Molecular Rydberg transitions in carbon monoxide
The linear correlation between the term value and ionization energy for molecular Rydberg transitions is tested for the sequence of isoelectronic molecules BF, CO and N2 based on a new measurement of the absorption spectrum of CO and data for BF and N2. For the npsigma series and npπ series converging on the first ionization potential, we find an excellent linear behavior (within 10 meV) corroborating (I) the correlation and (II) the individual assignments. For Rydberg series leading to the A2DELTA and B2EPSILON+ states, where no data for BF are available, a comparison of term values for CO and N2 is presented. (orig.)
Transition Rates for a Rydberg Atom Surrounded by a Plasma
Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi
2016-01-01
We derive a quantum master equation for an atom coupled to a heat bath represented by a charged particle many-body environment. In Born-Markov approximation, the influence of the plasma environment on the reduced system is described by the dynamical structure factor. Expressions for the profiles of spectral lines are obtained. Wave packets are introduced as robust states allowing for a quasi-classical description of Rydberg electrons. Transition rates for highly excited Rydberg levels are investigated. A circular-orbit wave packet approach has been applied, in order to describe the localization of electrons within Rydberg states. The calculated transition rates are in a good agreement with experimental data.
Transition rates for a Rydberg atom surrounded by a plasma
Lin, Chengliang; Gocke, Christian; Röpke, Gerd; Reinholz, Heidi
2016-04-01
We derive a quantum master equation for an atom coupled to a heat bath represented by a charged particle many-body environment. In the Born-Markov approximation, the influence of the plasma environment on the reduced system is described by the dynamical structure factor. Expressions for the profiles of spectral lines are obtained. Wave packets are introduced as robust states allowing for a quasiclassical description of Rydberg electrons. Transition rates for highly excited Rydberg levels are investigated. A circular-orbit wave-packet approach has been applied in order to describe the localization of electrons within Rydberg states. The calculated transition rates are in a good agreement with experimental data.
Zhou, Yan; Grimes, David D.; Barnum, Timothy J.; Patterson, David; Coy, Stephen L.; Klein, Ethan; Muenter, John S.; Field, Robert W.
2015-11-01
Millimeter-wave transitions between molecular Rydberg states (n ∼ 35) of barium monofluoride are directly detected via Free Induction Decay (FID). Two powerful technologies are used in combination: Chirped-Pulse millimeter-Wave (CPmmW) spectroscopy and a buffer gas cooled molecular beam photoablation source. Hundreds of Rydberg-Rydberg transitions are recorded in 1 h with >10:1 signal:noise ratio and ∼150 kHz resolution. This high resolution, high spectral velocity experiment promises new strategies for rapid measurements of structural and dynamical information, such as the electric structure (multipole moments and polarizabilities) of the molecular ion-core and the strengths and mechanisms of resonances between Rydberg electron and ion-core motions. Direct measurements of Rydberg-Rydberg transitions with kilo-Debye dipole moments support efficient and definitive spectral analysis techniques, such as the Stark demolition and polarization diagnostics, which enable semi-automatic assignments of core-nonpenetrating Rydberg states. In addition, extremely strong radiation-mediated collective effects (superradiance) in a dense Rydberg gas of barium atoms are observed.
Electron impact investigation of the 3p-Rydberg transitions of acetone
High resolution (15 meV), gas phase, electron impact energy loss spectra of acetone, and acetone-d6 measured as a function of incident energy and scattering angle have been used to study the anomalously weak 7.4 eV 3p-Rydberg transition in acetone. Assignments made on the basis of isotope shifts and differential electron scattering cross sections show that the weak transition observed optically and in the high energy electron impact spectrum is a forbidden transition to the out-of-plane 3p-Rydberg orbital. The band system is built on a vibronically allowed false origin enabled by the ν23 (CO bend) vibration. The analogous transition in the less symmetric molecule methyl ethyl ketone was observed to be optically allowed. All observed bands could be assigned to the one electronic transition to the out-of-plane 3p-Rydberg orbital. The other two 3p-Rydberg transitions do not appear to be active in acetone or methyl ethyl ketone. An unusual feature of this investigation was the experimental investigation of the relative differential scattering cross sections of both true and false vibronic origins within a single electronic transition. The high energy resolution allowed isotopic substitution, a traditional technique of optical spectroscopy, to be used to establish assignments in an electron impact experiment
Non-equilibrium phase-transitions in multi-component Rydberg gases
Ding, D S; Shi, B S; Guo, G C
2016-01-01
Highly-excited Rydberg atoms have strong long-range interactions resulting in exotic optical prop erties such as large single photon non-linearities and intrinsic bistability. In this paper we study optical-driven non-equilibrium phase transitions in a thermal Rydberg gas with a sensitivity two order of magnitude higher than in previous work. In this regime we can elucidate the effect of inter actions on the bistable optical response, and exploit different branches in the potential in order to study multi-component Rydberg gases with a rich of phase diagram including overlapping bistable regions. In addition, we study the effect of polarization on the width of the hysteresis loop. Finally, we observe that the medium exhibits a dynamical instability resulting from the competing dynamics of excitation and decay.
Direct single-shot observation of millimeter wave superradiance in Rydberg-Rydberg transitions
Grimes, David D; Barnum, Timothy J; Zhou, Yan; Yelin, Susanne F; Field, Robert W
2016-01-01
We have directly detected millimeter wave (mm-wave) free space superradiant emission from Rydberg states ($n \\sim 30$) of barium atoms in a single shot. We trigger the cooperative effects with a weak initial pulse and detect with single-shot sensitivity and 20 ps time resolution, which allows measurement and shot-by-shot analysis of the distribution of decay rates, time delays, and time-dependent frequency shifts. Cooperative line shifts and decay rates are observed that exceed values that would correspond to the Doppler width of 250 kHz by a factor of 20 and the spontaneous emission rate of 50 Hz by a factor of $10^5$. The initial superradiant output pulse is followed by evolution of the radiation-coupled many-body system toward complex long-lasting emission modes. A comparison to a mean-field theory is presented which reproduces the quantitative time-domain results, but fails to account for either the frequency-domain observations or the long-lived features.
Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms
Beterov, I I; Yakshina, E A; Ryabtsev, I I; Tretyakov, D B; Entin, V M; MacCormick, C; Piotrowicz, M J; Kowalczyk, A; Bergamini, S
2012-01-01
The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transitions between rubidium Rydberg states has been found.
Piotrowicz, M J; MacCormick, C; Kowalczyk, A; Bergamini, S [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK6 7AA (United Kingdom); Beterov, I I; Yakshina, E A, E-mail: c.maccormick@open.ac.uk, E-mail: s.bergamini@open.ac.uk [Institute of Semiconductor Physics, Lavrentyeva Avenue 13, 630090 Novosibirsk (Russian Federation)
2011-09-15
We present the direct measurements of electric dipole moments for 5P{sub 3/2}{yields}nD{sub 5/2} transitions with 20
Two-Atom Rydberg Blockade using a Single-Photon Transition
Hankin, A M; Parazzoli, L P; Chou, C W; Armstrong, D J; Landahl, A J; Biedermann, G W
2014-01-01
We explore a single-photon approach to Rydberg state excitation and Rydberg blockade. Using detailed theoretical models, we show the feasibility of direct excitation, predict the effect of background electric fields, and calculate the required interatomic distance to observe Rydberg blockade. We then measure and control the electric field environment to enable coherent control of Rydberg states. With this coherent control, we demonstrate Rydberg blockade of two atoms separated by 6.6(3) {\\mu}m. When compared with the more common two-photon excitation method, this single-photon approach is advantageous because it eliminates channels for decoherence through photon scattering and AC Stark shifts from the intermediate state while moderately increasing Doppler sensitivity.
Cooper minima in the transitions from low-excited and Rydberg states of alkali-metal atoms
Beterov, I. I.; Mansell, C. W.; Yakshina, E. A.; Ryabtsev, I. I.; Tretyakov, D. B.; Entin, V. M.; MacCormick, C.; Piotrowicz, M. J.; Kowalczyk, A.; S. Bergamini
2012-01-01
The structure of the Cooper minima in the transition probabilities and photoionization cross-sections for low-excited and Rydberg nS, nP, nD and nF states of alkali-metal atoms has been studied using a Coulomb approximation and a quasiclassical model. The range of applicability of the quasiclassical model has been defined from comparison with available experimental and theoretical data on dipole moments, oscillator strengths, and photoionization cross-sections. A new Cooper minimum for transi...
Civiš, Svatopluk; Matulková, Irena; Cihelka, Jaroslav
2010-01-01
Roč. 81, č. 1 (2010), 012510. ISSN 1050-2947 R&D Projects: GA AV ČR IAA400400705; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * Rydberg transitions * theoretical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.861, year: 2010
Long-range Rydberg molecules, Rydberg macrodimers and Rydberg aggregates in an ultracold Cs gas
Saßmannshausen, Heiner; Merkt, Frédéric
2016-01-01
We present an overview of our recent investigations of long-range interactions in an ultracold Cs Rydberg gas. These interactions are studied by high-resolution photoassociation spectroscopy, using excitation close to one-photon transitions into $n$p$_{3/2}$ Rydberg states with pulsed and continuous-wave ultraviolet laser radiation, and lead to the formation of long-range Cs$_2$ molecules. We observe two types of molecular resonances. The first type originates from the correlated excitation of two atoms into Rydberg-atom-pair states interacting at long range via multipole-multipole interactions. The second type results from the interaction of one atom excited to a Rydberg state with one atom in the electronic ground state. Which type of resonances is observed in the experiments depends on the laser intensity and frequency and on the pulse sequences used to prepare the Rydberg states. We obtain insights into both types of molecular resonances by modelling the interaction potentials, using a multipole expansion...
Beyer, Axel; Maisenbacher, Lothar; Khabarova, Ksenia; Matveev, Arthur; Pohl, Randolf; Udem, Thomas; Hänsch, Theodor W.; Kolachevsky, Nikolai
2015-10-01
Precision measurements of transition frequencies in atomic hydrogen provide important input for a number of fundamental applications, such as stringent tests of QED and the extraction of fundamental constants. Here we report on precision spectroscopy of the 2S-4P transition in atomic hydrogen with a reproducibility of a few parts in 1012. Utilizing a cryogenic beam of hydrogen atoms in the metastable 2S state reduces leading order systematic effects of previous experiments of this kind. A number of different systematic effects, especially line shape modifications due to quantum interference in spontaneous emission, are currently under investigation. Once fully characterized, our measurement procedure can be applied to higher lying 2S-nP transitions (n=6,8,9,10) and we hope to contribute to an improved determination of the Rydberg constant and the proton root mean square charge radius by this series of experiments. Ultimately, this improved determination will give deeper insight into ‘the proton size puzzle’ from the electronic hydrogen side.
Quantum optical non-linearities induced by Rydberg-Rydberg interactions: a perturbative approach
Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P
2015-01-01
In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical non-linearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic resu...
Pattern formation of quantum jumps with Rydberg atoms
Lee, Tony E
2012-01-01
We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition. It also allows one to dissipatively prepare Rydberg crystals.
Rydberg Spectroscopy in an Optical Lattice: Blackbody Thermometry for Atomic Clocks
We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of 25-30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions with 10-16 accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition of 10-18.
The aim of this thesis is to make a pure measurement of the frequency of the 2S-8S/8D two-photon transition in atomic hydrogen. In that purpose we have built a frequency chain in which hydrogen frequencies are compared with the difference of two optical standards, the methane stabilized He-Ne laser (3.39 μm) and the iodine stabilized He-Ne laser (633 nm). The radiation from a home made Ti-sapphire laser (TS2) at 778 nm is mixed, in a LiIO3 crystal, with the one of a auxiliary He-Ne laser at 3.39 μm to produce a synthesized radiation at 633 nm. The frequency of the Ti-sapphire (TS1) laser used for the two photon excitation is 89 GHz away from the one of TS2. To compare these two lasers, we have used a Schottky diode. The two lasers and a microwave radiation at 89 GHz, produced by a Gunn diode, are focused on the Schottky diode. The Gunn diode is phase locked on an ultra-stable quartz oscillator. In this way, we have linked an optical frequency of atomic hydrogen to the cesium clock without interferometry. From our measurements, we have deduced a new value of the Rydberg constant: R∞ equals 109737.3156834 (24) cm-1 with an uncertainty of 2.2 10-11. Our uncertainty is near the one of the Q.E.D calculations giving the theoretical values of the energy levels. This value, which is currently the most precise available, is in good agreement with the recent result obtained from the 1S-2S and 2S-4D transitions. (author)
Exciton dynamics in emergent Rydberg lattices
Bettelli, S; Fernholz, T; Adams, C S; Lesanovsky, I; Ates, C
2013-01-01
The dynamics of excitons in a one-dimensional ensemble with partial spatial order are studied. During optical excitation, cold Rydberg atoms spontaneously organize into regular spatial arrangements due to their mutual interactions. This emergent lattice is used as the starting point to study resonant energy transfer triggered by driving a $nS$ to $n^\\prime P$ transition using a microwave field. The dynamics are probed by detecting the survival probability of atoms in the $nS$ Rydberg state. Experimental data qualitatively agree with our theoretical predictions including the mapping onto XXZ spin model in the strong-driving limit. Our results suggest that emergent Rydberg lattices provide an ideal platform to study coherent energy transfer in structured media without the need for externally imposed potentials.
Hofmann, C S; Schempp, H; Müller, N L M; Faber, A; Busche, H; Robert-de-Saint-Vincent, M; Whitlock, S; Weidemüller, M
2013-01-01
Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg--Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre...
In this paper we derive the expression for the transition coefficient used in the preceding paper [C. D. Schwieters and J. B. Delos, Phys. Rev. A 51, 1023 (1995)] for principal-quantum-number transitions in one-dimensional hydrogen caused by half-cycle pulses. We briefly review the methods of Miller [Adv. Chem. Phys. 25, 69 (1974)] and Marcus [Chem. Phys. Lett. 7, 525 (1970); J. Chem. Phys. 54, 3965 (1971)], and then derive the result using the methods of Maslov and Fedoriuk [Semi-Classical Approximation in Quantum Mechanics, (Reidel, Dordrecht, 1981)]. Also, we examine the approximate reduction of hydrogen from three to one dimension and we find a hitherto unknown correction due to the residual motion of one of the ignored degrees of freedom. We discuss the regime of validity of this one-dimensional approximation
The very low ionization potentials of porphyrins lead to the prediction that in addition to bands due to (π,πsup(*)) transitions, bands due to Rydberg transitions should exist in their visible spectra. The suggestion is made that Rydberg excited states could be important in photosynthesis. (orig.)
Newly Identified Rydberg Emission Lines in Novae
Lynch, David K.; Rudy, R. J.; Bernstein, L. S.
2008-09-01
Newly Identified Rydberg Emission Lines in Novae David K. Lynch, Richard. J. Rudy (The Aerospace Corporation) & Lawrence S. Bernstein (Spectral Sciences, Inc.) Novae spectra in the near infrared frequently show a set of six emission lines that have not been positively identified (Williams, Longmore, & Geballe 1996, MNRAS, 279, 804; Lynch et al. 2001, AJ, 122, 2013; Rudy et al. 2002 ApJ, 573, 794; Lynch et al. 2004 Astron. J. 127, 1089-1097). These lines are at 0.8926, 1.1114, 1.1901, 1.5545, 2.0996 and 2.425 µm ± 0.005 µm. Krautter et al. (1984 A&A 137, 304) suggested that three of the lines were due to rydberg (hydrogenic) transitions in an unspecified atomic species that was in the 4th or 5th ionization stage (core charge = 4 & 5). We believe that Krautter et al.'s explanation is correct based on 4 additional lines that we have identified in the visible and near infrared spectrum of V723 Cassiopeiae. The observed Rydberg lines appear to originate from high angular momentum states with negligible quantum defects. The species cannot be determined with any certainty because in rydberg states, the outer electron sees a nucleus shielded by the inner electrons and together the inner atom appears to have a charge of +1, like hydrogen. As a result, the atom looks hydrogenic and species such as CV, NV, OV, MgV, SiV, etc. have their rydberg transitions at very similar wavelengths. All the lines represent permitted transitions, most likely formed by recombination. Atoms with core charges 4, 5 & 6 are rarely seen in the astrophysical environment because an extremely hot radiation field is necessary to ionize them. Thermonuclear runaways on the surface of a white dwarf can reach millions of degrees K, and thus there are enough X-ray photons available to achieve the necessary high ionization levels.
High resolution studies of barium Rydberg states
The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1S0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)
Gnedin, Yu N; Ignjatovic, Lj M; Sakan, N M; Sreckovic, V A; Zakharov, M Yu; Bezuglov, N N; Klycharev, A N; 10.1016/j.newar.2009.07.003
2012-01-01
Elementary processes in astrophysical phenomena traditionally attract researchers attention. At first this can be attributed to a group of hemi-ionization processes in Rydberg atom collisions with ground state parent atoms. This processes might be studied as a prototype of the elementary process of the radiation energy transformation into electrical one. The studies of nonlinear mechanics have shown that so called regime of dynamic chaos should be considered as typical, rather than exceptional situation in Rydberg atoms collision. From comparison of theory with experimental results it follows that a such kind of stochastic dynamic processes, occurred during the single collision, may be observed.
Addressing single trapped ions for Rydberg quantum logic
Bachor, P.; Feldker, T.; Walz, J.; Schmidt-Kaler, F.
2016-08-01
We demonstrate the excitation of ions to the Rydberg state 22F by vacuum ultraviolet radiation at a wavelength of 123 nm combined with the coherent manipulation of the optical qubit transition in {}40{{Ca}}+. With a tightly focused beam at 729 nm wavelength we coherently excite a single ion from a linear string into the metastable 3{D}5/2 state before a VUV pulse excites it to the Rydberg state. In combination with ion shuttling in the trap, we extend this approach to the addressed excitation of multiple ions. The coherent initialization as well as the addressed Rydberg excitation are key prerequisites for more complex applications of Rydberg ions in quantum simulation or quantum information processing.
Rudakov, Fedor M [ORNL; Zhang, Zhili [ORNL
2012-01-01
We present a technique for nonintrusive and standoff detection of large organic molecules using coherent microwave Rayleigh scattering from plasma produced by structure sensitive photoionization through Rydberg states. We test the method on 1,4-diazobicyclooctane. Transitions between the 3s Rydberg state and higher lying Rydberg states are probed using two-color photoionization with 266?nm photons and photons in the range of 460-2400 nm. Photoionization is detected using microwave radiation, which is scattered by the unbounded electrons. Highly resolved Rydberg spectra are acquired in vacuum and in air.
THz Detection and Imaging using Rydberg Atoms
Wade, Christopher; Sibalic, Nikola; Kondo, Jorge; de Melo, Natalia; Adams, Charles; Weatherill, Kevin
2016-05-01
Atoms make excellent electromagnetic field sensors because each atom of the same isotope is identical and has well-studied, permanent properties allowing calibration to SI units. Thus far, atoms have not generally been exploited for terahertz detection because transitions from the atomic ground state are constrained to a limited selection of microwave and optical frequencies. In contrast, highly excited `Rydberg' states allow us access to many strong, electric dipole transitions from the RF to THz regimes. Recent advances in the coherent optical detection of Rydberg atoms have been exploited by a number of groups for precision microwave electrometry Here we report the demonstration of a room-temperature, cesium Rydberg gas as a THz to optical interface. We present two configurations: First, THz-induced fluorescence offers non-destructive and direct imaging of the THz field, providing real-time, single shot images. Second, we convert narrowband terahertz photons to infrared photons with 6% quantum efficiency allowing us to use nano-Watts of THz power to control micro-Watts of laser power on microsecond timescales. Exploiting hysteresis and a room-temperature phase transition in the response of the medium, we demonstrate a latching optical memory for sub pico-Joule THz pulses.
Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble
The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a nonresonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.
Topological spin models in Rydberg lattices
Kiffner, Martin; Jaksch, Dieter
2016-01-01
We show that resonant dipole-dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole-dipole coupling between $np$ and $ns$ Rydberg states and derive an effective spin-1/2 Hamiltonian for the $np$ excitations. By breaking time-reversal symmetry via external fields we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is $C=1$ or $C=2$.
The local position invariance of a physical system is examined using a Rydberg atom and the universality of free fall is found to be invalid for a quantum system. A Rydberg atom is analysed in Newtonian gravity and curved space. The energy is found to vary as n2 for very large values of the principal quantum number n. The change in energy is calculated using this formalism and compared to a similar calculation by Chiao. The value that we have got from our calculation is found to be 6 orders higher in magnitude than Chiao's value. These results can be of significance in gravitational redshift experiements proposed by Muller et al and Wolf et al
Bohmian picture of Rydberg atoms
Partha Ghose; Manoj K Samal; Animesh Datta
2002-08-01
Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.
Nicholson, Travis; Thompson, Jeff; Liang, Qiyu; Cantu, Sergio; Venkatramani, Aditya; Pohl, Thomas; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan
2016-05-01
The realization of strong optical nonlinearities between two photons has been a longstanding goal in quantum science. We achieve large single-photon-level nonlinearities with Rydberg EIT, which combines slow light techniques with strongly interacting Rydberg states. For two Rydberg atoms in the same state, a Van der Waals interaction is the dominant coupling mechanism. Inherently stronger dipole-dipole interactions are also possible between atoms in different Rydberg states. Using light storage and microwave resonances, we study the effect of dipole-dipole interactions in Rydberg EIT. We observe a coherent spin exchange effect for pairs of states dominated by dipole-dipole interactions. Spin exchange manifests as an increase in optical transmission through a cold Rubidium gas that is highly dissipative in the presence of Van der Waals interactions. We also observe a controlled π / 2 phase shift due to this effect, which paves the way for robust, universal all-optical quantum gates.
Radial Rydberg wavepacket maps
Zeibel, J. G.; Jones, R. R.
2001-04-01
Picosecond laser pulses have been used to excite radial Rydberg wavepackets in Ca. Time-delayed, unipolar, `half-cycle' electric field pulses are used to probe the evolution of the wavepackets as a continuous function of binding energy. The data provide three-dimensional maps of wavepacket recurrence probability versus binding energy versus time. A rescaling of the energy and time coordinate axes allows the visualization of the distinct difference between the initial oscillations of the wavepacket and those that occur at integer and fractional revivals.
Coherent excitation of a single atom to a Rydberg state
Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles;
2010-01-01
We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...
Annulled van der Waals interaction and nanosecond Rydberg quantum gates
Shi, Xiao-Feng
2016-01-01
A pair of neutral atoms separated by several microns and prepared in identical s-states of large principal quantum number experience a van der Waals interaction. If microwave fields are used to generate a superposition of s-states with different principal quantum numbers, a null point may be found at which a specific superposition state experiences no van der Waals interaction. An application of this novel Rydberg state in a quantum controlled-Z gate is proposed, which takes advantage of GHz rate transitions to nearby Rydberg states. A gate operation time in the tens of nanoseconds is predicted.
Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble
Guerlin, Christine; Brion, Etienne; Esslinger, Tilman;
2010-01-01
effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest......The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly...... couples the single-atom ground state |g> to a Rydberg state |e>via a nonresonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the...
Rydberg state Stark spectroscopy in plasma sheaths
In this experiment, using optogalvanic methods, the authors investigated the Rydberg state Stark spectroscopy of the triplet states of atomic helium from n = 14 up to -- 44 to measure the electric-field profile in the cathode fall region of a dc and 15-kHz low pressure glow discharge as well as in a plasma double layer formed at a discharge constriction in the positive column dc discharge. The electric field values are obtained in several ways from the measured spectra, from the Stark splitting and the energy level shifts, allowed to forbidden transition intensity ratio, and from the series termination
Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity
Boddeda, R.; Usmani, I.; Bimbard, E.; Grankin, A.; Ourjoumtsev, A.; Brion, E.; Grangier, P.
2016-04-01
We experimentally characterize the optical nonlinear response of a cold atomic medium placed inside an optical cavity, and excited to Rydberg states. The excitation to S and D Rydberg levels is carried out via a two-photon transition in an electromagnetically induced transparency configuration, with a weak (red) probe beam on the lower transition, and a strong (blue) coupling beam on the upper transition. The observed optical nonlinearities induced by S states for the probe beam can be explained using a semi-classical model with van der Waals’ interactions. For the D states, it appears necessary to take into account a dynamical decay of Rydberg excitations into a long-lived dark state. We show that the measured nonlinearities can be explained by using a Rydberg bubble model with a dynamical decay.
Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity
Boddeda, Rajiv; Bimbard, Erwan; Grankin, Andrey; Ourjoumtsev, Alexei; Brion, Etienne; Grangier, Philippe
2015-01-01
We experimentally characterize the optical nonlinear response of a cold atomic medium placed inside an optical cavity, and excited to Rydberg states. The excitation to S and D Rydberg levels is carried out via a two-photon transition in an EIT (electromagnetically induced transparency) configuration, with a weak (red) probe beam on the lower transition, and a strong (blue) coupling beam on the upper transition. The observed optical nonlinearities induced by S states for the probe beam can be explained using a semi-classical model with van der Waals' interactions. For the D states, it appears necessary to take into account a dynamical decay of Rydberg excitations into a long-lived dark state. We show that the measured nonlinearities can be explained by using a Rydberg bubble model with a dynamical decay.
Concepts from the theory of transient chaos are applied to study the classical ionization process of one dimensional model of kicked hydrogen Rydberg atoms. The phase-space dynamics is represented by a mapping T which is proved to be hyperbolic. The fraction of atoms not ionized after time t, PB(t), decays asymptotically according to PB(t)∼t-α with α ∼ 1.65. The observed algebraic decay, which seems to contradict the hyperbolicity of T, is explained by (i) the symbolic dynamics of T consists of a countably infinite number of symbols and (ii) the invariant manifold of phase-space points which never ionize is an anomalously scaling fractal. Therefore, the one-dimensional kicked hydrogen atom provides a counterexample to the hypothesis that algebraic decay marks regular dynamics, whereas hyperbolic systems decay exponentially. The algebraic decay is reproduced by an analytically solvable diffusion model which predicts α = 3/2. Replacing zero-width δ-kicks by smooth finite-width pulses, the mapping T is no longer completely hyperbolic, and a subset of phase-space is regular. For this case we observe that PB(t) shows a transition between two power-law decays with α ∼ 1.65 for short times and α ∼ 2.1 for long times where the effect of the regular domain is felt. (author)
Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order
Moore, Blake; Favata, Marc; Arun, K. G.; Mishra, Chandra Kant
2016-06-01
Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but non-negligible orbital eccentricities when they enter the low-frequency bands of ground- and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary [M. Favata, Phys. Rev. Lett. 112, 101101 (2014)]. Gravitational-wave search templates typically rely on the quasicircular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. Damour, Gopakumar, Iyer, and others have developed an elegant but complex quasi-Keplerian formalism for describing the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here, we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit, the nonperiodic contribution to the gravitational-wave phasing can be expressed explicitly as simple functions of frequency or time, with little additional complexity beyond the well-known formulas for circular binaries. These eccentric phase corrections are computed to 3PN order and to leading order in the eccentricity for the standard PN approximants. For a variety of systems, these eccentricity corrections cause significant corrections to the number of gravitational-wave cycles that sweep through a detector's frequency band. This is evaluated using several measures, including a modification of the useful cycles. By comparing to numerical solutions valid for any eccentricity, we find that our analytic solutions are valid up to e0≲0.1 for comparable-mass systems, where e0 is the eccentricity when the source enters the detector band. We also evaluate the role of periodic terms that enter the phasing and discuss how they can be incorporated into some of
Eidelsberg, M; Federman, S R; Lemaire, J L; Fillion, J H; Rostas, F; Ruiz, J
2006-01-01
One of the processes controlling the interstellar CO abundance and the ratio of its isotopologues is photodissociation. Accurate oscillator strengths and predissociation rates for Rydberg transitions are needed for modeling this process. We present results on absorption from the E ^1Pi-X ^1Sigma^+ (1-0) and B ^1Sigma^+-X ^1Sigma^+ (6-0) bands at 1051 and 1002 \\AA, respectively, and the vibrational progression W ^1Pi-X ^1Sigma^+ (v'-0) bands with v' = 0 to 3 at 972, 956, 941, and 925 \\AA, respectively. The corresponding spectra were acquired at the high resolution (R ~ 30,000) SU5 beam line at the Super ACO Synchrotron in Orsay, France. Spectra were obtained for the ^12C^16O, ^13C^16O, and ^13C^18O isotopologues. These represent the most complete set of measurements available. Comparison is made with earlier results, both empirical and theoretical. While earlier determinations of oscillator strengths based on absorption from synchrotron radiation tend to be somewhat smaller than ours, the suite of measurements...
A NEW TECHNIQUE TO STUDY RYDBERG STATES BY MULTIPHOTON IONIZATION SPECTROSCOPY
Verma, R.; Chanda, A.
1987-01-01
A new technique to study the Rydberg states of the Ba atom has been developed. In this technique a Multiphoton Ionization signal is detected by selective excitation of the ground state ion (6s) to an excited state (6p), which results in a collimated Amplified Spontaneous Emission (ASE) signal at the 6p→5d transition of Ba*. Discrete Rydberg states, 6snℓ (ℓ=0,2), as well as autoionizing Rydberg states, 5dnℓ (ℓ=0,2) and 6pnℓ (ℓ=0,2) are observed by this novel but very simple method.
Ultralong-range Molecules in Strontium Rydberg Gases
Killian, Thomas
2016-05-01
Alkaline-earth metal atoms are attracting increased attention for studies of ultracold Rydberg gases because of new opportunities created by strong core transitions accessible with visible light and the presence of excited triplet states. We have created and characterized ultralong-range Sr2 molecules formed from one ground-state 5 s21 S0 atom and one atom in a 5sns 3 S1 Rydberg state. Molecules are formed in a trapped ultracold atomic gas using two-photon excitation, near resonance with the 5s5p 3 P1 intermediate state. Spectra for both a thermal gas and a Bose-Einstein condensate have been studied, and highly structured vibrational spectra are obtained for molecular dimers, trimers, and tetramers. Measured lifetimes of Rydberg atoms and molecules in dense gases of ground state atoms show that, in marked contrast to earlier measurements involving rubidium Rydberg molecules, the lifetimes of the low-lying molecular vibrational states are very similar to those of the parent Rydberg atoms. This reflects the fact that in strontium there is no p-wave resonance for electron scattering in this energy regime, unlike the situation in rubidium. The absence of a resonance offers advantages for experiments involving strontium Rydberg atoms as impurities in quantum gases and for testing theories of molecular formation and decay. Research supported by the AFOSR under Grant No. FA9550-14-1-0007, the NSF under Grants No. 1301773 and No. 1205946, and the Robert A, Welch Foundation under Grants No. C-0734 and No. C-1844.
Rydberg atoms in ultracold plasmas
Rolston, Steven
2009-05-01
Ultracold plasmas are formed through the photoionization of laser-cooled atoms, or spontaneous ionization of a dense cloud of Rydberg atoms or now molecules[1]. Ultracold plasmas are inherently metastable, as the ions and electrons would be in a lower energy state bound together as atoms. The dominant process of atom formation in these plasmas is three-body recombination, a collision between two electrons and an ion that leads to the formation of a Rydberg atom. This collisional process is not only important in determining the lifetime and density of the plasma, but is also critical in determining the time evolution of the temperature. The formation of the Rydberg atoms is accompanied by an increase in electron energy for the extra electron in the collision, and is a source of heating in these plasmas. Classical three-body recombination theory scales as T-9/2, and thus as a plasma cools due to a process such as adiabatic expansion, recombination-induced heating turns on, limiting the temperature [2]. The Rydberg atoms formed live in the plasma and contribute to the temperature dynamics, as collisions with plasma electrons can change the principal quantum number of the Rydberg atom, driving it to more tightly bound states (a source of plasma heating) or to higher states (a source of plasma cooling). If the plasma is cold and dense enough to be strongly coupled, classical three-body recombination theory breaks down. Recent theoretical work [3] suggests that the rate limits as the plasma gets strongly coupled. I will review the role of Rydberg atoms in ultracold plasmas and prospects for probing Rydberg collisions in the strongly coupled environment. [4pt] [1] J. P. Morrison, et al., Phys. Rev. Lett. 101, 205005 (2008 [0pt] [2] R. S. Fletcher, X. Zhang, and S. L. Rolston, Phys. Rev. Lett. 99, 145001 (2007 [0pt] [3] T. Pohl, private communication.
Rydberg atoms in magnetic and electric fields
This chapter examines highly excited atoms in the presence of a uniform field, magnetic or electric. It discusses Rydberg atoms in magnetic fields; Rydberg atoms in electric fields; and Rydberg atoms in crossed fields. It reviews present knowledge of this subject which is of great theoretical interest and which has recently benefited from laser spectroscopy
Kosmidis, C.; Bolovinos, A.; Tsekeris, P.
1993-07-01
The circular to linear polarization ratio for the two-photon excitation of the 3 s Rydberg states of monomethylpyridines has been measured by 2 + 1 resonant MPI spectroscopy in a static cell. The symmetry of the Rydberg vibrational bands is deduced and the results from the 0-0 transition suggest that the highest occupied MO of 4-methylpyridine is an n MO, while that for 2- and 3-methylpyridines is a π-type one.
From the Rydberg constant to the fundamental constants metrology
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
Nez, F
2005-06-15
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
Microwave electric field sensing with Rydberg atoms
Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal
2016-05-01
Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.
Radiative lifetime measurements of rubidium Rydberg states
We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 ≤ n ≤ 45. To enable long-lived states to be measured, our experiment uses slow-moving (∼100 μK) 85Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target nl Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition to a higher energy 'monitor state', n'l'. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the nl target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a method which is more prone to systematic error, and are also in excellent agreement with theory.
Quantum information with Rydberg atoms
Saffman, Mark; Walker, T.G.; Mølmer, Klaus
2010-01-01
Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....
Mayhew, C A
1984-01-01
The high resolution absorption spectra of the important group VI dihydrides and deuterides in the vacuum ultraviolet below, and up to, their first ionisation potentials are presented. These spectra were recorded using synchrotron radiation as the background light source in conjunction with a 3m normal incidence vacuum spectrograph, equipped with holographic gratings. Due to the nature of the originating orbital for the majority of optical transitions in the VUV well developed Rydberg series are observed. One particular series can be followed up to fairly high n, so that accurate values of the first ionisation potential are determined. The identifications of the Rydberg series are made from arguments relating to their oscillator strengths, quantum defects, symmetries and from comparisons with the spectra of the corresponding united atoms i.e. the inert gases. Examples of the symmetry assignments for Rydberg series from rotational band contour analyses of the lower Rydberg members for the H sub 2 S, H sub 2 Se ...
Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell
Anderson, David A; Gordon, Joshua A; Butler, Miranda L; Holloway, Christopher L; Raithel, Georg
2016-01-01
We present a spectral analysis of Rydberg atoms in strong microwave fields using electromagnetically induced transparency (EIT) as an all-optical readout. The measured spectroscopic response enables optical, atom-based electric field measurements of high-power microwaves. In our experiments, microwaves are irradiated into a room-temperature rubidium vapor cell. The microwaves are tuned near the two-photon 65D-66D Rydberg transition and reach an electric field strength of 230V/m, about 20% of the microwave ionization threshold of these atoms. A Floquet treatment is used to model the Rydberg level energies and their excitation rates. We arrive at an empirical model for the field-strength distribution inside the spectroscopic cell that yields excellent overall agreement between the measured and calculated Rydberg EIT-Floquet spectra. Using spectral features in the Floquet maps we achieve an absolute strong-field measurement precision of 6%.
Optical Measurements of Strong Microwave Fields with Rydberg Atoms in a Vapor Cell
Anderson, D. A.; Miller, S. A.; Raithel, G.; Gordon, J. A.; Butler, M. L.; Holloway, C. L.
2016-03-01
We present a spectral analysis of Rydberg atoms in strong microwave fields using electromagnetically induced transparency (EIT) as an all-optical readout. The measured spectroscopic response enables optical, atom-based electric-field measurements of high-power microwaves. In our experiments, microwaves are irradiated into a room-temperature rubidium vapor cell. The microwaves are tuned near the two-photon 65 D -66 D Rydberg transition and reach an electric-field strength of 230 V /m , about 20% of the microwave-ionization threshold of these atoms. A Floquet treatment is used to model the Rydberg-level energies and their excitation rates. We arrive at an empirical model for the field-strength distribution inside the spectroscopic cell that yields excellent overall agreement between the measured and calculated Rydberg EIT-Floquet spectra. Using spectral features in the Floquet maps, we achieve an absolute strong-field measurement precision of 6%.
Collision-induced shifts of Rydberg levels of strontium
Measurements of spectral line shifts induced by collisions with rare gas perturbers are reported. High Rydberg states were prepared by multiphoton excitation using an excimer pumped tunable dye laser. A thermionic detector inside a heat pipe was used to collect the ionization products resulting from excited states. Analysis of the data for the shifts of the absorption transition to 5snd 1D2 states in strontium is presented
Resonant quenching of Rydberg atomic states by highly polar molecules
Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S.
2016-06-01
The results of theoretical studies of the resonant quenching and ion-pair formation processes induced by collisions of Rydberg atoms with highly polar molecules possessing small electron affinities are reported. We elaborate an approach for describing collisional dynamics of both processes and demonstrate the predominant role of resonant quenching channel of reaction for the destruction of Rydberg states by electron-attaching molecules. The approach is based on the solution of the coupled differential equations for the transition amplitudes between the ionic and Rydberg covalent terms of a quasimolecule formed during a collision of particles. It takes into account the possibility of the dipole-bound anion decay in the Coulomb field of the positive ionic core and generalizes previous models of charge-transfer processes involving Rydberg atoms to the cases, when the multistate Landau–Zener approaches become inapplicable. Our calculations for {{Rb}}({nl}) atom perturbed by {{{C}}}2{{{H}}}4{{SO}}3, {{CH}}2{CHCN}, {{CH}}3{{NO}}2, {{CH}}3{CN}, {{{C}}}3{{{H}}}2{{{O}}}3, and {{{C}}}3{{{H}}}4{{{O}}}3 molecules show that the curves representing the dependence of the resonant quenching cross sections on the principal quantum number n are bell-shaped with the positions of maxima being shifted towards lower values of n and the peak values, {σ }{max}({{q})}, several times higher than those for the ion-pair formation, {σ }{max}({{i})}. We obtain a simple power relation between the energy of electron affinity of a molecule and the position of maximum in n-dependence of the resonant quenching cross section. It can be used as an additional means for determining small binding energies of dipole-bound anions from the experimental data on resonant quenching of Rydberg states by highly polar molecules.
Quasiclassical dynamics of resonantly driven Rydberg states
Buchleitner, A. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Sacha, K.; Zakrzewski, J. [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Cracow (Poland); Delande, D. [Laboratoire Kastler-Brossel, Paris (France)
1999-02-01
We present a semiclassical analysis of the dynamics of Rydberg states of atomic hydrogen driven by a resonant microwave field of linear polarization. The semiclassical quasienergies of the atom in the field are found to be in very good agreement with the exact quantum solutions. The ionization rates of individual eigenstates of the atom dressed by the field reflect their quasiclassical dynamics along classical periodic orbits in the near integrable regime, but exhibit a transition to nonspecific rates when global chaos takes over in phase space. We concentrate both on the principal resonance where the unperturbed Kepler frequency {omega}{sub K}is equal to the driving field frequency {omega} and on the higher primary resonance {omega}=2{omega}{sub K}. The latter case allows for the construction of nondispersive wave packets which propagate along Kepler ellipses of intermediate eccentricity. (orig.) 37 refs.
Beauvoir, B. de
1996-12-15
The purpose of this work is to design a 778 nm standard laser for performing an absolute measurement of 2S-8S/D frequencies of hydrogen and deuterium atoms. This frequency calibration is based on a 5S-5D two-photon transition of the rubidium atom. Metrological performance of this laser is 10 times as good as that of He-Ne laser calibrated on iodine. It has been shown that the passage of a laser radiation through an optic fiber does not deteriorate its metrological properties. 2S-8S/8D transitions have been excited in an atomic jet by a titanium-sapphire laser. Spurious effects can shift and broaden lines. In order to prevent these effects, a theoretical line has been shaped and adjusted on experimental signals. The frequency comparison between the excitation laser and the standard laser has led to the measurement of the absolute frequency of the line concerned. The value of the Rydberg constant has been deduced: R{sub {infinity}} = 109737.3156859 (10) cm{sup -1}. The comparison of experimental data between deuterium and hydrogen has allowed us to determine the value of the Lamb shift of the 2S state of deuterium: L(2S-2P) = 1059,230 (9) MHz.
Buma, W.J.; Dobber, M.R.; Lange
1993-01-01
Rydberg states of methyl iodide have been investigated using resonance enhanced multiphoton ionization in combination with photoelectron spectroscopy with nanosecond and picosecond laser pulses. The study of the ns (6n10) Rydberg states in two-, three-, and four-photon excitations has resulted in an unambiguous identification of state [1] in the 7s and 8s Rydberg states. As a consequence, it is concluded that the transition to 6s[1] in two- and three-photon excitations is anomalously weak. Th...
Quantum melting of two-component Rydberg crystals
Lan, Zhihao; Lesanovsky, Igor
2016-01-01
We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that quantum fluctuations introduced by the laser give rise to a devil's staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of mesoscopic crystals, due to the proliferation of Rydberg spinwaves.
Three-photon coherence of Rydberg atomic states
Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb
2016-05-01
We investigated three-photon coherence effects of the Rydberg state in a four-level ladder-type atomic system for the 5 S1/2 (F = 3) - 5 P3/2 (F' = 4) - 50 D5/2 - 51 P3/2 transition of 85 Rb atoms. By adding a resonant electric field of microwave (MW) at electromagnetically induced transparency (EIT) in Rydberg state scheme, we observed experimentally that splitting of EIT signal appears under the condition of three-photon resonance in the Doppler-broadened atomic system. Discriminating the two- and three-photon coherence terms from the calculated spectrum in a simple four-level ladder-type Doppler-broadened atomic system, we found that the physical origin of splitting of EIT was three-photon coherence effect, but not three-photon quantum interference phenomena such as three-photon electromagnetically induced absorption (TPEIA).
Boyé-Péronne, Séverine; Gauyacq, Dolores [Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS and Université Paris-Sud, Bât. 210, F-91405 Orsay Cedex (France); Liévin, Jacques, E-mail: jlievin@ulb.ac.be [Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Cpi 160/09, 50 Av. F.D. Roosevelt, B-1050 Bruxelles (Belgium)
2014-11-07
The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0–10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores {sup 2}A{sub 1} and {sup 2}B{sub 1} results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the {sup 2}B{sub 1} cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the {sup 2}A{sub 1} ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic
Observation of Rydberg Series in Sodium Vapour by Two-Photon Resonant Nondegenerate Four-Wave Mixing
王延帮; 姜谦; 李隆; 米辛; 俞祖和; 傅盘铭
2001-01-01
We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state for the obser- vation of Rydberg states in sodium vapour. The broadening and shift of the sodium 3S- 11D transition perturbed by argon are investigated. This technique can achieve Doppler-free resolution of narrow spectral structures of Rydberg levels if lasers with narrow bandwidths are employed.
Entanglement of Two Atoms using Rydberg Blockade
Walker, Thad G.; Saffman, Mark
2012-01-01
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: loading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
Rydberg EIT in High Magnetic Field
Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg
2016-05-01
We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.
Rydberg polaritons in a thermal vapor
Ripka, Fabian; Löw, Robert; Pfau, Tilman
2016-01-01
We present a pulsed four-wave mixing (FWM) scheme via a Rydberg state to create, store and retrieve collective Rydberg polaritons. The storage medium consists of a gas of thermal Rb atoms confined in a 220 {\\mu}m thick cell, which are heated above room temperature. The experimental sequence consists of a pulsed excitation of Rydberg polaritons via the D1 line, a variable delay or storage time, and a final retrieval pulse via the D2 line. The lifetime of the Rydberg polaritons is around 1.2 ns, almost entirely limited by the excitation bandwidth and the corresponding motional dephasing of the atoms. The presented scheme combined with a tightly confined atomic ensemble is a good candidate for a deterministic single-photon source, as soon as strong interactions in terms of a Rydberg blockade are added.
Camargo, Francisco; Ding, Roger; Aman, James; Zhang, Xinyue; Whalen, Joseph; Fields, Robert; Dunning, F. Barry; Killian, Thomas
2014-05-01
We discuss the design and construction of a new apparatus for creating and studying long-range interactions in ultracold gases of strontium by exploiting Rydberg states, either through their direct excitation or through laser-induced Rydberg dressing. Strontium features one fermionic (87Sr) and three bosonic (84Sr, 86Sr, 88Sr) isotopes, all of which have been brought to quantum degeneracy. It also possesses singlet and triplet Rydberg states that furnish a wide variety of attractive and repulsive interactions. Furthermore, strontium Rydberg atoms feature an optically active core electron which can be used to manipulate and detect Rydberg atoms. These features make strontium a promising system for studying interactions in ultracold Rydberg gases. Research supported by Rice University, the NSF, the AFOSR, Shell, and the Robert A. Welch Foundation.
Observation and characterization of cavity Rydberg polaritons
Ningyuan, Jia; Georgakopoulos, Alexandros; Ryou, Albert; Schine, Nathan; Sommer, Ariel; Simon, Jonathan
2016-04-01
We experimentally demonstrate the emergence of a robust quasiparticle, the cavity Rydberg polariton, when an optical cavity photon hybridizes with a collective Rydberg excitation of a laser-cooled atomic ensemble. Free-space Rydberg polaritons have recently drawn intense interest as tools for quantum information processing and few-body quantum science. Here, we explore the properties of their cavity counterparts in the single-particle sector, observing an enhanced lifetime and slowed dynamics characteristic of cavity dark polaritons. We measure the range of cavity frequencies over which the polaritons persist, corresponding to the spectral width available for polariton quantum dynamics, and the speed limit for quantum information processing. Further, we observe a cavity-induced suppression of inhomogeneous broadening channels and demonstrate the formation of Rydberg polaritons in a multimode cavity. In conjunction with recent demonstrations of Rydberg-induced cavity nonlinearities, our results point the way towards using cavity Rydberg polaritons as a platform for creating high-fidelity photonic quantum materials and, more broadly, indicate that cavity dark polaritons offer enhanced stability and control uniquely suited to optical quantum information processing applications beyond the Rydberg paradigm.
Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom
Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2015-12-15
The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.
DC Stark effect on cold Rydberg atom nD + nD pair collisions
We have observed a significant yield of (n + 2)P atoms after the excitation of nD Rydberg atoms in a Rb MOT, where 27 < n < 41, which can be attributed to binary collisions between Rydberg atoms. We have measured its dependence on principle quantum number as well as DC electric field. These results are compared to a model which uses the Landau-Zener method to calculate transition probabilities at avoided crossings in the two-atom potential energy curves, taking into account the effects of the DC Stark effect due to the background electric field.
Large energy superpositions via Rydberg dressing
Khazali, Mohammadsadegh; Lau, Hon Wai; Humeniuk, Adam; Simon, Christoph
2016-08-01
We propose to create superposition states of over 100 strontium atoms in a ground state or metastable optical clock state using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components of the superposition can differ by an order of 300 eV in energy, allowing tests of energy decoherence models with greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular formation, and diminishing Rydberg level separation for increasing principal number.
Evidence for strong van der Waals-type Rydberg-Rydberg interaction in thermal vapor
Baluktsian, T; Löw, R; Pfau, T
2012-01-01
We present evidence for Rydberg-Rydberg interaction in a gas of rubidium atoms above room temperature. Rabi oscillations on the nanosecond timescale to different Rydberg states are investigated in a vapor cell experiment. Analyzing the atomic time evolution and comparing to a dephasing model we find a scaling with the Rydberg quantum number n that is consistent with van der Waals interaction. Our results show that the interaction strength can be larger than the kinetic energy scale (Doppler width) which is the requirement for realization of thermal quantum devices in the GHz regime.
Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices
Sheng, Jiteng; Shaffer, James P
2016-01-01
We propose a hybrid quantum system where the strong coupling regime can be achieved between a Rydberg atomic ensemble and propagating surface phonon polaritons on a piezoelectric superlattice. By exploiting the large electric dipole moment and long lifetime of Rydberg atoms as well as tightly confined surface phonon polariton modes, it is possible to achieve a coupling constant far exceeding the relevant decay rates. The frequency of the surface mode can be selected so it is resonant with a Rydberg transition by engineering the piezoelectric superlattice. We describe a way to observe the Rabi splitting associated with the strong coupling regime under realistic experimental conditions. The system can be viewed as a new type of optomechanical system.
Classical space-time as Rydberg states of underlying quantum geometries
Sivaram, C
2016-01-01
Classical macroscopic space-time is pictured in terms of Rydberg states of an underlying discritzed `atomic' quantum geometry at Planck scales. While quantum geometry on such scales involves several very short lived transitions changing curvature and topologies, the Rydberg states have very long lifetimes, going as a high power of the quantum number n. This means space-time on macroscopic scales are almost infinitely stable. The large degeneracy in the Rydberg levels, with high n, can also account for a large black hole entropy, as well as long lifetime of massive black holes to quantum decays. We have a possible promising paradigm to link quantum geometry at Planck scales, to classical space-time.
The Spectral Backbone of Excitation Transport in Ultra-Cold Rydberg Gases
Scholak, Torsten; Buchleitner, Andreas
2014-01-01
The spectral structure underlying excitonic energy transfer in ultra-cold Rydberg gases is studied numerically, in the framework of random matrix theory, and via self-consistent diagrammatic techniques. Rydberg gases are made up of randomly distributed, highly polarizable atoms that interact via strong dipolar forces. Dynamics in such a system is fundamentally different from cases in which the interactions are of short range, and is ultimately determined by the spectral and eigenvector structure. In the energy levels' spacing statistics, we find evidence for a critical energy that separates delocalized eigenstates from states that are localized at pairs or clusters of atoms separated by less than the typical nearest-neighbor distance. We argue that the dipole blockade effect in Rydberg gases can be leveraged to manipulate this transition across a wide range: As the blockade radius increases, the relative weight of localized states is reduced. At the same time, the spectral statistics -- in particular, the den...
Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4
The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipole moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n2. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s–d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n−3/2 dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases
Ultracold Long-Range Rydberg Molecules with Complex Multichannel Spectra
Eiles, Matthew; Greene, Chris
2016-05-01
A generalized class of exotic long-range Rydberg molecules consisting of a multichannel Rydberg atom bound to a distant ground state atom by the Rydberg electron is predicted. These molecules are characterized by the rich physics provided by the strongly perturbed multichannel Rydberg spectra of divalent atoms, in contrast to the regular Rydberg series of the alkali atoms used to form Rydberg molecules to date. These multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number n. In particular, the nd Rydberg state of calcium becomes nearly degenerate with states of high orbital angular momentum over the range 17 channel interactions between Rydberg series leading to the spin-orbit split ionization thresholds. These interactions manifest themselves in potential curves exhibiting two distinct length scales, providing novel opportunities for quantum manipulation. Supported in part by the National Science Foundation under Grant No. PHY-1306905.
MOLECULAR RYDBERG SPECTROSCOPY MAGNETIC FIELD EFFECTS IN ALKYL HALIDES
Mcglynn, S.; Scott, J; Felps, W.
1982-01-01
The total angular momentum of all states of HI, CH3I, CD3I and CH3Br in the 1st s-Rydberg complex is found to be quantized, even in C3υ molecules where symmetry-breaking decrees the absence of such quantization. This observation suggests that the operative symmetry is that of a molecular "bit" within which the transition is localized and that the remainder of the molecule is merely perturbatory. The angular momenta of various vibronic states have also been measured. It is found that non-total...
Lamb shift of Rydberg atoms in a resonator
The Lamb shift of a Rydberg atom in a cavity is shown to be enhanced with the resonance interaction of a virtual atomic transition and cavity modes. The dependence of the Lamb shift on quantum numbers and atomic number changes drastically. Shifting cavity walls and scanning the atomic beam one can vary the Lamb shift. The value of the Lamb shift in a cavity may exceed a typical magnitude of the fine structure energy. For a rough resonance tuning the Coulumb multiplet occurs to be strongly mixed and a novel classification is necessary. (author). 8 refs, 2 figs
陈旸; 裴林森; 冉琴; 高义德; 陈从香
1999-01-01
(2+1) resonant multiphoton ionization of photolytically produced CH radical yields previously unobserved bands arising from two photon transition to Rydberg states.Analysing of the spectrum of CH+,three new states are identified.They are 8d,9d and 10d Rydberg states,respectively.
Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade
Saffman, Mark; Mølmer, Klaus
2009-01-01
We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t...... basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms....
Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces
Crosse, J. A.; Ellingsen, Simen Å.; Clements, Kate; Buhmann, Stefan Y.; Scheel, Stefan
2010-01-01
The Casimir-Polder (CP) potential and transition rates of a Rydberg atom above a plane metal surface at finite temperature are discussed. As an example, the CP potential and transition rates of a rubidium atom above a copper surface at room temperature is computed. Close to the surface we show that the quadrupole correction to the force is significant and increases with increasing principal quantum number n. For both the CP potential and decay rates one finds that the dominant contribution co...
Storage enhanced nonlinearities in a cold atomic Rydberg ensemble
Distante, Emanuele; Cristiani, Matteo; Paredes-Barato, David; de Riedmatten, Hugues
2016-01-01
The combination of electromagnetically induced transparency (EIT) with the nonlinear interaction between Rydberg atoms provides an effective interaction between photons. In this paper, we investigate the storage of optical pulses as collective Rydberg atomic excitations in a cold atomic ensemble. By measuring the dynamics of the stored Rydberg polaritons, we experimentally demonstrate that storing a probe pulse as Rydberg polaritons strongly enhances the Rydberg mediated interaction compared to the slow propagation case. We show that the process is characterized by two time scales. At short storage times, we observe a strong enhancement of the interaction due to the reduction of the Rydberg polariton group velocity down to zero. For longer storage times, we observe a further, weaker enhancement dominated by Rydberg induced dephasing of the multiparticle components of the state. In this regime, we observe a non-linear dependence of the Rydberg polariton coherence time with the input photon number. Our results ...
Laser cooling, trapping, and Rydberg spectroscopy of neutral holmium atoms
Hostetter, James Allen
This thesis focuses on progress towards using ensembles of neutral holmium for use in quantum computing operations. We are particularly interested in using a switchable interaction between neutral atoms, the Rydberg blockade, to implement a universal set of quantum gates in a collective encoding scheme that presents many benefits over quantum computing schemes which rely on physically distinct qubits. We show that holmium is uniquely suited for operations in a collective encoding basis because it has 128 ground hyperfine states, the largest number of any stable, neutral atom. Holmium is a rare earth atom that is very poorly described for our purposes as it has never been cooled and trapped, its spectrum is largely unknown, and it presents several unique experimental challenges related to its complicated atomic structure and short wavelength transitions. We demonstrate important progress towards overcoming these challenges. We produce the first laser cooling and trapping of holmium into a MOT. Because we use a broad cooling transition, our cooling technique does not require the use of a Zeeman slower. Using MOT depletion spectroscopy, we provide precise measurements of holmium's Rydberg states and its ionization potential. Our work continues towards cooling holmium into a dipole trap by calculating holmium's AC polarizability and demonstrating the results of early attempts at an optical dipole trap. We provide details of future upgrades to the experimental apparatus and discuss interesting potential for using holmium in quantum computing using single atoms in a magnetically trapped lattice. This thesis shows several promising indicators for continued work in this field.
Balmer and Rydberg Equations for Hydrogen Spectra Revisited
Heyrovska, Raji
2011-01-01
Balmer equation for the atomic spectral lines was generalized by Rydberg. Here it is shown that 1) while Bohr's theory explains the Rydberg constant in terms of the ground state energy of the hydrogen atom, quantizing the angular momentum does not explain the Rydberg equation, 2) on reformulating Rydberg's equation, the principal quantum numbers are found to correspond to integral numbers of de Broglie waves and 3) the ground state energy of hydrogen is electromagnetic like that of photons an...
Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces
Crosse, J A; Clements, Kate; Buhmann, Stefan Y; Scheel, Stefan
2010-01-01
The Casimir-Polder (CP) potential and transition rates of a Rydberg atom above a plane metal surface at finite temperature are discussed. As an example, the CP potential and transition rates of a rubidium atom above a copper surface at room temperature is computed. Close to the surface we show that the quadrupole correction to the force is significant and increases with increasing principal quantum number n. For both the CP potential and decay rates one finds that the dominant contribution comes from the longest wavelength transition and the potential is independent of temperature. We provide explicit scaling laws for potential and decay rates as functions of atom-surface distance and principal quantum number of the initial Rydberg state.
Observation of pendular butterfly Rydberg molecules
Niederprüm, Thomas; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H; Ott, Herwig
2016-01-01
Obtaining full control over the internal and external quantum states of molecules is the central goal of ultracold chemistry and allows for the study of coherent molecular dynamics, collisions and tests of fundamental laws of physics. When the molecules additionally have a permanent electric dipole moment, the study of dipolar quantum gases and spin-systems with long-range interactions as well as applications in quantum information processing are possible. Rydberg molecules constitute a class of exotic molecules, which are bound by the interaction between the Rydberg electron and the ground state atom. They exhibit extreme bond lengths of hundreds of Bohr radii and giant permanent dipole moments in the kilo-Debye range. A special type with exceptional properties are the so-called butterfly molecules, whose electron density resembles the shape of a butterfly. Here, we report on the photoassociation of butterfly Rydberg molecules and their orientation in a weak electric field. Starting from a Bose-Einstein cond...
Dephasing dynamics of Rydberg atom spin waves
Bariani, F; Kennedy, T A B
2012-01-01
A theory of Rydberg atom interactions is used to derive analytical forms for the spin wave pair correlation function in laser-excited cold-atom vapors. This function controls the quantum statistics of light emission from dense, inhomogeneous clouds of cold atoms of various spatial dimensionalities. The results yield distinctive scaling behaviors on the microsecond timescale, including generalized exponential decay. A detailed comparison is presented with a recent experiment on a cigar-shaped atomic ensemble [Y. Dudin and A. Kuzmich, Science 336, 887 (2012)], in which Rb atoms are excited to a set of Rydberg levels.
Effective Field Theory for Rydberg Polaritons
Gullans, M. J.; Y Wang; Thompson, J. D.; Liang, Q. -Y.; Vuletic, V.; Lukin, M. D.; Gorshkov, A.V.
2016-01-01
We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and ...
Cold and Ultracold Rydberg Atoms in Strong Magnetic Fields
Pohl, T; Schmelcher, P
2009-01-01
Cold Rydberg atoms exposed to strong magnetic fields possess unique properties which open the pathway for an intriguing many-body dynamics taking place in Rydberg gases consisting of either matter or anti-matter systems. We review both the foundations and recent developments of the field in the cold and ultracold regime where trapping and cooling of Rydberg atoms have become possible. Exotic states of moving Rydberg atoms such as giant dipole states are discussed in detail, including their formation mechanisms in a strongly magnetized cold plasma. Inhomogeneous field configurations influence the electronic structure of Rydberg atoms, and we describe the utility of corresponding effects for achieving tightly trapped ultracold Rydberg atoms. We review recent work on large, extended cold Rydberg gases in magnetic fields and their formation in strongly magnetized ultracold plasmas through collisional recombination. Implications of these results for current antihydrogen production experiments are pointed out, and ...
EDITORIAL: Special issue on Rydberg physics
Côté, Robin; Pattard, Thomas; Weidemüller, Matthias
2005-01-01
Atoms and molecules in highly excited electronic states ('Rydberg atoms') have been the object of broad scientific research for almost a century. Despite this long history, the field of research has never lost its buoyancy, and recent years in particular have seen a tremendous revival of interest in the physics of Rydberg atoms and molecules from many different perspectives. Rydberg systems touch a wide range of research areas including, among others, ultralong-range molecules, artificial ('designer') atoms, quantum chaos, quantum information, ultracold Rydberg gases and plasmas, and anti-hydrogen formation. Due to the many fields involved, the physical insight and technical know-how are scattered over different communities. The goal of this special issue is to provide an integral overview of the latest developments in this highly innovative research field and to make the physical knowledge available to a wide audience. Groups from various fields of atomic, molecular and optical physics as well as condensed matter and plasma physics have contributed to this issue, which therefore spans a wide range of areas connected through the common theme: 'Rydberg physics'. This name was given to a four-week International Workshop and Seminar which was held from 19 April to 14 May 2004 at the Max-Planck-Institut für Physik Komplexer Systeme in Dresden, Germany, and organized by the three of us. The workshop and seminar programme was a very successful mixture of topics bringing together colleagues working in different but related areas of research centred about the physics of highly excited Rydberg atoms and molecules. We would like to take this opportunity to express our gratitude to the organization team of the MPI-PKS Dresden, especially the Director, Jan-Michael Rost, and the Visitors' Programme coordinator, Mandy Lochar. The generous support of the Max Planck Society, which made this successful workshop and seminar possible, is also gratefully acknowledged. Inspired by the
Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J
2015-01-01
We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.
Rydberg Impurity Probes in Ultracold Gases
Mitchison, Mark; Johnson, Tomi; Plenio, Martin; Jaksch, Dieter
2015-03-01
Impurities immersed in ultracold gases can act as highly sensitive, tunable and potentially non-destructive probes of their environment. In this setting, we propose the use of an atomic impurity in a Rydberg state to measure density fluctuations via Ramsey interferometry. The rapid collisional dynamics of the light Rydberg electron interacting with the heavy gas particles, combined with the capability to quickly change the state of the impurity with optical pulses, make such a probe ideal for measuring local properties of ultracold gases. Our proposed device promises angle-resolved density measurements with sub-micron spatial resolution, and with no need to integrate over the line of sight. We outline how Rydberg impurity probes could be applied to study various interesting quantum states of current experimental relevance. We also discuss the possibility of using multiple Rydberg atoms to extract the spatial pair distribution function g (2) (r). Our work is placed in the context of other recently proposed impurity-based probes.
Cavity polaritons with Rydberg blockade and long-range interactions
Litinskaya, Marina; Pupillo, Guido
2016-01-01
We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: Dipolar forces and atomic saturability, which ranges from hard-core repulsion to Rydberg blockade. We show that, in spite of the underlying repulsion in the subsystem of atomic excitations, saturability induces a broadband bunching of photons for two-polariton scattering states. We interpret this bunching as a result of interference, and trace it back to the mismatch of the quantization volumes for atomic excitations and photons. We examine also bound bipolaritonic states: These include states created by dipolar forces, as well as a gap bipolariton, which forms solely due to saturability effects in the atomic transition. Both types of bound states exhibit strong bunching in the photonic component. We discuss the dependence of bunching on experimentally relevant parameters.
Charged oscillator quantum state generation with Rydberg atoms
Stevenson, Robin; Hofferberth, Sebastian; Lesanovsky, Igor
2016-01-01
We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that permits the creation of squeezed and other non-classical states. We show that these features are robust to thermal noise arising from a coupling of the oscillator with the environment. The possibility to create non-trivial quantum states of mechanical systems, provided by the proposed setup, is central to applications such as sensing and metrology and moreover allows the exploration of fundamental questions concerning the boundary between classical and quantum mechanical descriptions of macroscopic objects.
Experimental Research of Spontaneous Evolution from Ultracold Rydberg Atoms to Plasma
ZHANG Lin-Jie; FENG Zhi-Gang; LI An-Ling; ZHAO Jian-Ming; LI Chang-Yong; JIA Suo-Tang
2008-01-01
@@ The spontaneous evolution from ultracold Rydberg atoms to plasma is investigated in a caesium MOT by using the method of field ionization. The plasma transferred from atoms in different Rydberg states (n = 22-32) are obtained experimentally. Dependence of the threshold time of evolving to plasma and the threshold number of initial Rydberg atoms on the principal quantum number of initial Rydberg states is studied. The experimental results are in agreement with hot-cold Rydberg-Rydberg atom collision ionization theory.
Radiation trapping in a dense cold Rydberg gas
Sadler, D P; Boddy, D; Bounds, A D; Keegan, N C; Lochead, G; Jones, M P A; Olmos, B
2016-01-01
Cold atomic gases resonantly excited to Rydberg states can exhibit strong optical nonlinearity at the single photon level. We observe that in such samples radiation trapping leads to an additional mechanism for Rydberg excitation. Conversely we demonstrate that Rydberg excitation provides a novel in situ probe of the spectral, statistical, temporal and spatial properties of the trapped re-scattered light. We also show that absorption can lead to an excitation saturation that mimics the Rydberg blockade effect. Collective effects due to multiple scattering may co-exist with co-operative effects due to long-range interactions between the Rydberg atoms, adding a new dimension to quantum optics experiments with cold Rydberg gases.
Intrication de deux atomes en utilisant le blocage de Rydberg
Gaëtan, A.
2010-12-01
Considérons un système quantique constitué de deux sous-systèmes : on dit qu'il est dans un état intriqué s'il existe des corrélations quantiques entre les états de ces derniers. La compréhension et la mise en œuvre d'états intriqués ont de nombreuses applications (métrologie quantique, étude des systèmes fortement corrélés, traitement quantique de l'information, etc.) et constituent le contexte général de ce travail de thèse. Plus en détail, nous démontrons la réalisation d'un état intriqué de deux atomes neutres piégés indépendamment. Pour cela, nous exploitons le phénomène de blocage de Rydberg : lorsqu'on essaie d'exciter simultanément deux atomes séparés de quelques micromètres vers un état de Rydberg donné, la forte interaction entre atomes de Rydberg peut empêcher cette excitation simultanée. Dans ce cas, seul un des deux atomes est excité et l'on génère ainsi des corrélations quantiques entre les états des deux atomes, c'est-à-dire de l'intrication. Dans notre expérience, deux atomes de 87Rb dans l'état fondamental 5S1/2 sont piégés chacun dans une pince optique microscopique, à une distance relative de 4 micromètres. En réalisant des transitions entre l'état 5S1/2 et l'état de Rydberg 58D3/2 par des transitions à deux photons, nous obtenons un état intriqué des deux atomes dans les sous-niveaux |5S1/2, f = 1, mf = 1> et |5S1/2, f = 2, mf = 2>. Afin de quantifier l'intrication, nous mesurons la fidélité par rapport à l'état-cible en réalisant des transitions Raman entre ces deux sous-niveaux. La fidélité des paires d'atomes présentes à la fin de l'expérience est supérieure à la valeur seuil de 0,5, ce qui prouve la création d'un état intriqué.
Ultralong-range triatomic Rydberg molecules in an electric field
Aguilera Fernández, Javier; Schmelcher, Peter; González-Férez, Rosario
2016-06-01
We investigate the electronic structure of a triatomic Rydberg molecule formed by a Rydberg atom and two neutral ground-state atoms. Taking into account the s-wave and p-wave interactions, we perform electronic structure calculations and analyze the adiabatic electronic potentials evolving from the Rb (n=35,l≥slant 3) Rydberg degenerate manifold. We hereby focus on three different classes of geometries of the Rydberg molecules, including symmetric, asymmetric and planar configurations. The metamorphosis of these potential energy surfaces in the presence of an external electric field is explored.
Ultralong-range triatomic Rydberg molecules in an electric field
Fernández, Javier Aguilera; González-Férez, Rosario
2016-01-01
We investigate the electronic structure of a triatomic Rydberg molecule formed by a Rydberg atom and two neutral ground-state atoms. Taking into account the $s$-wave and $p$-wave interactions we perform electronic structure calculations and analyze the adiabatic electronic potentials evolving from the Rb$(n=35, l\\ge 3)$ Rydberg degenerate manifold. We hereby focus on three different classes of geometries of the Rydberg molecules, including symmetric, asymmetric and planar configurations. The metamorphosis of these potential energy surfaces in the presence of an external electric field is explored.
Balmer and Rydberg Equations for Hydrogen Spectra Revisited
Heyrovska, Raji
2011-01-01
Balmer equation for the atomic spectral lines was generalized by Rydberg. Here it is shown that 1) while Bohr's theory explains the Rydberg constant in terms of the ground state energy of the hydrogen atom, quantizing the angular momentum does not explain the Rydberg equation, 2) on reformulating Rydberg's equation, the principal quantum numbers are found to correspond to integral numbers of de Broglie waves and 3) the ground state energy of hydrogen is electromagnetic like that of photons and the frequency of the emitted or absorbed light is the difference in the frequencies of the electromagnetic energy levels.
Electromagnetically Induced Transparency in strongly interacting Rydberg Gases
Ates, C; Pohl, T
2011-01-01
We develop an efficient Monte-Carlo approach to describe the optical response of cold three-level atoms in the presence of EIT and strong atomic interactions. In particular, we consider a "Rydberg-EIT medium" where one involved level is subject to large shifts due to strong van der Waals interactions with surrounding Rydberg atoms. We find excellent agreement with much more involved quantum calculations and demonstrate its applicability over a wide range of densities and interaction strengths. The calculations show that the nonlinear absorption due to Rydberg-Rydberg atom interactions exhibits universal behavior.
Tests of Theory in Rydberg States of One-Electron Ions
Tan, Joseph N.; Mohr, Peter J.
Comparison of optical frequency measurements to predictions of quantum electrodynamics (QED) for Rydberg states of one-electron ions can test theory and allow new determinations of constants of nature to be made. Simplifications in the QED theory of high-angular-momentum states reduces the uncertainty in the prediction of transition frequencies to a level where a new value of the Rydberg constant which is independent of the proton radius can be determined. Since the energy-level spacing between neighbouring Rydberg states grows as the square of the nuclear charge number, it is possible to study transitions with optical frequencies that are accessible to femtosecond laser frequency combs. Recently at the US National Institute of Standards and Technology (NIST), highly charged ions (including bare nuclei) created in an Electron Beam Ion Trap (EBIT) were extracted and captured in a novel compact Penning trap. An ongoing experiment aims to produce one-electron ions isolated in an ion trap designed for laser spectroscopy. Tests of theory in a regime free of nuclear effects would be valuable in shedding light on the puzzle surrounding the large discrepancy in the value of the proton radius inferred from the observed Lamb shift in muonic hydrogen as compared to the value deduced from hydrogen and deuterium spectroscopy and electron scattering measurements.
Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization
We report the first observation of perturbed and unperturbed Rydberg progressions of atomic uranium. High-lying levels within 1000 cm/sup -1/ of the ionization limit were accessed by time-resolved stepwise excitation using dye laser pulses tuned to resonant transitions. Atoms excited to these states were then photoionized by intense infrared radiation from a pulsed CO2 laser. The resultant photoion production was monitored. By delaying the infrared ionizing pulse, and thus discriminating against the shorter-lived valence states, we preferentially detected Rydberg levels with principal quantum numbers n exceeding 60. Series convergence yields a value of the ionization limit of 6.1941 +- 0.0005 eV, in fair agreement with the value of 6.1912 +- 0.0025 eV obtained in photoionization studies. Ab initio calculations indicate that the unperturbed series belong to highly excited 5f37s2np and nf configurations
Numerous infrared transitions between Rydberg states of neon and argon have been measured by optogalvanic spectroscopy in commercial hollow cathode lamps using a color center laser operating in the range 3600-4100 cm-1. Transitions in lithium and barium atoms sputtered from the cathodes were also detected. The generality and high sensitivity of this technique indicates potential applications for frequency calibration in the infrared, atomic and molecular spectroscopy, and plasma diagnostics. (orig.)
Dipole-Dipole coupled double Rydberg molecules
Kiffner, Martin; Li, Wenhui; Gallagher, Tom F
2012-01-01
We show that the dipole-dipole interaction between two Rydberg atoms can give rise to long range molecules. The binding potential arises from two states that converge to different separated atom asymptotes. These states interact weakly at large distances, but start to repel each other strongly as the van der Waals interaction turns into a resonant dipole-dipole interaction with decreasing separation between the atoms. This mechanism leads to the formation of an attractive well for one of the potentials. If the two separated atom asymptotes come from the small Stark splitting of an atomic Rydberg level, which lifts the Zeeman degeneracy, the depth of the well and the location of its minimum are controlled by the external electric field. We discuss two different geometries that result in a localized and a donut shaped potential, respectively.
Spin Transport in Ultracold Rydberg Atoms
Hollingsworth, Jacob; Mukherjee, Rick; Killian, Thomas; Hazzard, Kaden
2016-05-01
We devise a scheme to use ultracold Rydberg atoms to study models of transport where Rydberg excitations play the role of tunneling particles. In contrast to previous schemes, where ``tunnelings'' between atoms separated by a distance r often scale as 1 /r3 , ours scale as 1 /r6 , for which the physics is more similar to short-ranged hopping models. We theoretically demonstrate that current experiments exist in a regime that allows significant transport well within the experimental lifetime - several microns in a microsecond, and derive the experimental parameters for strontium atoms that are necessary to access this regime. We also show how disorder may be introduced and controlled precisely via the depth of an applied optical lattice. We explore the dynamics, looking for signatures of ballistic, diffusive, and localized behavior as a function of the types and strength of disorder applied.
Rydberg ensemble based CNOTN gates using STIRAP
Gujarati, Tanvi; Duan, Luming
2016-05-01
Schemes for implementation of CNOT gates in atomic ensembles are important for realization of quantum computing. We present here a theoretical scheme of a CNOTN gate with an ensemble of three-level atoms in the lambda configuration and a single two-level control atom. We work in the regime of Rydberg blockade for the ensemble atoms due to excitation of the Rydberg control atom. It is shown that using STIRAP, atoms from one ground state of the ensemble can be adiabatically transferred to the other ground state, depending on the state of the control atom. A thorough analysis of adiabatic conditions for this scheme and the influence of the radiative decay is provided. We show that the CNOTN process is immune to the decay rate of the excited level in ensemble atoms. This work is supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program.
Effective Field Theory for Rydberg Polaritons
Gullans, M J; Thompson, J D; Liang, Q -Y; Vuletic, V; Lukin, M D; Gorshkov, A V
2016-01-01
We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and determine the photon number at which the EFT description breaks down. We find good agreement throughout between the predictions of EFT and numerical simulations of the exact two and three photon wavefunction transmission.
Efimov, D. K.; Miculis, K.; Bezuglov, N. N.; Ekers, A.
2016-06-01
We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole–dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d , n i , of both atoms. While for symmetric atom pairs with {n}d={n}i={n}0 the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive—for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them ‘Tom’ and ‘Jerry’ for ‘big’ and ‘small’) pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom–Jerry pairs with {n}i\\gt {n}0\\gt {n}d which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom–Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate.
Formation of heavy-Rydberg ion-pair states in Rydberg atom collisions with attaching targets
Wang, Changhao; Kelley, Michael; Buathong, Sitti; Dunning, F. Barry
2014-05-01
Electron transfer in collisions between K(np)Rydberg atoms and electron attaching molecules can lead to formation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair orbiting at large internuclear separations. In the present work ion-pair states are created in a small collision cell and allowed to exit into an analysis region where their binding energy and velocity distributions are determined with the aid of electric-field-induced dissociation and a position sensitive detector. Ion pair production is analyzed using a Monte Carlo collision code that models both the initial Rydberg electron capture and the subsequent behavior of the product ion pair. The data demonstrate that collisions with SF6 and CCl4 lead to formation of long-lived ion pair states with a broad distribution of binding energies whose velocity distribution is strongly peaked in the forward direction. Research supported by the Robert A. Welch Foundation.
Microscopic Characterization of Scalable Coherent Rydberg Superatoms
Zeiher, Johannes; Schauß, Peter; Hild, Sebastian; Macrı, Tommaso; Bloch, Immanuel; Gross, Christian
2015-07-01
Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a "superatom," is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.
Nonlinear quantum optics mediated by Rydberg interactions
Firstenberg, O.; Adams, C. S.; Hofferberth, S.
2016-08-01
By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.
Fine Structure of the Rydberg Blockade Zone
Dumin, Yurii V.
2013-01-01
A spatial structure of the zone blocked by the dipolar electric field of a Rydberg atom is calculated taking into account a possibility of excitation to the states with neighboring values of the principal quantum number. As a result, it was found that the blocked zone represents a number of co-centric spherical shells rather than a solid ball, and the respective pair correlation function should have additional maxima at small interparticle distances.
Dipole-Dipole coupled double Rydberg molecules
Kiffner, Martin; Park, Hyunwook; Li, Wenhui; Gallagher, Tom F.
2012-01-01
We show that the dipole-dipole interaction between two Rydberg atoms can give rise to long range molecules. The binding potential arises from two states that converge to different separated atom asymptotes. These states interact weakly at large distances, but start to repel each other strongly as the van der Waals interaction turns into a resonant dipole-dipole interaction with decreasing separation between the atoms. This mechanism leads to the formation of an attractive well for one of the ...
Driven Rydberg atoms reveal quartic level repulsion
Sacha, Krzysztof; Zakrzewski, Jakub
2001-01-01
The dynamics of Rydberg states of a hydrogen atom subject simultaneously to uniform static electric field and two microwave fields with commensurate frequencies is considered in the range of small fields amplitudes. In the certain range of the parameters of the system the classical secular motion of the electronic ellipse reveals chaotic behavior. Quantum mechanically, when the fine structure of the atom is taken into account, the energy level statistics obey predictions appropriate for the s...
Driven Rydberg atoms reveal quartic level repulsion
Sacha, K; Sacha, Krzysztof; Zakrzewski, Jakub
2001-01-01
The dynamics of Rydberg states of a hydrogen atom subject simultaneously to uniform static electric field and two microwave fields with commensurate frequencies is considered in the range of small fields amplitudes. In the certain range of the parameters of the system the classical secular motion of the electronic ellipse reveals chaotic behavior. Quantum mechanically, when the fine structure of the atom is taken into account, the energy level statistics obey predictions appropriate for the symplectic Gaussian random matrix ensemble.
Photon-Photon Interactions via Rydberg Blockade
Fleischhauer, Michael; Pohl, Thomas; Gorshkov, Alexey Vyacheslavovich; Otterbach, Johannes; Lukin, Mikhail D.
2011-01-01
We develop the theory of light propagation under the conditions of electromagnetically induced transparency (EIT) in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We demonstrate that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-phot...
Chibisov, M.I. [Russian Research Center, Kurchatov Institute, Kurchatov strasse 1, Institute of Nuclear Fusion, Moscow 123182 (Russia); Mitchell, J.B.; Van der Donk, P.J. [Department of Physics, University of Western Ontario, London, Ontario, N6A3K7 (CANADA); Yousif, F.B. [Instituto de Fisica, UNAM, Cuernavaca, (Mexico) 62191; Morgan, T.J. [Physics Department, Wesleyan University, Middletown, Connecticut 06459-0155 (United States)
1997-07-01
The dissociative recombination (DR) of vibrationally excited H{sub 2}{sup +} ions to form products in high Rydberg states has been investigated experimentally and theoretically for small (0.01{minus}0.1 eV) center-of-mass energies of the projectile electron. The merged beam method was used in the experiment and very large cross sections were found for DR from highly vibrationally excited states. The Rydberg states population was analyzed by the application of an electric field ionizer with an axial electric field in excess of 70 kV/cm, which is sufficient to ionize Rydberg states with n{ge}10. Experiments with and without the ionizer were performed and cross sections {sigma}(0{lt}n{le}21), {sigma}(n{lt}10), and {sigma}(10{le}n{le}21) were measured. The dipole approximation was used for the interpretation of the experimental results. Molecular rovibrational transitions were considered quantum mechanically. At low collision energy (0.01 eV), DR cross sections with high n=10{minus}21 Rydberg products arise from initial vibrational states v{ge}15. Absolute values of these cross sections are found to be of the order of magnitude of 10{sup {minus}12}{minus}10{sup {minus}13} cm{sup 2}. Comparison of theoretical and experimental results has shown that the modified back autoionization (involving transitions to the continuum and to very high n; that is the {open_quotes}indirect{close_quotes} mechanism of DR) plays a significant role for all cross sections. {copyright} {ital 1997} {ital The American Physical Society}
Effective Field Theory for Rydberg Polaritons
Gullans, M. J.; Wang, Y.; Thompson, J. D.; Liang, Q.-Y.; Vuletic, V.; Lukin, M. D.; Gorshkov, A. V.
2016-05-01
Photons can be made to strongly interact by dressing them with atomic Rydberg states under conditions of electromagnetic induced transparency. Probing Rydberg polaritons in the few-body limit, recent experiments were able to observe non-perturbative two-body effects including: single photon switching and the formation of bound states. Although the two-body problem is amenable to exact solutions, such approaches quickly become intractable for more than two particles. To overcome this problem, we study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). For attractive interactions, we show how a suitably long medium can be used to prepare shallow N-body bound states in one dimension. We verify this prediction for two and three photons using full numerical simulations. We then consider conditions under which the effective interactions are repulsive and study two and three photon transmission. Finally, we show how to go beyond EFT by measuring the three-body contact force or, alternatively, scattering at high relative momenta.
Rydberg Electrons in a Bose-Einstein Condensate.
Wang, Jia; Gacesa, Marko; Côté, R
2015-06-19
We investigate a hybrid system composed of ultracold Rydberg atoms immersed in an atomic Bose-Einstein condensate (BEC). The coupling between Rydberg electrons and BEC atoms leads to excitations of phonons, the exchange of which induces a Yukawa interaction between Rydberg atoms. Because of the small electron mass, the effective charge associated with this quasiparticle-mediated interaction can be large. Its range, equal to the BEC healing length, is tunable using Feshbach resonances to adjust the scattering length between BEC atoms. We find that for small healing lengths, the distortion of the BEC can "image" the Rydberg electron wave function, while for large healing lengths the induced attractive Yukawa potentials between Rydberg atoms are strong enough to bind them. PMID:26196974
Simulated quantum process tomography of quantum gates with Rydberg superatoms
Beterov, I. I.; Saffman, M.; Yakshina, E. A.; Tretyakov, D. B.; Entin, V. M.; Hamzina, G. N.; Ryabtsev, I. I.
2016-06-01
We have numerically simulated quantum tomography of single-qubit and two-qubit quantum gates with qubits represented by mesoscopic ensembles containing random numbers of atoms. Such ensembles of strongly interacting atoms in the regime of Rydberg blockade are known as Rydberg superatoms. The stimulated Raman adiabatic passage (STIRAP) in the regime of Rydberg blockade is used for determining Rydberg excitation in the ensemble, required for the storage of quantum information in the collective state of the atomic ensemble and implementation of two-qubit gates. The optimized shapes of the STIRAP pulses are used to achieve high fidelity of the population transfer. Our simulations confirm the validity and high fidelity of single-qubit and two-qubit gates with Rydberg superatoms.
Electron capture by ions in a Rydberg atom target
Electron capture by a singly charged ion in a state-selected target of highly excited Rydberg atoms populates a wide but definite range of Rydberg states on the projectile. Crossed-beam experiments with ions at energies around 1 keV and laser-excited Na Rydberg states n=24 to 34 have investigated the electron-capture reaction with comparable projectile and electronic velocities. The variations of final-state n distributions with respect to initial n and projectile velocity exhibit consistent patterns and challenge theorists to address the Rydberg electron-capture problem at intermediate velocity in new ways. The importance of collisional l mixing in state-selected Rydberg targets and the complexities of field ionization are particularly stressed as limitations on fully resolved state-to-state experiments
Pulsed Rydberg four-wave mixing with motion-induced dephasing in a thermal vapor
Chen, Yi-Hsin; Löw, Robert; Pfau, Tilman
2015-01-01
We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns time scales. Combined with a third cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report [1] using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity...
Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.
von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M
2016-07-28
Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments. PMID:27353150
Experimental Research of Spontaneous Evolution from Ultracold Rydberg Atoms to Plasma
The spontaneous evolution from ultracold Rydberg atoms to plasma is investigated in a caesium MOT by using the method of field ionization. The plasma transferred from atoms in different Rydberg states (n = 22-32) are obtained experimentally. Dependence of the threshold time of evolving to plasma and the threshold number of initial Rydberg atoms on the principal quantum number of initial Rydberg states is studied. The experimental results are in agreement with hot-cold Rydberg–Rydberg atom collision ionization theory
Atomic Fock State Preparation Using Rydberg Blockade
Ebert, Matthew; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G
2013-01-01
We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected $\\sqrt{N}$ Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with essentially perfect blockade. We then use collective Rabi $\\pi$ pulses to produce ${\\cal N}=1,2$ atom number Fock states with fidelities of 62% and 48% respectively. The ${\\cal N}=2$ Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations.
Van der Waals explosion of cold Rydberg clusters
Faoro, R.; Simonelli, C; Archimi, M.; Masella, G.; Valado, M. M.; Arimondo, E; Mannella, R.; Ciampini, D.; Morsch, O.
2015-01-01
We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with inter-particle distances of around 5 {\\mu}m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and ...
Ultracold Long-Range Rydberg Molecules with Complex Multichannel Spectra.
Eiles, Matthew T; Greene, Chris H
2015-11-01
A generalized class of ultralong-range Rydberg molecules is predicted which consist of a multichannel Rydberg atom whose outermost electron creates a chemical bond with a distant ground state atom. Such multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number. The resulting occurrence of near degeneracies with states of high orbital angular momentum promotes the admixture of low l into the high l deeply bound "trilobite" molecule states, thereby circumventing the usual difficulty posed by electric dipole selection rules. Such states also can exhibit multiscale binding possibilities that could present novel options for quantum manipulation. PMID:26588378
Filtering single atoms from Rydberg blockaded mesoscopic ensembles
Petrosyan, David; Mølmer, Klaus
2015-01-01
We propose an efficient method to filter out single atoms from trapped ensembles with unknown number of atoms. The method employs stimulated adiabatic passage to reversibly transfer a single atom to the Rydberg state which blocks subsequent Rydberg excitation of all the other atoms within the ensemble. This triggers the excitation of Rydberg blockaded atoms to short lived intermediate states and their subsequent decay to untrapped states. Using an auxiliary microwave field to carefully engineer the dissipation, we obtain a nearly deterministic single-atom source. Our method is applicable to small atomic ensembles in individual microtraps and in lattice arrays.
RF-dressed Rydberg atoms in hollow-core fibres
Veit, Christian; Kübler, Harald; Euser, Tijmen G; Russell, Philip St J; Löw, Robert
2016-01-01
The giant electro-optical response of Rydberg atoms manifests itself in the emergence of sidebands in the Rydberg excitation spectrum if the atom is exposed to a radio-frequency (RF) electric field. Here we report on the study of RF-dressed Rydberg atoms inside hollow-core photonic crystal fibres (HC-PCF), a system that enables the use of low modulation voltages and offers the prospect of miniaturised vapour-based electro-optical devices. Narrow spectroscopic features caused by the RF field are observed for modulation frequencies up to 500 MHz.
A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90 deg., decelerated to zero velocity in less than 25 μs, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed.
Tomography of laser cooled atoms in MOT using Rydberg state excitation
Full text: The position selective dimensional study of laser cooled atoms in Magneto-Optical Trap (MOT) is usually performed using optical detection. Nevertheless, many years ago a more precise method of imaging of atomic beams was developed using ionization of atoms and detection of produced electrons and ions using secondary electron multipliers. This technique demonstrates the possibility to detect a few atoms making it attractive for experiments with a small density of atoms. In the current paper we have performed an experiment directed to observe the difference in the space distribution of Rb atoms in MOT in the first exited state (5P) caused various selection (dark or bright) of the repumping transition. In the our experiment we produced a cold atomic cloud of 107 Rb atoms cooled using conventional MOT setup. After that atoms were optically exited to the Rydberg state using cascade transitions: 5S→5P→8S (decay)→ 6P→nS;nD (n ∼ 37). First excitation pulse (5P→8S) was performed by pulsed dye laser (Rodamine G6, 615 nm). Second, pulse of the Ti:Sa laser at 740 nm was applied to the transitions 6P→ nS;nD. Laser beams were focused to the trap and crossed under angle near 90 degree. The Rydberg atoms were detected using selective field ionization technique. The Ti:Sa laser beam was 1D scanned across the atomic cloud using a deffector based on galvanometer driven lens. The optical detection unit was controlled using a computer. It allows us to make position sensitive measurements of the Rydberg state excitation rate. Averaged data on counts of Rydberg atoms was used to determine population of the 5P state in separate parts of the atomic cloud. Experimental tomography data obtained for locking of the repumping laser to the bright or dark transition, show different 5P 1D profiles of the trap. Observed phenomena were in agreement with theoretical predictions and our previous results. This technique is a non-destructive method of measurement of exited state
Fedorov, Igor; Koziol, Lucas; Li, Guosheng; Reisler, Hanna; Krylov, Anna I
2007-12-27
Vibronic transitions to the 21A2(3py CNN framework and (ii) in the CH2 moiety. Trends in the first group are due mostly to the effect of the lower CN and NN bond orders, whereas those in the second group are due to the interaction between the positively charged hydrogens and the Rydberg electron density, and the hybridization of the carbon. Within each group, marked differences in behavior between the in-plane and out-of-plane modes are observed. PMID:18052355
Atom-surface studies with Rb Rydberg atoms
Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon; Shaffer, James
2015-05-01
We report on experimental and theoretical progress studying atom-surface interactions using rubidium Rydberg atoms. Rydberg atoms can be strongly coupled to surface phonon polariton (SPhP) modes of a dielectric material. The coherent interaction between Rydberg atoms and SPhPs has potential applications for quantum hybrid devices. Calculations of TM-mode SPhPs on engineered surfaces of periodically poled lithium niobate (PPLN) and lithium tantalate (PPLT) for different periodic domains and surface orientations, as well as natural materials such as quartz, are presented. Our SPhP calculations account for the semi-infinite anisotropic nature of the materials. In addition to theoretical calculations, we show experimental results of measurements of adsorbate fields and coupling of Rydberg atoms to SPhPs on quartz.
van der Waals explosion of cold Rydberg clusters
Faoro, R.; Simonelli, C.; Archimi, M.; Masella, G.; Valado, M. M.; Arimondo, E.; Mannella, R.; Ciampini, D.; Morsch, O.
2016-03-01
We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with interparticle distances of around 5 μ m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.
Van der Waals explosion of cold Rydberg clusters
Faoro, R; Archimi, M; Masella, G; Valado, M M; Arimondo, E; Mannella, R; Ciampini, D; Morsch, O
2015-01-01
We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with inter-particle distances of around 5 {\\mu}m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.
Rydberg molecule-induced remote spin-flips
Niederprüm, Thomas; Eichert, Tanita; Ott, Herwig
2016-01-01
We have performed high resolution photoassociation spectroscopy of rubidium Rydberg molecules in the vicinity of the 25P state. Due to the hyperfine interaction in the ground state perturber atom, the emerging mixed singlet-triplet potentials contain contributions from both hyperfine states. We show that this can be used to induce remote spin-flips in the perturber atom upon excitation of a Rydberg molecule. When furthermore the spin-orbit splitting of the Rydberg state is comparable to the hyperfine splitting in the ground state, the orbital angular momentum of the Rydberg electron is entangled with the nuclear spin of the perturber atom. Our results open new possibilities for the implementation of spin-dependent short and long-range interactions for ultracold atoms in bulk systems and in optical lattices.
Role of Rydberg States In High-order Harmonic Generation
Beaulieu, Samuel; Comby, Antoine; Wanie, Vincent; Petit, Stéphane; Légaré, François; Catoire, Fabrice; Mairesse, Yann
2016-01-01
The role of Rydberg states in strong field physics has known a renewed interest in the past few years with the study of resonant high-order harmonic generation. In addition to its fundamental in- terest, this process could create bright sources of coherent vacuum and extreme ultraviolet radiation with controlled polarization state. We investigate the spectral, spatial and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. The intensity-dependence of the emission shows that two different pathways interfere to populate the Rydberg states. Furthermore, we show that the population of Rydberg states can lead to different emission mecanisms: either direct emission through XUV Free Induction Decay, or sequentially with absorption of additional photons, in processes similar to resonance-enhanced multiphoton above- threshold ionization. Last, using the attosecond lighthouse technique we show that the resonant emission from Rydberg states is not temporal...
Dipole blockade in a cold Rydberg atomic sample
Comparat, Daniel; 10.1364/JOSAB.27.00A208
2010-01-01
We review here the studies performed about interactions in an assembly of cold Rydberg atoms. We focus more specially the review on the dipole-dipole interactions and on the effect of the dipole blockade in the laser Rydberg excitation, which offers attractive possibilities for quantum engineering. We present first the various interactions between Rydberg atoms. The laser Rydberg excitation of such an assembly is then described with the introduction of the dipole blockade phenomenon. We report recent experiments performed in this subject by starting with the case of a pair of atoms allowing the entanglement of the wave-functions of the atoms and opening a fascinating way for the realization of quantum bits and quantum gates. We consider then several works on the blockade effect in a large assembly of atoms for three different configurations: blockade through electric-field induced dipole, through F\\"orster resonance and in van der Waals interaction. The properties of coherence and cooperativity are analyzed. ...
Borromean three-body FRET in frozen Rydberg gases
Faoro, R.; Pelle, B.; Zuliani, A.; Cheinet, P.; Arimondo, E.; Pillet, P.
2015-09-01
Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement.
Electron Rydberg wave packets in one-dimensional atoms
Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar
2010-09-01
An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.
Experimental research of spontaneous evolution from ultracold rydberg atoms to plasma
The spontaneous evolution from ultracold Rydberg atoms to plasma is investigated in a caesium MOT by using the method of field ionization. The plasma transferred from atoms in different Rydberg states (n=22-32) are obtained experimentally. Dependence of the threshold time of evolving to plasma and the threshold number of initial Rydberg atoms on the principal quantum number of initial Rydberg states is studied. The experimental results are in agreement with hot-cold Rydberg-Rydberg atom collision ionization theory. (authors)
Prometheusmotivet hos Viktor Rydberg och i den tidiga arbetarlitteraturen
Nilsson, Magnus
2007-01-01
Magnus Nilsson, Prometheusmotivet hos Viktor Rydberg och i den tidiga arbetarlitteraturen.(The Prometheus Motif in Viktor Rydberg’s Poetry and Early Working-Class Literature.) This essay focuses on the Prometheus motif in Viktor Rydberg’s poetry and in early Swedish working-class literature. Many working-class writers were influenced by Rydberg. But the Prometheus motif undergoes a radical transformation when taken up in their poetry. Whereas Rydberg’s use of the motif is firmly rooted within...
Multi-Manifold Stark Splittings Lift the Rydberg Blockade
Dumin, Yurii V
2016-01-01
The spatial evolution of the Rydberg blockade is studied taking into account Stark-split energy levels across several manifolds. We find that the unexpected restoration of a blockaded Rydberg excitation at small interatomic distances, experimentally observed by P.Schauss, et al. [Nature 491, 87 (2012)], can be explained by the perturbed energy levels from neighboring manifolds that enter the energy window of excitation defined by the bandwidth of the exciting laser.
Electromagnetically Induced Transparency in strongly interacting Rydberg Gases
Ates, C.; Sevinçli, S.; Pohl, T.
2011-01-01
We develop an efficient Monte-Carlo approach to describe the optical response of cold three-level atoms in the presence of EIT and strong atomic interactions. In particular, we consider a "Rydberg-EIT medium" where one involved level is subject to large shifts due to strong van der Waals interactions with surrounding Rydberg atoms. We find excellent agreement with much more involved quantum calculations and demonstrate its applicability over a wide range of densities and interaction strengths...
Borromean three-body FRET in frozen Rydberg gases
Faoro, R.; Pelle, B.; A. Zuliani; Cheinet, P.; Arimondo, E.; Pillet, P.
2015-01-01
Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance e...
Direct excitation of butterfly states in Rydberg molecules
Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig
2016-05-01
Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.
Recent advances in Rydberg physics using alkaline-earth atoms
Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.
2016-06-01
In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.
Attosecond pulse characterization with coherent Rydberg wavepackets
Pabst, Stefan
2016-01-01
We propose a new technique to fully characterize the temporal structure of extreme ultraviolet pulses by ionizing a bound coherent electronic wavepacket. The populated energy levels make it possible to interfere different spectral components leading to quantum beats in the photoelectron spectrum as a function of the delay between ionization and initiation of the wavepacket. The influence of the dipole phase, which is the main obstacle for state-of-the-art pulse characterization schemes, can be eliminated by angle integration of the photoelectron spectrum. We show that particularly atomic Rydberg wavepackets are ideal and that wavepackets involving multiple electronic states provide redundant information which can be used to cross-check the consistency of the phase reconstruction.
Optical properties of Rydberg excitons and polaritons
Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David
2016-02-01
We show how to compute the optical functions when Rydberg excitons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. We use the real density matrix approach (RDMA), which, combined with the Green's function method, enables one to derive analytical expressions for the optical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a Cu20 crystal, being a semiconductor with an indirect gap. The effect of the coherence is displayed in the line shape. We also examine in detail and explain the dependence of the oscillator strength and the resonance placement on the state number. We report good agreement with recently published experimental data. We also show that the presented method can be applied to semiconductors with a direct gap.
Atomic Rydberg Reservoirs for Polar Molecules
Zhao, Bo; Pupillo, Guido; Zoller, Peter
2011-01-01
We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.
Visualization and interpretation of Rydberg states
Kocbach, Ladislav
2012-01-01
For many purposes it is desirable to have an easily understandable and accurate picture of the atomic states. This is especially true for the highly excited states which exhibit features not present in the well known states hydrogen-like orbitals with usual values of the quantum numbers. It could be expected that such visualizations are readily available. Unfortunately, that is not the case. We illustrate the problems by showing several less fortunate earlier presentations in some scientifically most valuable works, and show more suitable visualizations for those cases. The selected cases are not chosen to criticize the authors' approach. Rather, we have taken these very important papers to underline the need for serious work with graphical representations which this work attempts to be a part of. In this text we discuss the problems encountered when visualizing Rydberg states, review some existing presentations and propose guidelines for applications. The focus of this work are so called Stark states and coh...
Reshak, A.H., E-mail: maalidph@yahoo.co.uk [New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)
2015-11-05
We explored the influence of changing the pnicogens by substituting As by Sb on the optical properties of Ba{sub 2}Cd{sub 2}Pn{sub 3} (Pn = As and Sb). Calculation show that there exists subtle difference in the electronic structures when we substitute As by Sb, which lead to significant influence on the optical properties, taking into account the size and the electro-negativity differences between As and Sb atoms. The full potential method within the recently modified Becke-Johnson potential explore that the Ba{sub 2}Cd{sub 2}Pn{sub 3} (Pn = As and Sb) compounds are narrow band gap semiconductors of about 0.49 and 0.32 eV. The optical properties explore that these material have negative uniaxial anisotropy, negative birefringence and considerable anisotropy between the optical components in the polarization directions [100], [010] and [001] with respect to the crystal axis. Furthermore, the optical properties confirm that Ba{sub 2}Cd{sub 2}Sb{sub 3} possess a band gap which is smaller than that of Ba{sub 2}Cd{sub 2}As{sub 3}. The optical properties helps to get deep insight into the electronic structure. - Highlights: • The optical properties of Ba{sub 2}Cd{sub 2}Pn{sub 3} (Pn = As and Sb) were investigated. • The subtle difference in electronic structures influence the optical properties. • Ba{sub 2}Cd{sub 2}Pn{sub 3} (Pn = As and Sb) are narrow band gap semiconductors. • The investigated compounds exhibit negative uniaxial anisotropy and birefringence.
Giant cross section for molecular ion formation in ultracold Rydberg gases
Niederprüm, Thomas; Manthey, Torsten; Weber, Tobias M; Ott, Herwig
2015-01-01
We have studied the associative ionization of a Rydberg atom and a ground state atom in an ultracold Rydberg gas. The measured scattering cross section is three orders of magnitude larger than the geometrical size of the produced molecule. This giant enhancement of the reaction kinetics is due to an efficient directed mass transport which is mediated by the Rydberg electron. We also find that the total inelastic scattering cross section is given by the geometrical size of the Rydberg electron's wavefunction.
Giant cross section for molecular ion formation in ultracold Rydberg gases
Niederprüm, Thomas; Thomas, Oliver; Manthey, Torsten; Weber, Tobias M.; Ott, Herwig
2015-01-01
We have studied the associative ionization of a Rydberg atom and a ground state atom in an ultracold Rydberg gas. The measured scattering cross section is three orders of magnitude larger than the geometrical size of the produced molecule. This giant enhancement of the reaction kinetics is due to an efficient directed mass transport which is mediated by the Rydberg electron. We also find that the total inelastic scattering cross section is given by the geometrical size of the Rydberg electron...
Strongly perturbed Rydberg series originating from Kr II 4p45s ionic states
Full text:Dispersed fluorescence excitation spectra for KrII fluorescence transitions to the 4p4 5s4 P3/2,5/2 states were observed after excitation out of the KrI ground state with photons of energies between 28.4 eV and 28.7 eV and very narrow exciting-photon bandwidth of 1.7 meV. With this energy resolution it was possible to observe Rydberg series of doubly excited atomic states. The observed series were assigned to the states 4p4 5s(4P1/2)np and 4p45s(2P3/2)np ,based on calculations performed within theory taking into account interaction between many resonances and many continua. Calculated and measured cross sections are compared for the 4p - level (upper panel, ion yield) and for the 4p4 5s4P5/2 level (lower panel). An analysis of the computed photoionization (PI) cross sections shows that high - n members of Rydberg series are strongly perturbed by interaction with low - n ones of other series. In particular, the series shown are well pronounced because they borrow intensity from the low - n 4p4 5s(2D5/2)6p3/2 doublyexcited state. The above Rydberg series are predicted to be observable in photoelectron experiments, too. FIG. 1 shows, e.g., that members of the 4p4 5s(2P3/2)np series starting from n 14 could also be observed in the 4p4 5s4P1/2 observer channel at low photoelectron energies
Rydberg atoms in low-frequency fields : fundamental aspects and applications
Gürtler, Andreas Stefan
2003-01-01
In this thesis we investigate highly excited atoms, so-called Rydberg atoms, in oscillating fields with frequencies from the megahertz to the terahertz domain. The strong interaction of Rydberg atoms with external fields is used to establish a connection between the ionization of Rydberg atoms by ra
Lifetimes of ultra-long-range strontium Rydberg molecules
Camargo, F.; Whalen, J. D.; Ding, R.; Sadeghpour, H. R.; Yoshida, S.; Burgdorfer, J.; Dunning, F. B.; Killian, T. C.
2016-05-01
The lifetimes of the lower-lying vibrational states of ultralong-range strontium Rydberg molecules comprising one ground-state 5s2 1S0 atom and one Rydberg atom in the 5s 38s3S1 state are reported. The molecules are created in an ultracold gas held in an optical dipole trap and their numbers determined using field ionization, the product electrons being detected by a microchannel plate. The measurements show that, in marked contrast to earlier measurements involving rubidium Rydberg molecules, the lifetimes of the low-lying molecular vibrational states are very similar to those of the parent Rydberg atoms. This results because the strong p-wave resonance in low-energy electron-rubidium scattering, which strongly influences the rubidium molecular lifetimes, is not present for strontium. The absence of this resonance offers advantages for experiments involving strontium Rydberg atoms as impurities in quantum gases and for testing theories of molecular formation and decay. This research was supported by the AFOSR, NSF, the Robert A. Welch Foundation, the FWF (Austria), FWF-SFB049 NextLite. H.R.S. was supported by a Grant to ITAMP from the NSF.
Lifetimes of ultra-long-range strontium Rydberg molecules
Camargo, F; Ding, R; Sadeghpour, H R; Yoshida, S; Burgdörfer, J; Dunning, F B; Killian, T C
2015-01-01
The lifetimes of the lower-lying vibrational states of ultralong-range strontium Rydberg molecules comprising one ground-state 5s2 1S0 atom and one Rydberg atom in the 5s38s 3S1 state are reported. The molecules are created in an ultracold gas held in an optical dipole trap and their numbers determined using ?eld ionization, the product electrons being detected by a microchannel plate. The measurements show that, in marked contrast to earlier measurements involving rubidium Rydberg molecules, the lifetimes of the low-lying molecular vibrational states are very similar to those of the parent Rydberg atoms. This results because the strong p-wave resonance in low-energy electronrubidium scattering, which plays an important role in determining the molecular lifetimes, is not present for strontium. The absence of this resonance o?ers advantages for experiments involving strontium Rydberg atoms as impurities in quantum gases and for testing theories of molecular formation and decay.
Rydberg excitation of a Bose–Einstein condensate
We have performed two-photon excitation via the 62P3/2 state to the n = 50–80 S or D Rydberg state in Bose–Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to the cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was achieved when the fields were applied for only a short time, typically a few microseconds. Rydberg excitations of the Bose–Einstein condensates loaded into quasi-one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole–dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade. (paper)
Ionization photophysics and Rydberg spectroscopy of diacetylene
Schwell, Martin
2012-11-01
Photoionization of diacetylene was studied using synchrotron radiation over the range 8-24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron-photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IE ad=(10.17±0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE=(16.15±0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions C+ 4, C3H+, C+3 and C 4H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene in the 11-13 eV region were assigned to vibrational components of three new Rydberg series, R1(nsσg, n=4-11), R2(ndσg, n=4-7) and R3(ndδg, n=4-6) converging to the A2Πu state of the cation, and to a new series R01(nsσg, n=3) converging to the B\\' 2Σ+u state of the cation. The autoionization mechanisms and their consistence with specific selection rules are discussed. © 2012 Taylor and Francis.
Charge-induced optical bistability in thermal Rydberg vapor
Weller, Daniel; Rico, Andy; Löw, Robert; Kübler, Harald
2016-01-01
We investigate the phenomenon of optical bistability in a driven ensemble of Rydberg atoms. By performing two experiments with thermal vapors of rubidium and cesium, we are able to shed light onto the underlying interaction mechanisms causing such a non-linear behavior. Due to the different properties of these two atomic species, we conclude that the large polarizability of Rydberg states in combination with electric fields of spontaneously ionized Rydberg atoms is the relevant interaction mechanism. In the case of rubidium, we directly measure the electric field in a bistable situation via two-species spectroscopy. In cesium, we make use of the different sign of the polarizability for different l-states and the possibility of applying electric fields. Both these experiments allow us to rule out dipole-dipole interactions, and support our hypothesis of a charge-induced bistability.
Measurement of Holmium Rydberg series through MOT depletion spectroscopy
Hostetter, J; Lawler, J E; Saffman, M
2014-01-01
We report measurements of the absolute excitation frequencies of $^{165}$Ho $4f^{11}6sns$ and $4f^{11}6snd$ odd-parity Rydberg series. The states are detected through depletion of a magneto-optical trap via a two-photon excitation scheme. Measurements of 162 Rydberg levels in the range $n=40-101$ yield quantum defects well described by the Rydberg-Ritz formula. We observe a strong perturbation in the $ns$ series around $n=51$ due to an unidentified interloper at 48515.47(4) cm$^{-1}$. From the series convergence, we determine the first ionization potential $E_\\mathrm{IP}=48565.939(4)$ cm$^{-1}$, which is three orders of magnitude more accurate than previous work. This work represents the first time such spectroscopy has been done in Holmium and is an important step towards using Ho atoms for collective encoding of a quantum register.
Interaction-Enhanced Imaging of Rydberg P states
Gavryusev, Vladislav; Kekić, Armin; Zürn, Gerhard; Signoles, Adrien
2016-01-01
The Interaction Enhanced Imaging technique allows to detect the spatial distribution of strongly interacting impurities embedded within a gas of background atoms used as a contrast medium. Here we present a detailed study of this technique, applied to detect Rydberg $P$ states. We experimentally realize fast and efficient three-photon excitation of $P$ states, optimized according to the results of a theoretical effective two-level model. Few Rydberg $P$-state atoms, prepared in a small cloud with dimensions comparable to the blockade radius, are detected with a good sensitivity by averaging over 50 shots. The main aspects of the technique are described with a hard-sphere model, finding good agreement with experimental data. This work paves the way to a non-destructive optical detection of single Rydberg atoms with high spatial and temporal resolution.
Radio-frequency-modulated Rydberg states in a vapor cell
Miller, Stephanie A; Raithel, Georg
2016-01-01
We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60$S_{1/2}$ and 58$D_{5/2}$ Rydberg states with 50~MHz and 100~MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of $S$ and $D$ states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.
Towards Rydberg quantum optics in a hollow core fiber
Noaman, Mohammad; Langbecker, Maria; Windpassinger, Patrick
2016-05-01
Cold atoms inside hollow-core fibers present a promising candidate to study strongly coupled light-matter systems. Adding coherent quantum state control and the intriguing features of Rydberg atoms, i.e. long range dipolar interactions leading to a dipole blockade, to the system should allow for the generation of exotic polaritonic and photonic states. This talk will review the current status of our experimental setup where laser cooled Rubidium atoms are transported into a hollow-core fiber. We present the first measurements of Rydberg EIT in the dipole trap in front of the fiber and discuss the progress towards Rydberg physics in a quasi-one-dimensional geometry. This work is supported by FP7, Marie Curie ITN 317485, QTea.
Crystallization in Ising quantum magnets and Rydberg superatoms
Schauss, Peter
2016-05-01
Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. For quantum magnets, Ising models with power-law interactions are among the most elementary systems that support such phases. These models can be implemented by laser coupling ensembles of ultracold atoms to Rydberg states. In this talk, I will report on the experimental preparation of crystalline ground states of such spin systems. We observe a magnetization staircase as a function of the system size and show directly the emergence of crystalline states with vanishing susceptibility. Recent results connect these findings with the picture of Rydberg superatoms. We investigated their scalability and observed collective Rabi oscillations with the perspective of using Rydberg superatoms as collective qubits. Experiments performed at Max-Planck Institute of Quantum Optics, Garching, Germany.
Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2015-11-15
The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)
Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s2) and Sr(5s2) atoms
The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s2) and Sr(5s2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)
Non-equilibrium physics of Rydberg lattices in the presence of noise and dissipative processes
Abdussalam, Wildan
2016-01-01
We study the non-equilibrium dynamics of driven spin lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we discriminate between correlated and uncorrelated noise and explore their effect on the mean density of Rydberg states and the full counting statistics (FCS). We find that while the mean density is almost identical in both cases, the FCS differ considerably. The main method employed is the Langevin equation (LE) but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg l...
Implementation of Chiral Quantum Optics with Rydberg and Trapped-ion Setups
Vermersch, Benoît; Hauke, Philipp; Zoller, Peter
2016-01-01
We propose two setups for realizing a chiral quantum network, where two-level systems representing the nodes interact via directional emission into discrete waveguides, as introduced in Ref.~[T.\\ Ramos \\emph{et al.}, arXiv:1602.00926]. The first implementation realizes a spin waveguide via Rydberg states in a chain of atoms, whereas the second one realizes a phonon waveguide via the localized vibrations of a string of trapped ions. For both architectures, we show that strong chirality can be obtained by a proper design of synthetic gauge fields in the couplings from the nodes to the waveguide. In the Rydberg case, this is achieved via intrinsic spin-orbit coupling in the dipole-dipole interactions, while for the trapped ions it is obtained by engineered sideband transitions. We take long-range couplings into account that appear naturally in these implementations, discuss useful experimental parameters, and analyze potential error sources. Finally, we describe effects that can be observed in these implementati...
Non-Markovian dynamics in ultracold Rydberg aggregates
Genkin, M.; Schönleber, D. W.; Wüster, S.; Eisfeld, A.
2016-07-01
We propose a setup of an open quantum system in which the environment can be tuned such that either Markovian or non-Markovian system dynamics can be achieved. The implementation uses ultracold Rydberg atoms, relying on their strong long-range interactions. Our suggestion extends the features available for quantum simulators of molecular systems employing Rydberg aggregates and presents a new test bench for fundamental studies of the classification of system–environment interactions and the resulting system dynamics in open quantum systems.
Topological matter with collective encoding and Rydberg blockade
Nielsen, Anne E. B.; Mølmer, Klaus
2010-01-01
We propose to use a permutation symmetric sample of multilevel atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string-net condens......We propose to use a permutation symmetric sample of multilevel atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string...
Relativistic Multichannel Treatment of Ionic Rydberg States of Lanthanum
ZHANG Xin-Feng; JIA Feng-Dong; ZHONG Zhi-Ping; XUE Ping; XU Xiang-Yuan; YAN Jun
2007-01-01
Ionic Rydberg energy levels of lanthanum are calculated from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory. The present calculated results are in better agreement with the experimental measurements than the previous calculations [J. Phys. B 34 (2001)369] due to the consideration of dynamical polarizations. Moreover, in the experimental spectra achieved by a five-laser resonance excitation via the intermediate state 5d6d3 F2, a series of weak ionic Rydberg states and some of perturbing states are found and assigned in this work.
Ionization of Rydberg energy levels of ions at low temperature
The paper is aimed at finding the efficiency of radiation-collision ionization/recombination with Rydberg energy levels of ions in the wide range of density values both at high and low values of the electron temperature, as well as at studying dynamics of the processes given. The problem on evaluation of time distribution of populations at plasma constant parameters and initial δ-like level distribution of populations is solved. The mechanism of stage ionization of the Rydberg levels of ions in the dense plasma is established to be effective up to comparatively low temperatures, at which direct ionization by the p level is impossible
Predissociation and autoionization of triplet Rydberg states in molecular hydrogen
Dinu, L.; Picard, Y. J.; Van Der Zande, W. J.
2004-01-01
We present single-photon spectroscopy in molecular hydrogen starting from the metastable c(3)Pi(u)(-) state to a number of triplet nd-Rydberg states (v=0-4, n=12-20). Using fast beam spectroscopy both the autoionization channel and the predissociation channel are quantified, field free, as well as with small electric fields. Coupling with the i(3)Pi(g) state is assumed to be responsible for field-free predissociation of the v=0 Rydberg levels. The stronger observed predissociation channel of ...
Fermionic collective excitations in a lattice gas of Rydberg atoms
Olmos, B; González-Férez, R.; Lesanovsky, I.
2009-01-01
We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van-der-Waals interaction among the Rydberg sates, these many-body states are collective fermionic excitations. The first excited state is a spin-wave that extends over the entire lattice. We demonstrate that our system permits to study fermions in the presence of disorder although no external atomic motion takes place. We ...
Three-Body Interaction of Rydberg Slow-Light Polaritons
Jachymski, Krzysztof; Bienias, Przemysław; Büchler, Hans Peter
2016-07-01
We study a system of three photons in an atomic medium coupled to Rydberg states near the conditions of electromagnetically induced transparency. Based on the analytical analysis of the microscopic set of equations in the far-detuned regime, the effective three-body interaction for these Rydberg polaritons is derived. For slow light polaritons, we find a strong three-body repulsion with the remarkable property that three polaritons can become essentially noninteracting at short distances. This analysis allows us to derive the influence of the three-body repulsion on bound states and correlation functions of photons propagating through a one-dimensional atomic cloud.
Stark structure and field ionization characteristics of highly excited Rydberg atoms
Kishimoto, Yasuhiro
2002-03-01
The Stark structure and time evolution of highly excited 85Rb Rydberg states in a pulsed electric field have been studied experimentally as well as theoretically. The Rydberg states in 85Rb with the principal quantum number n ranging from 110 to 140 have been excited with the two step laser excitation scheme and field ionization spectra under the pulsed electric field were observed with the ionized electron detection. From the systematic measurements it was found that the in general there exist two peaks in the field ionization spectrum: the lower peak is rather broad and the field value of the peak does not depend on the excitation position in the manifold. The value of the higher peak field, on the other hand, increases with increasing bluer states in the manifold when the pulsed electric field is increased in the same direction with the initially applied static field. However when the pulsed field is increased in the reversed direction to the static field, the peak field value decreases with increasing bluer state excitations, showing the opposite behavior to the case in the same field-driving direction. In order to reveal the origin of these two peak-field values in the ionization process, theoretical calculations of the Stark structure and ionization rates in an electric field have been performed with a computational method based on the Hamiltonian diagonalization. From these calculations it was found that the excitation position dependence of the higher peaks observed in the field ionization is in good agreement with the predictions from the tunneling process. On the other hand the lower peak behavior is roughly explained from the autoionization-like process together with the effect of the blackbody-induced radiative transitions to the neighboring states from the orignally excited states. In due course of the above investigations, time evolution of the multi-level Rydberg system in a pulsed electric field was also studied to confirm the usefulness and
High Rydberg atoms: newcomers to the atomic physics scene
A description is given of high Rydberg atoms which have a greatly increased size due to their having been perturbed in certain ways. The production, detection, and research on these atoms are considered. The motivation for such studies, apart from their intrinsic interest, includes laser development, laser isotope separation, energy deposition in gases, plasma diagnostics, and radio astronomy
Engineered Rydberg Atom-Surface Interactions Using Metamaterials
Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathan; Shaffer, James
2016-05-01
We report on studies of Rydberg atom-surface interactions aimed at engineering Rydberg atom coupling to metamaterials. Rydberg atoms posses large electric dipole moments that can be strongly coupled to the tightly confined electromagnetic fields of surface phonon polariton (SPhP) modes of a properly constructed piezoelectric superlattice (PSL). Coupling of Rb87 Rydberg atoms, typically in microwave range, to real SPhP resonances on a periodically poled lithium niobate surface is studied theoretically for different periodic domain and surface orientations. Coupling constants, much larger than the dissipation of the atom-surface system, are calculated for atom-surface separations in the near field. This remarkable result opens up a simple way to design and conduct experiments to study the atom-surface interactions in the strong coupling regime which is usually hard to reach in other systems. The light-matter interaction described can be used for a quantum hybrid system that has potential applications for quantum photonic devices. Experimental studies of surfaces showing the efficacy of our calculations are also presented. This work is supported by AFOSR.
Control of spatial correlations between Rydberg excitations using rotary echo
Thaicharoen, N; Raithel, G
2016-01-01
We manipulate correlations between Rydberg excitations in cold atom samples using a rotary-echo technique. The correlations are due to interactions between the Rydberg atoms. In the rotary-echo excitation sequence, the phase of the excitation pulse is flipped at a selected time during the pulse. We measure the resultant change in the spatial pair correlation function of the excitations via direct position-sensitive atom imaging. For zero detuning of the lasers from the interaction-free Rydberg-excitation resonance, the pair-correlation value at the most likely nearest-neighbor Rydberg-atom distance is substantially enhanced when the phase is flipped at the middle of the excitation pulse. In this case, the rotary echo eliminates most uncorrelated (un-paired) atoms, leaving an abundance of correlated atom pairs at the end of the sequence. In off-resonant cases, a complementary behavior is observed. We further characterize the effect of the rotary-echo excitation sequence on the excitation-number statistics of t...
Lifetime Measurement for 6snp Rydberg States of Barium
SHEN Li; WANG Lei; YANG Hai-Feng; LIU Xiao-Jun; LIU Hong-Ping
2011-01-01
@@ We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states.This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence.The lifetimes determined with our method for barium Rydberg 6snp(n=37-59)series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J.Phys.B 14(1981)4489, 29(1996)655]on experiments.%We present a simple and efficient method for measuring the atomic lifetimes in order of tens of microseconds and demonstrate it in the lifetime determination of barium Rydberg states. This method extracts the lifetime information from the time-of-flight spectrum directly, which is much more efficient than other methods such as the time-delayed field ionization and the traditional laser induced fluorescence. The lifetimes determined with our method for barium Rydberg 6snp (n=37-59) series are well coincident with the values deduced from the absolute oscillator strengths of barium which were given in the literature [J. Phys. B 14 (1981) 4489, 29 (1996) 655] onexperiments.
Controlling Rydberg atom excitations in dense background gases
Liebisch, Tara Cubel; Engel, Felix; Nguyen, Huan; Balewski, Jonathan; Lochead, Graham; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Schmid, Thomas; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H
2016-01-01
We discuss the density shift and broadening of Rydberg spectra measured in cold, dense atom clouds in the context of Rydberg atom spectroscopy done at room temperature, dating back to the experiments of Amaldi and Segr\\`e in 1934. We discuss the theory first developed in 1934 by Fermi to model the mean-field density shift and subsequent developments of the theoretical understanding since then. In particular, we present a model whereby the density shift is calculated using a microscopic model in which the configurations of the perturber atoms within the Rydberg orbit are considered. We present spectroscopic measurements of a Rydberg atom, taken in a Bose-Einstein condensate (BEC) and thermal clouds with densities varying from $5\\times10^{14}\\textrm{cm}^{-3}$ to $9\\times10^{12}\\textrm{cm}^{-3}$. The density shift measured via the spectrum's center of gravity is compared with the mean-field energy shift expected for the effective atom cloud density determined via a time of flight image. Lastly, we present calcul...
Isotope shift measurement of autoionization Rydberg states of Sm
The observation and measurement of isotope shift of autoionization Rydberg states 8G1/2 of Sm was reported. The isotope shift of the first excited state of Sm was also measured. Results were compared with that in Ref. 5
Isotope shift measurement of autoionization Rydberg states of Sm
The observation and measurement of isotope shift of autoionization Rydberg states 8G1/2 of Sm was reported. The isotope shift of the first excited state of Sm was also measured. Results were compared with that in Ref. 5. copyright 1997 American Institute of Physics
Time-resolved FT spectra of neon Rydberg states
Kubelík, Petr; Pastorek, Adam; Civiš, Svatopluk
Bologna : University of Bologna, 2014. s. 281-281. [Bologna2014. International Conference on High Resolution Molecular Spectroscopy /23./. 02.09.2014-06.09.2014, Bologna] R&D Projects: GA MŠk LD14115 Grant ostatní: European Commission(XE) CM1104 Institutional support: RVO:61388955 Keywords : FT spectra * Rydberg state Subject RIV: CF - Physical ; Theoretical Chemistry
Multiple time scales in the microwave ionization of Rydberg atoms
Buchleitner, A.; Delande, D.; Zakrzewski, J.; Mantegna, R.N.; Arndt, M.; Walther, H. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)]|[Laboratoire Kastler Brossel, 4 place Jussieu, Tour 12, 1 etage, F-75252 Paris Cedex 05 (France)]|[Instytut Fizyki Uniwersytetu Jagiellonskiego, ul. Reymonta 4, PL-30-059 Krakow (Poland)]|[Dipartimento di Energetica ed Applicazioni di Fisica, Universita di Palermo, Viale delle Scienze, I-90128 Palermo (Italy)]|[Sektion Physik der Universitaet Muenchen, Am Coulombwall 1, D-85748 Garching (Germany)
1995-11-20
We investigate the time dependence of the ionization probability of Rydberg atoms driven by microwave fields, both numerically and experimentally. Our exact quantum results provide evidence for an algebraic decay law on suitably chosen time scales, a phenomenon that is considered to be the signature of nonhyperbolic scattering in unbounded classically chaotic motion. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.
Seiler, Ch; Hogan, S D; Schmutz, H; Agner, J A; Merkt, F
2011-02-18
A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90°, decelerated to zero velocity in less than 25 μs, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed. PMID:21405512
Woutersen, S.; Milan,, M; Lange; Buma, W.J.
1997-01-01
Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the 1D excited state, prepared by in situ photodissociation of H2S. The observed states derive from the (2Do)5p and (2Po)4p configurations. For the (2Do)5p 3F and (2Po)4p 3D triplets, extensive photoele...
Woutersen, S.; Milan, J. B.; Buma, W. J.; de Lange, C. A.
1997-05-01
Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2+1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the 1D excited state, prepared by in situ photodissociation of H2S. The observed states derive from the (2Do)5p and (2Po)4p configurations. For the (2Do)5p 3F and (2Po)4p 3D triplets, extensive photoelectron spectroscopic studies enable a detailed comparison of the autoionization and photoionization rates of these states.
Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18
Dong Hui-Jie; Wang Ting; Li Chang-Yong; Zhao Jian-Ming; Zhang Lin-Jie
2013-01-01
The Stark structures in a cesium atom around n =18 are numerically calculated.The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot,and those with a large |m| shift downward a little within 1100 V/cm.All components of P states shift downward.Experimental work has been performed in ultracold atomic cesium.Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field,and Stark spectra with 丨m丨=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time.The observed spectra are analyzed in detail.The relative transition probability is calculated.The experimental results are in good agreement with our numerical computation.
A theoretical investigation of valence and Rydberg electronic states of acrolein
The main features of the ultraviolet spectrum of acrolein have been studied by a multireference perturbative treatment and by a time dependent density functional approach. The valence and Rydberg transition energies have been calculated and the assignment of the experimental bands has been clarified. The different relaxation trends of the three lowest singlet and triplet excited states have been analyzed by unconstrained geometry optimizations. This has allowed, in particular, the characterization of a twisted 3(ππ*) state, which is crucial for the interesting photophysics and photochemistry of the acrolein molecule and, more generally, of the α,β-enones. Solvatochromic shifts in aqueous solution have been investigated using a combined discrete/continuum approach based on the so called polarizable continuum model. The experimental trends are well reproduced by this approach and a closer degeneracy in the triplet manifold has been detected in solution with respect to gas phase
Wigner-crystallization of Rydberg-Polaritons in the lowest Landau level
Grusdt, Fabian; Fleischhauer, Michael
2012-02-01
For electrons and dipolar fermions in the lowest Landau level the critical filling for Wigner-crystallization was shown to be νc 1/7 [Baranov et. al., Phys. Rev. Lett. 100 (2008)]. We investigate the fractional quantum Hall effect for Van-der-Waals interacting bosons as realized e.g. by stationary-light polaritons in a Rydberg gas and find no transition to the Wigner crystal (WC). Our numerical studies suggest a crystalline groundstate below ν=1/6 which is expected to be described by a correlated WC of composite quasiparticles. Taking into account a cut-off in the Van-der-Waals interaction we find the WC to be favorable for large cut-offs. Numerical results for different geometries are presented and realistic implementations are discussed.
Seiler, Ch; Agner, J. A.; Pillet, P.; Merkt, F.
2016-05-01
of the magnetic quantum number m than the optically prepared Rydberg–Stark states, and this observation led to the conclusion that a much more efficient mechanism than a purely radiative one must exist to induce transitions to Rydberg–Stark states of higher | m| values. While searching for such a mechanism, we discovered that resonant dipole–dipole collisions between Rydberg atoms in the trap represent an extremely efficient way of inducing transitions to states of higher | m| values. The efficiency of the mechanism is a consequence of the almost perfectly linear nature of the Stark effect at the moderate field strengths used to trap the atoms, which permits cascades of transitions between entire networks of near-degenerate Rydberg-atom-pair states. To include such cascades of resonant dipole–dipole transitions in the numerical simulations, we have generalized the two-state Förster-type collision model used to describe resonant collisions in ultracold Rydberg gases to a multi-state situation. It is only when considering the combined effects of collisional and radiative processes that the observed decay of the population of Rydberg atoms in the trap could be satisfactorily reproduced for all n values studied experimentally.
Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song
2011-11-01
We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.
Two-dimensional crystals of Rydberg excitations in a resonantly driven lattice gas
Petrosyan, David
2013-01-01
The competition between resonant optical excitation of Rydberg states of atoms and their strong, long-range van der Waals interaction results in spatial ordering of Rydberg excitations in a two-dimensional lattice gas, as observed in a recent experiment of Schau{\\ss} et al. [Nature 491, 87 (2012)]. Here we use semiclassical Monte Carlo simulations to obtain stationary states for hundreds of atoms in finite-size lattices. We show the formation of regular spatial structures of Rydberg excitatio...
Rydberg dressing of a one-dimensional Bose-Einstein condensate
Płodzień, Marcin; van Druten, N J; Kokkelmans, Servaas
2016-01-01
We study the influence of Rydberg dressed interactions in a one-dimensional (1D) Bose-Einstein Condensate (BEC). We show that 1D is advantageous over 3D for observing BEC Rydberg dressing. The effects of dressing are studied by investigating collective BEC dynamics after a rapid switch-off of the Rydberg dressing interaction. The results can be interpreted as an effective modification of the $s$-wave scattering length. We include this modification in an analytical model for the 1D BEC, and compare it to numerical calculations of Rydberg dressing under realistic experimental conditions.
Velocity-selective electromagnetically-induced-transparency measurements of potassium Rydberg states
Xu, Wenchao; DeMarco, Brian
2016-01-01
We demonstrate a velocity selection scheme that mitigates suppression of electromagnetically induced transparency (EIT) by Doppler shifts for coupling wavelengths larger than the probe wavelength. An optical pumping beam counterpropagating with the EIT probe beam transfers atoms between hyperfine states in a velocity-selective fashion. Measurement of the transmitted probe beam synchronous with chopping of the optical pumping beam enables a Doppler-free EIT signal to be detected. Transition frequencies between 5 P1 /2 and n S1 /2 states for n =26 , 27, and 28 in 39K are obtained via EIT spectroscopy in a heated vapor cell with a probe beam stabilized to the 4 S1 /2→5 P1 /2 transition. Using previous high-resolution measurements of the 4 S1 /2→n S1 /2 transitions, we make a determination of the absolute frequency of the 4 S1 /2→5 P1 /2 transition. Our measurement is shifted by 560 MHz from the currently accepted value with a twofold improvement in uncertainty. These measurements will enable novel experiments with Rydberg-dressed ultracold Fermi gases composed of 40K atoms.
Alignment of high Rydberg states in hydrogen
Berry, H.G.; DeHaes, J.C.; Neek, D.K.; Somerville, L.P.
1984-01-01
We have measured the light yields and polarizations of the light emitted from several Balmer transitions in atomic hydrogen following beam foil excitation of protons at energies of 50 to 150 keV. The polarizations have been measured as a function of distance downbeam from the exciter foil for several transitions. The measurements indicate a very strong initial alignment which is then perturbed by surface fields out to several mm from the surface. 8 references, 7 figures.
Intrinsic Optical Bistability in a Strongly-Driven Rydberg Ensemble
de Melo, Natalia R; Sibalic, Nikola; Kondo, Jorge M; Adams, Charles S; Weatherill, Kevin J
2016-01-01
We observe and characterize intrinsic optical bistability in a dilute Rydberg vapor. The bistability is characterized by sharp jumps between states of low and high Rydberg occupancy with jump up and down positions displaying hysteresis depending on the direction in which the control parameter is changed. We find that the shift in frequency of the jump point scales with the fourth power of the principal quantum number. Also, the width of the hysteresis window increases with increasing principal quantum number, before reaching a peak and then closing again. The experimental results are consistent with predictions from a simple theoretical model based on semiclassical Maxwell-Bloch equations including the effect of broadening and frequency shifts. These results provide insight to the dynamics of driven dissipative systems.
Single-photon absorber based on strongly interacting Rydberg atoms
Tresp, Christoph; Mirgorodskiy, Ivan; Gorniaczyk, Hannes; Paris-Mandoki, Asaf; Hofferberth, Sebastian
2016-01-01
Removing exactly one photon from an arbitrary input pulse is an elementary operation in quantum optics and enables applications in quantum information processing and quantum simulation. Here we demonstrate a deterministic single-photon absorber based on the saturation of an optically thick free-space medium by a single photon due to Rydberg blockade. Single-photon subtraction adds a new component to the Rydberg quantum optics toolbox, which already contains photonic logic building-blocks such as single-photon sources, switches, transistors, and conditional $\\pi$-phase shifts. Our approach is scalable to multiple cascaded absorbers, essential for preparation of non-classical light states for quantum information and metrology applications, and, in combination with the single-photon transistor, high-fidelity number-resolved photon detection.
Few-body quantum physics with strongly interacting Rydberg polaritons
Bienias, Przemyslaw
2016-01-01
We present an extension of our recent paper [Bienias et al., Phys. Rev. A 90, 053804 (2014)] in which we demonstrated the scattering properties and bound-state structure of two Rydberg polaritons, as well as the derivation of the effective low-energy many-body Hamiltonian. Here, we derive a microscopic Hamiltonian describing the propagation of Rydberg slow light polaritons in one dimension. We describe possible decoherence processes within a Master equation approach, and derive equations of motion in a Schroedinger picture by using an effective non-Hermitian Hamiltonian. We illustrate diagrammatic methods on two examples: First, we show the solution for a single polariton in an external potential by exact summation of Feynman diagrams. Secondly, we solve the two body problem in a weakly interacting regime exactly.
Fermionic collective excitations in a lattice gas of Rydberg atoms
Olmos, B; Lesanovsky, I
2009-01-01
We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van-der-Waals interaction among the Rydberg sates, these many-body states are collective fermionic excitations. The first excited state is a spin-wave that extends over the entire lattice. We demonstrate that our system permits to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.
Autoionization rate constants of zero electron kinetic energy Rydberg states
Highlights: ► Rovibrational autoionization rate constants for diatomic molecules. ► Density matrix formulation based on the model of IBOA. ► Quantum number and energy dependences are studied. - Abstract: We have calculated the vibrational and rotational autoionization rate constants for diatomic molecules H2, N2, and HCl in high Rydberg states by employing the density matrix formulation with the inverse Born–Oppenheimer approximation basis set. The purpose is to simulate the main radiationless processes occurring in zero electron kinetic energy (ZEKE) spectroscopy. The quantum numbers and the energy dependences of the calculated autoionization rate constants are represented as the scaling laws via nonlinear regression. These data provide a suitable starting point for quantitative study of the intricate dynamics involved in ZEKE Rydberg states.
L\\'evy statistics of interacting Rydberg gases
Vogt, Thibault; Thiery, Alexandre; Li, Wenhui
2016-01-01
A statistical analysis of the laser excitation of cold and randomly distributed atoms to Rydberg states is developed. We first demonstrate with a hard ball model that the distribution of energy level shifts in an interacting gas obeys L\\'evy statistics, in any dimension $d$ and for any interaction $-C_p/R^p$ under the condition $d/p<1$. This result is confirmed with a Monte Carlo rate equations simulation of the actual laser excitation in the particular case $p=6$ and $d=3$. With this finding, we develop a statistical approach for the modeling of probe light transmission through a cold atom gas driven under conditions of electromagnetically induced transparency involving a Rydberg state. The simulated results are in good agreement with experiment.
Rydberg-Stark deceleration of atoms and molecules
Hogan, Stephen D
2016-01-01
The large electric dipole moments associated with highly excited Rydberg states of atoms and molecules make gas-phase samples in these states very well suited to deceleration and trapping using inhomogeneous electric fields. The methods of Rydberg-Stark deceleration with which this can be achieved are reviewed here. Using these techniques, the longitudinal motion of beams of atoms and molecules moving at speeds as high as 2500~m/s have been manipulated, with changes in kinetic energy of up to $|\\Delta E_{\\mathrm{kin}}|=1.3\\times10^{-20}$~J ($|\\Delta E_{\\mathrm{kin}}|/e=80$~meV or $|\\Delta E_{\\mathrm{kin}}|/hc=650$~cm$^{-1}$) achieved, while decelerated and trapped samples with number densities of $10^6$--$10^7$~cm$^{-3}$ and translational temperatures of $\\sim150$~mK have been prepared. Applications of these samples in areas of research at the interface between physics and physical chemistry are discussed.
Spectroscopy and Stark-effect of Rydberg states in Ca and Sr in an atomic beam experiment
Rydberg states of Calcium and Strontium were excited by laser radiation in an atomic beam experiment. Such spectroscopy of the Rydberg series could be done in both elements and also the Stark effect was examined in Strontium. (BEF)
Femtosecond-pulse-train ionization of Rydberg wave packets
Simonsen, Sigrid Ina; Sørngård, Stian Astad; Førre, Morten; Hansen, Jan Petter
2012-01-01
We calculate, based on first-order perturbation theory, the total and differential ionization probabilities from a dynamic periodic Rydberg wave packet of a given n-shell exposed to a train of femtosecond laser pulses. The total probability is shown to depend crucially on the laser repetition rate: For certain frequencies the ionization probability vanishes, while for others it becomes very large. The origin of this effect is the strong dependence of the ionization probability on ...
Seeded excitation avalanches in off-resonantly driven Rydberg gases
Simonelli, Cristiano; Valado, Maria Martinez; Masella, Guido; Asteria, Luca; Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver
2016-01-01
We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical ...
Generating non-Gaussian states using collisions between Rydberg polaritons
Stanojevic, Jovica; Parigi, Valentina; Bimbard, Erwan; Ourjoumtsev, Alexei; Pillet, Pierre; Grangier, Philippe
2012-01-01
We investigate theoretically the deterministic generation of quantum states with negative Wigner functions, by using giant non-linearities due to collisional interactions between Rydberg polaritons. The state resulting from the polariton interactions may be transferred with high fidelity into a photonic state, which can be analyzed using homodyne detection followed by quantum tomography. Besides generating highly non-classical states of the light, this method can also provide a very sensitive...
Spontaneous emission of non-dispersive Rydberg wave packets
Delande, Dominique; Zakrzewski, Jakub
1998-01-01
Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the "harmonic approximation", i.e. when the wave p...
Rydberg phases of Hydrogen and low energy nuclear reactions
Olafsson, Sveinn; Holmlid, Leif
2016-03-01
For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.
Phases, collective modes, and nonequilibrium dynamics of dissipative Rydberg atoms
Ray, S.; Sinha, S.; Sengupta, K.
2016-03-01
We use a density matrix formalism to study the equilibrium phases and nonequilibrium dynamics of a system of dissipative Rydberg atoms in an optical lattice within mean-field theory. We provide equations for the fixed points of the density matrix evolution for atoms with infinite on-site repulsion and analyze these equations to obtain their Mott-insulator-superfluid (MI-SF) phase boundary. A stability analysis around these fixed points provides us with the excitation spectrum of the atoms both in the MI and SF phases. We study the nature of the MI-SF critical point in the presence of finite dissipation of Rydberg excitations, discuss the fate of the superfluid order parameter of the atoms in the presence of such dissipation in the weak-coupling limit using a coherent state representation of the density matrix, and extend our analysis to Rydberg atoms with finite on-site interaction via numerical solution of the density matrix equations. Finally, we vary the boson (atom) hopping parameter J and the dissipation parameter Γ according to a linear ramp protocol. We study the evolution of entropy of the system following such a ramp and show that the deviation of the entropy from its steady-state value for the latter protocol exhibits power-law behavior as a function of the ramp time. We discuss experiments that can test our theory.
Photoionization of Rydberg hydrogen atom in a magnetic field
Highlights: • The ionization of Rydberg hydrogen atom in a magnetic field has been studied. • Oscillatory structures appear in the electron probability density distributions. • This study can guide the experimental research on the photoionization microscopy. - Abstract: The ionization of Rydberg hydrogen atom in a magnetic field has been studied on the basis of a semiclassical analysis of photoionization microscopy. The photoionization microscopy interference patterns of the photoelectron probability density distribution on a given detector plane are calculated at different scaled energies. We find that due to the interference effect of different types of electron trajectories arrived at a given point on the detector plane, oscillatory structures appear in the electron probability density distributions. The oscillatory structure of the interference pattern, which contains the spatial component of the electronic wave function, evolves sensitively on the scaled energy, through which we gain a deep understanding on the probability density distribution of the electron wave function. This study provides some reference values for the future experiment research on the photoionization microscopy of the Rydberg atom in the presence of magnetic field
Generation of tunable coherent far-infrared radiation using atomic Rydberg states
A source of tunable far-infrared radiation has been constructed. The system has been operated at 91.6 cm-1 with a demonstrated tunability of .63 cm-1. The system is based on a Rydberg state transition in optically pumped potassium vapor. The transition energy is tuned by the application of an electric field to the excited vapor. The transition wavelength and the shifted wavelength were detected and measured by the use of a Michelson interferometer and a liquid helium cooled Ga:Ge bolometer and the data was reduced using Fast Fourier transform techniques. Extensive spectroscopy was done on the potassium vapor to elucidate the depopulation paths and rates of the excited levels. Both theoretical and experimental results are presented to support the conclusions of the research effort. Additionally, possible alternative approaches to the population of the excited state are explored and recommendations are made for the future development of this source as well as the potential uses of it in molecular spectroscopy
Arakelyan, Ilya
In this dissertation we report the results of two experimental projects with laser-cooled rubidium atoms: I. Application of Bessel beams for atom optics, and II. Spectroscopic measurements of Rydberg blockade effect. The first part of the thesis is devoted to the development of new elements of atom optics based on blue-detuned high-order Bessel beams. Properties of a 4thorder Bessel beam as an atomic guide were investigated for various parameters of the hollow beam, such as the detuning from an atomic resonance, size and the order of the Bessel beam. We extended its application to create more complicated interferometer-type structures by demonstrating a tunnel lock, a novel device that can split an atomic cloud, transport it, delay, and switch its propagation direction between two guides. We reported a first-time demonstration of an atomic beam switch based on the combination of two crossed Bessel beams. We achieved the 30% efficiency of the switch limited by the geometrical overlap between the cloud and the intersection volume of the two tunnels, and investigate the heating processes induced by the switch. We also showed other applications of crossed Bessel beams, such as a 3-D optical trap for atoms confined in the intersection volume of two hollow beams and a splitter of the atomic density. The second part of this dissertation is devoted to the spectroscopic measurements of the Rydberg blockade effect, a conditional suppression of Rydberg excitations depending on the state of a control atom. We assembled a narrow-linewidth, tunable, frequency stabilized laser system at 480 nm to excite laser-cooled rubidium atoms to Rydberg states with a high principal quantum number n ˜ 50 through a two-photon transition. We applied the laser system to observe the Autler-Townes splitting of the intermediate 5p3/2 state and used the broadening of the resonance features to investigate the enhancement of Rydberg-Rydberg interactions in the presence of an external electric field.
Stretching and bending dynamics in triatomic ultralong-range Rydberg molecules
Fey, Christian; Schmelcher, Peter
2016-01-01
We investigate polyatomic ultralong-range Rydberg molecules consisting of three ground state atoms bound to a Rydberg atom via $s$- and $p$-wave interactions. By employing the finite basis set representation of the unperturbed Rydberg electron Green's function we reduce the computational effort to solve the electronic problem substantially. This method is subsequently applied to determine the potential energy surfaces of triatomic systems in electronic $s$- and $p$-Rydberg states. Their molecular geometry and resulting vibrational structure are analyzed within an adiabatic approach that separates the vibrational bending and stretching dynamics. This procedure yields information on the radial and angular arrangement of the nuclei and indicates in particular that kinetic couplings between bending and stretching modes induce a linear structure in triatomic $l=0$ ultralong-range Rydberg molecules.
Coincidence spectroscopy of high-lying Rydberg states produced in strong laser fields
Larimian, Seyedreza; Lemell, Christoph; Yoshida, Shuhei; Nagele, Stefan; Maurer, Raffael; Baltuška, Andrius; Burgdörfer, Joachim; Kitzler, Markus; Xie, Xinhua
2016-01-01
We report on the measurement of electron emission after the interaction of strong laser pulses with atoms and molecules. These electrons originate from high-lying Rydberg states with quantum numbers up to $n \\lesssim 120$ formed by frustrated field ionization. Simulations show that both tunneling ionization by a weak dc field and photoionization by the black-body radiation contribute to delayed electron emission on the nano- to microsecond scale. We measured ionization rates from these Rydberg states by coincidence spectroscopy. Further, the dependence of the Rydberg-state production on the ellipticity of the driving laser field proves that such high-lying Rydberg states are populated through electron recapture. The present experiment provides detailed quantitative information on Rydberg production by frustrated field ionization.
Phase-Imprinting of Bose-Einstein Condensates with Rydberg Impurities.
Mukherjee, Rick; Ates, Cenap; Li, Weibin; Wüster, Sebastian
2015-07-24
We show how the phase profile of Bose-Einstein condensates can be engineered through its interaction with localized Rydberg excitations. The interaction is made controllable and long range by off-resonantly coupling the condensate to another Rydberg state with laser light. Our technique allows the mapping of entanglement generated in systems of few strongly interacting Rydberg atoms onto much larger atom clouds in hybrid setups. As an example we discuss the creation of a spatial mesoscopic superposition state from a bright soliton. Additionally, the phase imprinted onto the condensate using the Rydberg excitations is a diagnostic tool for the latter. For example, a condensate time-of-flight image would permit reconstructing the pattern of an embedded Rydberg crystal. PMID:26252669
Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field
Wang De-Hua
2011-01-01
The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields,where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields.
Qian, Jing
2016-01-01
We investigate the collective excitation effect in a scheme where three identical Rydberg atoms are arranged in an equilateral triangular lattice. By using a static electric field polarizing the atomic dipoles, the dipole-dipole interactions between two Rydberg atoms are essentially anisotropic and can even disappear in the several special resonance cases. For that fact, we observe collectively enhanced excitation probability of single Rydberg atom in resonant areas in the case of strong blockade, and that of double or triple Rydberg atoms in the case of partial blockade. To give more evidences for this collective excitation enhancement, we study the two-body quantum correlation between three Rydberg atoms, as well as the dependence of the blockade radius on the length of triangle sides, which present a good agreement with the excitation properties.
Rydberg-Blockade Effects in Autler-Townes Spectra of Ultracold Strontium
DeSalvo, B J; Gaul, C; Pohl, T; Yoshida, S; Burgdörfer, J; Hazzard, K R A; Dunning, F B; Killian, T C
2015-01-01
We present a combined experimental and theoretical study of the effects of Rydberg interactions on Autler-Townes spectra of ultracold gases of atomic strontium. Realizing two-photon Rydberg excitation via a long-lived triplet state allows us to probe the thus far unexplored regime where Rydberg state decay presents the dominant decoherence mechanism. The effects of Rydberg interactions are observed in shifts, asymmetries, and broadening of the measured atom-loss spectra. The experiment is analyzed within a one-body density matrix approach, accounting for interaction-induced level shifts and dephasing through nonlinear terms that approximately incorporate correlations due to the Rydberg blockade. This description yields good agreement with our experimental observations for short excitation times. For longer excitation times, the loss spectrum is altered qualitatively, suggesting additional dephasing mechanisms beyond the standard blockade mechanism based on pure van der Waals interactions.
Collisional ionization of selectively excited helium atoms in the intermediate Rydberg states n1P (n = 14, 15, or 16) is studied in a crossed beam machine. An important He+ ion signal is detected for two types of target: (1) polar molecules (NH3, SO2, C3H60) where MJ + He(n1p) yields M(J') + He + e-; and (2) molecules with great electronic affinity (SF6, NO2) where M + He(n1P) yields M- + He+. For each of these processes, the variation of the collision as a function of kinetic energy, and the absolute value of the ionization cross section in the thermal domain (200 to 500 MeV) are measured. The results cannot be interpreted with the free electron model, which reduces the interactions in the process studied to only the Rydberg electron-molecule interaction, which is treated by bipolar Born approximation. This model predicts: no ionization of Rydberg atoms near n=14 for system (1), whereas large cross sections, attributed to molecular relaxation transitions of several quanta of rotational energy are measured; and a v-1r velocity dependence of the cross section, whereas different behavior is observed experimentally (for (1) a v-2r monotone decrease, for (2) a curve showing a maximum)
Schmidt-May, Alice F; Grütter, Monika; Neugebohren, Jannis; Kitsopoulos, T N; Wodtke, Alec M; Harding, Dan J
2016-07-14
We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states. PMID:27073931
Woutersen, S.; Milan, J. B.; Buma, W. J.; de Lange, C. A.
1996-12-01
A (2+1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy study of the sulfur atom was performed in the one-photon energy region between 260 and 240 nm. Some 20 previously unobserved even-parity Rydberg states of the sulfur atom are reported, which were accessed by two-photon transitions from the 3P ground state of the atom, prepared by in situ photodissociation of H2S. The (4So)np 3P series could be followed up to n=25. This series is perturbed around n=7 by an interloping Rydberg state converging to the first excited ionic limit 2Do. A two-channel quantum defect theory analysis was performed in order to estimate the composition of the wave functions of the perturbed series members, which is compared with the ionic state branching ratios obtained from photoelectron spectra. This analysis, moreover, enabled the determination of the ionization energy of the lowest ionic state 4So with an improved accuracy as compared to the previously reported value.
Seeded excitation avalanches in off-resonantly driven Rydberg gases
Simonelli, Cristiano; Masella, Guido; Asteria, Luca; Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver
2016-01-01
We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.
Seeded excitation avalanches in off-resonantly driven Rydberg gases
Simonelli, C.; Valado, M. M.; Masella, G.; Asteria, L.; Arimondo, E.; Ciampini, D.; Morsch, O.
2016-08-01
We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.
The kicked Rydberg atom: Regular and stochastic motion
We have investigated the dynamics of a three-dimensional classical Rydberg atom driven by a sequence of pulses. Both the deterministic system with periodic pulses and the closely related ''noisy'' system with random pulses have been studied in parallel. The Lyapunov exponent is calculated as a function of pulse height and the angular momentum of the initial state. We find differences between noisy and deterministic perturbations to be most pronounced for small pulse heights. Low angular momentum orbits show enhanced diffusion in agreement with recent experimental data for ion-solid interaction. 22 refs., 6 figs
Optimal control for Rydberg quantum technology building blocks
Müller, Matthias M.; Pichler, Thomas; Montangero, Simone; Calarco, Tommaso
2016-04-01
We consider a platform for quantum technology based on Rydberg atoms in optical lattices where each atom encodes one qubit of information and external lasers can manipulate their state. We demonstrate how optimal control theory enables the functioning of two specific building blocks on this platform: We engineer an optimal protocol to perform a two-qubit phase gate and to transfer the information within the lattice among specific sites. These two elementary operations allow to design very general operations like storage of atoms and entanglement purification as, for example, needed for quantum repeaters.
Control of multiple excited Rydberg states around segmented carbon nanotubes
Schmelcher, Peter; Sadeghpour, Hossein; Knoerzer, Johannes; Fey, Christian
2016-05-01
Electronic image Rydberg states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored long-range interacting quantum systems.
Annulled van der Waals interaction and nanosecond Rydberg quantum gates
Shi, Xiao-Feng; Kennedy, T. A. B.
2016-01-01
A pair of neutral atoms separated by several microns and prepared in identical s-states of large principal quantum number experience a van der Waals interaction. If microwave fields are used to generate a superposition of s-states with different principal quantum numbers, a null point may be found at which a specific superposition state experiences no van der Waals interaction. An application of this novel Rydberg state in a quantum controlled-Z gate is proposed, which takes advantage of GHz ...
Transporting Rydberg Electron Wave Packets with Chirped Trains of Pulses
A protocol for steering Rydberg electrons towards targeted final states is realized with the aid of a chirped train of half-cycle pulses (HCPs). Its novel capabilities are demonstrated experimentally by transporting potassium atoms excited to the lowest-lying quasi-one-dimensional states in the ni=350 Stark manifold to a narrow range of much higher-n states. We demonstrate that this coherent state transfer is, to a high degree, reversible. The protocol allows for remarkable selectivity and is highly efficient, with typically over 80% of the parent atoms surviving the HCP sequence
Rydberg-Stark deceleration of atoms and molecules
Hogan, Stephen D. [University College London, Department of Physics and Astronomy, London (United Kingdom)
2016-12-15
The large electric dipole moments associated with highly excited Rydberg states of atoms and molecules make gas-phase samples in these states very well suited to deceleration and trapping using inhomogeneous electric fields. The methods of Rydberg-Stark deceleration with which this can be achieved are reviewed here. Using these techniques, the longitudinal motion of beams of atoms and molecules moving at speeds as high as 2500 m/s have been manipulated, with changes in kinetic energy of up to vertical stroke ΔE{sub kin} vertical stroke = 1.3 x 10{sup -20} J (vertical stroke ΔE{sub kin} vertical stroke /e = 80 meV or vertical stroke ΔE{sub kin} vertical stroke /hc = 650 cm{sup -1}) achieved, while decelerated and trapped samples with number densities of 10{sup 6}-10{sup 7} cm{sup -3} and translational temperatures of ∝150 mK have been prepared. Applications of these samples in areas of research at the interface between physics and physical chemistry are discussed. (orig.)
Multichannel quantum defect theory of strontium bound Rydberg states
Using the reactance matrix approach, we systematically develop new multichannel quantum defect theory (MQDT) models for the singlet and triplet S, P, D and F states of strontium below the first ionization limit, based on improved energy level measurements. The new models reveal additional insights into the character of doubly excited perturber states, and the improved energy level measurements for certain series allow fine structure to be resolved for those series’ perturbers. Comparison between the predictions of the new models and those of previous empirical and ab initio studies reveals good agreement with most series; however, some discrepancies are highlighted. Using the MQDT wave functions derived from our models we calculate other observables such as Landé gJ-factors and radiative lifetimes. The analysis reveals the impact of perturbers on the Rydberg state properties of divalent atoms, highlighting the importance of including two-electron effects in the calculations of these properties. The work enables future investigations of properties such as Stark maps and long-range interactions of Rydberg states of strontium. (paper)
Rydberg-Stark states in oscillating electric fields
Zhelyazkova, V
2015-01-01
Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number $n=52$ and $53$ were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20~MHz, amplitudes of up to 120~mV/cm, and dc offsets of up to 4.4~V/cm. In weak fields the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where $n-$mixing and ...
Controlled long-range interactions between Rydberg atoms and ions
Secker, T.; Gerritsma, R.; Glaetzle, A. W.; Negretti, A.
2016-07-01
We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increase the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground-state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion-trap quantum simulation. The proposed scheme comes with attractive features as it maps the benefits of the trapped-ion quantum system onto the atomic one without obviously impeding its intrinsic scalability. No ground-state cooling of the ion or atom is required and the setup allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the ion. Our findings are of interest for developing hybrid quantum information platforms and for implementing quantum simulations of solid-state physics.
Rydberg-Stark deceleration of atoms and molecules
The large electric dipole moments associated with highly excited Rydberg states of atoms and molecules make gas-phase samples in these states very well suited to deceleration and trapping using inhomogeneous electric fields. The methods of Rydberg-Stark deceleration with which this can be achieved are reviewed here. Using these techniques, the longitudinal motion of beams of atoms and molecules moving at speeds as high as 2500 m/s have been manipulated, with changes in kinetic energy of up to vertical stroke ΔEkin vertical stroke = 1.3 x 10-20 J (vertical stroke ΔEkin vertical stroke /e = 80 meV or vertical stroke ΔEkin vertical stroke /hc = 650 cm-1) achieved, while decelerated and trapped samples with number densities of 106-107 cm-3 and translational temperatures of ∝150 mK have been prepared. Applications of these samples in areas of research at the interface between physics and physical chemistry are discussed. (orig.)
Controlled long-range interactions between Rydberg atoms and ions
Secker, Thomas; Glaetzle, Alexander W; Negretti, Antonio
2016-01-01
We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion trap quantum simulation. The proposed scheme comes with attractive features as it maps the benefits of the trapped ion quantum system onto the atomic one without obviously impeding its intrinsic scalability. No ground state cooling of the ion or atom is required and the setup allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the ion. Our findings are of interest...
Exploiting Rydberg Atom Surface Phonon Polariton Coupling for Single Photon Subtraction
Kübler, H; Sedlacek, J; Zabawa, P; Shaffer, J P
2013-01-01
We investigate a hybrid quantum system that consists of a superatom coupled to a surface phonon-polariton. We apply this hybrid quantum system to subtract individual photons from a beam of light. Rydberg atom blockade is used to attain absorption of a single photon by an atomic microtrap. Surface phonon-polariton coupling to the superatom then triggers the transfer of the excitation to a storage state, a single Rydberg atom. The approach utilizes the interaction between a superatom and a Markovian bath that acts as a controlled decoherence mechanism to irreversibly project the superatom state into a single Rydberg atom state that can be read out.
Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
Teixeira, R Celistrino; Nguyen, Thanh Long; Cantat-Moltrecht, T; Raimond, Jean-Michel; Haroche, S; Gleyzes, S; Brune, M
2015-01-01
We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.
Surface wake field model of beam-foil circular Rydberg states
Sharma, Gaurav; Mishra, Adya Prasad; Nandi, Tapan
2015-01-01
Production of projectile Rydberg states in fast ion-solid collisions in H-like ions exhibits a pronounce target thickness dependence in spite of these states forming at the last layers. This occurs due to important role of the surface wake field which varies with the target foil thickness. Further, according to the proposed model Rydberg states with low angular momentum are transformed into a circular Rydberg states while passing through the field. The transfer occurs by a single multiphoton process with high probability depending upon the projectile ion velocity with respect to the Fermi velocity of the target electrons.
Rydberg atom formation in ultracold plasmas: Non-equilibrium dynamics of recombination
Rydberg atom formation is a source of heating in plasmas. The rate of three-body recombination in an ultracold neutral plasma was measured and electron temperature was derived from it using standard equilibrium recombination rates. With large-scale Monte Carlo and particle-in-cell simulations, we have calculated ab initio the rate of excitation, de-excitation, ionization (and recombination) in electron-Rydberg atom collision and investigated the short-time dynamics of three-body recombination in an ultracold neutral plasma. Comparison with observed rates is quite good. Particular attention is paid to the low-frequency microfield effect on Rydberg state cut-off in the plasma.
GHz Rabi flopping to Rydberg states in hot atomic vapor cells
Huber, B; Schlagmüller, M; Kölle, A; Kübler, H; Löw, R; Pfau, T
2011-01-01
We report on the observation of Rabi oscillations to a Rydberg state on a timescale below one nanosecond in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ~ 4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor thus suggesting small vapor cells as a platform for room temperature quantum devices. Furthermore the result implies that previous coherent dynamics in single atom Rydberg gates can be accelerated by three orders of magnitude.
The dynamics of high autoionizing Rydberg states of Ar
Bixon, M.; Jortner, Joshua
1995-09-01
In this paper we present a theoretical study of the autoionization dynamics of high 2P1/2np'[3/2]1 Rydbergs (with the principal quantum numbers n=100-280) of Ar in weak homogeneous electric fields (F=0.01-1.0 V/cm), which were experimentally interrogated by time-resolved zero-electron kinetic energy (ZEKE) spectroscopy [M. Mühlpfordt and U. Even, J. Chem. Phys. 103, 4427 (1995)], and which exhibit a marked dilution (i.e., ˜2 orders of magnitude lengthening) of the lifetimes relative to those inferred on the basis of the n3 scaling law for the spectral linewidths of the np' (n=12-24) Rydbergs. The multichannel effective Hamiltonian (Heff) with several doorway state(s) (for excitation and decay) and pure escape states (for decay) was advanced and utilized to treat the dynamics of the mixed Stark manifold of the ZEKE Rydbergs. Heff of dimension 2n-1 is then constructed for a n Rydberg manifold using independent experimental information on the (l dependent) quantum defects δ(l) and the (l, K, J dependent) decay widths, which are of the form Γ0(lKJ)/(n-δ(l))3, with Γ0(lKJ) being the decay widths constants. Here, l, K, and J are the azimuthal, the electronic and the total electronic angular momentum quantum numbers, respectively. Two coupling ranges are distinguished according to the strength of the reduced electric field F¯(n,p')=(F/V cm-1)n5/ 3.4×109[δ(p')(mod1)]. Range (A); The onset of the effective coupling of the doorway and escape states, i.e., 0.7≤F¯(n,p')≤2. Range (B); The strong mixing domain F¯(n,p')≥3. The lifetimes in range (B) can be well represented by a nearly democratic mixing of all the doorway and escape states (lKJ), with the average value ≂= 2n4ℏ/[J(lJK)Γ0(lJK)]. In range (B) increases with increasing n and is only weakly F dependent. Range (A) is characterized by a hierarchy of two time scales for the decay, with a short decay component, which manifests the residue of the doorway state, and a distribution of very long lifetimes
González-Férez, Rosario; Schmelcher, Peter
2014-01-01
We explore the electronic structure and rovibrational properties of an ultralong-range triatomic Rydberg molecule formed by a Rydberg atom and a ground state heteronuclear diatomic molecule. We focus here on interaction of Rb($27s$) Rydberg atom with KRb($N=0$) diatomic polar molecule. There's significant electronic hybridization of Rb($n=24$, $l\\ge 3$) degenerate manifold. The polar diatomic molecule is allowed to rotate in the electric fields generated by the Rydberg electron and core as well as an external field. We investigate the metamorphosis of the Born-Oppenheimer potential curves, essential for the binding of the molecule, with varying electric field and analyze the resulting properties such as the vibrational structure and the alignment and orientation of the polar diatomic molecule.
State-mixing of nS Rydberg atoms in an external electric field
State-mixing effect of ultracold nS cesium Rydberg atoms in an external electric field is investigated in a magneto-optical trap. Populated high-l Rydberg atoms due to the state-mixing through avoided crossings are measured with a state-selective field ionization technique. The measured transfer rates of high-l states increase with the electric field and get to the maximum at the field of about 3.0 V/cm for 49S1/2 Rydberg state, and show decrease behavior when the electric field increases further. The decrease behavior of the transfer rate is explained with the slower m-mixing effect caused by decreasing dipole–dipole interactions between high-l Rydberg atoms. During the m-mixing process the ultracold plasma is formed by the Penning ionization. (author)