adipose tissue weight to 2.7/100 g of body weight in high-fat mice. When their adipose tissue morphology was investigated for histochemical staining, the distribution of cell size in the high-fat diet groups was hypertrophied compared with those from Buddleja officinalis Maximowicz extract-treated mice. In addition, in Buddleja officinalis Maximowicz extract-treated mice, a significant reduction of serum triglyceride and T-cholesterol was observed at to 21% and 17%, respectively. The discovery of bioactive compounds from diet or dietary supplementation is one of possible ways to control obesity and to prevent or reduce the risks of various obesity-related diseases. These results support that Buddleja officinalis Maximowicz extract is expected to create the therapeutic interest with respect to the treatment of obesity.

  19. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  20. Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes

    Eduardsen, Kathrine; Larsen, Susanne; Novak, Ivana;

    2011-01-01

    osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required...... had no detectable effect on InsR, yet increased ERK1/2 phosphorylation. In conclusion, differentiated 3T3-L1 adipocytes exhibit greatly accelerated RVD and RVI responses and increased swelling-activated taurine efflux compared to pre-adipocytes. Furthermore, in pre-adipocytes, Cav-1/caveolae integrity...

  1. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes

    Yang, Soo Jin; Park, Na-Young; LIM, YUNSOOK

    2014-01-01

    BACKGROUND/OBJECTIVES Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS The 3T3-...

  2. Topiramate effects lipolysis in 3T3-L1 adipocytes

    MARTINS, GABRIELA POLTRONIERI CAMPAGNARO; de Souza, Camila Oliveira; MARQUES, SCHEROLIN; LUCIANO, THAIS FERNANDES; DA SILVA PIERI, BRUNO LUIZ; Rosa, José César; da Silva, Adelino Sanchez Ramos; PAULI, JOSÉ RODRIGO; Cintra, Dennys Esper; Ropelle, Eduardo Rochete; Rodrigues, Bruno; DE LIRA, FABIO SANTOS; Souza, Claudio Teodoro de

    2015-01-01

    Studies have shown that topiramate (TPM)-induced weight loss can be dependent on the central nervous system (CNS). However, the direct action of TPM on adipose tissue has not been tested previously. Thus, the present study aimed to examine whether TPM modulates lipolysis in 3T3-L1. The 3T3-L1 cells were incubated in 50 µM TPM for 30 min. The β-adrenergic stimulator, isoproterenol, was used as a positive control. The release of lactate dehydrogenase, non-esterified fatty acid, glycerol and inc...

  3. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    Colette N Miller

    Full Text Available Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1, enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM following standard differentiation supplemented with thyroid hormone (T3; 1 nM. The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1 were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.

  4. Effects of induced differentiation by high-glucose on the morphology and function of mitochondria in 3T3-L1 adipocytes%高糖诱导分化对3T3-L1成熟脂肪细胞线粒体形态和功能的影响

    张向君; 王秀芳; 鲍子超; 吴钦良; 王加林; 赵亚萍

    2012-01-01

    目的 观察高糖诱导分化对3T3-L1成熟脂肪细胞葡萄糖转运以及线粒体功能的影响.方法 3T3-L1前体脂肪细胞分别在含25 mmol/L葡萄糖(高糖组)及5 mmol/L葡萄糖(低糖组)的DMEM培养基中诱导分化.采用油红“O”染色法观察细胞的分化程度,采用液闪仪检测成熟脂肪细胞对[3H]-2-脱氧葡萄糖的摄取率,采用透射电镜观察脂肪细胞的线粒体形态,生物发光法检测脂肪细胞内ATP.结果 两组3T3-L1前体脂肪细胞均可分化为成熟脂肪细胞,高糖组成熟脂肪细胞体积及胞质内脂滴均较低糖组大;高糖组成熟脂肪细胞基础状态及胰岛素刺激下的葡萄糖摄取率均低于低糖组脂肪细胞;高糖组成熟脂肪细胞线粒体形态异常,细胞内ATP的含量为(63.00 ±2.48) nM/mg protein,低糖组为(102.00±1.39) nM/mg protein,两组比较,P<0.05.结论 采用含25mmoL/L或5 mmol/L葡萄糖的DMEM培养基培养,对3T3-L1前体脂肪细胞向成熟脂肪细胞的分化进程无明显影响;高糖诱导分化可致成熟脂肪细胞产生胰岛素抵抗和线粒体功能损伤.%Objective To explore the roles of induced differentiation by high-glucose on glucose transport and the function of mitochondria in mature 3T3-L1 adipocytes. Method 3T3-L1 preadipocytes were induced to differentiation in DMEM medium containing 25 mmol/L glucose (high-glucose group) or 5 mmol/L glucose (low-glucose group) , respectively. The differentiation process of 3T3-L1 adipocytes was examined by Oil red "0" straining. 2-Deoxy-[3H] glucose uptake in adipocytes was assayed by liquid-scintillation counting. The morphology of mitochondria in adipocytes was evaluated by transmission electron microscope. Bioluminescence was used to measure the ATP content of the adipocytes. Result 3T3-L1 preadipocytes of the two groups were successfully differentiated into mature adipocytes . The volume of mature adipocytes and the size of lipid droplet in endochylema were larger in

  5. The effects of Ganoderma lucidum herba pharmacopuncture on 3T3-L1 preadipocyte differentiation

    Chea-woo Lee

    2008-09-01

    Full Text Available Objective : The purpose of this study is to investigate the effects of Ganoderma lucidum herba pharmacopuncture (GHP on the adipogenesis in 3T3-L1 preadipocytes. Methods : 3T3- L1 preadipocytes were differentiated with adipogenic reagents by incubating for 2 days in the absence or presence of GHP ranging from 1 and 2%. The effect of GHP on cell proliferation of 3T3-L1 preadipocytes was investigated using MTT assay. The effect of GHP on adipogenesis was examined by Oil red O staining and measuring glycerol-3-phosphate dehydrogenase (GPDH and intracellular triglyceride (TG content. Results : Following results were obtained from the preadipocyte proliferation and adipocyte differentiation of 3T3-L1. We observed no effect of GHP on preadipocyte proliferation. GHP inhibited adipogenesis, the activity of GPDH and accumulation of intracellular TG content. Conclusions : These results suggest that GHP inhibit differentiation of preadipocyte.

  6. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  7. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion

  8. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  9. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  10. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Nabilatul Hani Mohd-Radzman; Wan Iryani Wan Ismail; Siti Safura Jaapar; Zainah Adam; Aishah Adam

    2013-01-01

    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Fi...

  11. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  12. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  13. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (Psize of lipid droplets in 3T3-L1 adipocytes (Padipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (Psize (P>0.05) and remedy the palmitate damage induced cell death (Padipocytes. PMID:27157327

  14. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    Nabilatul Hani Mohd-Radzman

    2013-01-01

    Full Text Available Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p<0.001 in normal conditions and up to 4.4 times (p<0.001 in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  15. Effects of Ghrelin on the Proliferation and Differentiation of 3T3-L1 Preadipocytes

    Jing LIU; Hanhua LIN; Peixuan CHENG; Xiufen HU; Huiling LU

    2009-01-01

    The effects of ghrelin on the proliferation and differentiation of 3T3-L1 preadipocytes and the possible mechanisms were investigated in this study.3T3-L1 preadipocytes were cultured in vitro and treated with different concentrations of ghrelin.Proliferation of 3T3-L1 preadipocytes was evaluated by MTT method and mRNA levels of c-myc and thymidine kinase were detected by RT-PCR.Morphological changes of 3T3-L1 preadipocytes were observed and cell differentiation was measured by oil red O staining.The mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and CAAT/enhancer binding protein (C/EBPα) in the cells at different differentiation stages were detected by RT-PCR.The results showed that ghrelin at concentrations of 10-7 to 10-15 mol/L could significantly promote preadipocyte proliferation (P<0.05),with the most pronounced effect observed at 1011mol/L (P<0.01).Treatment of 3T3-L1 preadipocytes with ghrelin significantly in-creased the mRNA levels of c-myc and thymidine kinase (P<0.01).Morphological findings demonstrated that the great amount of lipid droplets appeared in the 3T3-L1 preadipocytes treated with ghrelin.Ghrelin could morphologically induce the differentiation of 3T3-L1 preadipocytes into mature adipocytes.Ghrelin significantly increased the mRNA levels of PPART and C/EBPα during the differentiation,when compared with control group (P<0.05).The mRNA levels of PPARγ and C/EBPα were obviously up-regulated with the differentiation of preadipocytes after the treatment of ghrelin.There were significant difference in the mRNA levels of PPARγ and C/EBPα on day 2 and day 8 of the differentiation of 3T3-L1 preadipocytes (P<0.01).In conclusion,ghrelin could promote the proliferation and differentiation of 3T3-L1 preadipocytes by increasing the mRNA levels of PPARγ and C/EBPα and therefore enhance the sensitivity of adipocytes against insulin.

  16. 3,4-Oxo-isopropylidene-shikimic acid promotes adiopkine expression during murine 3T3-L1 fibroblast differentiation into adipocytes

    Shifen Dong

    2014-10-01

    Conclusions: These findings demonstrated that ISA promoted adipogenesis by up-regulating expressions of C/EBP β, PPAR γ, C/EBP α, aP2 and FAS, and also stimulated adipokines during adipocyte differentiation. Further study should clarify the relationship between stimulation of adipokines and cognitive enhancing effect of ISA.

  17. Regulation of lipoprotein lipase synthesis in 3T3-L1 adipocytes by interleukin-1

    When fully differentiated 3T3-L1 fatty fibroblasts were exposed to purified, recombinant murine interleukin-1, a dose dependent suppression of lipoprotein lipase activity was observed. The loss of activity reached a maximum of 60-70% of control and appeared to be due to a specific effect on the synthesis of the enzyme as judged by a suppression of the ability to incorporate [35S]methionine into immunoprecipitable lipoprotein lipase. There was no general effect on protein synthesis as determined by radiolabel incorporated into acid precipitable protein, however, after a 17 h exposure of the 3T3-L1 cells to interleukin-1, the synthesis of two proteins (molecular weights, 19,400 and 165,000 daltons) was enhanced several fold. The observed effects on protein synthesis in the adipocytes occur at a concentration of interleukin-1 which is similar to the concentration necessary for the stimulation of [3H]thymidine incorporation into mouse thymocyte DNA. The present study represents the first unequivocal report of the ability of interleukin-1 to regulate protein synthesis in intact cells, specifically adipocytes. Moreover, their results demonstrate the ability of interleukin-1 to regulate metabolism by controlling the synthesis of specific proteins

  18. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes

    Sandeep Dave; Naval Jit Kaur; Ravikanth Nanduri; H Kitdorlang Dkhar; Ashwani Kumar; Pawan Gupta

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid s...

  19. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes.

    Weiland, M; Brandenburg, C; Brandenburg, D.; Joost, H. G.

    1990-01-01

    In the present study we describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29'-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of 125I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of i...

  20. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Sinclair Andrew J

    2010-06-01

    Full Text Available Abstract Background Lipid droplet (LD formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3 in comparison to SFA (STA; stearic acid, C18:0 and MUFA (OLA; oleic acid, C18:1n-9 on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation. Results EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions. Conclusions This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

  1. Latent insulin receptors and possible receptor precursors in 3T3-L1 adipocytes.

    Deutsch, P J; Wan, C F; Rosen, O M; Rubin, C S

    1983-01-01

    Cell surface and cryptic insulin receptors were solubilized from the particulate fraction of murine 3T3-L1 adipocytes with buffer containing 1% Triton X-100. Solubilized receptors were affinity crosslinked with 125I-labeled insulin and disuccinimidyl suberate and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and autoradiography after specific immunoprecipitation. Two insulin-binding polypeptides were identified: the more abundant protein had a Mr of 130,000, corre...

  2. Rosiglitazone Balances Insulin-Induced Exo- And Endocytosis In Single 3t3-L1 Adipocytes

    Velebit, Jelena; Chowdhury, Helena H.; Kreft, Marko; Zorec, Robert

    2011-01-01

    Abstract Rosiglitazone (Rosi) improves insulin sensitivity and increases the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This involves the fusion of membrane-bound compartments with the plasma membrane, thus increasing the plasma membrane area. However, recent work has shown that in Rosi-pretreated 3T3-L1 adipocytes membrane area did not increase following insulin application, suggesting that the rates of exo- and endocytosis are balanced. Here we ex...

  3. Proinflammatory cytokine production and insulin sensitivity regulated by overexpression of resistin in 3T3-L1 adipocytes

    Garvey W Timothy

    2006-07-01

    Full Text Available Abstract Resistin is secreted from adipocytes, and high circulating levels have been associated with obesity and insulin resistance. To investigate whether resistin could exert autocrine effects in adipocytes, we expressed resistin gene in 3T3-L1 fibroblasts using a lentiviral vector, and selected several stably-transduced cell lines under blasticidin selection. We observed that 3T3-L1 adipocytes expressing resistin have a decreased gene expression for related transcriptional factors (CCAAT/enhancer binding protein α(C/EBPα , peroxisome proliferator-activated receptor gamma (PPARγ, and adipocyte lipid binding protein (ALBP/aP2 which is one of target genes for the PPARγ during adipocyte differentiation,. Overexpression of resistin increased the levels of three proinflammatory cytokines, tumor necrosis factor alpha (TNFα, interleukin 6 (IL-6 and monocyte chemoattractant protein-1 (MCP-1, which play important roles for insulin resistance, glucose and lipid metabolisms during adipogenesis. Furthermore, overexpressing resistin in adipocytes inhibits glucose transport 4 (GLUT4 activity and its gene expression, reducing insulin's ability for glucose uptake by 30 %. In conclusion, resistin overexpression in stably transduced 3T3-L1 cells resulted in: 1 Attenuation of programmed gene expression responsible for adipogenesis; 2 Increase in expression of proinflammatory cytokines; 3 Decrease in insulin responsiveness of the glucose transport system. These data suggest a new role for resistin as an autocrine/paracrine factor affecting inflammation and insulin sensitivity in adipose tissue.

  4. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5

  5. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Park, Yu-Kyoung [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Tae-Yoon [Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-gu, Daegu 705-717 (Korea, Republic of); Choi, Jong-Soon [Division of Life Science, Korea Basic Science Institute, 169-148 Gwahakro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Hong, Victor Sukbong [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Jinho, E-mail: jinho@gw.kmu.ac.kr [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Park, Jong-Wook, E-mail: j303nih@dsmc.or.kr [Department of Immunology, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  6. Functional Analysis of Long-chain Acyl-CoA Synthetase 1 in 3T3-L1 Adipocytes*

    Lobo, Sandra; Wiczer, Brian M.; Bernlohr, David A

    2009-01-01

    ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptak...

  7. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes.

    MacDougald, O A; Hwang, C. S.; Fan, H; Lane, M D

    1995-01-01

    A mutation within the obese gene was recently identified as the genetic basis for obesity in the ob/ob mouse. The obese gene product, leptin, is a 16-kDa protein expressed predominantly in adipose tissue. Consistent with leptin's postulated role as an extracellular signaling protein, human embryonic kidney 293 cells transfected with the obese gene secreted leptin with minimal intracellular accumulation. Upon differentiation of 3T3-L1 preadipocytes into adipocytes, the leptin mRNA was expresse...

  8. Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes

    Jae-Yeo Park; Younghwa Kim; Jee Ae Im; Seungkwon You; Hyangkyu Lee

    2014-01-01

    Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome ...

  9. A surface-tethered spheroid model for functional evaluation of 3T3-L1 adipocytes.

    Turner, Paul A; Harris, Lacey M; Purser, Christine A; Baker, Rodney C; Janorkar, Amol V

    2014-01-01

    In order to effectively treat obesity, it must be better understood at the cellular level with respect to metabolic state and environmental stress. However, current two-dimensional (2D) in vitro cell culture methods do not represent the in vivo adipose tissue appropriately due to the absence of complex architecture and cellular signaling. Conversely, 3D in vitro cultures have been reported to have optimal results mimicking the adipose tissue in vivo. The main aim of this study was to examine the efficacy of a novel conjugate of a genetically engineered polymer, elastin-like polypeptide (ELP) and a synthetic polymer, polyethyleneimine (PEI), toward creating a 3D preadipocyte culture system. We then used this 3D culture model to study the preadipocyte differentiation and adipocyte maintenance processes when subjected to various dosages of nutritionally relevant free fatty acids with respect to total DNA and protein content, cell viability, and intracellular triglyceride accumulation. Our results showed that 3T3-L1 preadipocytes cultured on the ELP-PEI surface formed 3D spheroids within 72 h, whereas the cells cultured on unmodified tissue culture polystyrene surfaces remained in monolayer configuration. Significant statistical differences were discovered between the 3D spheroid and 2D monolayer culture with respect to the DNA and protein content, fatty acid consumption, and triglyceride accumulation, indicating differences in cellular response. Results indicated that the 3D culture may be a more sensitive modeling technique for in vitro adipocyte culture and provides a platform for future evaluation of 3D in vitro adipocyte function. PMID:24038000

  10. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors

  11. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  12. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes.

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan; Wang, Zai; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2016-08-01

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. PMID:27264953

  13. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O2 for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  14. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Yokokawa, Takumi; Endo, Yuriko [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Iwanaka, Nobumasa [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Higashida, Kazuhiko [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Faculty of Sport Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 (Japan); Taguchi, Sadayoshi [Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan)

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via

  15. Capsaicin induces "brite" phenotype in differentiating 3T3-L1 preadipocytes.

    Ritesh K Baboota

    Full Text Available Targeting the energy storing white adipose tissue (WAT by pharmacological and dietary means in order to promote its conversion to energy expending "brite" cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of "brite" phenotype during differentiation of 3T3-L1 preadipocytes.Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD fed rats treated with resiniferatoxin (RTX (a TRPV1 agonist and in mice administered capsaicin.TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1-100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration leads to increase in locomotor activity with no change in body weight.Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas

  16. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  17. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  18. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    Fabiana Ariemma

    Full Text Available Environmental endocrine disruptors (EDCs, including bisphenol-A (BPA, have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01. In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ, Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2 and CCAAT/enhancer binding protein (C/EBPα was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05 and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001. Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6 and interferon-γ (IFNγ were significantly increased (p<0.05. In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.

  19. Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes.

    Brown, N F; Hill, J K; Esser, V; Kirkland, J L; Corkey, B E; Foster, D W; McGarry, J D

    1997-01-01

    The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPT I) represents the initial and regulated step in the beta-oxidation of fatty acids. It exists in at least two isoforms, denoted L (liver) and M (muscle) types, with very different kinetic properties and sensitivities to malonyl-CoA. Here we have examined the relative expression of the CPT I isoforms in two different models of adipocyte differentiation and in a number of rat tissues. Adipocytes from mice, hamsters and humans were also evaluated. Primary monolayer cultures of undifferentiated rat preadipocytes expressed solely L-CPT I, but significant levels of M-CPT I emerged after only 3 days of differentiation in vitro; in the mature cell M-CPT I predominated. In sharp contrast, the murine 3T3-L1 preadipocyte expressed essentially exclusively L-CPT I, both in the undifferentiated state and throughout the differentiation process in vitro. This was also true of the mature mouse white fat cell. Fully developed adipocytes from the hamster and human behaved similarly to those of the rat. Thus the mouse white fat cell differs fundamentally from those of the other species examined in terms of tis choice of a key regulatory enzyme in fatty acid metabolism. In contrast, brown adipose tissue from all three rodents displayed the same isoform profiles, each expressing overwhelmingly M-CPT I. Northern blot analysis of other rat tissues established L-CPT I as the dominant isoform not only in liver but also in kidney, lung, ovary, spleen, brain, intestine and pancreatic islets. In addition to its primacy in skeletal muscle, heart and fat, M-CPT I was also found to dominate the testis. The same inter-tissue isoform pattern (with the exception of white fat) was found in the mouse. Taken together, the data bring to light an intriguing divergence between white adipocytes of the mouse and other mammalian species. They also raise a cautionary note that should be considered in the choice of animal model used

  20. Lactobacillus plantarum LG42 Isolated from Gajami Sik-Hae Inhibits Adipogenesis in 3T3-L1 Adipocyte

    Jeong-Eun Park

    2013-01-01

    Full Text Available We investigated whether lactic acid bacteria isolated from gajami sik-hae (GLAB are capable of reducing the intracellular lipid accumulation by downregulating the expression of adipogenesis-related genes in differentiated 3T3-L1 cells. The GLAB, Lactobacillus plantarum LG42, significantly decreased the intracellular triglyceride storage and the glycerol-3-phosphate dehydrogenase (GPDH activity in a dose-dependent manner. mRNA expression of transcription factors like peroxisome proliferator-activated receptor (PPAR γ and CCAAT/enhancer-binding protein (C/EBP α involved in adipogenesis was markedly decreased by the GLAB treatment. Moreover, the GLAB also decreased the expression level of adipogenic markers like adipocyte fatty acid binding protein (aP2, leptin, GPDH, and fatty acid translocase (CD36 significantly. These results suggest that the GLAB inhibits lipid accumulation in the differentiated adipocyte through downregulating the expression of adipogenic transcription factors and other specific genes involved in lipid metabolism.

  1. Shikonin inhibits fat accumulation in 3T3-L1 adipocytes.

    Lee, Haeyong; Kang, Ryunhwa; Yoon, Yoosik

    2010-03-01

    Shikonin, 5,6-dihydroxyflavone-7-glucuronic acid, is the main ingredient of Lithospermum erythrorhizon Sieb. et Zucc, and was reported to have various biological activities including antiinflammatory, anticancer, antimicrobial and others. This study aimed to elucidate, for the first time, the antiobesity activity of shikonin and its mechanism of action. Shikonin was found to inhibit fat droplet formation and triglyceride accumulation in 3T3-L1 adipocytes. The half inhibitory concentration, IC(50), for the inhibition of triglyceride accumulation was found to be 1.1 microM. The expression of genes involved in lipid metabolism, such as FABP4 and LPL, were significantly inhibited following shikonin treatment. Shikonin also inhibited the ability of PPAR gamma and C/EBP alpha, the major transcription factors of adipogenesis, to bind to their target DNA sequences. The expressions of mRNA and protein of PPAR gamma and C/EBPa were significantly down-regulated following shikonin treatment. Among the upstream regulators of adipogenesis, only SREBP1C was found to be down-regulated by shikonin. The results of this study suggest that shikonin down-regulates the expression of SREBP1C and subsequently the expression of PPAR gamma and C/EBP alpha. Together, these changes result in the down-regulation of lipid metabolizing enzymes and reduced fat accumulation. PMID:19610030

  2. Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes.

    Prieto-Hontoria, Pedro L; Pérez-Matute, Patricia; Fernández-Galilea, Marta; López-Yoldi, Miguel; Sinal, Christopher J; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-01

    Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA. PMID:26721419

  3. Ox-LDL induces ER stress and promotes the adipokines secretion in 3T3-L1 adipocytes.

    Yaqin Chen

    Full Text Available Adipocytes behave as a rich source of adipokines, which may be the link between obesity and its complications. Endoplasmic reticulum (ER stress in adipocytes can modulate adipokines secretion. The aim of this study is to evaluate the effect of oxidized low density lipoprotein (ox-LDL treatment on ER stress and adipokines secretion in differentiated adipocytes. 3T3-L1 pre-adipocytes were cultured and differentiated into mature adipocytes in vitro. Differentiated adipocytes were incubated with various concentrations of ox-LDL (0-100 µg/ml for 48 hours; 50 µg/ml ox-LDL for various times (0-48 hours with or without tauroursodeoxycholic acid (TUDCA (0-400 µM pre-treatment. The protein expressions of ER stress markers, glucose regulated protein 78(GRP78 and CCAAT/enhancer binding protein [C/EBP] homologous protein (CHOP in adipocytes were detected by Western blot. The mRNA expressions of visfatin and resistin were measured by real-time PCR and the protein release of visfatin and resistin in supernatant were determined by ELISA. Treatment with ox-LDL could increase the cholesterol concentration in adipocytes. Ox-LDL induced the expressions of GRP78 and CHOP protein in adipocytes and promoted visfatin and resistin secretion in culture medium in dose and time-dependent manner. TUDCA could attenuate the effect of ox-LDL on GRP78 and CHOP expressions and reduce visfatin and resistin at mRNA and protein level in dose-dependent manner. In conclusion, ox-LDL promoted the expression and secretion of visfatin and resistin through its activation of ER stress, which may be related to the increase of cholesterol load in adipocytes.

  4. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    Sandeep Dave

    Full Text Available The phytotherapeutic protein stem bromelain (SBM is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2, fatty acid synthase (FAS, lipoprotein lipase (LPL, CD36, and acetyl-CoA carboxylase (ACC were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B, and GTP binding protein G(iα(1, as well as sustained expression of hormone sensitive lipase (HSL. These data indicate that SBM, together with all-trans retinoic-acid (atRA, may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  5. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  6. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT element binding protein α (C/EBPα), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  7. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan)

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  8. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ

    2008-01-01

    AIM:To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-LI adipocytes.METHODS:The model of insulin resistance in 3T3-L1 adipocytes was established by adding palmic acid (0.5 mmol/L) to the culture medium.Berberine treatment was performed at the same time.Glucose uptake rate was determined by the 2-deoxy-[3H]-Dglucose method.The levels of IkB kinase beta (IKKβ)Ser181 phosphorylation,insulin receptor substrate1(IRS-1) Ser307 phosphorylation,expression of IKKβ,IRS-1,nuclear transcription factor kappaB p65 (NF-κB p65),phosphatidylinositol-3-kinase p85(PI-3K p85) and glucose transporter 4 (GLUT4) proteins were detected by Western blotting.The distribution of NF-κB p65 proteins inside the adipocytes was observed through confocal laser scanning microscopy(CLSM).RESULTS:After the intervention of palmic acid for 24 h,the insulin-stimulated glucose transport in 3T3-L1 adipocytes was inhibited by 67%.Meanwhile,the expression of IRS-1 and PI-3K p85 protein was reduced,while the levels of IKKβ Ser181 and IRS-1 Ser307 phosphorylation,and nuclear translocation of NF-κB p65 protein were increased.However,the above indexes,which indicated the existence of insulin resistance,were reversed by berberine although the expression of GLUT4,IKKβ and total NF-κB p65 protein were not changed during this study.CONCLUSION:Insulin resistance induced by FFAs in 3T3-L1 adipocytes can be improved by berberine.Berberine reversed free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ.

  9. A resistin binding peptide selected by phage display inhibits 3T3-L1 preadipocyte differentiation

    2006-01-01

    Background Resistin, a newly discovered cysteine-rich hormone secreted mainly by adipose tissues, has been proposed to form a biochemical link between obesity and type 2 diabetes. However, the resistin receptor has not yet been identified. This study aimed to identify resistin binding proteins/receptor.Methods Three cDNA fragments with the same 11 bp 5' sequence were found by screening a cDNA phage display library of rat multiple tissues. As the reading frames of the same 11 bp 5' sequence were interrupted by a TGA stop codon, plaque lift assay was consequently used to prove the readthrough phenomenon. The stop codon in the same 11 bp 5' sequence was replaced by tryptophan, and the binding activity of the coded peptide [AWIL, which was designated as resistin binding peptide (RBP)] with resistin was identified by the confocal microscopy technique and the affinity chromatography experiment. pDual GC-resistin and pDual GC-resistin binding peptide were co-transfected into 3T3-L1 cells to confirm the function of resistin binding peptide.Results Three cDNA fragments with the same 11 bp 5' sequence were found. The TGA stop codon in reading frames of the same 11 bp 5' sequence was proved to be readthroughed. The binding activity of RBP with resistin was consequently identified. The expression of the resistin binding peptide in 3T3-L1 preadipocytes expressing pDual GC-resistin significantly inhibited the adipogenic differentiation.Conclusion RBP could effectively rescue the promoted differentiation of resistin overxepressed 3T3-L1 preadipocyte.

  10. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    Rumberger, John M.; Jonathan R.S. Arch; Allan Green

    2014-01-01

    We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin...

  11. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  12. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  13. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Highlights: ► CRP increases TNF-α and IL-6 genes expression in matured 3T3-L1 adipocytes. ► CRP suppresses adiponectin, leptin and PPAR-γ mRNA levels in matured 3T3-L1 cells. ► Wortmannin reverses effects of CRP on adiponectin, TNF-α and leptin mRNA levels. ► CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-γ) genes expression and raised tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-α and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-α, leptin, IL-6 and PPAR-γ genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  14. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    Chia-Chien Hsieh

    Full Text Available Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development.

  15. Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes

    Jae-Yeo Park

    2014-01-01

    Full Text Available Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ, CCAAT/enhancer binding proteins α (C/EBPα, and δ (C/EBPδ in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K, a downstream target of mTOR and forkhead box protein O1 (Foxo1. These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis.

  16. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  17. The role of Akt on Arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation

    Zhi Xin WANG; Chun Sun JIANG; Lei LIU; Xiao Hui WANG; Hai Jing JIN; Qiao WU; Quan CHEN

    2005-01-01

    The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARγ and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.

  18. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    Sabater Martínez, David; Arriarán, Sofía; Romero Romero, María del Mar; Agnelli, Silvia; Fernández López, José Antonio; Remesar Betlloch, Xavier; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, ...

  19. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

  20. Phenyllactic Acid from Lactobacillus plantarum PromotesAdipogenic Activity in 3T3-L1 Adipocyte via Up-Regulationof PPAR-γ2

    Soundharrajan Ilavenil

    2015-08-01

    Full Text Available Synthetic drugs are commonly used to cure various human ailments at present. However, the uses of synthetic drugs are strictly regulated because of their adverse effects. Thus, naturally occurring molecules may be more suitable for curing disease without unfavorable effects. Therefore, we investigated phenyllactic acid (PLA from Lactobacillus plantarum with respect to its effects on adipogenic genes and their protein expression in 3T3-L1 pre-adipocytes by qPCR and western blot techniques. PLA enhanced differentiation and lipid accumulation in 3T3-L1 cells at the concentrations of 25, 50, and 100 μM. Maximum differentiation and lipid accumulation were observed at a concentration of 100 μM of PLA, as compared with control adipocytes (p < 0.05. The mRNA and protein expression of PPAR-γ2, C/EBP‑α, adiponectin, fatty acid synthase (FAS, and SREBP-1 were increased by PLA treatment as compared with control adipocytes (p < 0.05. PLA stimulates PPAR-γ mRNA expression in a concentration dependent manner, but this expression was lesser than agonist (2.83 ± 0.014 fold of PPAR-γ2. Moreover, PLA supplementation enhances glucose uptake in 3T3-L1 pre-adipocytes (11.81 ± 0.17 mM compared to control adipocytes, but this glucose uptake was lesser than that induced by troglitazone (13.75 ± 0.95 mM and insulin treatment (15.49 ± 0.20 mM. Hence, we conclude that PLA treatment enhances adipocyte differentiation and glucose uptake via activation of PPAR-γ2, and PLA may thus be the potential candidate for preventing Type 2 Diabetes Mellitus (T2DM.

  1. Fetuin-a对3T3-L1脂肪细胞增殖和脂解的影响%Effect of Fetuin-a on Proliferation and Lipolysis of 3T3-L1 Adipocytes

    冯娜娜; 王晓青; 陶婷

    2012-01-01

    目的 观察胎球蛋白-a(fetuin-a)对体外培养的3T3-L1脂肪细胞增殖和脂解的影响.方法 体外培养小鼠3T3-L1前脂肪细胞,以MTT法检测3T3-L1前脂肪细胞的增殖状况;采用甘油检测试剂盒测定释放到上清液的甘油含量作为脂解率的指标;采用Western blotting检测细胞内磷酸化激素敏感脂肪酶(hormone sensitive lipase,HSL)和脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)的蛋白表达.结果 不同浓度的fetuin-a在干预3T3-L1前脂肪细胞后明显促进细胞增殖,且呈剂量依赖性(P<0.05).Fetuin-a能够抑制成熟脂肪细胞的脂肪分解,降低磷酸化的HSL及ATGL蛋白表达,且呈剂量依赖性(P<0.05).结论 Fetuin-a通过促进3T3-L1前脂肪细胞增殖及抑制成熟脂肪细胞的脂解参与肥胖的发生.%Objective To observe the effect of fetuin - a on proliferation and lipolysis of 3T3 - LI adipocytes. Methods 3T3 - LI preadipocytes were cultured and induced in vitro. The proliferation of 3T3 -LI preadipocytes was detected by MTT method. Lipolysis of adipocytes was examined by the measurement of glycerol release. The expressions of protein of phospho - HSL,ATGL were analyzed using western blot. Results The proliferation of 3T3 - LI preadipocytes was stimulated significantly by fetuin -a ( P < 0. 05 ). Fetuin - a inhibited lipolysis in adipocytes in a dose - dependent manner( P < 0. 05 ). Fetuin - a decreased the expressions of phospho - HSL and AT-GL protein (P < 0. 05). Conclusion Our study provides the evidence that fetuin - a might participate in obesity via its influence on the proliferation and lipolysis of adipocytes.

  2. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Sinclair Andrew J; Manickam Elizabeth; Cameron-Smith David

    2010-01-01

    Abstract Background Lipid droplet (LD) formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA) unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3) in comparison to SFA (STA; stearic acid, C18:0) and MUFA (OLA; oleic acid, C18:1n-9) ...

  3. Identification of the Target Proteins of Rosiglitazone in 3T3-L1 Adipocytes through Proteomic Analysis of Cytosolic and Secreted Proteins

    Hwang, Hyun-Ho; Moon, Pyong-Gon; Lee, Jeong-Eun; Kim, Jung-Guk; LEE, WAN; Ryu, Sung-Ho; Baek, Moon-Chang

    2011-01-01

    Rosiglitazone, one of the thiazolidinedione (TZD), is an oral antidiabetic drug that activates a gamma isoform of peroxisome proliferator-activated receptor (PPARγ). To identify target proteins induced by rosiglitazone in adipocytes, we first performed simultaneous in-depth proteomic profiling of cytosolic proteins and secreted proteins (secretome) from 3T3-L1 adipocytes using a label-free quantification method with nano-UPLC MS/MS. In total, we identified 646 proteins from 3T3-L1 adipocytes,...

  4. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent

  5. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Kim, Mi-Bo [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Song, Youngwoo; Kim, Changhee [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  6. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  7. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  8. The interaction of /sup 125/I-insulin with cultured 3T3-L1 adipocytes: quantitative analysis by the hypothetical grain method

    Fan, J.Y.; Carpentier, J.L.; Van Obberghen, E.; Blackett, N.M.; Grunfeld, C.; Gorden, P.; Orci, L.

    1983-07-01

    The murine 3T3-L1 fibroblast under appropriate incubation conditions differentiates into an adipocyte phenotype. This 3T3-L1 adipocyte exhibits many of the morphologic, biochemical, and insulin-responsive features of the normal rodent adipocyte. Using quantitative electron microscopic (EM) autoradiography we find that, when /sup 125/I-insulin is incubated with 3T3-L1 adipocytes, the ligand at early times of incubation localizes to the plasma membrane of the cell preferentially to microvilli and coated pits. When the incubation is continued at 37 degrees C, /sup 125/I-insulin is internalized by the cells and preferential binding to the villous surface is lost. With the internalization of the ligand, two intracellular structures become labeled, as determined by the method of hypothetical grain analysis. These include large clear, presumably endocytotic, vesicles and multivesicular bodies. Over the first hour of incubation the labeling of these structures increases in parallel, but in the second hour they diverge: the labeling of multivesicular bodies and other lysosomal forms continuing to increase and the labeling of large clear vesicles decreasing. At 3 hours limited but significant labeling occurs in small Golgi-related vesicles that have the typical distribution of GERL. The distinct morphologic features of this cell make it ideal for a quantitative morphologic analysis and allow for an unambiguous view of the sequence of events involved in receptor-mediated endocytosis of a polypeptide hormone. These events are likely to be representative of the processing of insulin by the mature rodent adipocyte.

  9. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt

    Chun-mei ZHANG; Xiao-hui CHEN; Bin WANG; Feng LIU; Xia CHI; Mei-ling TONG; Yu-hui NI; Rong-hua CHEN; Xi-rong GUO

    2009-01-01

    Aim: NYGGF4 is a novel gene that is abundantly expressed in the adipose tissue of obese patients. The purpose of this study was to investigate the effects of NYGGF4 on basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes and to understand the underlying mechanisms. Methods: 3T3-L1 preadipocytes transfected with either an empty expression vector (pcDNA3.1Myc/His B) or an NYGGF4 expression vector were differentiated into mature adipocytes. Glucose uptake was determined by measuring 2-deoxy-D-[3H]glucose uptake into the adipocytes. Immunoblotting was performed to detect the translocation of insulin-sensitive glu-cose transporter 4 (GLUT4). Immunoblotting also was used to measure the phosphorylation and total protein contents of insulin signaling proteins such as the insulin receptor (IR), insulin receptor substrate (IRS)-I, Akt, ERK1/2, p38, and JNK. Results: NYGGF4 over-expression in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phos-phorylation of Akt without affecting the phosphorylation of IR, ERK1/2, p38, and JNK. Conclusion: NYGGF4 regulates the functions of IRS-1 and Akt, decreases GLUT4 translocation and reduces glucose uptake in response to insulin. These observations highlight the potential role of NYGGF4 in glucose homeostasis and possibly in the pathogenesis of obesity.

  10. Iodixanol Gradient Centrifugation to Separate Components of the Low-Density Membrane Fraction from 3T3-L1 Adipocytes.

    Sadler, Jessica B A; Lamb, Christopher A; Gould, Gwyn W; Bryant, Nia J

    2016-02-01

    We optimized a set of fractionation techniques to facilitate the isolation of subcellular compartments containing insulin-sensitive glucose transporter isoform 4 (GLUT4), which is mobilized from GLUT4 storage vesicles (GSVs) in fat and muscle cells in response to insulin. In the absence of insulin, GLUT4 undergoes a continuous cycle of GSV formation and fusion with other compartments. Full membrane fractionation of 3T3-L1 adipocytes produces a low-density membrane fraction that contains both the constitutive recycling pool (the endosomal recycling compartments) and the insulin-sensitive pool (the GSVs). These two pools can be separated based on density using iodixanol gradient centrifugation, described here. PMID:26832683

  11. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry;

    2003-01-01

    In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1....... Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation....... In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces...

  12. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ.

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Min, Byung-Sun; Kim, Gun-Do; Jung, Hyun Ah

    2014-10-01

    Obesity is a complex, multifactorial, and chronic disease that increases the risk for type 2 diabetes, coronary heart disease and hypertension, and has become a major worldwide health problem. Developing novel anti-obesity drugs from natural products is a promising solution to the global health problem of obesity. While screening anti-obesity potentials of natural products, the methanol extract of the rhizome of Coptis chinensis (Coptidis Rhizoma) was found to significantly inhibit adipocyte differentiation and lipid contents in 3T3-L1 cells, as assessed by Oil-Red O staining. Five known alkaloids, berberine, epiberberine, coptisine, palmatine, and magnoflorine, were isolated from the n-BuOH fraction of the methanol extract of Coptidis Rhizoma. We determined the chemical structure of these alkaloids through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these alkaloids for their ability to inhibit adipogenesis over a range of concentrations (12.5-50 μM). All five Coptidis Rhizoma alkaloids significantly inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability in a concentration dependent manner. In addition, the five alkaloids significantly reduced the expression levels of several adipocyte marker genes including proliferator activated receptor-γ (PPAR-γ) and CCAAT/enhancer-binding protein-α (C/EBP-α). In the present study, we found that the isolated alkaloids inhibited adipogenesis in a dose-dependent manner in 3T3-L1 cells; this inhibition was attributed to their abilities to downregulate the protein levels of the adipocyte marker proteins PPAR-γ and C/EBP-α. Thus, these results suggest that Coptidis Rhizoma extract and its isolated alkaloids may be of therapeutic interest with respect to the treatment of obesity. PMID:25128422

  13. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Milton, Flora Aparecida [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Cvoro, Aleksandra [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Amato, Angelica A. [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Caro Alves de Lima, Maria do; Rocha Pitta, Ivan [Laboratório de Planejamento e Síntese de Fármacos – LPSF, Universidade Federal de Pernambuco (Brazil); Assis Rocha Neves, Francisco de [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Webb, Paul, E-mail: pwebb@HoustonMethodist.org [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States)

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  14. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation

  15. Effect of Simavastatin on IL-6 and Adiponectin Secretion and mRNA Expression in 3T3-L1 Adipocytes

    YIN Xiaoming; TU Ling; YANG Huiqing

    2007-01-01

    In order to investigate the effects of simvastatin on secretion and mRNA expression of interleukin-6 (IL-6) and adiponectin in 3T3-L1 adipocytes, mouse 3T3-L1 adipocytes were stimulated with lipopolysaccharide (LPS). Production and mRNA expression of IL-6 and adiponectin in 3T3-L1 adipocytes were measured using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. The results showed that simvastatin could significantly suppress LPS-induced IL-6 production and mRNA expression in adipocytes (P<0.05), but increase the LPS-induced adiponectin secretion and mRNA expression in a dose-dependent manner (P<0.05). It was suggested that simvastatin could exert beneficial effects on prevention of obesity-induced metabolic changes in adipocytes.

  16. Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes

    Fuqiang Li; Dongmei Wang; Yiran Zhou; Bo Zhou; Yanan Yang; Hehua Chen; Jianguo Song

    2008-01-01

    cAMP and protein kinase A (PKA) are widely known as signaling molecules that are important for the induction of adipogenesis. Here we show that a strong increase in the amount of cAMP inhibits the adipogenesis of 3T3-L1 fibroblast cells. Stimulation of PKA activity suppresses adipogenesis and, in contrast, inhibition of PKA activity markedly accelerates the adipogenic process. As adipogenesis progresses, there is a significant increase in the expression level of PKA regulatory subunits and a corresponding decrease in PKA activity. Moreover, treatment of 3T3-L1 cells with epidermal growth factor (EGF) stimulates PKA activity and blocks adipogenesis. Inhibition of PKA activity abolishes this suppressive effect of EGF on adipogenesis. Moreover, activation of PKA induces serine/threonine phosphorylation, reduces tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) and the association between PKA and IRS-1. Taken together, our study demonstrates that PKA has a pivotal role in the suppression of adipogenesis. cAMP at high concentrations can suppress adipogenesis through PKA activation. These findings could be important and useful for understanding the mechanisms of adipogenesis and the relevant physiological events.

  17. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Nagasaki, Haruka; Yoshimura, Takeshi [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan); Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  18. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Highlights: ► Inflammation status in adipocytes can be monitored by the new assay system. ► Only an aliquot of conditioned medium is required without cell lysis. ► Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-κB) response element. The 3T3-L1 cells named 3T3-L1-NF-κB-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β induced GLuc secretion of 3T3-L1-NF-κB-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-κB-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-κB activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-κB-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  19. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  20. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by α-naphthoflavone (α-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  1. Effect of dexamethasone on peroxisome proliferator activated receptor-gamma mRNA expression in 3T3-L1 adipocytes with the human recombinant adiponectin

    SHE Qi-mei; ZHAO Jing; WANG Xia-lian; ZHOU Chang-man; SHI Xian-zhong

    2007-01-01

    Background The fat derived protein adiponectin plays an important role in the regulation of glucose metabolism. The aim of this study was to provide the experimental basis for further investigating on adiponectin (ADPN) function. Its eukaryotic recombinant was constructed and expressed in precursor cells of 3T3-L1 adipocytes. The effects of dexamethasone on peroxisome proliferator activated receptor-gamma (PPAR-γ) mRNA expression in 3T3-L1 cells with human recombinant adiponectin were assessed. Methods The recombinant plasmid pMD18-T-hADPN and eukaryotic expression vector pcDNA3.1 + were digested by two restrictive endonucleases and adiponectin and linear pcDNA3.1+ were obtained. Then, they were ligated and translated into JM109. The recombinant pcDNA3.1+-hADPN so obtained was identified by digestion by restrictive endonuclease and nucleotide sequencing. The 3T3-L1 precursor cells were transfected using SuperFect Transfection Reagent (Qiagen). Furthermore, 3T3-L1 cells with human recombinant adiponectin incubated with dexamethasone (0.5 mmol/L) for 24 hours, cells were collected and total RNA was extracted. The PPAR-γ mRNA expression was quantified by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Results After eukaryotic recombinant was digested by Hind Ⅲ and EcoR Ⅰ, fragments of 800 bp and 5.4 kb were identified by nucleotide sequence scanning and consistent with theoretical values. Electrophoretogram of RT-PCR in 3T3-L1 precursors showed only one band in front of 250 bp, which was consistent with theoretical value 234 bp. In the 3T3-L1 cells, 3T3-L1 cells with plasmid and 3T3-L1 cells human recombinant adiponectin, treatment with dexamethasone (0.5 mmol/L) decreased PPAR-γ mRNA expression compared to untreated controls (P<0.01). Effect of dexamethasone on PPAR-γ mRNA expression in 3T3-L1 cells was reversed by stably transfected human recombinant adiponectin.Conclusion The 3T3-L1 cells stably transfected human recombinant

  2. Characterization of GLUT4-containing vesicles in 3T3-L1 adipocytes by total internal reflection fluorescence microscopy

    2009-01-01

    Insulin-responsive GLUT4(glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle.Whether or not there is a specialized secretory GSV(GLUT4 storage vesicle) pool,and more importantly how GSVs are translocated to the PM(plasma membrane) under insulin stimulation is still under debate.In the present study,we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM(total internal reflection fluorescence microscopy).We found that GLUT4-containing vesicles can be classified into three groups according to their mobility,namely vertical,stable,and lateral GLUT4-containing vesicles.Among these groups,vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation,while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness.These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs,which approach the PM directly and bypass the constitutive recycling pathway.

  3. Clk/STY (cdc2-like kinase 1 and Akt regulate alternative splicing and adipogenesis in 3T3-L1 pre-adipocytes.

    Pengfei Li

    Full Text Available The development of adipocytes from their progenitor cells requires the action of growth factors signaling to transcription factors to induce the expression of adipogenic proteins leading to the accumulation of lipid droplets, induction of glucose transport, and secretion of adipokines signaling metabolic events throughout the body. Murine 3T3-L1 pre-adipocytes sequentially express all the proteins necessary to become mature adipocytes throughout an 8-10 day process initiated by a cocktail of hormones. We examined the role of Clk/STY or Clk1, a cdc2-like kinase, in adipogenesis since it is known to be regulated by Akt, a pivotal kinase in development. Inhibition of Clk1 by a specific inhibitor, TG003, blocked alternative splicing of PKCβII and expression of PPARγ1 and PPARγ2. SiRNA depletion of Clk1 resulted in early expression of PKCβII and sustained PKCβI expression. Since Clk1 is a preferred Akt substrate, required for phosphorylation of splicing factors, mutation of Clk1 Akt phosphorylation sites was undertaken. Akt sites on Clk1 are in the serine/arginine-rich domain and not the kinase domain. Mutation of single and multiple sites resulted in dysregulation of PKCβII, PKCβI, and PPARγ1&2 expression. Additionally, adipogenesis was blocked as assessed by Oil Red O staining, adiponectin, and Glut1 and 4 expression. Immunofluorescence microscopy revealed that Clk1 triple mutant cDNA, transfected into pre-adipocytes, resulted in excluding SRp40 (SFSR6 from co-localizing to the nucleus with PFS, a perispeckle specific protein. This study demonstrates the role of Akt and Clk1 kinases in the early differentiation of 3T3-L1 cells to adipocytes.

  4. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Highlights: → In 3T3-L1 adipocytes iAs3+ decreases insulin-stimulated glucose uptake. → iAs3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs3+ activates the cellular adaptive oxidative stress response. → iAs3+ impairs insulin-stimulated ROS signaling. → iAs3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs3+) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in adipocytes

  5. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  6. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells

    Han Yunkyung

    2012-09-01

    Full Text Available Abstract Background Type 2 diabetes (T2D is a complex metabolic disorder characterized by insulin resistance and hyperglycemia. Peroxisome proliferator-activated receptor gamma (PPARγ is a key transcription factor and plays an important role in the regulation of genes involved in adipogenic differentiation, glucose metabolism and insulin signal transduction. Methods In this study, the effects of the root extract of Atractylodes japonica Koidzumi (Atractylodis Rhizoma Alba, ARA on the differentiation of 3T3-L1 preadipocytes and the possible mechanism of glucose transport were investigated. 3T3-L1 cells were cultured with insulin and ARA extract. Results In 3T3-L1 cells, ARA extract significantly enhanced adipogenic differentiation and upregulated the expression of PPARγ genes and protein in a dose-dependent manner. ARA also promoted glucose transport by increasing the glucose transporter 4 (GLUT-4, phosphatidylinositol 3-kinase (PI3K and insulin receptor substrates-1 (IRS-1 levels. Conclusion Our results suggest that ARA extract may be an attractive therapeutic agent for managing T2D via promoting the differentiation of adipocytes with the upregulation of PPARγ levels and the activation of the insulin signaling pathway.

  7. The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3T3-L1 adipocytes and RAW 264.7 macrophages.

    Hsu, Chin-Lin; Lin, Yu-Jyun; Ho, Chi-Tang; Yen, Gow-Chin

    2013-01-23

    Chronic inflammation is characterized by the upregulation of proinflammatory cytokines in obese adipose tissue. Accumulations of adipose tissue macrophages enhance a chronic inflammatory state in adipose tissues. Many studies have indicated that the adipocyte-related inflammatory response in obesity is characterized by an enhanced infiltration of macrophages. The aim of this work was to study the inhibitory effects of garcinol and pterostilbene on the change in inflammatory response due to the interaction between 3T3-L1 adipocytes and RAW 264.7 macrophages. In the TNF-α-induced 3T3-L1 adipocyte model, garcinol and pterostilbene significantly decreased the mRNA expression of COX-2, iNOS, IL-6, and IL-1β and IL-6 secretion by suppressing phosphorylation of p-IκBα and p-p65. In a coculture model of 3T3-L1 adipocytes and RAW 264.7 macrophages, pterostilbene suppressed IL-6 and TNF-α secretion and proinflammatory mRNA expression and also reduced the migration of macrophages toward adipocytes. In the RAW 264.7 macrophage-derived conditioned medium (RAW-CM)-induced 3T3-L1 adipocyte and 3T3-CM-induced RAW 264.7 macrophage models, pterostilbene significantly decreased IL-6 and TNF-α secretion and proinflammatory mRNA expression (COX-2, iNOS, IL-6, TNF-α, PAI-1, CRP, MCP-1, resistin, and leptin). Our findings suggest that garcinol and pterostilbene may provide novel and useful applications to reduce the chronic inflammatory properties of adipocytes. We also found that pterostilbene inhibits proinflammatory responses during the interaction between 3T3-L1 adipocytes and RAW 264.7 macrophages. PMID:23268743

  8. The Differentiation-and Proliferation-Inhibitory Effects of Sporamin from Sweet Potato in 3T3-L1 Preadipocytes

    XIONG Zhi-dong; LI Peng-gao; MU Tai-hua

    2009-01-01

    The aim of this study was to investigate the effect of different concentrations of sporamin on the differentiation and proliferation of 3T3-L1 preadipocytes,providing the theoretical basis for the development of food to treat obesity and diabetes.The isolation and purification of sporamin from sweet potato species 55-2 were performed by ammonium sulphate precipitation in combination with ion-exchange and gel filtration chromatography.With berberine as a positive control,different concentrations of sporamin (0.000,0.125,0.025,0.250,0.500,and 1.000 mg mL-1) were used to treat 3T3-L1 preadipocytes.Intracellular fat accumulation and the degree of adipogenesis were quantified using Oil Red O staining and colorimetry.Preadipocytes differentiation was measured by 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT)spectrophotometric assay.Two sporamin proteins,which were separated into sporamin A (31 kD) and sporamin B (22 kD),could be purified by ion-exchange and gel filtration chromatography.After being treated by different concentrations of sporamin,the differentiation of 3T3-L1 preadipocytes was significantly inhibited,compared with the positive control.When the sporamin solution concentration was 0.500 mg mL-1,the accumulation of lipid droplets within the cells was significantly decreased and the optical density (OD) value of the solution from destained Oil Red O reached to 0.35,which was the lowest value (P < 0.05).The proliferation of 3T3-L1 preadipocytes was significantly inhibited by treating at higher sporamin concentrations.In addition,the inhibitory effect was more obvious with the prolonged treatment time (P< 0.05).The differentiation and proliferation of 3T3-L1 preadipocytes could be inhibited significantly by the addition of higher concentration sporamin.It was,therefore,suggested that the sporamin was potentially effective for weight loss.

  9. 二甲双胍对3T3-L1脂肪细胞瘦素、肿瘤坏死因子-α表达与分泌量影响的观察%Effects of metformin on mRNA expression and secretion of leptin and tumor necrosis factor-α in 3T3-L1 adipocytes

    岳杉; 张艳红; 耿厚法; 班博

    2013-01-01

    Objective To observe the effects of metformin on the expression and secretion of leptin and tumor necrosis factor (TNF-α) in 3T3-L1 adipocytes,and to explore its mechanism in anti-obesity and lipid metabolism improvement.Methods The 3T3-L1 preadipocytes were cultured and differentiated into adipocytes,then incubated with metformin at different concentrations and durations.Leptin and TNF-α mRNA expressions were assayed by RT-PCR.The supernate contents of leptin and TNF-α were detected by ELISA.Results Mefformin functioned to inhibit the leptin and TNF-α mRNA expressions and secretions in 3T3-L1 adipocytes in a concentration-and time-dependent manner.Conclusion The function of metformin in anti-obesity and lipid metabolism improvement may be related with its improvement in leptin and TNF-α sensitivity.%目的 观察二甲双胍对3T3-L1脂肪细胞瘦素、肿瘤坏死因子-α(TNF-α)表达与分泌量的影响,探讨二甲双胍降低体重、改善脂代谢的作用机制. 方法 3T3-L1前脂肪细胞分化成熟后分别予不同浓度及作用时间的二甲双胍干预,采用RT-PCR法检测细胞内瘦素、TNF-α mRNA的表达,ELISA法测定培养基内瘦素、TNF-α的分泌量. 结果 二甲双胍抑制3T3-L1脂肪细胞瘦素、TNF-α的表达与分泌,呈时间与剂量依赖性. 结论 二甲双胍抗肥胖,改善脂代谢的作用可能与改善瘦素、TNF-α抵抗状态有关.

  10. IL-17A synergistically enhances TNFα-induced IL-6 and CCL20 production in 3T3-L1 adipocytes.

    Shinjo, Takanori; Iwashita, Misaki; Yamashita, Akiko; Sano, Tomomi; Tsuruta, Mitsudai; Matsunaga, Hiroaki; Sanui, Terukazu; Asano, Tomoichiro; Nishimura, Fusanori

    2016-08-19

    Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes. PMID:27311858

  11. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    Rossella Valentino

    Full Text Available Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  12. Effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture Efeito da suplementação com ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1

    Adriana Prais Botelho; Lilia Ferreira Santos-Zago; Admar Costa de Oliveira

    2009-01-01

    Supplementation with conjugated linoleic acid may reduce fat body mass and increase lean body mass in various species. Some studies have demonstrated that conjugated linoleic acid reduces body fat, in part, by inhibiting the activity of lipoprotein lipase in adipocytes. The objective of this work was to study the effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture. 3T3-L1 adipocytes received linoleic acid (group C) or conjugated linole...

  13. 3T3-L1细胞分化过程中线粒体含量和葡萄糖摄取的动态变化%THE DYNAMIC CHANGES IN THE NUMBER OF MITOCHONDRIA AND GLUCOSE UPTAKE IN DIFFERENTIATING 3T3-L1 PREADIPOCYTES

    张慧琴; 陈士勇; 王安世; 邹祖全; 王欣; 张晓宏

    2015-01-01

    Objective To observe the dynamic changes in lipid accumulation, mitochondria number and glucose uptake in differentiating murine 3T3-L1 preadipocytes, and help select adipocytes at optimal time-point of differentiation for obesity studies.Methods In this study, murine 3T3-L1 preadipocytes were cultured and induced to differentiate into mature adipocytes by classic cocktail method. On the days 0, 2, 4, 6, 8, 10, 12 of differentiation, 3T3-L1 cells were stained with Oil Red O to assess the accumulation of lipid droplets, and spectrophotometry was used to measure the lipid content. Specific mitochondrial probe (Mito-Tracker Green) was used to detect the mitochondrial number. The amount of glucose uptake was determined by 2-NBDG staining and the glucose content in culture media was measured with glucose oxidase (GOD) assay. Results More than 90% of the cells under microscope were found to exhibit the phenotype of mature adipocytes with many “ring-like” lipid droplets on day 10 of differentiation. With the development of differentiation, the number of mitochondria, and glucose uptake in 3T3-L1 preadipocytes increased gradually, and stabilized on day 10.Conclusion It is more reasonable to selectthe 3T3-L1 adipocytes at the 10th day of differentiation for the studies of obesity and its related diseases at cellular level.%目的对分化过程3T3-L1细胞脂质含量、线粒体含量及细胞对葡萄糖的摄取进行动态观察,为选择适宜分化时点的脂肪细胞进行肥胖研究提供有力证据。方法经典鸡尾酒法诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞。分别于分化的第0、2、4、6、8、10、12日,对细胞进行油红O染色,分光光度法检测细胞内脂质含量;Mito-Tracker Green探针法检测分化过程中线粒体含量变化;2-N[7-硝基苯-2-乙二酸,34羟氨基]-2-脱氧葡萄糖(2-NBDG)染色法直接观察细胞对葡萄糖摄取,葡萄糖氧化酶法测定培养基葡萄糖含

  14. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    Fazliana Mansor

    2013-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARgamma is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT- induced polycystic ovary syndrome (PCOS, a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP and PCOS-control (1 mL of deionised water for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones. LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway.

  15. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes.

    Mansor, Fazliana; Gu, Harvest F; Ostenson, Claes-Göran; Mannerås-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100  μ g/mL LP and compared to untreated control and 10  μ M of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

  16. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production

    Groeneveld, Matthijs P.; Brierley, Gemma V.; Rocha, Nuno M.; Siddle, Kenneth; Semple, Robert K.

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike “common” insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a lentiviral system to knock down Insr or its substrates Irs1 and Irs2 conditionally in 3T3-L1 murine preadipocytes/adipocytes to assess whether acute loss of their expression has different consequences to withdrawal of insulin. Efficient knockdown of either Insr or Irs1/2 was achieved by conditional shRNA expression, severely attenuating insulin-stimulated AKT phosphorylation and glucose uptake. Dual knockdown of Irs1 and Irs2 but not Insr in preadipocytes impaired differentiation to adipocytes. Acute knockdown of Insr or both Irs1 and Irs2 in adipocytes increased Adipoq mRNA expression but reduced adiponectin secretion, assessed by immunoassay. Knockdown sustained for 14 days also reduced immunoassay-detected adiponectin secretion, and moreover induced delipidation of the cells. These findings argue against a distinct effect of Insr deficiency to promote adiponectin secretion as the explanation for paradoxical insulin receptoropathy-related hyperadiponectinaemia. PMID:26888756

  17. A mutation in signal peptide of rat resistin gene inhibits differentiation of 3T3-L1 preadipocytes

    Xi-rong GUO; Hai-xia GONG; Yan-qin GAO; Li FEI; Yu-hui NI; Rong-hua CHEN

    2004-01-01

    AIM: To detect the resistin expression of white adipose tissue in diet-induced obese (DIO) versus diet-resistant (DR) rats, and to investigate the relationship of mutated resistin and 3T3-L1 preadipocytes differentiation. METHODS:RT-PCR and Western Blot were used to detect gene/protein expression. 3T3-L1 cells were cultured, transfected,and induced to differentiation using 0.5 mmol/L 3-isobutyl-1-methyxanthine (MIX), 1 mg/L insulin, and 1μmol/Ldexamethasone. Oil red O staining was applied to detect the degree of preadipocytes differentiation. RESULTS:Expression of resistin mRNA was upregulated in DIO rats and downregulated in DR rats. However, the expression levels varied greatly within the groups. Sequencing of the resistin genes from DIO and DR rats revealed a Leu9Val (C25G) missense mutation within the signal peptide in one DR rat. The mutant resistin inhibited preadipocyte differentiation. Local experiments and Western blotting with tagged resistin fusion proteins identified both mutant and wild type proteins in the cytoplasm and secreted into the culture medium. Computer predictions using the Proscan and Subloc programs revealed four putative phosphorylation sites and a possible leucine zipper motif within the rat resistin protein. CONCLUSION: Resistin-increased differentiation may be inhibited by the mutationcontaining precursor protein, or by the mutant non-secretory resistin isoform.

  18. 罗格列酮抗氧化应激效应影响3T3-L1细胞内脏脂肪素表达%Rosiglitazone Influences Expression of Visfatin in 3T3-L1 Adipocytes Through Inhibiting Oxidative Stress

    季振中; 徐焱成

    2011-01-01

    目的:研究罗格列酮对3T3-L1细胞内脏脂肪素表达的影响及其机制.方法:体外培养并诱导分化3T3-L1细胞,加入葡萄糖激酶制作氧化应激模型,并用不同浓度和不同作用时间罗格列酮干预,观察脂肪因子表达的变化.结果:内脏脂肪素的表达随着葡萄糖激酶氧化应激的浓度增高而递减,具有剂最依赖效应(P<0.05);内脏脂肪素的表达随着罗格列酮干预浓度增加而增加(P<0.05),随着罗格列酮作用时间的延长,内脏脂肪素的表达经历了先下降后上升的过程.且罗格列酮对于内脏脂肪素表达的影响与氧化应激状态的改变平行.结论:罗格列酮可以通过抗氧化应激作用调节内脏脂肪素的表达,可能在罗格列酮改善肥胖相关的2型糖尿病胰岛素抵抗中起到重要作用.%Objective: To study the effect of rosiglitazone on 3T3-L1 adipocyte and the mechanisms.Methods: The 3T3-L1 adipocytes were cultured and induced to differentiation and maturity in vitro, and glucokinase was added to make an oxidative model. Then the adipocytes were treated by rosiglitazone at different doses and for different time. The expression of visfatin was determined by ELISA. Results: Visfatin expression was decreased along with the increase dose of the glucokinase in a concentration-dependent manner (P<0. 05). With the pretreatment of oxidative stress, visfatin expression was increased according to the increasing doses of rosiglitazone (P< 0. 05). As the extension of rosiglitazone effect, expression of visfatin experienced decreasing- increasing process, and was parallel with the changes of oxidative stress. Conclusion: Rosiglitazone can increase visfatin expression in 3T3-L1 adipocyte by reducing oxidative stress, which could play a role in the treatment of insulin resistance in obesity related diabetes.

  19. Macrophage-conditioned medium inhibits differentiation-induced Rb phosphorylation in 3T3-L1 preadipocytes

    This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p kip1, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBPβ were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM

  20. BRL37344对3T3-L1脂肪细胞脂肪分解与脂肪因子表达的影响%Effects of BRL37344 on lipolysis metabolism and adipocytokine gene expression in 3T3-L1 adipocytes

    岳杉; 耿厚法; 班博

    2012-01-01

    目的 观察BRL37344对3T3-L1脂肪细胞脂肪分解及瘦素、TNF-cα mRNA表达的影响.方法 将3T3-L1前脂肪细胞分化成熟后,用0、10-9、10-7 mol/L浓度与0、12、24、48 h作用时间的BRL37344进行干预.采用酶法检测甘油释放含量,RT-PCR法检测细胞瘦素、TNF-α mRNA表达.结果 BRL37344可显著增加3T3 -L1脂肪细胞的脂肪分解,10-9、10-7 mol/L的BRL37344作用48 h后,细胞内瘦素mRNA表达量分别降低38%、97%,TNF-αmRNA表达量分别降低65%、130%,呈剂量依赖性;10-1mol/L的BRL37344作用12、24、48 h后,瘦素mRNA表达量分别降低6%、48%、119%,TNF-α mRNA表达量分别降低10%、66%、158%,呈时间依赖性.结论 BRL37344可促进脂肪细胞的脂质分解,抑制瘦素、TNF-α mRNA表达,其抗肥胖作用与促进脂肪分解,改善瘦素、TNF-α抵抗状态有关.%Objective To investigate the effects of BRL37344 on lipolysis metabolism and leptin, TNF-α gene expression in 3T3-L1 adipocytes, and to explore its anti-obesity mechanism at the celluar level. Methods The 3T3-L1 preadipo-cytes were cultured and differentiated into adipocytes, then incubated with BRL37344 at different concentrations (0, 10-9 mol/L, 10-7 mol/L) and durations (0, 12, 24, 48 h). Lipolysis was quantified by glycerol released in the medium which was determined by colorimetric assay. Leptin and TNF-α mRNA expressions were assayed by RT-PCR. Results Lipolysis increased significantly in 3T3-L1 adipocytes after treatment of BRL37344 in a dose- and time-dependent manner. BRL37344 at doses of 10-9 and 10-7mol/L significantly reduced leptin mRNA expression by 34% and 140% , respectively after 48 hours, as well as TNF-α mRNA expression by 65% and 130% , respectively. Leptin mRNA expression reduced by 6% , 48% , 119% , respectively after treatment of 10-7 mol/L BRL37344 for 12, 24, 48 hours, as well as TNF-α mRNA expression by 10% , 66% , 158% , respectively. Conclusion BRL37344 promotes lipolysis

  1. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells.

    Yosuke Masubuchi

    Full Text Available BACKGROUND: Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS: In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6. The α subunits of Gs (Gαs and G14 (Gα14 but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS: 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.

  2. Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway

    Jia Sun

    2016-01-01

    Full Text Available The activity of a local renin-angiotensin system (RAS in the adipose tissue is closely associated with obesity-related diseases. However, the mechanism of RAS activation in adipose tissue is still unknown. In the current study, we found that palmitic acid (PA, one kind of free fatty acid, induced the activity of RAS in 3T3-L1 adipocytes. In the presence of fetuin A (Fet A, PA upregulated the expression of angiotensinogen (AGT and angiotensin type 1 receptor (AT1R and stimulated the secretion of angiotensin II (ANG II in 3T3-L1 adipocytes. Moreover, the activation of RAS in 3T3-L1 adipocytes was blocked when we blocked Toll-like receptor 4 (TLR4 signaling pathway using TAK242 or NF-κB signaling pathway using BAY117082. Together, our results have identified critical molecular mechanisms linking PA/TLR4/NF-κB signaling pathway to the activity of the local renin-angiotensin system in adipose tissue.

  3. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes.

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M; Foti, Daniela P; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia - through the hypoxia-inducible factor 1 (HIF-1) - plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity. PMID:27445976

  4. Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet.

    Kang, Min-Cheol; Kang, Nalae; Ko, Seok-Chun; Kim, Young-Bum; Jeon, You-Jin

    2016-04-01

    The seaweeds were collected from the coast of Jeju Island, South Korea. We investigated ethanol extracts from seaweed as potential antiobesity agents by testing their effect on adipogenic differentiation in 3T3-L1 cells. Among the red algae extracts tested, the Plocamium telfairiae extract (PTE) showed the highest inhibitory effect on lipogenesis in adipocytes and, thus, was selected as a potential antiobesity agent. PTE treatment significantly decreased the expression of the adipogenic-specific proteins peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein 1, and fatty acid-binding protein 4 compared with that in the untreated 3T3-L1 cells. PTE also inhibited high-fat diet (HFD)-induced obesity in male C57BL/6 mice. Oral administration of PTE significantly reduced the body weight, fatty liver, amount of white adipose tissue, and levels of triglyceride and glucose in the tested animals. Taken together, these data demonstrate that PTE can be developed as a therapeutic agent for obesity. PMID:26845612

  5. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Highlights: ► Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. ► EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. ► Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. ► Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H2O2-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  6. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan); Nishio, Yoshihiko [Division of Diabetes, Metabolism and Endocrinology, Department of Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kashiwagi, Atsunori; Maegawa, Hiroshi [Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga 520-2192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  7. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  8. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  9. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation.

    Yeganeh, Azadeh; Taylor, Carla G; Tworek, Leslee; Poole, Jenna; Zahradka, Peter

    2016-07-01

    In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα. PMID:27131602

  10. Data from proteomic characterization of the role of Snail1 in murine mesenchymal stem cells and 3T3-L1 fibroblasts differentiation

    A. Peláez-García

    2015-09-01

    Full Text Available The transcription factor (TF Snail1 is a major inducer of the epithelial–mesenchymal transition (EMT during embryonic development and cancer progression. Ectopic expression of Snail in murine mesenchymal stem cells (mMSC abrogated their differentiation to osteoblasts or adipocytes. We used either stable isotopic metabolic labeling (SILAC for 3T3-L1 cells or isobaric labeling with tandem mass tags (TMT for mMSC stably transfected cells with Snail1 or control. We carried out a proteomic analysis on the nuclear fraction since Snail is a nuclear TF that mediates its effects mainly through the regulation of other TFs. Proteomics data have been deposited in ProteomeXchange via the PRIDE partner repository with the dataset identifiers PXD001529 and PXD002157 (Vizcaino et al., 2014 [1]. Data are associated with a research article published in Molecular and Cellular Proteomics (Pelaez-Garcia et al., 2015 [2].

  11. Buckwheat (Fagopyrum esculentum M. Sprout Treated with Methyl Jasmonate (MeJA Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    Jeong-Ho Lim

    2013-01-01

    Full Text Available Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE treated with methyl jasmonate (MeJA significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties.

  12. The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling

    Choi, Bong-Hyuk; Kim, Yu-Hee; Ahn, In-Sook; Ha, Jung-Heun; Byun, Jae-Min; Do, Myoung-Sool

    2009-01-01

    In our previous study, we have shown that berberine has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect is due to the down-regulation of adipogenic enzymes and transcription factors. Here we focused more on anti-inflammatory effect of berberine using real time RT-PCR and found it changes expressions of adipokines. We hypothesized that anti-adipogenicity of berberine mediates anti-inflammtory effect and explored leptin as a candidate medi...

  13. Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

    Kang, Yun Hwan; Kim, Kyoung Kon; Kim, Dae Jung; Choe, Myeon

    2015-01-01

    BACKGROUND/OBJECTIVES Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS The wsSCLE was identified by ...

  14. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCζ/λ phosphorylation in 3T3L1 adipocytes

    Manna, Prasenjit; Jain, Sushil K.

    2013-01-01

    PIP3 (phosphatidylinositol-3,4,5-triphosphate) and PIP2 (phosphatidylinositol-4,5-biphosphate) are two well-known membrane bound polyphosphoinositides. Diabetes is associated with impaired glucose metabolism. Using a 3T3L1 adipocyte cell model, this study investigated the roles of PIP3 and PIP2 on insulin stimulated glucose metabolism in high glucose (HG) treated cells. Exogenous PIP3 supplementation (1, 5, or 10 nM) increased the phosphorylation of AKT and PKCζ/λ, which in turn upregulated G...

  15. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids

    Hitesh Vaidya

    2015-03-01

    Full Text Available Background: The effects of long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA on the regulation of adipocytes metabolism are well known. These fatty acids are generally consumed together in our diets; however, the metabolic regulation of adipocytes in the presence of these fatty acids when given together is not known. Objective: To investigate the effects of n-3 PUFA and arachidonic acid (AA, an n-6 PUFA, on the regulation of adipogenic and lipogenic genes in mature 3T3-L1 adipocytes. Methods: 3T3-L1 adipocytes were incubated in the presence or absence of 100 µM of eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA; docosapentaenoic acid, DPA and AA, either alone or AA+n-3 PUFA; control cells received bovine serum albumin alone. The mRNA expression of adipogenic and lipogenic genes was measured. The fatty acid composition of adipocytes was analyzed using gas chromatography. Results: Individual n-3 PUFA or AA had no effect on the mRNA expression of peroxisome-proliferator-activated receptor-γ; however, AA+EPA and AA+DPA significantly increased (P<0.05 the expression compared to control cells (38 and 42%, respectively. AA and AA+EPA increased the mRNA expression of acetyl-CoA carboxylase 1 (P<0.05. AA treatment decreased the mRNA expression of stearoyl-CoA desaturase (SCD1 (P<0.01, while n-3 PUFA, except EPA, had no effect compared to control cells. AA+DHA and AA+DPA inhibited SCD1 gene expression (P<0.05 suggesting a dominant effect of AA. Fatty acids analysis of adipocytes revealed a higher accretion of AA compared to n-3 PUFA. Conclusions: Our findings reveal that AA has a dominant effect on the regulation of lipogenic genes in adipocytes.

  16. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  17. (+)-Episesamin inhibits adipogenesis and exerts anti-inflammatory effects in 3T3-L1 (pre)adipocytes by sustained Wnt signaling, down-regulation of PPARγ and induction of iNOS.

    Freise, Christian; Trowitzsch-Kienast, Wolfram; Erben, Ulrike; Seehofer, Daniel; Kim, Ki Young; Zeitz, Martin; Ruehl, Martin; Somasundaram, Rajan

    2013-03-01

    Obesity and its associated health risks still demand for effective therapeutic strategies. Drugs and compositions derived from Oriental medicine such as green tea polyphenols attract growing attention. Previously, an extract from the Japanese spice bush Lindera obtusiloba (L. obtusiloba) traditionally used for treatment of inflammation and prevention of liver damage was shown to inhibit adipogenesis. Aiming for the active principle of this extract (+)-episesamin was identified, isolated and applied in adipogenic research using 3T3-L1 (pre)adipocytes, an established cell line for studying adipogenesis. With an IC50 of 10μM (+)-episesamin effectively reduced the growth of 3T3-L1 preadipocytes and decreased hormone-induced 3T3-L1 differentiation as shown by reduced accumulation of intracellular lipid droplets and diminished protein expression of GLUT-4 and vascular endothelial growth factor. Mechanistically, the presence of (+)-episesamin during hormone-induced differentiation provoked a reduced phosphorylation of ERK1/2 and β-catenin along with a reduced protein expression of peroxisome proliferator-activated receptor γ and a strongly increased protein expression of iNOS. Treatment of mature adipocytes with (+)-episesamin resulted in a reduction of intracellular stored lipid droplets and induced the proapoptotic enzymes caspases-3/-7. Besides interfering with adipogenesis, (+)-episesamin showed anti-inflammatory activity by counteracting the lipopolysaccharide- and tumor necrosis factor α-induced secretion of interleukin 6 by 3T3-L1 preadipocytes. In conclusion, (+)-episesamin seems to be the active drug in the L. obtusiloba extract being responsible for the inhibition of adipogenesis and, thus, should be evaluated as a novel potential complementary treatment for obesity. PMID:22818712

  18. Automated Image Processing for Spatially Resolved Analysis of Lipid Droplets in Cultured 3T3-L1 Adipocytes

    Sims, James Kenneth; Rohr, Brian; Miller, Eric; Lee, Kyongbum

    2014-01-01

    Cellular hypertrophy of adipose tissue underlies many of the proposed proinflammatory mechanisms for obesity-related diseases. Adipose hypertrophy results from an accumulation of esterified lipids (triglycerides) into membrane-enclosed intracellular lipid droplets (LDs). The coupling between adipocyte metabolism and LD morphology could be exploited to investigate biochemical regulation of lipid pathways by monitoring the dynamics of LDs. This article describes an image processing method to id...

  19. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes

    Citrus fruit compounds have many health-enhancing effects. In this study, using a luciferase ligand assay system, we showed that citrus auraptene activates peroxisome proliferator-activated receptor (PPAR)-α and PPARγ. Auraptene induced up-regulation of adiponectin expression and increased the ratio of the amount of high-molecular-weight multimers of adiponectin to the total adiponectin. In contrast, auraptene suppressed monocyte chemoattractant protein (MCP)-1 expression in 3T3-L1 adipocytes. Experiments using PPARγ antagonist demonstrated that these effects on regulation of adiponectin and MCP-1 expression were caused by PPARγ activations. The results indicate that auraptene activates PPARγ in adipocytes to control adipocytekines such as adiponectin and MCP-1 and suggest that the consumption of citrus fruits, which contain auraptene can lead to a partial prevention of lipid and glucose metabolism abnormalities

  20. Biophysical Assessment of Human Aquaporin-7 as a Water and Glycerol Channel in 3T3-L1 Adipocytes

    Ana Madeira; Marta Camps; Antonio Zorzano; Moura, Teresa F.; Graça Soveral

    2013-01-01

    The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both...

  1. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  2. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  3. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin

  4. Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation.

    Horikawa, Takumi; Shimada, Tsutomu; Okabe, Yui; Kinoshita, Kaoru; Koyama, Kiyotaka; Miyamoto, Ken-ichi; Ichinose, Koji; Takahashi, Kunio; Aburada, Masaki

    2012-01-01

    We previously reported that Kaempferia parviflora WALL. ex BAKER (KP) and its ethyl acetate extract (KPE) improve various metabolic disorders in obesity-model mice. However the mechanism is not certain, and, in this study, in order to elucidate the mechanism of the suppressive effect of KP on fat accumulation, we focused on adipocytes, which are closely linked to metabolic diseases. The finding was that KPE and its components, 3,5,7,4'-tetramethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone, strongly induced differentiation of 3T3-L1 preadipocytes to adipocytes. The above two polymethoxyflavonoids (PMFs) also induced adiponectin mRNA levels, and release of adiponectin into the medium. In addition, these PMFs enhanced the expression of peroxisome proliferator-activated receptor γ (PPARγ), but did not show PPARγ ligand activity. We then investigated the expression of the differentiation-regulator located upstream of PPARγ. Expression of CCAAT/enhancer-binding protein (C/EBP) β and -δ mRNA, a transcriptional regulator of PPARγ, was induced, and expression of GATA-2 mRNA, a down-regulator of adipogenesis, was suppressed by these PMFs. These functions of the KP PMFs that enhance adipogenesis and secretion of adiponectin are, to some extent at least, involved in the mechanisms of anti-metabolic disorders effects. PMID:22687402

  5. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Martin Weiszenstein

    Full Text Available Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2 on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated. Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  6. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulat...

  7. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells.

    Yang, Zhi-Gang; Matsuzaki, Keiichi; Takamatsu, Satoshi; Kitanaka, Susumu

    2011-01-01

    A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside A (22), mulberroside B (23), 5,7-dihydroxycoumarin 7-O-β-D-glucopyranoside (24), 5,7-dihydroxycoumarin 7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (25) and adenosine (26), were isolated from Morus alba var. multicaulis Perro. (Moraceae). Their structures were determined by spectroscopic methods. The prenyl-flavonoids 11-14, 16, triterpenoids 17,18 and 20 showed significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes. The arylbenzofurans 1-10 and prenyl-flavonoids 11-16 also showed significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells. PMID:21772233

  8. The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3T3-L1 adipocytes La combinación de resveratrol y CLA no incrementa el efecto hipolipemiante de cada molécula en adipocitos 3T3-L1

    Lasa, A; Miranda, J.; I. Churruca; Simón, E.; N. Arias; Milagro, F.; J. A. Martínez; Mª del Puy Portillo

    2011-01-01

    Introduction: Trans-10, cis-12 conjugated linoleic acid (CLA) and resveratrol have been shown to reduce TG content in cultured 3T3-L1 adipocyte acting on different pathways. In recent years, the method of simultaneously targeting several signal transduction pathways with multiple natural products in order to achieve additive or synergistic effects has been tested. However, the combined effect of both molecules on lipid metabolism has not been described before. Objective: The aim of the presen...

  9. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    Yan Shen

    Full Text Available We previously demonstrated that cinnamon extract (CE ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4 translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.

  10. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  11. Vasonatrin peptide promotes the synthesis of adiponectin in 3T3-L1 adipocytes of mouse and the underlying mechanism%血管钠肽促进小鼠3T3-L1脂肪细胞合成脂联素及其可能机制

    铁茹; 邢文娟; 陈小丽; 金坚; 张海锋; 于军; 陈宝莹

    2012-01-01

    目的 探讨血管钠肽(VNP)对脂肪因子脂联素生成的影响及其机制.方法 在3T3-L1细胞分化的脂肪细胞中加入不同浓度的VNP,分别用实时定量PCR法和Western blot法检测脂联素的mRNA水平和蛋白表达,放免法测定细胞内cGMP的水平.结果 VNP可显著增加脂联素mRNA水平和蛋白表达,同时提高细胞内cGMP,含量为(38±5)~(265±35)nmol/L,显著高于对照组的(10±2)nmol/L(P<0.01);该效应可用8-Br-cGMP诱导,可被cGMP依赖性蛋白激酶抑制剂KT-5823或钠尿肽受体NPR阻断剂HS-142-1抑制.结论VNP可通过NPR/cGMP/PKG信号通路增加脂肪细胞脂联素的表达.%Objective To identify the roles of vasonatrin peptide (VNP) on adiponectin production and the underlying mechanisms. Methods 3T3-L1 cells were differentiated into adipocytes and exposed to various concentrations of VNP. Quantitative PCR and immunoassays were performed to determine the mRNA levels of adiponectin. Involved signaling pathway was identified by radioimmunoassay to detect the levels of intracellular cGMP[ (38+5) ~ (265 ± 35)nmol/L]. Results VNP markedly enhanced adiponectin mRNA expression as well as protein secretion. In addition, VNP significantly enhanced the intracellular level of cGMP. The effects of VNP were mimicked by 8-Br-cGMP, whereas inhibited by HS-142-1 or KT-5823. Conclusions VNP regulates adiponectin production in adipocytes via a guanylyl cyclase-coupled NPR/cGMP/PKG pathway.

  12. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with [35S]sulfate and [3H] glucosamine for 24 h and then extracted and analyzed. There was a 1.68 ± 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of ∼ 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of ∼ 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 ± 0.2-fold in media and 3.2 ± 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation

  13. PPARγ配体罗格列酮及其激动剂GW9662对脂肪细胞因子表达的影响%Differential effects of PPARγ ligand rosiglitazone and selective antagonist GW9662 on adipocytokine gene expression in 3T3-L1 adipocytes

    LIU Ying-zi; Vural Ozdemir; OUYANG Dong-shengI; LIU Zhao-qian; LIU Jie; LI Zhi; WANG Dan; ZENG Fei-yue; TAN Zhi-rong; HU Dong-li; ZHOU Hong-hao

    2007-01-01

    BACKGROUND: There is a growing recognition that the adipose tissue is an endocrine organ that secretes signaling molecules such as adiponectin and resistin. The peroxisome proliferator activated receptor γ (PPARγ) is expressed in high levels in the adipose tissue. Thiazolidinediones are selective PPARγ agonists with insulin-sensitizing properties. It has been postulated that thiazolidinediones such as rosiglitazone exert their pharmacodynamic effects in part through modulation of resistin (implicated in insulin resistance) and adiponectin (an insulin-sensitizing molecule) expression subsequent to activation of PPARγ. There are conflicting data, however, on the biological direction in which resistin expression is modulated by PPARγ agonists and whether an increase in adiponectin expression can occur in the face of an upregulation of resistin. METHODS: Using the murine 3T3-L1 adipocytes as a model, we evaluated the changes in resistin and adiponectin gene expression after vehicle, rosiglitazone (10 μmol/L, a PPARγ agonist), GW9662 (5 μmol/L, a selective PPARγ antagonist) or GW662 and rosiglitazone co-treatment.RESULTS: In comparison to vehicle treatment, rosiglitazone increased the average adiponectin and resistin mRNA expression by 1.66- and 1.55-fold, respectively (P<0.05). Importantly, GW9662 also upregulated adiponectin expression (by 1.57-fold, P<0.05) but did not influence resistin expression (P>0.05). Co-treatment with rosiglitazone and GW9662 maintained the adiponectin upregulation (1.87-fold increase from vehicle, P<0.05) while attenuating resistin upregulation (1.31-fold increase from vehicle, P<0.05) induced by rosiglitazone alone (1.55-fold increase from vehicle, P<0.05). CONCLUSION: This study presents new evidence that adiponectin transcript is upregulated with both a PPARγ agonist (rosiglitazone) and antagonist (GW9662), while GW9662 co-treatment does not block rosiglitazone-induced adiponectin upregulation. These data

  14. Screening of dried plant seed extracts for adiponectin production activity and tumor necrosis factor-alpha inhibitory activity on 3T3-L1 adipocytes.

    Okada, Yoshinori; Okada, Mizue; Sagesaka, Yumi

    2010-09-01

    To search for dried plant seeds with potent anti-diabetes activity, we conducted a large scale screening for inhibitory activity on tumor necrosis factor-alpha and facilitating activity on adiponectin production in vitro. These activities in 3T3-L1 adipocytes were screened from ethanol extracts of 20 kinds of dried plant seed marketed in Japan. komatsuna (Brassica rapa var. perviridis), common bean (Phaseolus vulgaris L.), qing geng cai (Brassica rapa var. chinensis), green soybean (Glycine max), spinach (Spinacia oleracea L.) and sugar snap pea (Pisum sativum L.) markedly enhanced adiponectin production (11.3 ~ 12.7 ng/ml) but Japanese radish (Raphanus sativus), edible burdock (Arctium lappa L.), bitter melon (Momordica charantia) and broccoli (Brassica oleracea var. italica) did not (0.9 ~ 2.7 ng/ml). All adiponectin-production-enhancing seeds except spinach (2.7 pg/ml) and okra (Abelmoschus esculentus) (6.6 pg/ml) effectively decreased tumor necrosis factor-alpha levels (0.0 pg/ml). We further examined the effects on free radical scavenging activities in the dried seed extracts. Although scavenging activity correlated well with total phenolic content of samples, no correlation was observed with adiponectin production. These results point to the potential of dried seed extracts as a means to modify the activity of tumor necrosis factor-alpha for the adiponectin production. PMID:20717728

  15. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes

    Chengjun Ma

    2014-02-01

    Full Text Available Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step. The separation was performed with a simple two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (5:3:3:2.5:5, v/v/v/v/v. In each operation, 100 mg crude extracts was separated and yielded 6.3 mg of 2-hydroxy-1-methoxyaporphine (95.1% purity, 1.1 mg of pronuciferine (96.8% purity, 8.5 mg of nuciferine (98.9% purity, and 2.7 mg of roemerine (97.4% respectively. The chemical structure of four aporphine alkaloids are identified by means of electrospray ionization MS (ESI-MS and nuclear magnetic resonance (NMR analysis. Moreover, the effects of four separated aporphine alkaloids on insulin-stimulated glucose consumption were examined in 3T3-L1 adipocytes. The results showed that 2-hydroxy-1-methoxyaporphine and pronuciferine increased the glucose consumption significantly as rosiglitazone did.

  16. Effects and mechanisms of GLP-1 on fatty acid metabolism in insulin-resistant 3T3-L1 adipocytes%胰高血糖素样肽-1对胰岛素抵抗3T3-L1脂肪细胞脂肪酸代谢的作用及机制

    董怡; 姚明辉; 王毅群

    2012-01-01

    AIM To explore the effects and mechanisms of glucagon like peptide-1 (GLP-1) on fatty acid metabolism. METHODS Through ELISA and Western blot, the present study was to investigate the effects and mechanisms of GLP-1 on fatty acid metabolism in insulin-resistant 3T3-L1 adipocytes which were induced by high glucose and insulin. RESULTS ELBA showed that GLP-1 regulated medium free fatty acid (FFA) concentrations in a insulin dependent way: FFA content rised when GLP-1 combined with insulin; GLP-1 decreased FFA content without insulin. Similarly, GLP-1 increased fatty acid synthase (FAS) content with insulin; when there was no insulin in medium, FAS could not be affected by GLP-1. Western blot revealed that GLP-1 could enhance protein kinase B(PKB) phosphoryla-tion. When treated with PKB phosphorylation inhibitor LY294002 or Wortmannin with insulin could inhibit the increased effect of GLP-1 on FFA content. GLP-1 had no effect on PKB phosphorylation when there was no insulin existence, but could diminish hormone-sensitive lipase (HSL) concentration in this case. CONCLUSION GLP-1 can enhance insulin sensitivity and decrease HSL concentration in insulin resistant 3T3-L1 adipocytes. Insulin affects GLP-1 regulation of fatty acid metabolism in resistance 3T3-L1 adipocytes.%目的 研究胰高血糖素样肽-1 (GLP-1)对胰岛素抵抗3T3-L1脂肪细胞脂肪酸代谢的作用及机制.方法 采用高糖高胰岛素造成胰岛素抵抗3T3-L1脂肪细胞模型,通过ELISA及Western blot等方法观察GLP-1对此模型脂肪酸代谢的影响及机制.结果 ELISA结果显示,GLP-1对胰岛素抵抗3T3-L1脂肪细胞中游离脂肪酸(FFA)的含量影响与胰岛素相关:在有胰岛素(100 nmol·L-1)存在时,GLP-1可增加上清液中FFA含量;而无胰岛素存在时,GLP-1可减少上清液中FFA含量.GLP-1升高细胞中脂肪酸合成酶(FAS)表达量的作用也必须依赖胰岛素的存在.Western blot结果显示在有胰岛素存在时,GLP-1可促进蛋白激

  17. Synergistic interactions of apigenin, naringin, quercetin and emodin on inhibition of 3T3-L1 preadipocyte differentiation and pancreas lipase activity.

    Guo, XiaoXuan; Liu, Jia; Cai, ShengBao; Wang, Ou; Ji, BaoPing

    2016-01-01

    The interactions of four natural compounds including apigenin, naringin, emodin and quercetin were investigated on inhibiting 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Oil Red O staining was conducted to visualise and quantify lipid accumulation. The difference between experimental and calculated results was utilised for determining the interaction types. Interestingly, emodin synergistically interacted with the other three compounds, and the combination of emodin and apigenin exhibited the strongest synergistic effect in both differentiation and pancreas lipase assays. Results implied that the combination of apigenin and emodin may be regarded as a promising complementary therapy for management of overweight or obesity. PMID:26314502

  18. L-4F Inhibits Oxidized Low-density Lipoprotein-induced Inflammatory Adipokine Secretion via Cyclic AMP/Protein Kinase A-CCAAT/Enhancer Binding Protein β Signaling Pathway in 3T3-L1 Adipocytes

    Xiang-Zhu Xie

    2016-01-01

    Conclusions: OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it.

  19. OM2, a Novel Oligomannuronate-Chromium(III Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway.

    Jiejie Hao

    Full Text Available In our previous studies, we prepared novel oligomannuronate-chromium(III complexes (OM2, OM4 from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM, chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes.We firstly used the pGL3-PGC1α and pGL3-ATGL promoter plasmids to compare their effects on PGC1α and ATGL transcription activities. Then mitochondrial biogenesis was quantified by transmission electron microscopy and MitoTracker staining. Mitochondrial oxygen consumption and fatty acid oxidation were measured by an oxygen biosensor system and ³H-labelled water scintillation. The mitochondrial DNA and mRNA involved in mitochondrial biogenesis and lipid oxidation were evaluated by real-time PCR. AMPK together with other protein expression levels were measured by western blotting. The inhibitor compound C and siRNA of PGC1α were used to inhibit the OM2-induced AMPK-PGC1α signaling pathway. And we found that OM2 stimulated AMPK-PGC1α pathway in the 3T3-L1 adipocytes, which were correlated with induced mitochondrial biogenesis, improved mitochondrial function, and reduced lipid accumulation by enhanced fatty acid β-oxidation and augmented ATGL protein expression.Our data indicated that the marine oligosaccharide-derived OM2 might represent a novel class of molecules that could be useful for type 2 diabetes prevention and treatment by up-regulating AMPK-PGC1α signaling pathway.

  20. OM2, a Novel Oligomannuronate-Chromium(III) Complex, Promotes Mitochondrial Biogenesis and Lipid Metabolism in 3T3-L1 Adipocytes via the AMPK-PGC1α Pathway

    Hao, Jiejie; Hao, Cui; Zhang, Lijuan; Liu, Xin; Zhou, Xiaolin; Dun, Yunlou; Li, Haihua; Li, Guangsheng; Zhao, Xiaoliang; An, Yuanyuan; Liu, Jiankang; Yu, Guangli

    2015-01-01

    Background In our previous studies, we prepared novel oligomannuronate-chromium(III) complexes (OM2, OM4) from marine alginate, and found that these compounds sensitize insulin action better than oligomannuronate(OM), chromium, and metformin in C2C12 skeletal muscle cells. In the present study, we studied their effects on mitochondrial biogenesis, lipid metabolism, and the underlying molecular mechanisms in differentiated 3T3-L1 adipocytes. Methodology/Principal Findings We firstly used the pGL3-PGC1α and pGL3-ATGL promoter plasmids to compare their effects on PGC1α and ATGL transcription activities. Then mitochondrial biogenesis was quantified by transmission electron microscopy and MitoTracker staining. Mitochondrial oxygen consumption and fatty acid oxidation were measured by an oxygen biosensor system and ³H-labelled water scintillation. The mitochondrial DNA and mRNA involved in mitochondrial biogenesis and lipid oxidation were evaluated by real-time PCR. AMPK together with other protein expression levels were measured by western blotting. The inhibitor compound C and siRNA of PGC1α were used to inhibit the OM2-induced AMPK-PGC1α signaling pathway. And we found that OM2 stimulated AMPK-PGC1α pathway in the 3T3-L1 adipocytes, which were correlated with induced mitochondrial biogenesis, improved mitochondrial function, and reduced lipid accumulation by enhanced fatty acid β-oxidation and augmented ATGL protein expression. Conclusions/Significance Our data indicated that the marine oligosaccharide-derived OM2 might represent a novel class of molecules that could be useful for type 2 diabetes prevention and treatment by up-regulating AMPK-PGC1α signaling pathway. PMID:26176781

  1. Effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture Efeito da suplementação com ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1

    Adriana Prais Botelho

    2009-10-01

    Full Text Available Supplementation with conjugated linoleic acid may reduce fat body mass and increase lean body mass in various species. Some studies have demonstrated that conjugated linoleic acid reduces body fat, in part, by inhibiting the activity of lipoprotein lipase in adipocytes. The objective of this work was to study the effect of conjugated linoleic acid supplementation on lipoprotein lipase activity in 3T3-L1 adipocyte culture. 3T3-L1 adipocytes received linoleic acid (group C or conjugated linoleic acid (group AE, supplemented with AdvantEdge® CLA, and group CO, supplemented with CLA One® in concentrations of 1 mmol/L. Heparin-releasable lipoprotein lipase activity was analyzed by means of a 3T3-L1 adipocyte culture. After 7 days, heparin-releasable lipoprotein lipase activity was lower in the groups AE and CO supplemented with conjugated linoleic acid. These results suggest that one of the mechanisms by which CLA is capable of reducing body fat is by reducing lipoprotein lipase activity.A suplementação com ácido linoléico conjugado pode reduzir a gordura corporal e aumentar a massa magra em diferentes espécies. Alguns estudos têm demonstrado que o ácido linoléico conjugado reduz a gordura corporal, por meio da inibição da atividade de lípase lipoprotéica em adipócitos. O objetivo deste estudo foi avaliar o efeito da suplementação com uma mistura de isômeros do ácido linoléico conjugado sobre a atividade da lípase lipoprotéica em cultura de adipócitos 3T3-L1. Os adipócitos 3T3-L1 receberam ácido linoléico (grupo controle ou ácido linoléico conjugado (grupo AE, suplementado com AdvantEdge® CLA, e grupo CO, suplementado com CLA One® na concentração de 1 mmol/L. A atividade de lípase lipoprotéica livre de heparina foi analisada pela média da cultura de adipócitos. Após 7 dias, a atividade da lípase lipoprotéica livre de heparina mostrou menores valores nos grupos AE e CO, suplementados com ácido linol

  2. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    Highlights: ► Ascofuranone increases expression of adiponectin and PPARγ. ► Inhibitors for MEK and JNK increased the expression of adiponectin and PPARγ. ► Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPARγ, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPARγ agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPARγ, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPARγ through the modulation of MAP kinase family members.

  3. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Cho, Hyun-Ji, E-mail: hjcho.dr@gmail.com [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

  4. Mechanism of losartan in treatment of insulin resistance in 3T3-L1 adipocytes%氯沙坦改善3T3-L1脂肪细胞胰岛素抵抗的机制研究

    刘晓莉; 潘瑜; 束金莲; 高丰厚; 金惠敏

    2011-01-01

    Objective To investigate the main mechanism of losartan in treatment of insulin resistance in 3T3-L1 adipocytes. Methods The model of insulin resistance in 3T3-L1 adipocytes was induced by dexamethasone. Model control group (without treatment with any drug), losartan group (treatment with 1 μmol/L, 10 μmol/L and 100 μmol/L losartan for 48 h respectively) and wortmannin + losartan group were divided. Adipocytes in wortmannin + losartan group were pretreated with 100 nraol/L wortmannin, phosphatidylinositol 3-kinase (PI3K) inhibitor for 20 min, and were treated with 100 μmol/L losartan for 48 h. The size of adipocytes was observed, glucose oxidase method was employed to measure the glucose concentration in supernatant of culture fluid, and Western blotting was adopted to detect the expression of PI3K and insulin receptor substrate 1 (IRS-1) and level of IRS-1 serine phosphorylation in adipocytes. Results Compared with model control group, the size of adipocytes significantly reduced (P <0. 01), the glucose concentration in supernatant of culture fluid significantly decreased (P <0.01) , the expression of PI3K and IRS-1 significantly increased (P <0.01). The level of IRS-1 serine phosphorylation significantly decreased compared with model control group (P<0.01), but the effect could be blocked by wortmannin. Conclusion Losartan could significantly decrease the cell size and increase the consumption of glucose in 3T3-L1 adipocytes with insulin resistance, and the mechanism might be associated with PI3K pathway.%目的 探讨氯沙坦改善3T3-L1脂肪细胞胰岛素抵抗的主要作用机制.方法 以地塞米松诱导3T3-L1脂肪细胞,建立胰岛素抵抗细胞模型,根据细胞模型添加干预药物的不同分为模型对照组(不添加任何药物)、氯沙坦组(分别给予1、10、100 μmol/L氯沙坦干预48 h)和wortmannin+氯沙坦组,wortmannin+氯沙坦组以100 nmol/L的磷脂酰肌醇3激酶(PI3K)特异性抑制剂wortmannin预处理20 min

  5. Pharmacological Effects of the Water Fraction of Key Components in the Traditional Chinese Prescription Mai Tong Fang on 3T3-L1 Adipocytes and ob/ob Diabetic Mice

    Liang Ma; Li Huang; Heying Pei; Zhuowei Liu; Caifeng Xie; Lei Lei; Xiaoxin Chen; Haoyu Ye; Aihua Peng; Lijuan Chen

    2014-01-01

    Mai Tong Fang (MTF), a Chinese herbal combination, has been used for the treatment of diabetic nephropathy in traditional medical clinics in China. However, the anti-adipogenic and anti-hyperglycemic effects of MTF have not been fully elucidated, so this study explored these pharmacological activities in 3T3-L1 adipocytes and ob/ob mice, respectively, of the water fraction of milkvetch root, salviae miltiorrhizae and mulberry as key components of MTF. MTF was found to inhibit adipogenesis and...

  6. The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3T3-L1 adipocytes La combinación de resveratrol y CLA no incrementa el efecto hipolipemiante de cada molécula en adipocitos 3T3-L1

    A. Lasa

    2011-10-01

    Full Text Available Introduction: Trans-10, cis-12 conjugated linoleic acid (CLA and resveratrol have been shown to reduce TG content in cultured 3T3-L1 adipocyte acting on different pathways. In recent years, the method of simultaneously targeting several signal transduction pathways with multiple natural products in order to achieve additive or synergistic effects has been tested. However, the combined effect of both molecules on lipid metabolism has not been described before. Objective: The aim of the present work was to analyze the effect of the combination of trans-10, cis-12 CLA and resveratrol on TG accumulation as well as on FAS, HSL and ATGL expression in 3T3-L1 mature adipocytes, in order to assess a potential interaction between both molecules. Methods: For this purpose, 3T3-L1 mature adipocytes were treated with the two molecules, both separately and combined, in 10 and 100 μM for 20 hours. TG content and FAS, ATGL and HSL expression were measured by spectrophotometry and Real Time RT-PCR respectively. Results: Both doses of CLA and 100 M resveratrol decreased TG content in mature adipocytes. The combination of both molecules reduced TG accumulation to the same extent as each one separately. No change in FAS and HSL mRNA levels after CLA and resveratrol treatment was observed. ATGL was not modified by CLA but it was increased by resveratrol and by the combination. This combination did not increase the effect caused by resveratrol on its own. Conclusion: Lipolysis increase via ATGL is involved in the TG reduction induced by resveratrol and the combination of both molecules. The combination of these two molecules does not increase the efficacy of each molecule separately in mature adipocytes and thus it does not represent an advantage for obesity treatment or prevention.Introducción: Se ha demostrado que el ácido linoleico trans-10, cis-12 conjugado (ALC y el resveratrol reducen el contenido de TG en el adipocito 3T3-L1 cultivado actuando sobre

  7. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. PMID:21796705

  8. Curcumin, a Potential Inhibitor of Up-regulation of TNF-alpha and IL-6 Induced by Palmitate in 3T3-L1 Adipocytes through NF-kappaB and JNK Pathway

    SHAO-LING WANG; YING EI; YING WEN; YAN-FENG CHEN; LI-XIN NA; SONG-TAO LI; CHANG-HAO SUN

    2009-01-01

    Objective To investigate the attenuating effect of curcumin, an anti-inflammatory compound derived from dietary spice turmeric (Curcuma longa) on the pro-inflammatory insulin-resistant state in 3T3-L1 adipocytes. Methods Glucose uptake rate was determined with the [3H] 2-deoxyglucose uptake method. Expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured by quantitative RT-PCR analysis and ELISA. Nuclear transcription factor kappaB p65 (NF-κB p65) and mitogen-activated protein kinase (MAPKs) were detected by Western blot assay. Results The basal glucose uptake was not altered, and curcumin increased the insulin-stimulated glucose uptake in 3T3-L1 cells. Curcumin suppressed the transcription and secretion of TNF-α and IL-6 induced by palmitate in a concentration-dependent manner. Palmitate induced nuclear translocation of NF-kB. The activities of Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase1/2 (ERK1/2) and p38MAPK decreased in the presence of curcumin. Moreover, pretreatment with SP600125 (inhibitor of JNK) instead of PD98059 or SB203580 (inhibitor of ERK 1/2 or p38MAPK, respectively) decreased the up-regulation of TNF-α induced by palmitate. Conclusion Curcumin reverses palmitate-induced insulin resistance state in 3T3-L1 adipocytes through the NF-kB and JNK pathway.

  9. Buckwheat (Fagopyrum esculentum M.) Sprout Treated with Methyl Jasmonate (MeJA) Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    Jeong-Ho Lim; Kee-Jai Park; Bo-Ra Yoon; Kui-Jin Kim; Young-Jun Lee; Ok-Hwan Lee

    2013-01-01

    Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitr...

  10. 不同程度间歇低氧对3T3-L1脂肪细胞炎性细胞因子和脂肪因子的影响%Effects of Different Degrees of Intermittent Hypoxia on Inflammatory Cytokines and Adipokines in 3T3-L1 Adipocytes

    杨庆婵; 周芹; 王彦; 何庆; 冯靖; 陈宝元

    2013-01-01

    目的:测定不同程度间歇低氧(IH)处理的3T3-L1脂肪细胞中炎性细胞因子和脂肪因子水平的变化。方法建立阻塞性睡眠呼吸暂停(OSA)模式间歇低氧/再氧合(IH/ROX)细胞模型,将分化成熟的3T3-L1脂肪细胞分为5组,即3个不同程度IH组(5%O2,7.5%O2,10%O2,编号为IH-1,IH-2,IH-3)、持续低氧(10%O2,CH)组和正常氧对照(21%O2,IN)组。采用ELISA法测定脂肪细胞上清液中肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6、瘦素和脂联素的水平,Western blot测定脂肪细胞中低氧诱导因子(HIF)-1α、葡萄糖转运蛋白(Glut)-1水平,Real-time-PCR测定脂肪细胞中HIF-1α、Glut-1、TNF-α、IL-6、瘦素、脂联素的mRNA表达水平。结果 IH组和CH组TNF-α、IL-6和瘦素蛋白及其mRNA水平均高于IN组,IH-1组TNF-α、IL-6和瘦素蛋白及瘦素mRNA水平高于IH-2、IH-3组(均P<0.05);IH组和CH组脂联素蛋白及其mRNA水平均低于IN组,IH-1组低于IH-2、IH-3组(均P<0.05)。结论OSA模式IH与脂肪细胞炎性细胞因子和脂肪因子的表达和释放有关,IH可能是脂肪细胞炎症反应的基础,参与OSA患者胰岛素抵抗的发生。%Objective To study the effect of different degrees of intermittent hypoxia (IH) on inflammatory cytokines and adipokines in 3T3-L1 adipocytes. Methods An intermittent hypoxia/reoxygenation (IH/ROX) from obstructive sleep apnea (OSA) adipocyte model was established. 3T3-L1 adipocytes were divided into five groups, three IH groups (5% O2, 7.5%O2 and 10%O2, referred to as IH-1, IH-2 and IH-3), sustained hypoxia group (10%O2, CH) and the normal oxygen control group (21%O2, IN). ELISA method was used to detect values of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), leptin and adiponectin in cell supernatant. Western blot analysis was used to detect levels of hypoxia-inducible fac-tor-1α(HIF-1α) and glucose transporter-1 (Glut

  11. Trichostatin A Modulates Thiazolidinedione-Mediated Suppression of Tumor Necrosis Factor α-Induced Lipolysis in 3T3-L1 Adipocytes

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closel...

  12. Supplementing alpha-tocopherol (vitamin E and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation

    Oller do Nascimento Claudia

    2011-02-01

    Full Text Available Abstract Background It is well known that high fat diets (HFDs induce obesity and an increase in proinflammatory adipokines. Interleukin-6 (IL-6 is considered the major inflammatory mediator in obesity. Obesity is associated with a vitamin deficiency, especially of vitamins E and D3. We examined the effects of vitamin D3 and vitamin E supplementation on levels of IL-6 and IL-10 (as a marker of anti-inflammatory cytokines since, a balance between pro- and anti-inflammatory cytokines is maintained protein expression in adipose tissue of mice provided with an HFD. Additionally, we measured the effects of vitamin E and vitamin D3 treatment on LPS-stimulated 3T3-L1 adipocytes IL-6 and IL-10 secretion. Results IL-6 protein levels and the IL-6/IL-10 ratio were decreased in epididymal white adipose tissue in groups receiving vitamins E and D3 supplementation compared to the HFD group. A 24-hour treatment of vitamin D3 and vitamin E significantly reduced the IL-6 levels in the adipocytes culture medium without affecting IL-10 levels. Conclusions Vitamin D3 and vitamin E supplementation in an HFD had an anti-inflammatory effect by decreasing IL-6 production in epididymal adipose tissue in mice and in 3T3-L1 adipocytes stimulated with LPS. Our results suggest that vitamin E and D3 supplementation can be used as an adjunctive therapy to reduce the proinflammatory cytokines present in obese patients.

  13. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production

    Groeneveld, Matthijs P; Brierley, Gemma V.; Rocha, Nuno M.; Kenneth Siddle; Semple, Robert K.

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike “common” insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a l...

  14. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

    Fazliana Mansor; Gu, Harvest F.; Claes-Göran Östenson; Louise Mannerås-Holm; Elisabet Stener-Victorin; Wan Nazaimoon Wan Mohamud

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivi...

  15. Effects of Chowiseungcheng-tang Extracts on the Preadipocytes Proliferation in 3T3-L1 cell line, Lipolysis of Adipocytes in rat, and Localized Fat Accumulation by extraction methods

    Jae-eun, Lee

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation in 3T3-L1 cell line, lipolysis of adipocytes in rat’s epididymal adipocytes and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish preadipocytes proliferation and promote lipolysis of adipocytes do primary role to reduce obesity. So, we used 3T3-L1 mouse embryo fibroblasts(preadipocytes and rat epididymal adipocytes from Sprague-Dawley rats to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation, lipolysis of adipocytes. They were treated with 0.01, 0.1, 1.0㎎/㎖ Chowiseungcheng-tang alcohol and water extracts. And for the purpose of investigating the effects of Chowiseungcheng-tang alcohol and water extracts on the localized fat accumulation, we injected 0.1, 1.0, 10.0㎎/㎖ Chowiseungcheng-tang extracts to porcine fat tissues and observed histological changes of them. Results : Following results were obtained from the preadipocytes proliferation and lipolysis of adipocytes and histological investigation of fat tissues. 1. Chowiseungcheng-tang extracts suppressed preadipocytes proliferation on the high dosage(especially 1.0㎎/㎖, and especially alcohol extracts had better effects. 2. The alcohol extracts of Chowiseungcheng-tang decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the concentrations of 0.1, 1.0㎎/㎖. Alcohol extracts had better effects than water extracts. 3. Chowiseungcheng-tang extracts increased lipolysis of adipocytes on the concentrations of 0.1, 1.0㎎/㎖, and especially on the concentration of 1.0㎎/㎖ alcohol extract of Chowiseungcheng-tang had better effect. 4. The water extract of Chowiseungcheng-tang had significant activity to the destruction of porcine fat cell membranes only on the concentration of 10.0㎎/㎖, but alcohol extracts of Chowiseungcheng-tang had it on all

  16. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway.

    Ji-Hye Lee

    Full Text Available The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD-induced obesity, we examined five groups (n = 9 of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND, 60% kcal fat diet-fed mice (HFD, HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical, HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150 and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300. During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP β, C/EBP α and peroxisome proliferation-activity receptor (PPAR γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK and acetyl-CoA carboxylase (ACC. In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a

  17. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    Kim Gon-Sup; Park Hyoung Joon; Woo Jong-Hwa; Kim Mi-Kyeong; Koh Phil-Ok; Min Wongi; Ko Yeoung-Gyu; Kim Chung-Hei; Won Chung-Kil; Cho Jae-Hyeon

    2012-01-01

    Abstract Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF) on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein...

  18. Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells.

    Hsu, Chin-Lin; Lin, Yu-Jyun; Ho, Chi-Tang; Yen, Gow-Chin

    2012-01-01

    The aim of this work was to study the effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. The results showed that garcinol and pterostilbene decreased the cell population growth and caused cell cycle arrest at the G2/M phase in 3T3-L1 preadipocytes. During adipocyte differentiation, both garcinol and pterostilbene had inhibitory effects on fat droplet formation and triacylglycerol accumulation. The data indicated that garcinol and pterostilbene could inhibit the glycerol-3-phosphate dehydrogenase (GPDH) activity by 97.8 and 61.5%, respectively, as compared to the control. Both garcinol and pterostilbene significantly attenuated the protein expressions of PPARγ and C/EBPα during 3T3-L1 adipocyte differentiation. Moreover, garcinol and pterostilbene caused an inhibition of lipid accumulation in the 3T3-L1 adipocyte differentiation phase. Garcinol and pterostilbene also significantly up-regulated the gene expression of adiponectin as well as down-regulated the gene expressions of leptin, resistin, and fatty acid synthase (FAS) in 3T3-L1 adipocyte differentiation. In 3T3-L1 adipocytes, garcinol significantly down-regulated the protein expressions of PPARγ and FAS as well as up-regulated the protein expressions of adipose triglyceride lipase (ATGL) and adiponectin. Garcinol also significantly up-regulated the gene expression of adiponectin as well as down-regulated the gene expressions of leptin and FAS. These results suggest that garcinol and pterostilbene have anti-adipogenic effects on preadipocytes and adipocytes. PMID:22094440

  19. Suppressive Effect of Long-Chain Base from Sea Cucumber Cucumaria frondosa on the Differentiation of 3T3-L1 Preadipocytes and Underlying Mechanism%叶瓜参长链碱抑制3T3-L1前脂肪细胞分化作用机制

    毛磊; 徐慧; 田迎樱; 徐杰; 王玉明; 王静凤; 薛长湖

    2015-01-01

    目的:研究叶瓜参长链碱(long-chain base from the sea cucumber Cucumariafrondosa,Cf-LCB)对3T3-L1前脂肪细胞分化的作用,并探讨其作用机制.方法:以四甲基偶氮唑蓝(methyl thiazolyl tetrazolium,MTT)法检测Cf-LCB对3T3-L1前脂肪细胞增殖活性的影响;采用传统鸡尾酒法诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞,分别采用油红O染色和甘油三酯(triglycerides,TG)含量测定法评价其对3T3-L1前脂肪细胞分化的影响;反转录实时荧光定量聚合酶链式反应(quantity real-time reverse transcript polymerase chain reaction,qRT-PCR)法检测脂肪细胞分化关键基因CCAAT增强子结合蛋白αt (CCAAT/enhancer binding protein alpha,C/EB Pα)、过氧化物酶体增殖物激活受体γ(peroxisome proliferators-activated receptors gamma,PPARγ)以及WNT/β-catenin通路关键基因WNT10b (wingless-type MMTV integration site family members)、卷曲蛋白l(frizzled protein1,FZ1)、低密度脂蛋白受体相关蛋白6 (LDL-receptor-related protein6,LRP6)和β-连环蛋白(β3-catenin)的mRNA表达水平;Western blotting法检测WNT/β-catenin通路关键基因LRP6和β-catenin的蛋白表达量.结果:Cf-LCB能显著抑制3T3-L1前脂肪细胞的增殖;抑制3T3-L1细胞脂滴形成以及C/EBPα和PPARγ mRNA表达;显著上调WNT/β-catenin通路关键基因FZ1、LRP6和β-catenin mRNA表达,对WNT10b的表达无影响;显著促进RP和β--catenin的蛋白表达,提高核内β-catenin含量.结论:Cf-LCB能够显著抑制3T3-L1前脂肪细胞分化,其作用机制与激活WNT/β-catenin通路有关.

  20. Trans-Cinnamic Acid Increases Adiponectin and the Phosphorylation of AMP-Activated Protein Kinase through G-Protein-Coupled Receptor Signaling in 3T3-L1 Adipocytes

    Christina Kopp

    2014-02-01

    Full Text Available Adiponectin and intracellular 5'adenosine monophosphate-activated protein kinase (AMPK are important modulators of glucose and fat metabolism. Cinnamon exerts beneficial effects by improving insulin sensitivity and blood lipids, e.g., through increasing adiponectin concentrations and AMPK activation. The underlying mechanism is unknown. The Gi/Go-protein-coupled receptor (GPR 109A stimulates adiponectin secretion after binding its ligand niacin. Trans-cinnamic acid (tCA, a compound of cinnamon is another ligand. We hypothesize whether AMPK activation and adiponectin secretion by tCA is transmitted by GPR signaling. Differentiated 3T3-L1 cells were incubated with pertussis toxin (PTX, an inhibitor of Gi/Go-protein-coupling, and treated with different tCA concentrations. Treatment with tCA increased adiponectin and the pAMPK/AMPK ratio (p ≤ 0.001. PTX incubation abolished the increased pAMPK/AMPK ratio and adiponectin secretion. The latter remained increased compared to controls (p ≤ 0.002. tCA treatment stimulated adiponectin secretion and AMPK activation; the inhibitory effect of PTX suggests GPR is involved in tCA stimulated signaling.

  1. Xylitol does not directly affect adiponectin productionand adipogenesis in 3T3-L1 cells

    Pilaiwan Siripurkpong

    2014-08-01

    Full Text Available Xylitol is widely used as a low-calorie sweetener in various kinds of food products, including diabetic foods. Adiponectin, secreted by adipocytes, plays a key role in carbohydrate and lipid metabolism. Low levels of plasma adiponectin are associated with cardiovascular disease and type II diabetes. The aims of this study were to determine effects of xylitol on the adipogenesis of pre-adipocytes, adiponectin synthesis and secretion. To assess adipogenesis, pre-adipocyte 3T3-L1 cells were treated with xylitol during cell differentiation and fat droplets in the mature adipocytes were stained with oil red O. Adiponectin levels were determined by Western blot in both culture media and mature adipocytes treated with xylitol. There were no significant differences in the levels of adipogenesis, adiponectin synthesis and secretion in the xylitol-treated 3T3-L1 cells compared with the untreated control cells. This suggests that xylitol does not have a direct effect on adipogenesis or on adiponectin synthesis and secretion.

  2. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells

    Kim Gon-Sup

    2012-04-01

    Full Text Available Abstract Background Obesity is a health hazard that is associated with a number of diseases and metabolic abnormalities, such as type-2 diabetes, hypertension, dyslipidemia, and coronary heart disease. In the current study, we investigated the effects of Citrus aurantium flavonoids (CAF on the inhibition of adipogenesis and adipocyte differentiation in 3T3-L1 cells. Methods During adipocyte differentiation, 3T3-L1 cells were treated with 0, 10, and 50 μg/ml CAF, and then the mRNA and protein expression of adipogenesis-related genes was assayed. We examined the effect of CAF on level of phosphorylated Akt in 3T3-L1 cells treated with CAF at various concentrations during adipocyte differentiation. Results The insulin-induced expression of C/EBPβ and PPARγ mRNA and protein were significantly down-regulated in a dose-dependent manner following CAF treatment. CAF also dramatically decreased the expression of C/EBPα, which is essential for the acquisition of insulin sensitivity by adipocytes. Moreover, the expression of the aP2 and FAS genes, which are involved in lipid metabolism, decreased dramatically upon treatment with CAF. Interestingly, CAF diminished the insulin-stimulated serine phosphorylation of Akt (Ser473 and GSK3β (Ser9, which may reduce glucose uptake in response to insulin and lipid accumulation. Furthermore, CAF not only inhibited triglyceride accumulation during adipogenesis but also contributed to the lipolysis of adipocytes. Conclusions In the present study, we demonstrate that CAF suppressed adipogenesis in 3T3-L1 adipocytes. Our results indicated that CAF down-regulates the expression of C/EBPβ and subsequently inhibits the activation of PPARγ and C/EBPα. The anti-adipogenic activity of CAF was mediated by the inhibition of Akt activation and GSK3β phosphorylation, which induced the down-regulation of lipid accumulation and lipid metabolizing genes, ultimately inhibiting adipocyte differentiation.

  3. Hydrogen sulfide promotes adipogenesis in 3T3L1 cells.

    Chin-Yi Tsai

    Full Text Available The effect of hydrogen sulfide (H2S on differentiation of 3T3L1-derived adipocytes was examined. Endogenous H2S was increased after 3T3L1 differentiation. The expression of the H2S-synthesising enzymes, cystathionine γ-lyase (CSE, cystathionine β-synthase (CBS and 3-mercaptopyruvate sulfurtransferase (3-MST, was increased in a time-dependent manner during 3T3L1 differentiation. Expression of genes associated with adipogenesis related genes including fatty acid binding protein 4 (FABP4/aP2, a key regulator of this process, was increased by GYY4137 (a slow-releasing H2S donor compound and sodium hydrosulfide (NaHS, a classical H2S donor but not by ZYJ1122 or time-expired NaHS. Furthermore expression of these genes were reduced by aminooxyacetic acid (AOAA, CBS inhibitor, DL-propargylglycine (PAG, CSE inhibitor as well as by CSE small interference RNA (siCSE and siCBS. The size and number of lipid droplets in mature adipocytes was significantly increased by both GYY4137 and NaHS, which also impaired the ability of CL316,243 (β3-agonist to promote lipolysis in these cells. In contrast, AOAA and PAG had the opposite effect. Taken together, we show that the H2S-synthesising enzymes CBS, CSE and 3-MST are endogenously expressed during adipogenesis and that both endogenous and exogenous H2S modulate adipogenesis and adipocyte maturation.

  4. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells.

    Ishii, Ikumi; Ikeguchi, Yoshihiko; Mano, Hiroshi; Wada, Masahiro; Pegg, Anthony E; Shirahata, Akira

    2012-02-01

    Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N(1)-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis. PMID:21809076

  5. Inhibitory Effects of Purple Sweet Potato Leaf Extract on the Proliferation and Lipogenesis of the 3T3-L1 Preadipocytes.

    Lee, Shou-Lun; Lee, Hsien-Kuang; Chin, Ting-Yu; Tu, Ssu-Chieh; Kuo, Ming-Hsun; Kao, Ming-Ching; Wu, Yang-Chang

    2015-01-01

    Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program. PMID:26205968

  6. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  7. 4-Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3-L1 Cells.

    Li, Yongjia; Goto, Tsuyoshi; Yamakuni, Kanae; Takahashi, Haruya; Takahashi, Nobuyuki; Jheng, Huei-Fen; Nomura, Wataru; Taniguchi, Masahiko; Baba, Kimiye; Murakami, Shigeru; Kawada, Teruo

    2016-07-01

    Adipocyte differentiation plays a pivotal role in maintaining the production of small-size adipocytes with insulin sensitivity, and impaired adipogenesis is implicated in insulin resistance. 4-Hydroxyderricin (4-HD), a phytochemical component of Angelica keiskei, possesses diverse biological properties such as anti-inflammatory, antidiabetic, and antitumor. In the present study, we investigated the effects of 4-HD on adipocyte differentiation. 4-HD promoted lipid accumulation in 3T3-L1 cells, upregulated both peroxisome proliferator-activated receptor (PPAR)-γ mRNA and protein expression, and acted as a ligand for PPARγ in the luciferase assay. Moreover, 4-HD increased the mRNA and protein expression levels of adiponectin. Additionally, it promoted insulin-dependent glucose uptake into 3T3-L1 adipocytes and increased Akt phosphorylation and glucose transporter (GLUT) 4 mRNA expression. In summary, these findings suggest that 4-HD, which promoted adipogenesis and insulin sensitivity in 3T3-L1 cells, might be a phytochemical with potent insulin-sensitizing effects. PMID:27098252

  8. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription. PMID:26189725

  9. Neu-p11 ameliorates insulin resisitance in 3T3-L1 adipocytes based on ATGL/HSL and its underlying mechanism%ATGL/HSL角度下解析Neu-p11改善胰岛素抵抗作用机制

    王平平; 佘美华; Laudon Moshe; 尹卫东

    2013-01-01

    Aim To explore the possible role of adipose tissue triglyceride enzyme ( ATGL ) and hormonesensitive lipase ( HSL ) in high glucose and insulin ( HGI ) - induced insulin resistance in 3T3-L1 adipocytes and the underlying mechanisms. Methods 3T3-L1 adipocytes were administered with HGI for 24 h to induce insulin resistance. Glucose uptake and the quantitative determination of triglycerides were designed for detection indicators. Protein expressions were detected by Western blot. Results HGI incubating resulted in decreased insulin-stimulated glucose uptake and a significant increase in TG content in fat cells, with a concomitant decrease in ATGL and HSL protein expression. The Neu-p11 intervention reversed the effects of HGI on fat cells, while luzindole counteracted the effect of Neu-pll. Conclusions Neu-p11 might inhibit TG deposition in insulin-resistant 3T3-L1 adipocytes via MT2 receptor -dependent manner, at least in part by increasing triglyceride hydrolysis, resulting from enhancing ATGL and HSL levels.%目的 探讨脂肪组织甘油三酯酶(adipose triglyceride lipase,ATGL)及激素敏感性脂肪酶(hormone-sensitive lipase,HSL)在褪黑素非选择性受体激动剂Neu-p11改善高糖高胰岛素(high glucose and insulin,HGI)诱导的3T3-L1脂肪细胞胰岛素抵抗(insulin resistance,IR)中的作用及机制.方法 培养3T3-L1脂肪细胞,HGI诱导IR模型.以葡萄糖消耗量及细胞内甘油三酯(triglyceride,TG)定量测定作为检测指标,Western blot检测蛋白水平的表达情况.结果 HGI孵育减少脂肪细胞葡萄糖摄取,促进细胞内TG积聚,同时伴有ATGL及HSL的蛋白表达下调.Neu-p11干预逆转了HGI对脂肪细胞的作用效应,而MT2竞争性拮抗剂luzindole却拮抗了Neu-p11的上述效应.结论 Neu-p11以MT2受体依赖性方式抑制IR脂肪细胞TG沉积,可能与其上调ATGL、HSL蛋白的表达,促进TG水解相关.

  10. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  11. High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes

    We studied the effect of extracellular Ca2+ concentration ([Ca2+]e) on adipocyte differentiation. Preadipocytes exposed to continuous [Ca2+]e higher than 2.5 mmol/l accumulated little or no cytoplasmic lipid compared to controls in 1.8 mmol/l [Ca2+]e. Differentiation was monitored by Oil Red O staining of cytoplasmic lipid and triglyceride assay of accumulated lipid, by RT-PCR analysis of adipogenic markers, and by the activity of glycerol-3-phosphate dehydrogenase (GPDH). Elevated [Ca2+]e inhibited expression of peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, and steroid regulatory binding element protein. High [Ca2+]e significantly inhibited differentiation marker expression including adipocyte fatty acid binding protein, and GPDH. The decrease in Pref-1 expression that accompanied differentiation also was prevented by high [Ca2+]e. Treatment of 3T3-L1 cells with high [Ca2+]e did not significantly affect cell number or viability and did not trigger apoptosis. Levels of intracellular Ca+2 remained unchanged in various [Ca2+]e. Treatment of 3T3-L1 with pertussis toxin (PTX) partially restored lipid accumulation and increased differentiation markers in cells treated with 5 mmol/l [Ca2+]e. 'Classical' parathyroid cell Ca2+ sensing receptors (CaSR) were not detected either by RT-PCR or by Western blotting. These results suggest that continuos exposure to high [Ca2+]e inhibits preadipocyte differentiation and that this may involve a G-protein-coupled mechanism mediated by a novel Ca2+ sensor or receptor

  12. Xylitol does not directly affect adiponectin productionand adipogenesis in 3T3-L1 cells

    Pilaiwan Siripurkpong; Sompoch Prajan; Sudawadee Kongkhum

    2014-01-01

    Xylitol is widely used as a low-calorie sweetener in various kinds of food products, including diabetic foods. Adiponectin, secreted by adipocytes, plays a key role in carbohydrate and lipid metabolism. Low levels of plasma adiponectin are associated with cardiovascular disease and type II diabetes. The aims of this study were to determine effects of xylitol on the adipogenesis of pre-adipocytes, adiponectin synthesis and secretion. To assess adipogenesis, pre-adipocyte 3T3-L1 cel...

  13. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

    Jang, Byeong-Churl

    2016-08-01

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. PMID:27246736

  14. THE COMBINED EFFECTS OF CATECHINS AND CAFFEINE ON CELLULAR PROLIFERATION AND LIPID METABOLISM IN 3T3-L1 CELLS%儿茶素和咖啡碱组合对3T3-L1细胞增殖及脂肪代谢的影响

    郑国栋; 邱阳阳; 张清峰; 徐峰

    2013-01-01

    目的 研究对儿茶素和咖啡碱对3T3-L1细胞的增殖及脂肪代谢的影响.方法 采用四甲基偶氮唑盐比色法(MTT)检测对3T3-L1细胞增殖的影响;3T3-L1细胞诱导分化8d后,对各组细胞进行油红O染色并测定细胞内甘油三酯(TG)含量;细胞分化12d后,添加儿茶素和咖啡碱组合或同时添加去甲肾上腺素(NA)作用24h,分析各组细胞内脂肪分解.结果 儿茶素能明显抑制3T3-L1细胞的增殖;儿茶素和咖啡碱组合能明显抑制3T3-L1细胞分化后,细胞内TG的沉积,且在相同儿茶素浓度下,咖啡碱浓度越高抑制效果越明显.咖啡碱明显提高NA诱导成熟脂肪细胞脂解的能力,且呈剂量效应关系.结论 儿茶素和咖啡碱组合能够抑制脂肪细胞增殖和甘油三酯积聚,咖啡碱促进激素诱导脂肪细胞中脂肪分解.%Objective To investigate the combined effects of catechins and caffeine on cells proliferation and lipid metabolism in 3T3-L1 cells. Method MTT colorimetry was used to detect the effects of catechins and caffeine combination on the proliferation of 3T3-L1 cells. The differentiation of 3T3-L1 cells was induced for 8 d, then the adipocytes were stained by oil Red O, and the level of triglyceride (TG) was measured. The lipolytic effect of catechins and caffeine combination in presence or absence of noradrenaline (NA) for 24 h on 3T3-L1 cells was analyzed on the 12 th day after differentiation. Results Catechins significantly inhibited 3T3-L1 cells proliferation. Catechins and caffeine combination remarkably decreased TG accumulation after differentiation of 3T3-L1 cells, and the higher caffeine concentration was better when combined with the same catechins dose. Caffeine significantly improved NA-induced lipolysis in mature adipocytes. Conclusion Catechins and caffeine combination might inhibit cells proliferation and TG accumulation in 3T3-L1 cells. Caffeine promotes hormone-induced lipolysis in adipocytes.

  15. Estrogen Sulfotransferase Inhibits Adipocyte Differentiation

    Wada, Taira; Ihunnah, Chibueze A.; Gao, Jie; Chai, Xiaojuan; Zeng, Su; Philips, Brian J.; Rubin, J. Peter; Marra, Kacey G.; Xie, Wen

    2011-01-01

    The estrogen sulfotransferase (EST) is a phase II drug-metabolizing enzyme known to catalyze the sulfoconjugation of estrogens. EST is highly expressed in the white adipose tissue of male mice, but the role of EST in the development and function of adipocytes remains largely unknown. In this report, we showed that EST played an important role in adipocyte differentiation. EST was highly expressed in 3T3-L1 preadipocytes and primary mouse preadipocytes. The expression of EST was dramatically r...

  16. The 3T3-L1 adipocyte glycogen proteome

    Stapleton, David; Nelson, Chad; Parsawar, Krishna; Flores-Opazo, Marcelo; McClain, Donald; Parker, Glendon

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellula...

  17. Salicortin-Derivatives from Salix pseudo-lasiogyne Twigs Inhibit Adipogenesis in 3T3-L1 Cells via Modulation of C/EBPα and SREBP1c Dependent Pathway

    Hong Pyo Kim; Young Choong Kim; Sang Hyun Sung; Eun Ju Jeong; Jimmy Kang; Heejung Yang; Sang Hoon Lee; Mina Lee

    2013-01-01

    Obesity is reported to be associated with excessive growth of adipocyte mass tissue as a result of increases in the number and size of adipocytes differentiated from preadipocytes. To search for anti-adipogenic phytochemicals, we screened for inhibitory activities of various plant sources on adipocyte differentiation in 3T3-L1 preadipocytes. Among the sources, a methanolic extract of Salix pseudo-lasiogyne twigs (Salicaceae) reduced lipid accumulation in a concentration-dependent manner. Duri...

  18. Exogenous Sodium Pyruvate Stimulates Adipogenesis of 3T3-L1 Cells.

    Hwang, Ji-Sun; Kim, Song-Yi; Jung, Eun-Hye; Kwon, Mi-Youn; Kim, Kyoung-Hong; Cho, Hyeongjin; Han, Inn-Oc

    2016-01-01

    We investigated the effects of exogenous sodium pyruvate (SP) on adipocyte differentiation, lipid accumulation, and the mRNA expression levels of adipogenesis-related genes in 3T3-L1 pre-adipocytes. Differentiation of pre-adipocytes was induced by MDI (3-isobutyl-1-methylxanthine: IBMX, dexamethasone: DEX, and insulin), in the presence or absence of SP. Adipogenesis was stimulated by SP in a concentration-dependent manner. SP also induced the expression of genes encoding aP2, GLUT4, and adiponectin, but had no effect on cell proliferation. Exogenous glucose did not promote adipogenesis or lipid accumulation. 2-deoxy-D-glucose inhibited adipogenesis initiated by MDI, but failed to influence the effects of SP on adipogenesis, whereas 3-bromopyruvate inhibited adipogenesis regardless of whether SP was present. The pro-adipogenic properties of SP were limited to the early events of adipogenesis. To determine whether SP mimics the adipogenic action of dexamethasone or insulin, we examined the effects of SP on adipogenesis with combinations of IBMX, DEX, and insulin. SP did not improve incomplete lipid accumulation observed in cells grown under IBMX-, DEX-, or insulin-free conditions. Insulin-stimulated ERK1/2 phosphorylation was diminished by SP, while phosphorylation of Akt was increased, correlating with increased glucose uptake in response to insulin. We also observed that SP stimulated immediate early expression of C/EBPβ and C/EBPδ. The PPARγ antagonist GW9662 inhibited adipogenesis. Our findings highlight the adipogenic function of exogenous SP by stimulating early events of adipogenesis. PMID:26053972

  19. 3T3-L1前脂肪细胞在功能性成分评价中的应用%Application of 3T3-L1 Preadipocytes in the Evaluation of Functional Components:A Review of the Literature

    蔡教英; 刘姚; 王文君; 杨武英

    2011-01-01

    The anomaly of adipocyte proliferation and differentiation plays a key role in the development of obesity,cardiovascular disease and non-insulin-dependent diabetes.3T3-L1 preadipocyte is a well-accepted model cell for study on adipogenesis.Recently the proliferation and differentiation of adipocytes have become a hot research topic.In this paper,the in vitro culture of 3T3-L1 preadipocyte,mechanisms regulating 3T3-L1 preadipocyte proliferation and differentiation and the application thereof in the evaluation of functional components are reviewed with the purpose to provide some references for the prevention and therapy of obesity and diabetes mellitus.%脂肪细胞的增殖与分化异常是导致人类肥胖、心血管疾病和Ⅱ型糖尿病等的发生的主要原因,而3T3-L1前脂肪细胞是国际上公认的研究脂肪代谢的细胞模型,因此脂肪细胞的增殖与分化已成为研究的热点。本文主要论述3T3-L1前脂肪细胞的体外培养、增殖与分化及调控及其在功能性成分的评价中的应用,以期为预防和治疗肥胖及糖尿病等并发症提供一定的理论参考。

  20. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells

    Ishii, Ikumi; Ikeguchi, Yoshihiko; Mano, Hiroshi; Wada, Masahiro; Pegg, Anthony E.; Shirahata, Akira

    2011-01-01

    Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on a...

  1. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Mohamad Hafizi Abu Bakar; Mohamad Roji Sarmidi; Cheng Kian Kai; Hasniza Zaman Huri; Harisun Yaakob

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (p...

  2. Kibizu concentrated liquid suppresses the accumulation of lipid droplets in 3T3-L1 cells.

    Inoue, Chisato; Kozaki, Tomomi; Morita, Yukiko; Shirouchi, Bungo; Fukami, Katsuya; Shimizu, Kuniyoshi; Sato, Masao; Katakura, Yoshinori

    2015-08-01

    Adipocyte size is closely related to the occurrence of diabetes, metabolic syndrome, and insulin resistance. Thus, researchers are searching for active substances that function to reduce adipocyte size. In the present study, we focused on sugar cane vinegar, Kibizu, and evaluated the function of Kibizu to reduce adipocyte size by using an in vitro model system, because people in Amami Oshima famous for longevity regularly consume Kibizu. Results showed that Kibizu treatment significantly reduced the size and number of lipid droplets in 3T3-L1 cells, relative to treatment with Kurozu, another traditional vinegar. Results of an extraction experiment suggest that the active components in Kibizu are lipophilic and hydrophobic. In addition, an in vivo experiment on rats treated with Kibizu showed that the active components were contained in large vein blood. Results of an additional in vivo experiment suggest that metabolites generated by Kibizu-treated rats are primarily contained or modified specifically in the large vein blood. PMID:25672941

  3. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE, a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH, a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ, CCAAT/enhancer binding protein-alpha (C/EBP-α, fatty acid synthase (FAS, lipoprotein lipase (LPL, and fatty acid binding protein 4 (FABP4. Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.

  4. Dynamics of protein secretion during adipocyte differentiation.

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Muroya, Susumu; Nishimura, Takanori

    2016-08-01

    The major functions of adipocytes include both lipid storage and the production of secretory factors. However, the type of proteins released from mouse 3T3-L1 cells during adipocyte differentiation remains poorly understood. We examined the dynamics of secreted proteins during adipocyte differentiation using mass spectrometry (MS) combined with an iTRAQ (®) labeling method that enables the simultaneous analysis of relative protein expression levels. A total of 215 proteins were identified and quantified from approximately 10 000 MS/MS spectra. Of these, approximately 38% were categorized as secreted proteins based on gene ontology classification. Adipokine secretion levels were increased with the progression of differentiation. By contrast, levels of fibril collagen components, such as subunits of type I and III collagens, were decreased during differentiation. Basement membrane components attained their peak levels at day 4 when small lipid droplets accumulated in differentiated 3T3-L1 cells. Simultaneously, peak levels of collagen microfibril components that comprise type V and VI collagen subunits were also observed. Our data demonstrated that extracellular matrix components were predominantly released during the early and middle stages of adipocyte differentiation, with a subsequent increase in the secretion of adipokines. This suggests that 3T3-L1 cells secrete adipokines after their ECM is constructed during adipocyte differentiation. PMID:27516960

  5. Inhibitory potential of rambutan seeds extract and fractions on adipogenesis in 3T3-L1 cell line

    Sylvia Soeng; Endang Evacuasiany; Wahyu Widowati; Nurul Fauziah; Visi Tinta Manik; Maesaroh Maesaroh

    2015-01-01

    Objective: Type 2 diabetes is a global health problem with increasing prevalence related to several conditions; one of these is due to obesity. Rambutan (Nephelium lappaceum L) seeds contain various phenolic compounds. The present study was designed to evaluate the phytochemical content and the inhibitory potential of rambutan seeds extract and fractions on glucose-6-phosphate dehydrogenase (G6PDH), and #945;-glucosidase, and triglyceride activities ex vivo in 3T3-L1 cell line (pre-adipocyte...

  6. Blockage of PPARδ increases the expression of inflammatory factors in 3T3-L1 cells stimulated with TNFα

    ZHANG Li-li; ZHU Zhi-ming; CAO Ting-bing; WANG Li-juan

    2006-01-01

    Objective: To investigate the role of peroxisome proliferator-activated receptors δ (PPARδ)in inflammatory reaction and its possible mechanism in adipocyte. Methods:Lentivirus-mediated RNA interference (RNAi) was used to block the expression of PPARδ in 3T3-L1 cells. In order to induce inflammation in 3T3-L1, cells were stimulated with tumor necrosis factor-α(TNFα, 20 ng/ml) for 4 h. The expression of PPARδ, nuclear factor κB (NFκB) and C reactive protein (CRP) were determined by Western blot analysis. Results:The expression of PPARδ was reduced by 80% after RNAi. Blockage of PPARδ promoted the expression of CRP and NFκB in cells stimulated with TNFα, but had no effect on normal cells. Conclusion: PPARδ is involved in inflammatory reaction in adipocyte. Blockage of PPARδ can promote the inflammation mediated by inflammatory factors and increase the expression of NFκB and CRP in 3T3-L1 cells stimulated with TNFα.

  7. A Quantified Ginseng (Panax ginseng C.A. Meyer Extract Influences Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Chia-Rou Yeo

    2011-01-01

    Full Text Available A Panax ginseng extract (PGE with a quantified amount of ginsenosides was utilized to investigate its potential to inhibit proliferation, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Seven fingerprint ginsenosides were quantified using high performance liquid chromatography and their respective molecular weights were further confirmed via LC-ESI-MS analysis from four different extraction methods. Extraction using methanol under reflux produced significantly higher amounts of ginsenosides. The methanol extract consisted of Rg1 (47.40 ± 4.28 mg/g, dry weight of extract, Re (61.62 ± 5.10 mg/g, Rf (6.14 ± 0.28 mg/g, Rb1 (21.73 ± 1.29 mg/g, Rc (78.79 ± 4.15 mg/g, Rb2 (56.80 ± 3.79 mg/g, Rd (5.90 ± 0.41 mg/g. MTT analysis showed that PGE had a concentrationdependent cytotoxic effect on 3T3-L1 preadipocyte and the LC50 value was calculated to be 18.2 ± 5 μg/mL. Cell cycle analysis showed minimal changes in all four phases. Differentiating adipocytes treated with ginseng extract had a visible decrease in lipid droplets formation measured by Oil red O staining. Consequently, triglycerides levels in media significantly (P < 0.05 decreased by 39.5% and 46.1% when treated at concentrations of 1 μg/mL and 10 μg/mL compared to untreated control cells. Western blot analysis showed that the adiponectin protein expression was significantly (P < 0.05 increased at 10 μg/mL, but not at 1 μg/mL. A quantified PGE reduced the growth of 3T3-L1 cells, down-regulated lipid accumulation and up-regulated adiponectin expression in the 3T3-L1 adipocyte cell model.

  8. Effects of extrogenous hydrogen sulfide on the expression of glucose transporter 4 in 3T3-L1 adipocytes with insulin resistance%外源性硫化氢对胰岛素抵抗脂肪细胞葡萄糖转运体4表达的影响

    杨非柯; 刘竞芳; 陈伟; 何新平; 卢桂静

    2014-01-01

    目的 观察外源性硫化氢(H2S)对3T3-L1脂肪细胞胰岛素抵抗(IR)的影响,并探讨其机制.方法 用高糖高胰岛素培养3T3-L1脂肪细胞,建立IR细胞模型,外源性H2S供体NaHS(10-5、10-4和10-3 mol/L)处理IR 3T3-L1细胞12、24和48 h.MTT法检测细胞活力,葡萄糖氧化酶法检测培养液中的葡萄糖消耗量,2-脱氧-[3H]-D-葡萄糖摄入法检测葡萄糖的摄取.实时定量PCR和Western blot检测葡萄糖转运体4(Glut4)的表达.结果 与对照组比较,IR模型组细胞葡萄糖消耗和摄取量以及Glut4 mRNA和蛋白的表达显著降低(均为P<0.05).与对照组比较,所有浓度的NaHS均未影响细胞活力.与IR模型组比较,NaHS(10-4和10-3 mol/L)处理24和48 h显著增加细胞葡萄糖消耗和摄取量以及Glut4 mRNA和蛋白的表达(均P<0.05).结论 外源性H2S改善了高糖高胰岛素诱导的脂肪细胞的IR,其机制可能与H2S上调Glut4的表达有关.

  9. Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate isolated from the leaves of Andrographis lineata.Wall. ex. Nees suppress adipogenesis in 3T3-L1 preadipocytes for type 2 diabetes.

    Deepa, Vijayakumar Sudarshana; Rajaram, Krishnasamy; Sureshkumar, Periyasamy

    2015-03-01

    The present investigation elucidates the isolation and characterization of bioactive compound from the ethanolic leaf extract of Andrographis lineata (EtALL) which suppress the differentiation of 3T3-L1 adipocytes. The ethanolic leaf extract was subjected to bioassay guided fractionation in 3T3-L1 cell lines. Five fractions were isolated from the EtALL extract by column chromatography. All the Fractions (I-V) along with EtALL were screened for adipogenesis activity (Oil-Red-O staining).The fraction which showed maximum adipogenesis activity was purified by thin layer chromatography. The bioactive Fraction IV was found to have maximum adipogenic (96.83%) activity and the activity was comparable to Rosiglitazone. The spectroscopic data analysis reveals that, the isolated bioactive compound was Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate (DTδT), a combination of truxillic and truxinic acid derivative. DTδT showed insulin mimicking (131.2%), sensitizing (810.02%) and adipogenic activity (80.23%). Hence our present study concluded that, Dimethyl 3, 3', 4, 4'-tetrahydroxy-δ-truxinate isolated from the ethanolic leaf extract of Andrographis lineata stimulates glucose uptake, potentiates insulin-stimulated glucose in 3T3-L1 adipocytes without increasing adiposity. PMID:25730801

  10. CCAAT/enhancer-binding protein-β participates in oxidized LDL-enhanced proliferation in 3T3-L1 cells.

    Santangelo, Carmela; Varì, Rosaria; Scazzocchio, Beatrice; Filesi, Carmelina; D'Archivio, Massimo; Giovannini, Claudio; Masella, Roberta

    2011-09-01

    Increased circulating oxidized LDL (oxLDL) have been found in obese subjects. Obesity is characterized by an excess of fat mass resulting from an increase in adipocyte number and size. The generation of new adipocytes is a tightly controlled process where multiple factors acting in a signaling cascade follow a precise temporal expression pattern; oxLDL appear to have a role in the impairment of this process. The purpose of this study was to examine the effects of oxLDL on the mechanisms involved in the proliferative stage of the differentiation process in 3T3-L1 cells. After hormonal induction, 3T3-L1 cells undergo approximately two rounds of mitotic clonal expansion (MCE), a process required for adipogenesis. CCAAT/enhancer-binding protein β (C/EBPβ) is immediately expressed after induction, and plays a crucial role in MCE, but its expression must decrease to allow preadipocytes to mature into adipocytes. We found that, in the presence of stimuli to differentiate, oxLDL induced a higher proliferation rate in this cell line, associated with a sustained up-regulation of C/EBPβ, which remained activated inside the nucleus for several days. RNAi-mediated knockdown of C/EBPβ 24 h after oxLDL treatment counteracted the increase in proliferation rate. Both C/EBPβ expression and proliferation processes appear to be influenced by cAMP/protein kinase A (PKA) and extracellular signal-regulated kinases1/2 (ERK1/2) pathways. OxLDL treatment led to increased levels of cAMP, and to a strong, prolonged phosphorylation of ERK1/2 and C/EBPβ. The addition of cAMP and PKA inhibitors, SQ22536 and H-89, respectively, reduced proliferation only in oxLDL-treated cells, whereas the addition of ERK1/2 inhibitor U0126 blocked proliferation in both control and oxLDL-treated cells. C/EBPβ nuclear expression and DNA-binding activity were reduced by U0126, under all tested conditions. These findings show that the altered expression pattern of C/EBPβ is involved in the increase in the

  11. DNA Topoisomerase IIα contributes to the early steps of adipogenesis in 3T3-L1 cells.

    Jacobsen, Rhîan G; Mazloumi Gavgani, Fatemeh; Mellgren, Gunnar; Lewis, Aurélia E

    2016-10-01

    DNA topoisomerases (Topo) are multifunctional enzymes resolving DNA topological problems such as those arising during DNA replication, transcription and mitosis. Mammalian cells express 2 class II isoforms, Topoisomerases IIα (Topo IIα) and IIβ (Topo IIβ), which have similar enzymatic properties but are differently expressed, in dividing and pluripotent cells, and in post-mitotic and differentiated cells respectively. Pre-adipocytes re-enter the cell cycle prior to committing to their differentiation and we hypothesised that Topo II could contribute to these processes. We show that Topo IIα expression in 3T3-L1 cells is induced within 16h after the initiation of the differentiation programme, peaks at 24h and rapidly declines thereafter. In contrast Topo IIβ was present both in pre-adipocytes and throughout differentiation. Inhibition of PI3K with LY294002, known to prevent adipocyte differentiation, consistently reduced the expression of Topo IIα, whereas a clear effect on Topo IIβ was not apparent. In addition, inhibition of mTOR with rapamycin also reduced the protein levels of Topo IIα. Using specific class IA PI3K catalytic subunit inhibitors, we show that p110α inhibition with A66 has the greatest reduction of Topo IIα expression and of differentiation, as measured by triglyceride storage. The timing of Topo IIα expression coincides with the mitotic clonal expansion (MCE) phase of differentiation and inhibition of Topo II with ICRF-187 during this stage decreased PPARγ1 and 2 protein levels and triglyceride storage, whereas inhibition later on has little impact. Moreover, the addition of ICRF-187 had no effect on the incorporation of EdU during S-phase at day 1 but lowered the relative cell numbers on day 2. ICRF-187 also induced an increase in the centri/pericentromeric heterochromatin localisation of Topo IIα, indicating a role for Topo IIα at these locations during MCE. In summary, we present evidence that Topo IIα plays an important role

  12. TNF-α Induces Caspase-1 Activation Independently of Simultaneously Induced NLRP3 in 3T3-L1 Cells.

    Furuoka, Mana; Ozaki, Kei-Ichi; Sadatomi, Daichi; Mamiya, Sayaka; Yonezawa, Tomo; Tanimura, Susumu; Takeda, Kohsuke

    2016-12-01

    The intracellular cysteine protease caspase-1 is critically involved in obesity-induced inflammation in adipose tissue. A substantial body of evidence from immune cells, such as macrophages, has shown that caspase-1 activation depends largely on a protein complex, called the NLRP3 inflammasome, which consists of the NOD-like receptor (NLR) family protein NLRP3, the adaptor protein ASC, and caspase-1 itself. However, it is not fully understood how caspase-1 activation is regulated within adipocytes upon inflammatory stimuli. In this study, we show that TNF-α-induced activation of caspase-1 is accompanied by robust induction of NLRP3 in 3T3-L1 adipocytes but that caspase-1 activation may not depend on the NLRP3 inflammasome. Treatment of 3T3-L1 cells with TNF-α induced mRNA expression and activation of caspase-1. Although the basal expression of NLRP3 and ASC was undetectable in unstimulated cells, TNF-α strongly induced NLRP3 expression but did not induce ASC expression. Interestingly, inhibitors of the ERK MAP kinase pathway strongly suppressed NLRP3 expression but did not suppress the expression and activation of caspase-1 induced by TNF-α, suggesting that NLRP3 is dispensable for TNF-α-induced caspase-1 activation. Moreover, we did not detect the basal and TNF-α-induced expression of other NLR proteins (NLRP1a, NLRP1b, and NLRC4), which do not necessarily require ASC for caspase-1 activation. These results suggest that TNF-α induces caspase-1 activation in an inflammasome-independent manner in 3T3-L1 cells and that the ERK-dependent expression of NLRP3 may play a role independently of its canonical role as a component of inflammasomes. J. Cell. Physiol. 231: 2761-2767, 2016. © 2016 Wiley Periodicals, Inc. PMID:26989816

  13. Insulin like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation

    Zhang, Hongbin; Nøhr, Jane; Jensen, Charlotte Harken;

    2003-01-01

    cells was reported to inhibit adipocyte differentiation. Here we show that efficient and regulated processing of Pref-1 occurs in 3T3-L1 preadipocytes releasing most of the extracellular domain as a 50-kDa heterogeneous protein, previously isolated and characterized as FA1. Unexpectedly, we found that...... forced expression of the soluble form, FA1, or full-length Pref-1 did not inhibit adipocyte differentiation of 3T3-L1 cells when differentiation was induced by standard treatment with methylisobutylxanthine, dexamethasone, and high concentrations of insulin. However, forced expression of either form of...

  14. In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum in 3T3-L1 cells and mice.

    Mariadhas Valan Arasu

    Full Text Available Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.

  15. Platycodon grandiflorum A. De Candolle Ethanolic Extract Inhibits Adipogenic Regulators in 3T3-L1 Cells and Induces Mitochondrial Biogenesis in Primary Brown Preadipocytes.

    Kim, Hye-Lin; Park, Jinbong; Park, Hyewon; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; Jeong, Mi-Young; Um, Jae-Young

    2015-09-01

    This study was designed to evaluate the effects of Platycodon grandiflorum A. DC. ethanolic extract (PG) on obesity in brown/white preadipocytes. The effect of PG on the differentiation and mitochondrial biogenesis of brown adipocytes is still not examined. An in vivo study showed that PG induced weight loss in mice with high-fat-diet-induced obesity. PG successfully suppressed the differentiation of 3T3-L1 cells by down-regulating cellular induction of the peroxisome proliferators activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα), lipin-1, and adiponectin but increasing expression of silent mating type information regulation 2 homologue 1 (SIRT1) and the phosphorylation of AMP-activated protein kinase α (AMPKα). The effect of PG on the adipogenic factors was compared with that of its bioactive compound platycodin D. In addition, PG increased expressions of mitochondria-related genes, including uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor-coactivator 1 α (PGC1α), PR domain containing 16 (PRDM16), SIRT3, nuclear respiratory factor (NRF), and cytochrome C (CytC) in primary brown adipocytes. These results indicate that PG stimulates the differentiation of brown adipocytes through modulation of mitochondria-related genes and could offer clinical benefits as a supplement to treat obesity. PMID:26244589

  16. Inhibitory potential of rambutan seeds extract and fractions on adipogenesis in 3T3-L1 cell line

    Sylvia Soeng

    2015-03-01

    Full Text Available Objective: Type 2 diabetes is a global health problem with increasing prevalence related to several conditions; one of these is due to obesity. Rambutan (Nephelium lappaceum L seeds contain various phenolic compounds. The present study was designed to evaluate the phytochemical content and the inhibitory potential of rambutan seeds extract and fractions on glucose-6-phosphate dehydrogenase (G6PDH, and #945;-glucosidase, and triglyceride activities ex vivo in 3T3-L1 cell line (pre-adipocytes for an antidiabetic and antidiapogenesis agent screening. Methods: Phytochemical analysis was performed using modified Farnsworth method. Cytotoxicity or cell viability of rambutan seed extracts (distillated ethanol 70% and fractions (hexane, ethyl acetate, butanol and water fractions were assayed using MTS (3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium assay. Triglyceride (TG level, G6PDH and and #945;-glucosidase acitivity and inhibitory activities were determined by commercial assay kits. Results: Extract and fractions of rambutan seed contained alkaloid, terpenoid, triterpenoid and phenol; flavonoid, tannin, saponin and steroid were undetected. The lowest cytotoxic activity and safe substances on 3T3-L1 cell were rambutan seed extract and hexane fraction. Rambutan seed extract at the dose of 50 and micro;g/ml was the most active to lower G6PDH and and #945;-glucosidase as well as TG level. Conclusion: Rambutan seed extract and hexane fraction have the phytochemical bioactive content to posses inhibitory potential on G6PDH and and #945;-glucosidase as well as TG level in the present experimental set of 3T3-L1 cell lines. [J Exp Integr Med 2015; 5(1.000: 55-60

  17. Ginseng (Panax quinquefolius Reduces Cell Growth, Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Chia-Rou Yeo

    2011-01-01

    Full Text Available An American ginseng (Panax quinquefolius extract (GE that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 μg g−1, dry weight, Re (8280.4 ± 792.3 μg g−1, Rb1 (1585.8 ± 86.8 μg g−1, Rc (32.9 ± 8 μg g−1, Rb2 (62.6 ± 10.6 μg g−1 and Rd (90.4 ± 3.2 μg g−1. The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 μg ml−1. Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P<.05 in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P<.05 increased after 48 h (3.2 ± 1.0% compared to untreated control cells (1.5 ± 0.1%. Lipid acquisition was significantly reduced (P<.05 by 13 and 22% when treated at concentrations of 20.2 and 40.3 μg ml−1 compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P<.05 increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model.

  18. Salicortin-Derivatives from Salix pseudo-lasiogyne Twigs Inhibit Adipogenesis in 3T3-L1 Cells via Modulation of C/EBPα and SREBP1c Dependent Pathway

    Hong Pyo Kim

    2013-08-01

    Full Text Available Obesity is reported to be associated with excessive growth of adipocyte mass tissue as a result of increases in the number and size of adipocytes differentiated from preadipocytes. To search for anti-adipogenic phytochemicals, we screened for inhibitory activities of various plant sources on adipocyte differentiation in 3T3-L1 preadipocytes. Among the sources, a methanolic extract of Salix pseudo-lasiogyne twigs (Salicaceae reduced lipid accumulation in a concentration-dependent manner. During our search for anti-adipogenic constituents from S. pseudo-lasiogyne, five salicortin derivatives isolated from an EtOAc fraction of this plant and bearing 1-hydroxy-6-oxo-2-cyclohexene-carboxylate moieties, namely 2′,6′-O-acetylsalicortin (1, 2′-O-acetylsalicortin (2, 3′-O-acetylsalicortin (3, 6′-O-acetylsalicortin (4, and salicortin (5, were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, 2′,6′-O-acetylsalicortin (1 had the most potent inhibitory activity on adipocyte differentiation, with an IC50 value of 11.6 μM, and it significantly down-regulated the expressions of CCAAT/enhancer binding protein α (C/EBPα and sterol regulatory element binding protein 1 (SREBP1c. Furthermore, 2′,6′-O-acetylsalicortin (1 suppressed mRNA expression levels of C/EBPβ during the early stage of adipocyte differentiation and stearoyl coenzyme A desaturase 1 (SCD-1, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS expression, target genes of SREBP1c. In the present study, we demonstrate that the anti-adipogenesis mechanism of 2′,6′-O-acetylsalicortin (1 may be mediated via down-regulation of C/EBPα and SREBP1c dependent pathways. Through their anti-adipogenic activity, salicortin derivatives may be potential novel therapeutic agents against obesity.

  19. Ginseng and Its Active Components Ginsenosides Inhibit Adipogenesis in 3T3-L1 Cells by Regulating MMP-2 and MMP-9

    Jaeho Oh; Hyunghee Lee; Dongmin Park; Jiwon Ahn; Soon Shik Shin; Michung Yoon

    2012-01-01

    The growth and development of adipose tissue are believed to require adipogenesis, angiogenesis, and extracellular matrix remodeling. As our previous study revealed that ginseng reduces adipose tissue mass in part by decreasing matrix metalloproteinase (MMP) activity in obese mice, we hypothesized that adipogenesis can be inhibited by ginseng and its active components ginsenosides (GSs). Treatment of 3T3-L1 adipocytes with Korean red ginseng extract (GE) inhibited lipid accumulation and the e...

  20. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.

    Yin, Lei; Yu, Kevin Shengyang; Lu, Kun; Yu, Xiaozhong

    2016-04-01

    Benzyl butyl phthalate (BBP) has been known to induce developmental and reproductive toxicity. However, its association with dysregulation of adipogenesis has been poorly investigated. The present study aimed to examine the effect of BBP on the adipogenesis, and to elucidate the underlying mechanisms using the 3T3-L1 cells. The capacity of BBP to promote adipogenesis was evaluated by multiple staining approaches combined with a High Content Cellomics analysis. The dynamic changes of adipogenic regulatory genes and proteins were examined, and the metabolite profile was identified using GC/MC based metabolomic analysis. The High Content analysis showed BBP in contrast with Bisphenol A (BPA), a known environmental obesogen, increased lipid droplet accumulation in a similar dose-dependent manner. However, the size of the lipid droplets in BBP-treated cells was significantly larger than those in cells treated with BPA. BBP significantly induced mRNA expression of transcriptional factors C/EBPα and PPARγ, their downstream genes, and numerous adipogenic proteins in a dose and time-dependent manner. Furthermore, GC/MC metabolomic analysis revealed that BBP exposure perturbed the metabolic profiles that are associated with glyceroneogenesis and fatty acid synthesis. Altogether, our current study clearly demonstrates that BBP promoted the differentiation of 3T3-L1 through the activation of the adipogenic pathway and metabolic disturbance. PMID:26820058

  1. Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase.

    Li, Shuijie; Bouzar, Célia; Cottet-Rousselle, Cécile; Zagotta, Ivana; Lamarche, Frédéric; Wabitsch, Martin; Tokarska-Schlattner, Malgorzata; Fischer-Posovszky, Pamela; Schlattner, Uwe; Rousseau, Denis

    2016-06-01

    Resveratrol is attracting much interest because of its potential to decrease body weight and increase life span, influencing liver and muscle function by increasing mitochondrial mass and energy expenditure. Even though resveratrol was already shown to reduce the adipose tissue mass in animal models, its effects on mitochondrial mass and network structure in adipocytes have not yet been studied. For this purpose, we investigated the effect of resveratrol on mitochondrial mass increase and remodeling during adipogenic differentiation of two in vitro models of adipocyte biology, the murine 3T3-L1 cell line and the human SGBS cell strain. We confirm that resveratrol inhibits lipogenesis in differentiating adipocytes, both mouse and human. We further show that this is linked to inhibition of the normally observed mitochondrial mass increase and mitochondrial remodeling. At the molecular level, the anti-lipogenic effect of resveratrol seems to be mediated by a blunted expression increase and an inhibition of acetyl-CoA carboxylase (ACC). This is one of the consequences of an inhibited insulin-induced signaling via Akt, and maintained signaling via AMP-activated protein kinase. The anti-lipogenic effect of resveratrol is further modulated by expression levels of mitochondrial ATAD3, consistent with the emerging role of this protein as an important regulator of mitochondrial biogenesis and lipogenesis. Our data suggest that resveratrol acts on differentiating preadipocytes by inhibiting insulin signaling, mitochondrial biogenesis, and lipogenesis, and that resveratrol-induced reduction of mitochondrial biogenesis and lipid storage contribute to adipose tissue weight loss in animals and humans. PMID:26968895

  2. Identification and characterization of an immunophilin expressed during the clonal expansion phase of adipocyte differentiation.

    Yeh, W C; Li, T K; Bierer, B E; McKnight, S L

    1995-01-01

    Mouse 3T3-L1 cells differentiate into fat-laden adipocytes in response to a cocktail of adipogenic hormones. This conversion process occurs in two discrete steps. During an early clonal expansion phase, confluent 3T3-L1 cells proliferate and express the products of the beta and delta members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. The cells subsequently arrest mitotic growth, induce the expression of the alpha form of C/EBP, and acquire the morphology of...

  3. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  4. Cyclin-dependent Kinase Inhibitor, p21WAF1/CIP1, Is Involved in Adipocyte Differentiation and Hypertrophy, Linking to Obesity, and Insulin Resistance*S⃞

    Inoue, Noriyuki; Yahagi, Naoya; Yamamoto, Takashi; Ishikawa, Mayumi; Watanabe, Kazuhisa; Matsuzaka, Takashi; Nakagawa, Yoshimi; Takeuchi, Yoshinori; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Hasty, Alyssa H.; Toyoshima, Hideo; Yamada, Nobuhiro; Shimano, Hitoshi

    2008-01-01

    Both adipocyte hyperplasia and hypertrophy are determinant factors for adipocyte differentiation during the development of obesity. p21WAF1/CIP1, a cyclin-dependent kinase inhibitor, is induced during adipocyte differentiation; however, its precise contribution to this process is unknown. Using both in vitro and in vivo systems, we show that p21 is crucial for maintaining adipocyte hypertrophy and obesity-induced insulin resistance. The absence of p21 in 3T3-L1 fibroblasts ...

  5. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce;

    2014-01-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mech...

  6. The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation

    Prostek, Adam; Gajewska, Małgorzata; Kamola, Dariusz; Bałasińska, Bożena

    2014-01-01

    Background EPA and DHA have been reported to have anti-obesity and anti-inflammatory properties. Recent studies revealed that these positive actions of n-3 PUFA at least partially are connected with their influence on metabolism and secretory functions of the adipose tissue. However, their impact on old adipocytes is still poorly understood. Therefore the aim of the present study was to evaluate the influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cel...

  7. In Vitro and In Vivo Enhancement of Adipogenesis by Italian Ryegrass (Lolium multiflorum) in 3T3-L1 Cells and Mice

    Valan Arasu, Mariadhas; Ilavenil, Soundharrajan; Kim, Da Hye; Gun Roh, Sang; Lee, Jeong-Chae; Choi, Ki Choon

    2014-01-01

    Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM trea...

  8. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular β-catenin protein

    The Wnt/β-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/β-catenin signaling pathway. BIM increased β-catenin responsive transcription (CRT) and up-regulated intracellular β-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor γ (PPARγ) and CAATT enhancer-binding protein α (C/EBPα) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of β-catenin protein in 3T3-L1 preadipocyte cells

  9. Evidence that downregulation of hexose transport limits intracellular glucose in 3T3-L1 fibroblasts

    Measurements of initial glucose entry rate and intracellular glucose concentration in cultured cells are difficult because of rapid transport relative to intracellular volume and a substantial extracellular space from which glucose cannot be completely removed by quick exchanges of medium. In 3T3-L1 cells, we obtained good estimates of initial entry of [14C]methylglucose and D-[14C]glucose with (1) L-[3H]glucose as an extracellular marker together with the [14C]glucose or [14C]methylglucose in the substrate mixture, (2) sampling times as short as 2 s, (3) ice-cold phloretin-containing medium to stop uptake and rinse away the extracellular label, and (4) nonlinear regression of time courses. Methylglucose equilibrated in two phases--the first with a half-time of 1.7 s and the second with a half-time of 23 s; it eventually equilibrated in an intracellular space of 8 microliters/mg protein. Entry of glucose remained almost linear for 10 s, making its transport kinetics easier to study (Km = 5.7 mM, Vmax = 590 nmol.s-1.ml-1 cell water). Steady-state intracellular glucose concentration was 75-90% of extracellular glucose concentration. Cells grown in a high-glucose medium (24 mM) exhibited a 67% reduction of glucose-transport activity and a 50% reduction of steady-state ratio of intracellular glucose to extracellular glucose

  10. CREB Activation Induces Adipogenesis in 3T3-L1 Cells

    Reusch, Jane E.B.; Colton, Lilliester A.; Klemm, Dwight J.

    2000-01-01

    Obesity is the result of numerous, interacting behavioral, physiological, and biochemical factors. One increasingly important factor is the generation of additional fat cells, or adipocytes, in response to excess feeding and/or large increases in body fat composition. The generation of new adipocytes is controlled by several “adipocyte-specific” transcription factors that regulate preadipocyte proliferation and adipogenesis. Generally these adipocyte-specific factors are expressed only follow...

  11. Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation

    Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRα in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRα and ERRα-related transcriptional coactivators, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and PGC-1β, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRα-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARγ, and PGC-1α in 3T3-L1 cells in the adipogenesis medium. ERRα and PGC-1β mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRα in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRα may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes

  12. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    Yang Jiao; Jingying Zhang; Lunjie Lu; Jiaying Xu; Liqiang Qin

    2016-01-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Us...

  13. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    Yang Jiao

    2016-02-01

    Full Text Available The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05. Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ and glucose transporter type 4 (GLUT4 expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  14. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro.

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-02-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling. PMID:26907332

  15. High-Speed Microdialysis-Capillary Electrophoresis Assays for Measuring Branched Chain Amino Acid Uptake in 3T3-L1 cells.

    Harstad, Rachel K; Bowser, Michael T

    2016-08-16

    We have developed a high-throughput microdialysis-capillary electrophoresis (MD-CE) assay for monitoring branched chain amino acid (BCAA) uptake/release dynamics in 3T3-L1 cells. BCAAs (i.e., isoleucine, leucine, and valine) and their downstream metabolites (i.e., alanine, glutamine, and glutamate) are important indicators of adipocyte lipogenesis. To perform an analysis, amino acids were sampled using microdialysis, fluorescently labeled in an online reaction, separated using CE, and detected using laser-induced fluorescence (LIF) in a sheath flow cuvette. Separation conditions were optimized for the resolution of the BCAAs isoleucine, leucine, and valine, as well as 13 other amino acids, including ornithine, alanine, glutamine, and glutamate. CE separations were performed in <30 s, and the temporal resolution of the online MD-CE assay was <60 s. Limits of detection (LOD) were 400, 200, and 100 nM for isoleucine, leucine, and valine, respectively. MD-CE dramatically improved throughput in comparison to traditional offline CE methods, allowing 8 replicates of 15 samples (i.e., 120 analyses) to be assayed in <120 min. The MD-CE assay was used to assess the metabolism dynamics of 3T3-L1 cells over time, confirming the utility of the assay. PMID:27398773

  16. A Herbal Formula HT048, Citrus unshiu and Crataegus pinnatifida, Prevents Obesity by Inhibiting Adipogenesis and Lipogenesis in 3T3-L1 Preadipocytes and HFD-Induced Obese Rats

    Yoon Hee Lee

    2015-05-01

    Full Text Available HT048 is a combination composed of Crataegus pinnatifida leaf and Citrus unshiu peel extracts. This study aimed to investigate potential anti-obesity effect of the combination. The 3T3-L1 adipocytes were treated with different doses of HT048 and triglyceride accumulation, glycerol release and adipogenesis-related genes were analyzed. For in vivo study, male Sprague Dawley rats were divided according to experimental diets: the chow diet group, the high-fat diet (HFD group, the HFD supplemented with orlistat group, the HFD supplemented with HT048 group (0.2% or 0.4% for 12 weeks. We measured the body weight, serum lipid levels and the expression of genes involved lipid metabolism. HT048 treatment dose-dependently suppressed adipocyte differentiation and stimulated glycerol release. The expressions of PPARγ and C/EBPα mRNA were decreased by HT048 treatment in adipocytes. HT048 supplementation significantly reduced the body and fat weights in vivo. Serum lipid levels were significantly lower in the HT048 supplemented groups than those of the HFD group. Expression of the hepatic lipogenesis-related genes were decreased and expression of the β-oxidation-related genes were increased in rats fed HT048 compared to that of animals fed HFD. These results suggest that HT048 has a potential benefit in preventing obesity through the inhibition of lipogenesis and adipogenesis.

  17. A Herbal Formula HT048, Citrus unshiu and Crataegus pinnatifida, Prevents Obesity by Inhibiting Adipogenesis and Lipogenesis in 3T3-L1 Preadipocytes and HFD-Induced Obese Rats.

    Lee, Yoon Hee; Kim, Young-Sik; Song, Mikyung; Lee, Minsu; Park, Juyeon; Kim, Hocheol

    2015-01-01

    HT048 is a combination composed of Crataegus pinnatifida leaf and Citrus unshiu peel extracts. This study aimed to investigate potential anti-obesity effect of the combination. The 3T3-L1 adipocytes were treated with different doses of HT048 and triglyceride accumulation, glycerol release and adipogenesis-related genes were analyzed. For in vivo study, male Sprague Dawley rats were divided according to experimental diets: the chow diet group, the high-fat diet (HFD) group, the HFD supplemented with orlistat group, the HFD supplemented with HT048 group (0.2% or 0.4%) for 12 weeks. We measured the body weight, serum lipid levels and the expression of genes involved lipid metabolism. HT048 treatment dose-dependently suppressed adipocyte differentiation and stimulated glycerol release. The expressions of PPARγ and C/EBPα mRNA were decreased by HT048 treatment in adipocytes. HT048 supplementation significantly reduced the body and fat weights in vivo. Serum lipid levels were significantly lower in the HT048 supplemented groups than those of the HFD group. Expression of the hepatic lipogenesis-related genes were decreased and expression of the β-oxidation-related genes were increased in rats fed HT048 compared to that of animals fed HFD. These results suggest that HT048 has a potential benefit in preventing obesity through the inhibition of lipogenesis and adipogenesis. PMID:26016552

  18. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick;

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gamma...

  19. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    Sagara, Chiaki; Takahashi, Katsuhiko [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan); Kagechika, Hiroyuki [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan); Takahashi, Noriko, E-mail: t-noriko@hoshi.ac.jp [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  20. Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow

    Huang Hai-Yan

    2010-05-01

    Full Text Available Abstract Background Adipocyte hyperplasia is associated with obesity and arises due to adipogenic differentiation of resident multipotent stem cells in the vascular stroma of adipose tissue and remote stem cells of other organs. The mechanistic characterization of adipocyte differentiation has been researched in murine pre-adipocyte models (i.e. 3T3-L1 and 3T3-F442A, revealing that growth-arrest pre-adipocytes undergo mitotic clonal expansion and that regulation of the differentiation process relies on the sequential expression of three key transcription factors (C/EBPβ, C/EBPα and PPARγ. However, the mechanisms underlying adipocyte differentiation from multipotent stem cells, particularly human mesenchymal stem cells (hBMSCs, remain poorly understood. This study investigated cell cycle regulation and the roles of C/EBPβ, C/EBPα and PPARγ during adipocyte differentiation from hBMSCs. Results Utilising a BrdU incorporation assay and manual cell counting it was demonstrated that induction of adipocyte differentiation in culture resulted in 3T3-L1 pre-adipocytes but not hBMSCs undergoing mitotic clonal expansion. Knock-down and over-expression assays revealed that C/EBPβ, C/EBPα and PPARγ were required for adipocyte differentiation from hBMSCs. C/EBPβ and C/EBPα individually induced adipocyte differentiation in the presence of inducers; PPARγ alone initiated adipocyte differentiation but the cells failed to differentiate fully. Therefore, the roles of these transcription factors during human adipocyte differentiation are different from their respective roles in mouse. Conclusions The characteristics of hBMSCs during adipogenic differentiation are different from those of murine cells. These findings could be important in elucidating the mechanisms underlying human obesity further.

  1. Study of oleanolic acid on the estrodiol production and the fat production of mouse preadipocyte 3T3-L1 in vitro.

    Wan, Qian; Lu, Hua; Liu, Xia; Yie, Shangmian; Xiang, Junbei; Yao, Zouying

    2015-01-01

    The women during the menopause period have an increased tendency for the obesity, which represents the more fat production than during the premenopausal period. Although this is not beneficial overall, it could provide a compensatory source for the estrogen production for the menopausal women. So it would be meaningful to find an agent that could inhibit the fat production while does not disturb the total estrogen production by fat tissues. In the present study, the effect of oleanolic acid (OA) on the fat production and the total estrogen production of the differentiating mouse preadipocyte 3T3-L1 as well as the mechanisms behind those effects were preliminarily investigated. The cell line 3T3-L1 was chosen as the model cell because it is usually used for the research about the obesity. During the induced differentiation of 3T3-L1 cells, cells were intervened continuously with OA. The fat production was determined with the oil red staining assay and the total estrogen production was measured with the ELISA assay. Finally, the expression patterns for important genes of the fat production and the estrogen production were studied, respectively with the real-time fluorescence quantitative PCR (qPCR). The results showed that for the differentiating 3T3-L1 cells, OA could significantly inhibit the fat production and did not disturb the total estrogen production significantly. In the mechanism studies, OA was found to significantly down-regulate ACC, the key gene for fat synthesis, which could explain the inhibitory effect of OA on the fat production; OA was also found to significantly up-regulate CYP11A1, CYP17, CYP19, the key genes for the estrogen synthesis and significantly down-regulate CYP1A1, the key gene for the estrogen decomposition, which preliminarily explained the lack of the effect of OA on the total estrogen production. In conclusion, OA was found able to inhibit the fat production while maintaining the total estrogen level and the mechanisms for the above

  2. Activation of liver X receptors prevents statin-induced death of 3T3-L1 preadipocytes

    Madsen, Lise; Petersen, Rasmus K; Steffensen, Knut R; Pedersen, Lone M; Hallenborg, Philip; Ma, Tao; Frøyland, Livar; Døskeland, Stein Ove; Gustafsson, Jan-Ake; Kristiansen, Karsten

    2008-01-01

    The biological functions of liver X receptors (LXRs) alpha and beta have primarily been linked to pathways involved in fatty acid and cholesterol homeostasis. Here we report a novel role of LXR activation in protecting cells from statin-induced death. When 3T3-L1 preadipocytes were induced to...... of LXRalpha, we demonstrate that the response to LXR agonists is LXR-dependent. Interestingly, LXR-mediated rescue of statin-induced apoptosis was not related to up-regulation of genes previously shown to be involved in the antiapoptotic action of LXR. Furthermore, forced expression of Bcl-2 did not...... prevent statin-induced apoptosis; nor did LXR action depend on protein kinase B, whose activation by insulin was impaired in statin-treated cells. Rather, LXR-dependent rescue of statin-induced apoptosis in 3T3-L1 preadipocytes required NF-kappaB activity, since expression of a dominant negative version...

  3. Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation.

    Choi, Y; Um, S J; Park, T

    2013-06-01

    Indole-3-carbinol (I3C), a natural product of Brassica vegetables such as broccoli and cabbage, inhibits proliferation and induces apoptosis in various cancer cells. I3C has recently received attention as a possible anti-obesity agent. However, how I3C interacts with specific targets in the pathways involved in obesity and metabolic disorders is unknown. Silent mating type information regulation 2 homolog 1 (SIRT1), a NADþ-dependent deacetylase sirtuin, has recently emerged as a novel therapeutic target for metabolic diseases. Herein, we report that I3C is a potent, specific SIRT1 activator efficacious in cultured 3T3-L1 cell lines. A pull-down assay showed that I3C binds to SIRT1. To assess the significance of this binding, we determined whether I3C could activate SIRT1 deacetylase activity in a cell-free system. We found that I3C binds to SIRT1 and activates SIRT1 deacetylase activity in 3T3-L1 cells. In addition, I3C did not inhibit adipocyte differentiation in 3T3-L1 cells in which SIRT1 was knockdowned. Further, reverse transcriptase polymerase chain reaction analysis showed that I3C treatment reduced mRNA levels of adipogenic genes that encode for C/EBPa, PPARg2, FAS, and aP2 in 3T3-L1 cells but not in SIRT1 knockdown cells. Overall, these results suggested that I3C ameliorates adipogenesis by activating SIRT1 in 3T3-L1 cells. PMID:22986685

  4. Differentiation of preadipocytes and mature adipocytes requires PSMB8.

    Arimochi, Hideki; Sasaki, Yuki; Kitamura, Akiko; Yasutomo, Koji

    2016-01-01

    The differentiation of adipocytes is tightly regulated by a variety of intrinsic molecules and also by extrinsic molecules produced by adjacent cells. Dysfunction of adipocyte differentiation causes lipodystrophy, which impairs glucose and lipid homeostasis. Although dysfunction of immunoproteasomes causes partial lipodystrophy, the detailed molecular mechanisms remain to be determined. Here, we demonstrate that Psmb8, a catalytic subunit for immunoproteasomes, directly regulates the differentiation of preadipocytes and additionally the differentiation of preadipocytes to mature adipocytes. Psmb8(-/-) mice exhibited slower weight gain than wild-type mice, and this was accompanied by reduced adipose tissue volume and smaller size of mature adipocytes compared with controls. Blockade of Psmb8 activity in 3T3-L1 cells disturbed the differentiation to mature adipocytes. Psmb8(-/-) mice had fewer preadipocyte precursors, fewer preadipocytes and a reduced ability to differentiate preadipocytes toward mature adipocytes. Our data demonstrate that Psmb8-mediated immunoproteasome activity is a direct regulator of the differentiation of preadipocytes and their ultimate maturation. PMID:27225296

  5. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway.

    Hyoung Joon Park

    Full Text Available This study assessed the effects of Coprinus comatus cap (CCC on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ. Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the

  6. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Ching Sheng, Chu; Ki Rok, Kwon; Tae Jin, Rhim; Dong Heui, Kim

    2008-01-01

    Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper ...

  7. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation of...... adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein in the...... regulation of white versus brown adipocyte differentiation in vitro and possibly in vivo. Here we summarize the current knowledge on the retinoblastoma protein in fat cells, with particular emphasis on its potential role in adipocyte lineage commitment and differentiation....

  8. Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation

    Vaishali I. Parekh

    2015-01-01

    Full Text Available Lipoma in patients with the multiple endocrine neoplasia type 1 (MEN1 syndrome is a type of benign fat-cell tumor that has biallelic inactivation of MEN1 that encodes menin and could serve as a model to investigate normal and pathologic fat-cell (adipocyte proliferation and function. The role of menin and its target genes in adipocytes is not known. We used in vitro differentiation to derive matched normal and menin-deficient adipocytes from wild type (WT and menin-null (Men1-KO mouse embryonic stem cells (mESCs, respectively, or 3T3-L1 cells without or with menin knockdown to investigate cell size, lipid content, and gene expression changes. Adipocytes derived from Men1-KO mESCs or after menin knockdown in 3T3-L1 cells showed a 1.5–1.7-fold increase in fat-cell size. Global gene expression analysis of mESC-derived adipocytes showed that lack of menin downregulated the expression of many differentially methylated genes including the tumor suppressor long noncoding RNA Meg3 but upregulated gene expression from the prolactin gene family locus. Our results show that menin deficiency leads to fat-cell hypertrophy and provide model systems that could be used to study the regulation of fat-cell size.

  9. Microsomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes

    Love, Joseph D.; Suzuki, Takashi; Robinson, Delia B.; Harris, Carla M.; Johnson, Joyce E.; Mohler, Peter J.; Jerome, W. Gray; Swift, Larry L.

    2015-01-01

    Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expr...

  10. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Saray Quintero-Fabián; Daniel Ortuño-Sahagún; Manuel Vázquez-Carrera; Rocío Ivette López-Roa

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory ef...

  11. Re-expression of GATA2 Cooperates with Peroxisome Proliferator-activated Receptor-γ Depletion to Revert the Adipocyte Phenotype*S⃞

    Schupp, Michael; Cristancho, Ana G; Lefterova, Martina I.; Hanniman, Elyisha A.; Briggs, Erika R.; Steger, David J; Qatanani, Mohammed; Curtin, Joshua C.; Schug, Jonathan; Ochsner, Scott A.; McKenna, Neil J; Lazar, Mitchell A.

    2009-01-01

    Nuclear peroxisome proliferator-activated receptor-γ (PPARγ) is required for adipocyte differentiation, but its role in mature adipocytes is less clear. Here, we report that knockdown of PPARγ expression in 3T3-L1 adipocytes returned the expression of most adipocyte genes to preadipocyte levels. Consistently, down-regulated but not up-regulated genes showed strong enrichment of PPARγ binding. Surprisingly, not all adipocyte genes were reversed, and the adipocyte morpho...

  12. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism. PMID:26174858

  13. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  14. Effects of yerba maté, a plant extract formulation ("YGD") and resveratrol in 3T3-L1 adipogenesis.

    Santos, Juliana C; Gotardo, Erica M F; Brianti, Mitsue T; Piraee, Mahmood; Gambero, Alessandra; Ribeiro, Marcelo L

    2014-01-01

    We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana), and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis. PMID:25338179

  15. Oxidised LDL up-regulate CD36 expression by the Nrf2 pathway in 3T3-L1 preadipocytes.

    D'Archivio, Massimo; Scazzocchio, Beatrice; Filesi, Carmela; Varì, Rosaria; Maggiorella, Maria Teresa; Sernicola, Leonardo; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2008-06-25

    The effect of oxLDL on CD36 expression has been assessed in preadipocytes induced to differentiate. Novel evidence is provided that oxLDL induce a peroxisome proliferator-activated receptor gamma-independent CD36 overexpression, by up-regulating nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). The nuclear translocation of Nrf2 appeared to depend on PKC pathway activation. In adipocytes, the CD36 up-regulation may indicate a compensation mechanism to meet the demand of excess oxLDL and oxidised lipids in blood, reducing the risk of atherogenesis. Besides strengthening the hypothesis that oxLDL can contribute to the onset of insulin-resistance, data herein presented highlight the significance of oxLDL-induced CD36 overexpression within the cellular defence response. PMID:18514070

  16. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells

    Fromm-Dornieden Carolin

    2012-03-01

    Full Text Available Abstract Background Control of translation allows for rapid adaptation of the cell to stimuli, rather than the slower transcriptional control. We presume that translational control is an essential process in the control of adipogenesis, especially in the first hours after hormonal stimulation. 3T3-L1 preadipocytes were cultured to confluency and adipogenesis was induced by standard protocols using a hormonal cocktail. Cells were harvested before and 6 hours after hormonal induction. mRNAs attached to ribosomes (polysomal mRNAs were separated from unbound mRNAs by velocity sedimentation. Pools of polysomal and unbound mRNA fractions were analyzed by microarray analysis. Changes in relative abundance in unbound and polysomal mRNA pools were calculated to detect putative changes in translational activity. Changes of expression levels of selected genes were verified by qPCR and Western blotting. Results We identified 43 genes that shifted towards the polysomal fraction (up-regulated and 2 genes that shifted towards free mRNA fraction (down-regulated. Interestingly, we found Ghrelin to be down-regulated. Up-regulated genes comprise factors that are nucleic acid binding (eIF4B, HSF1, IRF6, MYC, POLR2a, RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, TSC22d3, form part of ribosomes (RPL18, RPL27a, RPL6, RPL7a, RPS18, RPSa, act on the regulation of translation (eIF4B or transcription (HSF1, IRF6, MYC, TSC22d3. Others act as chaperones (BAG3, HSPA8, HSP90ab1 or in other metabolic or signals transducing processes. Conclusions We conclude that a moderate reorganisation of the functionality of the ribosomal machinery and translational activity are very important steps for growth and gene expression control in the initial phase of adipogenesis.

  17. Antibody against the insulin receptor causes disappearance of insulin receptors in 3T3-L1 cells: a possible explanation of antibody-induced insulin resistance.

    Grunfeld, C.

    1984-01-01

    The effect of a rabbit antibody induced against the rat insulin receptor (RAR) was tested using cultured 3T3-L1 fat cells. As previously seen with antibodies against the insulin receptor from patients with the type B syndrome of insulin resistance and acanthosis nigricans, RAR acutely mimicked the action of insulin by stimulating deoxyglucose uptake. After prolonged exposure of 3T3-L1 cells to RAR, insulinomimetic activity was lost and the cells became resistant to the action of insulin. This...

  18. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    Chang Hwa Jung

    2015-06-01

    Full Text Available Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz, a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ and CCAAT/enhanced binding protein alpha (C/EBPα. Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4 from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1, a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1. The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  19. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity

    Lu Sumei

    2012-01-01

    Full Text Available Abstract Background Obesity is known to be associated with higher risks of cardiovascular disease, metabolic syndrome, and diabetes mellitus. Thyroid-stimulating hormone (TSHR is the receptor for thyroid-stimulating hormone (TSH, or thyrotropin, the key regulator of thyroid functions. The expression of TSHR, once considered to be limited to thyrocytes, has been so far detected in many extrathyroidal tissues including liver and fat. Previous studies have shown that TSHR expression is upregulated when preadipocytes differentiate into mature adipocytes, suggestive of a possible role of TSHR in adipogenesis. However, it remains unclear whether TSHR expression in adipocytes is implicated in the pathogenesis of obesity. Methods In the present study, TSHR expression in adipose tissues from both mice and human was analyzed, and its association with obesity was evaluated. Results We here showed that TSHR expression was increased at both mRNA and protein levels when 3T3-L1 preadipocytes were induced to differentiate. Knockdown of TSHR blocked the adipocyte differentiation of 3T3-L1 preadipocytes as evaluated by Oil-red-O staining for lipid accumulation and by RT-PCR analyses of PPAR-γ and ALBP mRNA expression. We generated obesity mice (C57/BL6 by high-fat diet feeding and found that the TSHR protein expression in visceral adipose tissues from obesity mice was significantly higher in comparison with the non-obesity control mice (P Conclusion Taken together, these results suggested that TSHR is an important regulator of adipocyte differentiation. Dysregulated expression of TSHR in adipose tissues is associated with obesity, which may involve a mechanism of excess adipogenesis.

  20. Differentiation of Pre-Adipocytes in Modelled Microgravity

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  1. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows

  2. Inhibitory effects of compounds isolated from the dried branches and leaves of murta (Myrceugenia euosma) on lipid accumulation in 3T3-L1 cells.

    Oikawa, Naoki; Nobushi, Yasuhito; Wada, Taira; Sonoda, Kumiko; Okazaki, Yuzo; Tsutsumi, Shigetoshi; Park, Yong Kun; Kurokawa, Masahiko; Shimba, Shigeki; Yasukawa, Ken

    2016-07-01

    As obesity is a global health concern the demand for anti-obesity drugs is high. In this study, we investigated the anti-obesity effect of the dried branches and leaves of murta (Myrceugenia euosma Legrand, Myrtaceae). A methanol extract of the dried branches and leaves of murta inhibited adipogenesis in 3T3-L1 cells. Three known flavanones-cryptostrobin (1), pinocembrin (4), and 5,7-dihydroxy-6,8-dimethylflavanone (6), and three chalcones-2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (2), pinostrobin chalcone (3), and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethylchalcone (5) were isolated from the active fraction. Structures of these compounds were identified using various spectral data. Each of these compounds also inhibited adipogenesis in 3T3-L1 cells. In particular, compound 3 was a more potent inhibitor of triglyceride accumulation than the positive control berberine. Gene expression studies revealed that treatment of 3T3-L1 cells with 3 lowers the expression levels of CCAAT/enhancer-binding protein α and peroxisome proliferator activator γ2 during adipogenesis without affecting cell viability. Treatment of 3T3-L1 cells with 3 reduced the expression levels of mRNAs encoding sterol regulatory element-binding protein 1c and several lipogenic enzymes, including fatty acid synthase and stearoyl CoA desaturase-1. These results indicate that the methanol extract and compounds isolated from the dried branches and leaves of murta exert their anti-obesity effects through the inhibition of adipogenesis. PMID:26880616

  3. A Quantified Ginseng (Panax ginseng C.A. Meyer) Extract Influences Lipid Acquisition and Increases Adiponectin Expression in 3T3-L1 Cells

    Chia-Rou Yeo; Chen Yang; Ting-Yan Wong; Popovich, David G.

    2011-01-01

    A Panax ginseng extract (PGE) with a quantified amount of ginsenosides was utilized to investigate its potential to inhibit proliferation, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Seven fingerprint ginsenosides were quantified using high performance liquid chromatography and their respective molecular weights were further confirmed via LC-ESI-MS analysis from four different extraction methods. Extraction using methanol under reflux produced significantly higher ...

  4. Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype.

    Longo, Michele; Spinelli, Rosa; D'Esposito, Vittoria; Zatterale, Federica; Fiory, Francesca; Nigro, Cecilia; Raciti, Gregory A; Miele, Claudia; Formisano, Pietro; Beguinot, Francesco; Di Jeso, Bruno

    2016-06-01

    Adipocyte differentiation is critical in obesity. By controlling new adipocyte recruitment, adipogenesis contrasts adipocyte hypertrophy and its adverse consequences, such as insulin resistance. Contrasting data are present in literature on the effect of endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR) on adipocyte differentiation, being reported to be either necessary or inhibitory. In this study, we sought to clarify the effect of ER stress and UPR on adipocyte differentiation. We have used two different cell lines, the widely used pre-adipocyte 3T3-L1 cells and a murine multipotent mesenchymal cell line, W20-17 cells. A strong ER stress activator, thapsigargin, and a pathologically relevant inducer of ER stress, glucosamine (GlcN), induced ER stress and UPR above those occurring in the absence of perturbation and inhibited adipocyte differentiation. Very low concentrations of 4-phenyl butyric acid (PBA, a chemical chaperone) inhibited only the overactivation of ER stress and UPR elicited by GlcN, leaving unaltered the part physiologically activated during differentiation, and reversed the inhibitory effect of GlcN on differentiation. In addition, GlcN stimulated proinflammatory cytokine release and PBA prevented these effects. An inhibitor of NF-kB also reversed the effects of GlcN on cytokine release. These results indicate that while ER stress and UPR activation is "physiologically" activated during adipocyte differentiation, the "pathologic" part of ER stress activation, secondary to a glucotoxic insult, inhibits differentiation. In addition, such a metabolic insult, causes a shift of the preadipocyte/adipocyte population towards a proinflammatory phenotype. PMID:26940722

  5. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  6. MiR-21a-5p suppresses bisphenol A-induced pre-adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK.

    Xie, Xiuwen; Song, Jia; Li, Gang

    2016-04-22

    Childhood obesity is a metabolic disease characterized by accumulation of excessive fat. Bisphenol A (BPA), a potential obesogen compound, possesses an estrogen mimetic activity and endocrine disruption effect. MicroRNA-21a-5p (miR-21a-5p) is reported to regulate the adipogenic differentiation. Our study showed that miR-21a-5p overexpression significantly decreased the red lipid droplets and triglyceride level in BPA-induced 3T3-L1 cells. BPA induced the mRNA and protein expression levels of PPARγ, C/EBPα and adiponectin, and the induction was inhibited by miR-21a-5p mimics transfection. MiR-21a-5p mimics inhibited the GR activity, GR phosphorylation (S220, S21a-5p2, and S234), and the activation of p38/MAPK pathway, which are elevated by BPA treatment in 3T3-L1 cells. MiR-21a-5p overexpression inhibited the protein level of MKK3, but not in the mRNA level. Luciferase activity assay showed that miR-21a-5p directly targeted map2k3 3'-UTR. MKK3 overexpression attenuated the effect of miR-21a-5p mimics transfection on 3T3-L1 differentiation. We also assessed the body weight, fat mass and the content of serum lipid in rats subcutaneous injected with BPA and miR-21a-5p mimics. MiR-21a-5p overexpression attenuated BPA-induced obesity in vivo. These findings suggested that miR-21a-5p inhibited BPA induced adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK in 3T3-L1 cells, providing a potential therapeutic strategy for BPA induced obesity. PMID:26996129

  7. Adipogenesis stimulates the nuclear localization of EWS with an increase in its O-GlcNAc glycosylation in 3T3-L1 cells

    Li, Qiang; Kamemura, Kazuo, E-mail: k_kamemura@nagahama-i-bio.ac.jp

    2014-07-18

    Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation.

  8. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  9. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei, E-mail: hongfeixia@yahoo.com.cn; Ma, Xu

    2012-08-15

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  10. 大鼠AQP7基因重组腺病毒载体的构建及其在3T3-L1脂肪细胞中的表达%Construction of rat AQP7 recombinant adenovirus vector and its expression in 3T3-L1 cells

    潘伟; 谷雪梅; 沈飞霞

    2012-01-01

    目的:构建携带大鼠AQP7基因的腺病毒载体,并检测其在3T3-L1脂肪细胞中的表达.方法:采用RT-PCR方法,从大鼠脂肪组织中扩增克隆大鼠AQP7基因,插入到穿梭质粒中获得重组质粒pDC316-AQP7.PCR、酶切鉴定后,重组穿梭质粒和骨架质粒经脂质体2000转染293细胞出毒产生重组腺病毒.经PCR进行鉴定,转染293细胞扩增并纯化,半数组织培养感染剂量(TCID 50)方法测定腺病毒滴度.体外转染分化成熟的3T3-L1细胞,用Western blot方法检测AQP7的表达水平.结果:PCR、酶切及测序证实重组穿梭质粒构建正确.同时成功构建AQP7重组腺病毒,并制备出高滴度的病毒保存液,可以有效转染3T3-L1细胞.结论:成功构建了含大鼠AQP7基因的重组腺病毒载体且其可以在3T3-L1细胞中有效表达,为今后更好地研究AQP7在肥胖发生发展过程中的调控机制奠定了基础.%Objective: To construct the recombinant adenovius vector carrying rat AQP7 and transfect the 3T3-L1 cells. Methods: The full cDNA sequence was obtained from rat adipose tissue using RT-PCR. The AQP7 gene was inserted into pDC316 shuttle plasid in order to produce recombinant pDC316-AQP7. After the identification of PCR,restriction endonuclease digestion and sequencing, the recombinant pDC316-AQP7 shuttle plasid coinfected with rescue plasmid into 293 cells by Lipofectamine 2000. The recombinant adenovirus vector (Ad5-AQP7) was confirmed by PCR, and then amplified in 293 cells and purified. The titer was used 50% tissue culture infective dose (TC1D) assay. 3T3-L1 cells were transfected with Ad5-AQP7 and the expression of AQP7 gene was detected with Western blot. Results: PCR, restrition endonuclease digestion and sequencing analysis confirmed the construction of pDC316-AQP7 shuttle plasmid.Recombinant adenovius with high titer was produced and could express efficiently in 3T3-L1 cells. Conclusion: Recombinant adenovirus vector earring rat AQP7 gene (Ad5-AQP7

  11. Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation

    Differentiation of marrow-derived mesenchymal progenitors to either the osteoblast or adipocyte lineage is reciprocally regulated. Factors that promote osteoblastogenesis inhibit adipogenesis, while adipogenic factors are inhibitory to osteoblast differentiation. Heparin, a soluble glycosaminoglycan, inhibits bone formation in vivo and osteoblast cell differentiation and function in vitro, and has been shown to promote adipocyte differentiation. To elucidate the role that heparin plays in the adipogenic induction of murine mesenchymal progenitors, we studied immortalized marrow stromal cells (IM-MSC), the MSC cell line, ST2, and 3T3L1 pre-adipocytes. Heparin alone was not sufficient to induce adipogenesis, but enhanced the induction under a variety of adipogenic cocktails. This effect was both dose- and time-dependent. Heparin showed a positive effect at concentrations > 0. 1 μg/ml when applied before day 3 during the induction course. Heparin's effect on adipogenesis was independent of cell proliferation, cell density, and extracellular lipid. This effect is likely related to the unique structure of heparin because another polyanionic glycosaminoglycan, dextran sulfate, did not promote adipogenic differentiation. Heparin treatment altered morphology and adhesion characteristics of progenitor cells, resulting in cell rounding and aggregation. As well, heparin counteracted the known inhibitory effect of fibronectin on adipogenesis and decreased basal focal adhesion kinase and paxillin phosphorylation. We conclude that heparin-mediated disruption of cell-matrix adhesion enhances adipogenic potential

  12. Adipocyte differentiation and leptin expression

    Hwang, C S; Loftus, T M; Mandrup, S;

    1997-01-01

    , most notably those of the C/EBP and PPAR families, which combine to regulate each other and to control the expression of adipocyte-specific genes. One such gene, i.e. the obese gene, was recently identified and found to encode a hormone, referred to as leptin, that plays a major role in the regulation...... of energy intake and expenditure. The hormonal and transcriptional control of adipocyte differentiation is discussed, as is the role of leptin and other factors secreted by the adipocyte that participate in the regulation of adipose homeostasis....

  13. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    Hansen Jacob B

    2011-05-01

    Full Text Available Abstract Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs, and retinoblastoma gene-deficient MEFs (Rb-/- MEFs. Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte

  14. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties

    Balvers, M.G.J.; Verhoeckx, K.C.M.; Plastina, P.; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.

    2010-01-01

    n-3 PUFAs have beneficial health effects which are believed to be partly related to their anti-inflammatory properties, however the exact mechanisms behind this are unknown. One possible explanation could be via their conversion to N-acyl ethanolamines (NAEs), which are known to possess anti-inflamm

  15. Anti-diabetic properties of Fucus vesiculosus and pine bark extracts using the adipocyte cell model 3T3-L1

    Margrét Eva Ásgeirsdóttir 1989

    2016-01-01

    Obesity is a serious health problem, affecting the lives of several hundred million individuals in the western civilizations. In obese individuals, large amounts of fat are stored in adipose tissue, which also acts as endocrine organ. This function can be affected in obesity, thus contribute to the onset of metabolic disorders like diabetes. Also, the progression of diabetes has been linked to accumulation of free radicals in the body which are as well involved in other degenerative diseases....

  16. 2-(2-Bromophenyl)-formononetin and 2-heptyl-formononetin are PPARγ partial agonists and reduce lipid accumulation in 3T3-L1 adipocytes

    Andersen, Charlotte; Kotowska, Dorota Ewa; Tortzen, Christian;

    2014-01-01

    Isoflavones are bioactive compounds that have been shown to decrease lipid accumulation in vitro. However, the knowledge of the isoflavone formononetin is limited. The aim of the study was to assess the effects of formononetin and its two synthetic analogues, 2-(2-bromophenyl)-formononetin and 2...

  17. Cross species comparison of C/EBPa and PPAR¿ profiles in mouse and human adipocytes reveals interdependent retention of binding sites

    Sandelin Albin; Nielsen Ronni; Chen Yun; Jørgensen Mette; Schmidt Søren F; Mandrup Susanne

    2011-01-01

    Abstract Background The transcription factors peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated during differentiation of murine 3T3-L1 adipocytes. Results Here we have mapped all binding site...

  18. Effects of Yerba maté, a Plant Extract Formulation (“YGD” and Resveratrol in 3T3-L1 Adipogenesis

    Juliana C. Santos

    2014-10-01

    Full Text Available We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana, and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis.

  19. 7-Chloroarctinone-b as a new selective PPARγ antagonist potently blocks adipocyte differentiation

    Yong-tao LI; Li LI; Jing CHEN; Tian-cen HU; Jin HUANG; Yue-wei GUO; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim: Peroxisome proliferator-activated receptor gamma (PPARy) is a therapeutic target for obesity, cancer and diabetes mellitus. In order to develop potent lead compounds for obesity treatment, we screened a natural product library for novel PPARy antagonists with inhibitory effects on adipocyte differentiation. Methods: Surface plasmon resonance (SPR) technology and cell-based transactivation assay were used to screen for PPARy antago-nists. To investigate the antagonistic mechanism of the active compound, we measured its effect on PPARy/RXRα heterodimerization and PPARy co-activator recruitment using yeast two-hybrid assay, Gal4/UAS cell-based assay and SPR based assay. The 3T3-L1 cell differentiation assay was used to evaluate the effect of the active compound on adipocyte differentiation. Results: A new thiophene-acetylene type of natural product, 7-chloroarctinone-b (CAB), isolated from the roots of Rhaponticum uniflo-rum, was discovered as a novel PPARγ antagonist capable of inhibiting rosiglitazone-induced PPARγ transcriptional activity. SPR analy-sis suggested that CAB bound tightly to PPARγ and considerably antagonized the potent PPARy agonist rosigtitazone-stimulated PPARγ-LBD/RXRα-LBD binding. Gal4/UAS and yeast two-hybrid assays were used to evaluate the antagonistic activity of CAB on rosiglitazone-induced recruitment of the coactivator for PPARy. CAB could efficiently antagonize both hormone and rosiglitazone-induced adipocyte differentiation in cell culture. Conclusion: CAB shows antagonistic activity to PPARγ and can block the adipocyte differentiation, indicating it may be of potential use as a lead therapeutic compound for obesity.

  20. Epigenetic Priming Confers Direct Cell Trans-Differentiation From Adipocyte to Osteoblast in a Transgene-Free State.

    Cho, Young-Dan; Bae, Han-Sol; Lee, Dong-Seol; Yoon, Won-Joon; Woo, Kyung-Mi; Baek, Jeong-Hwa; Lee, Gene; Park, Joo-Cheol; Ku, Young; Ryoo, Hyun-Mo

    2016-07-01

    The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cells, while that of osteoporosis patients has a larger portion of adipocytes. There is evidence that the epigenetic landscape can strongly influence cell differentiation. We have shown that it is possible to direct the trans-differentiation of adipocytes to osteoblasts by modifying the epigenetic landscape with a DNA methyltransferase inhibitor (DNMTi), 5'-aza-dC, followed by Wnt3a treatment to signal osteogenesis. Treating 3T3-L1 adipocytes with 5'-aza-dC induced demethylation in the hypermethylated CpG regions of bone marker genes; subsequent Wnt3a treatment drove the cells to osteogenic differentiation. When old mice with predominantly adipose marrow were treated with both 5'-aza-dC and Wnt3a, decreased fatty tissue and increased bone volume were observed. Together, our results indicate that epigenetic modification permits direct programming of adipocytes into osteoblasts in a mouse model of osteoporosis, suggesting that this approach could be useful in bone tissue-engineering applications. J. Cell. Physiol. 231: 1484-1494, 2016. © 2015 Wiley Periodicals, Inc. PMID:26335354

  1. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  2. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard;

    2012-01-01

    epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...... how binding patterns of PPARγ differ between brown and white adipocytes and among different types of white adipocytes. Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from...

  3. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.

    Hironori Waki

    2011-10-01

    Full Text Available Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type-specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq. FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA-mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our

  4. STAT5a promotes the transcription of mature mmu-miR-135a in 3T3-L1 cells by binding to both miR-135a-1 and miR-135a-2 promoter elements.

    Wei, Xiajie; Cheng, Xiaoyan; Peng, Yongdong; Zheng, Rong; Chai, Jin; Jiang, Siwen

    2016-08-01

    Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis. PMID:27276245

  5. Inhibitory Effects of Constituents from Euphorbia lunulata on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells

    Susumu Kitanaka; Atsuko Ohmura; Yan Shen; Liu-Nan Jia; Zhi-Gang Yang

    2011-01-01

    A new flavonol galactopyranoside, myricetin 3-O-(2'',3''-digalloyl)-β-D-galactopyranoide (1), and 23 known constituents, including myricetin 3-O-(2''-galloyl)-β-D-galactopyranoide (2), myricitrin (3), myricetin (4), quercetin 3-O-(2'', 3''-digalloyl)-β-D-galactopyranoide (5), quercetin 3-O-(2''-galloyl)-β-D-galactopyranoide (6), hyperin (7), isoquercetrin (8), quercetin (9), kaempferol (10), apigenin (11), luteolin (12), 3-O-methylquercetin (13), 5,7,2',5'-tetrahydroxyflavone (14), 1,3,4,6-te...

  6. Inhibitory Effects of Constituents from Morus alba var. multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells

    Susumu Kitanaka; Satoshi Takamatsu; Zhi-Gang Yang; Keiichi Matsuzaki

    2011-01-01

    A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside...

  7. PPARgamma in adipocyte differentiation and metabolism

    Siersbaek, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2010-01-01

    Adipocyte differentiation is controlled by a tightly regulated transcriptional cascade in which PPARgamma and members of the C/EBP family are key players. Here we review the roles of PPARgamma and C/EBPs in adipocyte differentiation with emphasis on the recently published genome-wide binding prof...

  8. A novel preadipocyte cell line established from mouse adult mature adipocytes

    We have established a novel preadipocyte cell line from mouse adult mature adipocytes. The mature adipocytes were isolated from fat tissues by taking only the floating population of mature fat cells. The isolated mature adipocytes were de-differentiated into fibroblast-like cells. The in vitro studies showed that the cells could re-differentiate into mature adipocytes after over 20 passages. The in vivo transplantation study also demonstrated that the cells had the full potential to differentiate into mature adipocytes, which has not been shown for the 3T3-L1 preadipocyte cell line derived from mouse embryo. We have further analyzed the expression profile of key fat regulatory genes such as the peroxisome proliferator-activated receptorγ or CCAAT/enhancer-binding protein gene families. We conclude that our cell line could be used as a preferred alternative to 3T3-L1, potentially reflecting the characteristics of mature adipocytes more, since the cell line is actually derived from adult mature adipocytes

  9. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy

    Orlando Robert A

    2007-10-01

    Full Text Available Abstract Background A major portion of available fatty acids for adipocyte uptake is derived from lipoprotein lipase (LPL-mediated hydrolysis of circulating lipoprotein particles. In vivo studies aimed at identifying the precise role of adipocyte-derived LPL in fat storage function of adipose tissue have been unable to provide conclusive evidence due to compensatory mechanisms that activate endogenous fatty acid synthesis. To address this gap in knowledge, we have measured the effect of reducing adipocyte LPL expression on intracellular lipid accumulation using a well-established cultured model of adipocyte differentiation. Methods siRNA specific for mouse LPL was transfected into 3T3-L1 adipocytes. Expression of LPL was measured by quantitative real-time PCR and cell surface-associated LPL enzymatic activity was measured by colorimetric detection following substrate (p-nitrophenyl butyrate hydrolysis. Apolipoprotein CII and CIII expression ratios were also measured by qRT-PCR. Intracellular lipid accumulation was quantified by Nile Red staining. Results During differentiation of 3T3-L1 pre-adipocytes, LPL mRNA expression increases 6-fold resulting in a 2-fold increase in cell surface-associated LPL enzymatic activity. Parallel to this increase in LPL expression, we found that intracellular lipids increased ~10-fold demonstrating a direct correlation between adipocyte-derived LPL expression and lipid storage. We next reduced LPL expression in adipocytes using siRNA transfections to directly quantify the contributions of adipocyte-derived LPL to lipid storage, This treatment reduced LPL mRNA expression and cell surface-associated LPL enzymatic activity to ~50% of non-treated controls while intracellular lipid levels were reduced by 80%. Exogenous addition of purified LPL (to restore extracellular lipolytic activity or palmitate (as a source of free fatty acids to siRNA-treated cells restored intracellular lipid levels to those measured for non

  10. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis

    Gerin, Isabelle; Bommer, Guido T.; McCoin, Colin S.; Sousa, Kyle M.; Krishnan, Venkatesh; MacDougald, Ormond A.

    2010-01-01

    In this study, we explored the roles of microRNAs in adipocyte differentiation and metabolism. We first knocked down Argonaute2 (Ago2), a key enzyme in the processing of micro-RNAs (miRNAs), to investigate a potential role for miRNAs in adipocyte differentiation and/or metabolism. Although we did not observe dramatic differences in adipogenesis between Ago2 knock-down and control 3T3-L1 cells, incorporation of [14C]glucose or acetate into triacylglycerol, and steady-state levels of triacyglyc...

  11. 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression

    Jeong, Sunhyo; Yoon, Michung

    2011-01-01

    Aim: To investigate the molecular interaction of peroxisome proliferator-activated receptor γ (PPARγ) with 17β-estradiol (E) in the regulation of adipogenesis. Methods: Female ovariectomized (OVX) mice and differentiated 3T3-L1 adipocytes were treated with combinations of the PPARγ agonist troglitazone or E, and the variables and determinants of adipogenesis were measured using in vivo and in vitro approaches. Results: Troglitazone (250 mg·kg−1·d−1 for 13 weeks) decreased the size of adipocyt...

  12. Studying Lipolysis in Adipocytes by Combining siRNA Knockdown and Adenovirus-Mediated Overexpression Approaches

    Zhang, Xiaodong; Heckmann, Bradlee L; Liu, Jun

    2013-01-01

    3T3-L1 adipocytes are widely used as a model system for studying hormone-stimulated lipolysis. However, these cells were limited in their utility for gain- and loss-of-function studies due to the low efficiency of their transfection with plasmid DNA or small interfering RNA (siRNA) oligos. In this chapter, we provide a review of two methods established for manipulation of protein expression in differentiated mature adipocytes. The use of electroporation allows a high-efficiency delivery of si...

  13. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  14. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    Chen, Neal X., E-mail: xuechen@iupui.edu [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); O’Neill, Kalisha; Akl, Nader Kassis [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); Moe, Sharon M. [Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN (United States); Roudebush VA Medical Center, Indianapolis, IN (United States)

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  15. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  16. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. PMID:18386066

  17. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora.

    Okabe, Yui; Shimada, Tsutomu; Horikawa, Takumi; Kinoshita, Kaoru; Koyama, Kiyotaka; Ichinose, Koji; Aburada, Masaki; Takahashi, Kunio

    2014-05-15

    We previously demonstrated that ethyl acetate extracts of Kaempferia parviflora Wall. Ex Baker (KPE) improve insulin resistance in TSOD mice and showed that its components induce differentiation and adipogenesis in 3T3-L1 preadipocytes. The present study was undertaken to examine whether KPE and its isolated twelve components suppress further lipid accumulation in 3T3-L1 mature adipocytes. KPE reduced intracellular triglycerides in mature adipocytes, as did two of its components, 3,5,7,3',4'-pentamethoxyflavone and 5,7,4'-trimethoxyflavone. Shrinkage of lipid droplets in mature adipocytes was observed, and mRNA expression levels of adipose tissue triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were up-regulated by these two polymethoxyflavonoids (PMFs). Furthermore, the protein expression level of ATGL and the release level of glycerol into the cell culture medium increased. In contrast, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, troglitazone, did not decrease intracellular triglycerides in mature adipocytes, and the mRNA expression level of PPARγ was not up-regulated in mature adipocytes treated with the two active PMFs. Therefore, suppression of lipid accumulation in mature adipocytes is unlikely to be enhanced by transcriptional activation of PPARγ. These results suggest that KPE and its active components enhance lipolysis in mature adipocytes by activation of ATGL and HSL independent of PPARγ transcription, thus preventing adipocyte hypertrophy. On the other hand, the full hydroxylated flavonoid quercetin did not show the suppressive effects of lipid accumulation in mature adipocyte in the same conditions. Consequently, methoxy groups in the flavones are important for the activity. PMID:24629599

  18. Suppression of Adipocyte Differentiation by Foenumoside B from Lysimachia foenum-graecum Is Mediated by PPARγ Antagonism

    Kwak, Hyun Jeong; Choi, Hye-Eun; Jang, Jinsun; Park, Soo Kyoung; Cho, Byoung Heon; Kim, Seul Ki; Lee, Sunyi; Kang, Nam Sook; Cheon, Hyae Gyeong

    2016-01-01

    Lysimachia foenum-graecum extract (LFE) and its active component foenumoside B (FSB) have been shown to inhibit adipocyte differentiation, but their mechanisms were poorly defined. Here, we investigated the molecular mechanisms responsible for their anti-adipogenic effects. Both LFE and FSB inhibited the differentiation of 3T3-L1 preadipocytes induced by peroxisome proliferator-activated receptor-γ (PPARγ) agonists, accompanied by reductions in the expressions of the lipogenic genes aP2, CD36, and FAS. Moreover, LFE and FSB inhibited PPARγ transactivation activity with IC50s of 22.5 μg/ml and 7.63 μg/ml, respectively, and showed selectivity against PPARα and PPARδ. Rosiglitazone-induced interaction between PPARγ ligand binding domain (LBD) and coactivator SRC-1 was blocked by LFE or FSB, whereas reduced NCoR-1 binding to PPARγ by rosiglitazone was reversed in the presence of LFE or FSB. In vivo administration of LFE into either ob/ob mice or KKAy mice reduced body weights, and levels of PPARγ and C/EBPα in fat tissues. Furthermore, insulin resistance was ameliorated by LFE treatment, with reduced adipose tissue inflammation and hepatic steatosis. Thus, LFE and FSB were found to act as PPARγ antagonists that improve insulin sensitivity and metabolic profiles. We propose that LFE and its active component FSB offer a new therapeutic strategy for metabolic disorders including obesity and insulin resistance. PMID:27176632

  19. Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity

    Park, Sun-Young; Cho, Seong-A; Lee, Myung-Ki; Lim, Sang-Dong

    2015-01-01

    This study aimed to investigate the effects of Lactobacillus plantarum FH185 on the reduction of adipocyte size and gut microbial changes in mice with diet-induced obesity. The strain was found to have a lipase inhibitory activity of 70.09±2.04% and inhibited adipocyte differentiation of 3T3-L1 cells (18.63±0.98%) at a concentration of 100 µg/mL. To examine the effect of the strain supplementation on gut microbial changes in mice with diet-induced obesity, male C57BL/6J mice were fed on four ...

  20. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    Chia-Hua Liang

    2013-01-01

    Full Text Available Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ, the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25 by brazilein is greater than that of human skin malignant melanoma (A375 cells, mouse leukemic monocyte macrophage (RAW 264.7 cells, and noncancerous cells (HaCaT and BNLCL2 cells. The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex.

  1. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway

    Sarmila Nepali; Ji-Seon Son; Barun Poudel; Ji-Hyun Lee; Young-Mi Lee; Dae-Ki Kim

    2015-01-01

    Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mix...

  2. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  3. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  4. Limonin, a Component of Dictamni Radicis Cortex, Inhibits Eugenol-Induced Calcium and cAMP Levels and PKA/CREB Signaling Pathway in Non-Neuronal 3T3-L1 Cells

    Yeo Cho Yoon

    2015-12-01

    Full Text Available Limonin, one of the major components in dictamni radicis cortex (DRC, has been shown to play various biological roles in cancer, inflammation, and obesity in many different cell types and tissues. Recently, the odorant-induced signal transduction pathway (OST has gained attention not only because of its function in the perception of smell but also because of its numerous physiological functions in non-neuronal cells. However, little is known about the effects of limonin and DRC on the OST pathway in non-neuronal cells. We investigated odorant-stimulated increases in Ca2+ and cAMP, major second messengers in the OST pathway, in non-neuronal 3T3-L1 cells pretreated with limonin and ethanol extracts of DRC. Limonin and the extracts significantly decreased eugenol-induced Ca2+ and cAMP levels and upregulated phosphorylation of CREB and PKA. Our results demonstrated that limonin and DRC extract inhibit the OST pathway in non-neuronal cells by modulating Ca2+ and cAMP levels and phosphorylation of CREB.

  5. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-01

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. PMID:27094023

  6. FGF23 gene regulation by 1,25-dihydroxyvitamin D: Opposing effects in adipocytes and osteocytes

    Kaneko, Ichiro; Saini, Rimpi K.; Griffin, Kristin P.; Whitfield, G. Kerr; Haussler, Mark R.; Jurutka, Peter W.

    2015-01-01

    In a closed endocrine loop, 1,25-dihydroxyvitamin D3 (1,25D) induces the expression of fibroblast growth factor-23 (FGF23) in bone, with the phosphaturic peptide in turn acting at kidney to feedback repress CYP27B1 and induce CYP24A1 to limit the levels of 1,25D. In 3T3-L1 differentiated adipocytes, 1,25D represses FGF23 and leptin expression, while not affecting leptin receptor transcription, but inducing C/EBP. Conversely, in UMR-106 osteoblast-like cells, FGF23 mRNA concentrations are upre...

  7. CD36 level and trafficking are determinants of lipolysis in adipocytes

    Zhou, Dequan; Samovski, Dmitri; Okunade, Adewole L.; Stahl, Philip D.; Abumrad, Nada A.; Su, Xiong

    2012-01-01

    CD36 has been linked to the etiology of insulin resistance and inflammation. We explored its function in regulating adipose tissue lipolysis, which influences fat accumulation by liver and muscle and overall metabolism. Knockdown of CD36 in differentiated 3T3-L1 adipocytes decreased lipolysis in response to 10 μM of the β-adrenergic agonist isoproterenol (by 42%), 10 μM of the adenyl cyclase activator forskolin (by 32%), and 500 μM of the phosphodiesterase (PDE) inhibitor isobutylmethylxanthi...

  8. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete;

    2015-01-01

    BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...... of clinical importance, including body mass index, triglyceride, and insulin resistance, were inversely correlated with ZIP14. During early adipogensis an up-regulation of ZIP14 gene expression was found. PPARγ gene expression was positively correlated with the ZIP14 gene expression in both adipose...... of ZIP14 in adipose tissue is still unknown. This study investigates ZIP14 gene expression in human adipose tissue before and after weight loss as well as the regulation of ZIP14 during early adipogenesis. METHODS: Fourteen obese individuals were investigated before and after a 10 week weight loss...

  9. Effects of fatty acid regulation on visfatin gene expression in adipocytes

    WEN Yu; WANG Hong-wei; WU Jing; LU Hui-ling; HU Xiu-fen; Katherine Cianflone

    2006-01-01

    .5 mmol/L oleate or 1.0 mmol/L palmitate. Visfatin mRNA expression increased during differentiation more than 1.5-fold. Bovine serum albumin (BSA) did not influence visfatin mRNA expression compared with the control group. Dose-response studies demonstrated that addition of 0.125 mmol/L oleate and palmitate to 3T3-L1 adipocytes decreased visfatin mRNA expression significantly (78%, 77%, respectively,relative to untreated control, P<0.05), and further to 65% (relative to untreated control, P<0.05) and 55% (relative to untreated control, P<0.01) at 1.0 mmol/L FFA. Furthermore, the suppression on preadipocytes was similar to that of adipocytes, which reached a maximal reduction of 44% (oleate, P<0.05) and 47% (palmitate, P<0.05) at 1.0 mmol/L FFA.Conclusions Oleic acid and palmitic acid may induce insulin resistance in 3T3-L1 adipocytes and preadipocytes. Downregulation of visfatin mRNA may contribute to impair insulin sensitivity caused by oleate and palmitate.

  10. Glucose- and Triglyceride-lowering Dietary Penta-O-galloyl-α-D-Glucose Reduces Expression of PPARγ and C/EBPα, Induces p21-Mediated G1 Phase Cell Cycle Arrest, and Inhibits Adipogenesis in 3T3-L1 Preadipocytes.

    Liu, X; Malki, A; Cao, Y; Li, Y; Qian, Y; Wang, X; Chen, X

    2015-05-01

    Plant polyphenols, such as hydrolysable tannins, are present in the human diet and known to exhibit anti-diabetic and anti-obesity activity. We previously reported that the representative hydrolysable tannin compound α-penta-galloyl-glucose (α-PGG) is a small molecule insulin mimetic that, like insulin, binds to insulin receptor (IR) and activates the IR-Akt-GLUT4 signaling pathway to trigger glucose transport and reduce blood glucose levels in db/db and ob/ob diabetic mice. However, its effects on adipogenesis and lipid metabolism were not known. In this study, high fat diet (HFD)-induced diabetic and obese mice were treated with α-PGG to determine its effects on blood glucose and triglycerides. 3T3-L1 preadipocytes were used as a cell model for identifying the anti-adipogenic activity of α-PGG at molecular and cellular levels as a first step in elucidating the mechanism of action of the compound. In vivo, oral administration of α-PGG significantly reduced levels of blood glucose, triglyceride, and insulin in HFD-induced diabetic/obese mice (Pobese and diabetic mice. It selectively inhibited some but not all major adipogenic pathways as well as the mTOR-p21-mediated cell cycle regulatory pathway. It is very likely that these apparently diverse but coordinated activities together inhibited adipogenesis. These results expand our knowledge on how PGG works in adipocytes and further confirm that α-PGG functions as an orally-deliverable natural insulin mimetic with adipogenetic modulatory functions. PMID:25988880

  11. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Juan Zhang

    Full Text Available Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBPα, peroxisome proliferators-activated receptor γ2 (PPARγ2, and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  12. 鼠PVRL-2慢病毒载体的构建及其在3T3-L1细胞中的表达%Potential role of mouse PVRL-2 gene in the fatty acid metabolism

    马静; 刘晓萌; 张传海; 郑宗基; 赵倩伟; 杨鸣琦; 张雷

    2013-01-01

    Excess fat and cholesterol in food such as meat,eggs or milk could lead to hyperlipoidemia in human.Currently,to explore genes expression and their mechanisms associated with lipid metabolism has been a major focus in veterinary science.Growing bodies of evidence indicated that molecular functions of fatty acid metabolism related genes such as ApoE,ApoC1 and Tomm40 were very well characterized; however,function of their chromosomal neighbor such as PVRL-2 gene in the fatty acid metabolism remains unclear.Present study was aim to investigate potential role of mouse PVRL-2 gene in regulation of fatty acid related gene expression using preadipogenic 3T3-L1 cells.The cells were infected by Lentiviral particles which was produced by lentiviral plasmid containing Pvrl2 gene,and RNA were extracted 48h post viral infection.Quantitative real-time PCR analysis confirmed that PVRL-2 overexpressed more than 100 folds upon PVRL-2 virus transformation compared to the control.Notably,the expression of PPARα gene which is a key player in the fatty acid oxidation was strongly induced (4.5 fold increase) post PVRL-2 viral infection,but not other genes that related to the fatty acid metabolism such as CPT1A,FASN,COX7A,PGC1B,ASADM showed similar changes.Furthermore,bioinformatics analyses revealed that Nectin-2,coded by PVRL-2,should be a transmembrane protein with a signal peptide.In conclusion,the present study demonstrated that overexpression of PVRL-2 induce the expression of PPARα,which highlight the potential roles of PVRL-2 gene in fatty acid metabolism.Future studies are needed to determine detailed molecular function of PVRL-2 gene in fatty acid metabolism.%过多的脂肪和胆固醇随着肉蛋奶被人体摄入是导致人类高血脂等各种疾病诱发的原因之一,而探索脂代谢通路相关基因的表达变化及其调控机制已经成为分子生物学技术在兽医学领域中的研究热点.与高血脂有关的ApoE、ApoC1和Tomm40等基因研究较多,

  13. Integrator complex plays an essential role in adipose differentiation

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reduced to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps

  14. Adipocyte Induction of Preadipocyte Differentiation in a Gradient Chamber

    Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum

    2012-01-01

    Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution...

  15. Effects of Kurozu concentrated liquid on adipocyte size in rats

    Nakamura Kumi

    2010-11-01

    Full Text Available Abstract Background Kurozu concentrated liquid (KCL is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. Results In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2 and peroxisome proliferator-activated γ (PPARγ in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. Conclusion Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.

  16. The Effect of Crataegi Fructus Pharmacopuncture on Adipocyte Metabolism

    Seung Hwan, Won

    2008-06-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Crataegi Fructus Pharmacopuncture(CFP on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3days in the absence or presence of CFP ranging from 0.01 to 1mg/mL. The effect of CFP on adipogenesis was examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with CFP ranging from 0.01 to 1mg/mL for 3 hrs. The effect of CFP on lipolysis was examined by measuring free glycerol released. Fat tissue from pig skin was injected with CFP ranging from 0.1 to 10mg/mL to examine the effect of CFP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Crataegi Fructus Pharmacopuncture inhibited adipogenic differentiation at the concentration of 1.0mg/mL 2. Crataegi Fructus Pharmacopuncture decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1mg/mL. 3. Crataegi Fructus Pharmacopuncture ok. lipolysis at the concentration of 0.1mg/ml. 4. Crataegi Fructus Pharmacopuncture ranging 0.1 to 10mg/mL failed to exert lysis of cell membrane in porcine fat tissue. Conclusions : These results suggest that Crataegi Fructus Pharmacopuncture at relatively high concentration inhibited adipogenesis and increased lipolysis of adipocytes. However, Crataegi Fructus Pharmacopuncture didn’t exert any effect on lysis of cell membrane in fat tissue.

  17. Differentiation of preadipocytes and mature adipocytes requires PSMB8

    Hideki Arimochi; Yuki Sasaki; Akiko Kitamura; Koji Yasutomo

    2016-01-01

    The differentiation of adipocytes is tightly regulated by a variety of intrinsic molecules and also by extrinsic molecules produced by adjacent cells. Dysfunction of adipocyte differentiation causes lipodystrophy, which impairs glucose and lipid homeostasis. Although dysfunction of immunoproteasomes causes partial lipodystrophy, the detailed molecular mechanisms remain to be determined. Here, we demonstrate that Psmb8, a catalytic subunit for immunoproteasomes, directly regulates the differen...

  18. Antidiabetic Activities of Abutilon indicum (L. Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1 Promoter

    Chutwadee Krisanapun

    2011-01-01

    Full Text Available Abutilon indicum (L. Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect of A. indicum L. remain unknown. The aim of this study was to evaluate whether extract of A. indicum L. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots of A. indicum L. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγ and activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol did not affect the activity of kinases involved in Akt and GSK-3β pathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1 promoter activity. These results suggest that the extract from A. indicum L. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγ agonist activity, and increasing glucose utilization via GLUT1.

  19. Antidiabetic Activities of Abutilon indicum (L.) Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1 Promoter.

    Krisanapun, Chutwadee; Lee, Seong-Ho; Peungvicha, Penchom; Temsiririrkkul, Rungravi; Baek, Seung Joon

    2011-01-01

    Abutilon indicum (L.) Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect of A. indicum L. remain unknown. The aim of this study was to evaluate whether extract of A. indicum L. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots) of A. indicum L. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγ and activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol) did not affect the activity of kinases involved in Akt and GSK-3β pathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1) promoter activity. These results suggest that the extract from A. indicum L. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγ agonist activity, and increasing glucose utilization via GLUT1. PMID:21603234

  20. The adipokine Chemerin induces lipolysis and adipogenesis in bovine intramuscular adipocytes.

    Fu, Yuan-Yuan; Chen, Kun-Lin; Li, Hui-Xia; Zhou, Guang-Hong

    2016-07-01

    The adipokine Chemerin is reported to regulate adipogenesis and glucose homeostasis in vivo and in 3T3-L1 cells. Our team is focused on the role of Chemerin in metabolism and intramuscular adipocyte differentiation because intramuscular fat is the basic material for the formation of marbling in livestock and poultry meat. In this study, bovine intramuscular mature adipocytes were cultured in medium with Chemerin, and the process of lipolysis of mature adipocytes and the adipogenesis of de-differentiated preadipocytes were investigated. The results showed that Chemerin induced significant lipolytic metabolism in intramuscular mature adipocytes, indicated by increased levels of glycerol, FFA, and up-regulated expression of the lipolysis critical factors HSL, LPL, and leptin. Meanwhile, the expressions of adipogenic key factors PPARγ, C/EBPα, and A-FABP were decreased by Chemerin during lipolysis or dedifferentiation in mature adipocytes. The de-differentiated preadipocytes could re-differentiate into mature adipocytes. Intriguingly, the formation of cells' lipid droplets was promoted by Chemerin during preadipocyte differentiation. In addition, mRNA and protein expressions of PPARγ, C/EBPα, and A-FABP were up-regulated by Chemerin during preadipocytes differentiation. These results suggest that Chemerin promotes lipolysis in mature adipocytes and induces adipogenesis during preadipocyte re-differentiation, further indicating a dual role for Chemerin in the deposition of intramuscular fat in ruminant animals. PMID:27260300

  1. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing that ≥ 300 μM arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.

  2. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Yine Qu; Qiuyang Zhang; Siqi Ma; Sen Liu; Zhiquan Chen; Zhongfu Mo; Zongbing You

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipo...

  3. Positive regulation by GABA(BR1 subunit of leptin expression through gene transactivation in adipocytes.

    Yukari Nakamura

    Full Text Available BACKGROUND: The view that γ-aminobutyric acid (GABA plays a functional role in non-neuronal tissues, in addition to an inhibitory neurotransmitter role in the mammalian central nervous system, is prevailing, while little attention has been paid to GABAergic signaling machineries expressed by adipocytes to date. In this study, we attempted to demonstrate the possible functional expression of GABAergic signaling machineries by adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: GABA(B receptor 1 (GABA(BR1 subunit was constitutively expressed by mouse embryonic fibroblasts differentiated into adipocytes and adipocytic 3T3-L1 cells in culture, as well as mouse white adipose tissue, with no responsiveness to GABA(BR ligands. However, no prominent expression was seen with mRNA for GABA(BR2 subunit required for heteromeric orchestration of the functional GABA(BR by any adipocytic cells and tissues. Leptin mRNA expression was significantly and selectively decreased in adipose tissue and embryonic fibroblasts, along with drastically reduced plasma leptin levels, in GABA(BR1-null mice than in wild-type mice. Knockdown by siRNA of GABA(BR1 subunit led to significant decreases in leptin promoter activity and leptin mRNA levels in 3T3-L1 cells. CONCLUSIONS/SIGNIFICANCE: Our results indicate that GABA(BR1 subunit is constitutively expressed by adipocytes to primarily regulate leptin expression at the transcriptional level through a mechanism not relevant to the function as a partner of heterodimeric assembly to the functional GABA(BR.

  4. Free fatty acids, lipopolysaccharide and IL-1α induce adipocyte manganese superoxide dismutase which is increased in visceral adipose tissues of obese rodents.

    Sabrina Krautbauer

    Full Text Available Excess fat storage in adipocytes is associated with increased generation of reactive oxygen species (ROS and impaired activity of antioxidant mechanisms. Manganese superoxide dismutase (MnSOD is a mitochondrial enzyme involved in detoxification of ROS, and objective of the current study is to analyze expression and regulation of MnSOD in obesity. MnSOD is increased in visceral but not subcutaneous fat depots of rodents kept on high fat diets (HFD and ob/ob mice. MnSOD is elevated in visceral adipocytes of fat fed mice and exposure of differentiating 3T3-L1 cells to lipopolysaccharide, IL-1α, saturated, monounsaturated and polyunsaturated free fatty acids (FFA upregulates its level. FFA do not alter cytochrome oxidase 4 arguing against overall induction of mitochondrial enzymes. Upregulation of MnSOD in fat loaded cells is not mediated by IL-6, TNF or sterol regulatory element binding protein 2 which are induced in these cells. MnSOD is similarly abundant in perirenal fat of Zucker diabetic rats and non-diabetic animals with similar body weight and glucose has no effect on MnSOD in 3T3-L1 cells. To evaluate whether MnSOD affects adipocyte fat storage, MnSOD was knocked-down in adipocytes for the last three days of differentiation and in mature adipocytes. Knock-down of MnSOD does neither alter lipid storage nor viability of these cells. Heme oxygenase-1 which is induced upon oxidative stress is not altered while antioxidative capacity of the cells is modestly reduced. Current data show that inflammation and excess triglyceride storage raise adipocyte MnSOD which is induced in epididymal adipocytes in obesity.

  5. AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte

    AMP-activated protein kinase (AMPK) is activated in adipocytes during exercise and other states in which lipolysis is stimulated. However, the mechanism(s) responsible for this effect and its physiological relevance are unclear. To examine these questions, 3T3-L1 adipocytes were treated with agents...

  6. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics

    Adachi, Jun; Kumar, Chanchal; Zhang, Yanling;

    2007-01-01

    , mitochondria, membrane, and cytosol of 3T3-L1 adipocytes. We identified 3,287 proteins while essentially eliminating false positives, making this one of the largest high confidence proteomes reported to date. Comprehensive bioinformatics analysis revealed that the adipocyte proteome, despite its specialized...

  7. 18β-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Highlights: ► 18β-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. ► Anti-adipogenic effect of 18β-GA is caused by down-regulation of PPARγ and inactivation of Akt signalling. ► Lipolytic effect of 18β-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18β-Glycyrrhetinic acid (18β-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18β-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18β-GA dose-dependently (1–40 μM) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 μM of 18β-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18β-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18β-GA alters fat mass by directly affecting adipogenesis in maturing preadipocytes and lipolysis in matured adipocytes. Thus, 18β-GA may

  8. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sang-Youel, E-mail: sypark@chonbuk.ac.kr [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  9. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  10. Chilean native fruit extracts inhibit inflammation linked to the pathogenic interaction between adipocytes and macrophages.

    Reyes-Farias, Marjorie; Vasquez, Karla; Ovalle-Marin, Angelica; Fuentes, Francisco; Parra, Claudia; Quitral, Vilma; Jimenez, Paula; Garcia-Diaz, Diego F

    2015-05-01

    Obesity is characterized by an increase in the infiltration of monocytes into the adipose tissue, causing an inflammatory condition associated with, for example, the development of insulin resistance. Thus, anti-inflammatory-based treatments could emerge as a novel and interesting approach. It has been reported that Chilean native fruits maqui (Aristotelia chilensis) and calafate (Berberis microphylla) present high contents of polyphenols, which are known for their antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the ability of extracts of these fruits to block the pathogenic interaction between adipocytes and macrophages in vitro and to compare its effect with blueberry (Vaccinium corymbosum) extract treatment, which has been already described to possess several biomedical benefits. RAW264.7 macrophages were treated with 5 μg/mL lipopolysaccharides (LPS), with conditioned media (CM) from fully differentiated 3T3-L1 adipocytes, or in a coculture (CC) with 3T3-L1 adipocytes, in the presence or absence of 100 μM [total polyphenolic content] of each extract for 24 h. The gene expression and secretion profile of several inflammatory markers were evaluated. Nitric oxide secretion induced by LPS, CM, and CC was reduced by the presence of maqui (-12.2%, -45.6%, and -14.7%, respectively) and calafate (-27.6%, -43.9%, and -11.8%, respectively) extracts. Gene expression of inducible nitric oxide synthase and TNF-α was inhibited and of IL-10 was induced by maqui and calafate extract incubation. In conclusion, the extracts of these fruits present important inhibitory-like features over the inflammatory response of the interaction between adipocytes and macrophages, comprising a potential therapeutic tool against comorbidities associated with obesity development. PMID:25302660

  11. Angiotensinogen gene silencing reduces markers of inflammation and lipid accumulation in adipocytes

    Wenting eXin

    2013-03-01

    Full Text Available Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system (RAS to the pathogenesis of obesity, inflammation and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipocytes, stably transfected with Agt-shRNA or scrambled Sc-shRNAcas a control. Transfected preadipocytes were differentiated and used to investigate the role of adipose Agt through microarray and PCR analyses and adipokine profiling. As expected, Agt gene silencing significantly reduced the expression of Agt and its hormone product angiotensin II (Ang II, as well as lipid accumulation in 3T3-L1 adipocytes. Microarray studies identified several genes involved in lipid metabolism and inflammatory pathways which were down-regulated by Agt gene inactivation, such as glycerol-3-phosphate dehydrogenase 1 (Gpd1, serum amyloid A 3 (Saa3, nucleotide-binding oligomerization domain containing 1 (Nod1 and signal transducer and activator of transcription 1 (Stat1. Mouse adipogenesis PCR arrays revealed lower expression levels of adipogenic/lipogenic genes such as peroxisome proliferator activated receptor gamma (Pparg, sterol regulatory element binding transcription factor 1 (Srebf1, adipogenin (Adig, and fatty acid binding protein 4 (Fabp4. Further, silencing of Agt gene significantly lowered expression of pro-inflammatory adipokines including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, and monocyte chemotactic protein-1 (MCP-1. In conclusion, this study directly demonstrates critical effects of Agt in adipocyte metabolism and inflammation and further support a potential role for adipose Agt in the pathogenesis of obesity-associated metabolic alterations.

  12. Dietary relevant mixtures of phytoestrogens inhibit adipocyte differentiation in vitro

    Taxvig, Camilla; Specht, Ina Olmer; Boberg, Julie;

    2013-01-01

    Phytoestrogens (PEs) are naturally occurring plant components, with the ability to induce biological responses in vertebrates by mimicking or modulating the action of endogenous hormones.Single isoflavones have been shown to affect adipocyte differentiation, but knowledge on the effect of dietary...

  13. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  14. Chromium propionate enhances adipogenic differentiation of bovine intramuscular adipocytes

    Rebecca eTokach

    2015-09-01

    Full Text Available In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate on mRNA and protein abundance of different enzymes and receptors. Intramuscular and subcutaneous preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4 and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with differentiation media plus either sodium propionate or different concentrations of chromium propionate (CrPro for 96, 120, and 144 h before harvest. This study indicated adipogenesis of the bovine intramuscular adipocytes were more sensitive to the treatment of chromium propionate as compared to subcutaneous adipocytes. Enhancement of adenosine monophosphate-activated protein kinase and GLUT4 mRNA by CrPro treatment may enhance glucose uptake in intramuscular adipocytes. Chromium propionate decreased GLUT4 protein levels in muscle cell cultures suggesting those cells have increased efficiency of glucose uptake due to exposure to increased levels of CrPro. In contrast, each of the two adipogenic lines had opposing responses to the CrPro. It appeared that CrPro had the most stimulative effect of GLUT4 response in the intramuscular adipocytes as compared to subcutaneous adipocytes. These findings indicated opportunities to potentially augment marbling in beef cattle fed chromium propionate during the finishing phase.

  15. Deficiency of Angiotensin Type 1a Receptors in Adipocytes Reduces Differentiation and Promotes Hypertrophy of Adipocytes in Lean Mice

    Putnam, Kelly; Batifoulier-Yiannikouris, Frederique; Bharadwaj, Kalyani G.; Lewis, Eboni; Karounos, Michael; Daugherty, Alan; Cassis, Lisa A.

    2012-01-01

    Adipocytes express angiotensin receptors, but the direct effects of angiotensin II (AngII) stimulating this cell type are undefined. Adipocytes express angiotensin type 1a receptor (AT1aR) and AT2R, both of which have been implicated in obesity. In this study, we determined the effects of adipocyte AT1aR deficiency on adipocyte differentiation and the development of obesity in mice fed low-fat (LF) or high-fat (HF) diets. Mice expressing Cre recombinase under the control of the aP2 promoter w...

  16. Remodeling of lipid droplets during lipolysis and growth in adipocytes

    Paar, Margret; Jüngst, Christian; Steiner, Noemi; Magnes, Christoph; Sinner, Frank; Kolb, Dagmar; Lass, Achim; Zimmermann, Robert; Zumbusch, Andreas; Kohlwein, Sepp; Wolinski, Heimo

    2012-01-01

    Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of ...

  17. Cross-talk between sympathetic neurons and adipocytes in coculture

    Turtzo, L. Christine; Marx, Ruth; Lane, M. Daniel

    2001-01-01

    White adipose tissue plays an integral role in energy metabolism and is governed by endocrine, autocrine, and neural signals. Neural control of adipose metabolism is mediated by sympathetic neurons that innervate the tissue. To investigate the effects of this innervation, an ex vivo system was developed in which 3T3-L1 adipocytes are cocultured with sympathetic neurons isolated from the superior cervical ganglia of newborn rats. In coculture, both adipocytes and neurons exhibit appropriate mo...

  18. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    Allison J. Richard

    2013-01-01

    Full Text Available Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.

  19. Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis.

    Dusseault, Julie; Li, Bing; Haider, Nida; Goyette, Marie-Anne; Côté, Jean-François; Larose, Louise

    2016-09-01

    Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans. PMID:27325288

  20. The CCAAT/enhancer binding protein and its role in adipocyte differentiation: evidence for direct involvement in terminal adipocyte development.

    Samuelsson, L; Strömberg, K; Vikman, K; Bjursell, G; Enerbäck, S

    1991-01-01

    During the course of differentiation of preadipocytes into adipocytes, several differentiation-linked genes are activated synchronously with morphological changes. To follow this process we have used 3T3-F442A cells, known to undergo adipocyte conversion with high frequency. Accumulation of lipid droplets in the cytoplasm constitutes an easily visualized sign of the terminally differentiated phenotype. In this report we demonstrate that expression of the CCAAT/enhancer binding protein (C/EBP)...

  1. Regulatory circuits controlling white versus brown adipocyte differentiation

    Hansen, Jacob B; Kristiansen, Karsten

    2006-01-01

    Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP......1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes......, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since...

  2. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiati...

  3. Targeting IκB kinase β in Adipocyte Lineage Cells for Treatment of Obesity and Metabolic Dysfunctions.

    Helsley, Robert N; Sui, Yipeng; Park, Se-Hyung; Liu, Zun; Lee, Richard G; Zhu, Beibei; Kern, Philip A; Zhou, Changcheng

    2016-07-01

    IκB kinase β (IKKβ), a central coordinator of inflammation through activation of nuclear factor-κB, has been identified as a potential therapeutic target for the treatment of obesity-associated metabolic dysfunctions. In this study, we evaluated an antisense oligonucleotide (ASO) inhibitor of IKKβ and found that IKKβ ASO ameliorated diet-induced metabolic dysfunctions in mice. Interestingly, IKKβ ASO also inhibited adipocyte differentiation and reduced adiposity in high-fat (HF)-fed mice, indicating an important role of IKKβ signaling in the regulation of adipocyte differentiation. Indeed, CRISPR/Cas9-mediated genomic deletion of IKKβ in 3T3-L1 preadipocytes blocked these cells differentiating into adipocytes. To further elucidate the role of adipose progenitor IKKβ signaling in diet-induced obesity, we generated mice that selectively lack IKKβ in the white adipose lineage and confirmed the essential role of IKKβ in mediating adipocyte differentiation in vivo. Deficiency of IKKβ decreased HF-elicited adipogenesis in addition to reducing inflammation and protected mice from diet-induced obesity and insulin resistance. Further, pharmacological inhibition of IKKβ also blocked human adipose stem cell differentiation. Our findings establish IKKβ as a pivotal regulator of adipogenesis and suggest that overnutrition-mediated IKKβ activation serves as an initial signal that triggers adipose progenitor cell differentiation in response to HF feeding. Inhibition of IKKβ with antisense therapy may represent as a novel therapeutic approach to combat obesity and metabolic dysfunctions. Stem Cells 2016;34:1883-1895. PMID:26991836

  4. Platycodon grandiflorum extract represses up-regulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats

    Yoon Shin Park; Yoosik Yoon; Hong Seok Ahn

    2007-01-01

    AIM: To investigate the effect of Platycodon grandiflorum extract (PGE) on lipid metabolism and FABP mRNA expression in subcutaneous adipose tissue of high fat diet-induced obese rats.METHODS: PGE was treated to investigate the inhibitory effect on the pre-adipocyte 3T3-L1 differentiation and pancreatic lipase activity. Male Sprague-Dawley rats with an average weight of 439.03 ± 7.61 g were divided into four groups: the control groups that fed an experimental diet alone (C and H group) and PGE treatment groups that administered PGE along with a control diet or HFD at a concentration of 150 mg/kg body weight (C + PGE and H + PGE group, respectively) for 7 wk. Plasma total cholesterol (TC) and triglycerol (TG) concentrations were measured from the tail vein of rats. Adipocyte cell area was measured from subcutaneous adipose tissue and the fatty acid binding protein (FABP) mRNA expression was analyzed by northern blot analysis.RESULTS: PGE treatment inhibited 3T3-L1 pre-adipocyte differentiation and fat accumulation, and also decreased pancreatic lipase activity. In this experiment, PGE significantly reduced plasma TC and TG concentrations as well as body weight and subcutaneous adipose tissue weight. PGE also significantly decreased the size of subcutaneous adipocytes. Furthermore, it significantly repressed the up-regulation of FABP mRNA expression induced by a high-fat feeding in subcutaneous adipose tissue.CONCLUSION: PGE has a plasma lipid lowering-effect and anti-obesity effect in obese rats fed a high fat diet.From these results, we can suggest the possibility that PGE can be used as a food ingredient or drug component to therapeutically control obesity.

  5. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. RESULTS: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led to a...... increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  6. Three-dimensional spheroid cell model of in vitro adipocyte inflammation.

    Turner, Paul A; Tang, Yi; Weiss, Stephen J; Janorkar, Amol V

    2015-06-01

    To improve treatment of obesity, a contributing factor to multiple systemic and metabolic diseases, a better understanding of metabolic state and environmental stress at the cellular level is essential. This work presents development of a three-dimensional (3D) in vitro model of adipose tissue displaying induced lipid accumulation as a function of fatty acid supplementation that, subsequently, investigates cellular responses to a pro-inflammatory stimulus, thereby recapitulating key stages of obesity progression. Three-dimensional spheroid organization of adipose cells was induced by culturing 3T3-L1 mouse preadipocytes on an elastin-like polypeptide-polyethyleneimine (ELP-PEI)-coated surface. Results indicate a more differentiated phenotype in 3D spheroid cultures relative to two-dimensional (2D) monolayer analogues based on triglyceride accumulation, CD36 and CD40 protein expression, and peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin mRNA expression. The 3T3-L1 adipocyte spheroid model was then used to test the effects of a pro-inflammatory microenvironment, namely maturation in the presence of elevated fatty acid levels followed by acute exposure to tumor necrosis factor alpha (TNF-α). Under these conditions, we demonstrate that metabolic function was reduced across all cultures exposed to TNF-α, especially so when pre-exposed to linoleic acid. Further, in response to TNF-α, enhanced lipolysis, monitored as increased extracellular glycerol and fatty acids levels, was observed in adipocytes cultured in the presence of exogenous fatty acids. Taken together, our 3D spheroid model showed enhanced adipogenic differentiation and presents a platform for elucidating the key phenotypic responses that occur in pro-inflammatory microenvironments that characterize obesogenic states. PMID:25781458

  7. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes.

    El-Houri, Rime B; Kotowska, Dorota; Christensen, Kathrine B; Bhattacharya, Sumangala; Oksbjerg, Niels; Wolber, Gerhard; Kristiansen, Karsten; Christensen, Lars P

    2015-07-01

    A dichloromethane (DCM) extract of carrot roots was found to stimulate insulin-dependent glucose uptake (GU) in adipocytes in a dose dependent manner. Bioassay-guided fractionation of the DCM extract resulted in the isolation of the polyacetylenes falcarinol and falcarindiol. Both polyacetylenes were able to significantly stimulate basal and/or insulin-dependent GU in 3T3-L1 adipocytes and porcine myotube cell cultures in a dose-dependent manner. Falcarindiol increased peroxisome proliferator-activated receptor (PPAR)γ-mediated transactivation significantly at concentrations of 3, 10 and 30 μM, while PPARγ-mediated transactivation by falcarinol was only observed at 10 μM. Docking studies accordingly indicated that falcarindiol binds to the ligand binding domain of PPARγ with higher affinity than falcarinol and that both polyacetylenes exhibit characteristics of PPARγ partial agonists. Falcarinol was shown to inhibit adipocyte differentiation as evident by gene expression studies and Oil Red O staining, whereas falcarindiol did not inhibit adipocyte differentiation, which indicates that these polyacetylenes have distinct modes of action. The results of the present study suggest that falcarinol and falcarindiol may represent scaffolds for novel partial PPARγ agonists with possible antidiabetic properties. PMID:25970571

  8. Obestatin as a regulator of adipocyte metabolism and adipogenesis

    Gurriarán-Rodríguez, Uxía; Al-Massadi, Omar; Roca-Rivada, Arturo; Crujeiras, Ana Belén; Gallego, Rosalía; Pardo, Maria; Seoane, Luisa Maria; Pazos, Yolanda; Felipe F Casanueva; Camiña, Jesús P

    2011-01-01

    Abstract The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male ...

  9. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment.

    Zoico, Elena; Darra, Elena; Rizzatti, Vanni; Budui, Simona; Franceschetti, Guido; Mazzali, Gloria; Rossi, Andrea P; Fantin, Francesco; Menegazzi, Marta; Cinti, Saverio; Zamboni, Mauro

    2016-04-12

    A significant epidemiological association between obesity and pancreatic ductal adenocarcinoma (PDAC) has previously been described, as well as a correlation between the degree of pancreatic steatosis, PDAC risk and prognosis. The underlying mechanisms are still not completely known.After co-culture of 3T3-L1 adipocytes and MiaPaCa2 with an in vitro transwell system we observed the appearance of fibroblast-like cells, along with a decrease in number and size of remaining adipocytes. RT-PCR analyses of 3T3-L1 adipocytes in co-culture showed a decrease in gene expression of typical markers of mature adipocytes, in parallel with an increased expression of fibroblast-specific and reprogramming genes. We found an increased WNT5a gene and protein expression early in MiaPaCa2 cells in co-culture. Additionally, EMSA of c-Jun and AP1 in 3T3-L1 demonstrated an increased activation in adipocytes after co-culture. Treatment with WNT5a neutralizing antibody completely reverted the activation of c-Jun and AP1 observed in co-cultured adipocytes.Increasing doses of recombinant SFRP-5, a competitive inhibitor for WNT5a receptor, added to the co-culture medium, were able to block the dedifferentiation of adipocytes in co-culture.These data support a WNT5a-mediated dedifferentiation process with adipocytes reprogramming toward fibroblast-like cells that might profoundly influence cancer microenvironment. PMID:26958939

  10. Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes

    Zhang, Chongben; Yoon, Mee-Sup; Chen, Jie

    2009-01-01

    Chronically high insulin levels and increased circulating free fatty acids released from adipose tissue through lipolysis are two features associated with insulin resistance. The relationship between chronic insulin exposure and adipocyte lipolysis has been unclear. In the present study we found that chronic insulin exposure in 3T3-L1 adipocytes, as well as in mouse primary adipocytes, increased basal lipolysis rates. This effect of insulin on lipolysis was only observed when the mammalian ta...

  11. Advanced glycation end products-modified proteins and oxidized LDL mediate down-regulation of leptin in mouse adipocytes via CD36

    Advanced glycation end products (AGE)-modified proteins as well as oxidized-LDL (Ox-LDL) undergo receptor-mediated endocytosis by CHO cells overexpressing CD36, a member of class B scavenger receptor family. The purpose of the present study was to examine the effects of glycolaldehyde-modified BSA (GA-BSA) as an AGE-ligand and Ox-LDL on leptin expression in adipocytes. GA-BSA decreased leptin expression at both protein and mRNA levels in 3T3-L1 adipocytes and mouse epididymal adipocytes. Ox-LDL showed a similar inhibitory effect on leptin expression in 3T3-L1 adipocytes, which effect was protected by N-acetylcysteine, a reactive oxygen species (ROS) inhibitor. Binding of 125I-GA-BSA or 125I-Ox-LDL to 3T3-L1 adipocytes and subsequent endocytic degradation were inhibited by a neutralizing anti-CD36 antibody. Furthermore, this antibody also suppressed Ox-LDL-induced leptin down-regulation. These results clarify that the interaction of GA-BSA and Ox-LDL with CD36 leads to down-regulation of leptin expression via ROS system(s) in 3T3-L1 adipocytes, suggesting that a potential link of AGE- and/or Ox-LDL-induced leptin down-regulation might be linked to insulin-sensitivity in metabolic syndrome

  12. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

    Qiaoli Gu

    2012-01-01

    Full Text Available Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2 and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2 and CCAAT/enhancer-binding protein (C/EBP α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.

  13. Lats2 modulates adipocyte proliferation and differentiation via hippo signaling.

    Yang An

    Full Text Available First identified in Drosophila and highly conserved in mammals, the Hippo pathway controls organ size. Lats2 is one of the core kinases of the Hippo pathway and plays major roles in cell proliferation by interacting with the downstream transcriptional cofactors YAP and TAZ. Although the function of the Hippo pathway and Lats2 is relatively well understood in several tissues and organs, less is known about the function of Lats2 and Hippo signaling in adipose development. Here, we show that Lats2 is an important modulator of adipocyte proliferation and differentiation via Hippo signaling. Upon activation, Lats2 phosphorylates YAP and TAZ, leading to their retention in the cytoplasm, preventing them from activating the transcription factor TEAD in the nucleus. Because TAZ remains in the cytoplasm, PPARγ regains its transcriptional activity. Furthermore, cytoplasmic TAZ acts as an inhibitor of Wnt signaling by suppressing DVL2, thereby preventing β-catenin from entering the nucleus to stimulate TCF/LEF transcriptional activity. The above effects contribute to the phenotype of repressed proliferation and accelerated differentiation in adipocytes. Thus, Lats2 regulates the balance between proliferation and differentiation during adipose development. Interestingly, our study provides evidence that Lats2 not only negatively modulates cell proliferation but also positively regulates cell differentiation.

  14. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    Aileen Balkow

    2015-08-01

    Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

  15. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    Hakim-Weber, Robab; Krogsdam, Anne-M; Jørgensen, Claus;

    2011-01-01

    Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate...... this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene...... experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1.To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of...

  16. Differential adipogenic and inflammatory properties of small adipocytes in Zucker Obese and Lean rats

    Liu, Alice; Sonmez, Alper; Yee, Gail; Bazuine, Merlijn; Arroyo, Matilde; Sherman, Arthur; McLaughlin, Tracey; Reaven, Gerald; Cushman, Samuel; Tsao, Philip

    2010-01-01

    We recently reported that a preponderance of small adipose cells, decreased expression of cell differentiation markers, and enhanced inflammatory activity in human subcutaneous whole adipose tissue were associated with insulin resistance. To test the hypothesis that small adipocytes exhibited these differential properties, we characterized small adipocytes from epididymal adipose tissue of Zucker Obese (ZO) and Lean (ZL) rats. Rat epididymal fat pads were removed and adipocytes isolated by co...

  17. FAT/CD36-mediated Long-Chain Fatty Acid Uptake in Adipocytes Requires Plasma Membrane Rafts

    Pohl, Jürgen; Ring, Axel; Korkmaz, Ümine; Ehehalt, Robert; Stremmel, Wolfgang

    2005-01-01

    We previously reported that lipid rafts are involved in long-chain fatty acid (LCFA) uptake in 3T3-L1 adipocytes. The present data show that LCFA uptake does not depend on caveolae endocytosis because expression of a dominant negative mutant of dynamin had no effect on uptake of [3H]oleic acid, whereas it effectively prevented endocytosis of cholera toxin. Isolation of detergent-resistant membranes (DRMs) from 3T3-L1 cell homogenates revealed that FAT/CD36 was expressed in both DRMs and deter...

  18. Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice

    Monden, Masayo; Koyama, Hidenori; Otsuka, Yoshiko; Morioka, Tomoaki; Mori, Katsuhito; Shoji, Takuhito; Mima, Yohei; Motoyama, Koka; Fukumoto, Shinya; Shioi, Atsushi; Emoto, Masanori; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Nishizawa, Yoshiki; Kurajoh, Masafumi

    2013-01-01

    Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown o...

  19. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes.

    Sun, Wuping; Uchida, Kunitoshi; Takahashi, Nobuyuki; Iwata, Yuko; Wakabayashi, Shigeo; Goto, Tsuyoshi; Kawada, Teruo; Tominaga, Makoto

    2016-09-01

    Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca(2+)-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway. PMID:27318696

  20. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha;

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged...

  1. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Ching Sheng, Chu

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and

  2. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth.

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M; Krautbauer, Sabrina; Buechler, Christa

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. PMID:27242274

  3. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

    Son, Min Jeong; Kim, Won Kon; Kwak, Minjeong; Oh, Kyoung-Jin; Chang, Won Seok; Min, Jeong-Ki; Lee, Sang Chul; Song, Nam Woong; Bae, Kwang-Hee

    2015-10-01

    Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.

  4. Mesenchymal Stromal Cells Differentiating to Adipocytes Accumulate Autophagic Vesicles Instead of Functional Lipid Droplets.

    Gruia, Alexandra T; Suciu, Maria; Barbu-Tudoran, Lucian; Azghadi, Seyed Mohammad Reza; Cristea, Mirabela I; Nica, Dragos V; Vaduva, Adrian; Muntean, Danina; Mic, Ani Aurora; Mic, Felix A

    2016-04-01

    Adult bone marrow mesenchymal stromal cells (BMSCs) can easily be differentiated into a variety of cells. In vivo transplantation of BMSCs-differentiated cells has had limited success, suggesting that these cells may not be fully compatible with the cells they are intended to replace in vivo. We investigated the structural and functional features of BMSCs-derived adipocytes as compared with adipocytes from adipose tissue, and the structure and functionality of lipid vesicles formed during BMSCs differentiation to adipocytes. Gas chromatography-mass spectrometry showed fatty acid composition of BMSCs-derived adipocytes and adipocytes from the adipose tissue to be very different, as is the lipid rafts composition, caveolin-1 expression, caveolae distribution in their membranes, and the pattern of expression of fatty acid elongases. Confocal microscopy confirmed the absence from BMSCs-derived adipocytes of markers of lipid droplets. BMSCs-derived adipocytes cannot convert deuterated glucose into deuterated species of fatty acids and cannot uptake the deuterated fatty acid-bovine serum albumin complexes from the culture medium, suggesting that intra-cellular accumulation of lipids does not occur by lipogenesis. We noted that BMSCs differentiation to adipocytes is accompanied by an increase in autophagy. Autophagic vesicles accumulate in the cytoplasm of BMSCs-derived adipocytes and their size and distribution resembles that of Nile Red-stained lipid vesicles. Stimulation of autophagy in BMSCs triggers the intra-cellular accumulation of lipids, while inhibition of autophagy prevents this accumulation. In conclusion, differentiation of BMSCs-derived adipocytes leads to intra-cellular accumulation of autophagic vesicles rather than functional lipid droplets, suggesting that these cells are not authentic adipocytes. J. Cell. Physiol. 231: 863-875, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332160

  5. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance.

    Zhang, Deling; Zhang, Yemin; Ye, Mao; Ding, Youming; Tang, Zhao; Li, Mingxin; Zhou, Yu; Wang, Changhua

    2016-07-01

    Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes. PMID:27113027

  6. Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    Orlando Robert A

    2008-06-01

    Full Text Available Abstract Background Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression. Methods Cytokine (TNF-α, IL-1β, IL-6 and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR with or without TNFα-stimulation. Cytokine protein and prostaglandin E2 (PGE2 expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1 assessing the activation state of the NF-κB signaling pathway and 2 measuring inflammatory gene expression by qRT-PCR and ELISA. Results Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold and COX-2 (2.5-fold mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited

  7. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress.

    Martini, Claudia N; Gabrielli, Matías; Brandani, Javier N; Vila, María Del C

    2016-08-01

    Glyphosate-based herbicides (GF) are extensively used for weed control. Thus, it is important to investigate their putative toxic effects. We have reported that GF at subagriculture concentrations inhibits proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. In this investigation, we evaluated the effect of GF on genes upregulated during adipogenesis. GF was able to inhibit the induction of PPAR gamma, the master gene in adipogenesis but not C/EBP beta, which precedes PPAR gamma activation. GF also inhibited differentiation and proliferation of another model of preadipocyte: mouse embryonic fibroblasts. In exponentially growing 3T3-L1 cells, GF increased lipid peroxidation and the activity of the antioxidant enzyme, superoxide dismutase. We also found that proliferation was inhibited with lower concentrations of GF when time of exposure was extended. Thus, GF was able to inhibit proliferation and differentiation of preadipocytes and to induce oxidative stress, which is indicative of its ability to alter cellular physiology. PMID:27044015

  8. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    Kim, Nam Soo; Kim, Yoon-Jin [Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Cho, Si Young [R and D Center, Amore Pacific Corporation, Yongin-si, Gyeonggi-do 446-729 (Korea, Republic of); Lee, Tae Ryong, E-mail: trlee@amorepacific.com [R and D Center, Amore Pacific Corporation, Yongin-si, Gyeonggi-do 446-729 (Korea, Republic of); Kim, Sang Hoon, E-mail: shkim@khu.ac.kr [Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-09-27

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.

  9. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes

  10. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage.

    Liu, Ling; Shah, Supriya; Fan, Jing; Park, Junyoung O; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-05-01

    The critical cellular hydride donor NADPH is produced through various means, including the oxidative pentose phosphate pathway (oxPPP), folate metabolism and malic enzyme. In growing cells, it is efficient to produce NADPH via the oxPPP and folate metabolism, which also make nucleotide precursors. In nonproliferating adipocytes, a metabolic cycle involving malic enzyme holds the potential to make both NADPH and two-carbon units for fat synthesis. Recently developed deuterium ((2)H) tracer methods have enabled direct measurement of NADPH production by the oxPPP and folate metabolism. Here we enable tracking of NADPH production by malic enzyme with [2,2,3,3-(2)H]dimethyl-succinate and [4-(2)H]glucose. Using these tracers, we show that most NADPH in differentiating 3T3-L1 mouse adipocytes is made by malic enzyme. The associated metabolic cycle is disrupted by hypoxia, which switches the main adipocyte NADPH source to the oxPPP. Thus, (2)H-labeled tracers enable dissection of NADPH production routes across cell types and environmental conditions. PMID:26999781

  11. Potent effects of, and mechanisms for, modification of crosstalk between macrophages and adipocytes by lactobacilli.

    Miyazawa, Kenji; He, Fang; Yoda, Kazutoyo; Hiramatsu, Masaru

    2012-12-01

    The murine macrophage-like cell line J774.1 was treated with heat-killed cells of Lactobacillus GG (LGG) and L. gasseri TMC0356 (TMC 0356). Interleukin (IL)-6, IL-12, and tumor necrosis factor-α were profiled from the J774.1 cells using enzyme-linked immunosorbent assay methods. The conditioned medium from cultured J774.1 cells was transferred to the preadipocyte cell line 3T3-L1 (which is a mouse embryonic fibroblast-adipose-like cell line). Growth and differentiation of 3T3-L1 cells were monitored by analyzing lipid accumulation and expression of peroxisome proliferator-activated receptor (PPAR)-γ mRNA. The medium conditioned by 3T3-L1 cells was added to J774.1 cells and the cytokines in the supernatant analyzed. Compared with that of cells exposed to a PBS-conditioned medium, lipid accumulation in 3T3-L1 cells was significantly suppressed in a dose-dependent manner by each medium that had been conditioned with LGG and TMC0356. PPAR-γ mRNA expression in 3T3-L1 cells was also significantly downregulated (P phenotype significantly stimulated production of IL-6 and IL-12 in J774.1 cells treated with LGG and TMC0356. These results suggest that lactobacilli may suppress differentiation of preadipocytes through macrophage activation and alter the immune responses of macrophages to adipose cells. PMID:23017059

  12. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-Jun N-terminal kinase.

    Gao, Xuefei; Li, Kuai; Hui, Xiaoyan; Kong, Xiangping; Sweeney, Gary; Wang, Yu; Xu, Aimin; Teng, Maikun; Liu, Pentao; Wu, Donghai

    2011-05-01

    The adipocyte is the principal cell type for fat storage. CPT1 (carnitine palmitoyltransferase-1) is the rate-limiting enzyme for fatty acid β-oxidation, but the physiological role of CPT1 in adipocytes remains unclear. In the present study, we focused on the specific role of CPT1A in the normal functioning of adipocytes. Three 3T3-L1 adipocyte cell lines stably expressing hCPT1A (human CPT1A) cDNA, mouse CPT1A shRNA (short-hairpin RNA) or GFP (green fluorescent protein) were generated and the biological functions of these cell lines were characterized. Alteration in CPT1 activity, either by ectopic overexpression or pharmacological inhibition using etomoxir, did not affect adipocyte differentiation. However, overexpression of hCPT1A significantly reduced the content of intracellular NEFAs (non-esterified fatty acids) compared with the control cells when adipocytes were challenged with fatty acids. The changes were accompanied by an increase in fatty acid uptake and a decrease in fatty acid release. Interestingly, CPT1A protected against fatty acid-induced insulin resistance and expression of pro-inflammatory adipokines such as TNF-α (tumour necrosis factor-α) and IL-6 (interleukin-6) in adipocytes. Further studies demonstrated that JNK (c-Jun N terminal kinase) activity was substantially suppressed upon CPT1A overexpression, whereas knockdown or pharmacological inhibition of CPT1 caused a significant enhancement of JNK activity. The specific inhibitor of JNK SP600125 largely abolished the changes caused by the shRNA- and etomoxir-mediated decrease in CPT1 activity. Moreover, C2C12 myocytes co-cultured with adipocytes pre-treated with fatty acids displayed altered insulin sensitivity. Taken together, our findings have identified a favourable role for CPT1A in adipocytes to attenuate fatty acid-evoked insulin resistance and inflammation via suppression of JNK. PMID:21348853

  13. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Yine Qu

    2016-04-01

    Full Text Available The functions of interleukin-17A (IL-17A in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice or a high-fat diet (n = 6, obese mice for 30 weeks. Subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  14. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  15. Quantitative analysis of secretome from adipocytes regulated by insulin

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  16. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    Mei-Lin Wang

    2015-04-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD and β-naphthoflavone (BNF, inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF, an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs. Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF (1–5 μM for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL, estrogen receptor (ER, as well as decreased expression of AhR, AhR nuclear translocator (ARNT, cytochrome P4501B1 (CYP1B1, and nuclear factor erythroid-2-related factor (NRF-2 proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and

  17. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation

    Hansen, Jacob B; Jørgensen, Claus; Petersen, Rasmus K;

    2004-01-01

    Adipocyte precursor cells give raise to two major cell populations with different physiological roles: white and brown adipocytes. Here we demonstrate that the retinoblastoma protein (pRB) regulates white vs. brown adipocyte differentiation. Functional inactivation of pRB in wild-type mouse embryo...... fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate...

  18. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  19. TBTC induces adipocyte differentiation in human bone marrow long term culture

    Organotins are widely used in agriculture and the chemical industry, causing persistent and widespread pollution. Organotins may affect the brain, liver and immune system and eventually human health. Recently, it has been shown that tri-butyltin (TBT) interacts with nuclear receptors PPARγ (peroxisome proliferator-activated receptor γ) and RXR (retinoid x receptor) leading to adipocyte differentiation in the 3T3 cell line. Since adipocytes are known to influence haematopoiesis, for instance through the expression of cytokines and adhesion molecules, it was considered of interest to further study the adipocyte-stimulating effect of TBTC in human bone marrow cultures. Nile Red spectrofluorimetric analysis showed a significant increase of adipocytes in TBTC-treated cultures after 14 days of long term culture. Real-time PCR and Western blot analysis confirmed the high expression of the specific adipocyte differentiation marker aP2 (adipocyte-specific fatty acid binding protein). PPARγ, but not RXR, mRNA was increased after 24 h and 48 h exposure. TBTC also induced a decrease in a number of chemokines, interleukins, and growth factors. Also the expression of leptin, a hormone involved in haematopoiesis, was down regulated by TBTC treatment. It therefore appears that TBTC induced adipocyte differentiation, whilst reducing a number of haematopoietic factors. This study indicates that TBTC may interfere in the haematopoietic process through an alteration of the stromal layer and cytokine homeostasis

  20. DYNAMICS OF LIPID DROPLET-ASSOCIATED PROTEINS DURING HORMONALLY STIMULATED LIPOLYSIS IN ENGINEERED ADIPOCYTES: STABILIZATION AND LIPID DROPLET BINDING OF ADIPOCYTE DIFFERENTIATION-RELATED PROTEIN/ADIPOPHILIN

    In mature adipocytes, triglyceride is stored within lipid droplets, which are coated with the protein perilipin, which functions to regulate lipolysis by controlling lipase access to the droplet in a hormone-regulatable fashion. Adipocyte-differentiation related protein (ADRP) is a widely expressed ...

  1. Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells

    How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBPβ dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1α. HP1α inhibits LAP transcriptional capacity and occupies the promoter of the C/EBPβ-dependent gene c/ebpα in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1α binding decreases from c/ebpα promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBPβ associated with chromatin or nucleoskeleton, and dynamic changes in their interaction with HP1α, play key roles in the regulation of C/EBP target genes during adipogenesis.

  2. Differential Chemokine Signature between Human Preadipocytes and Adipocytes.

    Ignacio, Rosa Mistica C; Gibbs, Carla R; Lee, Eun-Sook; Son, Deok-Soo

    2016-06-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  3. Prokineticin receptor 1 as a novel suppressor of preadipocyte proliferation and differentiation to control obesity.

    Cécilia Szatkowski

    Full Text Available BACKGROUND: Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs: PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2. The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1, here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1(-/- and adipocyte-specific (PKR1(ad-/- mutant mice, and using murine and human preadipocyte cell lines. Both PKR1(-/- and PKR1(ad-/- had excessive abdominal adipose tissue, but only PKR1(-/- mice showed severe obesity and diabetes-like syndrome. PKR1(ad-/- mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels. CONCLUSIONS/SIGNIFICANCE: These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.

  4. Momordica charantia (bitter melon inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Nerurkar Vivek R

    2010-06-01

    Full Text Available Abstract Background Escalating trends of obesity and associated type 2 diabetes (T2D has prompted an increase in the use of alternative and complementary functional foods. Momordica charantia or bitter melon (BM that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes. Methods Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR. Results Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ and sterol regulatory element-binding protein 1c (SREBP-1c and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol. Conclusion Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.

  5. Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation

    Parekh, Vaishali I.; Modali, Sita D.; Desai, Shruti S.; Agarwal, Sunita K

    2015-01-01

    Lipoma in patients with the multiple endocrine neoplasia type 1 (MEN1) syndrome is a type of benign fat-cell tumor that has biallelic inactivation of MEN1 that encodes menin and could serve as a model to investigate normal and pathologic fat-cell (adipocyte) proliferation and function. The role of menin and its target genes in adipocytes is not known. We used in vitro differentiation to derive matched normal and menin-deficient adipocytes from wild type (WT) and menin-null (Men1-KO) mouse emb...

  6. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity.

    Marina R Pulido

    Full Text Available Lipid droplets (LDs are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K, the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.

  7. Differential Effect of Weight Loss on Adipocyte Size Subfractions in Patients With Type 2 Diabetes

    Pasarica, Magdalena; Tchoukalova, Yourka D.; Heilbronn, Leonie K.; Fang, Xiaobing; Albu, Jeanine B.; Kelley, David E.; Smith, Smith R.; Ravussin, Eric

    2009-01-01

    The size of adipocytes influences their function suggesting a differential responsiveness to intervention. We hypothesized that weight loss in patients with type 2 diabetes mellitus (T2DM) predominantly decreases the size of large and very-large adipocyte subfractions in parallel with beneficial changes in serum adipokines and improved insulin sensitivity. A total of 44 volunteers from the Look Action for Health in Diabetes trial, who lost weight after 1-year of intense lifestyle intervention...

  8. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations.

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissu...

  9. Between brown and white: novel aspects of adipocyte differentiation.

    Cinti, Saverio

    2011-03-01

    In all mammals including humans, most white and brown adipocytes are found together in visceral and subcutaneous depots (adipose organ) despite the well known difference in their function, respectively of storing energy and producing heat. A growing body of evidence suggests that the reason for such anatomical arrangement is their plasticity, which under appropriate stimulation allows direct conversion of one cell type into the other. In conditions of chronic cold exposure white-to-brown conversion meets the need for thermogenesis, whereas an obesogenic diet induces brown-to-white conversion to meet the need for storing energy. White-to-brown transdifferentiation is of medical interest, because the brown phenotype of the adipose organ is associated to obesity resistance, and drugs inducing this phenotype curb murine obesity and related disorders. Type 2 diabetes is the most common disorder associated to visceral obesity. Macrophages infiltrating the adipose organ are responsible for the low-grade chronic inflammation related to the removal of dead adipocytes, which leads to insulin resistance and T2 diabetes. Adipocyte death is closely related to their growth up to the critical death size. The critical death size of visceral adipocytes is smaller than that of subcutaneous adipocytes, likely accounting for the greater morbidity related to visceral fat. PMID:21254898

  10. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-01-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (−40%) through reduced glucose tr...

  11. Effect of hypoxia on metabolic markers and gene expression HIF-1 α in adipocytes

    Younes, Noura B.

    2015-01-01

    Background: Docosahexaenoic acid (DHA; omega-3 fatty acid) has been reported to have potential anti-obesity properties. Hypoxia is a condition that results from the excessive expansion of white adipose tissue resulting in obesity-related conditions including insulin resistance, inflammation and oxidative stress. Methods: The objective of this study was to test the effects of DHA on the hypoxia responses (1.0 % for 24 hours) of 3T3-L1 adipocytes with a focus on oxidative stress, inflammation, ...

  12. Angiotensinogen gene silencing reduces markers of inflammation and lipid accumulation in adipocytes

    NaimaMoustaid-Moussa; WentingXin; NishanKalupahana

    2013-01-01

    Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system (RAS) to the pathogenesis of obesity, inflammation and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt) plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipo...

  13. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  14. Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice.

    Kitada, Yoshihiko; Kajita, Kazuo; Taguchi, Koichiro; Mori, Ichiro; Yamauchi, Masahiro; Ikeda, Takahide; Kawashima, Mikako; Asano, Motochika; Kajita, Toshiko; Ishizuka, Tatsuo; Banno, Yoshiko; Kojima, Itaru; Chun, Jerold; Kamata, Shotaro; Ishii, Isao; Morita, Hiroyuki

    2016-05-01

    Sphingosine 1-phosphate (S1P) is known to regulate insulin resistance in hepatocytes, skeletal muscle cells, and pancreatic β-cells. Among its 5 cognate receptors (S1pr1-S1pr5), S1P seems to counteract insulin signaling and confer insulin resistance via S1pr2 in these cells. S1P may also regulate insulin resistance in adipocytes, but the S1pr subtype(s) involved remains unknown. Here, we investigated systemic glucose/insulin tolerance and phenotypes of epididymal adipocytes in high-fat diet (HFD)-fed wild-type and S1pr2-deficient (S1pr2(-/-)) mice. Adult S1pr2(-/-) mice displayed smaller body/epididymal fat tissue weights, but the differences became negligible after 4 weeks with HFD. However, HFD-fed S1pr2(-/-) mice displayed better scores in glucose/insulin tolerance tests and had smaller epididymal adipocytes that expressed higher levels of proliferating cell nuclear antigen than wild-type mice. Next, proliferation/differentiation of 3T3-L1 and 3T3-F442A preadipocytes were examined in the presence of various S1pr antagonists: JTE-013 (S1pr2 antagonist), VPC-23019 (S1pr1/S1pr3 antagonist), and CYM-50358 (S1pr4 antagonist). S1P or JTE-013 treatment of 3T3-L1 preadipocytes potently activated their proliferation and Erk phosphorylation, whereas VPC-23019 inhibited both of these processes, and CYM-50358 had no effects. In contrast, S1P or JTE-013 treatment inhibited adipogenic differentiation of 3T3-F442A preadipocytes, whereas VPC-23019 activated it. The small interfering RNA knockdown of S1pr2 promoted proliferation and inhibited differentiation of 3T3-F442A preadipocytes, whereas that of S1pr1 acted oppositely. Moreover, oral JTE-013 administration improved glucose tolerance/insulin sensitivity in ob/ob mice. Taken together, S1pr2 blockade induced proliferation but suppressed differentiation of (pre)adipocytes both in vivo and in vitro, highlighting a novel therapeutic approach for obesity/type 2 diabetes. PMID:26943364

  15. Effect of jatrorrhizine on the glucolipid metabolism in adipocyte and its mechanism%药根碱对脂肪细胞糖脂代谢的影响及其机制研究

    王慧; 陈刘; 姜友昭; 陈兵

    2012-01-01

    Objective To investigate the effect of jatrorrhizine, extracted from the rhizome of Coptis chinensis, on the glucose up-take and fatty acid oxidation in the 3T3-L1 adipocyte. Methods Jatrorrhizine in different concentrations (265.65, 53.75, 10.75, 2.15 and 0.45u,mol/L) was used in culture of the 3T3-L1 adipocytes for different periods (12, 24, 48 and 72 hours), and the cytotoxicity of jatrorrhizine was then determined by MTT assay. The uptake of glucose mediated by insulin was assessed by 3H-labeled deoxyglucose, and fatty acid oxidation in co-cultured 3T3-L1 adipocyte was measured using 14 C-labeled palmitic acid. The expression of PPARs gene was detected by real-time PCR, and the expression of PPARs protein was detected by Western blotting. Jatrorrhizine was replaced with PBS solution for all the control experiments. Results The optimal active concentration of jatrorrhizine was 0.45|xmol/L, and the preferable reaction time was 48 hours. Compared to PBS solution, the in vitro fatty acid oxidation in 3T3-L1 adipocyte was promoted by jatrorrhizine, so were the genie and protein expressions of PPARα and PPARp (P<0.01 or P<0.05). The impact on the PPAR 7, however, was negative. Conclusion Jatrorrhizine can promote the fatty acid oxidation in 3T3-L1 adipocyte, which may be attributable to the up-regulation of PPAR α and PPAR |3 levels in 3T3-L1 adipocyte.%目的 探讨黄连根茎提取物药根碱对3T3-L1脂肪细胞葡萄糖摄取、脂肪酸氧化的影响及其可能机制.方法 采用不同浓度(265.65、53.75、10.75、2.15、0.45μmol/L)药根碱作用于3T3-L1细胞不同时间(12、24、48、72h),MTT法检测药根碱的细胞毒性.以0.45 μ mol/L药根碱作用于3T3-L1细胞48h后,用[3H]2-DG标记检测胰岛素介导的葡萄糖摄取情况,14C-palmitic标记检测脂肪酸氧化情况,Real-time PCR检测PPARs基因表达情况,Western blotting检测PPARs蛋白表达情况,以PBS代替药根碱作为对照.结果 药根碱最佳作用浓度为0.45

  16. Methylation of miR-145a-5p promoter mediates adipocytes differentiation.

    Du, Jingjing; Cheng, Xiao; Shen, Linyuan; Tan, Zhendong; Luo, Jia; Wu, Xiaoqian; Liu, Chendong; Yang, Qiong; Jiang, Yanzhi; Tang, Guoqing; Li, Xuewei; Zhang, Shunhua; Zhu, Li

    2016-06-17

    MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promoted or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation. PMID:27179777

  17. Effect of soluble Jagged1-mediated inhibition of Notch signaling on proliferation and differentiation of an adipocyte progenitor cell model

    Urs, Sumithra; Turner, Bryce; Tang, Yuefeng; Rostama, Bahman; Small, Deena; Liaw, Lucy

    2012-01-01

    Adipose tissue development is dependent on multiple signaling mechanisms and cell-cell interactions that regulate adipogenesis, angiogenesis and extracellular remodeling. The Notch signaling pathway is an important cell-fate determinant whose role in adipogenesis is not clearly defined. To address this issue, we examined the effect of inhibition of Notch signaling by soluble-Jagged1 in the 3T3-L1 preadipocyte line. In vitro, soluble-Jagged1 expression in 3T3-L1 cells altered cell morphology, ...

  18. Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats.

    Shum, Michaël; Pinard, Sandra; Guimond, Marie-Odile; Labbé, Sébastien M; Roberge, Claude; Baillargeon, Jean-Patrice; Langlois, Marie-France; Alterman, Mathias; Wallinder, Charlotta; Hallberg, Anders; Carpentier, André C; Gallo-Payet, Nicole

    2013-01-15

    This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity. PMID:23149621

  19. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  20. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  1. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110α and p110δ and that after differentiation, p110δ levels fall while p110α levels rise, together with C/EBPα and PPARγ. When using specific inhibitors during the differentiation process, we observed that neither p110β nor p110δ inhibition, had any significant effect. In contrast PIK-75, a selective p110α inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110α inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  2. Characterization of actions of octanoate on porcine preadipocytes and adipocytes differentiated in vitro

    Highlights: ► Octanoate regulated gene expressions in a way distinct from rosiglitasone. ► Octanoate upregulatedPPRE and LXRE reporter activities. ► Octanoate may act on some PPARγ-target genes competitively with other ligands. - Abstract: Octanoate is used to induce adipogenic differentiation and/or lipid accumulation in preadipocytes of domestic animals. However, information on detailed actions of octanoate and the characteristics of octanoate-induced adipocytes is limited. The aim of this study was to examine these issues by comparing the outcomes of the effects of octanoate with those of rosiglitazone, which is a well-defined activator of peroxisome proliferator-activated receptor (PPAR)-γ. The adipocytes that were differentiated with 5 mM of octanoate had dispersed and diversely sized lipid droplets compared to those that were differentiated with 1 μM of rosiglitazone. The gene expression levels of adiponectin, glycerol-3-phosphate dehydrogenase, perilipin 1, and perilipin 4 were much higher in the adipocytes that were differentiated with rosiglitazone than in those differentiated with octanoate, while the gene expression levels of