WorldWideScience

Sample records for 3d virtual reality

  1. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  2. Dynamic 3D echocardiography in virtual reality.

    A.E. van den Bosch (Annemien); A.H.J. Koning (Anton); F.J. Meijboom (Folkert); J.S. McGhie (Jackie); M.L. Simoons (Maarten); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2005-01-01

    textabstractBACKGROUND: This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. METHODS: Three-dimensional echocardiographic d

  3. 3D Vision in a Virtual Reality Robotics Environment

    Schütz, Christian L.; Natonek, Emerico; Baur, Charles; Hügli, Heinz

    2009-01-01

    Virtual reality robotics (VRR) needs sensing feedback from the real environment. To show how advanced 3D vision provides new perspectives to fulfill these needs, this paper presents an architecture and system that integrates hybrid 3D vision and VRR and reports about experiments and results. The first section discusses the advantages of virtual reality in robotics, the potential of a 3D vision system in VRR and the contribution of a knowledge database, robust control and the combination of in...

  4. 3D Virtual Reality for Teaching Astronomy

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  5. Embryonic staging using a 3D virtual reality system

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D 'holog

  6. Dynamic 3D echocardiography in virtual reality

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  7. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  8. Building intuitive 3D interfaces for virtual reality systems

    Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh

    2007-03-01

    An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.

  9. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  10. Virtual reality 3D headset based on DMD light modulators

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  11. Virtual reality 3D headset based on DMD light modulators

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  12. 3D visualization and virtual reality for cultural heritage diagnostic

    Lucio Colizzi

    2007-07-01

    Full Text Available In the past years, many different new technologies for Cultural Heritage Diagnostic have been developed. In particular laser scanner surveys with digital photogrammetry and also multi-spectral surveys are becoming very useful and inalienable tools for non invasive diagnosis. In the SIDART Project (Integrated System for Cultural Heritage diagnosis, we develop a software able to visualize and elaborate triangulated surfaces coming from high resolution laser scanner survey. In this paper, we want to present the most innovative aspect of our study, that is the possibility to visualize and work in default mode or in immersive Stereoscopy (3D mode. This lets the operator perceive the third dimension and the “virtual investigation” of the object becomes more realistic. This lets us take into consideration in a more simple, natural and correct way and also reduce the possibility to make wrong evaluation due to the false prospective of the classic visualization.

  13. Virtual Reality, 3D Stereo Visualization, and Applications in Robotics

    Livatino, Salvatore

    2006-01-01

    , while little can be found about the advantages of stereoscopic visualization in mobile robot tele-guide applications. This work investigates stereoscopic robot tele-guide under different conditions, including typical navigation scenarios and the use of synthetic and real images. This work also......The use of 3D stereoscopic visualization may provide a user with higher comprehension of remote environments in tele-operation when compared to 2D viewing. Works in the literature have demonstrated how stereo vision contributes to improve perception of some depth cues often for abstract tasks...

  14. The Learner Characteristics, Features of Desktop 3D Virtual Reality Environments, and College Chemistry Instruction: A Structural Equation Modeling Analysis

    Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.

    2012-01-01

    We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…

  15. Scientific visualization, 3D immersive virtual reality environments, and archaeology in Jordan and the near east

    Knabb, KA; Schulze, JP; Kuester, F; Defanti, TA; Levy, TE

    2014-01-01

    Archaeological data is perfectly suited to 3D modeling and visualization. The geographical remoteness of many heritage sites means that few will ever be able to experience them firsthand. For centuries, practitioners of archaeology have meticulously drafted maps and illustrations, and captured photographs of sites and landscapes (Sanders 2014). Two-dimensional maps and photos reflect scale but never fully embody it. Hence, one of the goals of virtual reality modeling is to take another step t...

  16. A Simplified Model for Generating 3D Realistic Sound in the Multimedia and Virtual Reality Systems

    赵Yu; 何志均; 等

    1996-01-01

    It is a key feature to embed 3D realistic sound effect in the future multimedia and virtual reality systems.Recent research on acoustics and psychoacoustics reveals the important cues for sound localization and sound perception.One promising approach to generate 3D realistic sound effect uses two earphones by simulating the sound waveforms from sound source to eardrum.This paper summarizes two methods for generating 3D realistic sound and points out their inherent drawbacks.To overcome these drawbacks we propose a simplified model to generate 3D realistic sound at any positions in the horizontal plane based on the results of sound perception and localization.Experimental results show that the model is correct and efficient.

  17. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  18. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed

  19. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  20. New Algorithm for 3D Facial Model Reconstruction and Its Application in Virtual Reality

    Rong-Hua Liang; Zhi-Geng Pan; Chun Chen

    2004-01-01

    3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality(VR).The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model.In this paper,a new algorithm for realistic-looking face reconstruction is presented based on stereo vision.Firstly,a pattern is printed and attached to a planar surface for camera calibration,and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade(PLK)algorithm and local adjustment algorithm,and then 3D coordinates of corners are obtained by 3D reconstruction.Individual face model is generated by the deformation of general 3D model and interpolation of the features.Finally,realisticlooking human face model is obtained after texture mapping and eyes modeling.In addition,some application examples in the field of VR are given.Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.

  1. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  2. EEG-based asynchronous BCI control of a car in 3D virtual reality environments

    ZHAO QiBin; ZHANG LiQing; CICHOCKI Andrzej

    2009-01-01

    Brain computer interface (BCl) aims at creating new communication channels without depending on brain's normal output channels of peripheral nerves and muscles.However,natural and sophisticated interactions manner between brain and computer still remain challenging.In this paper,we investigate how the duration of event-related desynchronization/synchronization (ERD/ERS) caused by motor im-agery (MI) can be modulated and used as an additional control parameter beyond simple binary deci-sions.Furthermore,using the non-time-locked properties of sustained (de)synchronization,we have developed an asynchronous BCl system for driving a car in 3D virtual reality environment (VRE) based on cumulative incremental control strategy.The extensive real time experiments confirmed that our new approach is able to drive smoothly a virtual car within challenging VRE only by the MI tasks with-out involving any muscular activities.

  3. Evaluation of Binocular Eye Trackers and Algorithms for 3D Gaze Interaction in Virtual Reality Environments

    Thies Pfeiffer

    2009-03-01

    Full Text Available Tracking user's visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user's visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection.The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.

  4. Design and fabrication of concave-convex lens for head mounted virtual reality 3D glasses

    Deng, Zhaoyang; Cheng, Dewen; Hu, Yuan; Huang, Yifan; Wang, Yongtian

    2015-08-01

    As a kind of light-weighted and convenient tool to achieve stereoscopic vision, virtual reality glasses are gaining more popularity nowadays. For these glasses, molded plastic lenses are often adopted to handle both the imaging property and the cost of massive production. However, the as-built performance of the glass depends on both the optical design and the injection molding process, and maintaining the profile of the lens during injection molding process presents particular challenges. In this paper, optical design is combined with processing simulation analysis to obtain a design result suitable for injection molding. Based on the design and analysis results, different experiments are done using high-quality equipment to optimize the process parameters of injection molding. Finally, a single concave-convex lens is designed with a field-of-view of 90° for the virtual reality 3D glasses. The as-built profile error of the glass lens is controlled within 5μm, which indicates that the designed shape of the lens is fairly realized and the designed optical performance can thus be achieved.

  5. Real time virtual reality 3D animation and control system for nuclear service robotics

    The ROSACAD robotic control system developed by Westinghouse Electric Corporation provides a robot operator with real time 3D virtual reality animation of the robot in its environment and provides on-line look ahead collision avoidance. The operator interface is ideal for systems that use teleoperation, or those in which the robot's work envelope is congested with many obstacles. The operations software uses object-oriented coding, which allows easy extension to new applications and is specifically design to integrate teleoperation interpersed with autonomous sequences. Any robot and environment can he modeled through the use of the ROBCAD solid modeling software, including the presence of moving obstacles. ROSACAD is a generic interface and control system that has beer applied in many diverse robotic systems ranging from nuclear steam generator service arms to pipe crawlers. (authors)

  6. Design and implementation of a 3D ocean virtual reality and visualization engine

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  7. Design and Implementation of a 3D Ocean Virtual Reality and Visualization Engine

    CHEN Ge; LI Bo; TIAN Fenglin; JI Pengbo; LI Wenqing

    2012-01-01

    In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.

  8. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  9. Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect

    G. Bol-Raap (Goris); A.H.J. Koning (Anton); T.V. Scohy (Thierry); A.D.J. ten Harkel (Arend); F.J. Meijboom (Folkert); A.P. Kappetein (Arie Pieter); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2007-01-01

    textabstractBackground. This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D) echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD). Methods. 12 da

  10. Advanced Multi-modal User Interfaces in 3D Computer Graphics and Virtual Reality

    Chen, Yenan

    2012-01-01

    Computers are developed continuously to satisfy the human demands, and typical tools used everywhere for ranging from daily life usage to all kinds of research. Virtual Reality (VR), a virtual environment simulated to present physical presence in the real word and imaginary worlds, has been widely applied to simulate the virtual environment. People’s feeling is limited to visual perception when only computers are applied for simulations, since computers are limited to display visualization of...

  11. Virtual reality approach for 3D large model browsing on web site

    2005-01-01

    Using virtual reality for interactive design gives a designer an intuitive vision of a design and allows the designer to achieve a viable, optimal solution in a timely manner. The article discusses the process of making the Virtual Reality System of the Humble Administrator's Garden. Translating building data to the Virtual Reality Modeling Language (VRML) is by far unsatisfactory. This creates a challenge for computer designers to do optimization to meet requirements. Five different approaches to optimize models have been presented in this paper. The other methods are to optimize VRML and to reduce the file size. This is done by keeping polygon counts to a minimum and by applying such techniques as object culling and level-of-detail switching.

  12. Virtual Reality Laboratory

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  13. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  14. The Effect Of 3D Audio And Other Audio Techniques On Virtual Reality Experience

    Brinkman, W.P.; Hoekstra, A.R.D.; Van Egmond, R.

    2015-01-01

    Three studies were conducted to examine the effect of audio on people's experience in a virtual world. The first study showed that people could distinguish between mono, stereo, Dolby surround and 3D audio of a wasp. The second study found significant effects for audio techniques on people's self-re

  15. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  16. Research on system architecture for device and content independent applications including 3d imaging and virtual reality as content

    Sultana, Razia

    2014-01-01

    Today’s network landscape consists of many different network technologies, a wide range of end-devices with large scale of capabilities and power, an immense quantity of information and data represented in different formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. A lot of effort is being made in order to establish open, scalable and seamless integration of vari...

  17. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique. PMID:27410124

  18. Employing 3D Virtual Reality and the Unity Game Engine to Support Nuclear Verification Research

    This project centres on the development of a virtual nuclear facility environment to assist non-proliferation and nuclear arms control practitioners - including researchers, negotiators, or inspectors - in developing and refining a verification system and secure chain of custody of material or equipment. The platform for creating the virtual facility environment is the Unity 3D game engine. This advanced platform offers both the robust capability and flexibility necessary to support the design goals of the facility. The project also employs Trimble SketchUp and Blender 3D for constructing the model components. The development goal of this phase of the project was to generate a virtual environment that includes basic physics in which avatars can interact with their environment through actions such as picking up objects, operating vehicles, dismantling a warhead through a spherical representation system, opening/closing doors through a custom security access system, and conducting CCTV surveillance. Initial testing of virtual radiation simulation techniques was also explored in preparation for the next phase of development. Some of the eventual utilities and applications for this platform include: 1. conducting live multi-person exercises of verification activities within a single, shared virtual environment, 2. refining procedures, individual roles, and equipment placement in the contexts of non-proliferation or arms control negotiations 3. hands on training for inspectors, and 4. a portable tool/reference for inspectors to use while carrying out inspections. This project was developed under the Multilateral Verification Project, led by the Verification Research, Training and Information Centre (VERTIC) in the United Kingdom, and financed by the Norwegian Ministry of Foreign Affairs. The environment was constructed at the Vienna Center for Disarmament and Non-Proliferation (VCDNP). (author)

  19. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  20. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. PMID:27590974

  1. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  2. Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect

    Kappetein A Pieter

    2007-02-01

    Full Text Available Abstract Background This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD. Methods 12 data sets from intraoperative epicardial echocardiographic studies in 5 operations (patient age at operation 3 weeks to 4 years and bodyweight at operation 3.8 to 17.2 kg after surgical closure of VSD were included in the study. The data sets were analysed as two-dimensional (2D images on the screen of the ultrasound system as well as holograms in an I-space virtual reality (VR system. The 2D images were assessed for tricuspid valve function. In the I-Space, a 6 degrees-of-freedom controller was used to create the necessary projectory positions and cutting planes in the hologram. The holograms were used for additional assessment of tricuspid valve leaflet mobility. Results All data sets could be used for 2D as well as holographic analysis. In all data sets the area of interest could be identified. The 2D analysis showed no tricuspid valve stenosis or regurgitation. Leaflet mobility was considered normal. In the virtual reality of the I-Space, all data sets allowed to assess the tricuspid leaflet level in a single holographic representation. In 3 holograms the septal leaflet showed restricted mobility that was not appreciated in the 2D echocardiogram. In 4 data sets the posterior leaflet and the tricuspid papillary apparatus were not completely included. Conclusion This report shows that dynamic holographic imaging of intraoperative postoperative echocardiographic data regarding tricuspid valve function after VSD closure is feasible. Holographic analysis allows for additional tricuspid valve leaflet mobility analysis. The large size of the probe, in relation to small size of the patient, may preclude a complete data set. At the moment the requirement of an I

  3. Assessment of faculty perception of content validity of PerioSim, a haptic-3D virtual reality dental training simulator.

    Steinberg, Arnold D; Bashook, Philip G; Drummond, James; Ashrafi, Seema; Zefran, Milos

    2007-12-01

    Haptic technology (sense of touch) along with 3D-virtual reality (VR) graphics, creating lifelike training simulations, was used to develop a dental training simulator system (PerioSim). This preliminary study was designed to evaluate whether faculty considered PerioSim realistic and useful for training and evaluating basic procedural skills of students. The haptic device employed was a PHANToM and the simulator a Dell Xeon 530 workstation with 3D, VR oral models and instruments viewed on a stereoscopic monitor. An onscreen VR periodontal probe or explorer was manipulated by operating the PHANToM for sensing lifelike contact and interactions with the teeth and gingiva. Thirty experienced clinical dental and dental hygiene faculty judged the realism of the system. A PowerPoint presentation on one screen provided instructions for the simulator use with the 3D, VR simulator on a second stereoscopic monitor viewed with 3D goggles. Faculty/practitioners found the images very realistic for teeth and instruments, but less so for gingiva. Tactile sensation was realistic for teeth but not so for gingiva. The onscreen instructions were very useful with high potential for teaching. Faculty members anticipated incorporating this device into teaching and were enthusiastic about its potential for evaluating students' basic procedural skills. This study suggests that the preliminary "evidence-of-concept" was successful and PerioSim may aid students in developing necessary dental tactile skills. PMID:18096883

  4. Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging.

    Messier, Julie; Adamovich, Sergei; Jack, David; Hening, Wayne; Sage, Jacob; Poizner, Howard

    2007-05-01

    Successful adaptation to novel sensorimotor contexts critically depends on efficient sensory processing and integration mechanisms, particularly those required to combine visual and proprioceptive inputs. If the basal ganglia are a critical part of specialized circuits that adapt motor behavior to new sensorimotor contexts, then patients who are suffering from basal ganglia dysfunction, as in Parkinson's disease should show sensorimotor learning impairments. However, this issue has been under-explored. We tested the ability of 8 patients with Parkinson's disease (PD), off medication, ten healthy elderly subjects and ten healthy young adults to reach to a remembered 3D location presented in an immersive virtual environment. A multi-phase learning paradigm was used having four conditions: baseline, initial learning, reversal learning and aftereffect. In initial learning, the computer altered the position of a simulated arm endpoint used for movement feedback by shifting its apparent location diagonally, requiring thereby both horizontal and vertical compensations. This visual distortion forced subjects to learn new coordinations between what they saw in the virtual environment and the actual position of their limbs, which they had to derive from proprioceptive information (or efference copy). In reversal learning, the sign of the distortion was reversed. Both elderly subjects and PD patients showed learning phase-dependent difficulties. First, elderly controls were slower than young subjects when learning both dimensions of the initial biaxial discordance. However, their performance improved during reversal learning and as a result elderly and young controls showed similar adaptation rates during reversal learning. Second, in striking contrast to healthy elderly subjects, PD patients were more profoundly impaired during the reversal phase of learning. PD patients were able to learn the initial biaxial discordance but were on average slower than age-matched controls

  5. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  6. Virtual Reality

    Dan L. Lacrãmã

    2007-01-01

    Full Text Available This paper is focused on the presentation of Virtual Reality principles together with the main implementation methods and techniques. An overview of the main development directions is included.

  7. Networked 3D Virtual Museum System

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  8. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues.

    Calì, Corrado; Baghabra, Jumana; Boges, Daniya J; Holst, Glendon R; Kreshuk, Anna; Hamprecht, Fred A; Srinivasan, Madhusudhanan; Lehväslaiho, Heikki; Magistretti, Pierre J

    2016-01-01

    Advances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room in which we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of EM preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to the observation of a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. PMID:26179415

  9. Diseño de un Modelo 3D del Politécnico Colombiano Jaime Isaza Cadavid con Realidad Virtual Design of a 3D Model with Virtual Reality of the Colombian Polytechnic Institute Jaime Isaza Cadavid

    Sandra P Mateus

    2012-01-01

    Full Text Available Este trabajo muestra el desarrollo de un Entorno Virtual de la Sede Poblado del Politécnico Colombiano Jaime Isaza Cadavid, utilizando técnicas de realidad virtual. Esto con el fin de obtener un modelo de la planta física de la Institución que proyecte su imagen, a través de una interfaz gráfica amigable basada en tecnología 3D. El trabajo fue realizado en las siguientes etapas: i caracterización de la planta física y diseño del modelo virtual, par lo que se seleccionaron 3DMax y Maya de Autodesk entre varias herramientas de modelado 3D y Unity como motor gráfico; ii creación de mapas UV; y iii proceso de texturización. Los resultados del entorno virtual desarrollado permiten al usuario navegar por la institución e interactuar con los diferentes espacios como si estuviera en un videojuego.This work shows the development of a Virtual Environment of the campus Poblado of the Colombian Polytechnic Jaime Isaza Cadavid, using virtual reality techniques. This with the aim of obtaining a model of the physical plant of the institution to project its image through a friendly graphical interface based on 3D technology. The work was developed following three main steps: i characterization of the physical and virtual design of the model, for which 3DMax and Maya of Autodesk were selected among the several tools for 3D modeling and Unity as graphics engine; ii creation of UV mapping; and iii texturing process. The results of the proposed virtual environment allow the user to navigate around the institution and interact with the different spaces as done with a video-game.

  10. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    S. Gonizzi Barsanti; G. Caruso; L. L. Micoli; M. Covarrubias Rodriguez; Guidi, G

    2015-01-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan....

  11. Virtual Reality.

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  12. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  13. Virtual Reality

    Bhavana Gupta

    2012-10-01

    Full Text Available An artificial environment created with co mputer hardware and software and presented to the user in such a way that it appears and feels like a real environment. To "enter" a virtual reality, a user does special gloves, earphones, and goggles, all of which receive their input from the computer system. In this way, at least three of the five senses are controlled by the computer. In addition to feeding sensory input to the user, the devices also monitor the user's actions

  14. Full scope simulator of a nuclear power plant control room using 3D stereo virtual reality techniques for operators training

    Practical training of nuclear power plants operators are partially performed by means of simulators. Usually these simulators are physical copies of the original control roam, needing a large space on a facility being also very expensive. In this way, the proposal of this paper is to implement the use of Virtual Reality techniques to design a full scope control room simulator, in a manner to reduce costs and physical space usage. (author)

  15. The use of a low-cost visible light 3D scanner to create virtual reality environment models of actors and objects

    Straub, Jeremy

    2015-05-01

    A low-cost 3D scanner has been developed with a parts cost of approximately USD $5,000. This scanner uses visible light sensing to capture both structural as well as texture and color data of a subject. This paper discusses the use of this type of scanner to create 3D models for incorporation into a virtual reality environment. It describes the basic scanning process (which takes under a minute for a single scan), which can be repeated to collect multiple positions, if needed for actor model creation. The efficacy of visible light versus other scanner types is also discussed.

  16. On the Usability and Usefulness of 3d (geo)visualizations - a Focus on Virtual Reality Environments

    Çöltekin, A.; Lokka, I.; Zahner, M.

    2016-06-01

    Whether and when should we show data in 3D is an on-going debate in communities conducting visualization research. A strong opposition exists in the information visualization (Infovis) community, and seemingly unnecessary/unwarranted use of 3D, e.g., in plots, bar or pie charts, is heavily criticized. The scientific visualization (Scivis) community, on the other hand, is more supportive of the use of 3D as it allows `seeing' invisible phenomena, or designing and printing things that are used in e.g., surgeries, educational settings etc. Geographic visualization (Geovis) stands between the Infovis and Scivis communities. In geographic information science, most visuo-spatial analyses have been sufficiently conducted in 2D or 2.5D, including analyses related to terrain and much of the urban phenomena. On the other hand, there has always been a strong interest in 3D, with similar motivations as in Scivis community. Among many types of 3D visualizations, a popular one that is exploited both for visual analysis and visualization is the highly realistic (geo)virtual environments. Such environments may be engaging and memorable for the viewers because they offer highly immersive experiences. However, it is not yet well-established if we should opt to show the data in 3D; and if yes, a) what type of 3D we should use, b) for what task types, and c) for whom. In this paper, we identify some of the central arguments for and against the use of 3D visualizations around these three considerations in a concise interdisciplinary literature review.

  17. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  18. 3D augmented reality with integral imaging display

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  19. 3D Virtual Reality Applied in Tectonic Geomorphic Study of the Gombori Range of Greater Caucasus Mountains

    Sukhishvili, Lasha; Javakhishvili, Zurab

    2016-04-01

    Gombori Range represents the southern part of the young Greater Caucasus Mountains and stretches from NW to SE. The range separates Alazani and Iori basins within the eastern Georgian province of Kakheti. The active phase of Caucasian orogeny started in the Pliocene, but according to alluvial sediments of Gombori range (mapped in the Soviet geologic map), we observe its uplift process to be Quaternary event. The highest peak of the Gombori range has an absolute elevation of 1991 m, while its neighboring Alazani valley gains only 400 m. We assume the range has a very fast uplift rate and it could trigger streams flow direction course reverse in Quaternary. To check this preliminary assumptions we are going to use a tectonic and fluvial geomorphic and stratigraphic approaches including paleocurrent analyses and various affordable absolute dating techniques to detect the evidence of river course reverses and date them. For these purposes we have selected river Turdo outcrop. The river itself flows northwards from the Gombori range and nearby region`s main city of Telavi generates 30-40 m high continuous outcrop along 1 km section. Turdo outcrop has very steep walls and requires special climbing skills to work on it. The goal of this particularly study is to avoid time and resource consuming ground survey process of this steep, high and wide outcrop and test 3D aerial and ground base photogrammetric modelling and analyzing approaches in initial stage of the tectonic geomorphic study. Using this type of remote sensing and virtual lab analyses of 3D outcrop model, we roughly delineated stratigraphic layers, selected exact locations for applying various research techniques and planned safe and suitable climbing routes for getting to the investigation sites.

  20. Interior Design and Navigation in Virtual Reality

    Tingvall, Jesper

    2015-01-01

    This thesis examined how virtual reality could be used in interior design. The thesis was limited to virtual reality experienced using a head mounted display. The Method was to integrate virtual reality into an existing interior design software called CET Designer. After investigating the available commercial virtual reality hardware and software Oculus SDK and OpenVR was chosen. Unity 3D was used as a prototyping tool for experimenting with different interaction and navigation methods. An use...

  1. Computer Vision Assisted Virtual Reality Calibration

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  2. Virtual reality exposure therapy

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  3. Virtual Reality and Public Administration

    István TÓZSA

    2013-02-01

    Full Text Available This study serves as an introduction to how virtual reality systems could be applied in public administration and what research tasks would be necessary to accomplish a project. E-government solutions began to emerge in public administration approximately a decade ago all over the developed world. Administration service facilities via the Internet did not attract many customers, because of the digital divide. E-government solutions were extended to mobile devices as well, but the expected breakthrough of usage has not ensued. The virtual reality form of public administration services recommended in this study has the most attractive outlay and the simplest navigation tools if compared to ‘traditional’ Internet based e-government. Thus, in accordance with the worldwide amazingly quick spread of the virtual reality systems of Second Life and 3 D types of entertainment, virtual reality applications in public administration could rely on a wide range of acceptance as well.

  4. Design and Implementation of Virtual Reality Platform for 3D Campus%三维校园虚拟现实平台的设计与实现

    刘小英; 张健

    2014-01-01

    Virtual campus is an important application about virtual reality technology. People only need a computer to have the overall view of the campus through the virtual campus. Taking the main building of Panzhihua university as a research object, using SketchUp to build 3D model and GIMP to process texture mapping, and VC++6.0 and OpenGL technology, the 3D model was read, and then the roaming interactive control and collision detection function were implemented. The system operation showed that the system could show realistic scenes of the school and provide school views with a new window.%虚拟校园是虚拟现实技术的一个重要应用方面,通过虚拟校园,人们只需要一台计算机即可了解校园整体风貌。以攀枝花学院主体建筑为研究对象,利用SketchUp构建三维模型,应用GIMP进行纹理贴图处理。运用VC++6.0结合OpenGL技术,读取三维模型,实现漫游交互控制及碰撞检测功能。系统运行表明,该系统场景逼真,能够展现学校风貌,为学校提供了一个新的窗口。

  5. Diseño de un Modelo 3D del Politécnico Colombiano Jaime Isaza Cadavid con Realidad Virtual Design of a 3D Model with Virtual Reality of the Colombian Polytechnic Institute Jaime Isaza Cadavid

    Sandra P Mateus; Jorge E Giraldo

    2012-01-01

    Este trabajo muestra el desarrollo de un Entorno Virtual de la Sede Poblado del Politécnico Colombiano Jaime Isaza Cadavid, utilizando técnicas de realidad virtual. Esto con el fin de obtener un modelo de la planta física de la Institución que proyecte su imagen, a través de una interfaz gráfica amigable basada en tecnología 3D. El trabajo fue realizado en las siguientes etapas: i) caracterización de la planta física y diseño del modelo virtual, par lo que se seleccionaron 3DMax y Maya de Aut...

  6. Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function.

    Patton, J L; Dawe, G; Scharver, C; Mussa-Ivaldi, F A; Kenyon, R

    2004-01-01

    We have been developing and combining state-of-art devices that allow humans to visualize and feel synthetic objects superimposed on the real world. This effort stems from the need of platform for extending experiments on motor control and learning to realistic human motor tasks and environments, not currently represented in the practice of research. This paper's goal is to outline our motivations, progress, and objectives. Because the system is a general tool, we also hope to motivate researchers in related fields to join in. The platform under development, an augmented reality system combined with a haptic-interface robot, will be a new tool for contributing to the scientific knowledge base in the area of human movement control and rehabilitation robotics. Because this is a prototype, the system will also guide new methods by probing the levels of quality necessary for future design cycles and related technology. Inevitably, it should also lead the way to commercialization of such systems. PMID:17271395

  7. Virtual Reality Enhanced Instructional Learning

    Nachimuthu, K.; Vijayakumari, G.

    2009-01-01

    Virtual Reality (VR) is a creation of virtual 3D world in which one can feel and sense the world as if it is real. It is allowing engineers to design machines and Educationists to design AV [audiovisual] equipment in real time but in 3-dimensional hologram as if the actual material is being made and worked upon. VR allows a least-cost (energy…

  8. ''Augmented reality'' in conventional simulation by projection of 3-D structures into 2-D images. A comparison with virtual methods

    Background and purpose: in this study, a new method is introduced, which allows the overlay of three-dimensional structures, that have been delineated on transverse slices, onto the fluoroscopy from conventional simulators in real time. Patients and methods: setup deviations between volumetric imaging and simulation were visualized, measured and corrected for 701 patient isocenters. Results: comparing the accuracy to mere virtual simulation lacking additional X-ray imaging, a clear benefit of the new method could be shown. On average, virtual prostate simulations had to be corrected by 0.48 cm (standard deviation [SD] 0.38), and those of the breast by 0.67 cm (SD 0.66). Conclusion: the presented method provides an easy way to determine entity-specific safety margins related to patient setup errors upon registration of bony anatomy (prostate 0.9 cm for 90% of cases, breast 1.3 cm). The important role of planar X-ray imaging was clearly demonstrated. The innovation can also be applied to adaptive image-guided radiotherapy (IGRT) protocols. (orig.)

  9. Computation lithography: Virtual reality and virtual virtuality

    Lam, EY; Wong, AKK

    2009-01-01

    Computation lithography is enabled by a combination of physical understanding, mathematical abstraction, and implementation simplification. An application in the virtual world of computation lithography can be a virtual reality or a virtual virtuality depending on its engineering sensible-ness and technical feasibility. Examples under consideration include design-for- manufacturability and inverse lithography. © 2009 Optical Society of America.

  10. Study on the Application and Development of 3D Virtual Reality Technology in Tourism Industry%三维虚拟现实技术在旅游业的应用和发展研究

    燕梅

    2014-01-01

    With the development of information technology and computer hardware, 3D virtual reality technology has become possible in the application of tourism. Virtual tourism with so many advantages has been the new trend of tourism marketing and even become a revolutionary force of tourism concept. In this paper, by analyzing the present situation of the domestic and oversea applications of network 3D virtual reality technology in the tourism industry and the key technology of virtual reality system, this paper made a comprehensive, in-depth and systematical demonstration about the feasibility of the application and popularization of virtual reality in the tourism industry, and 3D virtual reality technology was to play its unique role in the development of tourism.%随着信息技术与计算机硬件的发展,使得三维虚拟现实技术在旅游中的应用成为可能。虚拟旅游的种种优势使其成为旅游宣传营销新方向、甚至成为旅游理念的一种变革性力量。本文通过分析国内外网络三维虚拟现实技术在旅游业应用的现状及虚拟现实系统的关键技术,全面、深入、系统地论证了虚拟现实在旅游行业应用和推广的可行性,三维虚拟现实技术将会在旅游业的发展中起到它独有的作用。

  11. Oculus Rift Control of a Mobile Robot : Providing a 3D Virtual Reality Visualization for TeleoperationorHow to Enter a Robots Mind

    BUG, DANIEL

    2014-01-01

    Robots are about to make their way into society. Whether one speaksabout robots as co-workers in industry, as support in hospitals, in elderlycare, selfdriving cars, or smart toys, the number of robots is growing continuously.Scaled somewhere between remote control and full-autonomy,all robots require supervision in some form. This thesis connects theOculus Rift virtual reality goggles to a mobile robot, aiming at a powerfulvisualization and teleoperation tool for supervision or teleassistanc...

  12. Spacecraft 3D Augmented Reality Mobile App

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  13. Virtual Reality and the Virtual Library.

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  14. Applied virtual reality

    To reduce plant down time during irradiated fuel cell dismantling at Torness Power Station, a new visualisation technique has been used for the manipulator. Complex computer graphics packages were used to provide a ''Virtual Reality'' environment which allowed the Irradiated Fuel Dismantling Cell to be simulated. Significant cost savings have been achieved due to reductions in lost output. The virtual reality environment is at present being extended to the design and deployment of a new manipulator for in-vessel inspection of the boiler. (UK)

  15. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  16. Virtual 3-D Facial Reconstruction

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  17. The Virtuality and Reality of Augmented Reality

    Jung Yeon Ma

    2007-02-01

    Full Text Available This thesis explores the creative possibilities and implications of Augmented Reality, not just as a specific technology of computer science, but as one of high technologies that influence people’s perception and even the concepts of the real and the virtual. For a broader definition of Augmented Reality which has a unique status between virtual environment and real environment, the virtuality and the reality of Augmented Reality are discussed in an interdisciplinary context such as arts, philosophy, and film and animation studies. This approach is rooted in the belief that theory of new media ought to traverse and encompass all realms of academic categories.

  18. Application of X3D-based virtual reality technology in the education of organic chemistry%基于X3D的虚拟现实技术在有机化学教学中的应用

    吴占凯; 张力

    2011-01-01

    The article analyzes the concept features and classification of the technology of virtual reality, mainly introduces the animation system and interaction mechanism of virtual reality technology based on X3D specification. In this paper, with an instance of electronic transition in organic chemistry,the article describes the methods and procedures for the development of virtual scene with X3D specification in the hope to provide reference for the follow-up development.%分析了虚拟现实技术的概念特征及分类,重点介绍了基于X3D标准的虚拟现实技术中的动画机制及交互机制.结合有机化学中电子跃迁实例,阐述了运用X3D标准开发虚拟场景的方法与步骤,以期对后续的开发工作起到借鉴作用.

  19. Applied virtual reality

    An early experience in deploying a manipulator to the Irradiated Fuel Dismantling Cell at Torness Power Station, quickly highlighted that special visualisation techniques were required to achieve a successful deployment and reduce plant system down time. This visualisation was later realised through the IGRIP software pakcage operating on a Silicon Graphics computing engine, which provides a 'Non-Immersive' Virtual Reality environment. Within this environment, models of the Irradiated Fuel Dismantling cell were generated along with a model of the manipulator, allowing manipulator deployment to the Irradiated Fuel Dismantling Cell be modelled. It is estimated that the first use of this new environment provided a significant saving to Scottish Nuclear in potential lost output. The use of this virtual reality environment is currently being extended into the design and deployment of a new manipulator for Torness in vessel inspection, the Boiler Inspection Manipulator. (author)

  20. A Review on Virtual Reality

    Pallavi Halarnkar

    2012-11-01

    Full Text Available Virtual Reality is a major asset and aspect of our future. It is the key to experiencing, feeling and touching the past, present and the future. It is the medium of creating our own world, our own customized reality. It could range from creating a video game to having a virtual stroll around the universe, from walking through our own dream house to experiencing a walk on an alien planet. With virtual reality, we can experience the most intimidating and gruelling situations by playing safe and with a learning perspective. In this review paper, we present our survey about virtual reality: the levels of virtual reality, the components used, the factors affecting the virtual environment, its origin, future and the challenges to overcome in order to obtain an impeccable virtual reality experience.

  1. Reality in Virtual Learning

    Lindberg, Frank; Pettersson, Michael

    -cultural framework. Due to its novel characteristics of the program, however, it is particularly interesting to investigate the role that virtual studying serves in the construction of reality and meaning. Furthermore, as it is assumed that experiences cannot be separated from who one is (being-in-the world), the......-time educational logic. There are fewer attempts to use ICT according to a different pedagogical perspective than the old professor authoritarian model. The purpose of this paper is to illuminate some challenges virtual students experience when facing a new ICT-based learning situation. We will try to explore and...... develop understandings of what it might mean to be a student when learning occurs within a virtual problem based learning landscape. When students are used to the traditional classroom, challenges appear in the twilight zone between two pedagogical practices. How do the students cope with challenges that...

  2. Semi- and virtual 3D dosimetry in clinical practice

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  3. Virtual Representations in 3D Learning Environments

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  4. 3D virtual table in anatomy education

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  5. 3D Virtual Dig: a 3D Application for Teaching Fieldwork in Archaeology

    Paola Di Giuseppantonio Di Franco

    2012-12-01

    Full Text Available Archaeology is a material, embodied discipline; communicating this experience is critical to student success. In the context of lower-division archaeology courses, the present study examines the efficacy of 3D virtual and 2D archaeological representations of digs. This presentation aims to show a 3D application created to teach the archaeological excavation process to freshmen students. An archaeological environment was virtually re-created in 3D, and inserted in a virtual reality software application that allows users to work with the reconstructed excavation area. The software was tested in class for teaching the basics of archaeological fieldwork. The application interface is user-friendly and especially easy for 21st century students. The study employed a pre-survey, post-test, and post-survey design, used to understand the students' previous familiarity with archaeology, and test their awareness after the use of the application. Their level of knowledge was then compared with that of those students who had accessed written material only. This case-study demonstrates how a digital approach to laboratory work can positively affect student learning. Increased abilities to complete ill-defined problems (characteristic of the high-order thinking in the field, can, in fact, be demonstrated. 3D Virtual reconstruction serves, then, as an important bridge from traditional coursework to fieldwork.

  6. The Virtual Reality Modeling Language and Java

    Brutzman, Don

    1998-01-01

    The Virtual Reality Modeling Language (VRML) and Java provide a standardized, portable and platform-independent way to render dynamic, interactive 3D scenes across the Internet. Integrating two powerful and portable software languages provides interactive 3D graphics plus complete programming capabilities plus network access. Intended for programmers and scene authors, this paper provides a VRML overview, synopsizes the open development history of the specification, provdes a condensed summ...

  7. Virtual Reality in Psychology

    Nigel Foreman

    2009-01-01

    Full Text Available The benefits of using virtual environments (VEs in psychology arise from the fact that movements in virtual space, and accompanying perceptual changes, are treated by the brain in much the same way as those in equivalent real space. The research benefits of using VEs, in areas of psychology such as spatial learning and cognition, include interface flexibility, the reproducibility of virtual experience, and the opportunity for on-line monitoring of performance. Applications of VEs are many and varied, but are especially beneficial where experience can be tailored via augmentation, and where dangerous training situations can be avoided. The use of programmable agents has great future potential in relation to training and interpersonal skill development, also perhaps in clinical diagnosis and therapy. Progress in VE usage in psychological education is limited by cost and availability, though VEs are being used increasingly in classroom and laboratory teaching exercises. Virtual Reality was said to be “an answer waiting for a question”, but questions are being recognized, so that applications of VEs within the behavioural sciences are likely to multiply.

  8. [3D virtual endoscopy of heart].

    Du, Aan; Yang, Xin; Xue, Haihong; Yao, Liping; Sun, Kun

    2012-10-01

    In this paper, we present a virtual endoscopy (VE) for diagnosis of heart diseases, which is proved efficient and affordable, easy to popularize for viewing the interior of the heart. The dual source CT (DSCT) data were used as primary data in our system. The 3D structure of virtual heart was reconstructed with 3D texture mapping technology based on graphics processing unit (GPU), and could be displayed dynamically in real time. When we displayed it in real time, we could not only observe the inside of the chambers of heart but also examine from the new angle of view by the 3D data which were already clipped according to doctor's desire. In the pattern of observation, we used both mutual interactive mode and auto mode. In the auto mode, we used Dijkstra Algorithm which treated the 3D Euler distance as weighting factor to find out the view path quickly, and, used view path to calculate the four chamber plane. PMID:23198444

  9. Augmented Virtual Reality Laboratory

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  10. An Innovative Direct-Interaction-Enabled Augmented-Reality 3D System

    Sheng-Hsiung Chang; Tsair-Chun Liang

    2013-01-01

    Previous augmented-reality (AR) applications have required users to observe the integration of real and virtual images on a display. This study proposes a novel concept regarding AR applications. By integrating AR techniques with marker identification, virtual-image output, imaging, and image-interaction processes, this study rendered virtual images that can interact with predefined markers in a real three-dimensional (3D) environment.

  11. Virtual Reality in Engineering Education: The Future of Creative Learning

    Abdul-Hadi Ghazi Abulrub

    2011-12-01

    Full Text Available Virtual reality has achieved an adequate level of development for it to be considered in innovative applications such as education, training, and research in higher education. Virtual reality offers both opportunities and challenges for the educational sector. One of the challenges of virtual reality technology is the costs associated which have been unaffordable for educational institutes. However, in recent years, computer hardware and software development has made it more feasible to incorporate virtual reality technology into future teaching strategies. Despite the cost challenges, educational benefits of implementing virtual reality remain compelling. This paper explains virtual reality principle and describes the interactive educational environment developed at WMG, the University of Warwick. It also discusses the benefits of using state-of-the-art 3D photorealistic interactive and immersive virtual environment for engineering undergraduates and postgraduate teaching, learning and training.

  12. Location based augmented reality application on Unity 3D

    Serra Font, Antoni

    2013-01-01

    This document presents the development and steps taken in order to create an augmented reality application using the Unity 3D software using a mobile handheld device. The steps of the development will be explained and the performance evaluated.

  13. MIM in 3D: dream or reality?

    Klootwijk, J.H.; Jinesh, K.B.; Roozeboom, F.

    2011-01-01

    Last decades great effort has been put in the development of 3D capacitors. These capacitors are used for RF decoupling and should therefore have a high capacitance density associated with a sufficient breakdown voltage. Increased capacitance densities have been achieved by exploring the use of the

  14. The ethnography of virtual reality

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  15. Applying Multimedia and Virtual Reality for Learning Environments

    Gonçalo Nuno P. Cardoso; Roberto Ivo C. de Freitas; Paulo Nazareno Maia Sampaio

    2009-01-01

    Most of the tools and languages for modeling Virtual Reality environments, such as VRML, X3D, Java3D, etc. do not provide means of describing the synchronized presentation of multimedia content inside these environments. Multimedia has demonstrated its capabilities of motivating users and capturing their attention, which are important characteristics when we want to provide a higher degree of immersion and learning capabilities inside Virtual Reality applications. This paper presents a robust...

  16. Preprint Virtual Reality Assistant Technology for Learning Primary Geography

    Lv, Zhihan; Li, Xiaoming

    2015-01-01

    This is the preprint version of our paper on ICWL2015. A virtual reality based enhanced technology for learning primary geography is proposed, which synthesizes several latest information technologies including virtual reality(VR), 3D geographical information system(GIS), 3D visualization and multimodal human-computer-interaction (HCI). The main functions of the proposed system are introduced, i.e. Buffer analysis, Overlay analysis, Space convex hull calculation, Space convex decomposition, 3...

  17. 3D super-virtual refraction interferometry

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  18. Virtuality and Reality in Science

    This book compiles eight contributions devoted to the topical question about the relation between virtuality and reality. In the theoretical frame of quantum and relativistic particle physics, the concept of virtuality is used according to its strict and precise meaning. In this context, particles are generally invented before their discovery. Some famous historical experiments which led to the postulation and then the discovery of new particles are mentioned. These examples are used to illustrate and to discuss the concept of virtuality as well as the physical reality of virtual processes. But, how can the concept of virtuality in other scientific fields be applied ? In order to answer this question, the concepts of virtuality and reality are discussed in other branches of physics as well as in other fields such as geophysics, cosmology and biology. Philosophical and sociological implications of virtual realities are also considered. Moreover, in relation to virtuality and reality, the connections between modeling, simulation and experimentation, their respective roles, the advantages and risks of their use are discussed (in relation to nuclear sciences and geophysical problems) (N.T.)

  19. Rendering of 3D Dynamic Virtual Environments

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  20. Physics Education in Virtual Reality: An Example

    Hannes Kaufmann; Bernd Meyer

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths and other properties of objects before, during and after experiments. Innovative teaching content is presented thatexploits the strengths of the 3D...

  1. Research and Implementation of 3D Virtual Reality for Underwater Robotic Fish%水下机器鱼三维虚拟现实研究与实现

    施怡文; 徐立鸿; 胡海根

    2011-01-01

    A remote monitoring method of robotic fish was developed to create a virtual reality with nice sensibility. On the basis of VC + +,3D static simulation circumstance was achieved by OpenGL library with 3D modeling software. Interacted with Access, the system could display a real-time view of robotic fish and assemble the water parameter with location on each sampling point. Through the 3D real-time system,users were able to observe the robotic fish swimming path, current location and water parameters in any view angle or distance. The system has a clear structure, and eventually provides a foundation for the realization of intelligent aquaculture.%为创建具有真实感的虚拟现实环境,使用户能够直观感知机器鱼的实时运动状态,实现了一种基于虚拟现实技术的监测方法.在VC++的基础上利用OpenGL图形库与3D建模软件联合创建仿生机器鱼静态三维虚拟现实环境,并集合Access数据库与VC++的交互,实现机器鱼的实时运动显示,并使采样参数与采样位置有机结合显示.该系统可以实现用户从任意角度和距离监测机器鱼巡游路径、当前位置及所在区域的水质参数.系统结构清晰,旨在为实现智能化水产养殖提供参考依据.

  2. Virtual reality technology and applications

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  3. Virtual Reality and Special Needs

    Tara L. Jeffs

    2009-01-01

    Full Text Available The use of virtual environments for special needs is as diverse as the field of Special Educationitself and the individuals it serves. Individuals with special needs often face challenges withattention, language, spatial abilities, memory, higher reasoning and knowledge acquisition.Research in the use of Virtual Learning Environments (VLE targets both cognition and behavior(Rizzo, et.al, 2001. Virtual environments encourage interactive learning and provide avariety of opportunities for the learner to have control over the learning process (Pantelidis,1993. Virtual reality technology is an exciting tool that involves a safe and supportive environmentto transfer knowledge between virtual and real worlds. Through such technology,individuals with special needs can look carefully at their own strengths, abilities, and learningpreferences in comparison to the required learning task and expected learning outcome. Thisarticle reviews relevant research that explores the use of virtual reality for individuals withspecial needs.

  4. Poster: Virtual reality interaction using mobile devices

    Aseeri, Sahar A.

    2013-03-01

    In this work we aim to implement and evaluate alternative approaches for interacting with virtual environments on mobile devices for navigation, object selection and manipulation. Interaction with objects in virtual worlds using traditional input such as current state-of-the-art devices is often difficult and could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. We have developed new methods to perform different kinds of interactions using a mobile device (e.g. a smartphone) both as input device, performing selection and manipulation of objects, and as output device, utilizing the screen as an extra view (virtual camera or information display). Our hypothesis is that interaction via mobile devices facilitates simple tasks like the ones described within immersive virtual reality systems. We present here our initial implementation and result. © 2013 IEEE.

  5. Physics Education in Virtual Reality: An Example

    Hannes Kaufmann

    2009-01-01

    Full Text Available We present an immersive virtual reality (VR application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths and other properties of objects before, during and after experiments. Innovative teaching content is presented thatexploits the strengths of the 3D virtual environment. Physics Playground serves as an example of how current technologies can be combined to deliver a new quality in physics education.

  6. A Virtual Tomb for Kelvingrove: Virtual Reality, Archaeology and Education

    Melissa M. Terras

    1999-11-01

    Full Text Available The use of computers as an educational resource in museums is becoming increasingly popular as more and more institutions realise that multimedia displays are very successful in imparting a broad variety of information. Although three-dimensional reconstructions of sites and structures have been used in archaeology for many years, the majority of museum computer installations have dealt with two-dimensional media because of the costs, equipment and labour involved in producing interactive 3D scenes. The birth of VRML (Virtual Reality Modeling Language has changed the way virtual reality is implemented and viewed. As an internet protocol, VRML can be used on most major platforms and implemented by anyone with a word-processing package, an internet browser, and the relevant plug-in. There is no reason why this new technology cannot be adopted by archaeologists and museums to produce virtual reality models of structures, sites and objects to aid the research of specialists and the education of the public. This project (undertaken at the Humanities Advanced Technology and Information Institute, University of Glasgow, Scotland, between May and October 1998 investigated the practicalities involved in using VRML to create a virtual reality model for use in a public space. A model of the Egyptian tomb of Sen-nedjem was developed for installation in the Egyptian Gallery of the Kelvingrove Museum and Art Gallery, Glasgow, in the hope that the introduction of this computer display would encourage the museum visitor's interest in the gallery's existing artefacts. Creation of the model would also investigate the possibility of using VRML to build accurate archaeological reconstructions cheaply and efficiently using publicly available software and existing archaeological resources. A fully functioning virtual reality model of the tomb of Sen-nedjem has been created, incorporating interactive elements, photorealistic representation, and animation, and this

  7. Learning in 3-D Virtual Worlds: Rethinking Media Literacy

    Qian, Yufeng

    2008-01-01

    3-D virtual worlds, as a new form of learning environments in the 21st century, hold great potential in education. Learning in such environments, however, demands a broader spectrum of literacy skills. This article identifies a new set of media literacy skills required in 3-D virtual learning environments by reviewing exemplary 3-D virtual…

  8. Virtual Reality in Psychology

    Nigel Foreman

    2009-01-01

    The benefits of using virtual environments (VEs) in psychology arise from the fact that movements in virtual space, and accompanying perceptual changes, are treated by the brain in much the same way as those in equivalent real space. The research benefits of using VEs, in areas of psychology such as spatial learning and cognition, include interface flexibility, the reproducibility of virtual experience, and the opportunity for on-line monitoring of performance. Applications of VEs are many an...

  9. Assessing 3D Virtual World Disaster Training Through Adult Learning Theory

    Lee Taylor-Nelms

    2014-10-01

    Full Text Available As role-play, virtual reality, and simulated environments gain popularity through virtual worlds such as Second Life, the importance of identifying best practices for education and emergency management training becomes necessary. Using a formal needs assessment approach, we examined the extent to which 3D virtual tornado simulation trainings follow the principles of adult learning theory employed by the Federal Emergency Management Agency's (FEMA National Training and Education Division. Through a three-fold methodology of observation, interviews, and reflection on action, 3D virtual world tornado trainings were analyzed for congruence to adult learning theory.

  10. Assessing 3D Virtual World Disaster Training Through Adult Learning Theory

    Lee Taylor-Nelms; Valerie Hill

    2014-01-01

    As role-play, virtual reality, and simulated environments gain popularity through virtual worlds such as Second Life, the importance of identifying best practices for education and emergency management training becomes necessary. Using a formal needs assessment approach, we examined the extent to which 3D virtual tornado simulation trainings follow the principles of adult learning theory employed by the Federal Emergency Management Agency's (FEMA) National Training and Education Division. Thr...

  11. An introduction to virtual reality technology

    This paper is a brief introduction to virtual reality technology. It discusses the meaning of the term 'Virtual Reality', introduces common hardware and software technology, and provides a brief overview of applications and research areas (author) (ml)

  12. Molecular Rift: Virtual Reality for Drug Designers.

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub. PMID:26558887

  13. STUDY PAPER ON EDUCATION USING VIRTUAL REALITY.

    Anamika Modi*; Ayush Jaiswal; Princy Jain

    2016-01-01

    This report provides a short study of the field of virtual reality, highlighting application domains, technological requirements, and currently available solutions. In today’s market, virtual reality is playing an crucial role for the humans. If we consider the foreign countries than using virtual reality they try to create the same feelings not only for the school children’s as well as for the upper education. In this paper, we have study the technologies used in virtual reality....

  14. Virtual reality and stereoscopic telepresence

    Virtual reality technology is commonly thought to have few, if any, applications beyond the national research laboratories, the aerospace industry, and the entertainment world. A team at Westinghouse Hanford Company (WHC) is developing applications for virtual reality technology that make it a practical, viable, portable, and cost-effective business and training tool. The technology transfer is particularly applicable to the waste management industry and has become a tool that can serve the entire work force spectrum, from industrial sites to business offices. For three and a half years, a small team of WHC personnel has been developing an effective and practical method of bringing virtual reality technology to the job site. The applications are practical, the results are repeatable, and the equipment costs are within the range of present-day office machines. That combination can evolve into a competitive advantage for commercial business interests. The WHC team has contained system costs by using commercially available equipment and personal computers to create effective virtual reality work stations for less than $20,000

  15. Embedding speech into virtual realities

    Bohn, Christian-Arved; Krueger, Wolfgang

    1993-05-01

    In this work a speaker-independent speech recognition system is presented, which is suitable for implementation in Virtual Reality applications. The use of an artificial neural network in connection with a special compression of the acoustic input leads to a system, which is robust, fast, easy to use and needs no additional hardware, beside a common VR-equipment.

  16. Immersive virtual reality simulations in nursing education.

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed. PMID:21086871

  17. Simulated maintenance a virtual reality

    The article describes potential applications of personal computer-based virtual reality software. The applications are being investigated by Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories for the Canadian deuterium-uranium (Candu) reactor. Objectives include: (1) reduction of outage duration and improved safety, (2) cost-effective and safe maintenance of equipment, (3) reduction of exposure times and identification of overexposure situations, (4) cost-effective training in a virtual control room simulator, (5) human factors evaluation of design interface, and (6) visualization of conceptual and detailed designs of critical nuclear field environments. A demonstration model of a typical reactor control room, the use of virtual reality in outage planning, and safety issues are outlined

  18. Virtual Libraries: Service Realities.

    Novak, Jan

    2002-01-01

    Discussion of changes in society that have resulted from information and communication technologies focuses on changes in libraries and a new market for library services with new styles of clients. Highlights client service issues to be considered when transitioning to a virtual library situation. (Author/LRW)

  19. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  20. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  1. The Virtual Reality Conjecture

    Whitworth, Brian

    2011-01-01

    We take our world to be an objective reality, but is it? The assumption that the physical world exists in and of itself has struggled to assimilate the findings of modern physics for some time now. For example, an objective space and time would just "be", but in relativity, space contracts and time dilates. Likewise objective "things" should just inherently exist, but the entities of quantum theory are probability of existence smears, that spread, tunnel, superpose and entangle in physically impossible ways. Cosmology even tells us that our entire physical universe just "popped up", from nowhere, about 14 billion years ago. This is not how an objectively real world should behave! Yet traditional alternatives don't work much better. That the world is just an illusion of the mind doesn't explain its consistent realism and Descartes dualism, that another reality beyond the physical exists, just doubles the existential problem. It is time to consider an option we might normally dismiss out of hand. This essay exp...

  2. Image Based Rendering and Virtual Reality

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  3. Virtual reality and anthropology

    Since the discovery of the Tyrolean Iceman in 1991 advanced imaging and post processing techniques were successfully applied in anthropology. Specific techniques include spiral computed tomography and 3-dimensional reconstructions including stereolithographic and fused deposition modeling of volume data sets. The Iceman's skull was the first to be reproduced using stereolithography, before this method was successfully applied in preoperative planning. With the advent of high-end graphics workstations and biomedical image processing software packages, 3-dimensional reconstructions were established as a routine tool for analyzing volume data sets. These techniques opened totally new insights in the field of physical anthropology. Computed tomography became the ideal research tool to access the internal structures of various precious fossils without damaging or even touching them. Many of the most precious specimens from the species Autralopithecus (1.8-3.5 Myears), Homo heidelbergensis (200-600 kyears) or Homo neanderthalensis (40-100 kyears) were scanned during the last 5 years. Often the fossils are filled with a stone matrix or other materials. During the postprocessing routines highly advanced algorithms were used to remove virtually these incrustations. Thus it was possible to visualize the morphological structures that lie beneath the matrix. Some specimens were partially destroyed, so the missing parts were reconstructed on computer screen in order to get estimations of the brain volume and endocranial morphology, both major fields of interest in physical anthropology. Moreover the computerized form of the data allows new descriptions of morphologic structures by the means of 'geometric morphometrics'. Some of the results may change aspects and interpretations in human evolution. The introduction of new imaging and post processing techniques created a new field of research: Virtual Anthropology

  4. Virtual reality and anthropology

    Recheis, Wolfgang E-mail: wolfgang.recheis@uibk.ac.at; Weber, Gerhard W.; Schaefer, Katrin; Knapp, Rudolf; Seidler, Horst; Zur Nedden, Dieter

    1999-08-01

    Since the discovery of the Tyrolean Iceman in 1991 advanced imaging and post processing techniques were successfully applied in anthropology. Specific techniques include spiral computed tomography and 3-dimensional reconstructions including stereolithographic and fused deposition modeling of volume data sets. The Iceman's skull was the first to be reproduced using stereolithography, before this method was successfully applied in preoperative planning. With the advent of high-end graphics workstations and biomedical image processing software packages, 3-dimensional reconstructions were established as a routine tool for analyzing volume data sets. These techniques opened totally new insights in the field of physical anthropology. Computed tomography became the ideal research tool to access the internal structures of various precious fossils without damaging or even touching them. Many of the most precious specimens from the species Autralopithecus (1.8-3.5 Myears), Homo heidelbergensis (200-600 kyears) or Homo neanderthalensis (40-100 kyears) were scanned during the last 5 years. Often the fossils are filled with a stone matrix or other materials. During the postprocessing routines highly advanced algorithms were used to remove virtually these incrustations. Thus it was possible to visualize the morphological structures that lie beneath the matrix. Some specimens were partially destroyed, so the missing parts were reconstructed on computer screen in order to get estimations of the brain volume and endocranial morphology, both major fields of interest in physical anthropology. Moreover the computerized form of the data allows new descriptions of morphologic structures by the means of 'geometric morphometrics'. Some of the results may change aspects and interpretations in human evolution. The introduction of new imaging and post processing techniques created a new field of research: Virtual Anthropology.

  5. Virtual reality and anthropology.

    Recheis, W; Weber, G W; Schäfer, K; Knapp, R; Seidler, H; zur Nedden, D

    1999-08-01

    Since the discovery of the Tyrolean Iceman in 1991 advanced imaging and post processing techniques were successfully applied in anthropology. Specific techniques include spiral computed tomography and 3-dimensional reconstructions including stereolithographic and fused deposition modeling of volume data sets. The Iceman's skull was the first to be reproduced using stereolithography, before this method was successfully applied in preoperative planning. With the advent of high-end graphics workstations and biomedical image processing software packages, 3-dimensional reconstructions were established as a routine tool for analyzing volume data sets. These techniques opened totally new insights in the field of physical anthropology. Computed tomography became the ideal research tool to access the internal structures of various precious fossils without damaging or even touching them. Many of the most precious specimens from the species Autralopithecus (1.8-3.5 Myears), Homo heidelbergensis (200-600 kyears) or Homo neanderthalensis (40-100 kyears) were scanned during the last 5 years. Often the fossils are filled with a stone matrix or other materials. During the postprocessing routines highly advanced algorithms were used to remove virtually these incrustations. Thus it was possible to visualize the morphological structures that lie beneath the matrix. Some specimen were partially destroyed, so the missing parts were reconstructed on computer screen in order to get estimations of the brain volume and endocranial morphology, both major fields of interest in physical anthropology. Moreover the computerized form of the data allows new descriptions of morphologic structures by the means of 'geometric morphometrics'. Some of the results may change aspects and interpretations in human evolution. The introduction of new imaging and post processing techniques created a new field of research: Virtual Anthropology. PMID:10565508

  6. VIRTUAL 3D CITY MODELING: TECHNIQUES AND APPLICATIONS

    S. P. Singh; K. Jain; V. R. Mandla

    2013-01-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach ...

  7. Virtual Reality and Public Administration

    Tózsa, István

    2013-01-01

    This study serves as an introduction to how virtual reality systems could be applied in public administration and what research tasks would be necessary to accomplish a project. E-government solutions began to emerge in public administration approximately a decade ago all over the developed world. Administration service facilities via the Internet did not attract many customers, because of the digital divide. E-government solutions were extended to mobile devices as well, but the expected bre...

  8. Virtual Reality for Architectural Acoustics

    Vorländer, Michael; Schröder, Dirk; PELZER, Sönke; Wefers, Frank

    2014-01-01

    Over the last decades, powerful prediction models have been developed in architectural acoustics, which are used for the calculation of sound propagation in indoor and/or outdoor scenarios. Sound insulation is predicted rather precisely by using direct and flanking transmission models of sound and vibration propagation. These prediction tools are already in use in architectural design and consulting. For the extension towards virtual reality (VR) systems, it is required to accelerate the pred...

  9. A hitchhiker's guide to virtual reality

    McMenemy , Karen

    2007-01-01

    A Hitchhiker's Guide to Virtual Reality brings together under one cover all the aspects of graphics, video, audio, and haptics that have to work together to make virtual reality a reality. Like any good guide, it reveals the practical things you need to know, from the viewpoint of authors who have been there. This two-part guide covers the science, technology, and mathematics of virtual reality and then details its practical implementation. The first part looks at how the interface between human senses and technology works to create virtual reality, with a focus on vision, the most important s

  10. Designing Virtual Museum Using Web3D Technology

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  11. Computer Assisted Assessment within 3D Virtual Worlds

    Ibáñez, María Blanca; Morillo, Diego; Santos, Patricia; Perez Calle, David; García Rueda, José Jesús; Hernández-Leo, Davinia; Delgado Kloos, Carlos

    2011-01-01

    3D Virtual Worlds are currently been explored as learning environments due to their capabilities to promote learner motivation. Most of the research has been focused on the deployment of learning strategies on them. However, a crucial component of the teaching-learning process: the assessment has been neglected. In this work, we present an architecture that integrates an engine QTI-compliant with a 3D virtual world platform. The rich set of interactions that can occur in a 3D virtual environm...

  12. Virtual Reality with Haptic Application

    李益明; 吕慧强; 孔繁胜

    2004-01-01

    Virtual reality (VR) is the use of advanced technologies, including computers and various multimedia peripherals (such as haptic), to produce a simulated environment that users perceive as comparable to real world objects and events. With the aid of specially designed transducers and sensors, users interact with displayed images, moving and manipulating virtual objects, and performing other actions in a way that engenders a feeling of actual presence (immersion) in the simulated environment. Haptic interfaces provide carefully controlled force feedback to the fingers of the user so that they feel as though they are touching objects in the virtual landscape. This article presented an overview to the concepts of VR focusing on haptics in a variety of interfaces and applications.

  13. Intuitiveness 3D objects Interaction in Augmented Reality Using S-PI Algorithm

    Ajune Wanis Ismail

    2013-07-01

    Full Text Available Numbers of researchers have developed interaction techniques in Augmented Reality (AR application. Some of them proposed new technique for user interaction with different types of interfaces which could bring great promise for intuitive user interaction with 3D data naturally. This paper will explore the 3D object manipulation performs in single-point interaction (S-PI technique in AR environment. The new interaction algorithm, S-PI technique, is point-based intersection designed to detect the interaction’s behaviors such as translate, rotate, clone and for intuitive 3D object handling. The S-PI technique is proposed with marker-based tracking in order to improve the trade-off between the accuracy and speed in manipulating 3D object in real-time. The method is robust required to ensure both elements of real and virtual can be combined relative to the user’s viewpoints and reduce system lag.  

  14. Development of visual 3D virtual environment for control software

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  15. An Image—Based Virtual Reality Prototype System

    蔡勇; 王平安; 等

    1998-01-01

    The most important goal of virtual reality is to create a virtual world computers where users are allowed to view the environment and control the virtual objects interactively.Traditionally,virtual reality systems use 3D computer graphics to model and render a virtual environment in real time.However,this approach usually requires laborious modeling and expensive special-purpose rendering hardware.Image-based rendering is a new approach in composing a virtual environment in which a set of panoramic images is used to compose the virtual environment and walking in the space is accomplished by “hopping”to different panoramic points.This paper introduces an experimental image-based VR system.The techniques utilized in the system,in particular the authoring and interactive control tools of the system,are described in detail.

  16. Virtual reality: Avatars in human spaceflight training

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to

  17. Introduction to augmented and virtual reality

    Caudell, Thomas P.

    1995-12-01

    This paper introduces the field of augmented reality as a prolog to the body of papers in the remainder of this session. I describe the use of head-mounted display technologies to improve the efficiency and quality of human workers in their performance of engineering design, manufacturing, construction, testing, and maintenance activities. This technology is used to `augment' the visual field of the wearer with information necessary in the performance of the current task. The enabling technology is head-up (see-through) display head sets (HUDsets) combined with head position sensing, real world registration systems, and database access software. A primary difference between virtual reality (VR) and `augmented reality' (AR) is in the complexity of the perceived graphical objects. In AR systems, only simple wire frames, template outlines, designators, and text is displayed. An immediate result of this difference is that augmented reality systems can be driven by standard and inexpensive microprocessors. Many research issues must be addressed before this technology can be widely used, including tracking and registration, human 3D perception and reasoning, and human task performance issues.

  18. Application of Virtual Reality to Radiation Protection

    In order to optimize the operations and procedures in several aspects of a Nuclear Power Plants, Iberdrola Ingenieria y Consultoria (Iberinco) has been developed some projects with Virtual Reality: CIPRES, ACEWO, TILOS and SICOMORO. With the experience acquired in these projects, Iberinco has checked the utility and advantageous of Virtual Reality applications that could have a direct application to Radiation Protection. With Virtual Reality it is possible to optimize the procedures involved in several critical aspects of the Plant Management. A training program bases on Virtual Reality systems could be one of the most important application. In Emergency situations the time of reaction is very important and in order to reduce it and dose, Virtual Reality is a very important tool, that could be used for training and to guide response team actions. Finally, the reduction of dose to workers, in a NPP, and patients, in hospital, is one of the most important application of Virtual Reality. (Author) 5 refs

  19. Augmented Reality sebagai Alat Pengenalan Hewan Purbakala dengan Animasi 3D menggunakan Metode Single Marker

    Meyti Eka Apriyani

    2015-07-01

    Full Text Available Saat ini untuk mempelajari hewan purbakala melalui pelajaran sejarah di sekolah hanya dilakukan hanya melalui sebuah buku dan gambar yang terdapat pada buku-buku dan alat peraga biasa, tetapi dengan menggunakan teknologi augmented reality diharapkan dalam pembelajarannya dapat membuat pelajaran sejarah terutama mengenai hewan purbakala dapat lebih menarik dan menyenangkan karena augmented reality dapat menjadi sebuah alat peraga virtualisasi hewan purbakala dlam bentuk 3D. Aplikasi augmented reality ini sebagai media pengenalan hewan purbakala kepada anak-anak usia 13 sampai 18 tahun secara virtual menggunakan perangkat smartphone agar proses pengenalan Hewan purbakala dapat menjadi lebih menarik dan mudah diapliaksikan karena mudah dibawa serta tidak menggunakan alat peraga yang sulit didapat dan memiliki harga yang mahal. Virtualisasi Alat Peraga Pengenalan Hewan Purbakala menggunakan augmented reality dapat menampilkan Animasi Hewan purbakala dalam bentuk 3D. Dengan proses, pengguna menjalankan aplikasi kemudian aplikasi akan melakukan pelacakan marker, setelah marker dikenali sesuai data acuan yang terdapat didalam sistem aplikasi, maka aplikasi dapat menampilkan binatang Purbakala secara 3D pada layar smartphone.

  20. Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique

    DU Jie; CHEN Xiaoyong; FumioYamazaki

    2003-01-01

    This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatically interpret range images for extracting geo-spatial features and then to reconstruct geo-objects. The algorithms and methods for the interpretation and modeling of laser scanner data include triangulated-irregular-network (TIN)-based range image interpolation ; mathematical-morphology(MM)-based range image filtering,feature extraction and range image segmentation, feature generalization and optimization, 3D objects reconstruction and modeling; computergraphics (CG)-based visualization and animation of geographic virtual reality environment.

  1. Design of a 3D virtual geographic interface for access to geoinformatin in real time

    Bodum, Lars

    2004-01-01

    region struck this part of Denmark at it has struck many other places in Europe and around the world. At about the same time the first ideas about a virtual geographic interface was initiated and launched as one of the projects at the newly build Virtual Reality Centre of Aalborg University. Later named...... as VR Media Lab. The Centre for 3D GeoInformation was opened in 2001 and the main purpose of this facility is to extrude the region from 2D to 3D. Through the means of traditional geoinformation such as building footprints, geocoding, building and dwelling register and a DTM the region will be build...

  2. ESL Teacher Training in 3D Virtual Worlds

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  3. Virtual 3d City Modeling: Techniques and Applications

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  4. Gravity and spatial orientation in virtual 3D-mazes.

    Vidal, Manuel; Lipshits, Mark; McIntyre, Joseph; Berthoz, Alain

    2003-01-01

    International audience In order to bring new insights into the processing of 3D spatial information, we conducted experiments on the capacity of human subjects to memorize 3D-structured environments, such as buildings with several floors or the potentially complex 3D structure of an orbital space station. We had subjects move passively in one of two different exploration modes, through a visual virtual environment that consisted of a series of connected tunnels. In upright displacement, se...

  5. Medierade Verkligheter : Verklighetsuppfattningen i Virtual Reality

    Rundquist, Björn; Joensen, Johan

    2016-01-01

    Centralt inom Virtual Reality är upplevelsen att det digitala uppfattas som verkligt. Men varför känns just den här upplevelsen verklig? Genom att undersöka flera olika perspektiv på Virtual Reality, verklighet och nedbrytningar av begrepp inom tidigare Virtual Reality-forskning sökte vi att se hur denna verklighetskänsla uppstod, och kunde användas, inom Virtual Reality-spel. Genom ett gestaltningsarbete som fokuserade på olika typer av scener och kontrollsystem strävade vi mot att föra en d...

  6. Game-Like Language Learning in 3-D Virtual Environments

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  7. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  8. Virtual reality concepts and technologies

    Fuchs, Philippe

    2011-01-01

    A manual for both designers and users, comprehensively presenting the current state of experts' knowledge on virtual reality (VR) in computer science, mechanics, optics, acoustics, physiology, psychology, ergonomics, ethics, and related area. Designed as a reference book and design guide to help the reader develop a VR project, it presents the reader with the importance of the user's needs and various aspects of the human computer interface (HCI). It further treats technical aspects of VR, hardware and software implementations, and details on the sensory and psycho-sensory interfaces. Providin

  9. Integration of the virtual 3D model of a control system with the virtual controller

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  10. New Desktop Virtual Reality Technology in Technical Education

    Ausburn, Lynna J.; Ausburn, Floyd B.

    2008-01-01

    Virtual reality (VR) that immerses users in a 3D environment through use of headwear, body suits, and data gloves has demonstrated effectiveness in technical and professional education. Immersive VR is highly engaging and appealing to technically skilled young Net Generation learners. However, technical difficulty and very high costs have kept…

  11. ATLASrift - a Virtual Reality application

    Vukotic, Ilija; Bianchi, Riccardo Maria

    2015-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists - for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice - OculusRift VR system, the development environment - UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/virtual p...

  12. Plant introduction system applying virtual reality

    We developed the prototype of the introduction system for nuclear power plant applying 3D-CAD data and the virtual reality (V.R) technologies. For the purpose of the public acceptance (PA), the use of the V.R technologies, such as CG stereographic, will be interesting for the public. Also, it is very important to introduce the components of the plant in detail, which will become easy by using the 3D-CAD data of the nuclear plant. We made a prototype system for introducing the main portion of the nuclear power plant, such as main control room, containment vessel or turbine building, applying CG stereographic by plant 3D data and artificial voice guidance for the explanations. We have exhibited this system in two local festivals at the plant sites. It has been efficient for creating plant scene by using 3D-CAD from the viewpoint of cost, and stereographic has been much attractive to the resident. The detail scenario must be investigated from the viewpoint of PA effect. Also the performance of the graphics workstation should be increased to promote the quality of the CG movie. But we think that this system will have much effective by its novelty and flexibility. (author)

  13. ARLearn: augmented reality meets augmented virtuality

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  14. THE USABILITY OF ONLINE GEOGRAPHIC VIRTUAL REALITY FOR URBAN PLANNING

    Zhang, S.; Moore, A.B.

    2013-01-01

    Virtual reality (VR) technology is starting to become widely and freely available (for example the online OpenSimulator tool), with potential for use in 3D urban planning and design tasks but still needing rigorous assessment to establish this. A previous study consulted with a small group of urban professionals, who concluded in a satisfaction usability test that online VR had potential value as a usable 3D communication and remote marketing tool but acknowledged that visual quality...

  15. Applying Multimedia and Virtual Reality for Learning Environments

    Gonçalo Nuno P. Cardoso

    2009-10-01

    Full Text Available Most of the tools and languages for modeling Virtual Reality environments, such as VRML, X3D, Java3D, etc. do not provide means of describing the synchronized presentation of multimedia content inside these environments. Multimedia has demonstrated its capabilities of motivating users and capturing their attention, which are important characteristics when we want to provide a higher degree of immersion and learning capabilities inside Virtual Reality applications. This paper presents a robust and generic solution for the integrated presentation of different kinds of media objects inside virtual environments based on the Graphical Engine OGRE and how this solution can be applied broadly for providing customizable multimedia and virtual learning environments.

  16. Exploring the educational potential of 3D virtual environments

    Francesc Marc ESTEVE MON

    2013-12-01

    Full Text Available 3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to design educational complex activities to develop these key competences. For this purpose it’s necessary to set an appropriate teaching strategy to put this knowledge and skills into action, and design suitable mechanisms for registration and systematization. This paper analyzes the potential of these environments and presents two experiences in 3D virtual environments: (1 to develop teamwork and self-management skills, and (2 to assess digital literacy in preservice teachers.

  17. ) Virtual Reality Environments For The Petroleum Industry

    Large screen immersive visualization has gained enormous momentum in the last few years. The oil industry has quickly appreciate the value virtual reality centers bring to the practising engineer and to asset teams. While early concepts emphasized visualization, people soon realized that virtual reality rooms offer more: they are places where people come together, they are places where people want to collaborate. Subsequently these environments were also called Decisionariums, Collaboration Centers, Visionariums, etc. GeoQuest branded these rooms iCenters, a term which encompasses all the potential usages of this environment. istands for information, internet, interaction, interpretation, impact, etc. iCenters are used for interpretation and analysis of complex models (e.g. 3D seismic interpretation, viewing of simulation models with hundreds of thousands of cells) and for multi-disciplinary working (e.g. planning of advanced wells typically for (deep) offshore environments currently increases by several hundred percent being built in Nigeria-more are being planned. This concepts for building iCenters, examples of how oil companies around the world and in Nigeria use these environments to foster collaboration and reduce costs, and latest developments in the area of remote collaboration (i.e., connected iCenters)

  18. The virtual reality framework for engineering objects

    Ivankov, Petr R.; Ivankov, Nikolay P.

    2006-01-01

    A framework for virtual reality of engineering objects has been developed. This framework may simulate different equipment related to virtual reality. Framework supports 6D dynamics, ordinary differential equations, finite formulas, vector and matrix operations. The framework also supports embedding of external software.

  19. Visualizing Compound Rotations with Virtual Reality

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  20. 3D natural emulation design approach to virtual communities

    DiPaola, Steve

    2010-01-01

    The design goal for OnLive’s Internet-based Virtual Community system was to develop avatars and virtual communities where the participants sense a tele-presence – that they are really there in the virtual space with other people. This collective sense of "being-there" does not happen over the phone or with teleconferencing; it is a new and emerging phenomenon, unique to 3D virtual communities. While this group presence paradigm is a simple idea, the design and technical issues needed to begin...

  1. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  2. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.

    Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco

    2009-11-01

    We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice. PMID:19651551

  3. Virtual reality exposure therapy for social phobia

    Herbelin, Bruno

    2005-01-01

    This thesis presents researches and experiments performed in collaboration with a psychiatrist in order to validate and improve the use of virtual reality in social phobia psychotherapy. Cognitive and behavioral therapies are strongly based on the exposure to anxiety provoking stimuli. Virtual reality seems to be appropriate for such exposures as it allows for on-demand reproduction of reality. The idea has been validated for the treatment of various phobias but is more delicate in the case o...

  4. Virtual reality exposure therapy for social phobia

    Herbelin, Bruno; Thalmann, Daniel

    2007-01-01

    This thesis presents researches and experiments performed in collaboration with a psychiatrist in order to validate and improve the use of virtual reality in social phobia psychotherapy. Cognitive and behavioral therapies are strongly based on the exposure to anxiety provoking stimuli. Virtual reality seems to be appropriate for such exposures as it allows for on-demand reproduction of reality. The idea has been validated for the treatment of various phobias but is more delicate in the case o...

  5. Realistic terrain visualization based on 3D virtual world technology

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  6. Virtual reality excursions with programs in C

    Watkins, Christopher D

    1994-01-01

    Virtual Reality Excursions with Programs in C provides the history, theory, principles and an account of the milestones in the development of virtual reality technology.The book is organized into five chapters. The first chapter explores the applications in the vast field of virtual reality. The second chapter presents a brief history of the field and its founders. Chapter 3 discusses human perception and how it works. Some interesting notes and much of the hot debate in the field are covered in Chapter 4. The fifth chapter describes many of the complexities involved in implementing virtual en

  7. [Development of a software for 3D virtual phantom design].

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research. PMID:24804488

  8. Web 3D technology for virtual simulation for radiotherapy

    Virtual Simulation of patient set-up for radiotherapy using Digitally Reconstructed Radiographs (DRRs) is becoming popular because of the advantages of higher precision and flexibility in planning at a lower cost. This technology is based on 2D concepts, as the DRR is a 2D image on which beam portals are planned. Web 3D technology is an emerging concept based on true 3D objects

  9. Design of learning spaces in 3D virtual environments

    Minocha, Shailey; Kear, Karen; Mount, Nick; Priestnall, Gary

    2008-01-01

    3D virtual environments have considerable potential for learning. However there is a lack of research into how such environments should be designed to maximise this potential. This paper introduces a project to carry out research into two aspects of the design of 3D learning spaces: the degree of realism; and the degree of immersion. In order to investigate the realism aspect, the project will compare students' experiences of learning spaces within Second Life which have different degrees of ...

  10. A survey on virtual reality

    ZHAO QinPing

    2009-01-01

    Virtual reality (VR) Is a scientific method and technology created during the exploration of the nature by human beings to understand,simulate,and better adapt and use the nature.Based on the analysis on the whole process of VR,this paper presents different categories of VR problems and a type of theoretical expression,and abstracts three kinds of scientific and technical problems in VR field.On the basis of foresaid content,this paper also studies current major research objectives,research results and development trend of VR in the aspects of VR modeling method,VR representation technology,human-machine interaction and devices,VR development suites and supporting infrastructure,as well as VR applications.Finally,several theoretical and technical problems that need to be further studied and solved are addressed.

  11. ATLASrift - a Virtual Reality application

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2016-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists – for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice – OculusRift VR system, the development environment – UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/vir...

  12. Shaping 3-D Volumes in Immersive Virtual Environments

    Stenholt, Rasmus

    Shaping 3-D volumes is an important part of many interactions in immersive virtual environments. The range of possible applications is wide. For instance, the ability to select objects in virtual environments is very often based on defin- ing and controlling a selection volume. This is especially...... scatterplots. In data mining contexts, being able to perceive the shape of a struc- ture is a prerequisite for making precise subsequent interactions such as selec- tions and annotations. The paper introduces a new type of 3-D glyph rendering, which potentially diminishes the negative effects of clutter while...

  13. Virtual 3D museum of Neolithic culture. Artefacts, technology and imagining

    Květina, Petr; Brzobohatá, Hana; Burgert, Pavel; Končelová, Markéta; Pavlů, Ivan; Unger, Jiří; Řídký, Jaroslav; Šumberová, Radka; Vavrečka, Petr

    Istanbul: Archaeology & Art Publications, 2014 - (Yilmaz, Ö.). s. 205-206 ISBN 978-605-396-287-8. [Annual Meeting of the European Association of Archaeologists /20./. 10.09.2014-14.09.2014, Istanbul] R&D Projects: GA MK(CZ) DF12P01OVV032 Keywords : Neolithic * virtual museum * 3D * augmented reality Subject RIV: AC - Archeology, Anthropology, Ethnology https://www.eaa2014istanbul.org/assets/indirilecekler/2014%20EAA%20abstracts.pdf

  14. Interaction in 3D virtual worlds: an integrated approach of emerging technologies in handball

    Lopes, António; Sequeira, Pedro; Morgado, Leonel; Madeira, António; Ildefonso, João; Bruno, Pires; Márcio, Cardoso; José, Dinis

    2011-01-01

    Lifelong learning is a concept that is associated with changes in society as we know it. The new technologies of information and communication have contributed to the creation and development of various tools in the training, education and research in several areas. 3D virtual worlds are alternate realities in which people can interact with each other or elements present in it. In the field of education is recognized primarily by its potential ability to simulate complex situat...

  15. Virtual learning scenarios for qualitative assessment in higher education 3D arts

    Vicent Safont, Lluís; Villagrasa, Sergi; Fonseca Escudero, David; Redondo Domínguez, Ernesto

    2015-01-01

    Using enhanced learning technologies (TEL) including immersive virtual reality environments, we are seeking to achieve a new way of assessing subjects of 3D arts. We have developed a project based on Scenario Centered Curriculum (SCC), where the students have to think, design, convey, validate, and build a civil project using new technologies that help in the assessment process. We have used gamification techniques and game engines to evaluate planned tasks in which students can demonstrate t...

  16. An Onboard ISS Virtual Reality Trainer

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  17. Virtual Vixens 3D character modeling and scene placement

    von Koenigsmarck, Arndt

    2007-01-01

    Features software workshops for 3ds Max, Maya, CINEMA 4D, Lightwave, and Softimage XSI.Hot, hotter, hottest. See how today''s leading modeling artists create 3D characters that sizzle and get the techniques you''ll need to create your own virtual vixens.Steven Stahlberg, Liam Kemp, Marco Patrito, and Sze Jones from Blur Studio are just a few of the 3D artists who share their secrets for making the fantasy females you wish were real. You''ll get their personal stories, insights into the profession, and new ways to conceive and construct your own 3D characters.Then, seven hands-on workshops demo

  18. Virtual Reality as a Problem of the Electronic Economy.

    Peter Koslowski

    2004-01-01

    Two concepts of virtual reality are competing in the cyber world, virtual reality as total adaptability and virtual reality as the simulation of possible worlds. Virtuality as adaptability in industrial production leads to a closer consideration of individual con-sumer demand and to de-massified production. It implies a stronger reference of pro-duction to the reality of consumer needs. The aesthetic concept of virtual reality as pos-sible words and fictional realities can imply a loss of rea...

  19. Cognitive Aspects of Collaboration in 3d Virtual Environments

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  20. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential. PMID:26915117

  1. Live-action Virtual Reality Games

    Valente, Luis; Clua, Esteban; Silva, Alexandre Ribeiro; Feijó, Bruno

    2016-01-01

    This paper proposes the concept of "live-action virtual reality games" as a new genre of digital games based on an innovative combination of live-action, mixed-reality, context-awareness, and interaction paradigms that comprise tangible objects, context-aware input devices, and embedded/embodied interactions. Live-action virtual reality games are "live-action games" because a player physically acts out (using his/her real body and senses) his/her "avatar" (his/her virtual representation) in t...

  2. The Physical World as a Virtual Reality

    Whitworth, Brian

    2008-01-01

    This paper explores the idea that the universe is a virtual reality created by information processing, and relates this strange idea to the findings of modern physics about the physical world. The virtual reality concept is familiar to us from online worlds, but our world as a virtual reality is usually a subject for science fiction rather than science. Yet logically the world could be an information simulation running on a multi-dimensional space-time screen. Indeed, if the essence of the un...

  3. Effects of parasagittal meningiomas on intracranial venous circulation assessed by the virtual reality technology

    Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie

    2015-01-01

    Objective: This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. Methods: A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number ...

  4. Virtual reality training improves balance function

    Yurong Mao; Peiming Chen; Le Li; Dongfeng Huang

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a com-puter and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These ifndings suggest that virtual reality training can acti-vate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  5. Virtual reality: an intuitive approach to robotics

    Natonek, Emerico; Flueckiger, Lorenzo; Zimmerman, Thierry; Baur, Charles

    1995-12-01

    Tasks definition for manipulators or robotic systems (conventional or mobile) usually lack on performance and are sometimes impossible to design. The `On-line' programming methods are often time expensive or risky for the human operator or the robot itself. On the other hand, `Off-line' techniques are tedious and complex. In a virtual reality robotics environment (VRRE), users are not asked to write down complicated functions to specify robotic tasks. However a VRRE is only effective if all the environment changes and object movements are fed-back to the virtual manipulating system. Thus some kind of visual or multi-sensor feedback is needed. This paper describes a semi autonomous robot system composed of an industrial 5-axis robot and its virtual equivalent. The user is immersed in a 3-D space built out of the robot's environment models. He directly interacts with the virtual `components' in an intuitive way creating trajectories, tasks, and dynamically optimizing them. A vision system is used to recognize the position and orientation of the objects in the real robot workspace, and updates the VRRE through a bi-directional communication link. Once the tasks have been optimized on the VRRE, they are sent to the real robot and a semi autonomous process ensures their correct execution thanks to a camera directly mounted on the robot's end effector. Therefore, errors and drifts due to transmission delays can be locally processed and successfully avoided. The system can execute the tasks autonomously, independently of small environmental changes due to transmission delays. If the environmental changes are too important the robot stops re-actualizes the VRRE with the new environmental configuration and waits for task redesign.

  6. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  7. Virtual Reality: immersed in the structural world

    McCabe, Aimee; McPolin, Daniel

    2015-01-01

    Virtual reality is a rapidly emerging technology, driven by the computer gaming industry. The maturity of the concept, combined with modern hardware, is delivering an experience which offers a useful commercial tool for industry and educators. This article discusses the uses of virtual reality within structural engineering and provides an understanding of how it can be incorporated easily and efficiently for design purposes and beyond.

  8. The Physical World as a Virtual Reality

    Whitworth, Brian

    2008-01-01

    This paper explores the idea that the universe is a virtual reality created by information processing, and relates this strange idea to the findings of modern physics about the physical world. The virtual reality concept is familiar to us from online worlds, but our world as a virtual reality is usually a subject for science fiction rather than science. Yet logically the world could be an information simulation running on a three-dimensional space-time screen. Indeed, if the essence of the universe is information, matter, charge, energy and movement could be aspects of information, and the many conservation laws could be a single law of information conservation. If the universe were a virtual reality, its creation at the big bang would no longer be paradoxical, as every virtual system must be booted up. It is suggested that whether the world is an objective reality or a virtual reality is a matter for science to resolve. Modern information science can suggest how core physical properties like space, time, lig...

  9. Data Visualization Using Immersive Virtual Reality Tools

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this

  10. 3D Virtual Glove for Data Logging and Pick and Place Robot

    Prasanna Muley

    2014-03-01

    Full Text Available Traditional interaction devices such as mouse and keyboard do not adapt very well to 3D environments, since they were not ergonomically designed for it [1]. The user may be standing or in movement and these devices were projected to work on desks. To solve such problems it has been designed a Accelerometer based 3D virtual glove which can be used in various robotic applications [1]. In this project it can be designed a Pick and Place robot which will follow the 3D glove worn by the user. User can design UP, DOWN, LEFT, RIGHT, PICK and PLACE actions via wireless glove. Moreover, in the current interaction model for immersive environments, which is based on wands and 3D mice, a change of context is necessary every time to execute a non-immersive task. These constant context changes from immersive to 2D desktops introduce a rupture in the user interaction with the application [3]. The objective of this work is to develop a device that maps a touch interface in a virtual reality immersive environment. In order to interact in3D virtual reality immersive environments a wireless glove (v-Glove was created, which has two main functionalities: tracking the position of the user’s index finger and vibrate the fingertip when it reaches an area mapped in the interaction space to simulate a touch feeling. Quantitative and qualitative analysis were performed with users to evaluate the v-Glove, comparing it with a gyroscopic 3D mouse [2]. This project is ideally suited for critical applications such as Gas plants, Chemical Plants, Nuclear reactors and for hazardous applications such as Coal mines, Sulphur mines, under sea tunnels Oil mints etc

  11. 基于UDK的虚拟现实技术在三维虚拟数字校园中的应用与研究%Research and application of virtual reality technology in UDK based on 3D virtual digital campus

    王涛

    2014-01-01

    数字化校园虚拟漫游系统是数字化校园建设计划的核心平台。本文首先对目前主流的虚拟可视化开发工具作了介绍,并结合当今最流行的游戏引擎UDK(Unreal Development Kit)和三维设计软件3ads Max的虚拟现实技术问题进行了研究,以无锡城市职业技术学院校区为原型,运用三维设计软件3ads Max仿真技术建立了的虚拟校园三维模型。采用游戏引擎UDK(Unreal Development Kit)与SQL server后台数据库连接、实景拍摄与虚拟建筑相结合的方式,设计并实现了实时三维虚拟校园漫游系统的路径自动漫游、自主漫游、楼宇查询和鹰眼鸟瞰等功能。设计并实际运用结果表明,使用三维场景中烘焙贴图的制作运用UDK引擎技术改进的场景优化技术,系统运行效率得以很好的提高,甚至在普通PC机上实时运行时也很流畅和稳定。%The virtual roaming system of digital campus is the core platform of digital campus construction. This essay mainly introduces the mainstream development tool of virtual visualization and studies the problems of virtual reality technology, combined with today's most popular game engine UDK (Unreal Development Kit) and 3ads Max. The essay takes the Wuxi City College of Vocational Technology as the prototype and use the simulation technology of 3Ds Max to build a 3D model of virtual campus. Through the connection of game engine UDK (Unreal Development Kit) with database of SQL server and photographing combined with virtual architecture, it designs and realizes several functions of roaming systems of real time 3D viral campus, such as the function of automatically roaming path, the function of autonomous navigation, the function of building inquiry and the function of hawkeyed bird view. The results of designs and application represent the use of the baking and mapping technology of 3D scene and the improved scene optimization technology of UDK engine can

  12. Pig liver sectorization and segmentation and virtual reality depiction

    Zanchet Dinamar José; Montero Edna Frasson de Souza

    2002-01-01

    OBJECTIVE: To determine pig liver sectorization and segmentation through the representation of their correlation to portal and hepatic veins, and through the development of virtual reality (VR) animation. METHODS: Twenty models were obtained by injection of portal and hepatic veins from Landrace pig livers with a methyl methacrylate solution, and by corrosion of the hepatic parenchyma with chloride acid 35%. VR animation of one of these models was conducted through graphic software (3D Studio...

  13. Virtual reality - det det er virkelig allerede en realitet

    Andersen, Tem Frank

    2016-01-01

    Allerede tilbage i 1980’erne kunne forskningen i medier og informationsteknologier fremvise de første prototyper på 3D virtual reality. Man kan spekulere længe over, hvad der egentligt motiverede forskningen på det tidspunkt. En motivation kunne være den ingeniørmæssige: Er det muligt at skabe en...

  14. Interact: A Mixed Reality Virtual Survivor for Holocaust Testimonies

    Ma, Minhua; Coward, Sarah; Walker, Chris

    2015-01-01

    In this paper we present Interact---a mixed reality virtual survivor for Holocaust education. It was created to preserve the powerful and engaging experience of listening to, and interacting with, Holocaust survivors, allowing future generations of audience access to their unique stories. Interact demonstrates how advanced filming techniques, 3D graphics and natural language processing can be integrated and applied to specially-recorded testimonies to enable users to ask questions and receive...

  15. The 3D virtual environment online for real shopping

    Khalil, Nahla

    2015-01-01

    The development of information technology and Internet has led to rapidly progressed in e-commerce and online shopping, due to the convenience that they provide consumers. E-commerce and online shopping are still not able to fully replace onsite shopping. In contrast, conventional online shopping websites often cannot provide enough information about a product for the customer to make an informed decision before checkout. 3D virtual shopping environment show great potential for enhancing e-co...

  16. 3D virtual worlds as environments for literacy learning

    Merchant, G. H.

    2010-01-01

    Background: Although much has been written about the ways in which new technology might transform educational practice, particularly in the area of literacy learning, there is relatively little empirical work that explores the possibilities and problems - or even what such a transformation might look like in the classroom. 3D virtual worlds offer a range of opportunities for children to use digital literacies in school, and suggest one way in which we might explore changing literacy practices...

  17. ENHANCED LOD CONCEPTS FOR VIRTUAL 3D CITY MODELS

    Benner, J.; Geiger, A; G. Gröger; Häfele, K.-H.; Löwner, M.-O.

    2013-01-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short over...

  18. Virtual Training System for Hydraulic Pump Cart Based on Virtual Reality

    Wusha Huang

    2013-08-01

    Full Text Available This paper dissertates the application of Virtual Reality Technology in the training process. Virtual training system has more advantages than traditional training system. The design of virtual training system based on PTC DIVISION Mockup software, position tracker and 3-D mouse is proposed. The system is divided into two parts: directing part and operating part. Collision detection is discussed to improve the sense of reality in the virtual environment .This system is applied to the training process of hydraulic pump cart’s assembly and disassembly. More immersive training effect is obtained in this system. The goal of reducing training costs and improving the efficiency of training can be achieved in the virtual training system.  

  19. Controlling social stress in virtual reality environments

    Hartanto, D.; Kampmann, I.L.; Morina, N.; Emmelkamp, P.G.M.; Neerincx, M.A.; Brinkman, W.P.

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: t

  20. From Actual Reality to Virtual Reality-AVR Theory, Techniques and Application

    LIU Weibin; ZHANG Chao; YUAN Baozong

    2001-01-01

    In this paper, the basic theory and core techniques of AVR (from Actual Reality to Virtual Reality) have been expounded. AVR is a development of VR technique. In AVR, the virtual objects in virtual environment are modeled directly from the shape information of their counterparts in real world based on computer graphics and computer vision techniques, which provides the virtual environment with a higher level realism and preciseness. In order to achieve the integration of computer vision and computer graphics, superquadric based (SQ-based) model as the universal description of virtual objects is chosen and PAMVISION (Part-based Multiple-layer Visual Information Organization Model) model providing a general framework for vision recognition and reconstruction in AVR modeling is developed. As the core techniques of AVR, two approaches for virtualizing the real objects from either 2D images or 3D data are im plemented. As an application of AVR, an interactive 3D superquadric based modeling software package is developed for creating virtual environment.

  1. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    Veronica S. Pantelidis

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. Thisarticle lists examples of such research. Reasons to use virtual reality are discussed.Advantages and disadvantages of using virtual reality are presented, as well as suggestions onwhen to use and when not to use virtual reality. A model that can be used to determine whento use virtual reality in an education or training course is presented.

  2. Virtual reality and hallucination: a technoetic perspective

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  3. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  4. D3D augmented reality imaging system: proof of concept in mammography

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  5. Dual Reality: Merging the Real and Virtual

    Lifton, Joshua; Paradiso, Joseph A.

    This paper proposes the convergence of sensor networks and virtual worlds not only as a possible solution to their respective limitations, but also as the beginning of a new creative medium. In such a "dual reality," both real and virtual worlds are complete unto themselves, but also enhanced by the ability to mutually reflect, influence, and merge by means of sensor/actuator networks deeply embedded in everyday environments. This paper describes a full implementation of a dual reality system using a popular online virtual world and a human-centric sensor network designed around a common electrical power strip. Example applications (e.g., browsing sensor networks in online virtual worlds), interaction techniques, and design strategies for the dual reality domain are demonstrated and discussed.

  6. Research on key techniques of virtual reality applied in mining industry

    LIAO Jun; LU Guo-bin

    2009-01-01

    Based on the applications of virtual reality technology in many fields, introduced the virtual reality technical basic concept, structure type, related technique development, etc., tallied up applications of virtual reality technique in the present mining industry, inquired into core techniques related software and hardware, especially the optimization in the setup of various 3D models technique, and carried out a virtual scene to travel extensively in real-time by stereoscopic manifestation technique and so on. Then it brought forward the solution of virtual reality technique with software and hardware to the mining industry that can satisfy the demand of different aspects and levers. Finally, it show a fine prospect of virtual reality technique applied in the mining industry.

  7. Mobile Virtual Reality : A Solution for Big Data Visualization

    Marshall, E.; Seichter, N. D.; D'sa, A.; Werner, L. A.; Yuen, D. A.

    2015-12-01

    Pursuits in geological sciences and other branches of quantitative sciences often require data visualization frameworks that are in continual need of improvement and new ideas. Virtual reality is a medium of visualization that has large audiences originally designed for gaming purposes; Virtual reality can be captured in Cave-like environment but they are unwieldy and expensive to maintain. Recent efforts by major companies such as Facebook have focussed more on a large market , The Oculus is the first of such kind of mobile devices The operating system Unity makes it possible for us to convert the data files into a mesh of isosurfaces and be rendered into 3D. A user is immersed inside of the virtual reality and is able to move within and around the data using arrow keys and other steering devices, similar to those employed in XBox.. With introductions of products like the Oculus Rift and Holo Lens combined with ever increasing mobile computing strength, mobile virtual reality data visualization can be implemented for better analysis of 3D geological and mineralogical data sets. As more new products like the Surface Pro 4 and other high power yet very mobile computers are introduced to the market, the RAM and graphics card capacity necessary to run these models is more available, opening doors to this new reality. The computing requirements needed to run these models are a mere 8 GB of RAM and 2 GHz of CPU speed, which many mobile computers are starting to exceed. Using Unity 3D software to create a virtual environment containing a visual representation of the data, any data set converted into FBX or OBJ format which can be traversed by wearing the Oculus Rift device. This new method for analysis in conjunction with 3D scanning has potential applications in many fields, including the analysis of precious stones or jewelry. Using hologram technology to capture in high-resolution the 3D shape, color, and imperfections of minerals and stones, detailed review and

  8. Using Solver Interfaced Virtual Reality in PEACER Design Process

    The recent research progress in the area of plant design and simulation highlighted the importance of integrating design and analysis models on a unified environment. For currently developed advanced reactors, either for power production or research, this effort has embraced impressive state-of-the-art information and automation technology. The PEACER (Proliferation-resistant, Environment friendly, Accident-tolerant, Continual and Economical Reactor) is one of the conceptual fast reactor system cooled by LBE (Lead Bismuth Eutectic) for nuclear waste transmutation. This reactor system is composed of innovative combination between design process and analysis. To establish an integrated design process by coupling design, analysis, and post-processing technology while minimizing the repetitive and costly manual interactions for design changes, a solver interfaced virtual reality simulation system (SIVR) has been developed for a nuclear transmutation energy system as PEACER. The SIVR was developed using Virtual Reality Modeling Language (VRML) in order to interface a commercial 3D CAD tool with various engineering solvers and to implement virtual reality presentation of results in a neutral format. In this paper, we have shown the SIVR approach viable and effective in the life-cycle management of complex nuclear energy systems, including design, construction and operation. For instance, The HELIOS is a down scaled model of the PEACER prototype to demonstrate the operability and safety as well as preliminary test of PEACER PLM (Product Life-cycle Management) with SIVR (Solver Interfaced Virtual Reality) concepts. Most components are designed by CATIA, which is 3D CAD tool. During the construction, 3D drawing by CATIA was effective to handle and arrange the loop configuration, especially when we changed the design. Most of all, This system shows the transparency of design and operational status of an energy complex to operators and inspectors can help ensure accident

  9. Enabling scientific workflows in virtual reality

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  10. Research on 3D virtual campus scene modeling based on 3ds Max and VRML

    Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue

    2015-12-01

    With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.

  11. Simulation of Emergency Evacuation in Virtual Reality

    REN Aizhu; CHEN Chi; LUO Yuan

    2008-01-01

    A virtual reality system was developed to simulate emergency evacuations during fires.The spreading of the flame and smoke in the virtual fire was modeled based on numerical fire simulations,so that the conditions are similar to real life.A multi-grid,multi-base-state database model was used to overcome the disadvantages of traditional smoke spreading simulations.Textured images and particle systems provide visualization of the flame and smoke.The system immerses the user in a virtual environment with detailed interactions between the users and the virtual environment.The system can show which evacuation methods are effective for building safety evaluations.

  12. Virtual Gravity and the Duality of Reality

    Harokopos, E

    2003-01-01

    It is shown that a hypothesis about gravity having a virtual cause implies there are two primary reference frames, a reality and a functional virtual reality and an equivalence principle relating the two is postulated. A mathematical expression relating the primary reference frames to the state of reality provides an explanation of particle-wave duality and resolves the controversy about the speed of gravity. A model for motion, time and particle formation is briefly discussed, in which the hypothesis about the virtual cause of gravity and supporting postulates are valid. It is further shown that such model provides solutions to unsolved paradoxes and a unification of consistent but contradictory ancient theories of matter and motion. Finally, a reference is made about the basis for devising experiments and testing the predictions of the model.

  13. Virtual Reality and Special Needs

    Tara L. Jeffs

    2009-01-01

    The use of virtual environments for special needs is as diverse as the field of Special Educationitself and the individuals it serves. Individuals with special needs often face challenges withattention, language, spatial abilities, memory, higher reasoning and knowledge acquisition.Research in the use of Virtual Learning Environments (VLE) targets both cognition and behavior(Rizzo, et.al, 2001). Virtual environments encourage interactive learning and provide avariety of opportunities for the ...

  14. From Multi-User Virtual Environment to 3D Virtual Learning Environment

    Livingstone, Daniel; Kemp, Jeremy; Edgar, Edmund

    2008-01-01

    While digital virtual worlds have been used in education for a number of years, advances in the capabilities and spread of technology have fed a recent boom in interest in massively multi-user 3D virtual worlds for entertainment, and this in turn has led to a surge of interest in their educational applications. In this paper we briefly review the…

  15. The Skin Deformation of a 3D Virtual Human

    Xiao-Jing Zhou; Zheng-Xu Zhao

    2009-01-01

    This paper presents a skin deformation algorithm for creating 3D characters or virtual human models. The algorithm can be applied to rigid deformation, joint dependent localized deformation, skeleton driven deformation, cross contour deformation, and free-form deformation (FFD). These deformations are computed and demonstrated with examples and the algorithm is applied to overcome the difficulties in mechanically simulating the motion of the human body by club-shape models. The techniques described in this article enables the reconstruction of dynamic human models that can be used in defining and representing the geometrical and kinematical characteristics of human motion.

  16. Virtual Reality: A State-of-the-Art Survey

    Ning-Ning Zhou; Yu-Long Deng

    2009-01-01

    This paper presents a survey on virtual reality systems and provides an in-depth understanding toward the notion of immersion, according to the semantic meanings of the terms "virtual" and "reality". The paper analyses the structure and functions of a virtual reality system and takes the three dimensional display as the immersive medium to identify the key issues for construction of virtual environments. The paper also reviews the development of virtual reality technology and introduces new image processing techniques into the design of virtual reality systems and virtual environments.

  17. Embodiment in 3D virtual retail environments: exploring perceptions of the virtual shopping experience

    Taylor, Andrew; Varley, Rosemary

    2008-01-01

    The customer can now easily create, and customize, their own personal three dimensional (3D) virtual bodies in a variety of virtual environments; could you, by becoming a virtual body, actually enhance your online shopping and buying experiences or, would this potentially inhibit the pure visceral pleasure of retail therapy? "Second Life allows you to be a celebrity in your own lunchtime, .…you can design the body you've always wanted, and indulge your fashionista fetish for very little...

  18. På rejse med Virtual Reality i billedkunst

    Majgaard, Gunver; Lyk, Patricia

    2015-01-01

    , de skulle have. Fokus. I artiklen er der særligt fokus på hvordan læringscentrede designprocesser og Virtual Reality tilsammen kan understøtte erfaringslæring. Konklusion. Eleverne fik en større forståelse af teknologi og kreative designprocesser ved at fungere som informanter og designpartnere i...... designforløbet. Eleverne fik igennem design af de fysiske modeller og besøget i Virtual Reality formidlet to oplevelser af deres modeller, som styrkede grundlaget for erfaringsbaseret læring. Erfaringsbaseret læring kombinerer oplevelse, refleksion, abstraktion og aktiv eksperimenteren i en proces, som...

  19. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    The trademark 4+D TechnologyTM based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP Informative

  20. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Yeon, Choul W. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-04-15

    The trademark 4{sup +}D Technology{sup TM} based Engineering Super Simulation Emulation (ESSE) is introduced. ESSE resorting to three-dimensional (3D) Virtual Reality (VR) technology pledges to provide with an interactive real-time motion, sound and tactile and other forms of feedback in the man machine systems environment. In particular, the 3D Virtual Engineering Neo cybernetic Unit Soft Power (VENUS) adds a physics engine to the VR platform so as to materialize a physical atmosphere. A close cooperation system and prompt information share are crucial, thereby increasing the necessity of centralized information system and electronic cooperation system. VENUS is further deemed to contribute towards public acceptance of nuclear power in general, and safety in particular. For instance, visualization of nuclear systems can familiarize the public in answering their questions and alleviating misunderstandings on nuclear power plants answering their questions and alleviating misunderstandings on nuclear power plants (NPPs) in general, and performance, security and safety in particular. An in-house flagship project Systemic Three-dimensional Engine Platform Prototype Engineering (STEPPE) endeavors to develop the Systemic Three-dimensional Engine Platform (STEP) for a variety of VR applications. STEP is home to a level system providing the whole visible scene of virtual engineering of man machine system environment. The system is linked with video monitoring that provides a 3D Computer Graphics (CG) visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators easy access to visualization of major events. The database linked system provides easy access to relevant blueprints. The character system enables the operators to access the virtual systems by using their virtual characters. Virtually Engineered NPP Informative systems by using their virtual characters. Virtually Engineered NPP

  1. 3D Reconstruction of virtual colon structures from colonoscopy images.

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  2. Applied virtual reality at the Research Triangle Institute

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  3. Un generador aleatorio de microestructuras virtuales 3D

    Martín, A.

    1998-05-01

    Full Text Available A computer model for the generation of 3D grain microstructures is described. The solid (usually a cube is discretised in voxels. Grain seeds are distributed at random in some voxels. These seeds can be placed beforehand or simultaneously with the grain growth process. There are two ways for assigning a voxel to a particular grain, which are described in detail. After completion of a 3D tessellation, the model identifies the voxels at the grain boundaries. This feature allows for an easy computation of stereological parameters or as a basis for simulating recrystallisation or phase transformations nucleated at grain boundaries.

    Se describe un programa de ordenador que genera microestructuras virtuales en 3D. El sólido (normalmente un cubo se descompone en vóxeles, en los que se distribuye al azar un número prescrito de semillas de "granos". El crecimiento de estas semillas puede activarse desde el principio de la simulación o, gradualmente, durante el proceso de crecimiento de los granos. El programa dispone de dos formas de asignar los vóxeles a un grano en concreto que se describen detalladamente. El programa reconoce los vóxeles situados en los límites de grano. Esto permite realizar fácilmente algunos cálculos estereológicos o resembrar semillas en los bordes de grano y simular posteriores recristalizaciones o transformaciones de fase nucleadas en intercaras.

  4. From Multi-User Virtual Environment to 3D Virtual Learning Environment

    Daniel Livingstone

    2008-12-01

    Full Text Available While digital virtual worlds have been used in education for a number of years, advances in the capabilities and spread of technology have fed a recent boom in interest in massively multi-user 3D virtual worlds for entertainment, and this in turn has led to a surge of interest in their educational applications. In this paper we briefly review the use of virtual worlds for education, from informal learning to formal instruction, and consider what is required to turn a virtual world from a Multi-User Virtual Environment into a fully fledged 3D Virtual Learning Environment (VLE. In this we focus on the development of Sloodle – a system which integrates the popular 3D virtual world of Second Life with the open-source VLE Moodle. Our intent is not simply to provide additional learning support features for Second Life, but to study more generally the ways in which integrated virtual environments can benefit teaching and learning, and this is the focus of our closing discussion.

  5. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  6. Virtual Reality Interaction Using Mobile Devices

    Aseeri, Sahar A.

    2013-07-01

    With the use of an immersive display system such as CAVE system, the user is able to realize a 3D immersive virtual environment realistically. However, interacting with virtual worlds in CAVE systems using traditional input devices to perform easy operations such as manipulation, object selection, and navigation is often difficult. This difficulty could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. Our research aims to implement and evaluate alternative approaches of interaction with immersive virtual environments on mobile devices for manipulation and object selection tasks. As many researchers have noted, using a mobile device as an interaction device has a number of advantages, including built-in display, built-in control, and touch screen facility. These advantages facilitate simple tasks within immersive virtual environments. This research proposes new methods using mobile devices like Smart-phones to perform di↵erent kinds of interactions both as an input device, (e.g. performing selection and manipulation of objects) and as an output device (e.g. utilizing the screen as an extra view for a virtual camera or information display). Moreover, we developed a prototype system to demonstrate and informally evaluate these methods. The research conclusion suggests using mobile devices as a 3D-controller. This will be a more intuitive approach to interact within the virtual environment.

  7. Virtual reality devices integration in scientific visualization software in the VtkVRPN framework

    A high-quality scientific visualization software relies on ergonomic navigation and exploration. Those are essential to be able to perform an efficient data analysis. To help solving this issue, management of virtual reality devices has been developed inside the CEA 'VtkVRPN' framework. This framework is based on VTK, a 3D graphical library, and VRPN, a virtual reality devices management library. This document describes the developments done during a post-graduate training course. (authors)

  8. BlenderCAVE: A multimodal scene graph editor for Virtual Reality

    Poirier-Quinot, David; Touraine, Damien; Katz, Brian,

    2013-01-01

    This paper presents the BlenderCAVE project, which extends the 3D creation content software Blender and its Game Engine (BGE) to Virtual Reality (VR) applications. Based on a multi-screen non-stereoscopic adaptation of the BGE [Gascon et al., 2010], BlenderCAVE now integrates a complete framework dedicated to Virtual Reality (VR), compatible with the three main Operating Systems for any given VR architecture configuration. It has been developed by audio and VR researchers with support from th...

  9. Evaluation of Virtual Reality Training Using Affect

    Tichon, Jennifer

    2012-01-01

    Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…

  10. Handbook for evaluation studies in virtual reality

    Livatino, Salvatore; Koeffel, Christina

    2006-01-01

    Virtual reality (VR) applications are spreading and attract industries since VR technologies are becoming more affordable, powerful and robust. VR applications inherently call for human-computer interaction, which in turn calls for system and usability evaluations, typically through measurement of...

  11. Virtual reality simulation of basic pulmonary procedures

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian;

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study was to...

  12. Virtual reality simulation in endovascular surgical training.

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  13. Applications of Virtual Reality to Nuclear Safeguards

    Stansfield, S.

    1998-11-03

    This paper explores two potential applications of Virtual Reality (VR) to international nuclear safeguards: training and information organization and navigation. The applications are represented by two existing prototype systems, one for training nuclear weapons dismantlement and one utilizing a VR model to facilitate intuitive access to related sets of information.

  14. From Multi-User Virtual Environment to 3D Virtual Learning Environment

    Livingstone, Daniel; Kemp, Jeremy; Edgar, Edmund

    2008-01-01

    While digital virtual worlds have been used in education for a number of years, advances in the capabilities and spread of technology have fed a recent boom in interest in massively multi-user 3D virtual worlds for entertainment, and this in turn has led to a surge of interest in their educational applications. In this paper we briefly review the use of virtual worlds for education, from informal learning to formal instruction, and consider what is required to turn a virtual world from a Mult...

  15. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D) allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP) allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine) in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor) to oncologists, radiotherapists and pathologists

  16. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    Essig Harald

    2011-11-01

    Full Text Available Abstract The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor to oncologists, radiotherapists and pathologists.

  17. A manufactured past: virtual reality in archaeology

    Glyn Goodrick

    2004-01-01

    Full Text Available Virtual reality and visualisation technologies developed over the past thirty years have been readily accessible to the archaeological community since the mid 1990s. Despite the high profile of virtual archaeology (Reilly 1991 both within the media and professional archaeology it has not been taken on board as a generally useful and standard technique by archaeologists. In this article we wish to discuss the technical and other issues which have resulted in a reluctance to adopt virtual archaeology and, more importantly, discuss ways forward that can enable us routinely to benefit from this technology in the diversity of archaeological practice.

  18. Second Life, a 3-D Animated Virtual World: An Alternative Platform for (Art) Education

    Han, Hsiao-Cheng

    2011-01-01

    3-D animated virtual worlds are no longer only for gaming. With the advance of technology, animated virtual worlds not only are found on every computer, but also connect users with the internet. Today, virtual worlds are created not only by companies, but also through the collaboration of users. Online 3-D animated virtual worlds provide a new…

  19. Embryonic Development in Virtual Reality

    M. Rousian (Melek)

    2011-01-01

    textabstractThe overall aim of this thesis is to establish an accurate and reliable description of new in vivo biometric and volumetric measurements in the first trimester of pregnancy using 3D ultrasound datasets, analyzed using an innovative VR system. These new measurements, which make optimal us

  20. D3D augmented reality imaging system: proof of concept in mammography

    Douglas DB

    2016-08-01

    Full Text Available David B Douglas,1 Emanuel F Petricoin,2 Lance Liotta,2 Eugene Wilson3 1Department of Radiology, Stanford University, Palo Alto, CA, 2Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 3Department of Radiology, Fort Benning, Columbus, GA, USA Purpose: The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D augmented reality”. Materials and methods: A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results: The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion: The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. Keywords: augmented reality, 3D medical imaging, radiology, depth perception

  1. Web Reference: A Virtual Reality.

    Foster, Janet

    1999-01-01

    Presents ideas and strategies to enhance digital reference services available via the Internet in public libraries. Describes print publications which include Web reference columns; subject guides, both print and online; and the resources of the Internet Public Library and other virtual reference desks. (LRW)

  2. Introduction to use of virtual reality visualisations in the exploitation and virtual testing of machines

    K. Foit

    2007-12-01

    Full Text Available Purpose: Purpose of this paper: Due to quick evolution of virtual reality systems, this technology is more often used in processes of prototype’s design. On the other hand it could be also effective in others applications like virtual manuals, help systems, catalogues, education, visualisation, testing and virtual prototyping. The aim of this paper is to show some properties of the selected virtual reality systems, which could be used in the exploitation and virtual tests of machines.Design/methodology/approach: All software tests have been provided on Windows platform using selected ActiveX plugins for browsers.Findings: Creation of presentations, virtual manuals or catalogues is not a difficult task. It can be done using widely available software. However, virtual prototyping and testing are harder to manage and requires more knowledge about computer simulation. EON/EonX and Cortona software are rather presentation than simulation tools, but there is still possibility to create interaction with other application or external hardware.Research limitations/implications: In described tests only selected software have been used. All results and conclusions are related to EON/EonX and Cortona applications.Practical implications: The use of ActiveX technology gives a possibility to use a ActiveX control in almost any modern Windows application that supports it. Windows platform is also often used in handheld devices and industrial applications, so it is possible to create a virtual manual or a presentation, which could be displayed directly on machine interface.Originality/value: VR technology is worldwide used in many areas. EON software creates new possibilities in the field of virtual reality by handling special interfaces and display features. In the paper it is shown that the software can be used for more conventional purposes, like creation of virtual manuals or interactive 3D presentation

  3. Virtual environment display for a 3D audio room simulation

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  4. Enabling virtual reality on mobile devices: enhancing students' learning experience

    Feisst, Markus E.

    2011-05-01

    Nowadays, mobile devices are more and more powerful concerning processing power, main memory and storage as well as graphical output capability and the support for 3D mostly via OpenGL ES. Therefore modern devices allows it to enable Virtual Reality (VR) on them. Most students own (or will own in future) one of these more powerful mobile device. The students owning such a mobile device already using it to communicate (SMS, twitter, etc) and/or to listen to podcasts. Taking this knowledge into account, it makes sense to improve the students learning experience by enabling mobile devices to display VR content.

  5. A multi-viewer tiled autostereoscopic virtual reality display

    Kooima, Robert

    2010-01-01

    Recognizing the value of autostereoscopy for 3D displays in public contexts, we pursue the goal of large-scale, high-resolution, immersive virtual reality using lenticular displays. Our contributions include the scalable tiling of lenticular displays to large fields of view and the use of GPU image interleaving and application optimization for real-time performance. In this context, we examine several ways to improve group-viewing by combining user tracking with multi-view displays. Copyright © 2010 by the Association for Computing Machinery, Inc.

  6. Development of reactor design aid tool using virtual reality technology

    A new type of aid system for fusion reactor design, to which the virtual reality (VR) visualization and sonification techniques are applied, is developed. This system provides us with an intuitive interaction environment in the VR space between the observer and the designed objects constructed by the conventional 3D computer-aided design (CAD) system. We have applied the design aid tool to the heliotron-type fusion reactor design activity FFHR2m [A. Sagara, S. Imagawa, O. Mitarai, T. Dolan, T. Tanaka, Y. Kubota, et al., Improved structure and long -life blanket concepts for heliotron reactors, Nucl. Fusion 45 (2005) 258-263] on the virtual reality system CompleXcope [Y. Tamura, A. Kageyama, T. Sato, S. Fujiwara, H. Nakamura, Virtual reality system to visualize and auralize numerical imulation data, Comp. Phys. Comm. 142 (2001) 227-230] of the National Institute for Fusion Science, Japan, and have evaluated its performance. The tool includes the functions of transfer of the observer, translation and scaling of the objects, recording of the operations and the check of interference

  7. Substitutional reality:using the physical environment to design virtual reality experiences

    Simeone, Adalberto; Velloso, Eduardo; Gellersen, Hans

    2015-01-01

    Experiencing Virtual Reality in domestic and other uncontrolled settings is challenging due to the presence of physical objects and furniture that are not usually defined in the Virtual Environment. To address this challenge, we explore the concept of Substitutional Reality in the context of Virtual Reality: a class of Virtual Environments where every physical object surrounding a user is paired, with some degree of discrepancy, to a virtual counterpart. We present a model of potential substi...

  8. Intelligent Open Data 3D Maps in a Collaborative Virtual World

    Juho-Pekka Virtanen

    2015-05-01

    Full Text Available Three-dimensional (3D maps have many potential applications, such as navigation and urban planning. In this article, we present the use of a 3D virtual world platform Meshmoon to create intelligent open data 3D maps. A processing method is developed to enable the generation of 3D virtual environments from the open data of the National Land Survey of Finland. The article combines the elements needed in contemporary smart city concepts, such as the connection between attribute information and 3D objects, and the creation of collaborative virtual worlds from open data. By using our 3D virtual world platform, it is possible to create up-to-date, collaborative 3D virtual models, which are automatically updated on all viewers. In the scenes, all users are able to interact with the model, and with each other. With the developed processing methods, the creation of virtual world scenes was partially automated for collaboration activities.

  9. 基于Cult 3D的挤压铸造模具虚拟现实设计%Virtual Reality Design of Squeezing Casting Mold Based on Cult 3D

    叶明松; 罗继相; 王建良; 赵利华; 李敏华

    2008-01-01

    研究了如何运用虚拟现实技术,快速、准确、交互地设计挤压铸造模具.利用3DS Max和Cult 3D,实现了铝合金ZF80-50机座挤压铸造模具拆装及开、合模、卸料等过程的运动仿真设计,完成了模具干涉性检测,并且动态地展示其工作原理以及各零件的装配关系.

  10. Feedback from video for virtual reality Navigation

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and a robust skin-color segmentation for accounting illumination variations.