WorldWideScience

Sample records for 3d-3d emission spectra

  1. Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly

    Subhan, M A; Suzuki, T; Choi, J H; Kaizaki, S

    2003-01-01

    We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac) sub 2 Cr sup I sup I sup I (mu-ox)Ln sup I sup I sup I (HBpz sub 3) sub 2] (Cr(ox)Ln:acac sup - =acetylacetonate, ox sup 2 sup - =oxalate, HBpz sub 3 sup - =hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac) sub 2 (ox)] and [(HBpz sub 3) sub 2 Ln(mu-ox)Ln(HBpz sub 3) sub 2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the sup 2 E state of Cr(III) moiety. At room temperature no sup 2 E- sup 4 A sub 2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the sup 2 E- sup 4 A sub 2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.

  2. Taming Supersymmetric Defects in 3d-3d Correspondence

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  3. Superconformal index and 3d-3d correspondence for mapping cylinder/torus

    We probe the 3d-3d correspondence for mapping cylinder/torus using the superconformal index. We focus on the case when the fiber is a once-punctured torus (Σ1,1). The corresponding 3d field theories can be realized using duality domain wall theories in 4d N=2∗ theory. We show that the superconformal indices of the 3d theories are the SL(2,ℂ) Chern-Simons partition function on the mapping cylinder/torus. For the mapping torus, we also consider another realization of the corresponding 3d theory associated with ideal triangulation. The equality between the indices from the two descriptions for the mapping torus theory is reduced to a simple basis change of the Hilbert space for the SL(2,ℂ) Chern-Simons theory on ℝ×Σ1,1

  4. BPS M5-branes as Defects for the 3d-3d Correspondence

    Bah, Ibrahima; Halmagyi, Nick

    2014-01-01

    We study supersymmetric probe M5-branes in the AdS_4 solution that arises from M5-branes wrapped on a hyperbolic 3-manifold M_3. This amounts to introducing internal defects within the framework of the 3d-3d correspondence. The BPS condition for a probe M5-brane extending along all of AdS_4 requires it to wrap a surface embedded in an S^2-fibration over M_3. We find that the projection of this surface to M_3 can be either a geodesic or a tubular surface around a geodesic. These configurations preserve an extra U(1) symmetry, in addition to the one corresponding to the R-symmetry of the dual 3d N=2 gauge theory. BPS M2-branes can stretch between M5-branes wrapping geodesics. We interpret the addition of probe M5-branes on a closed geodesic in terms of conformal Dehn surgery.

  5. The spin-spin mixing of 1s3s3S1 and 1s3d3D1 states in the helium isoelectronic sequence

    Both relativistic and nonrelativistic analytical calculations of the off-diagonal matrix elements between excited vertical stroke 1s3s 3S1> and vertical stroke 1s3d 3D1> states of He-like atoms have been performed, taking into account the spin-spin interaction of the first order of perturbation theory. The considered values of nuclear charge Z range from Z = 2 to Z = 100. The nonrelativistic results for neutral helium agree well with earlier numerical estimates. The relativistic approach of evaluation of the off-diagonal matrix elements of He-like multicharged ions is analyzed in some details, using the hydrogen-like approximation for the basis wave functions. A precise evaluation of the one-photon exchange correction to the vertical stroke 1s3s 3S1> and vertical stroke 1s3d 3D1> energies is made. (orig.)

  6. A neural network based 3D/3D image registration quality evaluator for the head-and-neck patient setup in the absence of a ground truth

    Purpose: To develop a neural network based registration quality evaluator (RQE) that can identify unsuccessful 3D/3D image registrations for the head-and-neck patient setup in radiotherapy. Methods: A two-layer feed-forward neural network was used as a RQE to classify 3D/3D rigid registration solutions as successful or unsuccessful based on the features of the similarity surface near the point-of-solution. The supervised training and test data sets were generated by rigidly registering daily cone-beam CTs to the treatment planning fan-beam CTs of six patients with head-and-neck tumors. Two different similarity metrics (mutual information and mean-squared intensity difference) and two different types of image content (entire image versus bony landmarks) were used. The best solution for each registration pair was selected from 50 optimizing attempts that differed only by the initial transformation parameters. The distance from each individual solution to the best solution in the normalized parametrical space was compared to a user-defined error threshold to determine whether that solution was successful or not. The supervised training was then used to train the RQE. The performance of the RQE was evaluated using the test data set that consisted of registration results that were not used in training. Results: The RQE constructed using the mutual information had very good performance when tested using the test data sets, yielding the sensitivity, the specificity, the positive predictive value, and the negative predictive value in the ranges of 0.960-1.000, 0.993-1.000, 0.983-1.000, and 0.909-1.000, respectively. Adding a RQE into a conventional 3D/3D image registration system incurs only about 10%-20% increase of the overall processing time. Conclusions: The authors' patient study has demonstrated very good performance of the proposed RQE when used with the mutual information in identifying unsuccessful 3D/3D registrations for daily patient setup. The classifier had

  7. Calculated electronic properties of ordered alloys a handbook : the element and their 3d/3d and 4d/4d alloys

    Moruzzi, VL

    1995-01-01

    This is a handbook of calculated electronic properties of elements and of 3d/3d and 4d/4d ordered alloys. The book derives the ground-state or equilibrium properties of the metallic elements in both bcc and fcc structures, and of existing and nonexisting ordered binary transition-metal alloys in CsCl, CuAu, and Cu 3 Au structures by the analysis of binding curves, or total energy vs. volume curves, calculated from first-principles augmented-spherical-wave methods. The calculated properties, energy bands along symmetry lines in the respective Brillouin zones, and the total and I-decomposed dens

  8. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification - A step towards MRI-based treatment planning

    Buhl, Sune K.; Duun-Christensen, Anne Katrine; Kristensen, Brian H.;

    2010-01-01

    undergoing postoperative radiotherapy for malignant brain tumors received a weekly CBCT. In total 18 scans was matched with both CT and MRI as reference. The CBCT scans were acquired using a Clinac iX 2300 linear accelerator (Varian Medical Systems) with an On-Board Imager (OBI). Results. For the phantom......Background. Magnetic Resonance Imaging (MRI) is often used in modern day radiotherapy (RT) due to superior soft tissue contrast. However, treatment planning based solely on MRI is restricted due to e. g. the limitations of conducting online patient setup verification using MRI as reference. In this...... study 3D/3D MRI-Cone Beam CT (CBCT) automatching for online patient setup verification was investigated. Material and methods. Initially, a multi-modality phantom was constructed and used for a quantitative comparison of CT-CBCT and MRI-CBCT automatching. Following the phantom experiment three patients...

  9. Repositioning accuracy of two different mask systems-3D revisited: Comparison using true 3D/3D matching with cone-beam CT

    Purpose: The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. Methods and Materials: Twenty-one patients receiving radiotherapy (intracranial/head-and-neck tumors) were evaluated (14 patients with rigid and 7 with thermoplastic masks). X-ray volume imaging was analyzed online and offline separately for the skull and neck regions. Translation/rotation errors of the target isocenter were analyzed. Four patients were treated to neck sites. For these patients, repositioning was aided by additional body tattoos. A separate analysis of the setup error on the basis of the registration of the cervical vertebra was performed. The residual error after correction and intrafractional motility were calculated. Results: The mean length of the displacement vector for rigid masks was 0.312 ± 0.152 cm (intracranial) and 0.586 ± 0.294 cm (neck). For the thermoplastic masks, the value was 0.472 ± 0.174 cm (intracranial) and 0.726 ± 0.445 cm (neck). Rigid masks with body tattoos had a displacement vector length in the neck region of 0.35 ± 0.197 cm. The intracranial residual error and intrafractional motility after X-ray volume imaging correction for rigid masks was 0.188 ± 0.074 cm, and was 0.134 ± 0.14 cm for thermoplastic masks. Conclusions: The results of our study have demonstrated that rigid masks have a high intracranial repositioning accuracy per se. Given the small residual error and intrafractional movement, thermoplastic masks may also be used for high-precision treatments when combined with cone-beam CT. The neck region repositioning accuracy was worse than the intracranial accuracy in both cases. However, body tattoos and image guidance improved the accuracy. Finally, the combination of both mask systems with 3D

  10. Emission spectra of meteorites during thermoluminescence

    Strain, J. A.; Townsend, P. D.; Jassemnejad, B.; McKeever, S. W. S.

    1986-02-01

    The emission spectra of four ordinary chondrite meteorites of petrological type 5 have been recorded during thermoluminescence. Spectra from all four samples are similar. A very broad emission structure peaked near 470 nm and extending from 300 to at least 700 nm is found for the glow peaks from about 150 to 250 C. The higher temperature peak, 300-500 C, exhibits a different character with a narrow emission band near 400 nm. A tentative model for a luminescence site is offered. The broad similarity between the four samples is particularly interesting as the samples include chondrites of different shock history. The importance of the changes in glow curve spectra with temperature are noted for kinetic analyses of conventional glow curves.

  11. Soil emissivity and reflectance spectra measurements

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 μm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

  12. Soil emissivity and reflectance spectra measurements

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo; Jimenez-Munoz, Juan C.; Hook, Simon J.; Baldridge, Alice; Ibanez, Rafael

    2009-07-01

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

  13. Soil emissivity and reflectance spectra measurements.

    Sobrino, José A; Mattar, Cristian; Pardo, Pablo; Jiménez-Muñoz, Juan C; Hook, Simon J; Baldridge, Alice; Ibañez, Rafael

    2009-07-01

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer. PMID:19571921

  14. Chemical effects of Lγ4 emission spectra

    Highlights: • The Lγ4 spectra differ depending on the chemical environment of the lanthanides. • The Ce Lγ4 is ligand-dependent. • The Sm Lγ4 and Eu Lγ4 are valence-dependent with chemical shifts of 4–5 eV. • The Yb Lγ4 + Lγ4' depends on both the valency and ligands. - Abstract: An overview of the chemical effects of the Lγ4 (L1O2,3) emission of Ce, Sm, Eu, and Yb is reported. The Lγ4 emission spectra differ significantly depending on the chemical environment of the lanthanides. The emission from the early lanthanide Ce is ligand-dependent, whereas the emission from the middle lanthanides, Sm and Eu, is valence-dependent with chemical shifts of 4–5 eV. The emission from the late lanthanide Yb, which exhibits Lγ4 and Lγ4' bands, depends on both the valency and the coordination environment. Thus, Lγ4 emission is a potentially useful probe that can be used to evaluate the chemical states of lanthanides, in particular, the oxidation numbers of middle to late lanthanides in mixed-valence compounds

  15. Emission infrared spectra of molten potassium heptafluoroniobate

    Agulyanskij, A.I.; Bessonova, V.A. (AN SSSR, Apatity. Kol' skij Filial)

    1984-01-01

    Emission infrared spectra of potassium heptafluoroniobate molten in the air, vacuum and inert gas atmosphere are obtained. The analysis of different sections of the in got as well as potassium heptafluoroniobate condensate obtained upon long remelting in the air has shown that the investigated phases have complex composition. Along with the heptafluoroniobate potassium oxyfluoroniobate, mainly K/sub 2/NbOF/sub 5/ is present in them, in case of condensate-KNbOF/sub 4/. The pyrohydrolysis process consists of two-mutually compensating each other stages, that is parallel to the oxyfluoroniobate production the process of their destruction and partial removal from the melting surface takes place. It is shown that hydrogen fluoride produced as a result of KNbF/sub 5/ pyrohydrolysis can affect to considerable extent the ion structure of the melt.

  16. Emissive spectra of shock-heated argon

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  17. 3d-3d correspondence revisited

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. Infra-red reflectance and emissivity spectra of nanodiamonds

    Maturilli, A.; Shiryaev, A A; Kulakova, I. I.; Helbert, J.

    2012-01-01

    Reflectance and emissivity spectra of nanodiamonds powder were measured in a dedicated setup at temperatures up to 873 K. The spectra are characterised by presence of sharp bands due to surface-bound functional groups. Thermal desorption of oxygen-containing groups lead to corresponding spectral changes. The maximal emissivity of nanodiamond powder reaches 0.985.

  19. Thermal Emission and Albedo Spectra of Super Earths with Flat Transmission Spectra

    Morley, Caroline V; Marley, Mark S; Zahnle, Kevin; Line, Michael; Kempton, Eliza; Lewis, Nikole; Cahoy, Kerri

    2015-01-01

    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features (Kreidberg et al. 2014b). We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000x solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (~400-800 K) planets can distinguish cloudy spectra, which have moderate ...

  20. Stark broadening of 3s 3P0-3p 3D and 3p 3D-3d 3F0 transitions along carbon isoelectronic sequences of ions revisited

    The Stark widths of N II and O III spectral lines belonging to 3s 3P0-3p 3D and 3p 3D-3d 3F0 multiplets have been calculated and measured in a capillary discharge plasma. The calculations are extended to the same multiplets of F IV and Ne V ions. The plasma electron density in the capillary discharge is determined from the width of the He II Pβ line, while the electron temperature is measured from the relative intensities of N II lines. A comparison of the experimental and theoretical data shows good mutual agreement, which is well within the estimated experimental and theoretical uncertainties. The theory predicts the ratio of the corresponding N II to O III line widths to be larger than unity, in disagreement with our earlier experiment in a pulsed arc. In the new experiment, where all spectral lines were recorded under the same plasma conditions, the theoretical predictions and the results of the capillary experiment are in agreement. The possible sources of an error in the earlier experiment are indicated

  1. Thermal Emission and Reflected Light Spectra of Super Earths with Flat Transmission Spectra

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Zahnle, Kevin; Line, Michael; Kempton, Eliza; Lewis, Nikole; Cahoy, Kerri

    2015-12-01

    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features. We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (˜400-800 K) planets can distinguish cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models, which are very dark (0.0-0.03). Reflected light spectra of cold planets (˜200 K) accessible to a space-based visible light coronagraph will have high albedos and large molecular features that will allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize this population of planets, including transmission spectra of hot (≳ 1000 K) targets, thermal emission spectra of warm targets using the James Webb Space Telescope, high spectral resolution (R ˜ 105) observations of cloudy targets, and reflected light spectral observations of directly imaged cold targets. Despite the dearth of features observed in super Earth transmission spectra to date, different observations will provide rich diagnostics of their atmospheres.

  2. Emission spectra of terahertz quantum cascade laser

    Antonov, A V; Gavrilenko, V. I.; Ikonnikov, A. V.; Maremyanin, K. V.; Lastovkin, A. A.; Morozov, S. V.; Ushakov, D.V.; Sadofyev, Yu. G.; N. Samal

    2009-01-01

    We calculated energy levels, wave functions, and energies of radiative transitions in terahertz quantum cascade lasers based on GaAs/Al0.15Ga0.85As heterostructures. Current-voltage characteristics and current dependences of laser radiation intensity were measured, and the maximum operating temperatures reaching 85 K were determined. Radiation spectra of quantum cascade lasers were measured for different temperatures, and the effect of intensity “pumping” from lowfrequency mode...

  3. Observation of infrared emission spectra from silicon combustion products

    Smit, Kenneth J.; De Yong, Leo V.; Gray, Rodney

    1996-05-01

    The combustion of silicon based pyrotechnic compositions is observed with time resolved infrared spectrometry. This revealed the build up of strong emission at 9.1 ± 0.1 μm, which is associated with condensed silicon dioxide particulates. Time averaged spectra for compositions containing different oxidants or binders illustrate the dependence of SiO 2 emission intensity on composition.

  4. Chemical effects in x-ray emission spectra

    The chemical bond influence in X-ray emission spectra of hafnium, iodine, iron, sulphur, aluminium and magnesium is detected. The position of one X-ray emission line is determined by three methods: parabolic profile; Gaussian distribution and extra-heavy maximum. (author)

  5. The sharpness of gamma-ray burst prompt emission spectra

    Yu, Hoi-Fung; van Eerten, Hendrik J.; Greiner, Jochen; Sari, Re'em; Narayana Bhat, P.; von Kienlin, Andreas; Paciesas, William S.; Preece, Robert D.

    2015-11-01

    Context. We study the sharpness of the time-resolved prompt emission spectra of gamma-ray bursts (GRBs) observed by the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Aims: We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. Methods: We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1113 spectra being analyzed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare them to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. Results: We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time, and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to % of the peak flux. Conclusions: Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin

  6. Relations between the emission spectra and radio structures of quasars

    We present evidence that the emission spectra and radio structures of low-redshift quasars are related statistically. Our sample compriese 34 quasars with z<0.70 and known radio structures. Objects with the broadest and most irregular emission lines are associated with extended radio sources, while those with relatively narrow emission lines with smooth profiles tend to have compact radio structures. There is also a significant tendency for Fe II emission lines to be found preferentially in quasars with compact radio structure

  7. A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA

    We present evidence for a correlation between the observed properties of hot Jupiter emission spectra and the activity levels of the host stars measured using Ca II H and K emission lines. We find that planets with dayside emission spectra that are well-described by standard one-dimensional atmosphere models with water in absorption (HD 189733, TrES-1, TrES-3, WASP-4) orbit chromospherically active stars, while planets with emission spectra that are consistent with the presence of a strong high-altitude temperature inversion and water in emission orbit quieter stars. We estimate that active G and K stars have Lyman α fluxes that are typically a factor of 4-7 times higher than quiet stars with analogous spectral types and propose that the increased UV flux received by planets orbiting active stars destroys the compounds responsible for the formation of the observed temperature inversions. In this paper, we also derive a model-independent method for differentiating between these two atmosphere types using the secondary eclipse depths measured in the 3.6 and 4.5 μm bands on the Spitzer Space Telescope and argue that the observed correlation is independent of the inverted/non-inverted paradigm for classifying hot Jupiter atmospheres.

  8. Multiplicity spectra and nuclear models of gamma emission

    The possibility of study process of nuclear gamma-rays emission from excited states by means of gamma-rays multiplicity spectra A(ν) was investigated in present work. This question are considered on example of the multiplicity spectra calculation from decay of the 4+ state of nuclear 87Sr formed in slow neutrons capture. The calculations was performed for single particle and collective (giant photonuclear resonance) approaches to describe of the emission process. The comparison A(ν) obtained with using of single-particle (S) and collective (G) models point out of the possibility of using the method of multiplicity spectrometry for choice of the proper approach to describe of the compound nuclear gamma-emission. 23 refs.; 6 figs.; 10 tabs

  9. Thermoluminescence emission spectra and optical bleaching of oligoclase

    Thermoluminescence (TL) spectra of oligoclase samples have been recorded in the temperature range from 300 to 700 K and the wavelength range from 300 to 850 nm. Like other feldspars, oligoclase produces blue (peaking at 460 nm) and red (peaking at 765 nm) emission bands. The maximum of the red emission occurs 20 K lower than that of the blue band. Optical bleaching was performed at wavelengths varying from 360 to 800 nm. Bleaching of artificially irradiated oligoclase causes a decrease of the TL signal. The bleaching efficiency increases with decreasing wavelength. Bleaching does not only influence the height of the glow curve but also the shape. An interesting observation is that the ratio of the blue and red band intensities is not affected by a bleaching procedure. No evidence has been found that bleaching influences the shape of the emission spectra. The correlation between the blue and red bands is discussed. (Author)

  10. Software tools for the analysis of video meteors emission spectra

    Madiedo, J. M.; Toscano, F. M.; Trigo-Rodriguez, J. M.

    2011-10-01

    One of the goals of the SPanish Meteor Network (SPMN) is related to the study of the chemical composition of meteoroids by analyzing the emission spectra resulting from the ablation of these particles of interplanetary matter in the atmosphere. With this aim, some of the CCD video devices we employ to observe the nigh sky are endowed with holographic diffraction gratings, and a continuous monitoring of meteor activity is performed. We have recently developed a new software to analyze these spectra. A description of this computer program is given, and some of the results obtained so far are presented here.

  11. Emission Spectra of a Moving Atom in an Electromagnetic Field

    ZHANG Jing-Tao; FENG Xun-Li; XU Zhi-Zhan

    2000-01-01

    The emission spectra of a two-level atom moving in an electromafneric fiekd are studied We find that there that there is a shift in the peak position and that each peak splits into double peaks The shit is duble peaks The shift is duc to the detuning indced by the atomic mition and the splitting is casused by the atomic energy change due of photons

  12. Emission spectra of pyrotechnic mixtures of heat flux simulators

    Azharonok, V. V.; Kratsko, L. E.; Chubryk, N. I.; Goncharik, S. V.; Miatselskaya, N. S.; Yakshonak, P. P.; Hamayunau, V. I.

    2012-01-01

    Comprehensive optical spectroscopic studies of the combustion process of solid-state pyrotechnic mixtures based on Mg and Sr(NO3)2 have been carried out. Emission spectra of the mixtures in the ultraviolet, visible, and infrared wavelength regions have been studied under various atmospheric conditions taking into account radiation transfer in air along an optical path of observation up to 5 km long.

  13. Simulation of UIB spectra with IR emission from CHONS molecules

    Papoular, Renaud

    2012-01-01

    The present work purports to identify candidate carriers of the UIBs. This requires a procedure for the computation of the emission spectrum of any given candidate. The procedure used here consists in exciting the carrier into a state of internal vibration, waiting until the system has reached dynamic equilibrium and, then, monitoring the time variations of the overall electric dipole moment associated with this vibration. The emission spectrum is shown to be simply related to the FT of these variations. This procedure was applied to more than 100 different chemical structures, inspired by the exhaustive experimental and theoretical analyses of Kerogens, the terrestrial sedimentary matter, which is known to be mainly composed of C, H, O, N and S atoms. From this data base, 21 structures were extracted, which fall in 4 classes, each of which contributes preferentially to one of the main UIBs. Summing their adequately weighted spectra delivers an emission spectrum which indeed exhibits the main UIB features (al...

  14. Gravitational Redshift of Emission Lines in the AGN Spectra

    Bon, Nataša; Marziani, Paola; Jovanović, Predrag

    2016-01-01

    The detection of gravitationally redshifted optical emission lines has been reported just for a few active galaxies. In this paper we give a short overview of studies that analyzed or exploited the detection of the gravitational redshift in optical AGN spectra. In addition, we tested the consistency of gravitational redshift as the physical origin of the redward shifts observed in their spectra using a sample of $\\approx$ 50 Hamburg-ESO intermediate to high redshift quasars that are among the most luminous quasars known ($10^{47} \\lesssim L \\lesssim 10^{48}$ erg/s), and are expected to host very massive black holes. To this aim we modeled the line profile with accretion disk models around a black hole.

  15. Dynamic Spectra Predicted for 2-3 Khz Radio Emission

    Mitchell, Jeremy J.; Cairns, Iver H.; Robinson, Peter A.

    Radio emissions observed at 2-3 kHz by the Voyager spacecraft occur when global merged interaction regions (GMIRs) reach the heliopause. The radiation is thought to occur when a GMIR enters a region close to the heliopause where the electron speed distribution is primed with a superthermal tail produced by lower hybrid drive. Previously this priming mechanism was combined with a theory for type II solar radio bursts to predict the flux of radio emission in the outer heliosphere. Here this theory is extended in two ways. First theoretical arguments regarding the availability of Langmuir and ion sound waves are used to determine whether emission occurs via three wave processes or processes involving wave scattering off thermal ions (STI). New expressions for conversion efficiencies into radio emission associated with STI are then implemented where appropriate. Second dynamic spectra are calculated for the radio emission generated by shock from the inner solar wind to beyond the heliopause. The results are then compared with existing Voyager observations.

  16. Spontaneous emission spectra from a staggered-array undulator

    A staggered-array undulator set inside the superconducting solenoid coils is shown to be able to provide high undulator fields larger than the longitudinal magnetic fields, a small undulator period, easy tunability through the solenoid coil current, and compact and easy fabrication. The overall performance characteristics of this undulator were studied mainly with respect to iron and aluminum disk widths, and spontaneous emission spectra through the numerical calculations. The maximum undulator field is found to be obtained for the ratio of the aluminum disk width to the undulator period of 0.45. The line widths (FWHM) of the spontaneous emission spectra, however, do not show Nw-1 dependence on the number of the undulator period Nw for practical beams with a Gaussian distribution, compared with for a single electron. The energy spread among various parameters is seen to play an important role in reducing the FWHM with increase of Nw. The large tunability of the wavelength is proved to cover 6-10 mm by changing the solenoid magnetic field from 0.4 T to 1.6 T. (author)

  17. Spectra of hybrid synchrotron emission in hot black hole winds

    Hayakawa, Ken; Fukue, Jun

    2015-12-01

    We solve radiative transfer to obtain the hybrid synchrotron spectra from a hot, optically thin black hole wind, by integrating the radiative transfer equation in the comoving frame and considering the relativistic effect of wind flow as well as the emission and absorption along the line-of-sight. We find two primary characteristics in the hybrid model: (1) a shoulder at low frequencies and (2) a power-law tail at high frequencies. Even if only 10-4 of the total electron energy is injected as non-thermal electrons, higher luminosity can be produced compared to the pure thermal model. Thus, there is a large difference between the pure thermal model and the hybrid one. In addition, as the wind velocity becomes large, the thermal peak of the comoving spectra shifts toward the high-frequency regime, due to the relativistic Doppler effect. As the wind velocity increases, on the other hand, the thermal peak of the observed spectra shifts toward the low-frequency regime, due to the redshifted part in the far side and limb side.

  18. A Thermal Infrared Emission Spectra Library for Unpowdered Meteorites

    Ashley, J. W.; Christensen, P. R.

    2007-12-01

    Mid-infrared thermal emission spectra have been obtained for whole-rock (unpowdered) samples of the following 25 meteorites: Abee, Admire, Allende, Bondoc, Brahin, Bruderheim, Canyon Diablo, Carichic, Clover Springs, Dhofar 007, Estherville, Holbrook, Juancheng, Kapoeta, Long Island, Marion, Modoc, ALH77225, ALH77233, ALH84082, LEW85322, ALH85025, ALH79029, ALH77004, and LEW86015. Meteorites were provided through the Center for Meteorite Studies at ASU, Johnson Space Center and the NASA Antarctic Meteorite Working Group, and from private collections. The database was prepared to aid in the on-going detection and interpretation of meteorites on Mars using the Miniature Thermal Emission Spectrometer (Mini-TES) instruments on both Mars Exploration Rovers. It therefore includes several specimens of low, moderate, and high weathering intensities, reflecting different levels of water exposure in desert and non-desert environments. Unweathered falls are also considered. Samples represent all three chondrite classes, stony irons (mesosiderites and pallasites), and select achondrites. Special consideration is given to dust-covered iron-nickel meteorites as part of a separate study designed to evaluate the Mini-TES spectra of iron-nickel meteorites on Mars. All samples were analyzed at or near a temperature of 80° C using a modified Nicolet Nexus 670 FT-IR spectrometer at the Mars Space Flight Facility at Arizona State University. Data were collected within the 2000 to 200 wavenumber (5 to 50 microns) mid-infrared range. The results show that many meteorite types display moderate to wide variability in the depth and position of prominent absorption features, making them easily distinguishable from each other. Most previous meteorite spectroscopy studies have either focused on near-infrared reflectance spectra [e.g. 1], and/or involved powdered samples to represent asteroid regoliths in the mid-infrared [e.g. 2 & 3]. Particle size- related issues are often at the heart of

  19. Neutron emission profiles and energy spectra measurements at JET

    Giacomelli, L. [JET-EFDA, Culham Science Centre, Abingdon, 0X14 3DB, United Kingdom and Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); Conroy, S. [JET-EFDA, Culham Science Centre, Abingdon, 0X14 3DB, United Kingdom and Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Belli, F.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, Roma (Italy); Gorini, G. [Department of Physics, Università degli Studi di Milano-Bicocca, Milano, Italy and Istituto di Física del Plasma Piero Caldirola, Milan (Italy); Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B. [JET-EFDA, Culham Science Centre, Abingdon, 0X14 3DB (United Kingdom); Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  20. Neutron emission profiles and energy spectra measurements at JET

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Riva, M.; Syme, B.; JET EFDA Contributors

    2014-08-01

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  1. Emission of delayed neutrons: calculation of the energy spectra and emission probabilities of the precursors

    The calculations given in the paper are intended to explain the delayed neutron emission (energy spectra and emission probabilities Pn) which follows the β- disintegration of the precursors produced by fission. The probability of β- transition, the level density ω (E, J) of the emitter and the competition (β-, γ) and (β-, n) de-energizations are analysed for each precursor studied. All the possible channels open to the process of neutron emission on grounds of energy considerations (Qβ-, Bn) are taken into account through the introduction of the spin and parity selection rules at each stage of the sequence: precursor, emitter, final nucleus. The results of the calculations are compared with the known experimental measurements of the neutron energy spectra and probabilities Pn. The precursors 87Br, 88Br, 137I and 93-97Rb were selected for this examination. This comparison shows in particular that the structure of experimental energy spectra can be well reproduced by the calculations given in the paper. Moreover, it emerges that the spectra calculated are very sensitive to the choice of the spins of the precursor and the final nucleus. (author)

  2. Analysis of neutral hydrogenic emission spectra in a tokamak

    Balmer-α radiation by the excitation of thermal and fast neutral hydrogenic particles has been investigated in a magnetically confined fusion device, or tokamak, from the Korea Superconducting Tokamak Advanced Research (KSTAR). From the diagnostic point of view, the emission from thermal neutrals is associated with passive spectroscopy and that from energetic neutrals that are usually injected from the outside of the tokamak to the active spectroscopy. The passive spectroscopic measurement for the thermal Balmer-α emission from deuterium and hydrogen estimates the relative concentration of hydrogen in a deuterium-fueled plasma and therefore, makes a useful tool to monitor the vacuum wall condition. The ratio of hydrogen to deuterium obtained from this measurement qualitatively correlates with the energy confinement of the plasma. The Doppler-shifted Balmer-α components from the fast neutrals features the spectrum of the motional Stark effect (MSE) which is an essential principle for the measurement of the magnetic pitch angle profile. Characterization of this active MSE spectra, especially with multiple neutral beam lines crossing along the observation line of sight, has been done for the guideline of the multi-ion-source heating beam operation and for the optimization of the narrow bandpass filters that are required for the polarimeter-based MSE diagnostic system under construction at KSTAR

  3. Orbits and emission spectra from the 2014 Camelopardalids

    Madiedo, José M.; Trigo-Rodríguez, Josep M.; Zamorano, Jaime; Izquierdo, Jaime; de Miguel, Alejandro Sánchez; Ocaña, Francisco; Ortiz, José L.; Espartero, Francisco; Morillas, Lorenzo G.; Cardeñosa, David; Moreno-Ibáñez, Manuel; Urzáiz, Marta

    2014-12-01

    We have analysed the meteor activity associated with meteoroids of fresh dust trails of Comet 209P/LINEAR, which produced an outburst of the Camelopardalid meteor shower (IAU code #451, CAM) in 2014 May. With this aim, we have employed an array of high-sensitivity CCD video devices and spectrographs deployed at 10 meteor observing stations in Spain in the framework of the Spanish Meteor Network. Additional meteoroid flux data were obtained by means of two forward-scatter radio systems. The observed peak zenithal hourly rate was much lower than expected, of around 20 meteors h-1. Despite of the small meteor flux in the optical range, we have obtained precise atmospheric trajectory, radiant and orbital information for 11 meteor and fireball events associated with this stream. The ablation behaviour and low tensile strength calculated for these particles reveal that Camelopardalid meteoroids are very fragile, mostly pristine aggregates with strength similar to that of the Orionids and the Leonids. The mineral grains seem to be glued together by a volatile phase. We also present and discuss two unique emission spectra produced by two Camelopardalid bright meteors. These suggest a non-chondritic nature for these particles, which exhibit Fe depletion in their composition.

  4. Emission spectra and stimulated emission characteristics of [N2]2--N2 molecular dimer

    SHEN; Zuochun(申作春); LU; Jianye(鲁建业); Ajmal; H.; Hamdani; GAO; Huide(高惠德); MA; Zuguang(马祖光)

    2003-01-01

    It has been proved by ab initio calculation and theoretical analysis that there exist [N2]2--N2 molecular dimers with D2h symmetry group, and there also exists an electric dipole excimer-like transition a1B2g→a1B3u. The theoretical spectra accord with the experimental results for transition a1B2g→a1B3u. The stimulated emission characteristic of N2 molecular dimer was researched through the microwave excited highly pure nitrogen and the method of amplified spontaneous emission. The experimental results show that N2 molecular dimer has stimulated emission characteristics when the microwave power is more than 100 W and the N2 pressure is in the range from 260 Pa to 2200 Pa.

  5. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  6. 3D,3D,全家都3D!

    春天

    2011-01-01

    不难发现最近周围的男人突然都开始对3D这个词有了难以名状的兴趣,这绝对要归功于近期在香港热映的某部3D电影。随着祼眼3D等技术的问世,3D被应用到了越来越多的领域。

  7. Comparison of laser induced plasma and arc discharge emission spectra of Al, Fe, Cu and C

    Emission spectra of laser induced plasma and arc discharge were measured and compared for Al, Fe, Cu and C. Such a comparison shows a higher presence of ionized transitions, but also a higher background in the emission spectra of laser induced plasma than in arc discharge. It can be concluded that in general it is not possible to predict laser induced plasma for material analysis purposes, calibration by reference laser induced plasma spectra of pure elements in vacuum will be necessary. (Authors)

  8. Seeing Through the Clouds: Thermal Emission and Reflected Light Spectra of Super-Earths with Flat Transmission Spectra

    Morley, Caroline; Fortney, Jonathan J.; Marley, Mark; Zahnle, Kevin; Line, Michael R.; Kempton, Eliza M.-R.; Lewis, Nikole K.; Cahoy, Kerri

    2015-12-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain their atmospheric compositions. Of the planets smaller than Neptune studied to date, all have radii in the near-infrared consistent with being constant in wavelength, likely showing that these small planets are consistently enshrouded in thick hazes and clouds. We explore the types of clouds and hazes that can completely obscure transmission spectra and find that very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities.We present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break the degeneracies and better constrain the atmospheric compositions. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Analysis of reflected light from warm (~400-800 K) planets can distinguish cloudy planets, which have moderate albedos (Ag=0.05-0.20), from hazy planets, which are very dark (Ag=0.0-0.03). Reflected light spectra of cold planets (~200 K) accessible to a space-based visible light coronagraph may be the key to understanding small planets: they will have high albedos and large molecular features that actually allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize super Earths, including transmission spectra of hot (~1000 K) targets, thermal emission spectra of warm targets using the James

  9. New downshifted maximum in stimulated electromagnetic emission spectra

    Sergeev, Evgeny; Grach, Savely

    A new spectral maximum in spectra of stimulated electromagnetic emission of the ionosphere (SEE, [1]) was detected in experiments at the SURA facility in 2008 for the pump frequencies f0 4.4-4.5 MHz, most stably for f0 = 4.3 MHz, the lowest possible pump frequency at the SURA facility. The new maximum is situated at frequency shifts ∆f -6 kHz from the pump wave frequency f0 , ∆f = fSEE - f0 , somewhat closer to the f0 than the well known [2,3] Downshifted Maximum in the SEE spectrum at ∆f -9 kHz. The detection and detailed study of the new feature (which we tentatively called the New Downshifted Maximum, NDM) became possible due to high frequency resolution in spectral analysis. The following properties of the NDM are established. (i) The NDM appears in the SEE spectra simultaneously with the DM and UM features after the pump turn on (recall that the less intensive Upshifted Maximum, UM, is situated at ∆f +(6-8) kHz [2,3]). The NDM can't be attributed to 1 DM [4] or Narrow Continuum Maximum (NCM, 2 [5]) SEE features, as well as to splitted DM near gyroharmonics [2]. (ii) The NDM is observed as prominent feature for maximum pump power of the SURA facility P ≈ 120 MW ERP, for which the DM is almost covered by the Broad Continuum SEE feature [2,3]. For P ˜ 30-60 MW ERP the DM and NDM have comparable intensities. For the lesser pump power the DM prevails in the SEE spectrum, while the NDM becomes invisible being covered by the thermal Narrow Continuum feature [2]. (iii) The NDM is exactly symmetrical for the UM relatively to f0 when the former one is observed, although the UM frequency offset increases up to ∆fUM ≈ +9 kHz with a decrease of the pump power up to P ≈ 4 MW ERP. The DM formation in the SEE spectrum is attributed to a three-wave interaction between the upper and lower hybrid waves in the ionosphere, and the lower hybrid frequency ( 7 kHz) determines the frequency offset of the DM high frequency flank [2,6]. The detection of the NDM with

  10. On the interpretation of tungsten emission spectra in fusion devices

    Atomic spectra emitted by fusion plasmas are generally contaminated by ions originating from plasma erosion of material walls. These ions may be present in several charge states and the radiation they emit falls in the x-ray to vacuum ultraviolet regions, making them atomic fingerprints used as a diagnostic tool. This work reports on recent achievements on the interpretation of specific tungsten spectra from the Axially Symmetric Divertor Experiment (ASDEX) Upgrade tokamak and the Large Helical Device (LHD) stellarator. (paper)

  11. Temperature dependence of emission frequency spectra of a liquid metal anode

    Akhmadaliev, Ch [Research Center Rossendorf Inc., Institute of Ion Beams and Materials Research, PO Box 510119, D-01314, Dresden (Germany); Bischoff, L [Research Center Rossendorf Inc., Institute of Ion Beams and Materials Research, PO Box 510119, D-01314 Dresden (Germany); Mair, G L R [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zographos, GR-15784, Athens (Greece); Aidinis, C J [Department of Physics, Section of Applied Physics, University of Athens, Panepistimiopolis, Zographos, GR-15784, Athens (Greece); Ganetsos, Th [Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, Zographos, GR-15784, Athens (Greece); Anagnostakis, E [Hellenic Army Academy, Bari, GR-16673, Athens, (Greece)

    2003-01-07

    In an attempt to understand the instabilities that develop on an ion-emitting molten metal anode, we study current oscillograms and emission frequency spectra, as a function of emission current and emitter temperature. It is concluded that increasing the temperature affects adversely the stability of the emitter, thus enhancing the emission of droplets. However, a droplet emission mode, as well as an understanding thereof, is useful for deposition purposes. (rapid communication)

  12. Spectra and rates of bremsstrahlung neutrino emission in stars

    Guo, Gang; Qian, Yong-Zhong

    2016-08-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average ν¯e and ν¯x(x =μ ,τ ) energies, for this process with those for e± pair annihilation, plasmon decay, and photoneutrino emission over a wide range of temperature and density. We also compare our updated energy loss rates for the above thermal neutrino emission processes with the fitting formulas widely used in stellar evolution models and determine the temperature and density domain in which each process dominates. We discuss the implications of our results for detection of ν¯e from massive stars during their presupernova evolution and find that pair annihilation makes the predominant contribution to the signal from the thermal emission processes.

  13. Evaluation of land surface reflectance and emissivity spectra retrieved from MASTER data

    Sugisaki, Takashi; Tonooka, Hideyuki

    2008-10-01

    The MODIS/ASTER (MASTER) airborne simulator which has fifty bands in the visible to the thermal-infrared spectral regions was developed mainly to support the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) and the Moderate resolution Imaging Spectroradiometer (MODIS) instrument teams in the areas of algorithm development, calibration and validation, but its wide spectral capability is also useful for other studies such as geology, environmental monitoring, and land management. Currently, only MASTER product distributed to users is a level-1B at-sensor radiance product, so that if a user needs surface reflectance and/or emissivity/temperature, the user should apply atmospheric correction to a level-1B product. Thus in the present study, we derived surface reflectance and emissivity spectra from MASTER data acquired over Railroad Valley Playa, NV/USA, by atmospheric correction with various atmospheric sources like Aerosol Robotic Network (AERONET) products, and then compared with in-situ measured spectra for both reflective and emissive regions. Calibration errors in the reflective region which caused discrepancy from the in-situ spectra were reduced by adjusting the MASTER radiance to ASTER and MODIS radiances at the top of the atmosphere. We also compared the spectral similarity in the reflective region versus that in the emissive region, for MASTER spectra, and the spectra of ASTER spectral library and in-situ spectra, as an example of discrimination analysis using both reflective and emissive bands.

  14. Emission spectra of lyoluminescence of luminol in aqueous solutions (Paper No. RE-09)

    Lyoluminescence emission spectra of luminol were recorded in aqueous solutions of various amines and hydroxides using a Fuess spectrograph. A suitable mechanism has been proposed to explain the observed emission bands on the basis of reactions of colour centres with luminol. (author). 1 tab., 6 refs

  15. Spectra and rates of bremsstrahlung neutrino emission in stars

    Guo, Gang

    2016-01-01

    We calculate the energy-differential rate for neutrino emission from electron-nucleus bremsstrahlung in stellar interiors taking into account the effects of electron screening and ionic correlations. We compare the energy-differential and the net rates, as well as the average $\\bar{\

  16. Library of prompt neutron and γ-emission spectra from fission fragments

    The statistical model of nuclear reactions is applied to describe the fission fragment neutron and gamma emission characteristics for spontaneous fission of 252Cf and for fission of 233,235U, 239Pu by thermal neutrons. The calculations of neutron and gamma-spectra are carried out for the fragments with A=70-160, excited up to 100 MeV. After testing of the model and input data library, calculations of neutron and γ-emission spectra for nuclei with A=70-170 excited up to 100 MeV were done to produce the Fission Fragments Emission Spectra Library (FFESL). FFESL contains the data of 1000 nuclei and will be used in calculations of neutron and γ-spectra for fission of heavy nuclei by intermediate energy nucleons. (author)

  17. Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition

    This paper is devoted to the optical emission spectra (OES) of low pressure (1 mTorr-1 Torr) plasmas created in tetraethoxysilane (TEOS) and hexamethyldisiloxane (HMDSO) used pure or mixed with oxygen. The UV-visible emission spectra are recorded at low resolution (0.3 nm) using a 46 cm focal length monochromator and at high resolution (0.3 cm-1) using a Fourier transform spectrometer. Since almost all the atomic and molecular emissions have been identified, the spectra displayed here can be used as reference emission spectra for TEOS, HMDSO and O2/TEOS(HMDSO) plasmas. The OES of O2/TEOS and O2/HMDSO plasmas are very close and are dominated by CO, OH, H2 and H emissions. In contrast, the OES of TEOS and HMDSO plasmas are quite different: the emissions of excited Si, SiO and SiH are characteristics of HMDSO plasma, while those of OH, CO, CO+, CO2+ are characteristics of TEOS plasmas. On the basis of these spectra and the data reported in the literature, it is finally concluded that the CO and OH molecules detected in TEOS plasmas are very likely created at the reactor walls by desorption from the growing film

  18. Influence of pure dephasing on emission spectra from single photon sources

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst;

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char...... characteristics of this intensity shifting effect and offer it as an explanation for the nonvanishing emission peaks at the cavity frequency found in recent experimental work....

  19. Tau-REx II: Retrieval of emission spectra

    Waldmann, Ingo P; Rocchetto, Marco; Barton, Emma J; Yurchenko, Sergey N; Tennyson, Jonathan

    2015-01-01

    Tau-REx (Tau Retrieval of Exoplanets) is a novel, fully Bayesian atmospheric retrieval code custom built for extrasolar atmospheres. In Waldmann et al. (2015) the transmission spectroscopic case was introduced, here we present the emission spectroscopy spectral retrieval for the Tau-REx framework. Compared to transmission spectroscopy, the emission case is often significantly more degenerate due to the need to retrieve the full atmospheric temperature-pressure (TP) profile. This is particularly true in the case of current measurements of exoplanetary atmospheres, which are either of low signal-to-noise, low spectral resolution or both. Here we present a new way of combining two existing approaches to the modelling of the said TP profile: 1) the parametric profile, where the atmospheric TP structure is analytically approximated by a few model parameters, 2) the Layer-by-Layer approach, where individual atmospheric layers are modelled. Both these approaches have distinct advantages and disadvantages in terms of...

  20. Tau-REx II: Retrieval of Emission Spectra

    Waldmann, I. P.; Rocchetto, M.; Tinetti, G.; Barton, E. J.; Yurchenko, S. N.; Tennyson, J.

    2015-11-01

    {T}-REx (Tau Retrieval of Exoplanets) is a novel, fully Bayesian atmospheric retrieval code custom built for extrasolar atmospheres. In Waldmann et al., the transmission spectroscopic case was introduced, and here we present the emission spectroscopy spectral retrieval for the {T}-REx framework. Compared to transmission spectroscopy, the emission case is often significantly more degenerate due to the need to retrieve the full atmospheric temperature-pressure (TP) profile. This is particularly true in the case of current measurements of exoplanetary atmospheres, which are either of low signal-to-noise, low spectral resolution, or both. We present a new way of combining two existing approaches to the modeling of the said TP profile: (1) the parametric profile, where the atmospheric TP structure is analytically approximated by a few model parameters, (2) the layer-by-layer approach, where individual atmospheric layers are modeled. Both of these approaches have distinct advantages and disadvantages in terms of convergence properties and potential model biases. The {T}-REx hybrid model presented here is a new two-stage TP profile retrieval, which combines the robustness of the analytic solution with the accuracy of the layer-by-layer approach. The retrieval process is demonstrated using simulations of the hot-Jupiter WASP-76b and the hot-super-Earth 55 Cnc e as well as the secondary eclipse measurements of HD 189733b.

  1. Mössbauer Emission-Spectra of Impurity Cobalt-57 in a Halide Matrix

    Maddock, A. G.; Williams, A. F.; Siekierska, K. E.;

    1976-01-01

    The Mössbauer emission spectra of 57Co in low concentrations in KF, NaCl, NaF, LiF, and MgF2, and the effects of doping NaF and LiF with La3+ ions are reported. The monovalent halides all give similar spectra showing a broad single line or a doublet at 2.19mm/s and two overlapping doublets at 0...

  2. Analysis of Emission Spectra of Yttrium Monoiodide Produced by the Photodissociation of YI3

    Chen, Wenting Wendy; Galvin, Thomas C.; Houlahan, Thomas J., Jr.; Eden, J. Gary

    2015-06-01

    Emission spectra of yttrium monoiodide (YI) spanning the 250 - 940 nm spectral region were generated by the photodissociation of yttrium tri-iodide under photoexcitation at 248 nm (KrF laser). Fluorescent spectra in the13,000 - 19,000 cm-1 and 24,000 - 40,000 cm-1 regions will be first reported. New vibrational transitions of YI in the 20,000 - 25,000 cm-1 interval will be presented as well.

  3. Atomic carbon in comet atmospheres. Origin and emission spectra

    A detailed study of neutral carbon emissions is made, to precise the excitation mechanism nature, to determine the production mechanisms and examine wether information on CO and CO2 molecule abundance could be deduced, or wether another source must be looked for. After an exhaustive study of excitation rates necessary for theoretical intensity calculation, a new effect has been discovered, and which acts on the atom excitation rates, via their distribution on the fundamental hyperfine levels. On the other hand, the strong dependency of the excitation rate ratio with heliocentric velocity and with the hypothesis which is made on the atom population initial distribution has been revealed. The carbon abundance in all the comets of the initial sample has been calculated, then compared to the water one revealing two groups of comets. Then an abundance criterium to remove the CO and CO2 molecules from the carbon potential-parents in the Bradfield comet has been used while CO is the best candicate for C(3P) and C(1D) atom production in the West, Kohoutek and Bennet comets (but to certain conditions). The important conclusion is that, while the relative abundance (C2/OH, CN/OH,...) of the minor carbon compounds were constant, the CO relative abundance varies from an object to the other, probably an effect due to repeated passage of some comets near the sun

  4. On the sharpness of gamma-ray burst prompt emission spectra

    Yu, Hoi-Fung; Greiner, Jochen; Sari, Re'em; Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Preece, Robert D

    2015-01-01

    We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrot...

  5. Frequency spectra and electrohydrodynamic phenomena in a liquid gallium field-ion-emission source

    Akhmadaliev, C. [Research Center Rossendorf Inc, Institute of Ion Beam and Materials Research, Dresden (Germany)]. E-mail: c.akhmadaliev@fz-rossendorf.de; Bischoff, L. [Research Center Rossendorf Inc, Institute of Ion Beam and Materials Research, Dresden (Germany); Mair, G.L.R.; Aidinis, C.J. [Department of Physics, University of Athens, Panepistimiopolis, Zographos, Athens (Greece)

    2002-09-21

    A detailed investigation of the emission frequency spectra of a gallium liquid metal ion source is presented. The spectra are correlated with current oscillograms. The current for which pulses appear superimposed on the d.c. level of current is well predicted by existing theory. The pulses are believed to be the result of droplet emission, and their terminal frequency appears to coincide with the frequency of vibration of the sides of the liquid cone at high currents. Better understanding of the instabilities that develop on the liquid anode can be useful for deposition purposes. (author)

  6. SOFT X-RAY EMISSION SPECTRA AND THE BONDING OF ALUMINUM

    Callcott, T.; Tsang, K.-L.; Zhang, C.; Ederer, D.; Arakawa, E.

    1987-01-01

    The L2,3 soft x-ray emission (SXE) spectra of Al in metallic Al, Al-Mn alloys, dilute Al-Mg alloys, the intermetallic compounds LiAl and Ni3Al, the semiconducting alloy (Al-Ga)As and insulating Al2O3 are presented. The spectra provide a measure of the s-like partial density of states (PDOS) localized at the Al atoms and show prominant qualitative features that may be identified with each of the major types of bonding in solids, ie. metallic, covalent and ionic. The spectra of metallic Al and ...

  7. A spectroscopic temperature measurement of converging detonations by the emission spectra-matching method

    The spectroscopic measurement of the temperature of converging detonation by the emission spectrum-matching method was proposed and performed. The combination of gas dynamics parameters was adjusted until the agreement between the calculated profile of artificial spectra and the light emission spectra at the convergence center was obtained. The mixed gas of oxygen and acetylene was used for the experiment. When the mixing ratio of oxygen and acetylene was one to one, and the initial gas pressure was 60 Torr, the behavior of detonation was same as that of cylindrically converging shock waves propagating in the gas of specific heat ratio of 1.28 in the Guderley's theory. The increase of light emission intensity with the increase of molecular density, and the effect of temperature were observed. The effect of pressure broadening was also studied. It was found that the spectrum-matching method is available even for the weak emission or strong broadening. The artificial light emission spectra which agreed with the observed spectra were obtained. (Kato, T.)

  8. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-02-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range.

  9. Study of Ultraviolet Emission Spectra in ZnO Thin Films

    Y. M. Lu

    2013-01-01

    Full Text Available Photoluminescence (PL of ZnO thin films prepared on c-Al2O3 substrates by pulsed laser deposition (PLD are investigated. For all samples, roomtemperature (RT spectra show a strong band-edge ultraviolet (UV emission with a pronounced low-energy band tail. The origin of this UV emission is analyzed by the temperature dependence of PL spectra. The result shows that the UV emission at RT contains different recombination processes. At low temperature donor-bound exciton (D0X emission plays a major role in PL spectra, while the free exciton transition (FX gradually dominates the spectrum with increasing temperatures. It notes that at low temperature an emission band (FA appears in low energy side of D0X and FX and can survive up to RT. Further confirmation shows that the origin of the band FA can be attributed to the transitions of conduction band electrons to acceptors (e, A0, in which the acceptor binding energy is estimated to be approximately 121 meV. It is concluded that at room temperature UV emission originates from the corporate contributions of the free exciton and free electrons-to-acceptor transitions.

  10. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  11. F\\"orster resonance energy transfer, absorption and emission spectra in multichromophoric systems: I. Cumulant expansions

    Ma, Jian

    2014-01-01

    We study the F\\"orster resonant energy transfer (FRET) rate in multichromophoric systems. The multichromophoric FRET rate is determined by the overlap integral of the donor's emission and acceptor's absorption spectra, which are obtained via 2nd-order cumulant expansion techniques developed in this work. We calculate the spectra and multichromophoric FRET rate for both localized and delocalized systems. (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the multichromophoric FRET rate. (ii) The absorption spectra obtained by the cumulant expansion method are quite close to the exact one for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give very good results for the localized system, but fail to obtain reliable spectra of the high excitations of a delocalized system, when the system-bath coupling is large and ...

  12. Pair spectra and exciton emission of sodium implanted ZnSe:Li

    The luminescence of ZnSe:Li was investigated after sodium implantation as a function of the doses and annealing conditions. At low temperature we observed emission due to bound excitons and donor-acceptors pair recombination. The spectra show a strong Na dependence similar for both Isup(Y1) and P-series band. (orig.)

  13. Fourier transform infrared emission spectra of atomic rubidium: g- and h-states

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.

    2012-01-01

    Roč. 45, č. 17 (2012), s. 175002. ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012

  14. Study of ion-induced optical emission spectra in sputtering of scandium target

    Ion-induced optical emission spectra excited by bombardment of scandium target with 40 keV Xe+ ions are studied in spectral region of 380-600nm. Excitation efficiencies of atomic energy levels in sputtering processes and in plasma discharge are compared. Possible new mechanisms of electron excitation in ion sputtering of metals are discussed. (author)

  15. Discernment of lint trash in raw cotton using multivariate analysis of excitation-emission luminescence spectra

    Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...

  16. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  17. Iron Emission Lines in the Spectra of Classical T Tauri Stars

    Beristain, G.; Edwards, S.; Hartigan, P.

    1993-05-01

    The optical and infrared continuum emission excesses in classical T Tauri stars are frequently attributed to accretion disks with characteristic mass accretion rates of 10(-7) Msun yr(-1) . The spectra of classical T Tauri stars are also rich in emission lines, arising from both permitted and forbidden atomic species, which have been attributed to formation in regions as diverse as chromospheres, boundary layers, winds and collimated jets. We have conducted a high resolution spectroscopic survey of 48 T Tauri stars in the Tau-Aur star formation complex covering the wavelength range 3900{\\kern.2em Angstroms} to 7000{\\kern.2em Angstroms} with the aim of determining the origin of the various emission lines and report here on the most prominent metallic species present in the T Tauri spectra, Fe I and Fe II. From our spectra we have both 1) determined the level of optical continuum emission, expressed as the ratio of `veiling' to photospheric flux, and 2) extracted residual Fe emission line profiles, free of contamination from underlying photospheric features. We find that Fe I, II emission is seen only in T Tauri stars which have infrared and optical continuum emission excesses attributed to accretion disks; none of the `weak-line' T Tauri stars, with photospheric IR colors and no optical veiling, have detectable Fe emission. Correlations of Fe emission equivalent widths with both K-L and the ratio of veiling to photospheric flux, r, suggest that the Fe lines arise as a result of accretion related activity. DR Tau's rich emission line spectra permit study of the largest number of unblended Fe I,II profiles, for which we have spectra covering 5 different nights. Multiplet line ratios indicate the Fe lines are optically thick, and line luminosities imply emitting areas covering a few percent of the stellar surface. The lines are typically broad and symmetric, although inverse P Cygni structure in Fe II is seen on one night. For 4 nights, the Fe I and Fe II lines

  18. Progress in the KAERI high energy nuclear data library : proton-induced neutron emission spectra

    Proton-induced neutron yields and emission spectra up to a few hundreds MeV are important nuclear data in the particle transport of the accelerator-driven system (ADS) and in the space shielding for trapped protons and solar energetic particle events. Within the framework of KAERI high energy nuclear data library evaluation, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction, (p, xn), of C-12, Al-27, Fe-56, and Pb-208 for energies below 400 MeV are evaluated based upon model calculations, guided and benchmarked by existing experimental data. Theoretical calculations were performed with the optical model analysis for the direct reactions and transmission coefficients, Hauser-Feshbach model for the equilibrium emission, and the exciton model for the preequilibrium emission, using the ECIS-GNASH code system. (author)

  19. Excitation and emission spectra of rubidium in rare-gas thin-films

    Gerhardt, Ilja; Momose, Takamasa; 10.1063/1.4730032

    2012-01-01

    To understand the optical properties of atoms in solid state matrices, the absorption, excitation and emission spectra of rubidium doped thin-films of argon, krypton and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to ...

  20. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    photoemission spectra from W single crystals. The nondirect as well as the direct models for bulk photoemission processes are investigated. The emission from the three low-index surfaces (100), (110), and (111) exhibits strong dependence on direction and acceptance cone. According to the present band model...... there should essentially be no emission normal to the (110) face for photon energies between 9.4 and 10.6 eV. Experimental observation of emission in this gap, however, implies effects not included in the simple bulk models. In particular, effects arising from surface emission have been considered, i.......e., emission of those electrons which are excited in a single-step process from initial states near the surface to final states outside the crystal. The electrons that are emitted from the surface in directions perpendicular to the crystal planes carry information on the one-dimensional surface density of...

  1. On the effect of emergence angle on emissivity spectra: application to small bodies

    Maturilli, Alessandro; Helbert, Jörn; Ferrari, Sabrina; D'Amore, Mario

    2016-05-01

    Dependence of laboratory-measured emissivity spectra from the emergence angle is a subject that still needs a lot of investigations to be fully understood. Most of the previous work is based on reflectance measurements in the VIS-NIR spectral region and on emissivity measurements of flat, solid surfaces (mainly metals), which are not directly applicable to the analysis of remote sensing data. Small bodies in particular (c.f. asteroids Itokawa and 1999JU3, the respective targets of JAXA Hayabusa and Hayabusa 2 missions) have a very irregular surface; hence, the spectra from those rough surfaces are difficult to compare with laboratory spectra, where the observing geometry is always close to "nadir." At the Planetary Emissivity Laboratory of the German Aerospace Center (DLR), we have set up a series of spectral measurements to investigate this problem in the 1- to 16-µm spectral region. We measured the emissivity for two asteroid analogue materials (meteorite Millbillillie and a synthetic enstatite) in vacuum and under purged air, at surface temperature of 100 °C, for emergence angles of 0°, 5°, 10°, 20°, 30°, 40°, 50°, and 60°. Emissivity of a serpentinite slab, already used as calibration target for the MARA instrument on Hayabusa 2 MASCOT lander and for the thermal infrared imager spectrometer on Hayabusa 2 orbiter, was measured under the same conditions. Additionally, a second basalt slab was measured. Both slabs were not measured at 5° inclination. Complementary reflectance measurements of the four samples were taken. For all the samples measured, we found that for calibrated emissivity, significant variations from values obtained at nadir (0° emergence angle) appear only for emergence angles ≥40°. Reflectance measurements confirmed this finding, showing the same trend of variations.

  2. Time-resolved x-ray emission spectra from optically ionized helium and neon plasmas

    The interaction of high-power, subpicosecond laser pulses with gas targets is expected to produce highly nonequilibrium plasmas whose parameters are controlled by the laser wavelength and polarization. We investigate such plasmas by measuring time-resolved x-ray-emission spectra in highly ionized helium and neon plasmas produced by high-power optical ionization. Electron temperatures are observed to increase with increasing laser wavelength and with variation of the laser polarization from linear to circular. These results are in qualitative agreement with current models for production of tunnel-ionized laser plasmas. Limited quantitative agreement, however, reflects the complexity of the optical ionization process and suggests the important role rapid cooling processes can play in these plasmas. Emission spectra are combined with time-dependent kinetic simulations to assess prospects for x-ray lasers pumped by rapid electron-ion recombination. copyright 1998 The American Physical Society

  3. Effects of trapped electrons on the line shape in emission Moessbauer spectra

    To explain line broadening in emission Moessbauer spectra as compared to the corresponding absorber measurements, the model of trapped electrons has been proposed. Auger electrons (emitted, e.g. after electron capture by 57Co or after the converted isomeric transition of 119mSn), as well as secondary electrons, may be trapped in the proximity to the nucleogenic ion. Electrons captured by lattice traps at different distances from the daughter ion induce an asymmetric distribution of quadrupole splitting in the resulting emission spectra, as shown in a few examples. This model is supported by estimates of quadrupole splitting values which may be caused by such trapped electrons located at specified distances from the nucleogenic atom.

  4. Robust red-emission spectra and yields in firefly bioluminescence against temperature changes

    Mochizuki, Toshimitsu; Wang, Yu; Hiyama, Miyabi; Akiyama, Hidefumi

    2014-05-01

    We measured the quantitative spectra of firefly (Photinus pyralis) bioluminescence at various temperatures to investigate the temperature dependence of the luciferin-luciferase reaction at 15-34 °C. The quantitative spectra were decomposed very well into red (1.9 eV), orange (2.0 eV), and green (2.2 eV) Gaussian components. The intensity of the green component was the only temperature sensitive quantity that linearly decreased as the temperature increased at pH 7 and 8. We found the quantitative bioluminescence spectra to be robust below 2.0 eV against temperature and other experimental conditions. The revealed robustness of the red emissions should be useful for quantitative applications such as adenosine-5'-triphosphate detection.

  5. Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics

    Madsen, K H

    2012-01-01

    We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes-Cummings model, while systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to coupling of other exciton lines to the cavity and interference of different propagation paths towards the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities we observe an anti crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral...

  6. Genetic parameters for methane emissions predicted from milk mid-infrared spectra in dairy cows

    Kandel, Purna Bhadra; Vanrobays, Marie-Laure; Vanlierde, Amélie; Dehareng, Frédéric; Froidmont, Eric; Dardenne, Pierre; Lewis, E; Buckley, F.; Deighton, MH; McParland, S.; Gengler, Nicolas; Soyeurt, Hélène

    2013-01-01

    Genetic selection of low methane (CH4) emitting animals is additive and permanent but the difficulties associated with individual CH4 measurement result in a paucity of records required to estimate genetic variability of CH4 traits. Recently, it was shown that direct quantification of CH4 emissions by mid-infrared spectroscopy (MIR) from milk. The CH4 prediction equation was developed using 452 SF6 CH4 measurements with associated milk spectra and the calibration equation wa...

  7. L α X-Ray Emission Spectra of Copper Compounds and Alloys

    Sugiura, Chikara

    1994-05-01

    With a two-crystal vacuum spectrometer equipped with beryl crystals,the Cu Lα emission spectra in fluorescence have been measuredfor selected copper compounds Cu2O, CuO, CuCl, CuBr, CuI,CuF2, CuCl2, CuBr2, CuF2·2H2O,CuCl2·2H2O and Cu3P, and alloysα-Cu+35%Zn and Cu+2%Be. The measured spectra aregrouped into three classes. The first class comprises the spectraof alloys, which consist of a single broad band similar to thatof Cu metal. The second class includes the spectra of monovalentcopper compounds, which are composed of a prominent peak and itshigh- and low-energy structures. To the third class belong thespectra of divalent copper compounds, which consist of a strongpeak accompanied with a characteristic dip and hump on thehigh-energy side. The Cu Lα emission bands of Cu2O,CuCl and CuBr are compared with available XPS spectra andtheoretical Cu-3d-DOS.

  8. Control methods for the field emission x-ray spectra and their applications

    Control methods for the field emission x-ray spectra and their applications to biomedical imaging are described. The x-ray source used for this research was a single shot type and consisted of the following essential components: a high voltage generator, a simple low impedance pulser with a coaxial oil condenser of 0.2μF-100kV, an impulse switching system utilizing a light communication device, and two types of field emission tubes. The tubes were of the diode type and were connected to a turbo molecular pump which allowed operation at pressures of approximately less than 1 x 10-3Pa. The maximum intensity was about 30C/kg at 1m/pulse, and the exposure time was about 1 μs. The bremsstrahlung spectra from this source were determined by means of intensity attenuation analysis using a new type of spectrum function (derived by the authors) closely fitting the field emission spectrum distribution. The peak intensity and the energy latitude of the spectra could be controlled. Various kinds of high speed radiography, (e.g., single shot dual energy subtraction radiography, and three dimensional image analysis) were accomplished by controlling the spectrum distribution

  9. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  10. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  11. Doppler effects on 3-D non-LTE radiation transport and emission spectra.

    Giuliani, J. L. (Naval Research Laboratory, Washington, DC); Davis, J. (Naval Research Laboratory, Washington, DC); DasGupta, A. (Naval Research Laboratory, Washington, DC); Apruzese, John P. (Naval Research Laboratory, Washington, DC); Jennings, Christopher A.; Clark, R. W. (Naval Research Laboratory, Washington, DC); Ampleford, David J.; Bailey, James E.; Thornhill, Joseph W. (Naval Research Laboratory, Washington, DC); Cuneo, Michael Edward; Rochau, Gregory Alan; Coverdale, Christine Anne; Jones, Brent Manley; Hansen, Stephanie B.

    2010-10-01

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

  12. Doppler effects on 3-D non-LTE radiation transport and emission spectra

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

  13. Emissitivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm.

    Jiménez-Muñoz, Juan C; Sobrino, José A

    2006-09-20

    Surface emissivities play an important role in thermal remote sensing, since knowledge of them is required to estimate land surface temperature with enough accuracy. They are also important in other environmental or geological studies. We show the results obtained for the emissivity spectra of different natural surfaces (water, green, and senescent vegetation) by applying the temperature and emissivity separation (TES) algorithm to ground-based measurements collected at the field with a multiband thermal radiometer. The results have been tested with data included in spectral libraries, and rms errors lower than 0.01 have been found, except for senescent vegetation. Two methods are also proposed to apply the TES algorithm to measurements achieved in the laboratory: (i) by heating the sample and (ii) using a box with reflective walls. PMID:16946789

  14. Observation of the Emission Spectra of an Atmospheric Pressure Radio-frequency Plasma Jet

    2005-01-01

    An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz)power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.

  15. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  16. Temperature measurements in microwave argon plasma source by using overlapped molecular emission spectra

    Abdel-Fattah, E.; Bazavan, M.; Shindo, H.

    2015-09-01

    The electron excitation temperature Texc, vibrational Tvib, and rotational Trot temperatures were measured in a high-pressure line-shaped microwave plasma source in argon over a wide range of gas pressure and microwave power, by using optical emission spectra. The selected ArI transition lines 5p-4s and 4p-4s were chosen to calculate electron excitation temperature using Boltzmann's plot method. Meanwhile, the emission spectra of hydroxyl OH molecular ( A 2 Σ + - X 2 Π i , Δ ν = 0 ) band and the nitrogen N2 second positive system ( C 3 Π u - B 3 Π g , Δ ν = + 1 ), both second diffraction order, were used to evaluate the vibrational Tvib and rotational Trot temperatures using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. The components of the overlapped spectrum are greatly influenced by the gas pressure; however, they are independent on microwave power. For temperatures, it was found that the Texc dramatically decreases from 2.5 to 0.75 eV, which qualitatively agrees with T e deduced from zero-global model. Both of Tvib and Trot significantly decrease with as gas pressure increase from 0.4 to 50 Torr. Yet, they behave differently with microwave power.

  17. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored

  18. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  19. Extremely hard GRB spectra prune down the forest of emission models

    Ghirlanda, G; Ghisellini, G; Ghirlanda, Giancarlo; Celotti, Annalisa; Ghisellini, Gabriele

    2003-01-01

    We consider the evidence for very hard low energy spectra during the prompt phase of Gamma Ray Bursts (GRB). In particular we examine the spectral evolution of GRB 980306 together with the detailed analysis of some other bursts already presented in the literature (GRB 911118, GRB 910807, GRB 910927 and GRB 970111), and check for the significance of their hardness by applying different tests. These are among the bursts with the hardest low energy spectrum, sufficiently bright to allow time resolved spectral studies on time intervals of the order of tenths of a second. We discuss the hard spectra of these bursts and their evolution in the context of several non--thermal emission models, which all appear inadequate to account for these cases. The extremely hard spectra at the beginning of their prompt emission are also compared with a black body spectral model: the resulting fits are remarkably good, except for an excess at high energies (in several cases) which could be simply accounted for by the presence of a...

  20. Ultraviolet emission from the sun and stars: a comparison of IUE and skylab spectra

    We present a comparison of IUE low-resolution SWP spectra of late-type stars and of high-resolution Skylab spectra of spatially-resolved solar regions of various degrees of magnetic activity (quiet areas, plages, flares). We degrade the high-resolution solar spectra to the same resolution of IUE and we analyze the solar and stellar data in exactly the same way. We show that the different levels of chromospheric and transition region emission observed in stars of similar spectral types are paralleled by a similar behaviour displayed by solar regions of different magnetic activity. We show that the spatially-resolved solar data obey the same flux-flux relationships as the stellar data over more than three orders of magnitude, with virtually the same slope and similar scatter. We argue that the similar behaviour of the solar and stellar UV line fluxes, together with the dependence of the stellar fluxes on rotation, are indirect evidence that stellar activity is of magnetic origin and likely results from a dynamo process. Finally, we investigate the contribution of blends, under different activity conditions, to line fluxes derived from IUE low-resolution spectra. We show that this contribution varies depending on the activity level, and may be substantial for the lines of 0 I at 1304 A and He II at 1640 A

  1. The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?

    Shahar Hod

    2015-10-01

    Full Text Available Bekenstein and Mukhanov (BM have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch≡δω/Δω≪1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ(a¯≡δω/Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a¯≡J/M2 is the dimensionless angular momentum of the black hole. It is shown that ζ(a¯ is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a¯≳0.9 are characterized by the dimensionless ratio ζ(a¯≳1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle is expected to smear the black-hole radiation spectrum into a continuum.

  2. The Impact of Non-Uniform Thermal Structure on the Interpretation of Exoplanet Emission Spectra

    Feng, Y Katherina; Fortney, Jonathan J; Stevenson, Kevin B; Bean, Jacob; Kreidberg, Laura; Parmentier, Vivien

    2016-01-01

    The determination of atmospheric structure and molecular abundances of planetary atmospheres via spectroscopy involves direct comparisons between models and data. While varying in sophistication, most model-spectra comparisons fundamentally assume "1D" model physics. However, knowledge from general circulation models and of solar system planets suggests that planetary atmospheres are inherently "3D" in their structure and composition. We explore the potential biases resulting from standard "1D" assumptions within a Bayesian atmospheric retrieval framework. Specifically, we show how the assumption of a single 1-dimensional thermal profile can bias our interpretation of the thermal emission spectrum of a hot Jupiter atmosphere that is composed of two thermal profiles. We retrieve upon spectra of unresolved model planets as observed with a combination of $HST$ WFC3+$Spitzer$ IRAC as well as $JWST$ under varying differences in the two thermal profiles. For WFC3+IRAC, there is a significantly biased estimate of CH...

  3. Emission spectra from AlN and GaN doped with rare earth elements

    Luminescent properties of GaN and AlN based semiconductors containing rare earth metals of Gd and Dy are studied. Cathodoluminescent spectra from AlGdN show a clear and sharp peak at 318 nm following LO phonon satellites. Photoluminescence spectra from GaDyN by the above-gap excitation also show several peaks in addition to the broad luminescence band emission. For GaGdN, the sharp PL peaks are also observed at 650 and 670 nm, and they are assigned to the intra-f orbital transitions by their time decay measurements. The broad band at around 365 nm for AlGdN, 505 nm for GaGdN and GaDyN are commonly observed. The origin of these broad bands is discussed

  4. Electronic structure, charge distribution and X-ray emission spectra of V3Si

    Cluster calculations of the electronic structure and charge distribution in V3Si have been performed using two different molecular orbital methods: a semiempirical LCAO and the MS Xα model. The results are compared with X-ray emission spectra and band structure calculations. An analysis of the calculated electronic distribution reveals a charge transfer from Si-atoms to V-atoms, the additional charge on a V-atom being 0.6e (LCAO) and 0.4e (MS Xα method). The results are in good agreement with experiment, which indicates that the cluster approach is adequate for the description of charge distributions and spectra characteristics of the A-15 compounds. (author)

  5. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    Kwak, Sehyun; Brix, M; Ghim, Y -c

    2016-01-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy system, measuring Li I line radiation using 26 channels with ~1 cm spatial resolution and 10~20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly devel...

  6. TDDFT Study of the Electronic Structure, Absorption and Emission Spectra of the Light Emitters of the Amazing Firefly Bioluminescence and Solvation Effects on the Spectra

    REN,Ai-Min; GUO,Jing-Fu; FENG,Ji-Kang; ZOU,Lu-Yi; LI,Zhong-Wei; GODDARD,John,David

    2008-01-01

    The ground and excited state properties of luciferin (LH2) and oxyluciferin (OxyLH2), the bioluminescent chemicals in the firefly, have been characterized using density functional theory (DFT) and time dependent DFT (TDDFT) methods. The effects of solvation on the electronic absorption and emission spectra of luciferin and oxyluciferin were predicted with a self-consistent isodensity polarized continuum model of the solvent using TDDFT.The S0→S1 vertical excitation energies in the gas phase and in water were obtained. Optimizations of the excited state geometries permitted the first predictions of the fluorescence spectra for these biologically important molecules. Shifts in both of the absorption and emission spectra on proceeding from the gas phase to aqueous solution were also predicted.

  7. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  8. Investigation of Proton Emission Spectra of Some Nuclear Reactor Materials for (p,xp) Reactions

    Aynur TATAR; Tel, Eyyup

    2010-01-01

    Proton-emission spectra produced by (p,xp) reactions for some nuclear reactor and particle accelerator material 56Fe and 60Ni target nuclei have been investigated by a proton beam up to 50 MeV. In these calculations, the pre-equilibrium effects have been investigated. The calculated results are compared with the experimental data taken from literature. Key words: (p,xp) reactions, Weisskopf-Ewing model, Full- Exciton model Bazı Nükleer Reaktör Materyallerinin (p,xp) Reaksiyonlarının ...

  9. X-Ray Emission Spectra of Ni-Like Gold Ions under Coronal Plasma Condition

    ZENG Jiao-Long; ZHAO Gang; YUAN Jian-Min

    2005-01-01

    @@ The strong x-ray line emission of n = 4 → n =3 and n = 5 → n =3 transitions of Ni-like Au has been investigated under a coronal plasma condition. A complete set of atomic data, including energy level, transition probability and collision strength, has been obtained to simulate the emission spectra. Under a typical coronal equilibrium (electron temperature of 2500eV and density of 1.0 × 1015), the predicted strongest line is due to the transition of (3d-3 2 4f5/2)1 → (3d10)0. Extensive studies show that the relative intensity is insensitive to temperature and density over a wide plasma condition.

  10. Green up-conversion and infrared emission spectra of U3+ in LaCl3

    A strong green emission of U3+ ions in LaCl3 under red excitation has been observed for the first time. The main anti-Stokes fluorescence arises from the U3+2K15/2 state (around 550 nm). Theoretical analysis and decaytime measurement of the induced fluorescence show that there are two mechanisms for the up-conversion. The first one consists in excited state absorption and the other one is due to energy transfer between two U3+ ions in the 4F9/2 state. In addition a detailed study of infrared emission spectra of LaCl3:U3+ has been carried out and lifetimes of main fluorescent levels were measured at low temperature. From this study three new experimental levels have been assigned. (orig.)

  11. Bound-bound transitions in the emission spectra of Ba$^{+}$--He excimer

    Moroshkin, Peter

    2016-01-01

    We present an experimental and theoretical study of the emission and absorption spectra of the Ba$^{+}$ ions and Ba$^{+\\ast}$He excimer quasimolecules in the cryogenic Ba--He plasma. We observe several new spectral features in the emission spectrum which we assign to the electronic transitions between bound states of the excimer correlating to the 6$^{2}P_{3/2}$ and 5$^{2}D_{3/2,5/2}$ states of Ba$^{+}$. The resulting Ba$^{+}$(5$^{2}D_{J}$)He is a metastable electronically excited complex with orbital angular momentum $L$=2, thus expanding the family of known metal--helium quasimolecules. It might be suitable for high-resolution spectroscopic studies and for the search for new polyatomic exciplex structures.

  12. Dielectric tensor of tetracene single crystals: the effect of anisotropy on polarized absorption and emission spectra.

    Tavazzi, S; Raimondo, L; Silvestri, L; Spearman, P; Camposeo, A; Polo, M; Pisignano, D

    2008-04-21

    The full UV-visible dielectric tensor and the corresponding directions of the principal axes of triclinic tetracene crystals are reported as deduced either by polarized absorption and ellipsometry measurements or by calculations based on the molecular and crystallographic data. The results allow the attribution of the polarized bands observed in both absorption and photoluminescence emission spectra. In particular, the spectral line shape and polarization of the emission are found to depend on the sample thickness, and the effect is attributed to the modification of the state of polarization of the emitted light during its propagation inside the crystal. Indeed, the directions of polarization of the lowest optical transitions and the directions of the principal axes of the dielectric tensor are demonstrated not to coincide, in contrast to the assumptions typically made in the literature, thus causing the mixed transverse/longitudinal character of light propagation. PMID:18433260

  13. Random mixtures of polycyclic aromatic hydrocarbon spectra match interstellar infrared emission

    Rosenberg, Marissa J F; Boersma, Christiaan

    2014-01-01

    The mid-infrared (IR; 5-15~$\\mu$m) spectrum of a wide variety of astronomical objects exhibits a set of broad emission features at 6.2, 7.7, 8.6, 11.3 and 12.7 $\\mu$m. About 30 years ago it was proposed that these signatures are due to emission from a family of UV heated nanometer-sized carbonaceous molecules known as polycyclic aromatic hydrocarbons (PAHs), causing them to be referred to as aromatic IR bands (AIBs). Today, the acceptance of the PAH model is far from settled, as the identification of a single PAH in space has not yet been successful and physically relevant theoretical models involving ``true'' PAH cross sections do not reproduce the AIBs in detail. In this paper, we use the NASA Ames PAH IR Spectroscopic Database, which contains over 500 quantum-computed spectra, in conjunction with a simple emission model, to show that the spectrum produced by any random mixture of at least 30 PAHs converges to the same 'kernel'-spectrum. This kernel-spectrum captures the essence of the PAH emission spectrum...

  14. Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm

    DeSutter, John; Francoeur, Mathieu

    2016-01-01

    Optimal radiator thermal emission spectra maximizing thermophotovoltaic (TPV) conversion efficiency and output power density are determined when temperature effects in the cell are considered. To do this, a framework is designed in which a TPV model that accounts for radiative, electrical and thermal losses is coupled with a genetic algorithm. The TPV device under study involves a spectrally selective radiator at a temperature of 2000 K, a gallium antimonide cell, and a cell thermal management system characterized by a fluid temperature and a heat transfer coefficient of 293 K and 600 Wm-2K-1. It is shown that a maximum conversion efficiency of 38.8% is achievable with an emission spectrum that has emissivity of unity between 0.719 eV and 0.763 eV and zero elsewhere. This optimal spectrum is less than half of the width of those when thermal losses are neglected. A maximum output power density of 41708 Wm-2 is achievable with a spectrum having emissivity values of unity between 0.684 eV and 1.082 eV and zero e...

  15. Theoretical simulations of emission spectra of Fe7+ and Fe8+

    Zeng Jiao-Long; Wang Yan-Gui; Zhao Gang; Yuan Jian-Min

    2006-01-01

    The energy levels, oscillator strengths, spontaneous radiative decay rates, and electron impact collision strengths are calculated for Fe Ⅷ and Fe Ⅸ using the recently developed flexible atomic code (FA3. These atomic data are used to analyse the emission spectra of both laboratory and astrophysical plasmas. The nf-3d emission lines have been simulated for Fe Ⅷ and Fe Ⅸ in a wavelength range of 6-14 nm. For Fe Ⅷ, the predicted relative intensities of lines are insensitive to temperature. For Fe Ⅸ, however, the intensity ratios are very sensitive to temperature, implying that the information of temperature in the experiment can be inferred. Detailed line analyses have also been carried out in a wavelength range of 60-80 nm for Fe Ⅷ, where the solar ultraviolet measurements of emitted radiation spectrometer records a large number of spectra. More lines can be identified with the aid of present atomic data. A complete dataset is available electronically from http://www.astrnomy.csdb.cn/EIE/.

  16. The emission spectra of TL produced by ion implanted CaF2

    Rare earth doping of CAF2 produces material which gives strong thermoluminescence signals. In an attempt to separate the influence of impurity and intrinsic defects CaF2 has been implanted with ions of Ce, Dy, Mn, Ca and F. Comparisons are made with chemically doped samples and the effect of thermal treatments have been made in all cases. The cerium and dysprosium ions influence both the shallow charge trapping levels, which determine the temperature of the glow peaks, and the recombination sites which control the photon spectra. After implantation the strong TL signals show emission at wavelengths near 360 nm for Ce, 480 nm for Dy and for Mn. Re-excitation of the trapping levels reveals selective emission for some defects, restructuring of less stable defects and major changes in defect concentrations with thermal treatment. The effects of the impurity and intrinsic defects on the spectra are discussed. One major observation is that addition of cerium to 'pure' samples does not enhance the TL sensitivity, whereas Dy and Mn both show new glow peaks. In the case of Dy it is thought that the charge trap and the luminescent site are directly linked within one complex defect. (author)

  17. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    Childress, Michael J; Seitenzahl, Ivo; Sullivan, Mark; Maguire, Kate; Taubenberger, Stefan; Scalzo, Richard; Ruiter, Ashley; Blagorodnova, Nadejda; Camacho, Yssavo; Castillo, Jayden; Elias-Rosa, Nancy; Fraser, Morgan; Gal-Yam, Avishay; Graham, Melissa; Howell, D Andrew; Inserra, Cosimo; Jha, Saurabh W; Kumar, Sahana; Mazzali, Paolo A; McCully, Curtis; Morales-Garoffolo, Antonia; Pandya, Viraj; Polshaw, Joe; Schmidt, Brian; Smartt, Stephen; Smith, Ken W; Sollerman, Jesper; Spyromilio, Jason; Tucker, Brad; Valenti, Stefano; Walton, Nicholas; Wolf, Christian; Yaron, Ofer; Young, D R; Yuan, Fang; Zhang, Bonnie

    2015-01-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of $^{56}$Ni ($M_{Ni}$) produced in the explosion. We then examine $^{56}$Ni yields for different SN Ia ejected masses ($M_{ej}$ - calculated using the relation between light...

  18. X-ray absorption and selectively excited X-ray emission spectra of atenolol and nadolol

    Full text: The biological function of a drug given by the oral route is ruled by its degree of absorption in the gastrointestinal tract. These absorption characteristics (dissolution, solubility, permeability, metabolism) of the drug are time consuming and expensive to investigate experimentally. The predictive power of traditional theoretical models is quite limited. This is especially so for solubility, where a model predicting values within one order of magnitude of the experimentally determined solubility is accepted by the research field. Aiming at a more detailed understanding of drug solubility, we are carrying out X-ray absorption and X-ray emission spectroscopy on a series of pharmaceutical model substances in solid form and in water solution. Changes in local geometry and electronic structure primarily associated with changes in the way the drug molecules are hydrogen bonded to surrounding molecules are directly reflected in the spectra. Here we present and analyze the spectra of two solid β-adrenoreceptors, atenolol and nadolol, at the carbon, nitrogen and oxygen K edges. Special attention is given to the influence on the spectra of hydrogen bonding. An increased understanding of hydrogen bonding is essential for improving solubility models

  19. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    K. Beier

    Full Text Available Infrared (IR molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants.

  20. Three Dimensional Thermoluminescence Emission Spectra of the LiF:Mg,Cu,Na,Si Thermoluminescent Materials

    A new sintered pellet-type LiF: Mg,Cu,Na,Si TL detector which has a high sensitivity and good reusability, named KLT-300 (KAERI LiF:Mg,Cu,Na,Si TL detector), was recently developed by the variation of dopant concentrations and the parameters for the preparation procedure at the Korea Atomic Energy Research Institute (KAERI). To establish a possibility for an improvement in the dosimetric properties of the LiF: Mg, Cu, Na, Si TL detectors, a study to understand the mechanism of the TL for the TL material is essential. The simple model of the mechanism of the TL comprises of three steps: the trapping of the charge carriers during an irradiation with ionizing radiation, the release of the charge carriers out of the traps due to thermal heating, and the capture of the charge carriers in the luminescent centers under a photon emission. The TL glow curve, the emitted light as a function of the temperature, can give some information on the trapping centers of the TL material, but cannot give the information for step. To understand the mechanism of a TL for a TL material, the information for step should be provided. A possible technique to obtain information for the step in the TL mechanism is the measurement of the light emission during a heating of the sample as a function of the temperature and wavelength (three-dimensional TL spectra). In this paper, the TL spectra for the four kinds of samples which had a different composition of the dopants: LiF: Mg,Cu,Na,Si (MCNS); LiF: Mg,Cu (MC); LiF: Mg,Na,Si (MNS) and LiF: Cu,Na,Si (CNS) were presented for the study. The detailed results of the analysis for the three-dimensional TL spectra of the LiF: Mg,Cu,Na,Si TL materials which have various concentrations of the dopants is reported as a comprehensive study to understand the TL mechanism for the material. The TL spectra were fitted by Gaussian curves to establish the components of the spectra

  1. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760 nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8

  2. Modeling of the EUV and X-Ray Emission Spectra Induced by the Solar Winds Ions in the Heliosphere

    Kharchenko, Vasili

    2005-01-01

    We have carried out investigation of the EUV and X-ray emission spectra induced in interaction between the Solar Wind (SW) and interstellar neutral gas. The spectra of most important SW ions have been computed for the charge-exchange mechanism of X-ray emission using new accurate spectroscopic data from recent laboratory measurements and theoretical calculations. Total spectra have been constructed as a sum of spectra induced in the charge-exchange collisions by individual O(exp q+), C(exp q+), N(exp q+), Ne(exp q+), Mg (exp q+) and Fe(exp q+) ions. Calculations have been performed for X-ray emission from the heliospheric hydrogen and helium gas. X-ray maps of the heliosphere have been computed. The power density of X-ray sources in the heliospheric ecliptic plane is shown for the H gas and for the He gas. Distances from the Sun (0,0) are given in AU. The helium cone is clear seen in the X-ray map of the charge-exchange emission induced by the solar wind. X-ray emission spectra detected by the Chandra X-ray telescope from the "dark" side of Moon has been identified as a X-ray background emission induced by the solar wind from the geocorona. Spectra and intensities of this charge-exchange X-rays have been compared with the heliospheric component of the X-ray background. Observations and modeling of the SW spectra induced from the geocorona indicate a strong presence of emission lines of highly charged oxygen ions. Anisotropy in distribution of heliospheric X-rays has been predicted and calculated for the regions of the fast and slow solar winds.

  3. Reflection and Emission Spectra of Fe-Oxides Under Venus-Like Conditions

    Bullock, Mark A.; Tsang, Con C. C.; Durda, Dan D.; Kargel, Jeffrey S.

    2015-11-01

    The Solar System’s last solid planet for which we have no mineralogy data is Venus. Soviet landers acquired images and elemental abundances at six locations on the surface of Venus. γ-ray and XRF spectroscopy performed by the landers showed that the plains are made of mafic basalts. Very large concentrations of K at the Venera 8 and 13 landing sites indicated the presence of alkaline basalts.Near-IR and thermal IR remote sensing of Mars, both from orbit and at the surface, have revealed the layered mineralogical complexity of that planet. Dominated by basalts and a wide-variety of fluid-altered phases, the mineralogy of Mars tells a complex story of wet and dry epochs in a history of dramatic climate change.At the surface of Venus, optical pathlengths are small and there is little scattering due to hazes. The environment around a lander or rover on Venus can be mapped from 0.4 to 3 μm just as well as it has been on Mars. Laboratory spectra show that the ferric edge at 0.55 μm that makes Mars red shifts to 1 μm at Venus surface temperatures (Pieters et al., 1986). This spectral feature is caused by strong charge transfer transitions in the UV between overlapping orbitals of iron and oxygen, and crystal-field electronic transition bands of ferric Fe (Pieters and Englert, 1993). Pressure and temperature will alter and broaden crystal-field electronic transition bands. Johnson and Fegley (2000) showed that a halogenated/hydrated amphibole (tremolite) is metastable on Venus; thus, metamorphic remnants of an ancient hydrosphere could still exist. In future work the reflectance and emission spectra of this phase will also be studied at high temperatures.We will present reflection and emission spectra of several Fe-oxides up to 450°C and 100 bars. These environmental conditions are programmable in a small, off-the-shelf 1 cc chamber that sits in the optical path of a Nicolet FTIR spectrometer. Our work will show that ambient pressure and temperature have significant

  4. Observations of the Quadrantid meteor shower from 2008 to 2012: orbits and emission spectra

    Madiedo, José M; Trigo-Rodríguez, Josep M; Castro-Tirado, Alberto J; Pujols, Pep; Pastor, Sensi; Reyes, José A de los; Rodríguez, Diego

    2016-01-01

    The activity of the Quadrantids in January during several years (2008, 2010, 2011 and 2012) has been investigated in the framework of the SPanish Meteor Network (SPMN). For this purpose, an array of high-sensitivity CCD video devices and CCD all-sky cameras have been used to obtain multi-station observations of these meteors. These allowed us to obtain precise radiant and orbital information about this meteoroid stream. This paper presents a large set of orbital data (namely, 85 orbits) of Quadrantid meteoroids. Most meteors produced by these particles were recorded during the activity peak of this shower. Besides, we discuss four Quadrantid emission spectra. The tensile strength of Quadrantid meteoroids has been also obtained.

  5. Dust emission features in 3-micron spectra of Herbig Ae/Be stars

    Brooke, T. Y.; Tokunaga, A. T.; Strom, S. E.

    1993-01-01

    Attention is given to low- and medium-resolution spectra in the 3-micron region of 24 Herbig Ae/Be stars obtained in a search for organic features from the dust around young stars. The 3.29-micron emission feature from aromatic hydrocarbons was detected in three objects: Lk H-alpha 25, XY Per, and AS 310. Two other stars, HD 245185 and HK Ori, may have weak features. About 20 percent of the Herbig Ae/Be surveyed to date have firmly detected 3.29-micron features. The available data indicate that the 3.29-micron feature is more extended around Herbig Ae/Be stars of earlier spectral type, possibly due to dehydrogenization or destruction of the aromatics near these stars. It is suggested that the total number of aromatics excited by the stars is also greater around the earlier-type objects.

  6. [Study of emission spectra of N atom generated in multi-needle-to-plate corona discharge].

    Ge, Hui; Yu, Ran; Zhang, Lu; Mi, Dong; Zhu, Yi-Min

    2012-06-01

    The emission spectra of nitrogen (N) atom produced by multi-needle-to-plate negative corona discharge in air were detected successfully at one atmosphere, and the excited transition spectral line at 674.5 nm with maximum value of relative intensity was selected to investigate the influences of air and electrical parameters on N atom relative density. The results indicate that N atom relative density in ionization region increases with the increase in power; decreases with increasing discharge gap and relative humidity; and with the increase in N2 content, the relative density of N active atom firstly increases and then decreases. Under present experimental conditions, the maximum value of N atom relative density appears at the axial distance from needle point r = 1 mm. PMID:22870624

  7. Searching for gas emission lines in Spitzer Infrared Spectrograph (IRS) spectra of young stars in Taurus

    Baldovin-Saavedra, C.; Audard, M.; Güdel, M.; Rebull, L. M.; Padgett, D. L.; Skinner, S. L.; Carmona, A.; Glauser, A. M.; Fajardo-Acosta, S. B.

    2011-04-01

    Context. Our knowledge of circumstellar disks has traditionally been based on studies of dust. However, gas dominates the disk mass and its study is key to our understanding of accretion, outflows, and ultimately planet formation. The Spitzer Space Telescope provides access to gas emission lines in the mid-infrared, providing crucial new diagnostics of the physical conditions in accretion disks and outflows. Aims: We seek to identify gas emission lines in mid-infrared spectra of 64 pre-main-sequence stars in Taurus. Using line luminosities and other known star-disk-outflow parameters, we aim to identify correlations that will help to constrain gas heating, excitation mechanisms, and the line formation. Methods: We have based our study on Spitzer observations using the Infrared Spectrograph (IRS), mainly with the high-resolution modules. Line luminosities (or 3σ upper limits) have been obtained by fitting Gaussian profiles to the lines. We have further searched for correlations between the line luminosities and different parameters related to the star-disk system. Results: We have detected H2 (17.03, 28.22 μm) emission in 6 objects, [Ne II] (12.81 μm) emission in 18 objects, and [Fe II] (17.93, 25.99 μm) emission in 7 objects. [Ne II] detections are found primarily in Class II objects. The luminosity of the [Ne II] line (LNeII) is in general higher for objects known to drive jets than for those without known jets, but the two groups are not statistically distinguishable. LNeII is correlated with X-ray luminosity, but for Class II objects only. LNeII is also correlated with disk mass and accretion rate when the sample is divided into high and low accretors. Furthermore, we find correlations of LNeII with mid-IR continuum luminosity and with luminosity of the [O I] (6300 Å) line, the latter being an outflow tracer. L [FeII] correlates with Ṁacc. No correlations were found between LH2 and several tested parameters. Conclusions: Our study reveals a general trend

  8. [Application study of the thermal infrared emissivity spectra in the estimation of salt content of saline soil].

    Xia, Jun; Tashpolat, Tiyip; Mamat, Sawut; Zhang, Fei; Han, Gui-Hong

    2012-11-01

    Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible. PMID:23387157

  9. Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure.

    Huang, Pu; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Zhong, Hong-Xia; Ding, Yi-Min; Cao, Xiong; Wu, Meng; Lu, Jing

    2016-08-01

    The physical origin of the observed anomalous photoluminescence (PL) behavior, that is, the large-size graphene quantum dots (GQDs) exhibiting higher PL energy than the small ones and the broadening PL spectra from deep ultraviolet to near-infrared, has been debated for many years. Obviously, it is in conflict with the well-accepted quantum confinement. Here we shed new light on these two notable debates by state-of-the-art first-principles calculations based on many-body perturbation theory. We find that quantum confinement is significant in GQDs with remarkable size-dependent exciton absorption/emission. The edge environment from alkaline to acidic conditions causes a blue shift of the PL peak. Furthermore, carbon vacancies are inclined to assemble at the GQD edge and form the tiny edge microstructures. The bound excitons, localized inside these edge microstructures, determine the anomalous PL behavior (blue and UV emission) of large-size GQDs. The bound excitons confined in the whole GQD lead to the low-energy transition. PMID:27409980

  10. EMISSION FROM HOT DUST IN THE INFRARED SPECTRA OF GAMMA-RAY BRIGHT BLAZARS

    A possible source of γ-ray photons observed from the jets of blazars is inverse Compton scattering by relativistic electrons of infrared seed photons from a hot, dusty torus in the nucleus. We use observations from the Spitzer Space Telescope to search for signatures of such dust in the infrared spectra of four γ-ray bright blazars, the quasars 4C 21.35, CTA102, and PKS 1510-089, and the BL Lacertae object ON231. The spectral energy distribution (SED) of 4C 21.35 contains a prominent infrared excess indicative of dust emission. After subtracting a non-thermal component with a power-law spectrum, we fit a dust model to the residual SED. The model consists of a blackbody with temperature ∼1200 K, plus a much weaker optically thin component at ∼660 K. The total luminosity of the thermal dust emission is 7.9 ± 0.2 x 1045 erg s-1. If the dust lies in an equatorial torus, the density of infrared photons from the torus is sufficient to explain the γ-ray flux from 4C 21.35 as long as the scattering occurs within a few parsecs of the central engine. We also report a tentative detection of dust in the quasar CTA102, in which the luminosity of the infrared excess is 7 ± 2 x 1045 erg s-1. However, in CTA102 the far-infrared spectra are too noisy to detect the 10 μm silicate feature. Upper limits to the luminosity from thermal emission from dust in PKS 1510-089, and ON231, are 2.3 x 1045, and 6.6 x 1043 erg s-1, respectively. These upper limits do not rule out the possibility of inverse Compton upscattering of infrared photons to γ-ray energies in these two sources. The estimated covering factor of the hot dust in 4C 21.35, 22%, is similar to that of non-blazar quasars; however, 4C 21.35 is deficient in cooler dust.

  11. Equilibrium amd direct mechanism contribution to neutron emission spectra from 56Fe nuclei at 14 MeV initial energy

    Neutron emission spectra from Fe(n, xn) reaction at 14 MeV have been analyzed, taking into account direct and equilibrium interaction mechanisms. The direct contribution to the neutron emission spectra have been calculated using the DWBA method and strong channel couplings the equilibrium contribution was described in the framework of the Hauser-Feshbach approach using the generalized model of superfluid nucleus for the level density with fitted to experiment parameters. Comparison of the calculation with experimental data shows a good agreement and sufficiency of only these two processes

  12. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  13. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters

  14. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  15. On-the-fly ab initio semiclassical dynamics: Identifying degrees of freedom essential for emission spectra of oligothiophenes

    Wehrle, Marius; Vanicek, Jiri

    2014-01-01

    Vibrationally resolved spectra provide a stringent test of the accuracy of theoretical calculations. We combine the thawed Gaussian approximation (TGA) with an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes with up to five rings. The efficiency of the OTF-AI-TGA permits treating all vibrational degrees of freedom on an equal footing even in pentathiophene with 105 vibrational degrees of freedom, thus obviating the need for the global harmonic approximation, popular for large systems. Besides reproducing almost perfectly the experimental emission spectra, in order to provide a deeper insight into the associated physical and chemical processes, we also develop a novel systematic approach to assess the importance and coupling between individual vibrational degrees of freedom during the dynamics. This allows us to explain how the vibrational line shapes of the oligothiophenes change with increasing number of rings. Furthermore, we observe the dynam...

  16. Electromagnetic emission from long-lived binary neutron star merger remnants II: lightcurves and spectra

    Siegel, Daniel M

    2015-01-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality with the ground-based advanced LIGO/Virgo GW detector network starting its first science run this year. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission starting from an early baryonic wind phase and resulting in a final pulsar wind nebula that is confined by the previously ejected material. Lightcurves and spectra are computed for a wide range of post-merger...

  17. Frequency spectra of cosmic ray air shower radio emission measured with LOPES

    Nigl, A

    2008-01-01

    AIMS: We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (1017 eV). METHODS: We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. RESULTS: The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential, or alternatively, with a power law. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). One of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length me...

  18. Simulation of emission spectra from nonuniform reactive laser-induced plasmas

    Hermann, Jörg; Lorusso, Antonella; Perrone, Alessio; Strafella, Francesco; Dutouquet, Christophe; Torralba, Béatrice

    2015-11-01

    We demonstrate that chemical reactions leading to the formation of AlO radicals in plasmas produced by ablation of aluminum or Ti-sapphire with ultraviolet nanosecond laser pulses can be predicted by the model of local thermodynamic equilibrium. Therefore, emission spectra recorded with an echelle spectrometer and a gated detector were compared to the spectral radiance computed for uniform and nonuniform equilibrium plasmas. The calculations are based on analytical solutions of the radiation transfer equation. The simulations show that the plasmas produced in argon background gas are almost uniform, whereas temperature and density gradients are evidenced in air. Furthermore, chemical reactions exclusively occur in the cold plume periphery for ablation in air. The formation of AlO is negligible in argon as the plasma temperature is too large in the time interval of interest up to several microseconds. Finally, the validity of local thermodynamic equilibrium is shown to depend on time, space, and on the elemental composition. The presented conclusions are of interest for material analysis via laser-induced breakdown spectroscopy and for laser materials processing.

  19. Simulation of emission spectra from nonuniform reactive laser-induced plasmas.

    Hermann, Jörg; Lorusso, Antonella; Perrone, Alessio; Strafella, Francesco; Dutouquet, Christophe; Torralba, Béatrice

    2015-11-01

    We demonstrate that chemical reactions leading to the formation of AlO radicals in plasmas produced by ablation of aluminum or Ti-sapphire with ultraviolet nanosecond laser pulses can be predicted by the model of local thermodynamic equilibrium. Therefore, emission spectra recorded with an echelle spectrometer and a gated detector were compared to the spectral radiance computed for uniform and nonuniform equilibrium plasmas. The calculations are based on analytical solutions of the radiation transfer equation. The simulations show that the plasmas produced in argon background gas are almost uniform, whereas temperature and density gradients are evidenced in air. Furthermore, chemical reactions exclusively occur in the cold plume periphery for ablation in air. The formation of AlO is negligible in argon as the plasma temperature is too large in the time interval of interest up to several microseconds. Finally, the validity of local thermodynamic equilibrium is shown to depend on time, space, and on the elemental composition. The presented conclusions are of interest for material analysis via laser-induced breakdown spectroscopy and for laser materials processing. PMID:26651798

  20. Influence of Oil-in-Water Emulsions on Fluorescence Properties as Observed by Excitation-Emission Spectra

    Baszanowska, E.; Zielinski, O.; Otremba, Z.; Toczek, H.

    2013-10-01

    Oil poses a major threat to marine ecosystems. This work describes a set of studies focused on introducing an efficient method for the identification of oil in the form of oil emulsions through fluorescence spectra analyses. Hence the concept of classification of oil pollution in seawater based on fluorescence spectroscopy using a high sensitive fluorimeter [1] suitable for laboratory and in situ measurements is introduced. We consider that this approach, in the future, will make it possible to collect specific fluorescence information allowing us to build a base of the oil standards. Here we examined excitation-emission fluorescence spectra (EEMs) of water containing oil-in-water emulsion prepared artificially under laboratory conditions. Water polluted with oil-in-water emulsion was studied with the objective to estimate differences in three-dimensional fluorescence spectra. Studies included various types of oils and oil concentrations. Essential differences in fluorescence spectra for various oils are indicated.

  1. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]18.7μm, [O IV], [Fe II], [S III]33.5μm, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z☉, and ionization parameters of 2-8 × 107 cm s–1. Based on the [S III]33.5μm/[S III]18.7μm ratios, the electron density in LIRG nuclei is typically one to a few hundred cm–3, with a median electron density of ∼300 cm–3, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s–1) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s–1. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified interstellar medium in their

  2. Practical retrieval of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data.

    Wu, Hua; Wang, Ning; Ni, Li; Tang, Bo-Hui; Li, Zhao-Liang

    2012-10-22

    A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of the atmosphere (TOA). The regression coefficients were determined by the main principal components of emissivity spectra and those of simulated brightness temperature at TOA using a ridge regression method. The experience with the simulated Interferometer Atmospheric Sounding Instrument (IASI) data showed that the emissivity spectra could be retrieved under clear sky conditions with root mean square errors of 0.015 and 0.03 for 714-970 cm(-1) (10.3-14.0 μm) and 970-1250 cm(-1) (8.0-10.3 μm), respectively, for various land surface and atmospheric conditions. This indicates the proposed method may be robust and applicable for all hyperspectral infrared sensors. PMID:23187241

  3. An interferometer experiment to explore the aspect angle dependence of stimulated electromagnetic emission spectra

    Isham

    2005-01-01

    Full Text Available When the Earth's ionosphere is irradiated by a radiofrequency (RF electromagnetic wave of sufficiently high power density and tuned to match a natural E- or F-region plasma frequency, ionospheric magnetoionic wave modes may be excited and may generate RF electromagnetic sideband waves via nonlinear interactions. These secondary emissions, which may then escape from the ionosphere, have been termed stimulated electromagnetic emission or SEE. The frequency spectra of this radiation has been studied extensively, and a number of characteristic spectral features have been identified and in some cases related to particular plasma processes. The separation in frequency between the RF pump and the harmonics of the local electron gyrofrequency is critical in determining the amount of anomalous absorption suffered by the pump wave and the spectral properties of the stimulated sidebands. The pump can excite electrostatic waves which do not propagate away but can in some cases be observed via radio-wave scattering from the electron density fluctuations associated with them. These enhanced density fluctuations are created by processes commonly referred to as upper-hybrid and Langmuir turbulence. Langmuir turbulence has been the subject of 930-MHz scattering observations with antenna scanning through several pre-selected angles between the geographic and geomagnetic zenith directions, and a preference for pointing angles between the Spitze angle and geomagnetic field-aligned was identified. Other phenomena, such as the generation of enhanced electron temperatures and artificial aurora, have more recently been shown to have special behavior at similar angles, near but apparently not quite at field-aligned. In view of this evidence for angular structure in several pump-induced effects, in light of the rich variety of SEE phenomena strongly dependent on the geomagnetic field via the frequency interval between the pump and the gyrofrequency harmonics, and in

  4. Calculation of emission and absorption spectra of LTE plasma by the STA [Super Transition Array] method

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations. The contribution of the transition array between two superconfigurations to a specific one-electron transition is then represented by a Gaussian whose moments are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the super configuration we use zeroeth order energies in the Boltzmann factor corrected by a super configuration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed 'UTA' structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. 4 refs., 9 figs

  5. Mid-Infrared Atomic Fine-Structure Emission Line Spectra of Luminous Infrared Galaxies: Spitzer/IRS Spectra of the GOALS Sample

    Inami, H; Charmandaris, V; Groves, B; Kewley, L; Petric, A; Stierwalt, S; Díaz-Santos, T; Surace, J; Rich, J; Haan, S; Howell, J; Evans, A; Mazzarella, J; Marshall, J; Appleton, P; Lord, S; Spoon, H; Frayer, D; Matsuhara, H; Veilleux, S

    2013-01-01

    We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the ...

  6. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  7. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  8. Influence of aluminum powder on emissive spectra in rapid reaction of N-hexane and oxygen mixtures

    Studies of the emission from rapid reaction of n-hexane and oxygen mixtures show that it mainly extends from 400 nm to the upper measured spectral limit of 830 nm. The spectra in this study consist of line, bands and the continuum emission. Bands of some intermediates produced in the reaction such as C2, CH, CH2O, CHO, OH, H2O and CO2 are identified under high-resolution spectroscopic measurements. According to the variations in radiation intensities with time of some important radicals or products, the authors discuss the effects of Al powder on the rapid reaction. Finally, the ignition mechanisms of n-hexane is speculated

  9. α particle induced scintillation in dense gaseous argon: emission spectra and temporal behavior of its ionic component

    The scintillation induced by α particles in dense gaseous argon (above 1 atm) has been studied. The electric field dependence of the scintillation, shows that the second continuum (centred around 1270A) stems from the neutral as well as from the ionic species, initially created by the impinging particle. Intensity decay curves and emission spectra of these neutral excitation and ionic components were determined. Time constants suggest that the recombination mechanism is responsible for a delayed formation of the second continuum states, 1Σ+sub(u) and 3Σ+sub(u). The third continuum of the emission spectra, which spreads at longer wavelengths, from 1600A to 2800A, is field independent

  10. X-ray emission spectra and gaps of CuFeO2 with the modified Becke–Johnson potential

    We investigate the electronic structures of CuFeO2 by using Tran and Blaha's modified Becke and Johnson exchange potential. The calculated X-ray emission spectra of CuFeO2 for O–K and Fe–L are quite compatible with experimental data. The calculated energy band gap and optical band gap are 0.15 eV and 1.03 eV, respectively, and the theoretical magnetic moment for Fe atom is 4.11μB, which is very close to experimental value 4.2±0.1μB. - Highlights: • Calculated electronic structures show CuFeO2 as a narrow gap semiconductor. • Calculated X-ray emission spectra for O–K and Fe–L are quite compatible with experimental data. • Calculated magnetic moment of the Fe ion agrees well with reported experimental value

  11. Observation of π backbonding features appearing in Fe 2p X-ray absorption spectra and Fe 1s-4p-1s resonant X-ray emission spectra of RbMn[Fe(CN)6

    Satellite features by p backbonding (metal-to-ligand charge transfer) were observed in both Fe 2p (L3,2-edge) X-ray absorption spectra and 1s-4p-1s resonant X-ray emission spectra for RbMn[Fe(CN)6], which can be theoretically explained using common parameters. Fe L3,2-edge and Mn L3,2-edge X-ray absorption spectra for low temperature phase are also presented.

  12. Effects of Weathering on Basaltic Rocks and Their Thermal Emission Spectra: Implications for Evaluating Mars Mineralogy and Weathering

    Kraft, M. D.; Michalski, J. R.; Sharp, T. G.

    2005-12-01

    Thermal emission spectroscopy has provided crucial information about the mineralogical composition of the Martian surface. Portions of that surface may be chemically weathered, and it is, therefore, important that the influence of chemical weathering on thermal infrared observations be recognized and understood. To this end, we have examined a suite of weathered rocks collected from the Columbia River Basalt Group. Weathering causes distinct changes to the thermal emissivity spectra of these basalts, which will be discussed in detail by J. R. Michalski et al. (this meeting). Here, we document physical and mineralogical features of weathering rinds to understand how weathering affects infrared spectra. Chemical weathering of basalts forms microcracks, dissolves primary minerals, and produces secondary phases. In the rocks examined, the relative abundance of primary minerals is the same in the weathering rind and corresponding unweathered rock. This is true even for olivine, the least stable phase in the rocks studied. Thus, preferential dissolution is not a controlling factor in the observed spectral changes. Microcracks form by expansion and dissolution and represent principle factors controlling changes in emissivity spectra in weathered rocks. These changes can lead to inaccurate relative abundances of primary phases derived from deconvolution modeling of weathered rocks. Also, the secondary silicates are generally amorphous to poorly crystalline, and deconvolution modeling misinterprets these materials as silicate glasses and clay minerals. The exact effects weathering exerts on emissivity spectra and subsequent modeling results will depend on what secondary silicates form, particularly how much silica is present, which will in turn depend on the conditions of weathering. However, the basic scenario of crack formation and mineralogical redistribution of silica should hold for a wide range of weathering conditions, and similar effects are expected for weathered

  13. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  14. Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery.

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2015-01-01

    Classical surgery is being overtaken by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm computed tomography (CT) and C-arm fluoroscopy are routinely used in clinical practice for intraoperative guidance. However, due to constraints regarding acquisition time and device configuration, intraoperative modalities have limited soft tissue image quality and reliable assessment of the cardiac anatomy typically requires contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a probabilistic sparse matching approach to fuse high-quality preoperative CT images and nongated, noncontrast intraoperative C-arm CT images by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the preoperative CT and mapped to the intraoperative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments on 95 clinical datasets demonstrate that our model-based fusion approach has an average execution time of 1.56 s, while the accuracy of 5.48 mm between the anchor anatomy in both images lies within expert user confidence intervals. In direct comparison with image-to-image registration based on an open-source state-of-the-art medical imaging library and a recently proposed quasi-global, knowledge-driven multi-modal fusion approach for thoracic-abdominal images, our model-based method exhibits superior performance in terms of registration accuracy and robustness with respect to both target anatomy and anchor anatomy alignment errors. PMID:25095250

  15. Robust model-based 3d/3D fusion using sparse matching for minimally invasive surgery.

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2013-01-01

    Classical surgery is being disrupted by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm CT and C-arm fluoroscopy are routinely used for intra-operative guidance. However, intra-operative modalities have limited image quality of the soft tissue and a reliable assessment of the cardiac anatomy can only be made by injecting contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a novel sparse matching approach for fusing high quality pre-operative CT and non-contrasted, non-gated intra-operative C-arm CT by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the pre-operative CT and mapped to the intra-operative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments demonstrate that our model-based fusion approach has an average execution time of 2.9 s, while the accuracy lies within expert user confidence intervals. PMID:24505663

  16. DYNA3D, 3-D Finite Elements for Dynamic Response of Inelastic Solids

    1 - Description of program or function: DYNA3D is an explicit, three- dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contain 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermo-elastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, and inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The IBM 3090 version does not contain the last two models mentioned. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of ten equations of state including linear polynomial, JWL high explosive, Sack 'Tuesday' high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interfaces data for contact surfaces. 2 - Method of solution: A contact-impact algorithm permits gaps and sliding along material interfaces with friction. All versions except for the IBM3090 include an interface type defining one-way treatment of sliding with voids and friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning with no need for transition regions. Spatial discretization is achieved by implementation of Hughes-Liu rectangular beams and shells, Belytschko-Tsay shells and beams, triangular shell elements based on work by Belytschko and colleagues, and 8-node solid-shell elements. All element classes can be included as parts of a rigid body. Three-dimensional plane stress constitutive subroutines update the stress tensor for the shell elements such that the stress component normal to the shell mid-surface is zero. One constitutive evaluation is made for each integration point through the shell thickness. The 8-node solid element uses either one point integration or the Flanagan and Belytschko constant stress formulation with exact volume integration. Zero energy modes in the shell and solid elements are controlled by either an hourglass viscosity of stiffness. The equations of motion are integrated in time by the central difference method. A Jaumann stress rate formulation is used with the exception of the orthotropic elastic and the rubber material subroutines which use Green-St.Venant strains to compute second Piola-Kirchoff stresses which transform to Gauchy stresses. 3 - Restrictions on the complexity of the problem: Storage allocation is dynamic. The only limit that exists is the storage capacity of the computer. Typical calculations have 10,000 to 200,000 elements

  17. NEHEX-3D, 3-D Neutron Diffusion for Fast Reactors and WWER in Hexagonal Geometry

    1 - Description of program or function: Neutronics calculation of fast and WWER type reactors with hexagonal assemblies (determination of keff value, group neutron fluxes and thermal power). 2 - Method of solution: The method is based on the following ideas: - nodal approach; - transverse integration technique; - expansion of one-dimensional neutron flux inside the node in polynomials up to the third order; - formulation of nodal equations in the form of response matrix equation; - solution of resulting nodal algebraic equations by means of iterative method. 3 - Restrictions on the complexity of the problem: Geometry: 30 deg. reflectional and 60 deg. rotational symmetry; Maximum number of subassemblies: NN = 100; Maximum number of energy groups: NG = 4; Maximum number of axial layers: NZ = 20; Maximum number of different materials : NM = 50

  18. SALE-3D, 3-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method

    1 - Description of problem or function: SALE-3D calculates three- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: SALE3D uses an ICED-ALE technique, which combines the ICE method of treating flow speeds and the ALE mesh treatment to calculate three-dimensional fluid flow. The finite- difference approximations to the conservation of mass, momentum, and specific internal energy differential equations are solved in a sequence of time steps on a network of deformable computational cells. The basic hydrodynamic part of each cycle is divided into three phases: (1) an explicit solution of the Lagrangian equations of motion updating the velocity field by the effects of all forces, (2) an implicit calculation using Newton-Raphson iterative scheme that provides time-advanced pressures and velocities, and (3) the addition of advective contributions for runs that are Eulerian or contain some relative motion of grid and fluid. A powerful feature of this three-phases approach is the ease with which different phases can be combined to suit the requirements of individual problems

  19. TOPAZ-3D, 3-D Steady-State or Transient Heat Transfer by Finite Element Method

    1 - Description of program or function: TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either, isotropic or orthotropic. A variety of time- and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances. 2 - Method of solution: TOPAZ3D solves the differential equation of heat conduction in a three-dimensional solid by the finite element method. TOPAZ3D uses an eight-node trilinear hexahedral element for spatial discretization of the geometry. The hexahedral element can degenerate to a six-node triangular prism and a four-node tetrahedron. These elements are integrated with a 2x2x2 Gauss quadrature rule, with temperature dependence of the properties accounted for at the Gauss point. Time integration is performed using a generalized trapezoidal method. Fixed point iteration with relaxation is used to satisfy equilibrium in nonlinear problems. 3 - Restrictions on the complexity of the problem: The phase change, slide surface, internal element, and bulk node features are not implemented

  20. Emission spectra of p-Si and p-Si:H models generated by ab initio molecular dynamics methods

    Loustau, E R L

    2011-01-01

    We created 4 p-Si models and 4 p-Si:H models all with 50% porosity. The models contain 32, 108, 256 and 500 silicon atoms with a pore parallel to one of the simulational cell axes and a regular cross-section. We obtained the densities of states of our models by means of ab initio computational methods. We wrote a code to simulate the emission spectra of our structures considering particular excitations an decay conditions. After comparing the simulated spectra with the experimental results, we observe that the position of the maximum of the emission spectra might be related with the size of the silicon backbone for the p-Si models as the quantum confinement models say and with the hydrogen concentration for the p-Si:H structures. We conclude that the quantum confinement model can be used to explain the emission of the p-Si structures but, in the case of the p-Si:H models it is necessary to consider others theories.

  1. Infrared Emission of Normal Galaxies from 2.5 to 12 Microns ISO Spectra, Near-Infrared Continuum and Mid-Infrared Emission Features

    Lu, N; Werner, M W; Dinerstein, H L; Dale, D A; Silbermann, N A; Malhotra, S; Beichman, C A; Jarrett, T H; Lu, Nanyao; Helou, George; Werner, Michael W.; Dinerstein, Harriet L.; Dale, Daniel A.; Silbermann, Nancy A.; Malhotra, Sangeeta; Beichman, Charles A.; Jarrett, Thomas H.

    2003-01-01

    We present ISO-PHOT spectra of the regions 2.5-4.9um and 5.8-11.6um for a sample of 45 disk galaxies from the U.S. ISO Key Project on Normal Galaxies. The spectra can be decomposed into three spectral components: (1) continuum emission from stellar photospheres, which dominates the near-infrared (2.5- 4.9um; NIR) spectral region; (2) a weak NIR excess continuum, which has a color temperature of ~ 1000K, carries a luminosity of a few percent of the total far-infrared luminosity L(FIR), and most likely arises from the ISM; and (3) the well-known broad emission features at 6.2, 7.7, 8.6 and 11.3 um, which are generally attributed to aromatic carbon particles. These aromatic features in emission (AFEs) dominate the mid-infrared (5.8-11.6 um; MIR) part of the spectrum, and resemble the so-called Type-A spectra observed in many non-stellar sources and the diffuse ISM in our own Galaxy. The relative strengths of the AFEs vary by 15-25% among the galaxies. However, little correlation is seen between these variations ...

  2. GNASH-FKK, FKK, Pre-equilibrium, Statistical Model Cross-Sections and Emission Spectra

    1 - Description of program or function: GNASH provides a flexible method by which reaction and level cross sections, isomer ratios, and emission spectra (neutron, gamma-ray, and charged-particle) resulting from particle-and- photon-induced reactions can be calculated. The September 1991 release of GNASH incorporated an additional option for calculating gamma-ray strength functions and transmission coefficients by including the Kopecky-Uhl model. In addition, improvements were made to the output routines, particularly regarding gamma-ray strength function information. Major improvements in the 1995 GNASH-FKK release include added capabilities: to read in externally calculated pre-equilibrium spectrum from, e.g., Feshbah-Kermin-Koonin theory, to do multiple pre-equilibrium calculations, to calculate appropriate spin distributions for nuclear states formed in pre-equilibrium reactions, and to do incident-photon calculations. PSR-0125/06: In the 1998 release, improvements were made in the accuracy of the exciton model and other calculations, and provision was made for including energy-dependent renormalization of the reaction cross section and energy-dependent exciton model parameterization (for data evaluation purposes). 2 - Method of solution: GNASH uses Hauser-Feshbach theory to calculate complicated sequences of reactions and includes a pre-equilibrium correction for binary tertiary channels. Gamma-ray competition is considered in detail for every decaying compound nucleus. A multi-humped fission barrier model is included for fission cross-section calculations. Three options for level densities are available. 3 - Restrictions on the complexity of the problem: In its present configuration, each calculation can handle decay sequences involving up to 38 compound nuclei and each decaying compound nucleus can emit a maximum of 5 types of radiation ( neutrons, gamma rays, protons, alphas, etc.). Angular-momentum effects and conservation of parity are included explicitly

  3. Investigating Possible Departures from Maxwellian Energy Distributions in Nebulae using High-Resolution Emission Line Spectra

    Turbyfill, Amanda; Dinerstein, H. L.; Sterling, N. C.

    2014-01-01

    The derivation of ionic abundance ratios from collisionally excited emission lines in gaseous nebulae requires knowledge of the physical state of the gas, particularly the electron kinetic temperature, Te, to which the resulting abundances are highly sensitive. A long-standing problem in nebular analyses has been pervasive discrepancies among values of Te obtained from different diagnostic ratios for a single nebula. Recently, Nicholls et al. (2012, ApJ, 752, 148) have suggested that the nebular electrons may not obey an equilibrium Maxwell-Boltzmann (M-B) energy distribution, but instead follow a “κ distribution” seen in many solar system plasmas, a family of distributions for which the M-B distribution is the limiting case where κ → ∞. The high-energy tail of supra-thermal electrons in κ distributions have a disproportionate effect on strongly energy dependent quantities, such as Te diagnostics, for even modest departures from M-B distributions. We apply prescriptions given by Nicholls et al. (2013, ApJS, 207, 21) to high-resolution (R=36,700) optical spectra of 10 planetary nebulae obtained with the 2d-coudé echelle spectrograph on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The advantages of these data include their broad spectral coverage and sufficiently high spectral resolution to separate blended lines and assess possible atmospheric absorption issues. The line fluxes were obtained using ROBOSPECT, an automated spectral line measurement package developed by Waters & Hollek (2013, PASP, 125, 1164). We solve both for Te under the assumption of M-B distributions, and the parameters of κ distributions consistent with the data. Our goal is to test whether the κ distribution hypothesis provides a better fit to the observed line ratios. Finally, we discuss effects on the derived ionic abundances under this alternate description of the particle energy distributions. This research was supported by NSF grant AST 0708245 and the John W

  4. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  5. Thermoluminescence emission spectra for the LiF:Mg,Cu,Na,Si thermoluminescent materials with various concentrations of the dopants (3-D measurement).

    Lee, J I; Lee, D; Kim, J L; Chang, S Y

    2006-01-01

    The thermoluminescence (TL) emission spectra from LiF TL materials, called KLT-300 (LiF:Mg,Cu,Na,Si) with various dopant concentrations are measured and analysed. These KLT-300 materials were developed by the Korea Atomic Energy Research Institute (KAERI) to achieve an enhancement of the thermal stability in TL readings. Six types of samples are prepared with different dopant concentrations in the following ranges; Mg (0-0.20 mol%), Cu (0-0.05 mol%), Na and Si (0-0.9 mol%). The spectra measurements are carried out for the six types of samples using a TL emission spectra measurement device. The spectra measurement device consists of a monochromator, photomultiplier tube and temperature control unit to thermally stimulate the samples. The measured data shows the light emission during heating of the sample as a function of temperature and wavelength (three-dimensional TL spectra). The spectra were analysed using a method of deconvolution based on gaussian curve. The wavelength of a main peak of the emission spectra changes depending on the existence of the Cu dopant, while intensity of the spectra rapidly changes with the Cu dopant concentrations. The 385 nm emission is mainly observed in all the spectra from the samples with the Cu dopant, but in those from the samples without the Cu dopant a very weak 401 nm emission is mainly observed. However, any change in the wavelength at a main peak of the TL emission spectra from the sample materials with Na and Si dopants is not observed but that in the intensity at a peak of the spectra is observed. PMID:16644972

  6. Thermoluminescence emission spectra for the LiF:Mg,Cu,Na,Si thermoluminescent materials with various concentrations of the dopants (3-D measurement)

    The thermoluminescence (TL) emission spectra from LiF TL materials, called KLT-300 (LiF:Mg,Cu,Na,Si) with various dopant concentrations are measured and analysed. These KLT-300 materials were developed by the Korea Atomic Energy Research Inst. (KAERI) to achieve an enhancement of the thermal stability in TL readings. Six types of samples are prepared with different dopant concentrations in the following ranges; Mg (0-0.20 mol%), Cu (0-0.05 mol%), Na and Si (0-0.9 mol%). The spectra measurements are carried out for the six types of samples using a TL emission spectra measurement device. The spectra measurement device consists of a monochromator, photomultiplier tube and temperature control unit to thermally stimulate the samples. The measured data shows the light emission during heating of the sample as a function of temperature and wavelength (three-dimensional TL spectra). The spectra were analysed using a method of deconvolution based on gaussian curve. The wavelength of a main peak of the emission spectra changes depending on the existence of the Cu dopant, while intensity of the spectra rapidly changes with the Cu dopant concentrations. The 385 nm emission is mainly observed in all the spectra from the samples with the Cu dopant, but in those from the samples without the Cu dopant a very weak 401 nm emission is mainly observed. However, any change in the wavelength at a main peak of the TL emission spectra from the sample materials with Na and Si dopants is not observed but that in the intensity at a peak of the spectra is observed. (authors)

  7. Simulation of the single-vibronic-level emission spectra of HAsO and DAsO.

    Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2016-05-14

    The single-vibronic-level (SVL) emission spectra of HAsO and DAsO have been simulated by electronic structure/Franck-Condon factor calculations to confirm the spectral molecular carrier and to investigate the electronic states involved. Various multi-reference (MR) methods, namely, NEVPT2 (n-electron valence state second order perturbation theory), RSPT2-F12 (explicitly correlated Rayleigh-Schrodinger second order perturbation theory), and MRCI-F12 (explicitly correlated multi-reference configuration interaction) were employed to compute the geometries and relative electronic energies for the X̃(1)A(') and Ã(1)A(″) states of HAsO. These are the highest level calculations on these states yet reported. The MRCI-F12 method gives computed T0 (adiabatic transition energy including zero-point energy correction) values, which agree well with the available experimental T0 value much better than previously computed values and values computed with other MR methods in this work. In addition, the potential energy surfaces of the X̃(1)A(') and Ã(1)A(″) states of HAsO were computed using the MRCI-F12 method. Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, were then computed and used to simulate the recently reported SVL emission spectra of HAsO and DAsO [R. Grimminger and D. J. Clouthier, J. Chem. Phys. 135, 184308 (2011)]. Our simulated SVL emission spectra confirm the assignments of the molecular carrier, the electronic states involved, and the vibrational structures observed in the SVL emission spectra but suggest a loss of intensity in the reported experimental spectra at the low emission energy region almost certainly due to a loss of responsivity near the cutoff region (∼800 nm) of the detector used. Computed and experimentally derived re (equilibrium) and/or r0 {the (0,0,0) vibrational level} geometries of the two states of HAsO are discussed. PMID:27179480

  8. Strong Calcite-Like Spectra Cathodoluminescence Emission from Allende Meteorite Cai Phases

    García Guinea, Javier; Tornos Arroyo, Fernando; Azumendi García, Oscar; Ruiz Pérez, Javier; Correcher Delgado, Virgilio

    2011-01-01

    Calcium–aluminum-rich inclusions (CAIs) of Allende CV3 chondrite were studied by Environmental Scanning Electron Microscopy (ESEM), Energy Dispersive Spectrometry (EDS), Backscattering (BS), and Spectra Cathodoluminescence (CL). CAI minerals show spectra CL curves exceeding the 450,000 a.u. with a large homogeneity along the white inclusions. CL curve features fit perfectly with terrestrial patterns of stressed specimens of weathered marble and limestone in which hydroxyl gr...

  9. Production and analysis of some atomic emission spectra in the vacuum ultraviolet

    The development of technical facilities for spectra analysis are described including the design, construction and adjustment of a grazing incidence spectrograph for the extreme ultraviolet and the improvements in light sources. The investigations of the fifth and fourth spectra of tantalum, the analysis of the sixth spectrum of tungsten, the extension of the analysis of the fourth spectrum of hafnium and a start of the analysis of the seventh spectrum of rhenium are presented. (C.F.)

  10. Investigation of the Emission Cross-sections and the Spectra of (Cr4+, Yb3+): YAG Crystal

    DONG Jun; DENG Peizhen; XU Jun; CHEN Wei

    2000-01-01

    The emission and the lifetime data of Cr, Yb: YAG and Yb: YAG were reported. The effective peak stimulated-emission cross section of chromium and ytterbium-co-doped yttrium-aluminum garnets (Cr, Yb: YAG) has been determined to be 8.98 × 10-20 cm2 at room temperature. The luminescence spectrum of Cr, Yb: YAG is the same as that of Yb: YAG. The luminescence lifetime of Cr, Yb: YAG at room temperature is 0.3 ms (Yb: YAG, 1.48 ms ). The causes of the differences in the fluorescence spectra and the stimulated emission cross-section between Yb: YAG and Cr, Yb: YAG crystals were discussed. Also the potential of Cr, Yb: YAG as a self Q- switched laser crystal was discussed.

  11. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals.

    Gilmore, Adam M; Larkum, Anthony W D; Salih, Anya; Itoh, Shigeru; Shibata, Yutaka; Bena, Chiaki; Yamasaki, Hideo; Papina, Marina; Van Woesik, Robert

    2003-05-01

    Light is absorbed by photosynthetic algal symbionts (i.e. zooxanthellae) and by chromophoric fluorescent proteins (FP) in reef-building coral tissue. We used a streak-camera spectrograph equipped with a pulsed, blue laser diode (50 ps, 405 nm) to simultaneously resolve the fluorescence spectra and kinetics for both the FP and the zooxanthellae. Shallow water (corals showed rapidly decaying species and reciprocal rises in greener emission components indicating Förster resonance energy transfer (FRET) between FP populations. The energy transfer modes were around 250 ps, and the main decay modes of the acceptor FP were typically 1900-2800 ps. All zooxanthellae emitted similar spectra and kinetics with peak emission (approximately 683 nm) mainly from photosystem II (PSII) chlorophyll (chl) a. Compared with the FP, the PSII emission exhibited similar rise times but much faster decay times, typically around 640-760 ps. The fluorescence kinetics and excitation versus emission mapping indicated that the FP emission played only a minor role, if any, in chl excitation. We thus suggest the FP could only indirectly act to absorb, screen and scatter light to protect PSII and underlying and surrounding animal tissue from excess visible and UV light. We conclude that our time-resolved spectral analysis and simulation revealed new FP emission components that would not be easily resolved at steady state because of their relatively rapid decays due to efficient FRET. We believe the methods show promise for future studies of coral bleaching and for potentially identifying FP species for use as genetic markers and FRET partners, like the related green FP from Aequorea spp. PMID:12812294

  12. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  13. Skylab ultraviolet stellar spectra - Emission lines from the Beta Lyrae system

    Kondo, Y.; Parsons, S. B.; Wray, J. D.; Benedict, G. F.; Henize, K. G.; Mccluskey, G. E.

    1976-01-01

    Observations of Beta Lyr with the Skylab S-019 ultraviolet objective-prism spectrograph show numerous emission lines in the region from 1400 to 2300 A. Some variations in line strength between phases 0.25 and 0.50 are seen, which probably explain the shallowness of the OAO-2 light curve at 1910 A. Many of the emission lines are probably due to intercombination transitions, thus confirming the concept that the emission is produced by collisional excitation in low-density clouds of hot gas.

  14. Experimental and theoretical studies of the VUV emission and absorption spectra of H2, HD and D2 molecules

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D2 and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D2 are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B1Σu1, B'1Σu1, C1Πu1 and D1Πu1, taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar1Σu+, D'1Πu1 and D''1Πu1. The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D2 molecules

  15. Plasma Emission Spectra of Opuntia Nopalea Obtained with Microsecond Laser Pulses

    Laser-induced Plasma Spectroscopy was performed during the spines ablation of Opuntia by using Nd:YAG microsecond laser pulses. The results show strong absorption in Glochids that causes the intense electronic noise on the spectra. This process is consider suitable for practical elimination of spines in alimentary products like opuntia

  16. Spectral Components in the Optical Emission of the Seyfert Galaxy NGC 5548 and the Comparison of Intrinsic Nuclear Spectra with Accreting Corona Model

    Kuraszkiewicz, J.; Loska, Z.; Czerny, B.

    1997-01-01

    We study the extensively monitored Seyfert galaxy NGC 5548 and compare its nuclear emission with models of accretion disk with accreting corona. To obtain the intrinsic nuclear spectra from the observed spectra we had to estimate and subtract the contribution from circumnuclear components such as stars, the Balmer continuum and blended FeII lines, and the FC2 extended, featureless continuum. The true nuclear spectra were compared with a two parameter model of the accreting disk with an accret...

  17. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra.

    Vanlierde, A; Vanrobays, M-L; Dehareng, F; Froidmont, E; Soyeurt, H; McParland, S; Lewis, E; Deighton, M H; Grandl, F; Kreuzer, M; Gredler, B; Dardenne, P; Gengler, N

    2015-08-01

    The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber

  18. Observation of the fine structure for rovibronic spectral lines in visible part of emission spectra of $D_2$

    Lavrov, B P; Zhukov, A S

    2011-01-01

    For the first time the fine structure of rovibronic spectral lines in visible part of emission spectra of $D_2$ molecule has been observed. Observed splitting in visible doublets is about 0.2 cm$^{-1}$ in good accordance with previous observations in the infrared part of the spectrum ($a^3\\Sigma_g^+ \\to c^3\\Pi_u$ electronic transition) by means of FTIR and laser spectroscopy. Relative intensities of the fine structure components are in agreement with our calculations of adiabatic line strengths for Hund's case "b" coupling scheme.

  19. Emission Spectra of LSO and LYSO Crystals Excited by UV Light, X-Ray and γ-ray

    Mao, Rihua; Zhang, Liyuan; Zhu, Ren-Yuan

    2008-01-01

    Because of their high stopping power (X_o = 1.14 cm, R_(Moliere) = 2.07 cm) and fast (~ 40 ns) bright (4 times of BGO) scintillation, cerium doped lutetium oxyorthosilicate (LSO) and cerium doped lutetium-yttrium oxyorthosilicate (LYSO) crystals have attracted a broad interest in the high energy physics community. This paper presents a comparative study on emission spectra measured for large size BGO, lead tungstate (PbWO_4), LSO and LYSO samples excited by UV light (photo-luminescence) with ...

  20. Vibrational spectra of CO on Ni (100) studied by infrared emission spectroscopy

    We have developed the technique of infrared emission spectroscopy in order to observe vibrational modes of molecules adsorbed on clean, single crystal metal surfaces. A novel apparatus has been constructed which measures the emission from a single crystal sample in thermal equilibrium at room temperature. The apparatus consists of a liquid helium cooled infrared grating spectrometer coupled to an ultrahigh vacuum system equipped with surface preparation and characterization facilities. 3 references, 3 figures

  1. How to Collect National Institute of Standards and Technology (NIST) Traceable Fluorescence Excitation and Emission Spectra.

    Gilmore, Adam Matthew

    2014-01-01

    Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling. PMID:24108620

  2. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra

    Litvinenko, G. V.; Shaposhnikov, V. E.; Konovalenko, A. A.; Zakharenko, V. V.; Panchenko, M.; Dorovsky, V. V.; Brazhenko, A. I.; Rucker, H. O.; Vinogradov, V. V.; Melnik, V. N.

    2016-07-01

    We investigate the dynamic spectra of the Sun and jovian decametric radiation obtained by the authors with the radio telescopes UTR-2 and URAN-2 (Kharkov, Poltava, Ukraine). We focus on the similar structures that appear on the dynamic spectra of those objects: S-bursts, drifting pairs, absorption bursts and zebra patterns. Similarity in structures allows us to assume that the plasma processes in the solar corona and in the jovian magnetosphere might have similar properties. We analyze and compare the main parameters of those structures and describe briefly some mechanisms of their generation that have already discussed in publications. We selected the mechanisms which, in our opinion, most completely and consistently explain the properties of the structures under consideration.

  3. Treatment of the emission and absorption spectra of a general formalism Λ-type three-level atom driven by a two-mode field with nonlinearities

    An analytical expression of the emission and absorption spectra, for a Λ-type three-level cavity-bound atom interacting with a two-mode cavity field, is given using the dressed states of the system. We take explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The characteristics of the emission and absorption spectra for binomial and squeezed coherent states of the modes are exhibited. The effects of the mean number of photons, detuning and the nonlinearity forms on the spectra are analysed

  4. Optical emission and mass spectra observations during hydrogen combustion in atmospheric pressure microwave plasma

    We experimentally investigated hydrogen combustion by atmospheric pressure plasma generated by a 2.45 GHz microwave discharge. Small amounts of hydrogen and oxygen were mixed in the operational argon gas during discharge. To clarify the details of combustion, optical emission was measured. The constituents of combustion-processed gases were observed by a quadruple mass spectrometer. The degree of hydrogen oxidation, the so-called conversion rate, increased with input microwave power. The maximum hydrogen conversion rate was greater than 80% under these experimental conditions. During discharge, an optical emission peak due to OH radicals was observed. (author)

  5. Helium Emissions Observed in Ground-Based Spectra of Solar Prominences

    Ramelli, Renzo; Stellmacher, Goetz; Wiehr, Eberhard; Bianda, Michele

    2012-01-01

    The only prominent line of singly ionized helium in the visible spectral range, helium-II 4686 A, is observed together with the helium-I 5015 A singlet and the helium-I 4471 A triplet line in solar prominences. The sodium emission, NaD2, is used as a tracer for helium-II emissions which are sufficiently bright to exceed the noise level near 10^-6 of the disk-center intensity. The so selected prominences are characterized by small non-thermal line broadening and almost absent velocity shifts, ...

  6. Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions

    A. M. Sage

    2007-07-01

    Full Text Available The species and chemistry responsible for secondary organic aerosol (SOA formation remain highly uncertain. Laboratory studies of the oxidation of individual, high-flux SOA precursors do not lead to particles with mass spectra (MS matching those of ambient aged organic material. And, the complexity of real organic particles challenges efforts to identify their chemical origins. We have previously hypothesized that SOA can form from the atmospheric oxidation of a large suite of precursors with varying vapor pressures. Here, we support this hypothesis by using an aerosol mass spectrometer to track the chemical evolution of diesel exhaust as it is photochemically oxidized in an environmental chamber. With explicit knowledge of the condensed-phase MS of the primary emissions from our engine, we are able to decompose each recorded MS into contributing primary and secondary spectra throughout the experiment. We find that the SOA MS becomes increasingly oxidized as a function of time, eventually reaching a final MS that closely resembles that of ambient aged organic particulate matter. This observation is consistent with the idea that lower vapor pressure, semi-volatile organic emissions can form condensable products with fewer generations of oxidation, and therefore, they form relatively less oxidized SOA very quickly.

  7. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    Turler, M; Courvoisier, T J -L; Lubinski, P; Neronov, A; Produit, N; Walter, R

    2010-01-01

    We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations of early 2006. We analyse the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an ...

  8. Tuning of Aggregation Enhanced Emission and Solid State Emission from 1,8-Naphthalimide Derivatives: Nanoaggregates, Spectra, and DFT Calculations.

    Srivastava, Ashish Kumar; Singh, Avinash; Mishra, Lallan

    2016-07-01

    Four new 1,8-naphthalimide based compounds, 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoic acid (LH), 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoic acid methyl ester (LMe), 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoyl chloride (LCl), and 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoic acid hydrazide (LN) are synthesized and characterized using spectral data and X-ray crystallography. They form nanoaggregates in aqueous-DMF solution and exhibited aggregation enhanced emission. The nanoaggregates are characterized using their scanning electron and atomic force microscopy images. The emission intensity follows the order as LH > LMe > LCl > LN. Their photophysical properties are recorded both in solution and in the solid-state and are correlated with the nature of benzoic acid derivatives owing to the combinatorial effect of π-π stacking and intermolecular and intramolecular interactions. The density functional theory calculations empower the understanding of their molecular and cumulative electronic behaviors. Antiparallel dimeric interactions in the solid-state extend a herringbone arrangement to LH and 2D channel and stair-like arrangement for LCl and LN, respectively. PMID:27294534

  9. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning

    L.-Y. He

    2010-09-01

    Full Text Available Aerosol Mass Spectrometer (AMS has proved to be a powerful tool to measure submicron particulate composition with high time resolution. Factor analysis of mass spectra (MS collected worldwide by AMS demonstrates that submicron organic aerosol (OA is usually composed of several major components, such as oxygenated (OOA, hydrocarbon-like (HOA, biomass burning (BBOA, and other primary OA. In order to help interpretation of component MS from factor analysis of ambient OA datasets, AMS measurement of different primary sources is required for comparison. Such work, however, has been very scarce in the literature, especially for high resolution MS (HR-MS measurement, which performs improved characterization by separating the ions of different elemental compositions at each m/z in comparison with unit mass resolution MS (UMR-MS measurement. In this study, primary emissions from four types of Chinese cooking (CC and six types of biomass burning (BB were simulated systemically and measured using an Aerodyne High-Resolution Time-of-Flight AMS (HR-ToF-AMS. The MS of the CC emissions show high similarity with m/z 41 and m/z 55 being the highest signals; the MS of the BB emissions also show high similarity with m/z 29 and m/z 43 being the highest signals. The MS difference between the CC and BB emissions is much bigger than that between different CC (or BB types, especially for the HR-MS. The O/C ratio of OA ranges from 0.08 to 0.13 for the CC emissions while from 0.18 to 0.26 for the BB emissions. The ions of m/z 43, m/z 44, m/z 57, and m/z 60, usually used as tracer ions in AMS measurement, were examined for their HR-MS characteristics in the CC and BB emissions. Moreover, the MS of the CC and BB emissions are also used to compare with component MS from factor analysis of ambient OA datasets observed in China, as well as with other AMS measurements of primary sources in the literature. The MS

  10. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  11. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement

    Ma, Jian; Cao, Jianshu, E-mail: jianshu@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  12. Ultraviolet emission lines of Si II in cool star and solar spectra

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.; Ayres, Thomas R.; Chatzikos, Marios; van Hoof, Peter A. M.; Williams, Robin J. R.

    2015-01-01

    Recent atomic physics calculations for Si II are employed within the Cloudy modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, Beta-Geminorum, Alpha-Centauri A and B, as well as previously published HST/GHRS observations of Alpha-Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$...

  13. Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software

    E. Lindermeir

    Full Text Available A Fourier transform spectrometer was used to measure infrared spectra of the exhaust gas of an aircraft's jet engine. The measured spectra were modelled by use of the program FASCODE. For this simulation, the inhomogeneous gas mixture is divided into several homogenous layers which are characterized by their geometrical extents, temperatures, pressures and chemical compositions. To obtain values for the temperatures and the CO, NO, H2O and CO2 concentrations of the layers a nonlinear least-squares algorithm was implemented. The program (FITFAS not only changes the parameters to find the minimum of the squared differences between measurement and calculation; it also provides the variances and covariances of the parameters. Thus information is obtained to which parameters (besides the interesting ones must be fitted (or be accurately known. It also tells us whether or not another spectral interval is more suitable for the determination of a specific parameter.

  14. Broadening and splitting of emission spectra of a GaInAs/AlInAs quantum cascade laser in a quantising magnetic field

    We have studied the effect of a relatively weak quantising magnetic field on emission spectra of a GaInAs/AlInAs quantum cascade laser near 10 K. The results demonstrate that, as the magnetic field induction increases to 7 T, the spectra broaden (to 5 meV) and split into three emission bands. As a result, we observe simultaneously up to 80 longitudinal lasing modes in the three bands and the integrated laser output intensity increases 70 times. The presence of bands in the emission spectra can be accounted for in terms of the magnetic quantisation of the laser levels into spinsplit Landau levels. The increase in emission intensity is attributable primarily to phonon resonance adjustment in a magnetic field. (lasers)

  15. Broadening and splitting of emission spectra of a GaInAs/AlInAs quantum cascade laser in a quantising magnetic field

    Zasavitskii, I I; Pashkeev, D A; Bushuev, E V; Mikaelyan, G T

    2013-02-28

    We have studied the effect of a relatively weak quantising magnetic field on emission spectra of a GaInAs/AlInAs quantum cascade laser near 10 K. The results demonstrate that, as the magnetic field induction increases to 7 T, the spectra broaden (to 5 meV) and split into three emission bands. As a result, we observe simultaneously up to 80 longitudinal lasing modes in the three bands and the integrated laser output intensity increases 70 times. The presence of bands in the emission spectra can be accounted for in terms of the magnetic quantisation of the laser levels into spinsplit Landau levels. The increase in emission intensity is attributable primarily to phonon resonance adjustment in a magnetic field. (lasers)

  16. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of the optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines

  17. The local dust foregrounds in the microwave sky: I. Thermal emission spectra

    Dikarev, V; Solanki, S; Krüger, H; Krivov, A

    2009-01-01

    Analyses of the cosmic microwave background (CMB) radiation maps made by the Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not predicted by the standard inflationary cosmology. In particular, the power of the quadrupole moment of the CMB fluctuations is remarkably low, and the quadrupole and octopole moments are aligned mutually and with the geometry of the Solar system. It has been suggested in the literature that microwave sky pollution by an unidentified dust cloud in the vicinity of the Solar system may be the cause for these anomalies. In this paper, we simulate the thermal emission by clouds of spherical homogeneous particles of several materials. Spectral constraints from the WMAP multi-wavelength data and earlier infrared observations on the hypothetical dust cloud are used to determine the dust cloud's physical characteristics. In order for its emissivity to demonstrate a flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14 mm), and to be invisible in the...

  18. Interpreting the Ionization Sequence in Star-Forming Galaxy Emission-Line Spectra

    Richardson, Chris T; Baldwin, Jack A; Hewett, Paul C; Ferland, Gary J; Crider, Anthony; Meskhidze, Helen

    2016-01-01

    High ionization star forming (SF) galaxies are easily identified with strong emission line techniques such as the BPT diagram, and form an obvious ionization sequence on such diagrams. We use a locally optimally emitting cloud model to fit emission line ratios that constrain the excitation mechanism, spectral energy distribution, abundances and physical conditions along the star-formation ionization sequence. Our analysis takes advantage of the identification of a sample of pure star-forming galaxies, to define the ionization sequence, via mean field independent component analysis. Previous work has suggested that the major parameter controlling the ionization level in SF galaxies is the metallicity. Here we show that the observed SF- sequence could alternatively be interpreted primarily as a sequence in the distribution of the ionizing flux incident on gas spread throughout a galaxy. Metallicity variations remain necessary to model the SF-sequence, however, our best models indicate that galaxies with the hig...

  19. Investigation on the spatial evolution of the emission spectra in laser-induced Ni plasmas

    In this paper, the spatial resolved emission spectrum of Ni atom in laser induced Ni plasma is measured in the wavelength region from 350 nm to 600 nm. The spatial evolution of the relative intensities and the Stark broadening of the 385.83 nm emission spectrum lines are also obtained. It is shown that Stark broadening and intensity of the spectrum lines increases firstly to its maximum and then de- creases along the direction of laser beam when the distance from the target surface is in the range from 0 to 2.5 mm. The maximum value of Stark broadening and relative intensity of the spectrum lines appear at 1.5 mm from the target surface. (authors)

  20. Electron-electron bremsstrahlung emission and the inference of electron flux spectra in solar flares

    Kontar, E. P.; Emslie, A. G.; Massone, A. M.; Piana, M.; Brown, J.C.; Prato, M.

    2007-01-01

    Although both electron-ion and electron-electron bremsstrahlung contribute to the hard X-ray emission from solar flares, the latter is normally ignored. Such an omission is not justified at electron (and photon) energies above $\\sim 300$ keV, and inclusion of the additional electron-electron bremsstrahlung in general makes the electron spectrum required to produce a given hard X-ray spectrum steeper at high energies. Unlike electron-ion bremsstrahlung, electron-electron bremsstrahlung cannot ...

  1. Modeling of high-resolution Kα emission spectra from Fe XVIII through Fe XXIV

    Results for Kα x-ray emission from highly charged iron ions, which were obtained from a detailed and systematic spectral model, are presented in the wavelength range from 1.84 to 1.94 Aa. Account has been taken of the fundamental atomic radiative-emission processes associated with inner-shell electron collisional excitation, inner-shell electron collisional ionization, as well as dielectronic recombination. Particular emphasis has been directed at the identification of spectral features that can serve as diagnostics of extreme nonequilibrium or transient-ionization conditions, which can occur in stellar flares and supernova remnants, as well as in tokamak plasmas. In order to investigate the fundamental Kα line-formation processes that can play a dominant role under these conditions, theoretical predictions have been compared with spectral observations of the EBIT-II x-ray emission from highly charged Fe ions in the electron-beam ion trap at the Lawrence Livermore National Laboratory. The observed spectroscopic features are found to be well represented by our theoretical calculations, validating earlier theoretical work on transient-ionization phenomena. We have identified spectral features that can serve as diagnostics of the electron density, the line-formation mechanism, and the charge-state distribution

  2. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  3. Quartz OSL emission spectra and the role of [AlO{sub 4}]{sup o} recombination centres

    Martini, M. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca and INFN-Sezione di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)], E-mail: marco.martini@mater.unimib.it; Fasoli, M. [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca and INFN-Sezione di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Galli, A. [INFM-CNR and Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)

    2009-05-15

    Synthetic crystalline quartz, with known concentrations of Al and alkali ions was used in this study. The wavelength-resolved OSL spectra were measured after different periods of optical stimulation, and more than one emission band were detected. A composite peak centred at 380 nm is seen; this is similar to the emission band for the 110 deg. C TL peak, that has been associated with the [AlO{sub 4}]{sup o} recombination centres. A direct correspondence between OSL signal intensity and the alkali ion concentration was observed; the signal intensity in bulk crystalline 'swept out' quartz, i.e. quartz submitted to electro-diffusion, was found to be much lower than that from the 'unswept' quartz. These data suggest that alkali ions play an important role in the OSL phenomenon. Based on the data presented here and the existing TL studies it is inferred that OSL and the 110 deg. C and 325 deg. C TL peaks share a common recombination centre. This emission is assigned to electron recombination at Al centres with a trapped hole, [AlO{sub 4}]{sup o}. A preliminary phenomenological model of TL and OSL is proposed, which is based on a spatial association between the OSL and the 110 deg. C TL trap.

  4. Emission spectra of a pulse needle-to-plane corona-like discharge in conductive aqueous solutions

    We explored basic optical and electrical characteristics of a positive corona-like discharge produced in conductive aqueous solutions by periodic high-voltage pulses. Emission spectra of the discharge were acquired in a needle-to-plate electrode geometry and analysed in the UV–vis–NIR spectral range with nanosecond time resolution for the solution conductivity of 100 and 500 µS cm−1. The most important emission features are due to electronic excitation of HI, OI, OII and OH species. We found evidence of significant time-dependent line-shape broadening of selected HI and OI transitions. The observed broadening is attributed to the dynamic Stark and pressure broadening mechanisms and significantly increases with the aqueous solution conductivity. Electron densities were estimated by fitting a single Voigt peak function to the observed Hα profiles, and can reach as much as ne ≅ 4 × 1018 cm−3 (tD = 300 ns at 100 µS cm−1 solution conductivity) and ne ≅ 5 × 1018 cm−3 (tD = 1 µs at 500 µS cm−1). Temporal evolution of the partially resolved rotational structure of the OH emission reaches a maximum during the discharge decay, with the onset significantly delayed with respect to the streamer ignition. (paper)

  5. Predicting the stellar and non-equilibrium dust emission spectra of high-resolution simulated galaxies with DART-Ray

    Natale, Giovanni; Tuffs, Richard J; Debattista, Victor P; Fischera, Jörg; Grootes, Meiert W

    2015-01-01

    We describe the calculation of the stochastically heated dust emission using the 3D ray-tracing dust radiative transfer code DART-Ray, which is designed to solve the dust radiative transfer problem for galaxies with arbitrary geometries. In order to reduce the time required to derive the non-equilibrium dust emission spectra from each volume element within a model, we implemented an adaptive SED library approach, which we tested for the case of axisymmetric galaxy geometries. To show the capabilities of the code, we applied DART-Ray to a high-resolution N-body+SPH galaxy simulation to predict the appearance of the simulated galaxy at a set of wavelengths from the UV to the sub-mm. We analyse the results to determine the effect of dust on the observed radial and vertical profiles of the stellar emission as well as on the attenuation and scattering of light from the constituent stellar populations. We also quantify the proportion of dust re-radiated stellar light powered by young and old stellar populations, bo...

  6. VizieR Online Data Catalog: Spectra of 7 Hα emission line stars in MBM 18 (Brand+ 2012)

    Brand, J.; Wouterloot, J. G. A.; Magnani, L.

    2012-10-01

    Data in tabular form (wavelength and flux) are presented of the spectra of seven candidate Hα emission line stars in the direction of translucent cloud MBM 18. The data were obtained on 5 different nights in 2009 and 2010 with the 3.58-m Telescopio Nazionale Galileo (TNG; La Palma, Canary Islands, Spain). The spectra are shown in the appendix of the paper, only visible in the on line version. The spectra were taken with the low-resolution spectrograph DOLORES on the TNG, using long-slit spectroscopy. We used grism VHR-R, which covers a wavelength range of 6240-7720 Angstrom with a dispersion of 0.80Å/pix. The scale of the CCD detector is 0.252 arcsec/pixel. The observations were carried out with a slit width of 1 or 1.5 arcsec, depending on the seeing, resulting in a spectral resolution of 3.2Å and 4.8Å, respectively. To avoid problems with cosmic rays, 2 to 4 separate spectra per star were obtained. Two of the stars (Ha4 and Ha6) were observed simultaneously with another target (Ha1 and Ha5, respectively) by positioning the slit at an appropriate angle. The integration time was based on the brighter star in the slit, thus the signal-to-noise ratio for the other target is smaller than for the primary one. To allow absolute flux calibration the standard star Feige24 or Feige34 (for Ha5-Ha6) was observed immediately before or after the target observations, using the same instrumental setup as for the target observations. Flat-fielding was performed using 10 (5 for Ha5-Ha6) frames, which were uniformly illuminated by a halogen lamp. Wavelength calibration was performed using an arc-spectrum of an Ar, Ne+Hg, and Kr lamp, or a Ne+Hg (for Ha7) comparison lamp. A bias frame, to be subtracted from the other frames before analysis, was constructed from ten individual bias frames. Flat-, arc-, and bias-frames were obtained on the same day as the science observations and with the same instrumental setup. Data were reduced with the IRAF package. From all science frames a

  7. Using k-alpha emission to determine fast electron spectra using the Hybrid code ZEPHYROS

    White, Thomas; Gregori, Gianluca

    2014-01-01

    A high intensity laser-solid interaction invariably drives a non-thermal fast electron current through the target, however characterizing these fast electron distributions can prove difficult. An understanding of how these electrons propagate through dense materials is of fundamental interest and has applications relevant to fast ignition schemes and ion acceleration. Here, we utilize an upgraded version of the Hybrid code ZEPHYROS to demonstrate how the resulting k-alpha emission from such an interaction can be used as a diagnostic to obtain the characteristic temperature, divergence and total energy of the fast electron population.

  8. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 dis- charge plasma was on-line diagnosed by optical emission spectra so as to char- acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious er- ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  9. A comparison of experiment, CEPXS/ONETRAN, TIGERP, and TIGER net electron emission coefficients for various bremsstrahlung spectra

    This work compares a carefully designed experiment to measure photoemission with the predictions of three different codes (CEPXS/ONETRAN, TIGERP, and TIGER) for the complex bremsstrahlung spectra typical of very intense pulsed power x-ray generators. The Monte Carlo codes TIGER and TIGERP can calculate the net photon-induced electron emission but accurate results may require that statistical error be minimized. CEPXS/ONETRAN is a new deterministic coupled electron/photon transport code that is faster than Monte Carlo and is not subject to statistical error. The comparison of net yields is a sensitive test of the relative accuracy and efficiency of these various codes. The authors find that all of the codes substantially agree with the experiments for the forward net yields. However, for reverse net yields from high-Z materials, the codes overpredict relative to measurements

  10. Ultraviolet emission lines of Si II in cool star and solar spectra

    Laha, Sibasish; ferland, Gary J; Ramsbottom, Catherine A; Aggarwal, Kanti M; Ayres, Thomas R; Chatzikos, Marios; van Hoof, Peter A M; Williams, Robin J R

    2015-01-01

    Recent atomic physics calculations for Si II are employed within the Cloudy modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, Beta-Geminorum, Alpha-Centauri A and B, as well as previously published HST/GHRS observations of Alpha-Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{4}$P$_{J^{\\prime}}$ intercombination multiplet of Si II at 2335 Angs are significantly reduced, as are those for ratios containing the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{2}$D$_{J^{\\prime}}$ transitions at 1816 Angs. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et. al. (1993) for the intercombination lines. New m...

  11. Ultraviolet emission lines of Si II in cool star and solar spectra

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.; Ayres, Thomas R.; Chatzikos, Marios; van Hoof, Peter A. M.; Williams, Robin J. R.

    2016-01-01

    Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4P_{J^' }} intercombination multiplet of Si II at ˜ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2D_{J^' }} transitions at ˜1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.

  12. Calculation of neutron and gamma-ray emission spectra produced by p + 27Al reactions

    Preliminary calculations of neutron and gamma-ray spectra induced by proton reactions on aluminum have been made to provide data required for shielding design for a proposed proton linear accelerator. The nuclear models used in this study were the preequilibrium and Hauser-Feshbach models as embodied in the GNASH program. This nuclear model code has been used in the past to successfully investigate higher energy (E less than or equal to 50 MeV) neutron and proton interactions with nuclei in the structural materials region. Because this study was of an exploratory nature, we did not attempt to optimize input parameters but instead relied upon global sets, especially for optical parameters. In particular, for neutrons we chose the Wilmore-Hodgson parameter set after confirmation of its suitability through comparison to n+27Al total cross-section data between 0.5 and 60 MeV. Agreement with the data on the level of 5-10% occurred. Comparisons were also made to measured nonelastic data for incident energies between 10 and 60 MeV. Again, there was generally good agreement although there was some tendency to overpredict such data for incident neutron energies below several MeV. For protons we found the Becchetti-Greenlees parameter set reproduced nonelastic data recently measured by McGill et al

  13. Superresolution and other mathematical techniques for quantitative analysis of infrared absorption and emission spectra of gases

    Davies, Nicholas M.; Lettington, Alan H.; Hilton, Moira

    1997-05-01

    Fourier transform IR (FTIR) spectroscopy has become a powerful analytical tool for the detection and measurement of atmospheric pollutant gases. This work describes the application of concentration analysis techniques to data recorded with a versatile FTIR spectroscopy system, developed at the University of Reading PHysics Department. Spectra were recorded at three separate sites, each possessing a distinct source of atmospheric pollution gases. The two sites monitored in the active mode were a traffic congested town center at rush hour and a dairy farm cow shed. The site monitored passively contained three 5 m high methane burners. The analysis techniques have been designed to provide rapid and accurate analysis of the spectrometer data, without the need for high computing power, thus making analysis possible in the field using a laptop PC. In an attempt to enhance the resolution of the spectral data, and therefore resolve overlapping spectral lines, a super- resolution algorithm has been tested on part of the recorded data. The results of applying the algorithm has been tested on part of the recorded data. The results of applying the algorithm, predominantly an image processing technique, are shown and improvements to the algorithm are discussed. Results from the urban and agricultural sites show that CO, CH4, and NH3 can be measured to a ppm level with a maximum uncertainly of 8 percent.

  14. Modelling the Emission And/or Absorption Features in the High Resolution Spectra of the Southern Binary System: HH Car

    Koseoglu, Dogan; Bakış, Hicran

    2016-07-01

    High-resolution spectra (R=48000) of the southern close binary system, HH Car, has been analyzed with modern analysis techniques. Precise absolute parameters were derived from the simultaneous solution of the radial velocity, produced in this study and the light curves, published. According to the results of these analyses, the primary component is an O9 type main sequence star while the secondary component is a giant/subgiant star with a spectral type of B0. Hα emissions can be seen explicitly in the spectra of HH Car. These features were modelled using the absolute parameters of the components. Since components of HH Car are massive early-type stars, mass loss through stellar winds can be expected. This study revealed that the components of HH Car have stellar winds and the secondary component loses mass to the primary. Stellar winds and the gas stream between the components were modelled as a hot shell around the system. It is determined that the interaction between the winds and the gas stream leads to formation of a high temperature impact region.

  15. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  16. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  17. The Northern \\omega-Scorpiid meteoroid stream: orbits and emission spectra

    Espartero, Francisco A

    2016-01-01

    We analyze the activity of the Northern \\omega-Scorpiid meteor shower between 2010 and 2012. For this purpose we have employed an array of low-lux CCD video cameras and spectrographs deployed at different astronomical observatories in Spain. As a result of our survey, the atmospheric trajectory and radiant position of 11 of these meteor events were obtained. The tensile strength and orbital parameters of the progenitor meteoroids have been also calculated. The calculated orbital data and the behaviour of these meteoroids in the atmosphere are compatible with an asteroidal origin of this stream. In addition, we discuss a unique emission spectrum recorded for one of these meteors. This is, to our knowledge, the first North {\\omega}-Scorpiid spectrum discussed in the scientific literature, and it has provided information about the chemical nature of the meteoroid and the progenitor body.

  18. Intensity enhancement of O VI ultraviolet emission lines in solar spectra due to opacity

    Keenan, F P; Madjarska, M S; Rose, S J; Bowler, L A; Britton, J; McCrink, L; Mathioudakis, M

    2014-01-01

    Opacity is a property of many plasmas, and it is normally expected that if an emission line in a plasma becomes optically thick, its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depth. Previous observational studies have focused on stellar point sources, and here we investigate the spatially-resolved solar atmosphere using measurements of the I(1032 A)/I(1038 A) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument on board the Solar and Heliospheric Observatory (...

  19. Thermal Emission Spectra of Silica-coated Basalt and Considerations for Martian Surface Mineralogy

    Kraft, M. D.; Sharp, T. G.; Michalski, J. R.

    2003-01-01

    Among the most important discoveries made during the Mars Global Surveyor (MGS) mission was that the rocky materials of Mars are broadly divisible into two distinct rock types. The geological significance of this finding is dependent on the mineralogy of these rock types as well as their geographic and stratigraphic positions. Much work has yet to be done to understand these relationships and the small-scale variability of these units. For now, it is worth considering various scenarios that could have resulted in Mars global-scale mineralogical dichotomy. Such work will make clearer what must be looked for in Thermal Emission Spectrometer (TES) and Thermal Imaging Spectrometer (THEMIS) data, what to test with other data sets, and what geological processes can be considered or ruled out as we advance with interpreting Martian geologic history. Here, we suggest that exogenic coatings of secondary silica on basaltic rocks may provide a plausible explanation for the newly discovered distribution of rock types.

  20. K(alpha) X-ray Emission Spectra from Highly Charged Fe Ions in EBIT

    A detailed spectral model has been developed for the computer simulation of the 2p → 1s Kα X-ray emission from highly charged Fe ions in the Electron Beam Ion Trap (EBIT). The spectral features of interest occur in the range from 1.84 (angstrom) to 1.94 (angstrom). The fundamental radiative emission processes associated with radiationless electron capture or dielectronic recombination, inner-shell electron collisional excitation, and inner-shell electron collisional ionization are taken in account. For comparison, spectral observations and simulations for high-temperature magnetic-fusion (Tokamak) plasmas are reviewed. In these plasmas, small departures from steady-state corona-model charge-state distributions can occur due to ion transport processes, while the assumption of equilibrium (Maxwellian) electron energy distributions is expected to be valid. Our investigations for EBIT have been directed at the identification of spectral features that can serve as diagnostics of extreme non-equilibrium or transient-ionization conditions, and allowance has been made for general (non-Maxwellian) electron energy distributions. For the precise interpretation of the high-resolution X-ray observations, which may involve the analysis of blended spectral features composed of many lines, it has been necessary to take into account the multitude of individual fine-structure components of the Kα radiative transitions in the ions from Fe XVIII to Fe XXV. At electron densities higher than the validity range of the corona-model approximation, collisionally induced transitions among low-lying excited states can play an important role. It is found that inner-shell electron excitation and ionization processes involving the complex intermediate ions from Fe XVIII to Fe XXI produce spectral features, in the wavelength range from 1.89 (angstrom) to 1.94 (angstrom), which are particularly sensitive to density variations and transient ionization conditions.

  1. THE LOCAL DUST FOREGROUNDS IN THE MICROWAVE SKY. I. THERMAL EMISSION SPECTRA

    Analyses of the cosmic microwave background (CMB) radiation maps made by the Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not predicted by the standard inflationary cosmology. In particular, the power of the quadrupole moment of the CMB fluctuations is remarkably low, and the quadrupole and octopole moments are aligned mutually and with the geometry of the solar system. It has been suggested in the literature that microwave sky pollution by an unidentified dust cloud in the vicinity of the solar system may be the cause for these anomalies. In this paper, we simulate the thermal emission by clouds of spherical homogeneous particles of several materials. Spectral constraints from the WMAP multi-wavelength data and earlier infrared observations on the hypothetical dust cloud are used to determine the dust cloud's physical characteristics. In order for its emissivity to demonstrate a flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14 mm), and to be invisible in the infrared light, its particles must be macroscopic. Silicate spheres of several millimeters in size and carbonaceous particles an order of magnitude smaller will suffice. According to our estimates of the abundance of such particles in the zodiacal cloud and trans-Neptunian belt, yielding the optical depths of the order of 10-7 for each cloud, the solar system dust can well contribute 10 μK (within an order of magnitude) in the microwaves. This is not only intriguingly close to the magnitude of the anomalies (about 30 μK), but also alarmingly above the presently believed magnitude of systematic biases of the WMAP results (below 5 μK) and, to an even greater degree, of the future missions with higher sensitivities, e.g., Planck.

  2. Investigation of temporal-resolved emission spectra of highly charged Al ions from laser-produced plasmas

    Su, M. G.; Cao, S. Q.; Sun, D. X.; Min, Q.; Dong, C. Z.

    2016-03-01

    Temporal evolution of extreme ultraviolet emission from laser-produced aluminum (Al) plasma has been experimentally and theoretically investigated. Al plasmas have been measured by using the temporal-spatially resolved laser-produced plasma technique. The emission lines can be identified from 2p-3s, 3d, 4s, 4d, 5d transition lines from Al3+ to Al6+ ions. In order to quickly diagnose the plasma, the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model are used to estimate the values of electron temperature and electron density in plasma. We succeeded in reproducing the simulated spectra related to the different time delays, which are in good agreement with experiments. Temporal evolution behavior of highly charged Al ions in plasma has been analyzed, and the exponential decay about electron temperature and electron density has been obtained. The results indicate that the temporal-spatially resolved measurement is essential for accurate understanding of evolution behavior of highly charged ions in laser-produced plasmas.

  3. A Study of the Mass Spectra of Fission Fragments after Prompt Neutron Emission

    The distribution of the masses of fission fragments, following neutron emission, was obtained by simultaneously measuring the velocity and energy of each particle. The special feature of this method is that it is essentially independent of the initial energy of the fragments, so that we were able to use relatively thick targets of fissionable material (0.1 mg/cm2). The energy measurement is made by a gold-silicon surface barrier detector: the velocity measurement was made on a flight path of 130 cm, with a total resolving power of 1.5 ns; The ''starting'' detector consisted of a windowless photomultiplier that detected directly the secondary electrons emitted by a thin metallic sheet during the passage of the fission fragments. The ''stop'' signal is picked up directly, by means of a transformer, on the semi-conductor detector. The results given in the paper relate to the thermal fission of U235, and are compared with the results obtained by the radiochemical method. (author)

  4. Theoretical Emission Spectra of Atmospheres of Hot Rocky Super-Earths

    Ito, Yuichi; Kawahara, Hajime; Nagahara, Hiroko; Kawashima, Yui; Nakamoto, Taishi

    2015-01-01

    Motivated by recent detection of transiting high-density super-Earths, we explore the detectability of hot rocky super-Earths orbiting very close to their host stars. In the environment hot enough for their rocky surfaces to be molten, they would have the atmosphere composed of gas species from the magma oceans. In this study, we investigate the radiative properties of the atmosphere that is in the gas/melt equilibrium with the underlying magma ocean. Our equilibrium calculations yield Na, K, Fe, Si, SiO, O, and O$_2$ as the major atmospheric species. We compile the radiative-absorption line data of those species available in literature, and calculate their absorption opacities in the wavelength region of 0.1--100~$\\mathrm{\\mu m}$. Using them, we integrate the thermal structure of the atmosphere. Then, we find that thermal inversion occurs in the atmosphere because of the UV absorption by SiO. In addition, we calculate the ratio of the planetary to stellar emission fluxes during secondary eclipse, and find pr...

  5. Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks

    Sargent, B A; Watson, Dan M; Calvet, N; Furlan, E; Kim, K -H; Green, J; Pontoppidan, K; Richter, I; Tayrien, C

    2014-01-01

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS) 5-7.5 micron spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other six of the thirteen stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 microns, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission....

  6. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  7. Dynamics in Diether Lipid Bilayers and Interdigitated Bilayer Structures Studied by Time-Resolved Emission Spectra and Decay Time and Anisotropy Profiles

    Hutterer, R.; Hof, Martin

    2001-01-01

    Roč. 11, č. 3 (2001), s. 227-236. ISSN 1053-0509 R&D Projects: GA ČR GA203/99/0845 Institutional research plan: CEZ:AV0Z4040901 Keywords : lipid interdigitation * solvent relaxation * time-resolved emission spectra Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.702, year: 2001

  8. Spitzer Secondary Eclipse Observations of Five Cool Gas Giant Planets and Empirical Trends in Cool Planet Emission Spectra

    Kammer, Joshua A; Line, Michael R; Fortney, Jonathan J; Deming, Drake; Burrows, Adam; Cowan, Nicolas B; Triaud, Amaury H M J; Agol, Eric; Desert, Jean-Michel; Fulton, Benjamin J; Howard, Andrew W; Laughlin, Gregory P; Lewis, Nikole K; Morley, Caroline V; Moses, Julianne I; Showman, Adam P; Todorov, Kamen O

    2015-01-01

    In this work we present Spitzer 3.6 and 4.5 micron secondary eclipse observations of five new cool (<1200 K) transiting gas giant planets: HAT-P-19b, WASP-6b, WASP-10b, WASP-39b, and WASP-67b. We compare our measured eclipse depths to the predictions of a suite of atmosphere models and to eclipse depths for planets with previously published observations in order to constrain the temperature- and mass-dependent properties of gas giant planet atmospheres. We find that the dayside emission spectra of planets less massive than Jupiter require models with efficient circulation of energy to the night side and/or increased albedos, while those with masses greater than that of Jupiter are consistently best-matched by models with inefficient circulation and low albedos. At these relatively low temperatures we expect the atmospheric methane to CO ratio to vary as a function of metallicity, and we therefore use our observations of these planets to constrain their atmospheric metallicities. We find that the most massi...

  9. Physical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry

    Mancini, L; Chen, G; Tregloan-Reed, J; Fortney, J J; Southworth, J; Tan, T G; Burgdorf, M; Novati, S Calchi; Dominik, M; Fang, X -S; Finet, F; Gerner, T; Hardis, S; Hinse, T C; Jorgensen, U G; Liebig, C; Nikolov, N; Ricci, D; Schaefer, S; Schoenebeck, F; Skottfelt, J; Wertz, O; Alsubai, K A; Bozza, V; Browne, P; Dodds, P; Gu, S -H; Harpsoe, K; Henning, Th; Hundertmark, M; Jessen-Hansen, J; Kains, N; Kerins, E; Kjeldsen, H; Lund, M N; Lundkvist, M; Madhusudhan, N; Mathiasen, M; Penny, M T; Proft, S; Rahvar, S; Sahu, K; Scarpetta, G; Snodgrass, C; Surdej, J

    2013-01-01

    We present new ground-based, multi-colour, broad-band photometric measurements of the physical parameters, transmission and emission spectra of the transiting extrasolar planet WASP-19b. The measurements are based on observations of 8 transits and four occultations using the 1.5m Danish Telescope, 14 transits at the PEST observatory, and 1 transit observed simultaneously through four optical and three near-infrared filters, using the GROND instrument on the ESO 2.2m telescope. We use these new data to measure refined physical parameters for the system. We find the planet to be more bloated and the system to be twice as old as initially thought. We also used published and archived datasets to study the transit timings, which do not depart from a linear ephemeris. We detected an anomaly in the GROND transit light curve which is compatible with a spot on the photosphere of the parent star. The starspot position, size, spot contrast and temperature were established. Using our new and published measurements, we as...

  10. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  11. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  12. Discovery of Rubidium, Cadmium, and Germanium Emission Lines in the Near-Infrared Spectra of Planetary Nebulae

    Sterling, N C; Kaplan, Kyle F; Bautista, Manuel

    2016-01-01

    We identify [Rb IV] 1.5973 and [Cd IV] 1.7204 micron emission lines in high-resolution (R=40,000) near-infrared spectra of the planetary nebulae (PNe) NGC 7027 and IC 5117, obtained with the IGRINS spectrometer on the 2.7-m telescope at McDonald Observatory. We also identify [Ge VI] 2.1930 $\\mu$m in NGC 7027. Alternate identifications for these features are ruled out based on the absence of other multiplet members and/or transitions with the same upper levels. Ge, Rb, and Cd can be enriched in PNe by s-process nucleosynthesis during the asymptotic giant branch (AGB) stage of evolution. To determine ionic abundances, we calculate [Rb IV] collision strengths and use approximations for those of [Cd IV] and [Ge VI]. Our identification of [Rb IV] 1.5973 $\\mu$m is supported by the agreement between Rb3+/H+ abundances found from this line and the 5759.55 A feature in NGC 7027. Elemental Rb, Cd, and Ge abundances are derived with ionization corrections based on similarities in ionization potential ranges between the ...

  13. Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra

    Elnasharty, I. Y.; Kassem, A. K.; Sabsabi, M.; Harith, M. A.

    2011-08-01

    To prevent engine failure it is essential to change lubricating oil regularly before it loses its protective properties. It is also necessary to monitor the physical and chemical conditions of the oil to reliably determine the optimum oil-change intervals. The present work focuses on studying evolution of the cyanide (CN) and carbon (C 2) molecular spectral emission lines in the laser induced breakdown spectra of lubricating oil as a function of its consumption. The intensities of these molecular bands have been taken as indicator of engine oil degradation at certain mileage. Furthermore, the percentage of decay of CN and C 2 integral intensity values at the corresponding mileage was calculated in order to relate it to the degree of consumption of the motor oil. Such percentage decay of the CN and C 2 integral intensities have been found to increase gradually with increasing mileage which is accompanied with increasing depletion of engine oil. The results of using LIBS technique in the present measurements proved that it is possible to have a direct, straightforward and easy method for prediction of lubricating oil degree of consumption. This may facilitate scheduling the proper time and/or mileage intervals for changing the oil to avoid any possibility of engine failure.

  14. Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra

    To prevent engine failure it is essential to change lubricating oil regularly before it loses its protective properties. It is also necessary to monitor the physical and chemical conditions of the oil to reliably determine the optimum oil-change intervals. The present work focuses on studying evolution of the cyanide (CN) and carbon (C2) molecular spectral emission lines in the laser induced breakdown spectra of lubricating oil as a function of its consumption. The intensities of these molecular bands have been taken as indicator of engine oil degradation at certain mileage. Furthermore, the percentage of decay of CN and C2 integral intensity values at the corresponding mileage was calculated in order to relate it to the degree of consumption of the motor oil. Such percentage decay of the CN and C2 integral intensities have been found to increase gradually with increasing mileage which is accompanied with increasing depletion of engine oil. The results of using LIBS technique in the present measurements proved that it is possible to have a direct, straightforward and easy method for prediction of lubricating oil degree of consumption. This may facilitate scheduling the proper time and/or mileage intervals for changing the oil to avoid any possibility of engine failure.

  15. Absolute Time-Resolved Emission of Non-LTE L-Shell Spectra from Ti-Doped Aerogels

    Back,C.; Feldman, U.; Weaver, J.; Seely, J.; Constantin, C.; Holland, G.; Lee, R.; Chung, H.; Scott, H.

    2006-01-01

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2 mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3 keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {gamma}/{delta}{gamma} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  16. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Back, C.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)]. E-mail: tinaback@llnl.gov; Feldman, U. [Artep Inc. 2922 Excelsior Ct., Ellicott City, MD 21042 (United States); Weaver, J.L. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Seely, J.F. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Constantin, C. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Holland, G. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Scott, H.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)

    2006-05-15

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {lambda}/{delta}{lambda} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  17. Deriving the extinction to young stellar objects using [FeII] near-infrared emission lines. Prescriptions from GIANO high-resolution spectra

    Pecchioli, Tommaso; Massi, Fabrizio; Oliva, Ernesto

    2016-01-01

    The near-infrared emission lines of Fe$^{+}$ at 1.257, 1.321, and 1.644 $\\mu$m share the same upper level; their ratios can then be exploited to derive the extinction to a line emitting region once the relevant spontaneous emission coefficients are known. This is commonly done, normally from low-resolution spectra, in observations of shocked gas from jets driven by Young Stellar Objects. In this paper we review this method, provide the relevant equations, and test it by analyzing high-resolution ($R \\sim 50000$) near-infrared spectra oftwo young stars, namely the Herbig Be star HD 200775 and the Be star V1478 Cyg, which exhibit intense emission lines. The spectra were obtained with the new GIANO echelle spectrograph at the Telescopio Nazionale Galileo. Notably, the high-resolution spectra allowed checking the effects of overlapping telluric absorption lines. A set of various determinations of the Einstein coefficients are compared to show how much the available computations affect extinction derivation. The m...

  18. Determination of size and bandgap distributions of Si nanoparticles from photoluminescence excitation and emission spectra in n-type stain etched porous silicon

    The photoluminescence excitation and emission spectra of n-type stain etched porous silicon layers were investigated. From these spectra the average values of optical bandgap and photoluminescence peak position were determined. Based on these experimental data, the photoluminescence emission spectra of porous silicon were analyzed by the phenomenological theory and the fitting parameters of the theory were defined. The size and bandgap distributions of silicon nanoparticles were determined and their mean values were calculated. It was found that the investigated PS samples are the ensemble of nanoparticles with size between 1.5 nm and 2.8 nm and a bandgap from 2 eV to 3.2 eV distributed with different probabilities depending on the formation time of porous silicon. It is shown that with increasing formation time, the average size of nanocrystals is slightly increasing, while the average bandgap is slightly narrowing. - Highlights: • Stain etched n-type porous silicon layers were formed in modified solution. • Joint theoretical analysis of excitation and emission spectra was performed. • Size and bandgap distributions of nanocrystals were determined. • Mean values of nanocrystal size and bandgap were determined

  19. X-Ray Emission Spectra and Electronic Structures of Red Phosphorus, 3d Transition-Metal Phosphides and III V Compounds

    Sugiura, Chikara

    1995-07-01

    The P Kβ emission spectra in fluorescence from red amorphous phosphorus, 3d transition-metal phosphides TiP, CrP, FeP, Fe2P, Fe3P, CoP, Co2P, Ni5P4, Ni2P, Ni3P, Cu3P, ZnP2 (black) and Zn3P2, and the semiconducting phosphides of the III-V type, BP, AlP, GaP and InP are measured with a high-resolution two-crystal vacuum spectrometer equipped with Ge(111) crystals. The influence of the metal atoms appears distinctly on the P Kβ fluorescence emission spectra. The measured spectra are compared with available X-ray emission and XPS valence-band spectra and theoretical energy-band calculations on a common energy scale. It is shown that considerable p-d, s mixing occurs in the valence bands of the 3d transition-metal phosphides and the P 3p states mix fairly with the P 3s states in the valence bands of red phosphorus, Gap and InP

  20. Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra.

    Dupuy, Nathalie; Le Dréau, Yveline; Ollivier, Denis; Artaud, Jacques; Pinatel, Christian; Kister, Jacky

    2005-11-30

    The authentication of virgin olive oil samples requires usually the use of sophisticated and very expensive analytical techniques, so there is a need for fast and inexpensive analytical techniques for use in a quality control methodology. Virgin olive oils present an intense fluorescence spectra. Synchronous excitation-emission fluorescence spectroscopy (SEEFS) was assessed for origin determination of virgin olive oil samples from five French registered designation of origins (RDOs) (Nyons, Vallée des Baux, Aix-en-Provence, Haute-Provence, and Nice). The spectra present bands between 600 and 700 nm in emission due to chlorophylls a and b and pheophytins a and b. The bands between 275 and 400 nm in emission were attributed to alpha-, beta-, and gamma-tocopherols and to phenolic compounds, which characterize the virgin olive oils compared to other edible oils. The chemometric treatment (PLS1) of synchronous excitation-emission fluorescence spectra allows one to determine the origin of the oils from five French RDOs (Baux, Aix, Haute-Provence, Nice, and Nyons). Results were quite satisfactory, despite the similarity between two denominations of origin (Baux and Aix) that are composed by some common cultivars (Aglandau and Salonenque). The interpretation of the regression coefficients shows that RDOs are correlated to chlorophylls, pheophytins, tocopherols, and phenols compounds, which are different for each origin. SEEFS is part of a global analytic methodology that associates spectroscopic and chromatographic techniques. This approach can be used for traceability and vindicates the RDOs. PMID:16302748

  1. Non-intrusive measurement of emission indices. A new approach to the evaluation of infrared spectra emitted by aircraft engine exhaust gases

    Lindermeir, E.; Haschberger, P.; Tank, V. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Optoelektronik

    1997-12-31

    A non-intrusive method is used to determine the emission indices of a research aircraft`s engine in-flight. The principle is based on the Fourier Transform Infrared Spectrometer MIROR which was specifically designed and built for operation aboard aircrafts. This device measures the spectrum of the infrared radiation emitted by the hot exhaust gas under cruise conditions. From these spectra mixing ratios and emission indices can be derived. An extension to previously applied evaluation schemes is proposed: Whereas formerly the plume was assumed a homogeneous layer of gas, temperature and concentration profiles are now introduced to the evaluation procedure. (author) 5 refs.

  2. Searching double-peaked emission line profiles in the spectra of galaxies through the symmetry of the cross-correlation function

    Garcia-Lorenzo, B

    2012-01-01

    The presence of double-peaked/multicomponent emission line profiles in spectra of galaxies is commonly done by visual inspection. However, the identification of complex emission line profiles by eye is unapproachable for large databases such as the Sloan Digital Sky Survey (SDSS) or the integral field spectroscopy surveys of galaxies (e.g. CALIFA or MaNGA). We describe a quick method involving the cross-correlation technique for detecting the presence of complex (double-peaked or multiple components) profiles in the spectra of galaxies, deriving simultaneously a first estimation of the velocity dispersions and radial velocities of the dominant gaseous component. We illustrate the proposed procedure with the well-known complex [OIII]4959,5007 profiles of the central region of NGC1068.

  3. The region of a recent burst of star formation in the Irr Galaxy IC10: the emission spectra, structure, and kinematics of ionized and neutral gas

    Egorov, O. V.; Lozinskaya, T. A.; Moiseev, A. V.

    2010-01-01

    We report the preliminary results of investigation of ionized and neutral gas structure, kinematics and emission spectra in the complex of a recent burst of star formation in the Irr Galaxy IC10 based on the observations made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using MPFS field spectrograph and SCORPIO focal reducer operating in the Fabry-Perot interferometer mode. From FPI observations in the Hα and [SII](λ6717A˚) lines we estimate the expansion velocities of the two brightest shell-like nebulae HL111 and HL106 and reveal faint high-velocity features in the complex. An analysis of 21-cm line VLA observations of the galaxy allowed us to identify two local HI shells surrounding HL111 and HL106, and estimate their expansion velocities. We briefly discuss the emission spectra and the metallicity of the ionized gas in the galaxy.

  4. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models

  5. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Ham, Kyung-Sik [Department of Food Engineering, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Yoo, Jonghyun, E-mail: jyoo@appliedspectra.com [Applied Spectra, Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho [School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models.

  6. Stacking Analysis of 12CO and 13CO Spectra of NGC3627: Existence of non-optically thick 12CO emission?

    Morokuma-Matsui, Kana; Watanabe, Yoshimasa; Kuno, Nario

    2014-01-01

    We stacked 12CO and 13CO spectra of NGC 3627 after redefining the velocity axis of each spectrum of the mapping data so that the zero corresponds to the local mean velocity of 12CO spectra. The signal-to-noise ratios of the resulting spectra are improved by a factor of up to 3.2 compared to those obtained with normal stacking analysis. We successfully detect a weak 13CO emission from the interarm region where the emission was not detected in the individual pointings. We compare the integrated intensity ratios I12 CO/I13 CO among six characteristic regions (center, bar, bar-end, offset, arm, and interarm). We find that I12CO/I13CO in the bar and interarm are higher than those in the other regions by a factor of ~2 and I12CO/I13CO in the center is moderately high. These high I12CO/I13CO ratios in the bar and center are attributed to a high intensity ratio (T12CO/T13CO) and one in the interarm is attributed to a high ratio of the full width at half maximum of spectra (FWHM12CO/FWHM13CO). The difference between F...

  7. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.

  8. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    M. Kiefer

    2010-04-01

    Full Text Available We examine volume mixing ratios (vmr retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. In level 2 (L2 data products of three different retrieval processors, which perform one dimensional (1-D retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D retrieval, L2 products generally do not show these differences. This implies that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem is to be expected to affect in

  9. Extracting ion emission lines from femtosecond-laser plasma x-ray spectra heavily contaminated by spikes

    Nowadays charged-coupled device (CCD) detectors are widely used for the registration of multicharged ions x-ray spectra. These spectra are generated in a plasma during interaction of ultrashort, ultraintense laser pulses with solid targets. Strong parasitic radiation from the plasma affects CCD detectors and contaminates resulting spectra, so that spectral features can be completely covered by noise even during measurements with a very short accumulation time. In this work we propose a ''mean to median'' (M2M) algorithm for noise suppression in femtosecond laser plasma x-ray spectra. Series of spectra is necessary for the identification of corrupted data points by the developed method. The algorithm was tested with model spectra which reflect main features of experimental data. In practice we used it for extracting information about spectral lines of Ne-like Fe ions and He-like Al ions which allowed us to calculate plasma parameters. It is demonstrated that M2M method is able to clean spectra with more than 10% of corrupted pixels. Fluctuations in intensity of spectral lines induced by laser instability do not affect validity of the proposed method

  10. Spectra of alkali atoms

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  11. High-energy pulses and phase-resolved spectra by inverse Compton emission in the pulsar striped wind - Application to Geminga

    Petri, J

    2009-01-01

    (abridged) Although discovered 40 years ago, the emission mechanism responsible for the observed pulsar radiation remains unclear. However, the high-energy pulsed emission is usually explained in the framework of either the polar cap or the outer gap model. The purpose of this work is to study the pulsed component, that is the light-curves as well as the spectra of the high-energy emission, above 10 MeV, emanating from the striped wind model. Gamma rays are produced by scattering off the soft cosmic microwave background photons on the ultrarelativistic leptons flowing in the current sheets. We compute the time-dependent inverse Compton emissivity of the wind, in the Thomson regime, by performing three-dimensional numerical integration in space over the whole striped wind. The phase-dependent spectral variability is then calculated as well as the change in pulse shape when going from the lowest to the highest energies. Several light curves and spectra of inverse Compton radiation with phase resolved dependence...

  12. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows

  13. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    Jester, Sebastian; /Fermilab; Harris, D.E.; /Smithsonian Astrophys. Observ.; Marshall, H.L.; /MIT, MKI; Meisenheimer, K.; /Heidelberg, Max Planck Inst. Astron.

    2006-05-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

  14. New Chandra observations of the jet in 3C273. I. Softer X-ray than radio spectra and the X-ray emission mechanism

    Jester, S; Marshall, H L; Meisenheimer, K

    2006-01-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyse the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright "knot A", ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

  15. NOTRAN/3D, 3-D Neutron Transport in X-Y-Z Geometry by Discrete Nodal Transport Method

    1 - Description of program or function: NOTRAN/3D solves the neutron transport equation in three-dimensional XYZ geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. The input format for cross sections is the same as for ANISN. Multigroup cross section libraries such as DLC-37 and DLC75/BUGLE-80 can be used. 2 - Method of solution: NOTRAN/3D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. The order of interior flux approximation is two. Plane or linear leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum order of: anisotropic scattering = 3; material compositions = 20; energy groups = 2; angular quadrature = 8; zones = 20. When coarse-mesh re-balancing is used, the maximum number of course meshes is 5 in each direction. If computer memory permits, some arrays can be enlarged to reduce the above restrictions

  16. Population kinetics and M band emission spectra of gold plasmas in non-local thermodynamic equilibrium by using a detailed relativistic configuration approach

    A collisional-radiative model based on the approach of detailed relativistic configurations is developed, where the complete set of atomic data including photo-excitation, photoionization, electron impact excitation, electron impact ionization and autoionization is calculated, and the data of the inverse processes are obtained by detailed balance. The population distribution is obtained by solving the rate equation under the steady-state condition. The present model is applied to calculate the charge state distribution and M band emission spectra of gold plasmas in non-local thermodynamic equilibrium under a variety of plasma conditions. Comparisons between the present work and experimental results were made and good agreement is found. For the strong transition lines, the intensities predicted by the present model agree with those of experimental spectra within 50%. The present work is useful in analyzing and interpreting experiments as well as in diagnosing the electron temperature in experiments. (paper)

  17. An iterative method in a probabilistic approach to the spectral inverse problem: Differential emission measure from line spectra and broadband data

    Goryaev, F F; Urnov, A M; Oparin, S N; Hochedez, J -F; Reale, F; 10.1051/0004-6361/201014280

    2010-01-01

    Inverse problems are of great importance in astrophysics for deriving information about the physical characteristics of hot optically thin plasma sources from their EUV and X-ray spectra. We describe and test an iterative method developed within the framework of a probabilistic approach to the spectral inverse problem for determining the thermal structures of the emitting plasma. We also demonstrate applications of this method to both high resolution line spectra and broadband imaging data. Our so-called Bayesian iterative method (BIM) is an iterative procedure based on Bayes' theorem and is used to reconstruct differential emission measure (DEM) distributions. To demonstrate the abilities of the BIM, we performed various numerical tests and model simulations establishing its robustness and usefulness. We then applied the BIM to observable data for several active regions (AR) previously analyzed with other DEM diagnostic techniques: both SUMER/SOHO (Landi and Feldman, 2008) and SPIRIT/CORONAS-F (Shestov et al...

  18. Modified LCAO interpolation method. Calculation of density of states and x-ray emission spectra of non-stopichiometric titanium and vanadium carbides

    A modified variant of LCAO-interpolation scheme for the calculation of electronic spectra of transition metal compounds with NaCl-type structure has been suggested. By the method of coherent potential in combination with LCAO-interpolation scheme partial densities of states and X-ray Kβ5 - and L111-spectra of metal in TiCx (x=1.0; 0.9; 0.8; 0.7) and VCx (x=1.0; 0.88; 0.8; 0.73) have been calculated. The influence of carbon vacancies on electronic spectrum and shape of X-ray emission bands of titanium and vanadium carbides has been studied. The data obtained are compared with calculation results of other authors and experimental characteristics

  19. Experimental research on time response of Two kinds of Yb3+-doped scintillators emission spectra excited by laser

    The time responses of Yb : YAP and Yb : YAG scintillators were measured with a picosecond solid laser as excited source. Both ordinary and UV-transmitting photoelectric cells were applied respectively for researching the effect of scintillator emission spectrum on detectors' time response. The experiment results show that the time attenuation constant of Yb : YAP scintillator emission is 1.206 ns as measured by ordinary photoelectric cell and 0.428 ns as measured by UV-transmitting photoelectric device, and the time attenuation constant of Yb : YAG scintillator emission is 0.411 ns as measured by UV-transmitting photoelectric device. The time response is better than that of BaF2 scintillator. There is definite relationship between the time response of scintillator detector and the scintillator emission spectrum. (authors)

  20. The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra: Scatter and unification aspects

    Lutz, D.; Maiolino, R.; Spoon, H. W. W.; Moorwood, A. F. M.

    2004-01-01

    We use mid-infrared spectral decomposition to separate the 6micron mid-infrared AGN continuum from the host emission in the ISO low resolution spectra of 71 active galaxies and compare the results to observed and intrinsic 2-10keV hard X-ray fluxes from the literature. We find a correlation between mid-infrared luminosity and absorption corrected hard X-ray luminosity, but the scatter is about an order of magnitude, significantly larger than previously found with smaller statistics. Main cont...

  1. The Equilibrium and Pre-Equilibrium Neutron Emission Spectra of Some Deformed Target Nuclei for (p,xn) Reactions up to 22.4 MeV

    In this study, by using equilibrium and pre-equilibrium reaction mechanisms, neutron-emission spectra produced by (p,xn) reactions for some deformed target nuclei as 165Ho, 181Ta and 232Th have been calculated the bombarding energies up to 22.4 MeV. In the calculations, pre-equilibrium calculations were calculated by using new evaluated hybrid model and geometry dependent hybrid model, full exciton model and cascade exciton model. The reaction equilibrium component was calculated by Weisskopf-Ewing model. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  2. Using band engineering to tailor the emission spectra of trichromatic semipolar InGaN light-emitting diodes for phosphor-free polarized white light emission

    Kowsz, S. J.; Pynn, C. D.; Oh, S. H.; Farrell, R. M.; DenBaars, S. P.; Nakamura, S.

    2016-07-01

    We report a polarized white light-emitting device that monolithically integrates an electrically injected blue light-emitting diode grown on the (20 2 ¯ 1 ¯ ) face of a bulk GaN substrate and optically pumped InGaN quantum wells (QWs) with green and red light emission grown on the (20 2 ¯ 1 ) face. To overcome the challenges associated with growing high indium content InGaN QWs for long wavelength emission, a p-i-n doping profile was used to red-shift the emission wavelength of one of the optically pumped QWs by creating a built-in electric field in the same direction as the polarization-induced electric field. Emission peaks were observed at 450 nm from the electrically injected QW and at 520 nm and 590 nm from the optically pumped QWs, which were situated in n-i-n and p-i-n structures, respectively. The optically pumped QW in the p-i-n structure was grown at a growth temperature that was 10 °C colder compared to the QW in the n-i-n structure, so the emission from the QW in the p-i-n structure was red-shifted due to increased indium content as well as the built-in electric field. Modeling work confirmed that the built-in electric field made a greater contribution than the change in alloy composition to the red-shift in emission from the QW in the p-i-n structure. The combined emission from the red, green, and blue QWs resulted in white-light emission with Commission Internationale de l'Eclairage x- and y-chromaticity coordinates of (0.33, 0.35) and an optical polarization ratio of 0.30.

  3. The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media

    Nevin, A.; Anglos, D.; Cather, S.; Burnstock, A.

    2008-07-01

    Spectrofluorimetric analysis of proteinaceous binding media is particularly promising because proteins employed in paintings are often fluorescent and media from different sources have significantly different fluorescence spectral profiles. Protein-based binding media derived from eggs, milk and animal tissue have been used for painting and for conservation, but their analysis using non-destructive techniques is complicated by interferences with pigments, their degradation and their low concentration. Changes in the fluorescence excitation emission spectra of films of binding media following artificial ageing to an equivalent of 50 and 100 years of museum lighting include the reduction of bands ascribed to tyrosine, tryptophan and Maillard reaction products and an increase in fluorescent photodegradation. Fluorescence of naturally aged paint is dependent on the nature of the pigment present and, with egg-based media, in comparison with un-pigmented films, emissions ascribed to amino acids are more pronounced.

  4. Local H~{\\sc i} emissivity measured with the {\\it Fermi}-LAT and implications for cosmic-ray spectra

    Casandjian, Jean-Marc

    2015-01-01

    Cosmic-ray (CR) electrons and nuclei interact with the Galactic interstellar gas and produce high-energy $\\gamma$ rays. The $\\gamma$-ray emission rate per hydrogen atom, called emissivity, provides a unique indirect probe of the CR flux. We present the measurement and the interpretation of the emissivity in the solar neighborhood for $\\gamma$-ray energy from 50~MeV to 50~GeV. We analyzed a subset of 4 years of observations from the Large Area Telescope (LAT) aboard the {\\it Fermi Gamma-ray Space Telescope} ({\\it Fermi}) restricted to absolute latitudes $10^o<|b| <70^o$. From a fit to the LAT data including atomic, molecular and ionized hydrogen column density templates as well as a dust optical depth map we derived the emissivities, the molecular hydrogen to CO conversion factor $X_{CO}=(0.902\\pm0.007) \\times 10^{20}$ cm$^{-2}$ (K km s$^{-1}$)$^{-1}$ and the dust-to-gas ratio $X_{DUST}=(41.4\\pm0.3) \\times 10^{20}$ cm$^{-2}$ mag$^{-1}$. Moreover we detected for the first time $\\gamma$-ray emission from i...

  5. Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG

    Oliva, E; Scuderi, S; Benatti, S; Carleo, I; Lapenna, E; Mucciarelli, A; Baffa, C; Biliotti, V; Carbonaro, L; Falcini, G; Giani, E; Iuzzolino, M; Massi, F; Sanna, N; Sozzi, M; Tozzi, A; Ghedina, A; Ghinassi, F; Lodi, M; Harutyunyan, A; Pedani, M

    2015-01-01

    Aims Determining the intensity of lines and continuum airglow emission in the H-band is important for the design of faint-object infrared spectrographs. Existing spectra at low/medium resolution cannot disentangle the true sky-continuum from instrumental effects (e.g. diffuse light in the wings of strong lines). We aim to obtain, for the first time, a high resolution infrared spectrum deep enough to set significant constraints on the continuum emission between the lines in the H-band. Methods During the second commissioning run of the GIANO high-resolution infrared spectrograph at La Palma Observatory, we pointed the instrument directly to the sky and obtained a deep spectrum that extends from 0.97 to 2.4 micron. Results The spectrum shows about 1500 emission lines, a factor of two more than in previous works. Of these, 80% are identified as OH transitions; half of these are from highly excited molecules (hot-OH component) that are not included in the OH airglow emission models normally used for astronomical ...

  6. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    Hansen, S. B., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Colgan, J.; Abdallah, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Faenov, A. Ya., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Pikuz, S. A.; Skobelev, I. Yu. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Booth, N.; Lancaster, K. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Evans, R. G. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Gray, R. J.; McKenna, P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Kaempfer, T.; Schulze, K. S. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Uschmann, I. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Institut für Optik und Quantenelektronic, Friedrich-Schiller-Universität Jena, Max-Wien Platz 1, Jena, D-07743 (Germany); and others

    2014-03-15

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  7. Validation and comparison of two models based on the Mie theory to predict 8-14 µm emissivity spectra of mineral surfaces

    García-Santos, Vicente; Valor, Enric; Caselles, Vicente; Doña, Carolina

    2016-03-01

    Remote sensing is a powerful tool for studying the planetary regolith surfaces through emission in the thermal infrared region (TIR, 8-14 µm). Theoretical emissivity models are needed to interpret the measured data and eventually to get surface characteristics (such as the refraction index) through model inversion. A new era of orbiting satellites carrying Hyperspectral TIR sensors is coming, and the necessity of understanding the thermal emission of Earth and other planet surfaces at all wavelengths of the electromagnetic spectrum is of prime interest. In this paper we review most of the existing analytical models for predicting the emissivity spectra of minerals for different viewing angles, which are based on the Mie theory, and validated and compared two of them: the Hapke model with two compactness correction methods not tested yet and a model based on the δ-Eddington approximation, which has not been validated for mineral surfaces. The validation was performed using measurements over two samples rich in quartz and gypsum, respectively. The Hapke model showed the best results when compared with the Warren-Wiscombe-Dozier (WWD) model with respect to measured data, showing a RMSE of ±0.04 in emissivity for particle diameter size of a quartz sample greater than 75 µm. This model also showed improvements with regard to results of past published works, after applying to Mie solutions the compactness correction proposed for the WWD model. These results were confirmed for a gypsum sample, a mineral different to the widely used quartz. Finally, the results showed the deficiencies of both models in simulating mineral emissivity around 8.7 µm, probably due to the underestimation of multiple scattering for large values of the imaginary part of the refractive index.

  8. The ground-based H, K, and L-band absolute emission spectra of HD 209458b

    Zellem, Robert T; Deroo, Pieter; Swain, Mark R; Waldmann, Ingo P

    2014-01-01

    Here we explore the capabilities of NASA's 3.0 meter Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 meter Hale telescope with the TripleSpec spectrometer with near-infrared H, K, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L-band indicate bright emission hypothesized to result from non-LTE CH$_{4}$ $\

  9. Spectral Components in the Optical Emission of the Seyfert Galaxy NGC 5548 and the Comparison of Intrinsic Nuclear Spectra with Accreting Corona Model

    Kuraszkiewicz, J K; Czerny, B

    1997-01-01

    We study the extensively monitored Seyfert galaxy NGC 5548 and compare its nuclear emission with models of accretion disk with accreting corona. To obtain the intrinsic nuclear spectra from the observed spectra we had to estimate and subtract the contribution from circumnuclear components such as stars, the Balmer continuum and blended FeII lines, and the FC2 extended, featureless continuum. The true nuclear spectra were compared with a two parameter model of the accreting disk with an accreting corona, described by the mass of the central black hole and viscosity. The model that best fitted the data was for M_{BH}=1.4e8 solar masses and the viscosity parameter alpha=0.033. Such a low viscosity parameter was necessary to produce the sufficient amount of X-rays. The vertical outflow of mass from corona in the form of wind had to be neglected in our model in order to fit into high and low states that NGC 5548 underwent. The model also predicts the behavior of the overall opt/UV/X continuum of NGC 5548 during th...

  10. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for $\\sim 100,000$ galaxies

    Momcheva, Ivelina G; van Dokkum, Pieter G; Skelton, Rosalind E; Whitaker, Katherine E; Nelson, Erica J; Fumagalli, Mattia; Maseda, Michael V; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Schreiber, Natascha M Förster; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Lange, Johannes Ulf; Lundgren, Britt F; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G; Price, Sedona; Tal, Tomer; Wake, David A; van der Wel, Arjen; Wuyts, Stijn

    2015-01-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 $H_{140}$ imaging, parallel ACS G800L spectroscopy, and parallel $I_{814}$ imaging. In a previous paper (Skelton et al. 2014) we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N. The data analysis is complicated by the fact that no slits are used: all objects in the WFC3 field are dispersed, and many spectra overlap. We developed software to automatically and optimally extract interlaced 2D and 1D spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxie...

  11. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  12. Rotational character of the 8Be and 12C spectra investigated through inelastic cross sections via photon emission

    Garrido, Eduardo; Jensen, A. S.; Fedorov, D. V.

    2014-01-01

    The electric quadrupole transitions between 0+, 2+, and 4+ states in 8Be and 12 C are investigated by discretization of the continuum with a box boundary condition. The ¿-emission cross sections and the corresponding transition strengths are computed. The consistency of these transition strengths with the expected behavior for transitions between states in a rotational band is investigated.

  13. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    Highlights: • Er3+ doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er3+ activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er3+:4I11/2→4I13/2 transition, high spontaneous radiative transition probability (30.09 s−1), large emission cross section ((14.84 ± 0.10) × 10−21 cm2) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier

  14. The optical spectra of matrix-isolated palladium-nitrogen complexes: An investigation by absorption, emission, and photoelectron spectroscopy

    Schrittenlacher, W.; Schroeder, W.; Rotermund, H. H.; Wiggenhauser, H.; Grinter, R.; Kolb, D. M.

    1986-08-01

    The optical spectra of palladium in neon and argon matrices containing up to 100% dinitrogen have been studied. Beside the known bands of isolated Pd atoms new strong bands assigned to weakly bonded Pd(N2)m (m=1, 2) complexes appear. The bands are attributed to three different types of transition. The dominant lines are essentially due to transitions localized at the Pd atom but strongly perturbed by a ``crystal field'' due to the weakly bonded N2 molecules. Secondly, a vibrational progression at lower energies is assigned to a Pd to N2 charge transfer transition and thirdly, at high energies, a vibrational progression assigned to a locally excited state of an N2 molecule perturbed by weak bonding to Pd is observed. No evidence has been found for the presence of Pd(N2)3. Photoelectron spectra of the Pd(N2)m complexes in neon have been observed. The Pd 4d photoemission peak is shifted with respect to the Pd atom in Ne by ˜1.1 eV to higher binding energies.

  15. The ultraviolet continuous and emission-line spectra of the Herbig-Haro objects HH 2 and HH 1

    Boehm-Vitense, E.; Cardelli, J. A.; Nemec, J. M.; Boehm, K. H.

    1982-01-01

    Recent studies of the continuous spectrum of Herbig-Haro (HH) objects at optical and near-infrared wavelengths and the observation of continuous radiation in the ultraviolet have shown an unexpectedly steep increase of the flux toward shorter wavelengths. The present investigation provides the results of ultraviolet observations of HH 2. The obtained data are compared with the HH 1 data. It is found that HH 2 has an ultraviolet continuous and emission-line spectrum which is similar to that of HH 1. The UV line spectrum of HH 2H indicates an even somewhat larger ionization than does the HH 1 spectrum. As in HH1, the UV emission-line spectrum shows a much higher degree of ionization than that derived from the optical spectrum. Consequently, the same difficulty arises as in the case of HH 1. The complete UV plus optical spectrum cannot be explained by a single plane-parallel shock-wave model.

  16. Emission spectra of a pulse needle-to-plane corona-like discharge in conductive aqueous solution

    Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr; Šunka, Pavel

    2012-01-01

    Roč. 21, č. 5 (2012), 055031-055031. ISSN 0963-0252 R&D Projects: GA AV ČR IAAX00430802 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water * pulsed electrical breakdown * point-plane geometry * streamer propagation * corona discharge * emission spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.515, year: 2012 http://iopscience.iop.org/0963-0252/21/5/055031/pdf/0963-0252_21_5_055031.pdf

  17. PARAFAC modeling of fluorescence excitation-emission spectra of fish bile for rapid en route screening of PAC exposure

    Christensen, Jan H.; Tomasi, Giorgio; Strand, Jakob; Andersen, Ole

    2009-01-01

    Polycyclic aromatic compound (PAC) metabolites in fish bile can be used as biomarkers for recent environmental exposure to PACs. Here, a novel method for rapid screening of nonhydrolyzed fish bile is presented. The method is based on excitation-emission fluorescence spectroscopy combined with par...... factor scores and 1-hydroxypyrene equivalents determined by SFS for high contamination levels, whereas the sensitivity was better for the EEM method...

  18. An investigation of Fe XVI emission lines in solar and stellar EUV and soft X-ray spectra

    Keenan, F. P.; Drake, J. J.; Aggarwal, K. M.

    2007-01-01

    New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However,...

  19. The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b

    Zellem, Robert T.; Griffith, Caitlin A. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Deroo, Pieter; Swain, Mark R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Waldmann, Ingo P., E-mail: rzellem@lpl.arizona.edu [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)

    2014-11-20

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH{sub 4} ν{sub 3} fluorescence. We do not detect a similar bright 3.3 μm feature to ∼3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  20. Theoretical modeling and analysis of the emission spectra of a ChemCam standard: Basalt BIR-1A

    We report on efforts to perform theoretical modeling of the emission spectrum measured from a basalt sample. We compare our calculations with measurements that were made to provide standards for the ChemCam instrument on the Mars Science Laboratory. We find that to obtain good agreement between modeling and the measurement, it is necessary to determine atomic and ionic level populations via a multi-element approach in which the free electron density that is created influences all the species within the plasma. Calculations that consider each element separately are found to be in poorer agreement with the measured spectrum, indicating that the ‘matrix effect’ term often used to describe the influence of other species on the emission spectrum from a given element is due to the influence of the global electron density of the plasma. We explore the emission features in both the visible and near-infrared wavelength ranges, and also examine radiation transport effects for some of the most intense features found in the basalt spectrum. Finally, we also provide comparisons of the ChemCam measurement with new high-resolution spectral measurements. - Highlights: • LIBS basalt spectrum • Ab-initio theoretical modeling • Discussion of matrix effects • Discussion of radiation transport effects • High-resolution measurements of Basalt

  1. The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH4 ν3 fluorescence. We do not detect a similar bright 3.3 μm feature to ∼3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  2. Theoretical modeling and analysis of the emission spectra of a ChemCam standard: Basalt BIR-1A

    Colgan, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Judge, E.J. [Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johns, H.M.; Kilcrease, D.P. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, J.E. [Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); McInroy, R. [Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hakel, P. [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wiens, R.C. [Space and Remote Sensing Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, S.M. [Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-08-01

    We report on efforts to perform theoretical modeling of the emission spectrum measured from a basalt sample. We compare our calculations with measurements that were made to provide standards for the ChemCam instrument on the Mars Science Laboratory. We find that to obtain good agreement between modeling and the measurement, it is necessary to determine atomic and ionic level populations via a multi-element approach in which the free electron density that is created influences all the species within the plasma. Calculations that consider each element separately are found to be in poorer agreement with the measured spectrum, indicating that the ‘matrix effect’ term often used to describe the influence of other species on the emission spectrum from a given element is due to the influence of the global electron density of the plasma. We explore the emission features in both the visible and near-infrared wavelength ranges, and also examine radiation transport effects for some of the most intense features found in the basalt spectrum. Finally, we also provide comparisons of the ChemCam measurement with new high-resolution spectral measurements. - Highlights: • LIBS basalt spectrum • Ab-initio theoretical modeling • Discussion of matrix effects • Discussion of radiation transport effects • High-resolution measurements of Basalt.

  3. Determination of the efficiency of high purity germanium and silicon diode detectors for improved assessment of emission spectra delivered by medical X-ray tubes

    X-ray sources are widely used in medicine: brachytherapy, radiodiagnosis, mammography and contact radiotherapy. Kerma in air is the primary quantity measured to determine the dose to the patient. Accurate air kerma assessment is obtained using correction factors calculated using the emission spectrum. The Laboratoire National Henri Becquerel launched an in-depth study of the spectral emission of its reference X-ray beams used in dosimetry. Two semiconductor detectors are discussed here: a High-Purity germanium and a silicon PiN, both cooled and operated with dedicated electronics and software. In the low energy range (E≤50 keV), those spectrometers are complementary but require a careful calibration to deduce the emitted spectrum from the detected one. Indeed, both detectors were characterized in terms of spectral response and intrinsic efficiency using a tuneable monochromatic X-ray source (SOLEX at CEA Saclay) in the 5- to 20-keV energy range and various radionuclides. The characterization methods and results, including the first measured spectra of medical X-ray tubes (high voltage≤50 kV), are presented in this work. This paper presents the first step of a broader project, aiming at assessing the emission spectrum independently of the detector choice. (authors)

  4. High resolution solar flare X-ray spectra: The temporal behavior of electron density, temperature, and emission measure for two class M flares

    High resolution soft X-ray flare spectra recorded by Naval Research Laboratory (NRL) and Aerospace Corporation Bragg crystal spectrometers flown on an orbiting spacecraft (P78-1) are combined and analyzed. THe instruments were launched on 1979 February 24 by the U.S. Air Force, and the data discussed in this paper cover the wavelength ranges, 1.82--1.97 A, 3.14--3.24 A, and 18.4--23.0 A. The NRL experiment (SOLFLEX) covers the two short wavelength ranges (highly ionized Fe and Ca lines) and the Aerospace experiment (SOLEX) covers the 18.4--23.0 A range, which includes the Lyα O VIII line and the resonance, intercombination, and forbidden lines of O VII. We analyze the spectra of two flares which occurred on 1980 April 8 and May 9. Temporal coverage is fairly complete for both flares, including the rise and decay phases. Measurements of electron density N/sub e/ with rather high time resolution (about 1 minute) have been obtained throughout most of the lifetime of the two flares. These measurements were obtained from the O VII lines and pertain to flare plasma at temperatures near 2 x 106 K. Peak density seems to occur slightly before the times of peak X-ray flux in the resonance lines of Fe XXV, Ca XIX, and O VII, and for both flares the peak density is about 1012 cm-3. Electron temperature T/sub e/ as a function of time is determined from the Fe and Ca spectra. Peak temperature for both flares is about 18 x 106 K. Differential emission measures and volume emission measures are determined from the resonance lines of O VII, Ca XIX, and Fe XXV. The number of electrons N/sub e/ΔV and the volume ΔV over which the O VII lines are formed are determined from the O VII volume emission measure N/sub e/2ΔV and the density N/sub e/. These quantities are determined as a function of time. The relationship of the low and high temperature regions is discussed

  5. A case study of HF radar spectra and 630.0 nm auroral emission in the pre-midnight sector

    M. Lester

    Full Text Available A comparison of HF radar backscatter observed by the CUTLASS Finland radar, meridian scanning photometer data from Longyearbyen, magnetic field variations from IMAGE stations, and particle precipitation measured by the DMSP F12 spacecraft is presented. The interval under discussion occurred in the pre-midnight local time sector, during a period of weakly northward interplanetary magnetic field. A region of HF backscatter, typically 8 degrees wide, occurred in the field of view of the CUTLASS Finland radar. A well defined gradient in the spectral width parameter was present, with mainly low (< 200 m s - 1 spectral widths in the lower latitude part of the scatter and predominantly large (> 200 ms - 1 spectral widths in the higher latitude part. The relationship between the spectral width and the red line (630.0 nm emission measured by the meridian scanning photometer is considered. The poleward border of the red line emission, which has, in the past, been proposed as being representative of the polar cap boundary, was co-located to within 1° of magnetic latitude with the gradient in spectral width for part of the interval. Statistically, large spectral widths occurred poleward of the red line emission, while small spectral widths occurred within or equatorward of the red line emission. Near simultaneous DMSP particle observations in the 20 eV to 20 keV range indicate that the poleward border of the red line emission and the gradient in spectral width occurred at the same latitude as the transition from auroral oval to polar rain particle energies. We conclude that the large spectral widths were not caused by particle precipitation associated with the auroral oval. There were two periods of special interest when the relationship between the red line and the spectral width broke down. The first of these happened during enhanced red line and green line (557.7 nm emission, with a drop out of the radar scatter and an enhanced, narrow westward

  6. An investigation of Fe XVI emission lines in solar and stellar EUV and soft X-ray spectra

    Keenan, F P; Aggarwal, K M

    2007-01-01

    New fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251 - 361 A and 32 - 77 A portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32 - 49 A portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and observations of Capella from the Low Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first order lines and from shorter wavelength transitions detected in second and th...

  7. N2+/N2 ratio and temperature measurements based on the first negative N2+ and second positive N2 overlapped molecular emission spectra

    The N2+(B2Σu+ - X2Σg+) and N2(C3Πu+ - B3Πg+) molecular emission spectra are frequently observed simultaneously in plasmas containing nitrogen. Relative band intensities of these systems are very sensitive to a variation of the N2+/N2 ratio and temperature. The spectrum, emitted between 3800 and 4000 A, has been used to measure rotational and vibrational temperatures, and to estimate the N2+/N2 ratio when the electron temperature is known, in different plasma sources (Glidarc, ac discharge between tips). The proposed method is based on a point-to-point comparison of an experimentally measured spectrum with the computer-simulated one

  8. Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 balloon instrument

    J. J. Remedios

    2007-01-01

    Full Text Available Organic compounds play a central role in troposphere chemistry and increasingly are a viable target for remote sensing observations. In this paper, infra-red spectral features of three organic compounds are investigated in thermal emission spectra recorded on a flight on 8 May 1998 near Aire sur l'Adour by a balloon-borne instrument, MIPAS-B2, operating at high spectral resolution. It is demonstrated, for the first time, that PAN and acetone can be detected in infra-red remote sensing spectra of the upper troposphere; detection results are presented at tangent altitudes of 10.4 km and 7.5 km (not acetone. In addition, the results provide the first observation of spectral features of formic acid in thermal emission, as opposed to solar occultation, and confirm that concentrations of this gas are measurable in the mid-latitude upper troposphere, given accurate spectroscopic data. For PAN, two bands are observed centred at 794 cm−1 and 1163 cm−1. For acetone and formic acid, one band has been detected for each so far with band centres at 1218 cm−1 and 1105 cm−1 respectively. Mixing ratios inferred at 10.4 km tangent altitude are 180 pptv and 530 pptv for PAN and acetone respectively, and 200 pptv for formic acid with HITRAN 2000 spectroscopy. Accuracies are on the order of 15 to 40%. The detection technique applied here is verified by examining weak but known signatures of CFC-12 and HCFC-22 in the same spectral regions as those of the organic compounds, with results confirming the quality of both the instrument and the radiative transfer model. The results suggest the possibility of global sensing of the organic compounds studied here which would be a major step forward in verifying and interpreting global tropospheric model calculations.

  9. K band SINFONI spectra of two $z \\sim 5$ SMGs: upper limits to the un-obscured star formation from [O II] optical emission line searches

    Couto, Guilherme S; López, Javier Piqueras; Storchi-Bergmann, Thaisa; Arribas, Santiago

    2016-01-01

    We present deep SINFONI K band integral field spectra of two submillimeter (SMG) galaxy systems: BR 1202-0725 and J1000+0234, at $z=4.69$ and $4.55$ respectively. Spectra extracted for each object in the two systems do not show any signature of the [O II]$\\lambda\\lambda$3726,29\\AA$\\,$ emission-lines, placing upper flux limits of $3.9$ and $2.5 \\times 10^{-18}\\,$${\\rm erg\\,s^{-1}\\,\\,cm^{-2} \\,}$ for BR 1202-0725 and J1000+0234, respectively. Using the relation between the star formation rate (SFR) and the luminosity of the [O II] doublet from Kennicutt (1998), we estimate unobscured SFR upper limits of $\\sim$ $10-15\\,\\rm M_\\odot\\,yr^{-1} \\,$ and $\\sim$ $30-40\\,\\rm M_\\odot\\,yr^{-1} \\,$ for the objects of the two systems, respectively. For the SMGs, these values are at least two orders of magnitude lower than those derived from SED and IR luminosities. The differences on the SFR values would correspond to internal extinction of, at least, $3.4 - 4.9$ and $2.1 - 3.6$ mag in the visual for BR 1202-0725 and J1000+0...

  10. Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice

    The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly and the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy

  11. One-Dimensional Fluorescent Silicon Nanorods Featuring Ultrahigh Photostability, Favorable Biocompatibility, and Excitation Wavelength-Dependent Emission Spectra.

    Song, Bin; Zhong, Yiling; Wu, Sicong; Chu, Binbin; Su, Yuanyuan; He, Yao

    2016-04-13

    We herein report a kind of one-dimensional biocompatible fluorescent silicon nanorods (SiNRs) with tunable lengths ranging ∼100-250 nm, which can be facilely prepared through one-pot microwave synthesis. In addition to the strong fluorescence (quantum yield value: ∼15%) and negligible toxicity, the resultant SiNRs exhibit excitation wavelength-dependent photoluminescence whose maximum emission wavelength ranges from ∼450 to ∼600 nm under serial excitation wavelengths from 390 to 560 nm, providing feasibility for multicolor biological imaging. More significantly, the SiNRs are ultrahighly photostable, preserving strong and nearly unchanged fluorescence under 400 min high-power UV irradiation, which is in sharp contrast to severe fluorescence quenching of organic dyes (e.g., FITC) or II-VI quantum dots (QDs) (e.g., CdTe QDs and CdSe/ZnS QDs) within 15 or 160 min UV treatment under the same experiment conditions, respectively. Taking advantage of these attractive merits, we further exploit the SiNRs as a novel type of color converters for the construction of white light-emitting diodes (LED), which is the first proof-of-concept demonstration of LED device fabricated using the one-dimensional fluorescent silicon nanostructures. PMID:27010956

  12. Infrared radiative transfer in atmospheres of Earth-like planets around F, G, K, and M stars. II. Thermal emission spectra influenced by clouds

    Vasquez, M.; Schreier, F.; Gimeno García, S.; Kitzmann, D.; Patzer, B.; Rauer, H.; Trautmann, T.

    2013-09-01

    Context. Clouds play an important role in the radiative transfer of planetary atmospheres because of the influence they have on the different molecular signatures through scattering and absorption processes. Furthermore, they are important modulators of the radiative energy budget affecting surface and atmospheric temperatures. Aims: We present a detailed study of the thermal emission of cloud-covered planets orbiting F-, G-, K-, and M-type stars. These Earth-like planets include planets with the same gravity and total irradiation as Earth, but can differ significantly in the upper atmosphere. The impact of single-layered clouds is analyzed to determine what information on the atmosphere may be lost or gained. The planetary spectra are studied at different instrument resolutions and compared to previously calculated low-resolution spectra. Methods: A line-by-line molecular absorption model coupled with a multiple scattering radiative transfer solver was used to calculate the spectra of cloud-covered planets. The atmospheric profiles used in the radiation calculations were obtained with a radiative-convective climate model combined with a parametric cloud description. Results: In the high-resolution flux spectra, clouds changed the intensities and shapes of the bands of CO2, N2O, H2O, CH4, and O3. Some of these bands turned out to be highly reduced by the presence of clouds, which causes difficulties for their detection. The most affected spectral bands resulted for the planet orbiting the F-type star. Clouds could lead to false negative interpretations for the different molecular species investigated. However, at low resolution, clouds were found to be crucial for detecting some of the molecular bands that could not be distinguished in the cloud-free atmospheres. The CO2 bands were found to be less affected by clouds. Radiation sources were visualized with weighting functions at high resolution. Conclusions: Knowledge of the atmospheric temperature profile is

  13. Effect of [Li]/[Nb] ratios on the absorption and up-conversion emission spectra in In:Yb:Ho:LiNbO3 crystal

    Highlights: • In:Yb:Ho:LiNbO3 crystals were grown with various [Li]/[Nb] ratios. • The influence of [Li]/[Nb] ratios on the UV–VIS–NIR is investigated. • This UC process is three-photon process. • In:Yb:Ho:LiNbO3 crystals (Li/Nb = 1.38) is a promising material for 2 μm wavelength radiation. - Abstract: In:Yb:Ho:LiNbO3 crystals with high optical quality were grown by the Czochralski method with various ratios of [Li]/[Nb], that is 0.94, 1.05, 1.20 and 1.38 in the melt. The UV–VIS–NIR absorption spectra of In:Yb:Ho:LiNbO3 crystals were measured. The transition intensity parameters Ωt (t = 2, 4 and 6), spectroscopic quality factor (X) and the lifetimes of Ho3+ in In:Yb:Ho:LiNbO3 crystals were all evaluated by the Judd–Ofelt theory. The spectroscopic quality factor Ω4/Ω6 of In:Yb:Ho:LiNbO3 crystals with the [Li]/[Nb] ratio of 1.38 was found to be 1.69, which is comparable with those found in widely used Ho3+ doped crystals. Furthermore, up-conversion emission spectra were determined and analyzed under 980 nm LD excitation in the In:Yb:Ho:LiNbO3 crystals. The results revealed that In:Yb:Ho:LiNbO3 crystal with the [Li]/[Nb] ratio of 1.38 is a promising material for 2 μm wavelength radiation

  14. Emission Spectra Analysis of Aluminum Plasma Induced by Laser%激光诱导Al等离子体发射光谱分析

    韩真真; 郝晓剑

    2014-01-01

    Laser-induced plasma technology is an important topic of the research on interaction between laser and material for a long time. The experiment system of laser induced plasma is researched and designed. Nd:YAG laser is used to induce Aluminum sample to produce plasma. And the Aluminum plasma emission spectra under dif⁃ferent energies are obtained. The element types contained in Aluminum sample and the changing relationship be⁃tween spectral line intensity and laser energy are analyzed. Experimental results show that the Aluminum sample contains Fe and Mg elements and with the increase of laser energy, spectra intensity increases obviously.%激光诱导等离子体技术长期以来都是研究激光与物质相互作用的重要课题。研究并设计了激光诱导等离子体实验系统,应用Nd:YAG激光器诱导Al样品产生等离子体,获得了不同能量下的Al等离子体发射光谱,分析了Al样品中所含元素种类以及谱线强度与激光能量之间的变化关系。实验结果表明,Al样品中含有Fe、Mg元素,随着激光能量的增大,谱线强度明显增大。

  15. Effect of [Li]/[Nb] ratios on the absorption and up-conversion emission spectra in In:Yb:Ho:LiNbO{sub 3} crystal

    Dai, Li, E-mail: daili198108@126.com [Applied Science College, Harbin University of Science and Technology, Harbin 150080 (China); State Key Laboratory of Crystal Material, Shandong University, Jinan 250100 (China); Yan, Zhehua; Jiao, Shanshan [Applied Science College, Harbin University of Science and Technology, Harbin 150080 (China); Xu, Chao; Xu, Yuheng [Department of the Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2015-09-25

    Highlights: • In:Yb:Ho:LiNbO{sub 3} crystals were grown with various [Li]/[Nb] ratios. • The influence of [Li]/[Nb] ratios on the UV–VIS–NIR is investigated. • This UC process is three-photon process. • In:Yb:Ho:LiNbO{sub 3} crystals (Li/Nb = 1.38) is a promising material for 2 μm wavelength radiation. - Abstract: In:Yb:Ho:LiNbO{sub 3} crystals with high optical quality were grown by the Czochralski method with various ratios of [Li]/[Nb], that is 0.94, 1.05, 1.20 and 1.38 in the melt. The UV–VIS–NIR absorption spectra of In:Yb:Ho:LiNbO{sub 3} crystals were measured. The transition intensity parameters Ω{sub t} (t = 2, 4 and 6), spectroscopic quality factor (X) and the lifetimes of Ho{sup 3+} in In:Yb:Ho:LiNbO{sub 3} crystals were all evaluated by the Judd–Ofelt theory. The spectroscopic quality factor Ω{sub 4}/Ω{sub 6} of In:Yb:Ho:LiNbO{sub 3} crystals with the [Li]/[Nb] ratio of 1.38 was found to be 1.69, which is comparable with those found in widely used Ho{sup 3+} doped crystals. Furthermore, up-conversion emission spectra were determined and analyzed under 980 nm LD excitation in the In:Yb:Ho:LiNbO{sub 3} crystals. The results revealed that In:Yb:Ho:LiNbO{sub 3} crystal with the [Li]/[Nb] ratio of 1.38 is a promising material for 2 μm wavelength radiation.

  16. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  17. Electromeric effect of substitution at 6th position in 2-(Furan-2-yl)-3-hydroxy-4 H-chromen-4-one (FHC) on the absorption and emission spectra

    Manisha Bansal; Ranbir Kaur

    2015-03-01

    Five 3-Hydroxychromones (3HCs), namely, 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one (FHC) and its four derivatives by substitution of -CH3, -OH, -NO2 and -Cl at 6th position were synthesized from their corresponding 2’-hydroxyacetophenone and furan-2-carboxaldehyde. Various spectral transitions of all these 3-hydroxychromones (3-HCs) have been assigned by interpreting their absorption spectra in cyclohexane, acetonitrile and methanol. It has been shown that the electromeric effects of substitution at 2nd and 6th positions on the 2–3 double bond in `C’ ring are similar but the effect on the double bond of 4-carbonyl group is opposite. It has been found that the substitution at 2nd position changes mainly the electron density directly at the 4-carbonyl group and substitution at 6th position changes the electron density of the `C’ ring, changing the overall dipole moment of the molecule, which in turn changes the electron density at the 4-carbonyl group. Emission spectral studies showed that the increase and decrease in dipole moment by substitution at 6th position with electron withdrawing group like NO2 and electron donating group like -CH3 and -OH, stabilizes and destabilizes the N* state in the polar solvents respectively

  18. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log KM and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  19. Characteristics of the Fe II and C II emission in high-resolution IUE spectra (2300-3000 A) of Alpha Orionis

    Carpenter, K. G.

    1984-01-01

    A study is presented of Fe II and C II emission features in the 2300-3000 A region of four high-resolution IUE spectra of Alpha Ori obtained during the period 1978 April-1982 November. A set of 42 unmutilated, unblended Fe II lines of multiplets UV 1-3, 32-33, 35-36, and 60-64 and the C II (UV 0.01) intercombination lines have been identified and measured to determine their velocities, fluxes, and asymmetries. A correlation of Fe II line asymmetry with intrinsic line strength indicates a velocity field which is initially constant, then algebraically increases with radius to a maximum value and then decreases significantly before reaching an asymptotic flow speed far from the star. The mean velocity of the chromospheric regions emitting Fe II does not appear to differ substantially from the time-average of the photospheric velocity, but there is evidence that the two regions are not strongly coupled and thus that the chromosphere does not strictly follow the semiperiodic 6 year pulsations of the photosphere. An analysis of the C II line fluxes produces estimates of the electron density in the chromosphere in the range 3.2 x 10 to the 7th-1.3 x 10 to the 8th per sq cm and indicates that the region emitting C II is geometrically thick, extending at least one-tenth, and perhaps as far as 1.2, photospheric radii from the base of the chromosphere.

  20. Emission spectra of luminous bacteria

    Spruit-van der Burg, A.

    1950-01-01

    The relation between the rate of photosynthesis and the pigment content was studied in seedlings of Avena sativa var. Victory. Etiolated seedlings were illuminated during different periods. Next, the rate of photosynthesis as well as the pigment concentrations were determined in the primary leaves.

  1. Interaction of 4p54dN+1 and 4p64dN-14f configurations and its influence on the photoexcitation and emission spectra in the isoelectronic and isonuclear sequences

    The strong interaction of 4p54dN+1 + 4p64dN-14f configurations and its influence on the photoexcitation and emission spectra corresponding to the excitations from the ground level of 4p64dN have been considered. The results are presented for the isoelectronic sequences from the ionization degree q = 5 up to q = 29-37 as well as for the isonuclear sequences of Snq+ and Wq+. It is shown that depending on the number of 4d electrons, the variation of spectra in the isoelectronic sequences corresponds to three different types. At N = 4 and N = 6-9, the strong concentration of lines takes place in the whole isoelectronic sequence, except for small ionization degrees. At N ≤ 3, the width of photoexcitation and emission spectra also obtains a relatively larger value at small ionization degrees, decreases with ionization degree rising, but tends to increase again at large ionization degrees. In the whole isoelectronic sequence, a very narrow group of a few intense lines is obtained for N = 5. The transitions from the excited levels mainly proceed to the lowest level of the ground configuration; it is the reason for the similarity of photoexcitation and emission spectra. The quenching of many lines and the concentration of line strengths in a few transitions indicate the existence of some wavefunction basis with strict selection rules for dipole transitions.

  2. BETA SPECTRA. I. Negatrons spectra

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  3. Global peroxyacetyl nitrate (PAN retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS

    N. Glatthor

    2007-01-01

    Full Text Available We use limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard the ENVIronmental SATellite (ENVISAT to derive the first global distribution of peroxyacetyl nitrate (PAN in the upper troposphere. PAN is generated in tropospheric air masses polluted by fuel combustion or biomass burning and acts as a reservoir and carrier of NOx in the cold free troposphere. Since PAN exhibits continuum-like broadband structures in the mid-infrared region, we have applied a contiguous analysis window covering the wavenumber region 775–800 cm−1 for retrieval. The interfering species CCl4, HCFC-22, H2O, ClONO2, CH3CCl3 and C2H2 were fitted along with PAN, whereas pre-fitted profiles were used to model the contribution of other contaminants like ozone. Sensitivity tests consisting in retrieval without consideration of PAN have demonstrated the existence of PAN signatures in MIPAS spectra obtained from polluted air masses. The analysed dataset consists of 10 days between 4 October and 1 December 2003. This period covers the end of the biomass burning season in South America and South and East Africa, in which generally large amounts of pollutants are produced and distributed over wide areas in the southern hemispheric free troposphere. Elevated PAN amounts of 200–700 pptv were measured in a large plume extending from Brasil over the Southern Atlantic, Central and South Africa, the South Indian Ocean as far as Australia at altitudes between 8 and 16 km. Enhanced PAN values were also found in a much more restricted area between northern subtropical Africa and India. The most significant northern midlatitude PAN signal in MIPAS data is an area extending at 8 km altitude from China into the Chinese Sea. The average mid and high latitude PAN amounts found at 8 km were around 125 pptv in the northern, but only between 75 and

  4. Global peroxyacetyl nitrate (PAN retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS

    N. Glatthor

    2007-06-01

    Full Text Available We use limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard the ENVIronmental SATellite (ENVISAT to derive the first global distribution of peroxyacetyl nitrate (PAN in the upper troposphere. PAN is generated in tropospheric air masses polluted by fuel combustion or biomass burning and acts as a reservoir and carrier of NOx in the cold free troposphere. PAN exhibits continuum-like broadband structures in the mid-infrared region and was retrieved in a contiguous analysis window covering the wavenumber region 775–800 cm−1. The interfering species CCl4, HCFC-22, H2O, ClONO2, CH3CCl3 and C2H2 were fitted along with PAN, whereas pre-fitted profiles were used to model the contribution of other contaminants like ozone. Sensitivity tests consisting in retrieval without consideration of PAN demonstrated the existence of PAN signatures in MIPAS spectra obtained in polluted air masses. The analysed dataset consists of 10 days between 4 October and 1 December 2003. This period covers the end of the biomass burning season in South America and South and East Africa, in which generally large amounts of pollutants are produced and distributed over wide areas of the southern hemispheric free troposphere. Indeed, elevated PAN amounts of 200–700 pptv were measured in a large plume extending from Brasil over the Southern Atlantic, Central and South Africa, the South Indian Ocean as far as Australia at altitudes between 8 and 16 km. Enhanced PAN values were also found in a much more restricted area between northern subtropical Africa and India. The most significant northern midlatitude PAN signal was detected in an area at 8 km altitude extending from China into the Chinese Sea. The average mid and high latitude PAN amounts found at 8 km were around 125 pptv in the northern, but only between 50 and 75 pptv in the

  5. Intensity analysis of S Kβ emission spectra of Na2SO3 by the use of DV-Xα MO method

    As a simulation experiment for secondarily excited characteristic X-rays in PIXE spectra, S Kβ emitted from Na2SO3 were measured by using a tungsten anode X-ray tube as an excitation source. The DV-Xα method confirmed that the Kβ' and Kβ'' transition did not originate from the crossover or interatomic transition but from S 3p→S 1s and S 2p→S 1s transitions. Such assignment is helpful not only to analyze the fine structure in X-ray spectra secondarily induced in PIXE experiments but also to investigate the fine structures in XRF spectra. (orig.)

  6. FTIR spectra

    Machovič, Vladimír; Novák, František; Madronová, L.; Novák, J.

    New York : Nova Science Publisher, 2011 - (Madronová, L.), s. 21-33 ISBN 978-1-61668-965-0. - ( Chemistry Research and Applications) Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z60660521 Keywords : FTIR spectra * humic acids * soil Subject RIV: DB - Geology ; Mineralogy

  7. Systematic studies on 3d-3d and 3d-4f multimetallic complexes with interesting magnetic and/or luminescent properties

    Oyarzabal Epelde, Itziar

    2015-01-01

    324 p. El Magnetismo Molecular y Fotoquímica son las áreas de investigación en las que se centra el trabajo presentado en esta tesis. El objetivo de este trabajo no sólo ha sido la preparación de complejos de coordinación con propiedades interesantes, sino también el establecimiento de estrategias sintéticas para la posterior obtención de materiales moleculares con las propiedades deseadas, como por ejemplo comportamiento de molécula imán (SMM)) y/o propiedades luminiscentes. Los SMMs son ...

  8. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification - A step towards MRI-based treatment planning

    Buhl, S.K.; Duun-Christensen, Anne Katrine; Kristensen, B.H.;

    2010-01-01

    undergoing postoperative radiotherapy for malignant brain tumors received a weekly CBCT. In total 18 scans was matched with both CT and MRI as reference. The CBCT scans were acquired using a Clinac iX 2300 linear accelerator (Varian Medical Systems) with an On-Board Imager (OBI). Results. For the phantom...

  9. Dynamic Radio Spectra from two Fireballs

    Obenberger, K. S.; Taylor, G. B.; Lin, C. S.; J. Dowell; Schinzel, F. K.; Stovall, K.

    2015-01-01

    We present dynamic spectra from the LWA1 telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a weak electron beam within the trail. The spectra of one fire...

  10. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    A careful new measurement of the 238U(n,γ) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4π calorimetric scintillator array consisting of 160 BaF2 crystals. Measurements were made on a 48 mg/cm2 depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  11. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    Ullmann, John L [Los Alamos National Laboratory; Couture, A J [Los Alamos National Laboratory; Keksis, A L [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; O' Donnell, J M [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Haight, R C [Los Alamos National Laboratory; Rundberg, R S [Los Alamos National Laboratory; Kawano, T [Los Alamos National Laboratory; Chyzh, A [NORTH CAROLINA STATE UNIV; Baramsai, B [NORTH CAROLINA STATE UNIV; Wu, C Y [LLNL; Mitchell, G E [NORTH CAROLINA STATE UNIV; Becker, J A [LLNL; Krticka, M [CHARLES UNIV

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  12. Dissecting the Power Sources of Low-Luminosity Emission-Line Galaxy Nuclei via Comparison of HST-STIS and Ground-Based Spectra

    Constantin, Anca; Shields, Joseph C.; Ho, Luis C.; Barth, Aaron J.; Filippenko, Alexei V.; Castillo, Christopher A.

    2015-12-01

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. GNASH: a preequilibrium, statistical nuclear-model code for calculation of cross sections and emission spectra. [In FORTRAN for CDC 7600

    Young, P.G.; Arthur, E.D.

    1977-11-01

    A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables.

  14. Dissecting the Power Sources of Low-Luminosity Emission-Line Galaxy Nuclei via Comparison of HST-STIS and Ground-Based Spectra

    Constantin, Anca; Ho, Luis C; Barth, Aaron J; Filippenko, Alexei V; Castillo, Christopher A

    2015-01-01

    Using a sample of ~100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of H_alpha and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which Transition Objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at <10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The Transition Objects show a threefold increase in the incidence of broad H_...

  15. Effect of the design of the active region of monolithic multi-color LED heterostructures on their spectra and emission efficiency

    The design features of light-emitting-diode heterostructures with a monolithic InGaN/GaN active region containing several InGaN quantum wells (QWs) emitting at different wavelengths, grown by metal-organic chemical vapor deposition, are studied. It is shown that the number of emission bands can be raised to three by increasing the number of deposited InGaN QWs with different indium contents. The emission efficiency decreases by approximately 30% with increasing number of QWs at high currents. The dependences of the optical properties of the heterostructures on the number of QWs and types of barriers between the QWs (GaN layer or InGaN/GaN short-period superlattice) are analyzed. It is demonstrated that the ratio between the intensities of the emission lines widely varies with current flowing through the structure and greatly depends on the type and width of the barriers between the QWs

  16. Effect of the design of the active region of monolithic multi-color LED heterostructures on their spectra and emission efficiency

    Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Sinitsyn, M. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Cherkashin, N. A. [CEMES-CNRS–Université de Toulouse (France); Karpov, S. Y. [STR Group–Soft-Impact OOO (Russian Federation)

    2015-11-15

    The design features of light-emitting-diode heterostructures with a monolithic InGaN/GaN active region containing several InGaN quantum wells (QWs) emitting at different wavelengths, grown by metal-organic chemical vapor deposition, are studied. It is shown that the number of emission bands can be raised to three by increasing the number of deposited InGaN QWs with different indium contents. The emission efficiency decreases by approximately 30% with increasing number of QWs at high currents. The dependences of the optical properties of the heterostructures on the number of QWs and types of barriers between the QWs (GaN layer or InGaN/GaN short-period superlattice) are analyzed. It is demonstrated that the ratio between the intensities of the emission lines widely varies with current flowing through the structure and greatly depends on the type and width of the barriers between the QWs.

  17. Energy transfer based photoluminescence spectra of co-doped (Dy3+ + Sm3+): Li2O-LiF-B2O3-ZnO glasses for orange emission

    Vijayalakshmi, L.; Naveen Kumar, K.; Vijayalakshmi, R. P.

    2016-07-01

    The present paper brings out the results concerning the preparation and optical properties of Sm3+ and Dy3+ each ion separately in different concentrations (0.3, 0.5, 1.0 and 1.5 mol.%) and also together doped (x mol.% Dy3+ + 1.5 mol.% Sm3+): Li2O-LiF-B2O3-ZnO (where x = 0.5, 1.0 and 1.5 mol.%) glasses by a melt quenching method. Structural and thermal properties have been extensively studied for those glasses by XRD and TG/DTA. The compositional analysis has been carried out from FTIR spectral profile. Optical absorption spectral studies were also carried out. Sm3+: LBZ glasses have displayed an intense orange emission at 603 nm (4G5/2 → 6H7/2) with an excitation wavelength at 403 nm and Dy3+: LBZ glasses have shown two emissions located at 485 nm (4F9/2 → 6H15/2; blue) and 574 nm (4F9/2 → 6H13/2; yellow) with an excitation wavelength at 385 nm. Remarkably, it has been identified that the significant increase in the reddish orange emission of Sm3+ ions and diminished yellow emission pertaining to Dy3+ ions in the co-doped LBZ glass system under the excitation of 385 nm which relates to Dy3+ ions. This could be due energy transfer from Dy3+ to Sm3+. The non-radiative energy transfer from Dy3+ to Sm3+ is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. These significantly enhanced orange emission exhibited glasses could be suggested as potential optical glasses for orange luminescence photonic devices.

  18. Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: explicit treatment of the vibronic transitions.

    D'Abramo, Marco; Aschi, Massimiliano; Amadei, Andrea

    2014-04-28

    Here, we extend a recently introduced theoretical-computational procedure [M. D'Alessandro, M. Aschi, C. Mazzuca, A. Palleschi, and A. Amadei, J. Chem. Phys. 139, 114102 (2013)] to include quantum vibrational transitions in modelling electronic spectra of atomic molecular systems in condensed phase. The method is based on the combination of Molecular Dynamics simulations and quantum chemical calculations within the Perturbed Matrix Method approach. The main aim of the presented approach is to reproduce as much as possible the spectral line shape which results from a subtle combination of environmental and intrinsic (chromophore) mechanical-dynamical features. As a case study, we were able to model the low energy UV-vis transitions of pyrene in liquid acetonitrile in good agreement with the experimental data. PMID:24784250

  19. Proton, deuteron, and triton emission at target rapidity in Au+Au collisions at 10.20A GeV: Spectra and directed flow

    Systematic results are presented on proton, deuteron, and triton emission from the target spectator region in collisions of 10.20A GeV gold projectiles with a gold target. A forward hodoscope utilizes detection of projectile spectator fragments to determine the orientation of the reaction plane, event by event. The directed flow left-angle px right-angle is determined as a function of pseudorapidity. Projectile spectator energy is used to estimate impact parameters. Results are compared to current theoretical models ARC, ART, and RQMD. In all cases good agreement with theory is obtained for calculations utilizing a pure cascade without nuclear potential contributions. copyright 1998 The American Physical Society

  20. Emission spectra of the sol-gel glass doped with europium(III) complexes of picolinic acid N-oxide-A new UV-light sensor

    New europium complexes of picolinic acid N-oxides have been synthesised and introduced into sol-gel matrices. Their application as UV-light sensors has been considered. The sequence of the electronic levels for Eu3+ ions has been determined from the absorption and emission studies and assigned to the respective electron transitions. The lifetimes of the excited states have been detected and analysed. The role of the CT transition inside the picolinic ligand and its influence on the ligand to metal charge transfer (LMCT) have been discussed

  1. Detection of Broad H$\\alpha$ Emission Lines in the Late-time Spectra of a Hydrogen-poor Superluminous Supernova

    Yan, Lin; Ofek, E; Gal-Yam, A; Mazzali, P; Perley, D; Vreeswijk, P; Leloudas, G; de Cia, A; Masci, F; Cenko, S B; Cao, Y; Kulkarni, S R; Nugent, P E; Rebbapragada, Umaa D; Woźniak, P R; Yaron, O

    2015-01-01

    iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z=0.3434, with properties similar to SN2007bi. It rises within (83-148)days (rest-frame) to reach a peak bolometric luminosity of 1.3x$10^{44}$erg/s, then decays very slowly at 0.015mag. per day. The measured ejecta velocity is 13000km/s. The inferred explosion characteristics, such as the ejecta mass (67-220$M_\\odot$), the total radiative and kinetic energy ($10^{51}$ & 2x$10^{53}$erg respectively), is typical of SLSN-R events. However, the late-time spectrum taken at +251days reveals a Balmer Halpha emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ~4500km/s and has a ~300km/s blue-ward shift relative to the narrow component. We interpret this broad Halpha emission line as the interaction between the supernova ejecta and a H-rich circumstellar medium (CSM) shell, located at a distance of ~4x$10^{16}$cm from the explosion site. This eje...

  2. A study of radiative Auger emission, satellites and hypersatellites in photon-induced K x-ray spectra of some elements in the range 20≤Z≤32

    Photon-induced K x-ray spectra of Ca, Ti, Fe, Zn and Ge have been investigated. The measurements have been made using a crystal spectrometer combined with a thin scintillation detector. Excited by the collimated photon beam from an Rh-anode x-ray tube, the spectra of all these elements reveal the existence of radiative Auger emission (RAE) structure and the satellite and hypersatellite lines along with the diagram lines. The energies and intensities of the Kα2, Kα1, Kβ1,3 and Kβ5 diagram lines and the Kα satellites and hypersatellite transitions are presented. The intensity of the RAE structure corresponding to the Kβ1,3 x-ray transition and the energy of the RAE edge for each element is also reported. The measured results have been compared with the values from other sources such as electron/heavy-ion excitation and theoretical values. From the intensities of the satellite lines of these elements, the average L-vacancy fraction PL has been deduced in each case. (author)

  3. Experimental and theoretical studies of the VUV emission and absorption spectra of H{sub 2}, HD and D{sub 2} molecules; Etude experimentale et theorique des spectres d'emission et d'absorption VUV des molecules H{sub 2}, D{sub 2} et HD

    Roudjane, M

    2007-12-15

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D{sub 2} and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D{sub 2} are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B{sup 1}{sigma}{sub u}{sup 1}, B'{sup 1}{sigma}{sub u}{sup 1}, C{sup 1}{pi}{sub u}{sup 1} and D{sup 1}{pi}{sub u}{sup 1}, taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar{sup 1}{sigma}{sub u}{sup +}, D'{sup 1}{pi}{sub u}{sup 1} and D''{sup 1}{pi}{sub u}{sup 1}. The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D{sub 2} molecules.

  4. Evaluation of secondary and prompt fission neutron spectra

    Porodzinskij, Yu.V.; Sukhovitskij, E.Sh. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    A simple model allowing to split neutron emission spectra into reaction partials is suggested. Predicted spectra of (n,n`{gamma}), (n,n`f), etc appear to be much harder than usually evaluated. (author)

  5. A synchrotron self-Compton emission model compared with the VHE spectrum of Crab Nebula, Geminga energy spectra and hadronic gamma-rays in the Tycho SNR

    The Crab Nebula has an extraordinary broad spectrum, attributed to synchrotron radiation of electrons with energies from GeV to PeV. This continuous spectrum appears to terminate near 108 eV and photons, produced by relativistic electrons and positrons (∼1015 eV) via the Inverse Compton effect, form a new component of the spectrum in the GeV - TeV energy range. The spectrum of γ-rays from the Crab Nebula has been measured in the energy range 0.8 TeV to 11 TeV at the SHALON Alatoo Observatory by the atmospheric Cerenkov technique. The VHE spectral energy distribution of the Crab Nebula is compared with the predictions of a synchrotron self-Compton emission model in the energy range 0.8 TeV to 11 TeV (Hillas et al. 1998). Tycho's SNR has been observed by SHALON imaging Cherenkov telescope at Tien-Shan. This object, Ia SNR, has long been considered as a candidate for a CR hadron source in the Northern Hemisphere. The expected pion decay γ-flux, Fγ∼Eγ-1, extends up to >30 TeV, whereas the IC γ-ray flux has a cutoff above a few TeV. So, the detection of γ-rays at energies of 10 - 40 TeV by SHALON is evidence for a hadron origin of the γ-rays.

  6. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K[Formula: see text] emission spectra.

    Rees, Julian A; Wandzilak, Aleksandra; Maganas, Dimitrios; Wurster, Nicole I C; Hugenbruch, Stefan; Kowalska, Joanna K; Pollock, Christopher J; Lima, Frederico A; Finkelstein, Kenneth D; DeBeer, Serena

    2016-09-01

    A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry. PMID:27251139

  7. Optimal fitting of gaussian-apodized or under-resolved emission lines in Fourier Transform spectra providing new insights on the velocity structure of NGC 6720

    Martin, Thomas B; Drissen, Laurent

    2016-01-01

    An analysis of the kinematics of NGC 6720 is performed on the commissioning data obtained with SITELLE, the Canada-France-Hawaii Telescope's new imaging Fourier transform spectrometer. In order to measure carefully the small broadening effect of a shell expansion on an unresolved emission line, we have determined a computationally robust implementation of the convolution of a Gaussian with a sinc instrumental line shape which avoids arithmetic overflows. This model can be used to measure line broadening of typically a few km/s even at low spectral resolution (R less than 5000). We have also designed the corresponding set of Gaussian apodizing functions that are now used by ORBS, the SITELLE's reduction pipeline. We have implemented this model in ORCS, a fitting engine for SITELLE's data, and used it to derive the [SII] density map of the central part of the nebula. The study of the broadening of the [NII] lines shows that the Main Ring and the Central Lobe are two different shells with different expansion vel...

  8. A synchrotron self-Compton emission model compared with the VHE spectrum of Crab Nebula, Geminga energy spectra and hadronic gamma-rays in the Tycho SNR

    Sinitsyna, V.G.; Borisov, S.S.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y.; Platonov, G.F. [P.N.Lebedev Physical Institute, Leninsky prospect 53, Moscow, 119991 (Russian Federation)

    2009-12-15

    The Crab Nebula has an extraordinary broad spectrum, attributed to synchrotron radiation of electrons with energies from GeV to PeV. This continuous spectrum appears to terminate near 10{sup 8} eV and photons, produced by relativistic electrons and positrons (approx10{sup 15} eV) via the Inverse Compton effect, form a new component of the spectrum in the GeV - TeV energy range. The spectrum of gamma-rays from the Crab Nebula has been measured in the energy range 0.8 TeV to 11 TeV at the SHALON Alatoo Observatory by the atmospheric Cerenkov technique. The VHE spectral energy distribution of the Crab Nebula is compared with the predictions of a synchrotron self-Compton emission model in the energy range 0.8 TeV to 11 TeV (Hillas et al. 1998). Tycho's SNR has been observed by SHALON imaging Cherenkov telescope at Tien-Shan. This object, Ia SNR, has long been considered as a candidate for a CR hadron source in the Northern Hemisphere. The expected pion decay gamma-flux, F{sub g}ammaapproxE{sub g}amma{sup -1}, extends up to >30 TeV, whereas the IC gamma-ray flux has a cutoff above a few TeV. So, the detection of gamma-rays at energies of 10 - 40 TeV by SHALON is evidence for a hadron origin of the gamma-rays.

  9. Correlation between optical emission spectra and the process parameters of a 915 MHz microwave plasma CVD reactor used for depositing polycrystalline diamond coatings

    Awadesh Kumar Mallik; Sandip Bysakh; Someswar Dutta; Debabrata Basu

    2014-08-01

    In this paper, the hydrogen and hydrogen-methane mixed plasma have been generated inside a 33 cm diameter quartz bell jar with a low power (9 KW) and lower frequency 915 MHz microwave plasma chemical vapor deposition system. The reactor is being used for growing polycrystalline diamond (PCD) over large area (100 mm). The generated plasma is diagnosed by in situ optical emission spectroscopy method with wave length ranging from 200 to 900 nm. The effects of microwave power, chamber pressure and gas concentration on plasma characteristics have been studied in this work. Within the optical range, Balmer H, H, C2swan band and CH lines have been detected at the wavelengths of 655.95, 485.7, 515.82 and 430.17 nm, respectively. It has been observed that for hydrogen plasma, the amount of transition from hydrogen atom inner shell 3 to 2 (H) is almost constant with increasing microwave (MW) power (from 2000 to 2800 W) and pressure (from 15 to 30 Torr) initially, after that it increases with further increase of MW power and pressure, whereas, the transition from 4 to 2 (H) is slowly increased with increasing MW power and pressure. For hydrogen-methane plasma, intensities of C2 swan band, i.e., the transitions from D$^3\\Pi_\\text{g}$ to A$^3\\Pi_{\\mu}$ energy levels, are also increased with the increasing microwave power and reactor pressure. It has been observed that the radicals present in the plasma are affected by variation of different reactor parameters like pressure, MW power, CH4 concentration, etc.

  10. (abstract) Spectra of Comet Hale-Bopp

    Hanner, M. S.; Hayward, T. L.; Lynch, D. K.; Russell, R. W.

    1996-01-01

    The spectra of Hale-Bopp were acquired in mid-1996 at R > 3.5 AU. Strong silicate emission is present in all the spectra. The shape of the feature is very similar to that seen in comet P/Halley. This is the first time that a strong silicate feature has been detected in a comet beyond 2 AU.

  11. Study of optical absorption, visible emission and NIR–vis luminescence spectra of Tm3+/Yb3+, Ho3+/Yb3+ and Tm3+/Ho3+/Yb3+ doped tellurite glasses

    Tm3+/Yb3+, Ho3+/Yb3+ co-doped and Tm3+/Ho3+/Yb3+ triply doped TeO2–Bi2O3–ZnO–Li2O–Nb2O5 (TBZLN) tellurite glasses were prepared by melt quenching method. Judd–Ofelt intensity parameters (Ωλ, λ=2, 4 and 6), radiative transition probabilities, branching ratios and radiative lifetimes of Tm3+, Ho3+ ions in co-doped TBZLN glasses were calculated from the optical absorption spectra. Excitation, visible luminescence and decay lifetimes in visible region were also investigated. The stimulated emission and gain cross-sections for the Tm3+:3F4→3H6 (1700 nm) and Ho3+:5I7→5I8 (1956 nm) transitions in co-doped TBZLN glasses have been analyzed and compared with those of other reported glasses. Up-conversion luminescence was observed in TBZLN glasses under 980 nm laser excitation and energy transfer mechanisms have been discussed. Finally, CIE color co-ordinates were calculated and it is observed that the color co-ordinates fall in blue and green regions for Tm3+/Yb3+ and Ho3+/Yb3+ co-doped TBZLN glasses, respectively. A subsequent shift in color co-ordinates from green to greenish-yellow region has been observed with an increase in the concentration (0.1, 0.5 and 1.0 mol%) of Tm3+ ions in Tm3+/Ho3+/Yb3+ triply doped TBZLN glasses. - Highlights: • High degree of covalecy of RE–O bond in co-doped TBZLN glasses was observed. • Tm3+:1D2→3F4 and Ho3+:5F4(5S2)→5I8 transitions show high emission cross-section. • Visible and strong 793 nm emission was observed when pumped by 980 nm diode laser. • Triply doped glasses exhibits tunable emission intensity by increasing Tm3+ ions

  12. Dynamic Radio Spectra from two Fireballs

    Obenberger, K S; Lin, C S; Dowell, J; Schinzel, F K; Stovall, K

    2015-01-01

    We present dynamic spectra from the LWA1 telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a weak electron beam within the trail. The spectra of one fireball displays broadband temporal frequency sweeps. We suggest that these sweeps are evidence of individual expanding clumps of emitting plasma. While some of these proposed clumps may have formed at the very beginning of the fireball event, others must have formed seconds after the initial event.

  13. Dynamic radio spectra from two fireballs

    Obenberger, K. S.; Taylor, G. B.; Lin, C. S.; Dowell, J.; Schinzel, F. K.; Stovall, K.

    2015-11-01

    We present dynamic spectra from the Long Wavelength Array telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a bump-on-tail instability within the trail. The spectra of one fireball display broadband temporal frequency sweeps. We suggest that these sweeps are evidence of individual expanding clumps of emitting plasma. While some of these proposed clumps may have formed at the very beginning of the fireball event, others must have formed seconds after the initial event.

  14. Cassini UVIS observations of Titan nightglow spectra

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; Mcclintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-01-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluor...

  15. Molecular Detectability in Exoplanetary Emission Spectra

    Marcell, Tessenyi; Giorgio, Savini; Enzo, Pascale

    2013-01-01

    Of the many recently discovered worlds orbiting distant stars, very little is yet known of their chemical composition. With the arrival of new transit spectroscopy and direct imaging facilities, the question of molecular detectability as a function of signal-to-noise (SNR), spectral resolving power and type of planets has become critical. In this paper, we study the detectability of key molecules in the atmospheres of a range of planet types, and report on the minimum detectable abundances at fixed spectral resolving power and SNR. The planet types considered - hot Jupiters, hot super-Earths, warm Neptunes, temperate Jupiters and temperate super-Earths - cover most of the exoplanets characterisable today or in the near future. We focus on key atmospheric molecules, such as CH4, CO, CO2, NH3, H2O, C2H2, C2H6, HCN, H2S and PH3. We use two methods to assess the detectability of these molecules: a simple measurement of the deviation of the signal from the continuum, and an estimate of the level of confidence of a...

  16. Ab initio calculations on SnCl2 and Franck-Condon factor simulations of its ÖX˜ and B˜-X˜ absorption and single-vibronic-level emission spectra

    Lee, Edmond P. F.; Dyke, John M.; Mok, Daniel K. W.; Chow, Wan-ki; Chau, Foo-tim

    2007-07-01

    Minimum-energy geometries, harmonic vibrational frequencies, and relative electronic energies of some low-lying singlet and triplet electronic states of stannous dichloride, SnCl2, have been computed employing the complete-active-space self-consistent-field/multireference configuration interaction (CASSCF/MRCI) and/or restricted-spin coupled-cluster single-double plus perturbative triple excitations [RCCSD(T)] methods. The small core relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. Effects of outer core electron correlation on computed geometrical parameters have been investigated, and contributions of off-diagonal spin-orbit interaction to relative electronic energies have been calculated. In addition, RCCSD(T) or CASSCF/MRCI potential energy functions of the X˜A11, ãB13, and B˜B11 states of SnCl2 have been computed and used to calculate anharmonic vibrational wave functions of these three electronic states. Franck-Condon factors between the X˜A11 state, and the ãB13 and B˜B11 states of SnCl2, which include anharmonicity and Duschinsky rotation, were then computed, and used to simulate the ÖX˜ and B˜-X˜ absorption and corresponding single-vibronic-level emission spectra of SnCl2 which are yet to be recorded. It is anticipated that these simulated spectra will assist spectroscopic identification of gaseous SnCl2 in the laboratory and/or will be valuable in in situ monitoring of SnCl2 in the chemical vapor deposition of SnO2 thin films in the semiconductor gas sensor industry by laser induced fluorescence and/or ultraviolet absorption spectroscopy, when a chloride-containing tin compound, such as tin dichloride or dimethyldichlorotin, is used as the tin precursor.

  17. Beta spectra. II-Positron spectra

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  18. Energy dependence of radioluminescence spectra from strontium titanate

    Wang, Y., E-mail: wyfemail@gmail.com [School of Science, China University of Geosciences, Beijing 100083 (China); Zhao, Y.; Zhang, Z.; Zhao, C.; Wu, X. [School of Science, China University of Geosciences, Beijing 100083 (China); Finch, A.A. [Department of Earth & Environmental Sciences, University of St. Andrews, Fife KY16 9AL (United Kingdom); Townsend, P.D. [Physics Building, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2015-10-15

    X-ray excited luminescence spectra of strontium titanate are reported over the temperature range from 20 to 300 K. The range includes several crystalline phases, each with different emission spectra. The signals are thermally quenched above ~220 K. There are spectral shifts and intensity changes around the temperatures associated with phase changes and overall there are nominally three spectral emission bands. A remarkable observation is that at fixed lower temperatures the spectra undergo major changes with the energy of the X-rays. A possible cause of the effect is discussed in terms of inner shell excitation from the K shell of the strontium. Comparisons with thermoluminescence spectra from the strontium titanate are reported. - Highlights: • Radioluminescence spectra of SrTiO{sub 3} are reported from 20 to 300 K. • X-ray luminescence spectra depend on crystal phase. • Direct evidence for inner shell excitation of Sr controlling emission spectra.

  19. Selection and Characterization of Interesting Grism Spectra

    Meurer, G R

    2006-01-01

    Observations with the ACS Wide Field Camera and G800L grism can produce thousands of spectra within a single WFC field producing a potentially rich treasure trove of information. However, the data are complicated to deal with. Here we describe algorithms to find and characterize spectra of emission line galaxies and supernovae using tools we have developed in conjunction with off the shelf software.

  20. Reactor Neutrino Spectra

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  1. Thermal radio emission : The brightness temperature and the spectral index of radio emission

    Prigara, F. V.

    2001-01-01

    The condition of radio emission is proposed, on the base of which the theory of themal radio emission for gaseous disk is developed. This theory explains the radio emission spectra of known types of extended radio sources, located beyond the Solar planetary system. Besides, the thermal radio emission spectra of Venus and Jupiter are explained.

  2. Action spectra again?

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  3. Spectra for commutative algebraists

    Greenlees, J. P. C.

    2006-01-01

    The article is designed to explain to commutative algebraists what spectra (in the sense of algebraic topology) are, why they were originally defined, and how they can be useful for commutative algebra.

  4. Cathodoluminescence spectra of gallium nitride nanorods

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studie...

  5. Optical spectra of distant radio loud quasars. I. Data: spectra of 67 quasars

    We present spectra of 67 radio-loud quasars (1.5 em < 3.8) covering the wavelength range 3380 - 7780A at a resolution of about 5 A. Accurate redshifts, emission line strengths, widths and positions are given. A total of 1198 absorption lines were found, including 138 metal line systems, of which 68 show CIV and 60 MgII

  6. Broadband Eclipse Spectra of Exoplanets are Featureless

    Hansen, C J; Cowan, N B

    2014-01-01

    Spectral retrieval methods leverage features in emission spectra to constrain the atmospheric composition and structure of transiting exoplanets. Most of the observed emission spectra consist of broadband photometric observations at a small number of wavelengths. We compare the Bayesian Information Criterion (BIC) of blackbody fits and spectral retrieval fits for all planets with eclipse measurements in multiple thermal wavebands, typically hot Jupiters with 2-4 observations. If the published error bars are taken at face value, then eight planets are significantly better fit by a spectral model than by a blackbody. In this under-constrained regime, however, photometric uncertainties directly impact one's ability to constrain atmospheric properties. By considering the handful of planets for which eclipse measurements have been repeated and/or reanalyzed, we obtain an empirical estimate of systematic uncertainties for broadband eclipse depths obtained with the Spitzer Space Telescope: sigma_sys = 5E-4. When thi...

  7. Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra

    Zhang, Qian-Qian; Lei, Shu-He; Wang, Xiu-Lin; Wang, Lei; Zhu, Chen-Jian

    2006-02-01

    The discrimination of phytoplankton classes using the characteristic fluorescence spectra extracted from three-dimensional fluorescence spectra was investigated. Single species cultures of 11 phytoplankton species, representing 5 major phytoplankton divisions, were used. The 3D fluorescence spectra of the cultures grown at different temperatures (20 and 15 °C) and illumination intensities (140, 80 and 30 μM m -2 s -1) were measured and their feature extraction methods were explored. Ordering Rayleigh and Raman scattering data as zero, the obtained excitation-emission matrices were processed by both singular value decomposition (SVD) and trilinear decomposition methods. The resulting first principal component can be regarded as the characteristic spectrum of the original 3D fluorescence spectrum. The analysis shows that such characteristic spectra have a discriminatory capability. At different temperatures, the characteristic spectra of Isochrysis galbana, Platymonas helgolanidica and Skeletonema costatuma have high degrees of similarity to their own species samples, while the spectra similarities of Alexandrium tamarense, Prorocentrum dentatum, Pseudo-nitzschia pungens, Chaetoceros curvisetus, Ch. Debilis, Ch. Didymus and Synechococcus sp. are not as significant as the other three species. C. curvisetus, Ch. Debilis and Ch. Didymus, belonging to genus Chaetoceros, have identical spectra and cannot be discriminated at all. Regarding all six diatom species as one class, the average discriminant error rate is below 9%. It is worth mentioning that the diatom class can be distinguished from A. tamarense and P. dentatum, which belong to Dinophyta.

  8. Atomic Spectra Database (ASD)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  9. Function spectra and continuous G-spectra

    Davis, Daniel

    2011-01-01

    Let G be a profinite group, {X_alpha}_alpha a cofiltered diagram of discrete G-spectra, and Z a spectrum with trivial G-action. We show how to define the homotopy fixed point spectrum F(Z, holim_alpha X_alpha)^{hG} and that when G has finite virtual cohomological dimension (vcd), it is equivalent to F(Z, holim_alpha (X_alpha)^{hG}). With these tools, we show that the K(n)-local Spanier-Whitehead dual is always a homotopy fixed point spectrum, a well-known Adams-type spectral sequence is actually a descent spectral sequence, and, for a sufficiently nice k-local profinite G-Galois extension E, with K a closed normal subgroup of G, the equivalence (E^{h_kK})^{h_kG/K} \\simeq E^{h_kG} (due to Behrens and the author), where (-)^{h_k(-)} denotes k-local homotopy fixed points, can be upgraded to an equivalence that just uses ordinary (non-local) homotopy fixed points, when G/K has finite vcd.

  10. Exoelectron Emission of a Carbon Nanomaterial

    Kortov, V. S.; Slesarev, A. I.; Tkachev, A. G.

    2008-03-01

    The exoemission properties of a Taunite carbon nanomaterial consisting of nanosized multiwalled nanotubes and nanofibers were investigated by thermally stimulated exoelectron emission (TSEE). The TSEE spectra of the carbon nanomaterial differed from the spectra of pressed graphite. It was assumed that defect—adsorbate complexes were emission-active centers on the surface of the nanomaterial

  11. Specific features of radiative recombination spectra of ZnIn2S4 single crystals

    Radiative recombination spectra of Mn-doped zinc tioindat single crystals have been analyzed in the work. The emission spectra interval close to its maximum (1.91 ± 0.2 eV) contains a number of special features which were identified by us as intra-center transitions. We attribute the special features observed on the complex emission spectra to this type of transition by their decomposition into simple lines using the Alentsev-Foch method. (authors)

  12. Analysis of X-ray spectra by genetic algorithm

    The X-ray emission spectra have been analyzed by the genetic algorithm. The X-ray peaks are represented by Gaussians or Lorentzians and the best estimates of their parameters are determined with the optimization strategy based on the mechanism of natural selection and natural genetics. The calculated results for artificial, pseudo-experimental, and experimental spectra are compared with those obtained by other methods and the validity of the present method is demonstrated. (author)

  13. Deconvolution of Positrons' Lifetime spectra

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  14. Curved Radio Spectra of Weak Cluster Shocks

    Kang, Hyesung

    2015-01-01

    We explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud of fossil relativistic electrons in the cluster periphery. Such a scenario could explain uniformity of the surface brightness and spectral curvature in the integrated spectra of thin arc-like radio relics. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. The surface brightness profile of radio-emitting postshock region and the volume-integrated radio spectrum are calculated as well. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed $u_s \\sim 3,000 \\kms$ and sonic Mach number $M_s \\sim 3$. These shocks produce curved radio spectra that steepen gradually over $(0.1-10) \

  15. Atomic and Molecular Aspects of Astronomical Spectra

    Sochi, Taha

    2012-01-01

    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate...

  16. Spectra of thermally unstable slim discs

    Szuszkiewicz, E; Zampieri, L; Szuszkiewicz, Ewa; Turolla, Roberto; Zampieri, Luca

    2000-01-01

    Thermal instability driven by radiation pressure might be relevant for intrinsically bright accreting sources. The most promising candidate where this instability seems to be at work is one of the two known galactic superluminal sources, GRS 1915+105 (Belloni et al. 1997). In spite of being of relevance, this scenario has not yet been confirmed by proper time-dependent modelling. Non-linear time-dependent calculations performed by Szuszkiewicz and Miller (1998) show that thermally unstable discs undergo limit-cycle behaviour with successive evacuation and refilling of the central parts of the disc. This evolution is very similar to the one proposed by Belloni et al. (1997) in their phenomenological model. Further investigations are needed to confirm the thermal instability being operational in this source. First of all the spectra emitted from the disc during its evolution should be calculated and compared with observations. Here such spectra are computed assuming local blackbody emission from the best studie...

  17. Observations of silicate reststrahlen bands in lunar infrared spectra

    Potter, A. E., Jr.; Morgan, T. H.

    1982-01-01

    Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.

  18. Sequencing BPS Spectra

    Gukov, Sergei; Saberi, Ingmar; Stosic, Marko; Sulkowski, Piotr

    2015-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar\\'e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular $S$-matrix. This leads to the identifi...

  19. Blind extraction of exoplanetary spectra

    Morello, Giuseppe; Waldmann, Ingo P.; Tinetti, Giovanna

    2016-06-01

    In the last decade, remote sensing spectroscopy enabled characterization of the atmospheres of extrasolar planets. Transmission and emission spectra of tens of transiting exoplanets have been measured with multiple instruments aboard Spitzer and Hubble Space Telescopes as well as ground-based facilities, revealing the presence of atomic, ionic and molecular species in their atmospheres, and constraining their temperature and pressure profiles.Early analyses were somehow heuristic both in measuring the spectra and in their interpretation, leading to some controversies in the literature.A photometric precision of 0.01% is necessary to detect the atmospheric spectral modulations. Current observatories, except Kepler, were not designed to achieve this precision. Data reduction is necessary to minimize the effect of instrument systematics in order to achieve the target precision. In the past, parametric models have extensively been used by most teams to remove correlated noise with the aid of auxiliary information of the instrument, the so-called optical state vectors (OSVs). Such OSVs can include inter- and intra-pixel position of the star or its spectrum, instrument temperatures and inclinations, and/or other parameters. In some cases, different parameterizations led to discrepant results.We recommend the use of blind non-parametric data detrending techniques to overcome those issues. In particular, we adopt Independent Component Analysis (ICA), i.e. a blind source separation (BSS) technique to disentangle the multiple instrument systematics and astrophysical signals in transit/eclipse light curves. ICA does not require a model for the systematics, and for this reason, it can be applied to any instrument with little changes, if any. ICA-based algorithms have been applied to Spitzer/IRAC and synthetic observations in photometry (Morello et al. 2014, 2015, 2016; Morello 2015) and to Hubble/NICMOS and Spitzer/IRS in spectroscopy (Waldmann 2012, 2014, Waldmann et al. 2013

  20. Vibrational infrared and raman spectra of dicyanoacetylene

    Khanna, R. K.; Perera-Jarmer, M. A.; Ospina, M. J.

    The raman and infrared spectra for solid C 4N 2 are reported. New assignments are given for ˜gn 1 (2333 cm -1), ˜gn 2 (2267) and ˜gn 3 (640 cm -1). These assignments are supported by a normal coordinate Analysis using eight force constants. Extinction coefficients for the infrared active fundamentals are also reported. Our results suggest C 4N 2 to be a likely candidate to explain the 478 cm -1 band in the Titan's emission recorded by the Voyager mission.

  1. Observed Barium Emission Rates

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  2. Characterization of the copper K β x-ray emission profile: an ab initio multi-configuration Dirac-Hartree-Fock approach with Bayesian constraints

    Pham, T. LH; Nguyen, T. VB; Lowe, J. A.; Grant, I. P.; Chantler, C. T.

    2016-02-01

    We investigate the Kβ characteristic radiation and the complex asymmetric structure of photoemission lines of copper, which provides a benchmark for theoretical and experimental studies of x-ray calibration series in transition metals. Ab initio multi-configuration Dirac-Hartree-Fock (MCDHF) calculations have been performed to study the complex open-shell many-electron problem in copper. The biorthogonalization technique permits determination of transition intensities and Einstein A coefficients. The results from our MCDHF calculations demonstrate excellent convergence in transition energies and intensities, as well as gauge invariance to 0.6%. Shake processes caused by single and double spectator vacancies from 3d, 3p, 3s and 4s subshells have also been investigated extensively. MCDHF has been performed to calculate energies and relative intensities of 3d, 3d2, 3p, 3s and 4s satellites, resulting in the total number of configuration states exceeding 100 000 and more than 1500 transition components. Our theoretical calculations of shake-off probabilities using the multi-configuration method in the sudden limit have a high degree of internal consistency with the best available experimental data for copper Kβ . This supports the validity of relativistic atomic theory and sets a new benchmark even for poorly resolved characteristic spectra using current techniques of analysis.

  3. Spectra of hot stars

    Hillier, D. John

    2015-08-01

    Non-LTE modeling is essential for interpreting the spectra of O stars and their decendents, and much progress has been made. The major uncertainty associated with analyzing photospheric spectra of O stars arises from issues related to microturbulence and macroturbulence. Many supergiants, for example, have microturbulent velocities that approach the sound speed, while macroturbulent velocities are often several times the sound speed. The cause of this turbulence is unknown, but may be related to pulsation, an underlying convection zone associated with the Fe opacity bump, or feedback from the stellar wind. Determining accurate abundances in O stars is hampered by the lack of lines belonging to low-z elements. Many species only have a few observable lines, and some of these are subject to complex non-LTE effects. A characteristic of massive stars is the existence of a stellar wind which is driven by radiation pressure. Radiation driving is inherently unstable, and this leads to winds with an inhomogeneous structure. Major issues that are still unresolved include: How are winds driven through the sonic point? What is the nature of the inhomogeneities, and how do the properties of these inhomogeneities change with density and velocity? How important is spatial porosity, and porosity in velocity space? What is the structure of the shocks, and in what stars do the shocks fail to cool? With Wolf-Rayet (W-R) stars the major uncertainty arises because the classic spectroscopic radius (i.e., the location where τ = 2/3) often refers to a location in the wind — not necessarily the stellar radius associated with stellar evolution models. Derived radii are typically several times those predicted by stellar evolution calculations, although for strong-lined W-R stars it is possible to construct models that are consistent with evolution calculations. The driving of the winds in these stars is strongly coupled to the closeness of the stars to the Eddington limit and to their

  4. Monte Carlo simulation of x-ray spectra in mammography

    A model for generating x-ray spectra in mammography is presented. This model used the ITS version 3 Monte Carlo code for simulating the radiation transport. Various target/filter combinations such as tungsten/aluminium, molybdenum/molybdenum, molybdenum/rhodium and rhodium/rhodium were used in the simulation. Both bremsstrahlung and characteristic x-ray production were included in the model. The simulated x-ray emission spectra were compared with two sets of spectra, those of Boone et al (1997 Med. Phys. 24 1863-74) and IPEM report 78. The χ2 test was used for the overall goodness of fit of the spectral data. There is good agreement between the simulated x-ray spectra and the comparison spectra as the test yielded a probability value of nearly 1. When the transmitted x-ray spectra for specific target/filter combinations were generated and compared with a measured molybdenum/rhodium spectrum and spectra generated in IPEM report 78, close agreement is also observed. This was demonstrated by the probability value for the χ2 test being almost 1 for all the cases. However, minor differences between the simulated spectra and the 'standard' ones are observed. (author)

  5. Monte Carlo simulation of x-ray spectra in mammography

    Ng, K.P. [Department of Optometry and Radiography, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China). E-mail: benngkp at netvigator.com; Kwok, C.S.; Ng, K.P.; Tang, F.H. [Department of Optometry and Radiography, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2000-05-01

    A model for generating x-ray spectra in mammography is presented. This model used the ITS version 3 Monte Carlo code for simulating the radiation transport. Various target/filter combinations such as tungsten/aluminium, molybdenum/molybdenum, molybdenum/rhodium and rhodium/rhodium were used in the simulation. Both bremsstrahlung and characteristic x-ray production were included in the model. The simulated x-ray emission spectra were compared with two sets of spectra, those of Boone et al (1997 Med. Phys. 24 1863-74) and IPEM report 78. The {chi}{sup 2} test was used for the overall goodness of fit of the spectral data. There is good agreement between the simulated x-ray spectra and the comparison spectra as the test yielded a probability value of nearly 1. When the transmitted x-ray spectra for specific target/filter combinations were generated and compared with a measured molybdenum/rhodium spectrum and spectra generated in IPEM report 78, close agreement is also observed. This was demonstrated by the probability value for the {chi}{sup 2} test being almost 1 for all the cases. However, minor differences between the simulated spectra and the 'standard' ones are observed. (author)

  6. Study of optical absorption, visible emission and NIR–vis luminescence spectra of Tm{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+} and Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} doped tellurite glasses

    Seshadri, M., E-mail: seshumeruva@gmail.com [Institute of Physics, University of Campinas, UNICAMP, P.O. Box 6165, Campinas 13083-970 (Brazil); Barbosa, L.C.; Cordeiro, C.M.B.; Radha, M. [Institute of Physics, University of Campinas, UNICAMP, P.O. Box 6165, Campinas 13083-970 (Brazil); Sigoli, F.A. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970 (Brazil); Ratnakaram, Y.C. [Department of Physics, Sri Venkateswara University, SVU, Tirupat 517502 (India)

    2015-10-15

    Tm{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+} co-doped and Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} triply doped TeO{sub 2}–Bi{sub 2}O{sub 3}–ZnO–Li{sub 2}O–Nb{sub 2}O{sub 5} (TBZLN) tellurite glasses were prepared by melt quenching method. Judd–Ofelt intensity parameters (Ω{sub λ}, λ=2, 4 and 6), radiative transition probabilities, branching ratios and radiative lifetimes of Tm{sup 3+}, Ho{sup 3+} ions in co-doped TBZLN glasses were calculated from the optical absorption spectra. Excitation, visible luminescence and decay lifetimes in visible region were also investigated. The stimulated emission and gain cross-sections for the Tm{sup 3+}:{sup 3}F{sub 4}→{sup 3}H{sub 6} (1700 nm) and Ho{sup 3+}:{sup 5}I{sub 7}→{sup 5}I{sub 8} (1956 nm) transitions in co-doped TBZLN glasses have been analyzed and compared with those of other reported glasses. Up-conversion luminescence was observed in TBZLN glasses under 980 nm laser excitation and energy transfer mechanisms have been discussed. Finally, CIE color co-ordinates were calculated and it is observed that the color co-ordinates fall in blue and green regions for Tm{sup 3+}/Yb{sup 3+} and Ho{sup 3+}/Yb{sup 3+} co-doped TBZLN glasses, respectively. A subsequent shift in color co-ordinates from green to greenish-yellow region has been observed with an increase in the concentration (0.1, 0.5 and 1.0 mol%) of Tm{sup 3+} ions in Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} triply doped TBZLN glasses. - Highlights: • High degree of covalecy of RE–O bond in co-doped TBZLN glasses was observed. • Tm{sup 3+}:{sup 1}D{sub 2}→{sup 3}F{sub 4} and Ho{sup 3+}:{sup 5}F{sub 4}({sup 5}S{sub 2})→{sup 5}I{sub 8} transitions show high emission cross-section. • Visible and strong 793 nm emission was observed when pumped by 980 nm diode laser. • Triply doped glasses exhibits tunable emission intensity by increasing Tm{sup 3+} ions.

  7. Cassini UVIS observations of Titan nightglow spectra

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; McClintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-12-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron-excited glow that persists with solar depression angle up to 25-30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000-1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range.

  8. Optical Spectra of the High Voltage Erosive Water Discharge

    Pirozerski, A L

    2008-01-01

    In the present paper kinetics of emission spectra of the high voltage erosive water discharge at near ultraviolet and visible spectral ranges has been investigated. Obtained results show a similarity of physical properties of this discharge (and of corresponding plasmoids) to that of some other types of erosional discharges which also result in the formation of dust-gas fireballs.

  9. Quantum optimal control of photoelectron spectra and angular distributions

    Goetz, R Esteban; Santra, Robin; Koch, Christiane P

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on e.g. charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  10. Quantum optimal control of photoelectron spectra and angular distributions

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  11. The analysis of spectra of novae taken near maximum

    We have recently begun a project to analyze ultraviolet spectra of novae obtained at or near maximum optical light. These spectra are characterized by a relatively cool continuum with superimposed permitted emission lines from ions such as FE II, Mg II, and Si II. In contrast, the spectra obtained late in the outburst show only emission lines from highly ionized species and in many cases these are forbidden lines. These ultraviolet data will be used in combination with recent calculations of spherical, expanding, stellar atmospheres for novae to determine elemental abundances by spectral line synthesis. This method is extremely sensitive to the abundances and completely independent of the nebular analyses usually used to obtain novae abundances

  12. The PG X-Ray QSO Sample Links among X-ray, UV & Optical Spectra

    Wills, B J; Laor, A; Wills, D; Wilkes, B J; Ferland, G J; Wills, Beverley J.

    1998-01-01

    A unique, essentially complete sample of 22 QSOs, with high quality soft X-ray spectra from ROSAT, as well as HST and optical spectrophotometry from below Ly-alpha to above H-alpha, is being used to investigate the relationships among the ionizing continuum and the optical and UV continuum, emission and absorption lines. Here we present a first analysis showing that optical `Eigenvector 1' linking steeper soft X-ray spectra with increasing optical Fe II strength, decreasing [O III] 5007 emission, and narrower BLR H-beta emission, extends to the UV emission lines, and is manifested by weaker C IV 1549 emission, stronger Si III] 1892/C III] 1909 ratio, and narrower C III] 1909 emission. Steeper soft X-ray spectra have been linked to higher L/L_Edd ratios, thus apparently linking BLR densities, high and low ionization gas, and kinematics, to the accretion process.

  13. EUV spectra from highly charged terbium ions in optically thin and thick plasmas

    We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically confined torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra

  14. Locally linear embedding: dimension reduction of massive protostellar spectra

    Ward, J L

    2016-01-01

    We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey database. A brief comparison is also made with two other dimension reduction techniques; Principal Component Analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.

  15. Locally linear embedding: dimension reduction of massive protostellar spectra

    Ward, J. L.; Lumsden, S. L.

    2016-09-01

    We present the results of the application of locally linear embedding (LLE) to reduce the dimensionality of dereddened and continuum subtracted near-infrared spectra using a combination of models and real spectra of massive protostars selected from the Red MSX Source survey data base. A brief comparison is also made with two other dimension reduction techniques; principal component analysis (PCA) and Isomap using the same set of spectra as well as a more advanced form of LLE, Hessian locally linear embedding. We find that whilst LLE certainly has its limitations, it significantly outperforms both PCA and Isomap in classification of spectra based on the presence/absence of emission lines and provides a valuable tool for classification and analysis of large spectral data sets.

  16. Evoked acoustic emission

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar to...... the emission evoked by click stimuli. It is concluded that significant information is obtained by the click rather than by the tonal stimuli. The click-evoked emissions were also recorded from both ears in a consecutive series of 100 full-term and otherwise normal babies 2-4 days after birth. The...

  17. The Role of Diffusive Shock Acceleration on Nonequilibrium Ionization in Supernova Remnant Shocks II: Emitted Spectra

    Patnaude, Daniel J.; Slane, Patrick; Raymond, John C.; Ellison, Donald C.

    2010-01-01

    We present a grid of nonequilibrium ionization models for the X-ray spectra from supernova remnants undergoing efficient diffusive shock acceleration. The calculation follows the hydrodynamics of the blast wave as well as the time-dependent ionization of the plasma behind the shock. The ionization state is passed to a plasma emissivity code to compute the thermal X-ray emission, which is combined with the emission from nonthermal synchrotron emission to produce a self-consistent model for the...

  18. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  19. Orbits and emission spectra from the 2014 Camelopardalids

    Madiedo, José M; Zamorano, Jaime; Izquierdo, Jaime; de Miguel, Alejandro Sánchez; Ocaña, Francisco; Ortiz, José L; Espartero, Francisco; Morillas, Lorenzo G; Cardeñosa, David; Moreno-Ibáñez, Manuel; Urzáiz, Marta

    2014-01-01

    We have analyzed the meteor activity associated with meteoroids of fresh dust trails of Comet 209P/LINEAR, which produced an outburst of the Camelopardalid meteor shower (IAU code #451, CAM) in May 2014. With this aim, we have employed an array of high-sensitivity CCD video devices and spectrographs deployed at 10 meteor observing stations in Spain in the framework of the Spanish Meteor Network (SPMN). Additional meteoroid flux data were obtained by means of two forward-scatter radio systems. The observed peak zenithal hourly rate (ZHR) was much lower than expected, of around 20 meteors h-1. Despite of the small meteor flux in the optical range, we have obtained precise atmospheric trajectory, radiant and orbital information for 11 meteor and fireball events associated with this stream. The ablation behaviour and low tensile strength calculated for these particles reveal that Camelopardalid meteoroids are very fragile, mostly pristine aggregates with strength similar to that of the Orionids and the Leonids. T...

  20. Dust Emissivity in the Far-Infrared

    Bianchi, Simone; Davies, Jonathan I.; Alton, Paul B.

    1999-01-01

    We have derived the dust emissivity in the Far-Infrared (FIR) using data available in the literature. We use two wavelength dependences derived from spectra of Galactic FIR emission (Reach et al. 1995). A value for the emissivity, normalised to the extinction efficiency in the V band, has been retrieved from maps of Galactic FIR emission, dust temperature and extinction (Schlegel et al. 1998). Our results are similar to other measurements in the Galaxy but only marginally consistent with the ...

  1. Three-dimensional thermoluminescence spectra of feldspars

    The paper describes a systematic study of the thermoluminescence emission spectra of thirty feldspars covering the whole composition range from high potassium (orthoclase) through high sodium (albite) to high calcium (anorthite). The study was simulated by the need to understand the properties of feldspars in connection with the application of thermoluminescence to the dating of sediments. The data were obtained with a high-sensitivity Fourier transform spectrometer, which allows measurements at the low light levels found in natural samples. Three-dimensional displays in which intensity is plotted as a function of photon energy and temperature assist identification of a wide range of spectral features. A number of common features are found: an emission at 3.1 eV is strong in alkali feldspars with more than 80 mole % orthoclase and occurs with lower intensity in most other alkali feldspars and some plagioclases; a broad band with a flat maximum near 2.6 eV is found in all alkali feldspars at temperatures near 200oC when artificially irradiated, and at higher temperatures in some natural samples. Emission at 2.2 and 4.4 eV is characteristic of plagioclases with more than 75 mole % of albite. Plagioclases with more than 50 mole % anorthite, and alkali feldspars with less than 50 mole % orthoclase, emit mainly in the range 1.5-2 eV. These features can be identified with luminescence centres suggested by previous workers. The application to practical thermoluminescence dating is discussed. (Author)

  2. Temporal variations of the CaXIX spectra in solar flares

    Falewicz, R.; Rudawy, P.; Siarkowski, M.

    2009-01-01

    Standard model of solar flares comprises a bulk expansion and rise of abruptly heated plasma (the chromospheric evaporation). Emission from plasma ascending along loops rooted on the visible solar disk should be often dominated, at least temporally, by a blue-shifted emission. However, there is only a very limited number of published observations of solar flares having spectra in which the blue-shifted component dominates the stationary one. In this work we compare observed X-ray spectra of t...

  3. Anisotropic spectra of acoustic turbulence

    We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society

  4. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  5. Relativistic reflection X-ray spectra of accretion disks

    Khee-Gan Lee; Kinwah Wu; Steven V. Fuerst; Graziella Branduardi-Raymont; Oliver Crowley

    2009-01-01

    We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.

  6. The width of gamma-ray burst spectra

    Axelsson, Magnus

    2014-01-01

    The emission processes active in the highly relativistic jets of gamma-ray bursts (GRBs) remain unknown. In this paper we propose a new measure to describe spectra: the width of the $EF_E$ spectrum, a quantity dependent only on finding a good fit to the data. We apply this to the full sample of GRBs observed by Fermi/GBM and CGRO/BATSE. The results from the two instruments are fully consistent. We find that the median widths of spectra from long and short GRBs are significantly different (chance probability $<10^{-6}$). The width does not correlate with either duration or hardness, and this is thus a new, independent distinction between the two classes. Comparing the measured spectra with widths of spectra from fundamental emission processes -- synchrotron and blackbody radiation -- the results indicate that a large fraction of GRB spectra are too narrow to be explained by synchrotron radiation from a distribution of electron energies: for example, 78% of long GRBs and 85% of short GRBs are incompatible wi...

  7. Pileup correction of microdosimetric spectra

    Langen, K M; Lennox, A J; Kroc, T K; De Luca, P M

    2002-01-01

    Microdosimetric spectra were measured at the Fermilab neutron therapy facility using low pressure proportional counters operated in pulse mode. The neutron beam has a very low duty cycle (<0.1%) and consequently a high instantaneous dose rate which causes distortions of the microdosimetric spectra due to pulse pileup. The determination of undistorted spectra at this facility necessitated (i) the modified operation of the proton accelerator to reduce the instantaneous dose rate and (ii) the establishment of a computational procedure to correct the measured spectra for remaining pileup distortions. In support of the latter effort, two different pileup simulation algorithms using analytical and Monte-Carlo-based approaches were developed. While the analytical algorithm allows a detailed analysis of pileup processes it only treats two-pulse and three-pulse pileup and its validity is hence restricted. A Monte-Carlo-based pileup algorithm was developed that inherently treats all degrees of pileup. This algorithm...

  8. Correlation Functions and Power Spectra

    Larsen, Jan

    2006-01-01

    possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose of......The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions and...... spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals. It is...

  9. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  10. Correlation Functions and Power Spectra

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed defin...

  11. Infrared spectra of some fructans

    Grube, M.; Bekers, M.; Upite, D.; Kaminska, E.

    2002-01-01

    The FT–IR spectra of fructan – inulin (RAFTILINE), widely applied in the food industry and crystalline fructose as the main component of fructans, were studied. Special interest was to study the spectra of the levan precipitate and fructan syrup – produced by Zymomonas mobilis during the fermentation on sucrose–based medium.It was shown that levan precipitate and fructose syrup does not contain lipids and nucleic acids. Levan precipitate consists of ∼93% of fructose and admixture of glucose, ...

  12. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Durchan, Milan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption...

  13. Emission Trading

    Kmoch, Daniel

    2009-01-01

    The work concerns Emission Trading Scheme from perspektive of taxes and accounting. I should show problems with emission trading. The work concerns practical example of trading with emission allowance.

  14. Photoluminescence spectra of some ternary and quaternary chalcopyrite semiconductors

    Photoluminescence (PL) emission spectra of single crystals and thin films of CuGa/sub x/In1√/sub x/Se2 compounds have been investigated at various measuring temperatures, and compared with the emission from CuGaSe2 and CuInSe2. The observed PL spectra consisted of two groups of emission lines: the near-band-gap group (A) and the lower energy group (B). It was found that the type of emission obtained is determined by the amount of stoichiometry and molecularity deviations. The PL data also showed a correspondence between the defect related transitions from the CuGa/sub x/In1√/sub x/Se2 solid solution and CuGaSe2 for x2 and CuGaSe2, the predominant defect states transitions in the solid solution are defined for the m0. Interpretation of the PL spectra of Se-deficient compounds with m>1 are rather complicated, and much work remains to be done before the defect chemistry of CuGa/sub x/In1√/sub x/Se2 could be fully understood

  15. Response spectra in alluvial soils

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v2. Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  16. Characterization, testing, calibration, and validation of the Berlin emissivity database

    Maturilli, A.; Helbert, J.

    2014-01-01

    The Berlin emissivity database is a spectral library providing a basis for the interpretation of thermal emission spectra of planetary regoliths. It contains spectra of plagioclase and potassium feldspars, low and high Ca pyroxenes, olivine, sulfur, Martian analogs, and a lunar highland sample in the wavelength range 3-50 μm. Four particle sizes with dimensions

  17. Interference and diffraction in photoelectron spectra

    Decleva, P., E-mail: decleva@univ.trieste.it; Ponzi, A.; Santizo, I.

    2014-08-15

    Highlights: • High energy oscillations in the photoionization cross sections. • Interference and diffraction in molecular photoionization. • Non-stoichiometric cross sections. • Core and valence photoionization cross sections in haloacetylenes. - Abstract: Theoretical calculations are employed to disentangle the effect due to coherent emission from equivalent centres and diffraction from neighbouring inequivalent atoms in core and valence photoelectron spectra. The molecules investigated are mono and disubstituted fluoro and iodo acetylenes, compared to the simple acetylene system. The two effects appear well separated and additive in the core region, with diffraction giving oscillations of smaller amplitude, shorter period, and more strongly damped. Their interplay is more complex in the valence region giving rise to irregular patterns which, although rich in information, are more difficult to analyze. It is shown that the use of an external standard molecule can be profitably used to reveal diffraction patterns in the case where no internal ratio is available.

  18. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 μm and 15-25 μm. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (Ag(K) – Ag(J)): Ag(K) – Ag(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; Ag(K) – Ag(J) < –0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  19. Nebular spectra of pair-instability supernovae

    Jerkstrand, A; Heger, A

    2015-01-01

    If very massive stars (M >~ 100 Msun) can form and avoid too strong mass loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t >~ 1 yr, match those of model predictions. Here we compute theoretical spectra based on model PISN ejecta at 1-3 years post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t >~ 2 years which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe the metal core expands slowly enough to produce a forest of distinc...

  20. A method for generating floor response spectra through power spectra/response spectra relationship

    In this work a method is proposed for deriving floor response spectra using probabilistic techniques. By modelling an earthquake as a stationary random process, a relationship may be derived between its power spectral density function (PSDF) and the response spectrum. Thus, given a set of base response spectra, a set of consistent PSDF's can be generated for the base of the structure. Then, making use of standard random vibration theory, PSDF's for points of interest in the structure can be obtained by appropriate multiplication of complex frequency response (transfer) functions with the derived base PSDF's. Finally, response spectra for the points of interest are obtained using the inverse form of the relationship between a PSDF and a response spectrum. To date, the approach outlined above has been used to generate response spectra of points in some actual three-dimensional structures, and comparisons with response spectra for the same points generated by the time history method have been quite favorable. The limited number of cases performed have demonstrated that the method provides close correspondence of results throughout the frequency domain. While more work is needed to completely qualify this approach, initial results have been very promising. If the approach can be completely verified and found acceptable to the appropriate regulatory bodies, considerable savings in the computation of floor response spectra would result. (orig./RW)

  1. Computer analysis of ESR spectra

    Author. Isotropic ESR spectra often display complicated patterns which are difficult to analyze for their hyperfine splitting constants (HSC). To simplify the analysis, we have written a program suitable for PC's for sufficiently iterating simulations of isotropic ESR spectra and determining the simulation which fits the experimental spectra. Chapter one gives a brief introduction to the theory of electron spin resonance (ESR). In chapter two the main concepts of the program are presented. Auto simulate is the main algorithm. It calculates the entire field of valid simulations to ensure that the solution set contains all parameter combinations which produce satisfactory spectra. Auto simulate requires prior knowledge of the HSCs and other parameters needed for the simulation such as the line width, the spectrum width, and the number of magnetic nuclei. Proton Coupling Constant Extraction (PCCE) and autocorrelation are two methods complementing each other to determine the HSCs. Another iterative method based on a systematic application of Monte Carlo method can be applied to generate more accurate values of the line width. In chapter three, the spectra of Naphthalene, Tetracene, Indigo, Ox-indigo semi quinone, thio-indigo and 2,2'-dipyridyl-Na complex free radicals are analyzed. The results are compared to the literature value, good agreement is obtained for different resolution and noise to signal ratios. In the last chapter a print out of the program is presented. The programming language used is Microsoft QuickBASIC version 7.1

  2. Qualitative interpretation of galaxy spectra

    Almeida, J Sanchez; Terlevich, E; Fernandes, R Cid; Morales-Luis, A B

    2012-01-01

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis, and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is of general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7 (SDSS-DR7), thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to HII galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. A number of byprodu...

  3. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  4. Accelerated Fitting of Stellar Spectra

    Ting, Yuan-Sen; Rix, Hans-Walter

    2016-01-01

    Stellar spectra are often modeled and fit by interpolating within a rectilinear grid of synthetic spectra to derive the stars' labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of parameters separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach -- CHAT (Convex Hull Adaptive Tessellation) -- which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock datasets demonstrate that CHAT can reduce the number of required synthetic model calculations by...

  5. Bremsstrahlung spectra produced by kilovolt electron impact on thick targets

    Measurements of bremsstrahlung spectra generated by 5-25 keV electron impact on thick targets of aluminium, titanium, zirconium, molybdenum and tungsten are reported. The experimental data are compared with the simulation results of X-ray spectra obtained from the general-purpose Monte Carlo code PENELOPE, which implements accurate cross-sections for ordinary bremsstrahlung emission but disregards polarization bremsstrahlung. The agreement between the experimental and simulation results is satisfactory. This is in contrast with a recent study in which large discrepancies were observed between experimental and Monte Carlo simulation results. Our results provide evidence for the reliability of the combined choices of the interaction cross-sections and of the simulation algorithms implemented in PENELOPE for bremsstrahlung emission.

  6. Calculation of Vibrational Energy-Spectra of α-Helical Protein Molecules and Its Properties

    PANG XiaoFeng; CHEN XiangRong

    2002-01-01

    The quantum vibrational energy-spectra of amide-Is in alpha-protein molecules are calculated by using the discretely nonlinear Schrodinger equation and physical parameters appropriate to the systems on the basis of theory of bio-energy transport. The numerical results for the energy-spectra are basically consistent with the experimental values obtained by the infrared absorption and Raman scattering and emission-spectra of infrared lights of person's hand-fingers. Utilizing the energy-spectra we explain the laser-Raman spectrum from metabolically active E. Coli. and give some features of the infrared absorption of the protein molecules.

  7. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  8. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  9. Ultraviolet spectra of planetary nebulae

    Features observed in infrared spectra suggest that certain very low excitation (VLE) nebulae have low C/O abundance ratios (Cohen and Barlow 1980; Aitken and Roche 1982). Fluxes in the multiplets [O II] lambda 2470 and C II] lambda 2326 have been measured for the VLE nebula He He 2-131 = HD 138403 using IUE high-dispersion spectra. An analysis similar to that of Harrington et al. (1980) for IC 418 gives C/O = 0.3 for He 2-131, compared with C/O = 1.3 for IC 418 and 0.6 for the Sun. (author)

  10. Automatic identification of mass spectra

    Several approaches to preprocessing and comparison of low resolution mass spectra have been evaluated by various test methods related to library search. It is shown that there is a clear correlation between the nature of any contamination of a spectrum, the basic principle of the transformation or distance measure, and the performance of the identification system. The identification of functionality from low resolution spectra has also been evaluated using several classification methods. It is shown that there is an upper limit to the success of this approach, but also that this can be improved significantly by using a very limited amount of additional information. 10 refs

  11. Energy scale in inclusive spectra

    Basing on a model, valid in a limited domain of the phase space, it is shown that there is a universal dependence of the inclusive spectra that is not related to the types of initial and detected particles. The only dependence on the reaction quantum numbers is that present in the scale coefficient of the total energy. The presented experimental data provide with an evidence to that the scale coefficient is universal in the whole region of the variables and its value is related to the behaviour of spectra in the central region

  12. Energy scale in inclusive spectra

    Likhoded, A.K.; Tolstenkov, A.N.

    1976-07-01

    It is shown, on the basis of a model that is valid in a certain limited phase-space region, that a universal relation exists for the inclusive spectra which is not connected with the type of the initial and detected particles. The entire dependence on the quantum numbers of the reaction is contained in a redefined scale coefficient for the total energy. The experimental data presented favor the assumption that the scale coefficient is universal in the entire range of the variables and that its value is connected with the behavior of the spectra in the central region. (AIP)

  13. Excitation spectra in Kondo insulators

    It is shown that the exotic strong local characters in the Kondo insulator are difficult to understand based on the band model and the localized Kondo electron model based on the local picture can explain the essential characteristics, in particular characteristic excitation spectra with two peak structure, which is caused through the transition of the localized Kondo electron. Excitation spectra in SmB6, YbB12 and Ce3Bi4Pt3 are shown to be explained by the above model. On the other hand, that of the pseudo gap Kondo insulator CeNiSn is shown to be substantially different. (orig.)

  14. Investigation of gamma spectra analysis

    During the investigation of radiation fingerprint comparison, it is found out that the popular gamma spectra analysis softwares are faultful, which decrease the precision of radiation fingerprint comparison. So a new analysis software is development for solving the problems. In order to display the advantage of new program, some typical simulative gamma spectra of radiation source are analyzed respectively by our software and GAMMAVISION and GENNIE2000. The software can be applied not only in nuclear warheads deep-cuts verification, but also in any radiation measurement field. (authors)

  15. AVIRIS spectra of California wetlands

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  16. IRAS LRS spectra of extended objects: the Crab Nebula

    We have recovered the spectra of extended sources from the raw Low Resolution Spectrometer (LRS) data by means of a nonlinear deconvolution technique built around a maximum entropy algorithm. The results are applied to the Crab Nebula, a supernova remnant extended by about 4 arc minutes. The deconvolved spectrum of the Crab shows significant departures from a blackbody spectrum, with emission features present at 10.2, 11.3, 12.3 and 12.8μm

  17. The Berlin Emissivity Database

    Helbert, Jorn

    Remote sensing infrared spectroscopy is the principal field of investigation for planetary surfaces composition. Past, present and future missions to the solar system bodies include in their payload instruments measuring the emerging radiation in the infrared range. TES on Mars Global Surveyor and THEMIS on Mars Odyssey have in many ways changed our views of Mars. The PFS instrument on the ESA Mars Express mission has collected spectra since the beginning of 2004. In spring 2006 the VIRTIS experiment started its operation on the ESA Venus Express mission, allowing for the first time to map the surface of Venus using the 1 µm emission from the surface. The MERTIS spectrometer is included in the payload of the ESA BepiColombo mission to Mercury, scheduled for 2013. For the interpretation of the measured data an emissivity spectral library of planetary analogue materials is needed. The Berlin Emissivity Database (BED) presented here is focused on relatively fine-grained size separates, providing a realistic basis for interpretation of thermal emission spectra of planetary regoliths. The BED is therefore complimentary to existing thermal emission libraries, like the ASU library for example. The BED contains currently entries for plagioclase and potassium feldspars, low Ca and high Ca pyroxenes, olivine, elemental sulphur, common martian analogues (JSC Mars-1, Salten Skov, palagonites, montmorillonite) and a lunar highland soil sample measured in the wavelength range from 3 to 50 µm as a function of particle size. For each sample, the spectra of four well defined particle size separates (¡25 µm , 25-63 µm, 63-125 µm, 125-250 µm) are measured with a 4 cm-1 spectral resolution. These size separates have been selected as typical representations for most of the planetary surfaces. Following an ongoing upgrade of the Planetary Emmissivity Laboratory (PEL) at DLR in Berlin measurements can be obtained at temperatures up to 500° C - realistic for the dayside conditions

  18. Synergistic approach to modeling X-ray spectra

    Liedahl, D.A., LLNL

    1998-07-01

    Plasma emission models used in X-ray astronomy need to simulate X-ray spectra from at least thirteen elements. Development of comprehensive models requires large-scale calculations; for example, Fe M-shell spectra, K{alpha} fluorescence from near-neutral ions, and dielectronic recombination satellite spectra from L-shell ions. Current and recent missions (EUVE, ASCA, DXS, etc.) have already demonstrated the need for major, rapid improvements in spectral models. The high-resolution spectra to be acquired with the next generation of X- ray observatories (AXAF, XMM, Astro-E) promise to push spectral models to their limits. Essential to ensuring the quality of calculations used in spectral codes is corroboration in the laboratory, where controlled and precisely measured plasma conditions can be attained. To this end, we are capitalizing on a three-way synergistic relationship that links astrophysical observations, atomic modeling, and experiments using the LLNL Electron Beam Ion Trap (EBIT). After providing a brief orientation concerning the role of plasma emission models in X-ray astronomy, we discuss one example of this interplay.

  19. Hard MeV-GeV spectra of blazars

    Katarzynski, Krzysztof

    2011-01-01

    Very high energy (VHE) gamma-ray emission from a distant source (z >~0.2) can be efficiently absorbed my means of the electron-positron pair creation process. Analyses of the unabsorbed spectra imply that the intrinsic TeV emission of some blazars is hard, with spectral indices 0.5 ~ 10^3, E=g m_e c^2). In other words, we assume a low energy cut-off in the particle energy distribution. The emission produced by the particles with this energy spectrum can explain hard intrinsic spectra in the energy range from MeV up to TeV. We demonstrate how to estimate the basic physical parameters of a source in this case and how to explain the observed spectra by a precise simulation of the particle energy evolution. To test our estimation methods, we use the observations of two blazars with exceptionally hard spectral indices (alpha <~ 0.5) in the MeV-GeV range and known redshifts: RGB J0710+591 and 1ES 0502+675. The estimated values of the Doppler factor and magnetic field are compared with our numerical simulations, ...

  20. Squeezed States and Helmholtz Spectra

    Francisco Delgado, C; Reyes, M A; Mielnik, Bogdan; Reyes, Marco A

    1997-01-01

    The 'classical interpretation' of the wave function psi(x) reveals an interesting operational aspect of the Helmholtz spectra. It is shown that the traditional Sturm-Liouville problem contains the simplest key to predict the squeezing effect for charged particle states.

  1. Field description of nuclear spectra

    We discuss the two-nucleon spectra of light and medium nuclei in terms of the meson exchange picture. In particular we compare the OBEP results with a more complete description including higher order processes. Also preliminary results on neutron single particle energies and total binding energies are presented

  2. Inclusive Particle Spectra at RHIC

    Kahana, D. E.; Kahana, S. H.

    2000-01-01

    A simulation is performed of the recently reported data from PHOBOS at energies of 56 and 130 A GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at E=17.2 A GeV. The results compare well with these early measurements at RHIC.

  3. Electron spectra of adatomic structures

    Within the framework of statistical theory of line-shape in electron elastic scattering and high resolution electron energy loss spectroscopy electronic spectra are studied concerning the problem of the detection of scattering from adatomic complexes and determination of parameters of simple models for the surface structure. 20 refs

  4. Skyshine spectra of gamma rays

    A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)

  5. A flow cytometer for the measurement of Raman spectra.

    Watson, Dakota A; Brown, Leif O; Gaskill, Daniel F; Naivar, Mark; Graves, Steven W; Doorn, Stephen K; Nolan, John P

    2008-02-01

    Multiparameter measurements in flow cytometry are limited by the broad emission spectra of fluorescent labels. By contrast, Raman spectra are notable for their narrow spectral features. To increase the multiparameter analysis capabilities of flow cytometry, we investigated the possibility of measuring Raman signals in a flow cytometry-based system. We constructed a Raman Spectral Flow Cytometer, substituting a spectrograph and CCD detector for the traditional mirrors, optical filters, and photomultiplier tubes. Excitation at 633 nm was provided by a HeNe laser, and forward-angle light scatter is used to trigger acquisition of complete spectra from individual particles. Microspheres were labeled with nanoparticle surface enhanced Raman scattering (SERS) tags and measured using the RSFC. Fluorescence and Raman spectra from labeled microspheres were acquired using the Raman Spectral Flow Cytometer. SERS spectral intensities were dependent on integration time, laser power, and detector pixel binning. Spectra from particles labeled with one each of four different SERS tags could be distinguished by either a virtual bandpass approach using commercial flow cytometry data analysis software or by principal component analysis. Raman flow cytometry opens up new possibilities for highly multiparameter and multiplexed measurements of cells and other particles using a simple optical design and a single detector and light source. PMID:18189283

  6. Thermoluminescence emission spectrometer.

    Prescott, J R; Fox, P J; Akber, R A; Jensen, H E

    1988-08-15

    A sensitive thermoluminescence (TL) emission spectrometer based on Fourier transform spectroscopy is described. It employs a modified scanning Twyman-Green interferometer with photomultiplier detection in a photon-counting mode. The etendue is 180pi mm(2), and it covers the 350-600-nm wavelength range. The output can be displayed either as a 3-D isometric plot of intensity vs temperature and wavelength, as a contour diagram, or as a conventional TL glow curve of intensity vs temperature. It is sufficiently sensitive to record thermoluminescence spectra of dosimeter phosphors and minerals for thermoluminescence dating at levels corresponding to those found during actual use as radiation monitors or in dating. Examples of actual spectra are given. PMID:20539405

  7. Obscuration effects in super-soft-source X-ray spectra

    Ness, J.-U.; Osborne, J. P.; Henze, M.; Dobrotka, A.; Drake, J. J.; Ribeiro, V. A. R. M.; Starrfield, S.; Kuulkers, E.; Behar, E.; Hernanz, M.; Schwarz, G.; Page, K. L.; Beardmore, A. P.; Bode, M. F.

    2013-11-01

    Context. Super-soft-source (SSS) X-ray spectra are blackbody-like spectra with effective temperatures ~3-7 × 105 K and luminosities of 1035-38 erg s-1. Grating spectra of SSS and novae in outburst that show SSS type spectra display atmospheric absorption lines. Radiation transport atmosphere models can be used to derive physical parameters. Blue-shifted absorption lines suggest that hydrostatic equilibrium is an insufficient assumption, and more sophisticated models are required. Aims: In this paper, we bypass the complications of spectral models and concentrate on the data in a comparative, qualitative study. We inspect all available X-ray grating SSS spectra to determine systematic, model-independent trends. Methods: We collected all grating spectra of conventional SSS like Cal 83 and Cal 87 plus observations of novae during their SSS phase. We used comparative plots of spectra of different systems to find common and different features. The results were interpreted in the context of system parameters obtained from the literature. Results: We find two distinct types of SSS spectra that we name SSa and SSe. Their main observational characteristics are either clearly visible absorption lines or emission lines, respectively, while both types contain atmospheric continuum emission. SSa spectra are highly structured with no spectral model currently able to reproduce all details. The emission lines clearly seen in SSe may also be present in SSa, hidden within the forest of complex atmospheric absorption and emission features. This suggests that SSe are in fact obscured SSa systems. Similarities between SSe and SSa with obscured and unobscured AGN, respectively, support this interpretation. We find all known or suspected high-inclination systems to emit permanently in an SSe state. Some sources are found to transition between SSa and SSe states, becoming SSe when fainter. Conclusions: SSS spectra are subject to various occultation processes. In persistent SSS spectra

  8. NIST Databases on Atomic Spectra

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  9. Polarimetric spectra analysis for tokamak pitch angle measurements

    Measurements of the internal magnetic field structures using conventional polarimetric approaches are considered extremely challenging in fusion-reactor environments whereas the information on current density profiles is essential to establish steady-state and advance operation scenarios in such reactor-relevant devices. Therefore, on ITER a hybrid system is proposed for the current density measurements that uses both polarimetry and spectral measurements. The spectrum-based approaches have been tested in the Korea Superconducting Tokamak Advanced Research (KSTAR) during the past two plasma campaigns. As such, KSTAR is a test-bed for the proposed ITER hybrid system. Measurements in the plasma core are based on the motional Stark effect (MSE) spectrum of the neutral beam emission. For the edge profiles, the Zeeman effect (ZE) acting on the lithium emission spectrum of the newly installed (2013) Lithium-beam-diagnostic is exploited. The neutral beam emission spectra, complicated by the multi-ion-source beam injection, are successfully fitted making use of the data provided by the Atomic Data and Analysis Structure (ADAS) database package. This way pitch angle profiles could be retrieved from the beam emission spectra. With the same spectrometer/CCD hardware as on MSE, but with a different wavelength range and different lines of sight, the first ZE spectrum measurements have been made. The Zeeman splitting comparable to and greater than the instrumental broadening has been routinely detected at high toroidal field operations ( ∼ 3 Tesla)

  10. Emissions Trading

    Woerdman, Edwin; Backhaus, Juergen

    2014-01-01

    Emissions trading is a market-based instrument to achieve environmental targets in a cost-effective way by allowing legal entities to buy and sell emission rights. The current international dissemination and intended linking of emissions trading schemes underlines the growing relevance of this instr

  11. Curved Radio Spectra of Weak Cluster Shocks

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}∼ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}∼ 3. These shocks produce curved radio spectra that steepen gradually over (0.1–10){ν }{br} with a break frequency {ν }{br}∼ 1 GHz if the duration of electron acceleration is ∼60–80 Myr. However, the abrupt increase in the spectral index above ∼1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  12. Curved Radio Spectra of Weak Cluster Shocks

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  13. Phonon spectra in quantum wires

    Ilić Dušan

    2007-01-01

    Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.

  14. BPS Spectra, Barcodes and Walls

    Cirafici, Michele

    2015-01-01

    BPS spectra give important insights into the non-perturbative regimes of supersymmetric theories. Often from the study of BPS states one can infer properties of the geometrical or algebraic structures underlying such theories. In this paper we approach this problem from the perspective of persistent homology. Persistent homology is at the base of topological data analysis, which aims at extracting topological features out of a set of points. We use these techniques to investigate the topological properties which characterize the spectra of several supersymmetric models in field and string theory. We discuss how such features change upon crossing walls of marginal stability in a few examples. Then we look at the topological properties of the distributions of BPS invariants in string compactifications on compact threefolds, used to engineer black hole microstates. Finally we discuss the interplay between persistent homology and modularity by considering certain number theoretical functions used to count dyons i...

  15. Phonon spectra in quantum wires

    Ilić Dušan; Raković Dejan; Šetrajčić Jovan

    2007-01-01

    Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most imp...

  16. Inclusive Particle Spectra at RHIC

    Kahana, D E

    2000-01-01

    A simulation is performed of the recently reported data from PHOBOS at energies of $\\sqrt{s}=56,130 A$ GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at $\\sqrt{s}=17.2 A$ GeV. The results compare well with these early measurements at RHIC.

  17. Optimal classification of HCI spectra

    Gaigalas, G.; Karpuskiene, R.; Rudzikas, Z.

    2004-01-01

    Energy levels of highly charged ions as a rule cannot be classified using LS coupling due to rapid increase of relativistic effects. It is suggested, for optimal classification of energy spectra, to calculate them in LS coupling and to transform the weights of the wave functions, obtained after diagonalization of the energy matrix, to the other coupling schemes. F-like ions are considered as an example.

  18. Correlations between mercuric iodide photoluminescence spectra and nuclear detector performance

    Low temperature photoluminescence spectroscopy was performed on a variety of HgI2 samples and also on graded HgI2 nuclear detectors. Correlations were found between features in the photoluminescence spectra and a crystal's ability to produce high-quality detectors. The intensity of a broad emission band centered at 6200 A (designated as band 3) is weaker in crystal that yield high-quality detectors. Therefore, the defects responsible for this emission band are undesirable in the fabrication of HgI2 nuclear detectors. The measurements also revealed that stronger emission in the exciton region (designated as band 1) is associated with crystals which produce high-quality detectors, indicating that a high degree of structural perfection is important for HgI2 detector applications. These correlations, together with earlier results from studies of processing-induced defects, lead to suggestions regarding improvement of the manufacturing yield of high-quality HgI2 detectors. (orig.)

  19. Correlations between mercuric iodide photoluminescence spectra and nuclear detector performance

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Harvey, S. J.; Cheng, A. Y.; Gerrish, V.; Ortale, C.

    1992-06-01

    Low temperature photoluminescence spectroscopy was performed on a variety of HgI 2 samples and also on graded HgI 2 nuclear detectors. Correlations were found between features in the photoluminescence spectra and a crystal's ability to produce high-quality detectors. The intensity of a broad emission band centered at 6200 Å (designated as band 3) is weaker in crystals that yield high-quality detectors. Therefore, the defects responsible for this emission band are undesirable in the fabrication of HgI 2 nuclear detectors. The measurements also revealed that stronger emission in the exciton region (designated as band 1) is associated with crystals which produce high-quality detectors, indicating that a high degree of structural perfection is important for HgI 2 detector applications. These correlations, together with earlier results from studies of processing-induced defects, lead to suggestions regarding improvement of the manufacturing yield of high-quality HgI 2 detectors.

  20. Optical Spectra of Triggered Lightning

    Walker, T. D.; Biagi, C. J.; Hill, J. D.; Jordan, D. M.; Uman, M. A.; Christian, H. J., Jr.

    2009-12-01

    In August 2009, the first optical spectra of triggered lightning flashes were acquired. Data from two triggered lightning flashes were obtained at the International Center for Lightning Research and Testing in north-central Florida. The spectrometer that was used has an average dispersion of 260 Å/mm resulting in an average resolution of 5 Å when mated to a Photron (SA1.1) high-speed camera. The spectra captured with this system had a free spectral range of 3800-8000 Å. The spectra were captured at 300,000 frames per second. The spectrometer's vertical field of view was 3 m at an altitude 50 m above the launch tower, intended to view the middle of the triggering wire. Preliminary results show that the copper spectrum dominated the earliest part of the flash and copper lines persisted during the total lifetime of the detectable spectrum. Animations over the lifetime of the stroke from the initial wire illumination to multiple return strokes show the evolution of the spectrum. In addition, coordinated high speed channel base current, electric field and imagery measurements of the exploding wire, downward leaders, and return strokes were recorded. Quantitative analysis of the spectral evolution will be discussed in the context of the overall flash development.

  1. Flicker noise pulsar radio spectra

    Krzeszowski, K; Słowikowska, A; Jessner, A

    2014-01-01

    We present new results of fitting 108 spectra of radio pulsars with the flicker noise model proposed by Loehmer et al. (2008) and compare them with the spectral indices of power-law fits published by Maron et al. (2000). The fits to the model were carried out using the Markov chain Monte Carlo (MCMC) method appropriate for the non-linear fits. Our main conclusion is that pulsar radio spectra can be statistically very well described by the flicker noise model over wide frequency range from a few tens of MHz up to tens of GHz. Moreover, our dataset allows us to conduct statistical analysis of the model parameters. As our results show, there is a strong negative correlation between the flicker noise spectrum model parameters log $S_0$ and $n$ and a strong positive relationship between n and the power-law spectral index $\\alpha$. The latter implies that their physical meaning is similar, however the flicker noise model has an advantage over broken power-law model. Not only it describes the spectra in higher frequ...

  2. Emission Facilities - Air Emission Plants

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  3. Reconstruction of neutron spectra through neural networks

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  4. Emission inventory; Inventaire des emissions

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  5. Invisible structures in the X-ray absorption spectra of actinides

    Highlights: • The X-ray absorption spectra of actinides are discussed with an emphasis atomic multiplet theory, charge transfer theory and crystal field theory. • Resonant inelastic X-ray emission spectra (RIXS) reveal many new features in the X-ray absorption spectra of actinides. • The new range of RIXS beamlines will become an important tool in the determination of the electronic structure of actinides. - Abstract: The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of resonant inelastic X-ray emission spectra (RIXS) has the potential to reveal many new features in the X-ray absorption spectra of actinides. The new range of RIXS beamlines will allow the determination of new structures in the X-ray absorption spectra that have been hitherto invisible. This has the potential to become an important tool in the determination of the electronic structure of actinides

  6. Parametrized spectra, multiplicative Thom spectra, and the twisted Umkehr map

    Ando, Matthew; Gepner, David

    2011-01-01

    We introduce and study a general theory of objects parametrized by spaces, in the setting of infinity categories. This framework specializes to give an infinity categorical model of parametrized spectra, and we apply these foundations to study the multiplicative properties of the generalized Thom spectrum functor. As part of this work we study the Picard space of a presentable monoidal infinity category. We sharpen classical results due to Lewis about the multiplicative properties of the Thom isomorphism. Our main application is the construction of twisted Umkehr maps on twistings of generalized cohomology theories.

  7. Excitonic photoluminescence spectra of C{sub 60} single crystals grown by different techniques

    Capozzi, V.; Santoro, M.; Perna, G.; Celentano, G.; Minafra, A.; Casamassima, G. [Bari Univ. (Italy). Dipt. di Fisica; Ist. Nazionale di Fisica della Materia, Bari (Italy)

    2001-04-01

    We report photoluminescence spectra of C{sub 60} single crystals grown by vapor phase transport method using either the sealed ampoule technique or the open tube technique. The spectra for both types of samples show similar features, but different line resolution related to the two different growth techniques. An analysis of temperature and excitation intensity dependencies of the luminescence spectra is reported. The main structures of the spectra have been interpreted according to a model involving intramolecular polaron-exciton recombinations. In particular, emissions due to purely electronic transitions of singlet and triplet or the exciton and related vibronic recombinations have been resolved. At low temperature, emission bands due to X-traps have been observed on the high-energy side of the excitonic singlet purely electronic transition. (orig.)

  8. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    Qiao, B. [Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse (France); Teyssedre, G.; Laurent, C. [Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2016-01-14

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  9. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    Qiao, B.; Teyssedre, G.; Laurent, C.

    2016-01-01

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  10. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both

  11. LYAPUNOV SPECTRA FOR KAPITZA OSCILLATOR

    Nayyer Iqbal

    2012-02-01

    Full Text Available Here we purpose a simple but realistic model of one dimensional nonlinear Kapitza oscillator driven by sin- or cos- rapidly external oscillating periodical force. The model has a parameter 2gl=a22 of dimension one, depending on the amplitude a and frequency of modulation . Changing its value we construct phase portraits of the system in the neighbourhood of fixed points and demonstrate the changing in Lyapunov spectrum. Our purpose is to observe the behavior of system at fixed points due to the different structures of the Lyapunov spectra

  12. Rotational spectra and molecular structure

    Wollrab, James E

    1967-01-01

    Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce

  13. Identified hadron spectra from PHOBOS

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{s_{{\\rm NN}}} = 200\\,{\\rm GeV} have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  14. Satellite spectra of heliumlike nickel

    Spectra of heliumlike nickel, NiXXVII, have been observed from Tokamak Fusion Test Reactor (TFTR) plasmas with a high resolution crystal spectrometer. The experimental arrangement permits simultaneous observation of the heliumlike resonance line, the intercombination and forbidden lines, and all the associated satellites due to transitions 1s2nl - 1s2l'nl'' with N ≥ 2. Relative wavelengths and line intensities can thus be determined very accurately. The observed spectral data are in good agreement with results from the present Hartree-Fock-Slater atomic model calculations and predictions from the Z-expansion method

  15. Duality properties between spectra and tilings

    2010-01-01

    Spectra and tilings play an important role in analysis and geometry respectively.The relations between spectra and tilings have bafied the mathematicians for a long time.Many conjectures,such as the Fuglede conjecture,are placed on the establishment of relations between spectra and tilings,although there are no desired results.In the present paper we derive some characteristic properties of spectra and tilings which highlight certain duality properties between them.

  16. Operator functions and localization of spectra

    Gil’, Michael I

    2003-01-01

    "Operator Functions and Localization of Spectra" is the first book that presents a systematic exposition of bounds for the spectra of various linear nonself-adjoint operators in a Hilbert space, having discrete and continuous spectra. In particular bounds for the spectra of integral, differential and integro-differential operators, as well as finite and infinite matrices are established. The volume also presents a systematic exposition of estimates for norms of operator-valued functions and their applications.

  17. Neutron spectra due 13N production in a PET cyclotron

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during 13N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1 MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for 18F production in a previous work. - Highlights: • MCNPX code was used to estimate the neutron spectra in a PET cyclotron. • Neutrons were estimated when 13N is produced. • Neutron spectra show evaporation and room-return neutrons. • Calculated H*(10) were compared with measured H*(10)

  18. NaI detector neutron activation spectra for PGNAA applications

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  19. NaI detector neutron activation spectra for PGNAA applications

    Gardner, R.P. E-mail: gardner@ncsu.edu; Sayyed, El; Zheng Yuanshui; Hayden, Stephanie; Mayo, C.W

    2000-11-15

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes {sup 128}I and {sup 24}Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2x2, 5x5, 6x6, and 1x6 NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  20. Modeling Spectra of the North and South Jovian X-ray Auroras

    Spectra of Jovian X-ray auroras observed from the North and South poles with the Chandra X-ray telescope are analyzed and compared with predicted spectra of the charge-exchange mechanism. To determine the theoretical spectra of Jovian X-ray auroras, we model numerically the collisionally induced evolution of energy and charge distributions of Oq+ and Sq+ ions, precipitating into the Jovian atmosphere. Monte Carlo simulations of the energy and charge relaxation of the precipitating ions are carried out with updated cross-sections of the ion stripping, electron capture, and gas-ionization collisions. X-ray and Extreme Ultraviolet (EUV) spectra of cascading radiation induced by individual energetic sulfur and oxygen ions are calculated, and relative intensities of X-ray emission lines are determined. Synthetic spectra of X-ray and EUV photons are computed at different initial kinetic energies and compositions of ion-precipitating fluxes. Theoretical spectra with adjustable initial energies and relative fraction of sulfur and oxygen ions are shown to be in good agreement with the spectra of X rays detected from the South and North polar regions. The abundances and initial energies of the precipitating ions are inferred by comparing synthetic and observed X-ray spectra. Comparisons are performed independently for the North and South pole emissions. Abundances of the precipitating sulfur ions are found to be four to five times smaller than those of oxygen ions, and averaged ion energies are determined to lie between 1 and 2 MeV/amu. Slightly different ion flux compositions are found to describe the observed spectra of X-ray emission from the North and South poles

  1. Fast computation of morphological area pattern spectra

    Meijster, Arnold; Wilkinson, Michael H.F.

    2001-01-01

    An area based counterpart of the binary structural opening spectra is developed It is shown that these area opening and closing spectra can be computed using an adaptation of Tarjan's union-find algorithm These spectra provide rotation, translation, and scale invariant pattern vectors for texture an

  2. CN and C2 vibrational spectra analysis in molecular LIBS of organic materials

    Mousavi, S. J.; Hemati Farsani, M.; Darbani, S. M. R.; Mousaviazar, A.; Soltanolkotabi, M.; Eslami Majd, A.

    2016-05-01

    With the objective of investigation of the influence of molecular structure on CN violet and C2 Swan bands system spectra, plasma emissions from different organic materials, including polycyclic aromatic hydrocarbons, aromatic carboxylic acid, aliphatic carboxylic acid, amides and polymers, have been analyzed by laser-induced breakdown spectroscopy (LIBS) technique in air. To evaluate the influence of N2 and O2 molecules concentration on the CN and C2 molecular emissions, LIB spectra of four different samples have been recorded in air (approximately 80 % N2 and 20 % O2), nitrogen, oxygen and argon atmospheres. Experimental results indicate that the main reason for the absence of C2 emission in LIB spectra of samples which do not contain C-C bonds, when measurements were taken in air, is the presence of oxygen which could potentially deplete C2 emission rather than the absence of C-C bonds in their structure. Also, comparisons between experiment and theory spectra are made using a Nelder-Mead temperature program for CN and C2 bands with the ∆ν = 0 sequences from LIB spectra of different samples in various atmospheres. Furthermore, CN and C2 vibrational temperatures in Kelvin (K) are calculated from these spectral fittings. Both CN and C2 vibrational temperatures have highest values in argon atmosphere, and increasing the oxygen concentration in ambient atmosphere decreased those in most cases.

  3. Two Types of Soft X-ray Spectra in Cataclysmic Variables

    White, Nicholas E. (Technical Monitor); Mukai, K.; Kinkhabwala, A.; Peterson, J. R.; Kahn, S. M.; Paerels, F.

    2002-01-01

    We present results of analyses of Chandra HETG soft X-ray spectra (Lambda = 1.5-25 A) of seven cataclysmic variables. We find that these spectra divide unambiguously into two distinct types. Spectra of the first type, consisting of EX Hya, V603 Aql, U Gem, and SS Cyg, are remarkably well fit by a simple cooling flow model, which assumes only steady-state isobaric radiative cooling. This model has only two free parameters, the maximum temperature, kT(sub max), which provides a rough measurement of the depth of the potential well, and the overall normalization, which provides a highly precise measurement of the total accretion rate. Spectra of the second type, consisting of V1223 Sgr, A Psc, and GK Per, are grossly inconsistent with a simple cooling flow model. They instead exhibit a hard continuum, and, in addition, show strong H-like and He-like ion emission but little Fe L-shell emission, which is consistent with expectations for line emission from a photoionized plasma. Using a simple photoionization model, we argue that the observed line emission for these sources can be driven entirely by the hard continuum. The physical significance of these two distinct types of X-ray spectra is also explored.

  4. Charge Exchange Spectra of Hydrogenic and He-like Iron

    Wargelin, B J; Neill, P A; Olson, R E; Scofield, J H

    2005-01-01

    We present H-like Fe XXVI and He-like Fe XXV charge-exchange spectra resulting from collisions of highly charged iron with N2 gas at an energy of 10 eV/amu in an electron beam ion trap. Although individual high-n emission lines are not resolved in our measurements, we observe that the most likely level for Fe25+ --> Fe24+ electron capture is n~9, in line with expectations, while the most likely value for Fe26+ --> Fe25+ charge exchange is significantly higher. In the Fe XXV spectrum, the K-alpha emission feature dominates, whether produced via charge exchange or collisional excitation. The K-alpha centroid is lower in energy for the former case than the latter (6666 versus 6685 eV, respectively), as expected because of the strong enhancement of emission from the forbidden and intercombination lines, relative to the resonance line, in charge-exchange spectra. In contrast, the Fe XXVI high-n Lyman lines have a summed intensity greater than that of Ly-alpha, and are substantially stronger than predicted from the...

  5. Optical spectra of radio-loud and radio-quiet active galactic nuclei

    Many radio galaxies have strong emission lines in their optical spectra. The fraction with such lines is much larger than in ''normal'' galaxies. Radio galaxies generally also have very bright nuclei; thus those with strong emission lines are similar in both respects to Seyfert galaxies. Hence radio and Seyfert galaxies are both generally considered to be similar physical objects: active galactic nuclei. Their observational properties show they are closely related to quasars (quasi-stellar radio sources) and (radio-quiet) QSOs. A short table of the space density of these objects is presented and their optical spectra are discussed. (Auth.)

  6. Peculiarities of the dynamic spectra of type V solar radio bursts

    The data on type V solar radio bursts obtained at IZMIRAN with the 45-90 MHz radiospectrograph are analyzed. A great variety and complexity in the dynamic spectra of these events is found. A number of categories of bursts with different emission characteristics of the leading and following edges are distinguished. A number of types of fine structure were found in the dynamic spectra of many bursts. Type V bursts, for which the radio emission at the fundamental and the second harmonic is clearly observed are analyzed. (Auth.)

  7. X-ray Signature of Charge Exchange in the Spectra of L-shell Iron Ions

    Beiersdorfer, P; Schweikhard, L; Liebisch, P; Brown, G V

    2007-01-05

    The X-ray signature of charge exchange between highly charged L-shell iron ions and neutral gas atoms was studied in the laboratory in order to assess its diagnostic utility. Significant differences with spectra formed by electron-impact excitation were observed. In particular, a strong enhancement was found of the emission corresponding to n {le} 4 {yields} n = 2 transitions relative to the n = 3 {yields} n = 2 emission. This enhancement was detectable even with relatively low-resolution X-ray instrumentation (E/{Delta}E {approx} 10) and may enable future identification of charge exchange as a line-formation mechanism in astrophysical spectra.

  8. Deep high-resolution X-ray spectra from cool-core clusters

    Sanders, J.S.; Fabian, A.C.; Frank, K. A.; Peterson, J. R.; Russell, H. R.

    2009-01-01

    We examine deep XMM-Newton Reflection Grating Spectrometer (RGS) spectra from the cores of three X-ray bright cool core galaxy clusters, Abell 262, Abell 3581 and HCG 62. Each of the RGS spectra show Fe XVII emission lines indicating the presence of gas around 0.5 keV. There is no evidence for O VII emission which would imply gas at still cooler temperatures. The range in detected gas temperature in these objects is a factor of 3.7, 5.6 and 2 for Abell 262, Abell 3581 and HCG 62, respectively...

  9. Nonlinear Least-squares Fitting for PIXE Spectra

    A. Tchantchane

    2005-01-01

    Full Text Available An interactive computer program for the analysis of PIXE ( Particle Induced X-ray Emission spectra was described in this study. The fitting procedure consists of computing a function Y (I, a which approximates the experimental data at each channel I. a is a set of fitting parameters (energy and resolution calibration, X-rays intensities, absorption and background. The parameters of fit were determined by using a nonlinear least-squares fitting based on the Marquardt`s algorithm. The program takes into account of low energy tail and escape peaks. The program was employed for the analysis of PIXE spectra of geological and biological samples. The peak areas determined by this program are compared to those obtained with AXIL code

  10. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  11. Analysis of multi-layer ERBS spectra

    Marmitt, G.G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Rosa, L.F.S. [Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Nandi, S.K. [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh); Vos, M., E-mail: maarten.vos@anu.edu.au [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia)

    2015-07-15

    Highlights: • Electron Rutherford backscattering (ERBS) spectra are presented. • The spectra are fitted based on physical meaningful quantities. • Very consistent results are obtained for spectra taken under different conditions. • This establishes that ERBS can be used to measure film thicknesses. - Abstract: A systematic way of analysis of multi-layer electron Rutherford backscattering spectra is described. The approach uses fitting in terms of physical meaningful parameters. Simultaneous analysis then becomes possible for spectra taken at different incoming energies and measurement geometries. Examples are given to demonstrate the level of detail that can be resolved by this technique.

  12. Different spectra with the same neutron source

    Using as source term the spectrum of a 239Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  13. Optimal Extraction of Echelle Spectra

    Piskunov, Nikolai

    The extraction of the echelle spectra registered with a CCD detector represents a big challenge because of three reasons: (1) the pixel sampling is often close or worse then optimal, (2) spectral orders are curved and tilted with respect to the CCD rows (or columns) and (3) every pixel contains additional noise coming from various sources as illustrated in Figure 1. The main goal of an optimal extraction is to recover as much of the science signal while minimizing the contribution of the noise. Here we present the Slit Function Decomposition algorithm which replaces the summation in a sliding window with a reconstruction of the slit illumination profile. The reconstruction is formulated as an inverse problem solved by iterations and it is robust against most of the systematic problems including cosmic rays and cosmetic defects.

  14. Quantum entanglement without eigenvalue spectra

    Chen, H

    2001-01-01

    We introduce algebraic sets in complex projective spaces for the mixed states in bipartite quantum systems, which are independent of their eigenvalues and only measure the "position" of their eigenvectors, as their nonlocal invariants (ie., remaining invariant after local unitary transformations). The algebraic sets have to be the union of the linear subspaces if the mixed state is separable, and thus we give a "eigenvalue-free" criterion of separability. Based on our criterion, examples are given to illustrate that entangled mixed states which are invariant under partial transposition or fufill entropy and disorder criterion of separability can be constructed systematically. A by-product is a interesting lower bound of the Schmidt numbers of the "random" rank m mixed states in mxm sysytems. We reveal that a large part of quantum entanglement is independent of eigenvalue spectra and develop a method to measure this part of quantum enatnglement.

  15. Correlations between density distributions, optical spectra, and ion species in a hydrogen plasma (invited)

    Cortázar, O. D.; Megía-Macías, A.; Tarvainen, O.; Kalvas, T.; Koivisto, H.

    2016-02-01

    An experimental study of plasma distributions in a 2.45 GHz hydrogen discharge operated at 100 Hz repetition rate is presented. Ultrafast photography, time integrated visible light emission spectra, time resolved Balmer-alpha emission, time resolved Fulcher Band emission, ion species mass spectra, and time resolved ion species fraction measurements have been implemented as diagnostic tools in a broad range of plasma conditions. Results of plasma distributions and optical emissions correlated with H+, H2 + , and H3 + ion currents by using a Wien filter system with optical observation capability are reported. The magnetic field distribution and strength is found as the most critical factor for transitions between different plasma patterns and ion populations.

  16. Luminiscent emission of molecular levels excited by ionizant radiations

    The emission spectra and the time dependence of scintillations produced by alpha particles, gamma rays and ultraviolet light in some organic compounds crystals and liquids solutions normally used as radiation detectors has been studied. (author)

  17. Determination of shallow core level spectra in selected compound semiconductors

    Core level spectra of the M shells of Ga, Ge, As, and Se and of the L shell of S have been obtained from X-ray photoemission measurements on GaAs, GeSe, and GeS. Broadening contributions from the achromatic source, the analyzer momentum window, and the extrinsic losses experienced by the photoemitted electrons in traversing the solid, as well as satellite lines due to Kα3sub(,)4 emission, are removed by deconvolution of the data with a measured electron backscatter spectrum convoluted with a source function. The results are compared with theory where available. (orig.)

  18. Detailed Atmosphere Model Fits to Disk-Dominated ULX Spectra

    Hui, Y; Krolik, Julian H.

    2008-01-01

    We have chosen 6 Ultra-Luminous X-ray sources from the {\\it XMM-Newton} archive whose spectra have high signal-to-noise and can be fitted solely with a disk model without requiring any power-law component. To estimate systematic errors in the inferred parameters, we fit every spectrum to two different disk models, one based on local blackbody emission (KERRBB) and one based on detailed atmosphere modelling (BHSPEC). Both incorporate full general relativistic treatment of the disk surface brig...

  19. Evolution of complex organic molecules in hot molecular cores: Synthetic spectra at (sub-)mm wavebands

    Choudhury, Rumpa; Schilke, Peter; Stéphan, Gwendoline; Bergin, Edwin A.; Möller, Thomas; Schmiedeke, Anika; Zernickel, Alexander

    2015-01-01

    Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich emission line spectra at (sub-)mm wavebands. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of...

  20. Investigation of electron spectra backscattered from polyethylene-terephthalate

    Complete text of publication follows. Recently, guiding of medium energy electrons (a few hundred eV) through insulating polyethylene-terephthalate (PET) capillaries was observed. The poorly characterized spatial structure and, even more challenging, local charge-up of the material pose consideration of difficulties for a microscopic treatment of electron transport through PET. In order to identify the processes giving rise to guiding we investigate scattering from a flat PET surface both experimentally and theoretically. Reflection electron energy loss (REEL) and elastic peak electron spectra (EPES) were taken using a high-energy, high-resolution, home built ESA-31 electron spectrometer. Primary electron energies range from 200 eV to 1000 eV. The cleanliness of sample surfaces was monitored analyzing X-ray photoelectron spectra. Photoelectrons were excited using the K(α)1-line of Al (1486,67 eV). To interpret our experimental data, classical-transport simulations were performed to obtain electron-energy loss spectra, angular distributions, and the secondary-electron (SEE) yield for PET. Apart from elastic and inelastic scattering processes along the trajectory within the target material we also include the effect of charge-up of the surface based on the SEE yield of previously scattered trajectories which leads to a partial suppression of electron emission in later stages of the simulation. The inelastic mean free path (IMFP) of electrons in PET was determined from EPES spectra using Cu and Ni standards. Experimentally obtained IMFPs were compared with theoretical predictions derived from optical data. As Figure 1 shows good agreement between measured and simulated energy loss spectra is found

  1. Recombination Lines of CII in the Spectra of Planetary Nebulae

    Sochi, Taha

    2010-01-01

    The current report presents the work carried out by the author to investigate the recombination lines of CII in the spectra of planetary nebulae. Two CIII targets were prepared and used to generate theoretical data required in the investigation of recombination lines that arise from collisions between electrons and ions in thin plasma found in planetary nebulae and other astrophysical objects. One of these targets contains 9 atomic terms while the other contains 26 terms. For each one of these targets, theoretical data concerning bound and autoionizing states were generated in the intermediate coupling approximation by R-matrix and Autostructure codes and compared to experimental data. The comparison revealed very good agreement. These theoretical data were then used to generate emissivity data and compare it to the carbon recombination lines found in the observational line list of Zhang et al [2005] on the planetary nebula NGC 7027. The main tool used in this analysis is the `Emissivity' code which is a prog...

  2. Vacuum Rabi spectra of a single quantum emitter

    Ota, Yasutomo; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-01-01

    We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We used a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently-weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences to those measured by detecting the cavity photon leakage. Moreover, we observed an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission.

  3. Vibration and Fluorescence Spectra of Porphyrin- CoredBis(methylol-propionic Acid Dendrimers

    Boris Minaev

    2009-03-01

    Full Text Available Bis-MPA dendron-coated free-base tetraphenylporphyrin and zinc-tetraphenyl-porphyrin (TPPH2 and TPPZn were studied in comparison with simple porphyrins (H2P, ZnP by theoretical simulation of their infrared, Raman and electronic absorption spectra, as well as fluorescense emission. Infrared and fluorescence spectra of the dendrimers were measured and interpreted along with time-resolved measurements of the fluorescence. The 0-1 emission band of the dendron substituted TPPZn was found to experience a "heavy substitution"-effect. The 0-1 vibronic emission signal is associated with a longer decay time (approx. 7 - 8 ns than the 0-0 emission (approx. 1 - 1.5 ns. The former contributed with more relative emission yield for larger dendron substituents, in agreement with the appearance of steady-state emission spectra showing increased contribution from the 0-1 vibronic fluorescence band at 650 nm. No such substitution effect was observed in the electronic or vibrational spectra of the substituted free-base variant, TPPH2. Vibration spectra of the parent porphyrins (H2P, ZnP, TPPH2 and TPPZn were calculated by density functional theory (DFT using the B3LYP/6-31G** approximation and a detailed analysis of the most active vibration modes was made based on both literature and our own experimental data. Based on the results of theoretical calculations the wide vibronic bands in the visible region were assigned. The vibronic structure also gave a qualitative interpretation of bands in the electronic absorption spectra as well as in fluorescence emission depending on the size of dendrimer substitution. From the results of time-dependent DFT calculations it is suggested that the TPPZn-cored dendrimers indicate strong vibronic interaction and increased Jahn-Teller distortion of the prophyrin core for larger dendrimer generations. Specifically, this leads to the entirely different behaviour of the emission spectra upon substitution of the TPPH2 and TPPZn

  4. Study of the shape of β spectra

    The goal of this PhD work is to build an experimental device dedicated to measuring beta spectra with a precision relevant to modern metrology requirements. The device, which is based on a silicon semi-conductor detector, must take into account certain physical phenomena and detector characteristics which could lead to deformation of the measured spectra. These must be understood and minimized. Monte-Carlo simulations have allowed the geometry and construction materials to be optimized. The quality of the radioactive sources is paramount in obtaining spectra of high-quality. Nonetheless, the measured spectra must be corrected for any remaining distortion. A response function must therefore be determined for each measurement geometry. This can be achieved via Monte-Carlo simulations. The first results show that deconvolution of the measured spectra with the response function makes possible the accurate determination of the true form of the beta spectra. (author)

  5. Functional Regression for Quasar Spectra

    Ciollaro, Mattia; Freeman, Peter; Genovese, Christopher; Lei, Jing; O'Connell, Ross; Wasserman, Larry

    2014-01-01

    The Lyman-alpha forest is a portion of the observed light spectrum of distant galactic nuclei which allows us to probe remote regions of the Universe that are otherwise inaccessible. The observed Lyman-alpha forest of a quasar light spectrum can be modeled as a noisy realization of a smooth curve that is affected by a `damping effect' which occurs whenever the light emitted by the quasar travels through regions of the Universe with higher matter concentration. To decode the information conveyed by the Lyman-alpha forest about the matter distribution, we must be able to separate the smooth `continuum' from the noise and the contribution of the damping effect in the quasar light spectra. To predict the continuum in the Lyman-alpha forest, we use a nonparametric functional regression model in which both the response and the predictor variable (the smooth part of the damping-free portion of the spectrum) are function-valued random variables. We demonstrate that the proposed method accurately predicts the unobserv...

  6. Reflectance spectra of subarctic lichens

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  7. On non-forking spectra

    Chernikov, Artem; Shelah, Saharon

    2012-01-01

    Non-forking is one of the most important notions in modern model theory capturing the idea of a generic extension of a type (which is a far-reaching generalization of the concept of a generic point of a variety). To a countable first-order theory we associate its non-forking spectrum - a function of two cardinals kappa and lambda giving the supremum of the possible number of types over a model of size lambda that do not fork over a sub-model of size kappa. This is a natural generalization of the stability function of a theory. We make progress towards classifying the non-forking spectra. On the one hand, we show that the possible values a non-forking spectrum may take are quite limited. On the other hand, we develop a general technique for constructing theories with a prescribed non-forking spectrum, thus giving a number of examples. In particular, we answer negatively a question of Adler whether NIP is equivalent to bounded non-forking. In addition, we answer a question of Keisler regarding the number of cut...

  8. Methodology for analyzing weak spectra

    There is considerable interest in quantifying radionuclide transfer between environmental compartments. However, in many cases, it can be a challenge to detect concentrations of gamma-emitting radionuclides due to their low levels in environmental samples. As a result, it is valuable to develop analytical protocols to ensure consistent analysis of the areas under weak peaks. The current study has focused on testing how reproducibly peak areas and baselines can be determined using two analytical approaches. The first approach, which can be carried out using Maestro software, involves extracting net counts under a curve without fitting a functional form to the peak, whereas the second approach, which is used by most other peak fitting programs, determines net counts from spectra by fitting a Gaussian form to the data. It was found that the second approach produces more consistent peak area and baseline measurements, with the ability to de-convolute multiple, overlapping peaks. In addition, programs, such as Peak Fit, which can be used to fit a form to spectral data, often provide goodness of fit analyses, since the Gaussian form can be described using a characteristic equation against which peak data can be tested for their statistical significance. (author)

  9. Some quartz thermoluminescence spectra relevant to thermoluminescence dating

    Natural quartz extracted from sediments, but otherwise untreated or given a gamma dose, yields two broad thermoluminescence emission bands, one centred at 630 nm and the other extending from 350 nm to at least 550 nm. The dependences of the spectra on radiation dose were examined for both laboratory dose and natural dose, which differ by 9 orders of magnitude in dose rate, and no effect due to dose rate was observed. The dose responses of both emission bands were examined in the range 0-1600 Gy and were found to be highly non-linear and different. It is shown that the predose effect in the high temperature thermoluminescence peak is associated with the blue emission and not the red emission. For some sediment samples the presence of zircon dominated the thermoluminescence. Thus it is clearly necessary to remove the zircon if one wishes to study the thermoluminescence of the quartz. For a commercial quartz it was found that annealing at 7000C caused a dramatic spectral change and an increase in sensitivity, thus casting doubt on the applicability of thermoluminescence studies on annealed quartz to TL dating of natural quartz extracted from sediments. (author)

  10. A study of ice response spectra

    LIU Chunguang; JIA Lingling

    2009-01-01

    Some problems concerning the ice forces and ice response spectra are studied from both theoretical and practical points of view. On the basis of structural analysis,the analysis method of ice response spectra is proposed, since it plays an important role in the prediction of maximum structural response in cold regions. And it is illustrated that it is easy to study the structural response to ice using the ice response spectra.

  11. Circumstellar Molecular Spectra towards Evolved Stars

    Bakker, E J

    1997-01-01

    In this paper we discuss the relevance of, and possible scientific gains which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.

  12. Structure of high-resolution NMR spectra

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  13. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C2). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  14. Magnetic Dipole Microwave Emission from Dust Grains

    Draine, B T

    1999-01-01

    Thermal fluctuations in the magnetization of interstellar grains will produce magnetic dipole emission at frequencies below ~100 GHz. We show how to calculate absorption and emission from small particles composed of magnetic materials. The Kramers-Kronig relations for a dusty medium are generalized to include the possibility of magnetic grains. The frequency-dependent magnetic permeability is discussed for candidate grain materials, including iron and magnetite. We calculate emission spectra for various interstellar grain candidates. While paramagnetic grains or magnetite grains cannot account for the observed "anomalous" emission from dust in the 14-90 GHz range, stronger magnetic dipole emission will result if a fraction of the grain material is ferromagnetic, as could be the case given the high Fe content of interstellar dust. The observed emission from dust near 90 GHz implies that not more than 5% of interstellar Fe is in the form of metallic iron grains or inclusions (e.g., in "GEMS"). However, we show ...

  15. Optical absorption spectra of Ag-11 isomers

    Martinez, Jose Ignacio; Fernandez, E. M.

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  16. Infrared spectra of thyroid tumor tissues

    Tolstorozhev, G. B.; Skornyakov, I. V.; Butra, V. A.

    2010-07-01

    We used infrared spectroscopy methods to study thyroid tumor tissues removed during surgery. The IR spectra of the surgical material are compared with data from histological examination. We show that in malignant neoplasms, the spectra of proteins in the region of C=O vibrations are different from the spectra of these substances in benign tumors and in tissues outside the pathological focus at a distance >1 cm from the margin of the tumor. The differences in the spectra are due to changes in the supermolecular structure of the proteins, resulting from rearrangement of the system of hydrogen bonds. We identify the spectral signs of malignant pathologies.

  17. Neutron and photon spectra in LINACs

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10–6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  18. Fluorescence spectra and energy levels of Terbium (4f8) in TbPO4

    The optical emission and excitation spectra of Tb3+ in TbPO4 at different temperatures lead to an energy level scheme for the Stark components of the 7F6, 7F5 and 5D4 manifolds. An antistokes radiation from 5D3 is observed which confirms the ground state splitting

  19. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    2002-01-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the time-consumi

  20. The NASA Ames Polycyclic Aromatic Hydrocarbon Infrared Spectroscopic Database : The Computed Spectra

    Bauschlicher, C. W.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; de Armas, F. Sanchez; Saborido, G. Puerta; Hudgins, D. M.; Allamandola, L. J.

    2010-01-01

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant t